Nucleation Process in Asymmetric Nuclear Matter
Peres-Menezes, D
1998-01-01
An extended version of the non linear Walecka model, with rho mesons and eletromagnetic field is used to investigate the possibility of phase transitions in hot (warm) nuclear matter, giving rise to droplet formation. Surface properties of asymmetric nuclear matter as the droplet surface energy and its thickness are also examined.
Isospin dependent properties of asymmetric nuclear matter
Chowdhury, P Roy; Samanta, C
2009-01-01
The density dependence of nuclear symmetry energy is determined from a systematic study of the isospin dependent bulk properties of asymmetric nuclear matter using the isoscalar and the isovector components of density dependent M3Y interaction. The incompressibility $K_\\infty$ for the symmetric nuclear matter, the isospin dependent part $K_{asy}$ of the isobaric incompressibility and the slope $L$ are all in excellent agreement with the constraints recently extracted from measured isotopic dependence of the giant monopole resonances in even-A Sn isotopes, from the neutron skin thickness of nuclei and from analyses of experimental data on isospin diffusion and isotopic scaling in intermediate energy heavy-ion collisions. This work provides a fundamental basis for the understanding of nuclear matter under extreme conditions, and validates the important empirical constraints obtained from recent experimental data.
Short-range correlations in asymmetric nuclear matter
2003-01-01
The spectral function of protons in the asymmetric nuclear matter is calculated in the self-consistent T-matrix approach. The spectral function per proton increases with increasing asymmetry. This effect and the density dependence of the spectral function partially explain the observed increase of the spectral function with the mass number of the target nuclei in electron scattering experiments.
Pairing effects on spinodal decomposition of asymmetric nuclear matter
Burrello S.
2015-01-01
Full Text Available We present an analysis framed in the general context of two-component fermionic systems subjected to pairing correlations. The study is conducted for unstable asymmetric nuclear matter at low temperature, along the clusterization process driven by spinodal instabilities. It is shown that, especially around the transition temperature from the superfluid to the normal phase, pairing correlations may have non-negligible effects on the isotopic features of the clusterized low-density matter, which could be of interest also in the astrophysical context.
DBHF Method for Asymmetric Nuclear Matter and Finite Nuclei
2001-01-01
The asymmetric nuclear matter is investigated in the DBHF approach with a new decomposition of the Dirac structure of nucleon self-energy. The coupling constants of σ, ω, δ and ρ mesons are deduced by reproducing the self-energy of DBHF calculation at every density and every asymmetry parameter in the RMF approximation. With these couplings the properties of finite nuclei are investigated. It is found that both scalar and vector potentials of neutron in the neutron rich nuclear matter become stronger although the isospin dependence of them is weaker. A significant difference in comparison with those, that the nucleon self-energy is deduced from the single particle energy, is observed. The nuclear binding energy as a function of the asymmetry parameter fulfills the empirical
Effects of Microscopic Three-body Forces in Asymmetric Nuclear Matter
无
2001-01-01
The efiects of microscopic three-body forces on the equatioil of state(EOS)and the single particle properties of isospin asymmetric nuclear matter have been studied within Brueckner-Hartree-Fock framework~[1]The microscopic three-body force model constructed from meson exchange current approach in Ref.~[2] has been extended to isospin asymmetric nuclear matter
A New Decomposition Approach of Dirac Brueckner Hartree-Fock G Matrix for Asymmetric Nuclear Matter
刘玲; 马中玉
2002-01-01
Asymmetric nuclear matter is investigated by the Dirac Brueckner Hartree-Fock (DBHF) approach with a new decomposition of the Dirac structure of nucleon self-energy from the G matrix. It is found that the isospin dependence of the scalar and vector potentials is relatively weak, although both potentials for neutron (proton)become deep (shallow) in the neutron-rich nuclear matter. The results in asymmetric nuclear matter are rather different from those obtained by a simple method, where the nucleon self-energy is deduced from the single-particle energy. The nuclear binding energy as a function of the asymmetry parameter fulfils the empirical parabolic law up to very extreme isospin asymmetric nuclear matter in the DBHF approach. The behaviour of the density dependence of the asymmetry energy is different from that obtained by non-relativistic approaches, although both give similar asymmetry energy at the nuclear saturation density.
Liquid-Gas Phase Transition for Asymmetric Nuclear Matter in the Zimanyi-Moszkowski Model
ZHANG Xu-Ming; QIAN Wei-Liang; SU Ru-Keng
2004-01-01
By using the improved Zimanyi-Moszkowski (ZM) model including the freedom of nucleons, σ mesons, ω mesons and ρ mesons, we investigate the liquid-gas phase transition for asymmetric nuclear matter. It is found that the phase transition for asymmetric nuclear matter in the improved ZM model with the isospin vector ρ meson degree of freedom is well defined. The binodal surface, which is essential in the study of the phase transition process, is addressed.
Effect of three-body interaction on hot asymmetric nuclear matter
Li Zeng-Hua; Zuo Wei; Lu Guang-Cheng
2004-01-01
The properties of hot asymmetric nuclear matter are studied in the framework of the finite temperature BruecknerHartree-Fock theory that is extended to include the contribution of microscopic three-body forces. We give the variation of the critical temperature with the asymmetry parameter and show the effect brought by this three-body repulsive potential on the value of the critical asymmetry of the phase transition for asymmetric nuclear matter. Owing to the additional repulsion provided by three-body forces, this value decreases. In addition, the domain of mechanical instability for hot nuclear matter is also indicated, which gradually shrinks with increasing asymmetry and temperature.
Nuclear superfluidity in isospin asymmetric matter within the Skyrme model
Aguirre, R.
2013-01-01
The phase diagram of the superfluid phase coupled to spin singlet (S=0) and isospin triplet (T=1) states in infinite nuclear matter is analyzed within the nonrelativistic Skyrme model. We use an approach that allows a unified and consistent treatment of the particle-hole and particle-particle channels. The gap equation is solved for the full range of accessible densities, isospin asymmetries, and temperatures. The characteristic features of each of the components Tz=0, +1, -1 are emphasized. ...
Equation of state for isospin asymmetric nuclear matter using Lane potential
Basu, D N; Samanta, C
2006-01-01
A variational method of obtaining equation of state (EOS) for symmetric nuclear matter from a density dependent M3Y interaction supplemented by a zero-range potential is described. The energy per nucleon is minimized to obtain the ground state of symmetric nuclear matter. The saturation energy per nucleon used for nuclear matter calculations is determined from the co-efficient of the volume term of Bethe-Weizs\\"acker mass formula which is evaluated by fitting the recent experimental and estimated atomic mass excesses from Audi-Wapstra-Thibault atomic mass table by minimizing the mean square deviation. The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. The EOS of symmetric nuclear matter, thus obtained, provide reasonably good estimate of nuclear incompressibility. Once the consants of density dependence are determined, EOS for asymmetric nuclear mat...
Density dependent hadron field theory for asymmetric nuclear matter and exotic nuclei
Hofmann, F. Keil; Lenske, H.
2001-01-01
Published in: Phys. Rev. C 64 (2001) , pp.034314 citations recorded in [Science Citation Index] Abstract: The density dependent relativistic hadron field (DDRH) theory is applied to strongly asymmetric nuclear matter and finite nuclei far off stability. A new set of in-medium meson-nucleon vertices
Critical phenomena of asymmetric nuclear matter in the extended Zimanyi-Moszkowski model
Miyazaki, K
2005-01-01
We have studied the liquid-gas phase transition of warm asymmetric nuclear matter in the extended Zimanyi-Moszkowski model. The three sets of the isovector-meson coupling constants are used. It is found that the critical temperature depends only on the difference of the symmetry energy but not on the differences of each isovector coupling constant. We treat the asymmetric nuclear matter as one-component system and employ the Maxwell construction so as to calculate the liquid-gas phase coexistence curve. The derived critical exponents depend on neither the symmetry energy nor the asymmetry of the system. Their values beta=0.33 and gamma=1.21 agree with the empirical values derived from the recent multifragmentation reactions. Consequently, we have confirmed the universality of the critical phenomena in the liquid-gas phase transition of nuclear matter.
Thermodynamics of the symmetry energy and the equation of state of isospin-asymmetric nuclear matter
Wellenhofer, Corbinian; Kaiser, Norbert [Physik Department, Technische Universitaet Muenchen (Germany); Holt, Jeremy W. [Department of Physics, University of Washington, Seattle (United States); Weise, Wolfram [Physik Department, Technische Universitaet Muenchen (Germany); ECT, Villa Tambosi, Trento (Italy)
2015-07-01
Knowledge of the thermodynamic properties of the nuclear symmetry energy is essential for the study of heavy-ion collisions and a multitude of astrophysical phenomena. In this work, we investigate the density and temperature dependence of the symmetry energy using many-body perturbation theory with microscopic chiral nuclear forces. The calculational methods and nuclear force models are benchmarked against empirical constraints for isospin-symmetric nuclear matter and the virial expansion of low-density neutron matter. It is found that whereas the symmetry free energy and entropy both increase uniformly with temperature, the symmetry energy exhibits almost universal behavior. Moreover, we show results for the equation of state of isospin-asymmetric nuclear matter, obtained from the parabolic approximation. The different thermodynamic instabilities at subsaturation densities are examined, and we construct the equation of state corresponding to an equilibrium liquid-gas phase transition by means of the generalized Maxwell construction for two-component fluids.
Hassaneen, Khaled; Mansour, Hesham
2017-02-01
The single-particle potentials and other properties at absolute zero temperature in isospin asymmetric nuclear matter are investigated in the frame of an extended Brueckner theory. Also thermal quantities are calculated in asymmetric nuclear matter using CD-Bonn potential and the Urbana three-body forces (3BF). Also, the effects of the hole-hole contributions are investigated within the self-consistent Greens function approach. The inclusion of 3BF or the hole-hole contributions improves the predicted saturation property of symmetric nuclear matter within the Brueckner-Hartree-Fock approach and it leads to a significant stiffening of the density dependence of symmetry energy at high densities but the exact saturation point is not reproduced. This is of great importance in astrophysical calculation. A phenomenological term simulating the three-body interaction is introduced to assure the empirical saturation property. The hot properties of asymmetric nuclear matter such as the internal energy and the pressure are analyzed using T2-approximation method at low temperatures.
Coexistence of phases in asymmetric nuclear matter under strong magnetic fields
Aguirre, R
2014-01-01
The equation of state of nuclear matter is strongly affected by the presence of a magnetic field. Here we study the equilibrium configuration of asymmetric nuclear matter for a wide range of densities, isospin composition, temperatures and magnetic fields. Special attention is paid to the low density and low temperature domain, where a thermodynamical instability exists. Neglecting fluctuations of the Coulomb force, a coexistence of phases is found under such conditions, even for extreme magnetic intensities. We describe the nuclear interaction by using the non--relativistic Skyrme potential model within a Hartree--Fock approach. We found that the coexistence of phases modifies the equilibrium configuration, masking most of the manifestations of the spin polarized matter. However, the compressibility and the magnetic susceptibility show clear signals of this fact. Thermal effects are significative for both quantities, mainly out of the coexistence region.
Non-congruence of liquid-gas phase transition of asymmetric nuclear matter
Maruyama, Toshiki
2012-01-01
We first explore the liquid-gas mixed phase in a bulk calculation, where two phases coexist without the geometrical structures. In the case of symmetric nuclear matter, the system behaves congruently, and the Maxwell construction becomes relevant. For asymmetric nuclear matter, on the other hand, the phase equilibrium is no more attained by the Maxwell construction since the liquid and gas phases are non-congruent; the particle fractions become completely different with each other. One of the origins of such non-congruence is attributed to the large symmetry energy. Subsequently we explore the charge-neutral nuclear matter with electrons by fully applying the Gibbs conditions to figure out the geometrical (pasta) structures in the liquid-gas mixed phase. We emphasize the effects of the surface tension and the Coulomb interaction on the pasta structures. We also discuss the thermal effects on the pasta structures.
Determination of the equation of state of asymmetric nuclear matter
Tsang, Manyee Betty [Michigan State Univ., East Lansing, MI (United States)
2016-12-30
A new Time Projection Chamber (TPC), called the SπRIT (SAMURAI pion Reconstruction Ion Tracker) TPC was constructed and used successfully in two experiments with the SAMURAI spectrometer at RIKEN, Japan to study the equation of state of neutron rich matter. As a result of the project, the SπRIT collaboration, an international collaboration consisting of groups from US, Japan, Korea, Poland, China and Germany, has been formed to pursue the science opportunities provided by the SπRIT TPC. After completion of the TPC and the two experiments, the collaboration continues to develop the software to analyze the SπRIT experiments and extract constraints of symmetry energy at supra-saturation densities. Over 250 TB of data have been obtained in the last SπRIT TPC experimental campaign. Construction of the TPC provided opportunities for the scientists to develop new designs for the light-weight and thin-walled field cage for the large pad plane and for the gating grid. Two PhD students (1 US and 1 Korea) graduated in 2016 based on their research on the TPC. At least four more doctoral theses (2 US, 1 Japan and 1 Korea) based on physics from the SπRIT experiments are expected.
Study of various charged p-meson masses in asymmetric nuclear matter
YAO Hai-Bo; WU Shi-Shu
2009-01-01
We study the effective masses of p-mesons for different charged states in asymmetric nuclear matter (ANM) using the Quantum Hadrodynamics II model.The closed form analytical results are presented for the effective masses of p-mesons.We have shown that the different charged p-mesons have mass splitting similar to various charged pions.The effect of the Dirac sea is also examined, and it is found that this effect is very important and leads to a reduction of the different charged p-meson masses in ANM.
Finite temperature collective modes in a two phase coexistence region of asymmetric nuclear matter
Aguirre, R M
2010-01-01
The relation between collective modes and the phase transition in low density nuclear matter is examined. The dispersion relations for collective modes in a linear approach are evaluated within a Landau-Fermi liquid scheme by assuming coexisting phases in thermodynamical equilibrium. Temperature and isospin composition are taken as relevant parameters. The in-medium nuclear interaction is taken from a recently proposed density functional model. We found significative modifications in the energy spectrum, within certain range of temperatures and isospin asymmetry, due to the separation of matter into independent phases. We conclude that detailed calculations should not neglect this effect.
ZUO Wei; A.Lejeune; U.Lombardo; J.F.Mathiot
2003-01-01
The three-body force effects on the equation of state and its iso-spin dependence of asymmetric nuclearmatter and on the proton fraction in neutron star matter have been investigated within Brueckner-Hartree-Fock approachby using a microscopic three-body force. It is shown that, even in the presence of the three-body force, the empiricalparabolic law of the energy per nucleon vs. isospin asymmetry β＝ ( N - Z) /A is fulfilled in the whole asymmetry range0≤β≤1 and also up to high density. The three-body force provides a strong enhancement of symmetry energy at highdensity in agreement with relativistic approaches. It also shows that the three-body force leads to a much more rapidincreasing of symmetry energy with density in relatively high density region and to a much lower threshold density forthe direct URCA process to occur in a neutron star as compared to the predictions adopting only pure two-body force.
Asymmetric condensed dark matter
Aguirre, Anthony; Diez-Tejedor, Alberto
2016-04-01
We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.
Asymmetric condensed dark matter
Aguirre, Anthony
2015-01-01
We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate can be very light, $10^{-22}\\,{\\rm eV} \\lesssim m \\lesssim 10^2\\,{\\rm eV}$; the lower limit arises from constraints on small-scale structure formation, while the upper bound ensures that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of deco...
Sammarruca, Francesca
2013-01-01
After reviewing our microscopic approach to nuclear and neutron-rich matter, we focus on how nucleon-nucleon scattering is impacted by the presence of a dense hadronic medium, with special emphasis on the case where neutron and proton densities are different. We discuss in detail medium and isospin asymmetry effects on the total elastic cross section and the mean free path of a neutron or a proton in isospin-asymmetric nuclear matter. We point out that in-medium cross sections play an important role in heavy-ion simulations aimed at extracting constraints on the symmetry potential. We argue that medium and isospin dependence of microscopic cross sections are the results of a complex balance among various effects, and cannot be simulated with a simple phenomenological model.
Aidala, C; Akiba, Y; Akimoto, R; Alexander, J; Aoki, K; Apadula, N; Asano, H; Atomssa, E T; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Bai, X; Bannier, B; Barish, K N; Bathe, S; Baublis, V; Baumann, C; Baumgart, S; Bazilevsky, A; Beaumier, M; Belmont, R; Berdnikov, A; Berdnikov, Y; Bing, X; Black, D; Blau, D S; Bok, J; Boyle, K; Brooks, M L; Bryslawskyj, J; Buesching, H; Bumazhnov, V; Butsyk, S; Campbell, S; Chen, C -H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choi, S; Christiansen, P; Chujo, T; Cianciolo, V; Cole, B A; Cronin, N; Crossette, N; Csanád, M; Csörgő, T; Datta, A; Daugherity, M S; David, G; Dehmelt, K; Denisov, A; Deshpande, A; Desmond, E J; Ding, L; Do, J H; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; D'Orazio, L; Engelmore, T; Enokizono, A; Esumi, S; Eyser, K O; Fadem, B; Fields, D E; Finger, M; Finger,, M; Fleuret, F; Fokin, S L; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Gainey, K; Gal, C; Garg, P; Garishvili, A; Garishvili, I; Giordano, F; Glenn, A; Gong, X; Gonin, M; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Perdekamp, M Grosse; Gu, Y; Gunji, T; Guragain, H; Haggerty, J S; Hahn, K I; Hamagaki, H; Hanks, J; Hashimoto, K; Hayano, R; He, X; Hemmick, T K; Hester, T; Hill, J C; Hollis, R S; Homma, K; Hong, B; Hoshino, T; Huang, J; Huang, S; Ichihara, T; Ikeda, Y; Imai, K; Imazu, Y; Inaba, M; Iordanova, A; Isenhower, D; Isinhue, A; Ivanishchev, D; Jacak, B V; Jeon, S J; Jezghani, M; Jia, J; Jiang, X; Johnson, B M; Joo, K S; Jouan, D; Jumper, D S; Kamin, J; Kanda, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Kawall, D; Kazantsev, A V; Key, J A; Khachatryan, V; Khandai, P K; Khanzadeev, A; Kijima, K M; Kim, C; Kim, D J; Kim, E -J; Kim, Y -J; Kim, Y K; Kistenev, E; Klatsky, J; Kleinjan, D; Kline, P; Koblesky, T; Kofarago, M; Komkov, B; Koster, J; Kotchetkov, D; Kotov, D; Krizek, F; Kurita, K; Kurosawa, M; Kwon, Y; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, G H; Lee, J; Lee, K B; Lee, K S; Lee, S H; Leitch, M J; Leitgab, M; Lewis, B; Li, X; Lim, S H; Liu, M X; Lynch, D; Maguire, C F; Makdisi, Y I; Makek, M; Manion, A; Manko, V I; Mannel, E; Maruyama, T; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Meles, A; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Milov, A; Mishra, D K; Mitchell, J T; Miyasaka, S; Mizuno, S; Mohanty, A K; Morrison, D P; Moskowitz, M; Moukhanova, T V; Murakami, T; Murata, J; Nagae, T; Nagamiya, S; Nagle, J L; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nattrass, C; Netrakanti, P K; Nihashi, M; Niida, T; Nouicer, R; Novak, T; Novitzky, N; Nyanin, A S; O'Brien, E; Ogilvie, C A; Oide, H; Okada, K; Oskarsson, A; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, S; Park, S K; Pate, S F; Patel, L; Peng, J -C; Perepelitsa, D; Perera, G D N; Peressounko, D Yu; Perry, J; Petti, R; Pinkenburg, C; Pisani, R P; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reynolds, D; Riabov, V; Riabov, Y; Richardson, E; Riveli, N; Roach, D; Rolnick, S D; Rosati, M; Ryu, M S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sako, H; Samsonov, V; Sarsour, M; Sato, S; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Sekiguchi, Y; Sen, A; Seto, R; Sett, P; Sharma, D; Shaver, A; Shein, I; Shibata, T -A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Singh, B K; Singh, C P; Singh, V; Skolnik, M; Slunečka, M; Solano, S; Soltz, R A; Sondheim, W E; Sorensen, S P; Soumya, M; Sourikova, I V; Stankus, P W; Steinberg, P; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Stone, M R; Sugitate, T; Sukhanov, A; Sun, J; Takahara, A; Taketani, A; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tennant, E; Timilsina, A; Todoroki, T; Tomášek, M; Torii, H; Towell, R S; Tserruya, I; van Hecke, H W; Vargyas, M; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Watanabe, Y S; Wei, F; Whitaker, S; Wolin, S; Woody, C L; Wysocki, M; Yamaguchi, Y L; Yanovich, A; Yokkaichi, S; Yoon, I; You, Z; Younus, I; Yushmanov, I E; Zajc, W A; Zelenski, A; Zhou, S
2014-01-01
We report on $J/\\psi$ production from asymmetric Cu+Au heavy-ion collisions at $\\sqrt{s_{_{NN}}}$=200 GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of $J/\\psi$ yields in Cu$+$Au collisions in the Au-going direction is found to be comparable to that in Au$+$Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, $J/\\psi$ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-$x$ gluon suppression in the larger Au nucleus. The relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.
Regenerating a symmetry in asymmetric dark matter.
Buckley, Matthew R; Profumo, Stefano
2012-01-06
Asymmetric dark matter theories generically allow for mass terms that lead to particle-antiparticle mixing. Over the age of the Universe, dark matter can thus oscillate from a purely asymmetric configuration into a symmetric mix of particles and antiparticles, allowing for pair-annihilation processes. Additionally, requiring efficient depletion of the primordial thermal (symmetric) component generically entails large annihilation rates. We show that unless some symmetry completely forbids dark matter particle-antiparticle mixing, asymmetric dark matter is effectively ruled out for a large range of masses, for almost any oscillation time scale shorter than the age of the Universe.
Twin Higgs Asymmetric Dark Matter.
García García, Isabel; Lasenby, Robert; March-Russell, John
2015-09-18
We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20 GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.
Avakyan, R.M.; Sarkisyan, A.V.
1987-07-01
The properties of degenerate stellar matter in the region of nuclear densities are considered. The threshold of the transition of the electron-nucleus phase to the state of continuous nuclear matter is found.
Asymmetric dark matter in braneworld cosmology
Meehan, Michael T.; Whittingham, Ian B., E-mail: Michael.Meehan@my.jcu.edu.au, E-mail: Ian.Whittingham@jcu.edu.au [School of Engineering and Physical Sciences, James Cook University, Townsville, 4811 Australia (Australia)
2014-06-01
We investigate the effect of a braneworld expansion era on the relic density of asymmetric dark matter. We find that the enhanced expansion rate in the early universe predicted by the Randall-Sundrum II (RSII) model leads to earlier particle freeze-out and an enhanced relic density. This effect has been observed previously by Okada and Seto (2004) for symmetric dark matter models and here we extend their results to the case of asymmetric dark matter. We also discuss the enhanced asymmetric annihilation rate in the braneworld scenario and its implications for indirect detection experiments.
Asymmetric dark matter bound state
Bi, Xiao-Jun; Kang, Zhaofeng; Ko, P.; Li, Jinmian; Li, Tianjun
2017-02-01
We propose an interesting framework for asymmetric scalar dark matter (ADM), which has novel collider phenomenology in terms of an unstable ADM bound state (ADMonium) produced via Higgs portals. ADMonium is a natural consequence of the basic features of ADM: the (complex scalar) ADM is charged under a dark local U (1 )d symmetry which is broken at a low scale and provides a light gauge boson X . The dark gauge coupling is strong and then ADM can annihilate away into X -pair effectively. Therefore, the ADM can form a bound state due to its large self-interaction via X mediation. To explore the collider signature of ADMonium, we propose that ADM has a two-Higgs doublet portal. The ADMonium can have a sizable mixing with the heavier Higgs boson, which admits a large cross section of ADMonium production associated with b b ¯. The resulting signature at the LHC depends on the decays of X . In this paper we consider a case of particular interest: p p →b b ¯ +ADMonium followed by ADMonium→2 X →2 e+e- where the electrons are identified as (un)converted photons. It may provide a competitive explanation to heavy di-photon resonance searches at the LHC.
Asymmetric dark matter models in SO(10)
Nagata, Natsumi; Olive, Keith A.; Zheng, Jiaming
2017-02-01
We systematically study the possibilities for asymmetric dark matter in the context of non-supersymmetric SO(10) models of grand unification. Dark matter stability in SO(10) is guaranteed by a remnant Z2 symmetry which is preserved when the intermediate scale gauge subgroup of SO(10) is broken by a {126} dimensional representation. The asymmetry in the dark matter states is directly generated through the out-of-equilibrium decay of particles around the intermediate scale, or transferred from the baryon/lepton asymmetry generated in the Standard Model sector by leptogenesis. We systematically classify possible asymmetric dark matter candidates in terms of their quantum numbers, and derive the conditions for each case that the observed dark matter density is (mostly) explained by the asymmetry of dark matter particles.
Asymmetric Dark Matter Models in SO(10)
Nagata, Natsumi; Zheng, Jiaming
2016-01-01
We systematically study the possibilities for asymmetric dark matter in the context of non-supersymmetric SO(10) models of grand unification. Dark matter stability in SO(10) is guaranteed by a remnant $\\mathbb{Z}_2$ symmetry which is preserved when the intermediate scale gauge subgroup of SO(10) is broken by a ${\\bf 126}$ dimensional representation. The asymmetry in the dark matter states is directly generated through the out-of-equilibrium decay of particles around the intermediate scale, or transferred from the baryon/lepton asymmetry generated in the Standard Model sector by leptogenesis. We systematically classify possible asymmetric dark matter candidates in terms of their quantum numbers, and derive the conditions for each case that the observed dark matter density is (mostly) explained by the asymmetry of dark matter particles.
Lenske H.
2016-01-01
Full Text Available Recent developments of nuclear structure theory for exotic nuclei are addressed. The inclusion of hyperons and nucleon resonances is discussed. Nuclear multipole response functions, hyperon interactions in infinite matter and in neutron stars and theoretical aspects of excitations of nucleon resonances in nuclei are discussed.
Dorso, C O; Nichols, J I; López, J A
2012-01-01
We study the behavior of cold nuclear matter near saturation density (\\rho 0) and very low temperature using classical molecular dynamics. We used three different (classical) nuclear interaction models that yield `medium' or `stiff' compressibilities. For high densities and for every model the ground state is a classical crystalline solid, but each one with a different structure. At subsaturation densities, we found that for every model the transition from uniform (crystal) to non-uniform matter occurs at \\rho ~ 0.12 fm^(-3) = 0.75 \\rho 0. Surprisingly, at the non-uniform phase, the three models produce `pasta-like' structures as those allegedly present in neutron star matter but without the long-range Coulomb interaction and with different length scales.
Functional renormalization group studies of nuclear and neutron matter
Drews, Matthias
2016-01-01
Functional renormalization group (FRG) methods applied to calculations of isospin-symmetric and asymmetric nuclear matter as well as neutron matter are reviewed. The approach is based on a chiral Lagrangian expressed in terms of nucleon and meson degrees of freedom as appropriate for the hadronic phase of QCD with spontaneously broken chiral symmetry. Fluctuations beyond mean-field approximation are treated solving Wetterich's FRG flow equations. Nuclear thermodynamics and the nuclear liquid-gas phase transition are investigated in detail, both in symmetric matter and as a function of the proton fraction in asymmetric matter. The equations of state at zero temperature of symmetric nuclear matter and pure neutron matter are found to be in good agreement with advanced ab-initio many-body computations. Contacts with perturbative many-body approaches (in-medium chiral perturbation theory) are discussed. As an interesting test case, the density dependence of the pion mass in the medium is investigated. The questio...
Condensed Matter Nuclear Science
Biberian, Jean-Paul
2006-02-01
1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research
Survey of Reflection-Asymmetric Nuclear Deformations
Olsen, Erik; Cao, Yuchen; Nazarewicz, Witold; Schunck, Nicolas
2016-09-01
Due to spontaneous symmetry breaking it is possible for a nucleus to have a deformed shape in its ground state. It is theorized that atoms whose nuclei have reflection-asymmetric or pear-like deformations could have non-zero electric dipole moments (EDMs). Such a trait would be evidence of CP-violation, a feature that goes beyond the Standard Model of Physics. It is the purpose of this project to predict which nuclei exhibit a reflection-asymmetric deformation and which of those would be the best candidates for an EDM measuring experiment. Using nuclear Density Functional Theory along with the new computer code AxialHFB and massively parallel computing we calculated ground state nuclear properties for thousands of even-even nuclei across the nuclear chart: from light to superheavy and from stable to short-lived systems. Six different Energy Density Functionals (EDFs) were used to assess systematic errors in our calculations. These results are to be added to the website Massexplorer (http://massexplorer.frib.msu.edu/) which contains results from earlier mass table calculations and information on single quasiparticle energies.
Asymmetric Dark Matter in the shear-dominated universe
Iminniyaz, Hoernisa
2017-02-01
We explore the relic abundance of asymmetric Dark Matter in shear-dominated universe in which it is assumed the universe is expanded anisotropically. The modified expansion rate leaves its imprint on the relic density of asymmetric Dark Matter particles if the asymmetric Dark Matter particles are decoupled in shear dominated era. We found the relic abundances for particle and anti-particle are increased. The particle and anti-particle abundances are almost in the same amount for the larger value of the shear factor xe which makes the indirect detection possible for asymmetric Dark Matter. We use the present day Dark Matter density from the observation to find the constraints on the parameter space in this model.
ADMonium: Asymmetric Dark Matter Bound State
Bi, Xiao-Jun; Ko, P; Li, Jinmian; Li, Tianjun
2016-01-01
We propose a novel framework for asymmetric scalar dark matter (ADM), which has interesting collider phenomenology in terms of an unstable ADM bound state (ADMonium) produced via Higgs portals. ADMonium is a natural consequence of the basic features of ADM: the (complex scalar) ADM is charged under a dark local $U(1)_d$ symmetry which is broken at a low scale and provides a light gauge boson $X$. The dark gauge coupling is strong and then ADM can annihilate away into $X$-pair effectively. Therefore, the ADM can form bound state due to its large self-interaction via $X$ mediation. To explore the collider signature of ADMonium, we propose that ADM has a two-Higgs doublet portal. The ADMonium can have a sizable mixing with the heavier Higgs boson, which admits a large cross section of ADMonium production associated with $b\\bar b$. Of particular interest, our setup nicely explains the recent di-photon anomaly at 750 GeV via the events from ${\\rm ADMonium}\\ra 2X(\\ra e^+e^-)$, where the electrons are identified as ...
Nuclear matter and electron scattering
Sick, I. [Dept. fuer Physik und Astronomie, Univ. Basel (Switzerland)
1998-06-01
We show that inclusive electron scattering at large momentum transfer allows a measurement of short-range properties of nuclear matter. This provides a very valuable constraint in selecting the calculations appropriate for predicting nuclear matter properties at the densities of astrophysical interest. (orig.)
Abundance of Asymmetric Dark Matter in Brane World Cosmology
Abdusattar, Haximjan; Iminniyaz, Hoernisa
2016-09-01
Relic abundance of asymmetric Dark Matter particles in brane world cosmological scenario is investigated in this article. Hubble expansion rate is enhanced in brane world cosmology and it affects the relic abundance of asymmetric Dark Matter particles. We analyze how the relic abundance of asymmetric Dark Matter is changed in this model. We show that in such kind of nonstandard cosmological scenario, indirect detection of asymmetric Dark Matter is possible if the cross section is small enough which let the anti-particle abundance kept in the same amount with the particle. We show the indirect detection signal constraints can be used to such model only when the cross section and the 5-dimensional Planck mass scale are in appropriate values. Supported by the National Natural Science Foundation of China under Grant No. 11365022
Charge Asymmetric Cosmic Rays as a probe of Flavor Violating Asymmetric Dark Matter
Masina, Isabella; Sannino, Francesco
2011-01-01
The recently introduced cosmic sum rules combine the data from PAMELA and Fermi-LAT cosmic ray experiments in a way that permits to neatly investigate whether the experimentally observed lepton excesses violate charge symmetry. One can in a simple way determine universal properties of the unknown...... component of the cosmic rays. Here we attribute a potential charge asymmetry to the dark sector. In particular we provide models of asymmetric dark matter able to produce charge asymmetric cosmic rays. We consider spin zero, spin one and spin one-half decaying dark matter candidates. We show that lepton...... flavor violation and asymmetric dark matter are both required to have a charge asymmetry in the cosmic ray lepton excesses. Therefore, an experimental evidence of charge asymmetry in the cosmic ray lepton excesses implies that dark matter is asymmetric....
Chiral thermodynamics of nuclear matter
Fiorilla, Salvatore
2012-10-23
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Covariant density functional theory for nuclear matter
Badarch, U.
2007-07-01
The present thesis is organized as follows. In Chapter 2 we study the Nucleon-Nucleon (NN) interaction in Dirac-Brueckner (DB) approach. We start by considering the NN interaction in free-space in terms of the Bethe-Salpeter (BS) equation to the meson exchange potential model. Then we present the DB approach for nuclear matter by extending the BS equation for the in-medium NN interaction. From the solution of the three-dimensional in-medium BS equation, we derive the DB self-energies and total binding energy which are the main results of the DB approach, which we later incorporate in the field theoretical calculation of the nuclear equation of state. In Chapter 3, we introduce the basic concepts of density functional theory in the context of Quantum Hadrodynamics (QHD-I). We reach the main point of this work in Chapter 4 where we introduce the DDRH approach. In the DDRH theory, the medium dependence of the meson-nucleon vertices is expressed as functionals of the baryon field operators. Because of the complexities of the operator-valued functionals we decide to use the mean-field approximation. In Chapter 5, we contrast microscopic and phenomenological approaches to extracting density dependent meson-baryon vertices. Chapter 6 gives the results of our studies of the EOS of infinite nuclear matter in detail. Using formulas derived in Chapters 4 and 5 we calculate the properties of symmetric and asymmetric nuclear matter and pure neutron matter. (orig.)
Asymmetric vector mesons produced in nuclear collisions
Dremin, I M
2016-01-01
It is argued that the experimentally observed phenomenon of asymmetric shapes of vector mesons produced in nuclear media during high energy nucleus-nucleus collisions can be explained as Fano-Feshbach resonances. It has been observed that the mass distributions of lepton pairs created at meson decays decline from the traditional Breit-Wigner shape with some excess in the low-mass wing of the resonance. It is clear that the whole phenomenon is related to some interaction with the nuclear medium. Moreover, it can be further detalized in quantum mechanics as the interference of direct and continuum states in Fano-Feshbach effect. To reveal the nature of the interaction it is proposed to use a phenomenological model of the additional contribution due to Cherenkov gluons. They can be created because of the excess of the refractivity index over 1 just in the low-mass wing as required by the classical Cherenkov treatment. In quantum mechanics, this requirement is related to the positive real part of the interaction ...
Asymmetric vector mesons produced in nuclear collisions
Dremin, I. M.; Nechitailo, V. A.
2016-09-01
It is argued that the experimentally observed phenomenon of asymmetric shapes of vector mesons produced in nuclear media during high-energy nucleus-nucleus collisions can be explained as Fano-Feshbach resonances. It has been observed that the mass distributions of lepton pairs created at meson decays decline from the traditional Breit-Wigner shape with some excess in the low-mass wing of the resonance. It is clear that the whole phenomenon is related to some interaction with the nuclear medium. Moreover, it can be further described in quantum mechanics as the interference of direct and continuum states in the Fano-Feshbach effect. To reveal the nature of the interaction it is proposed to use a phenomenological model of the additional contribution due to Cherenkov gluons. They can be created because of the excess of the refractivity index over 1 just in the low-mass wing as required by the classical Cherenkov treatment. In quantum mechanics, this requirement is related to the positive real part of the interaction amplitude in this wing. The corresponding parameters are found from the comparison with ρ-meson data and admit reasonable explanation.
Asymmetric vector mesons produced in nuclear collisions
Dremin, I.M.; Nechitailo, V.A. [Lebedev Physical Institute, Moscow (Russian Federation); National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation)
2016-09-15
It is argued that the experimentally observed phenomenon of asymmetric shapes of vector mesons produced in nuclear media during high-energy nucleus-nucleus collisions can be explained as Fano-Feshbach resonances. It has been observed that the mass distributions of lepton pairs created at meson decays decline from the traditional Breit-Wigner shape with some excess in the low-mass wing of the resonance. It is clear that the whole phenomenon is related to some interaction with the nuclear medium. Moreover, it can be further described in quantum mechanics as the interference of direct and continuum states in the Fano-Feshbach effect. To reveal the nature of the interaction it is proposed to use a phenomenological model of the additional contribution due to Cherenkov gluons. They can be created because of the excess of the refractivity index over 1 just in the low-mass wing as required by the classical Cherenkov treatment. In quantum mechanics, this requirement is related to the positive real part of the interaction amplitude in this wing. The corresponding parameters are found from the comparison with ρ-meson data and admit reasonable explanation. (orig.)
非对称核物质中核子动量分布的微观理论计算%Momentum Distribution of Nucleons in Asymmetric Nuclear Matter
李建洋; 左维; 曹高清; U.Lombardo
2012-01-01
在Extended Brueckner-Hartree-Fock（EBHF）近似下,采用Argonne V18势作为核子-核子相互作用,计算了基态非对称核物质中核子动量的分布。对核子的动量分布对同位旋不对称度的依赖关系进行了描述和讨论。结果表明,在不对称度为零时,质子与中子有着基本相同的动量分布。随着不对称度的增加,在各自的费米面以下,质子动量分布减小而中子动量分布增大。对费米面处的准粒子强度也进行了计算和讨论。本结果较好地满足了两个理论检验标准Migdal-Luttinger theorem和粒子数守恒律。%We calculate the momentum distribution of nucleons in asymmetric nuclear matter within the framework of the extended Brueckner-Hartree-Fock approximation at zero temperature,use Argonne V18 potential as two nucleons potential.The isospin-asymmetry dependence of the nuc-leon momentum distribution predicted and discussed.It is shown that as the asymmetry increases,the proton momentum distribution become smaller while the neutron one gets higher below their respective Fermi surfaces with respect to their common values in symmetric nuclear matter.The quasi-particle strength at the Fermi momentum also calculated and discussed,we got an improved fulfillment of the Migdal-Luttinger theorem and nucleon number conservation.
Nuclear fusion inside condense matters
HE Jing-tang
2007-01-01
This article describes in detail the nuclear fusion inside condense matters--the Fleischmann-Pons effect, the reproducibility of cold fusions, self-consistentcy of cold fusions and the possible applications.
Functional renormalization group studies of nuclear and neutron matter
Drews, Matthias; Weise, Wolfram
2017-03-01
Functional renormalization group (FRG) methods applied to calculations of isospin-symmetric and asymmetric nuclear matter as well as neutron matter are reviewed. The approach is based on a chiral Lagrangian expressed in terms of nucleon and meson degrees of freedom as appropriate for the hadronic phase of QCD with spontaneously broken chiral symmetry. Fluctuations beyond mean-field approximation are treated solving Wetterich's FRG flow equations. Nuclear thermodynamics and the nuclear liquid-gas phase transition are investigated in detail, both in symmetric matter and as a function of the proton fraction in asymmetric matter. The equations of state at zero temperature of symmetric nuclear matter and pure neutron matter are found to be in good agreement with advanced ab-initio many-body computations. Contacts with perturbative many-body approaches (in-medium chiral perturbation theory) are discussed. As an interesting test case, the density dependence of the pion mass in the medium is investigated. The question of chiral symmetry restoration in nuclear and neutron matter is addressed. A stabilization of the phase with spontaneously broken chiral symmetry is found to persist up to high baryon densities once fluctuations beyond mean-field are included. Neutron star matter including beta equilibrium is discussed under the aspect of the constraints imposed by the existence of two-solar-mass neutron stars.
Asymmetric dark matter and the Sun
Frandsen, Mads Toudal; Sarkar, Subir
2010-01-01
Cold dark matter particles with an intrinsic matter-antimatter asymmetry do not annihilate after gravitational capture by the Sun and can affect its interior structure. The rate of capture is exponentially enhanced when such particles have self-interactions of the right order to explain structure...
Upper Bounds on Asymmetric Dark Matter Self Annihilation Cross Sections
Ellwanger, Ulrich
2012-01-01
Most models for asymmetric dark matter allow for dark matter self annihilation processes, which can wash out the asymmetry at temperatures near and below the dark matter mass. We study the coupled set of Boltzmann equations for the symmetric and antisymmetric dark matter number densities, and derive conditions applicable to a large class of models for the absence of a significant wash-out of an asymmetry. These constraints are applied to various existing scenarios. In the case of left- or right-handed sneutrinos, very large electroweak gaugino masses, or very small mixing angles are required.
Chapman, S.
1992-11-01
The goal in this thesis is thus twofold: The first is to investigate the feasibility of using heavy ion collisions to create conditions in the laboratory which are ripe for the formation of a quark-gluon plasma. The second is to develop a technique for studying some of the many non-perturbative features of this novel phase of matter.
Asymmetric Dark Matter Models and the LHC Diphoton Excess
Frandsen, Mads T.; Shoemaker, Ian M.
2016-01-01
The existence of dark matter (DM) and the origin of the baryon asymmetry are persistent indications that the SM is incomplete. More recently, the ATLAS and CMS experiments have observed an excess of diphoton events with invariant mass of about 750 GeV. One interpretation of this excess is decays...... have for models of asymmetric DM that attempt to account for the similarity of the dark and visible matter abundances....
Continuous Flavor Symmetries and the Stability of Asymmetric Dark Matter
Bishara, Fady
2014-01-01
Generically, the asymmetric interactions in asymmetric dark matter (ADM) models lead to decaying DM. We show that, for ADM that carries nonzero baryon number, the continuous flavor symmetries that generate the flavor structure in the quark sector also imply a looser lower bound on the mass scale of the asymmetric mediators between the dark and visible sectors. The mediators for $B=2$ ADM that can produce a signal in the future indirect dark matter searches can thus also be searched for at the LHC. For two examples of the mediator models, with either the MFV or Froggatt-Nielsen flavor breaking pattern, we derive the FCNC constraints and discuss the search strategies at the LHC.
Heiselberg, H. [NORDITA, Copenhagen (Denmark)
1998-06-01
The kaon energy in a nuclear medium and its dependence on kaon-nucleon and nucleon-nucleon correlations is discussed. The transition from the Lenz potential at low densities to the Hartree potential at high densities can be calculated analytically by making a Wigner-Seitz cell approximation and employing a square well potential. As the Hartree potential is less attractive than the Lenz one, kaon condensation inside cores of neutron stars appears to be less likely than previously estimated. (orig.)
Mosel Ulrich
2017-01-01
Full Text Available We review the achievements of the project B.5, that deals with the calculation of in-medium properties of vector mesons and an analysis of their experimental signals, with a particular emphasis on the ω photoproduction data from CBELSA/TAPS. Other topics addressed include color transparency, pion electroproduction on nucleons, the Primakoff effect for nuclear targets and studies of hadronization at the EIC.
Linear response of homogeneous nuclear matter with energy density functionals
Pastore, A. [Institut d’Astronomie et d’Astrophysique, CP 226, Université Libre de Bruxelles, B-1050 Bruxelles (Belgium); Davesne, D., E-mail: davesne@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, CNRS-IN2P3, UMR 5822, Université Lyon 1, F-69622 Villeurbanne (France); Navarro, J. [IFIC (CSIC University of Valencia), Apdo. Postal 22085, E-46071 Valencia (Spain)
2015-03-01
Response functions of infinite nuclear matter with arbitrary isospin asymmetry are studied in the framework of the random phase approximation. The residual interaction is derived from a general nuclear Skyrme energy density functional. Besides the usual central, spin–orbit and tensor terms it could also include other components as new density-dependent terms or three-body terms. Algebraic expressions for the response functions are obtained from the Bethe–Salpeter equation for the particle–hole propagator. Applications to symmetric nuclear matter, pure neutron matter and asymmetric nuclear matter are presented and discussed. Spin–isospin strength functions are analyzed for varying conditions of density, momentum transfer, isospin asymmetry, and temperature for some representative Skyrme functionals. Particular attention is paid to the discussion of instabilities, either real or unphysical, which could manifest in finite nuclei.
Gamma ray constraints on flavor violating asymmetric dark matter
Masina, I.; Panci, P.; Sannino, F.
2012-01-01
We show how cosmic gamma rays can be used to constrain models of asymmetric Dark Matter decaying into lepton pairs by violating flavor. First of all we require the models to explain the anomalies in the charged cosmic rays measured by PAMELA, Fermi and H.E.S.S.; performing combined fits we...... determine the allowed values of the Dark Matter mass and lifetime. For these models, we then determine the constraints coming from the measurement of the isotropic gamma-ray background by Fermi for a complete set of lepton flavor violating primary modes and over a range of DM masses from 100 GeV to 10 Te......V. We find that the Fermi constraints rule out the flavor violating asymmetric Dark Matter interpretation of the charged cosmic ray anomalies....
Heavy Hadrons in Nuclear Matter
Hosaka, Atsushi; Sudoh, Kazutaka; Yamaguchi, Yasuhiro; Yasui, Shigehiro
2016-01-01
Current studies on heavy hadrons in nuclear medium are reviewed with a summary of the basic theoretical concepts of QCD, namely chiral symmetry, heavy quark spin symmetry, and the effective Lagrangian approach. The nuclear matter is an interesting place to study the properties of heavy hadrons from many different points of view. We emphasize the importance of the following topics: (i) charm/bottom hadron-nucleon interaction, (ii) structure of charm/bottom nuclei, and (iii) QCD vacuum properties and hadron modifications in nuclear medium. We pick up three different groups of heavy hadrons, quarkonia ($J/\\psi$, $\\Upsilon$), heavy-light mesons ($D$/$\\bar{D}$, $\\bar{B}$/$B$) and heavy baryons ($\\Lambda_{c}$, $\\Lambda_{b}$). The modifications of those hadrons in nuclear matter provide us with important information to investigate the essential properties of heavy hadrons. We also give the discussions about the heavy hadrons, not only in nuclear matter with infinite volume, but also in atomic nuclei with finite bary...
Asymmetric Dark Matter and Baryogenesis from Pseudoscalar Inflation
Cado, Yann
2016-01-01
We show that both the baryon asymmetry of the Universe and the dark matter abundance can be explained within a single framework that makes use of maximally helical hypermagnetic fields produced during pseudoscalar inflation and the chiral anomaly in the Standard Model. We consider a minimal asymmetric dark matter model free from anomalies and constraints. We find that the observed baryon and the dark matter abundances are achieved for a wide range of inflationary parameters, and the dark matter mass ranges between 7-15 GeV. The novelty of our mechanism stems from the fact that the same source of CP violation occurring during inflation explains both baryonic and dark matter in the Universe with two inflationary parameters, hence addressing all the initial condition problems in an economical way.
Asymmetric warps in disk galaxies: dependence on dark matter halo
Jog, K S C J
2006-01-01
Recent observations have shown that most of the warps in the disk galaxies are asymmetric. However there exists no generic mechanism to generate these asymmetries in warps. We have shown that a rich variety of possible asymmetries in the z-distribution of the spiral galaxies can naturally arise due to a dynamical wave interference between the first two bending modes i.e. bowl-shaped mode(m=0) and S-shaped warping mode(m=1) in the galactic disk embedded in a dark matter halo. We show that the asymmetric warps are more pronounced when the dark matter content within the optical disk is lower as in early-type galaxies.
Decaying Asymmetric Dark Matter Relaxes the AMS-Fermi Tension
Feng, Lei
2013-01-01
The first result of AMS-02 confirms the positron fraction excess observed by PAMELA, but in the dark matter (DM) interpretation, its softer spectrum brings a tension between AMS-02 and Fermi-LAT, which reported an excess of the electron plus positron flux. In this work we point out that the asymmetric cosmic ray from asymmetric dark matter (ADM) decay relaxes the tension, and find that at the two-body decay level a bosonic ADM around 2.4 TeV and decaying to\\mu^-\\tau^+ can significantly improve the fits. Based on the R-parity-violating supersymmetry with operators LLE^c, we propose a minimal model to realize that ADM scenario: Introducing a pair of singlets (X,\\bar X) and coupling them to the visible sector via LH_uX, we then obtain a leptonic decaying ADM with TeV-scale mass.
Hyperon masses in nuclear matter
Savage, M J; Savage, Martin J; Wise, Mark B
1996-01-01
We analyze hyperon and nucleon mass shifts in nuclear matter using chiral perturbation theory. Expressions for the mass shifts that include strong interaction effects at leading order in the density are derived. Corrections to our results are suppressed by powers of the Fermi momentum divided by either the chiral symmetry breaking scale or the nucleon mass. Our work is relevant for neutron stars and for large hypernuclei.
Constraining Asymmetric Dark Matter through observations of compact stars
Kouvaris, Christoforos; Tinyakov, Peter
2011-01-01
We put constraints on asymmetric dark matter candidates with spin-dependent interactions based on the simple existence of white dwarfs and neutron stars in globular clusters. For a wide range of the parameters (WIMP mass and WIMP-nucleon cross section), WIMPs can be trapped in progenitors in large...... numbers and once the original star collapses to a white dwarf or a neutron star, these WIMPs might self-gravitate and eventually collapse forming a mini-black hole that eventually destroys the star. We impose constraints competitive to direct dark matter search experiments, for WIMPs with masses down...
Nuclear matter physics at NICA
Senger, P. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)
2016-08-15
The exploration of the QCD phase diagram is one of the most exciting and challenging projects of modern nuclear physics. In particular, the investigation of nuclear matter at high baryon densities offers the opportunity to find characteristic structures such as a first-order phase transition with a region of phase coexistence and a critical endpoint. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. Equally important is the quantitative experimental information on the properties of hadrons in dense matter which may shed light on chiral symmetry restoration and the origin of hadron masses. Worldwide, substantial efforts at the major heavy-ion accelerators are devoted to the clarification of these fundamental questions, and new dedicated experiments are planned at future facilities like CBM at FAIR in Darmstadt and MPD at NICA/JINR in Dubna. In this article the perspectives for MPD at NICA will be discussed. (orig.)
Nuclear charge and neutron radii and nuclear matter: trend analysis
Reinhard, P -G
2016-01-01
Radii of charge and neutron distributions are fundamental nuclear properties. They depend on both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal shell effects, which are strongly impacted by the presence of nuclear surface. In this work, by studying the dependence of charge and neutron radii, and neutron skin, on nuclear matter parameters, we assess different mechanisms that drive nuclear sizes. We apply nuclear density functional theory using a family of Skyrme functionals obtained by means of different optimization protocols targeting specific nuclear properties. By performing the Monte-Carlo sampling of reasonable functionals around the optimal parametrization, we study correlations between nuclear matter paramaters and observables characterizing charge and neutron distributions. We demonstrate the existence of the strong converse relation between the nuclear charge radii and the saturation density of symmetric nuclear matter and also between the n...
Shear viscosity of nuclear matter
Magner, A G; Grygoriev, U V; Plujko, V A
2016-01-01
Shear viscosity $\\eta$ is calculated for the nuclear matter described as a system of interacting nucleons with the van der Waals (VDW) equation of state. The Boltzmann-Vlasov kinetic equation is solved in terms of the plane waves of the collective overdamped motion. In the frequent collision regime, the shear viscosity depends on the particle number density $n$ through the mean-field parameter $a$ which describes attractive forces in the VDW equation. In the temperature region $T=15\\div 40$~MeV, a ratio of the shear viscosity to the entropy density $s$ is smaller than 1 at the nucleon number density $n =(0.5\\div 1.5)\\,n^{}_0$, where $n^{}_0=0.16\\,$fm$^{-3}$ is the particle density of equilibrium nuclear matter at zero temperature. A minimum of the $\\eta/s$ ratio takes place somewhere in a vicinity of the critical point of the VDW system. Large values of $\\eta/s\\gg 1$ are however found in both the low density, $n\\ll n^{}_0$, and high density, $n>2n^{}_0$, regions. This makes the ideal hydrodynamic approach ina...
Asymmetric Dark Matter via Spontaneous Co-Genesis
March-Russell, John
2011-01-01
We investigate, in the context of asymmetric dark matter (DM), a new mechanism of spontaneous co-genesis of linked DM and baryon asymmetries, explaining the observed relation between the baryon and DM densities, Omega_DM/Omega_B ~ 5. The co-genesis mechanism requires a light scalar field, phi, with mass below 5 eV which couples derivatively to DM, much like a 'dark axion'. The field phi, and its coupling to DM, can itself provide a channel to annihilate away the residual symmetric DM component, leading to a highly predictive scenario.
Exposing asymmetric gray matter vulnerability in amyotrophic lateral sclerosis
Matthew S. Devine
2015-01-01
Full Text Available Limb weakness in amyotrophic lateral sclerosis (ALS is typically asymmetric. Previous studies have identified an effect of limb dominance on onset and spread of weakness, however relative atrophy of dominant and non-dominant brain regions has not been investigated. Our objective was to use voxel-based morphometry (VBM to explore gray matter (GM asymmetry in ALS, in the context of limb dominance. 30 ALS subjects were matched with 17 healthy controls. All subjects were right-handed. Each underwent a structural MRI sequence, from which GM segmentations were generated. Patterns of GM atrophy were assessed in ALS subjects with first weakness in a right-sided limb (n = 15 or left-sided limb (n = 15. Within each group, a voxelwise comparison was also performed between native and mirror GM images, to identify regions of hemispheric GM asymmetry. Subjects with ALS showed disproportionate atrophy of the dominant (left motor cortex hand area, irrespective of the side of first limb weakness (p < 0.01. Asymmetric atrophy of the left somatosensory cortex and temporal gyri was only observed in ALS subjects with right-sided onset of limb weakness. Our VBM protocol, contrasting native and mirror images, was able to more sensitively detect asymmetric GM pathology in a small cohort, compared with standard methods. These findings indicate particular vulnerability of dominant upper limb representation in ALS, supporting previous clinical studies, and with implications for cortical organisation and selective vulnerability.
Combustion of nuclear matter into strange matter
Lugones, G. (Departamento di Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, (1900) La Plata (Argentina)); Benvenuto, O.G.; Vucetich, H. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, (1900) La Plata (Argentina))
1994-11-15
We study the properties of the combustion of pure neutron matter into strange matter in the framework of relativistic hydrodynamical theory of combustion. Because of the uncertainties in the actual properties of neutron matter, we employ the free neutron, Bethe-Johnson, Lattimer-Ravenhall, and Walecka equations of state and for strange matter we adopt the MIT bag model approximation. We find that combustion is possible for free neutron, Bethe-Johnson, and Lattimer-Ravenhall neutron matter but not for Walecka neutron matter. We interpret these results using a simple polytropic approximation showing that there exists a general flammability condition. We also study the burning of neutron matter into strange matter in a pipe showing that hydrodynamics demands flames faster than predicted by kinetics by several orders of magnitude, implying that the flame must be turbulent. Also the conditions for the deflagration to detonation transition are addressed, showing that in a pipe some of them are satisfied, strongly suggesting that the actual combustion mode should be detonation.
Reflection-asymmetric nuclear deformations within the Density Functional Theory
Olsen, E; Nazarewicz, W; Stoitsov, M; 10.1088/1742-6596/402/1/012034
2013-01-01
Within the nuclear density functional theory (DFT) we study the effect of reflection-asymmetric shapes on ground-state binding energies and binding energy differences. To this end, we developed the new DFT solver AxialHFB that uses an approximate second-order gradient to solve the Hartree-Fock-Bogoliubov equations of superconducting DFT with the quasi-local Skyrme energy density functionals. Illustrative calculations are carried out for even-even isotopes of radium and thorium.
Limits on momentum-dependent asymmetric dark matter with CRESST-II
Angloher, G; Bucci, C; Canonica, L; Defay, X; Erb, A; Feilitzsch, F v; Iachellini, N Ferreiro; Gorla, P; Gütlein, A; Hauff, D; Jochum, J; Kiefer, M; Kluck, H; Kraus, H; Lanfranchi, J -C; Loebell, J; Münster, A; Pagliarone, C; Petricca, F; Potzel, W; Pröbst, F; Reindl, F; Schäffner, K; Schieck, J; Schönert, S; Seidel, W; Stodolsky, L; Strandhagen, C; Strauss, R; Tanzke, A; Thi, H H Trinh; Türkoğlu, C; Uffinger, M; Ulrich, A; Usherov, I; Wawoczny, S; Willers, M; Wüstrich, M; Zöller, A
2016-01-01
The usual assumption in direct dark matter searches is to only consider the spin-dependent or spin-independent scattering of dark matter particles. However, especially in models with light dark matter particles $\\mathcal{O}(\\mathrm{GeV/c^2})$, operators which carry additional powers of the momentum transfer $q^2$ can become dominant. One such model based on asymmetric dark matter has been invoked to overcome discrepancies in helioseismology and an indication was found for a particle with preferred mass of 3 $\\mathrm{GeV/c^2}$ and cross section of $10^{-37} \\mathrm{cm^2}$. Recent data from the CRESST-II experiment, which uses cryogenic detectors based on $\\mathrm{CaWO_4}$ to search for nuclear recoils induced by dark matter particles, are used to constrain these momentum-dependent models. The low energy threshold of 307 eV for nuclear recoils of the detector used, allows us to rule out the proposed best fit value above.
Limits on Momentum-Dependent Asymmetric Dark Matter with CRESST-II.
Angloher, G; Bento, A; Bucci, C; Canonica, L; Defay, X; Erb, A; Feilitzsch, F V; Ferreiro Iachellini, N; Gorla, P; Gütlein, A; Hauff, D; Jochum, J; Kiefer, M; Kluck, H; Kraus, H; Lanfranchi, J-C; Loebell, J; Münster, A; Pagliarone, C; Petricca, F; Potzel, W; Pröbst, F; Reindl, F; Schäffner, K; Schieck, J; Schönert, S; Seidel, W; Stodolsky, L; Strandhagen, C; Strauss, R; Tanzke, A; Trinh Thi, H H; Türkoğlu, C; Uffinger, M; Ulrich, A; Usherov, I; Wawoczny, S; Willers, M; Wüstrich, M; Zöller, A
2016-07-08
The usual assumption in direct dark matter searches is to consider only the spin-dependent or spin-independent scattering of dark matter particles. However, especially in models with light dark matter particles O(GeV/c^{2}), operators which carry additional powers of the momentum transfer q^{2} can become dominant. One such model based on asymmetric dark matter has been invoked to overcome discrepancies in helioseismology and an indication was found for a particle with a preferred mass of 3 GeV/c^{2} and a cross section of 10^{-37} cm^{2}. Recent data from the CRESST-II experiment, which uses cryogenic detectors based on CaWO_{4} to search for nuclear recoils induced by dark matter particles, are used to constrain these momentum-dependent models. The low energy threshold of 307 eV for nuclear recoils of the detector used, allows us to rule out the proposed best fit value above.
The modulation effect for supersymmetric dark matter detection with asymmetric velocity dispersion
Vergados, J D
2000-01-01
The detection of the theoretically expected dark matter is central to particle physics cosmology. Current fashionable supersymmetric models provide a natural dark matter candidate which is the lightest supersymmetric particle (LSP). Such models combined with fairly well understood physics like the quark substructure of the nucleon and the nuclear form factor and the spin response function of the nucleus, permit the evaluation of the event rate for LSP-nucleus elastic scattering. The thus obtained event rates are, however, very low or even undetectable. So it is imperative to exploit the modulation effect, i.e. the dependence of the event rate on the earth's annual motion. In this review we study such a modulation effect in directional and undirectional experiments. We calculate both the differential and the total rates using symmetric as well as asymmetric velocity distributions. We find that in the symmetric case the modulation amplitude is small, less than 0.07. There exist, however, regions of the phase sp...
Nuclear Matter in Relativistic Mean Field Theory with Isovector Scalar Meson
Kubis, S
1997-01-01
Relativistic mean field (RMF) theory of nuclear matter with the isovector scalar mean field corresponding to the delta-meson [a_0(980)] is studied. While the delta-meson mean field vanishes in symmetric nuclear matter, it can influence properties of asymmetric nuclear matter in neutron stars. The RMF contribution due to delta-field to the nuclear symmetry energy is negative. To fit the empirical value, E_s=30 MeV, a stronger rho-meson coupling is required than in the absence of the delta-field. The energy per particle of neutron matter is then larger at high densities than the one with no delta-field included. Also, the proton fraction of beta-stable matter increases. Splitting of proton and neutron effective masses due to the delta-field can affect transport properties of neutron star matter.
Heavy Mesons in Nuclear Matter and Nuclei
Tolos, Laura; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; Romanets, Olena; Salcedo, Lorenzo Luis; Torres-Rincon, Juan M
2014-01-01
Heavy mesons in nuclear matter and nuclei are analyzed within different frameworks, paying a special attention to unitarized coupled-channel approaches. Possible experimental signatures of the properties of these mesons in matter are addressed, in particular in connection with the future FAIR facility at GSI.
Phi meson spectral moments and QCD condensates in nuclear matter
Gubler, Philipp; Weise, Wolfram
2016-10-01
A detailed analysis of the lowest two moments of the ϕ meson spectral function in vacuum and nuclear matter is performed. The consistency is examined between the constraints derived from finite energy QCD sum rules and the spectra computed within an improved vector dominance model, incorporating the coupling of kaonic degrees of freedom with the bare ϕ meson. In the vacuum, recent accurate measurements of the e+e- →K+K- cross section allow us to determine the spectral function with high precision. In nuclear matter, the modification of the spectral function can be described by the interactions of the kaons from ϕ → K K ‾ with the surrounding nuclear medium. This leads primarily to a strong broadening and an asymmetric deformation of the ϕ meson peak structure. We confirm that, both in vacuum and nuclear matter, the zeroth and first moments of the corresponding spectral functions satisfy the requirements of the finite energy sum rules to a remarkable degree of accuracy. Limits on the strangeness sigma term of the nucleon are examined in this context. Applying our results to the second moment of the spectrum, we furthermore discuss constraints on four-quark condensates and the validity of the commonly used ground state saturation approximation.
Detecting Asymmetric Dark Matter in the Sun with Neutrinos
Murase, Kohta
2016-01-01
Dark Matter (DM) may have a relic density that is in part determined by a particle/antiparticle asymmetry, much like baryons. If this is the case, it can accumulate in stars like the Sun to sizable number densities and annihilate to Standard Model (SM) particles including neutrinos. We show that the combination of neutrino telescope and direct detection data can be used in conjunction to determine or constrain the DM asymmetry from data. Depending on the DM mass, the current neutrino data from Super-K and IceCube give powerful constraints on asymmetric DM unless its fractional asymmetry is $\\lesssim 10^{-2}$. Future neutrino telescopes and detectors like Hyper-K and KM3NeT can search for the resulting signal of high-energy neutrinos from the center of the Sun. The observation of such a flux yields information on both the DM-nucleus cross section but also on the relative abundances of DM and anti-DM.
Coupled Cluster studies of infinite nuclear matter
Baardsen, G; Hagen, G; Hjorth-Jensen, M
2013-01-01
The aim of this work is to develop the relevant formalism for performing Coupled Cluster calculations in nuclear matter and neutron star matter, including thereby important correlations to infinite order in the interaction and testing modern nuclear forces based on chiral effective field theory. Our formalism includes the exact treatment of the so-called Pauli operator in a partial wave expansion of the equation of state. Nuclear and neutron matter calculations are done using a coupled particle-particle and hole-hole ladder approximation. The coupled ladder equations are derived as an approximation of CC theory, leaving out particle-hole and non-linear diagrams from the CC doubles amplitude equation. This study is a first step toward CC calculations for nuclear and neutron matter. We present results for both symmetric nuclear matter and pure neutron matter employing state-of-the-art nucleon-nucleon interactions based on chiral effective field theory. We employ also the newly optimized chiral interaction [A. E...
Relativity Damps OPEP in Nuclear Matter
Banerjee, Manoj K.
1998-09-01
Using a relativistic Dirac--Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. We find that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. We show that the damping of derivative-coupled OPEP is actually due to the decrease of M*/M with increasing density. We point out that if derivative-coupled OPEP is the preferred form of nuclear effective Lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of M* it cannot replicate the damping. We suggest an examination of the feasibility of using pseudoscalar coupled πN interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter.
Relativity Damps OPEP in Nuclear Matter
Banerjee, M K
1998-01-01
Using a relativistic Dirac-Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. We find that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. We show that the damping of derivative-coupled OPEP is actually due to the decrease of $M^*/M$ with increasing density. We point out that if derivative-coupled OPEP is the preferred form of nuclear effective lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of $M^*$ it cannot replicate the damping. We suggest an examination of the feasibility of using pseudoscalar coupled $\\pi$N interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter.
Bordbar, G H; Taghizade, M
2015-01-01
In this work, we have done a completely microscopic calculation using a many-body variational method based on the cluster expansion of energy to compute the asymmetry energy of nuclear matter. In our calculations, we have employed the $AV_{18}$ nuclear potential. We have also investigated the temperature and density dependence of asymmetry energy. Our results show that the asymmetry energy of nuclear matter depends on both density and temperature. We have also studied the effects of different terms in the asymmetry energy of nuclear matter. These investigations indicate that at different densities and temperatures, the contribution of parabolic term is very substantial with respect to the other terms. Therefore, we can conclude that the parabolic approximation is a relatively good estimation, and our calculated binding energy of asymmetric nuclear matter is in a relatively good agreement with that of semi-empirical mass formula. However, for the accurate calculations, it is better to consider the effects of o...
Properties of nuclear matter from macroscopic-microscopic mass formulas
Wang, Ning; Ou, Li; Zhang, Yingxun
2015-01-01
Based on the standard Skyrme energy density functionals together with the extended Thomas-Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic-microscopic mass formulas: Lublin-Strasbourg nuclear drop energy (LSD) formula and Weizs\\"acker-Skyrme (WS*) formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are $K_\\infty=230 \\pm 11$ MeV and $235\\pm 11$ MeV, respectively. The slope parameter of symmetry energy at saturation density is $L=41.6\\pm 7.6$ MeV for LSD and $51.5\\pm 9.6$ MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [ApJ. \\textbf{771}, 51 (2013)]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron-proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrm...
Properties of nuclear matter from macroscopic-microscopic mass formulas
Wang, Ning; Liu, Min; Ou, Li; Zhang, Yingxun
2015-12-01
Based on the standard Skyrme energy density functionals together with the extended Thomas-Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic-microscopic mass formulas: Lublin-Strasbourg nuclear drop energy (LSD) formula and Weizsäcker-Skyrme (WS*) formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞ = 230 ± 11 MeV and 235 ± 11 MeV, respectively. The slope parameter of symmetry energy at saturation density is L = 41.6 ± 7.6 MeV for LSD and 51.5 ± 9.6 MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron-proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrme Hartree-Fock-Bogoliubov calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of the mean-field potential.
Nuclear "pasta matter" for different proton fractions
Schuetrumpf, B.; Iida, K.; Maruhn, J. A.; Reinhard, P.-G.
2014-11-01
Nuclear matter under astrophysical conditions is explored with time-dependent and static Hartree-Fock calculations. The focus is in a regime of densities where matter segregates into liquid and gaseous phases unfolding a rich scenario of geometries, often called nuclear pasta shapes (e.g., spaghetti, lasagna). Particularly the appearance of the different phases depending on the proton fraction and the transition to uniform matter are investigated. In this context the neutron background density is of special interest, because it plays a crucial role in the type of pasta shape that is built. The study is performed in two dynamical ranges, once for hot matter and once at temperature zero, to investigate the effect of cooling.
Nuclear Pasta Matter for Different Proton Fractions
Schütrumpf, B; Maruhn, J A; Reinhard, P -G
2014-01-01
Nuclear matter under astrophysical conditions is explored with time-dependent and static Hartree-Fock calculations. The focus is in a regime of densities where matter segregates into liquid and gaseous phases unfolding a rich scenario of geometries, often called nuclear pasta shapes (e.g. spaghetti, lasagna). Particularly the appearance of the different phases depending on the proton fraction and the transition to uniform matter are investigated. In this context the neutron background density is of special interest, because it plays a crucial role for the type of pasta shape which is built. The study is performed in two dynamical ranges, one for hot matter and one at temperature zero to investigate the effect of cooling.
Spin-Polarized States of Nuclear Matter
ZUO Wei; U. Lombardo; SHEN Cai-Wan
2003-01-01
The equations of state of spin-polarized nuclear matter and pure neutron matter are studied in theframework of the Brueckner-Hartree-Fock theory including a three-body force. The energy per nucleon E A (δ) calculatedin the full range of spin polarization δ = (ρ↑ - ρ↓)/ρ for symmetric nuclear matter and pure neutron matter fulfills aparabolic law. In both the cases the spin-symmetry energy is calculated as a function of the baryonic density alongwith the related quantities such as the magnetic susceptibility and the Landau parameter Go. The main effect of thethree-body force is to strongly reduce the degenerate Fermi gas magnetic susceptibility even more than the value withonly two-body force. The equation of state is monotonically increasing with the density for all spin-aligned configurationsstudied here so that no any signature is found for a spontaneous transition to a ferromagnetic state.
Femtotechnology: Nuclear Matter with Fantastic Properties
A. A. Bolonkin
2009-01-01
Full Text Available Problem statement: At present the term 'nanotechnology' is well known-in its' ideal form, the flawless and completely controlled design of conventional molecular matter from molecules or atoms. Such a power over nature would offer routine achievement of remarkable properties in conventional matter and creation of metamaterials where the structure not the composition brings forth new powers of matter. But even this yet unachieved goal is not the end of material science possibilities. The author herein offers the idea of design of new forms of nuclear matter from nucleons (neutrons, protons, electrons and other nuclear particles. Approach: The researcher researches the nuclear forces. He shows these force may be used for design the new nuclear matter from protons, neutrons, electrons and other nuclear particles. Results: Author shows this new 'AB-Matter' has extraordinary properties (for example, tensile strength, stiffness, hardness, critical temperature, superconductivity, supertransparency and zero friction., which are up to millions of times better than corresponding properties of conventional molecular matter. He shows concepts of design for aircraft, ships, transportation, thermonuclear reactors, constructions and so on from nuclear matter. These vehicles will have unbelievable possibilities (e.g., invisibility, ghost-like penetration through any walls and armor, protection from nuclear bomb explosions and any radiation flux. Conclusion: People may think this fantasy. But fifteen years ago most people and many scientists thought-nanotechnology is fantasy. Now many groups and industrial labs, even startups, spend hundreds of millions of dollars for development of nanotechnological-range products (precise chemistry, patterned atoms, catalysts and meta-materials and we have nanotubes (a new material which does not exist in Nature! and other achievements beginning to come out of the pipeline in prospect. Nanotubes are stronger than steel by a
Probing Cold Dense Nuclear Matter
Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan
2008-06-01
The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.
Nuclear and Quark Matter at High Temperature
Biro, T S; Schram, Z
2016-01-01
We review important ideas on nuclear and quark matter description on the basis of high- temperature field theory concepts, like resummation, dimensional reduction, interaction scale separation and spectral function modification in media. Statistical and thermodynamical concepts are spotted in the light of these methods concentrating on the - partially still open - problems of the hadronization process.
Towards Nuclear Physics of OHe Dark Matter
Khlopov, Maxim Yu; Soldatov, Evgeny Yu
2011-01-01
The nonbaryonic dark matter of the Universe can consist of new stable charged particles, bound in heavy "atoms" by ordinary Coulomb interaction. If stable particles $O^{--}$ with charge -2 are in excess over their antiparticles (with charge +2), the primordial helium, formed in Big Bang Nucleosynthesis, captures all $O^{--}$ in neutral "atoms" of O-helium (OHe). Interaction with nuclei plays crucial role in the cosmological evolution of OHe and in the effects of these dark atoms as nuclear interacting dark matter. Slowed down in terrestrial matter OHe atoms cause negligible effects of nuclear recoil in underground detectors, but can experience radiative capture by nuclei. Local concentration of OHe in the matter of detectors is rapidly adjusted to the incoming flux of cosmic OHe and possess annual modulation due to Earth's orbital motion around the Sun. The potential of OHe-nucleus interaction is determined by polarization of OHe by the Coulomb and nuclear force of the approaching nucleus. Stark-like effect b...
Asymmetric capture of Dirac dark matter by the Sun
Blennow, Mattias
2015-01-01
Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles and anti-particles is possible. Such an asymmetry puts a lower bound on the total amount of captured dark matter and could be a possible solution to the solar composition problem.
From QCD to nuclear matter saturation
Ericson, Magda [Universite de Lyon, Univ. Lyon 1, CNRS/IN2P3, IPN Lyon, F-69622 Villeurbanne Cedex (France)]|[Theory division, CERN, CH-12111 Geneva (Switzerland); Chanfray, Guy [Universite de Lyon, Univ. Lyon 1, CNRS/IN2P3, IPN Lyon, F-69622 Villeurbanne Cedex (France)
2007-03-15
We discuss a relativistic chiral theory of nuclear matter with {sigma} and {omega} exchange using a formulation of the {sigma} model in which all the chiral constraints are automatically fulfilled. We establish a relation between the nuclear response to the scalar field and the QCD one which includes the nucleonic parts. It allows a comparison between nuclear and QCD information. Going beyond the mean field approach we introduce the effects of the pion loops supplemented by the short-range interaction. The corresponding Landau-Migdal parameters are taken from spin-isospin physics results. The parameters linked to the scalar meson exchange are extracted from lattice QCD results. These inputs lead to a reasonable description of the saturation properties, illustrating the link between QCD and nuclear physics. We also derive from the corresponding equation of state the density dependence of the quark condensate and of the QCD susceptibilities. (authors)
Equation of State for Isospin Asymmetric Matter of Nucleons and Deltas
2008-01-01
<正>The equation of state (EOS) of isospin asymmetry nuclear matter is important for understanding not only properties of nuclei and dynamics of nuclear reaction in microscopical scale but also many issues of
Nucleon properties inside compressed nuclear matter
Rozynek, Jacek
2014-01-01
Our model calculations performed in the frame of the Bag Model (BM) approach show the modifications of nucleon mass, nucleon radius and a Parton Distribution Function (PDF) in Nuclear Matter (NM) above the saturation point. They originated from the pressure correction to the nucleon rest energy. Similar correction leads to conservation of a nuclear longitudinal momenta - essential in the explanation of the EMC effect at the saturation point of NM. Presented finite pressure corrections are generalization of the Hugenholtz-van Hove theorem valid for finite nucleon sizes inside NM.
Wanted! Nuclear Data for Dark Matter Astrophysics
Gondolo, P.
2014-06-01
Astronomical observations from small galaxies to the largest scales in the universe can be consistently explained by the simple idea of dark matter. The nature of dark matter is however still unknown. Empirically it cannot be any of the known particles, and many theories postulate it as a new elementary particle. Searches for dark matter particles are under way: production at high-energy accelerators, direct detection through dark matter-nucleus scattering, indirect detection through cosmic rays, gamma rays, or effects on stars. Particle dark matter searches rely on observing an excess of events above background, and a lot of controversies have arisen over the origin of observed excesses. With the new high-quality cosmic ray measurements from the AMS-02 experiment, the major uncertainty in modeling cosmic ray fluxes is in the nuclear physics cross sections for spallation and fragmentation of cosmic rays off interstellar hydrogen and helium. The understanding of direct detection backgrounds is limited by poor knowledge of cosmic ray activation in detector materials, with order of magnitude differences between simulation codes. A scarcity of data on nucleon spin densities blurs the connection between dark matter theory and experiments. What is needed, ideally, are more and better measurements of spallation cross sections relevant to cosmic rays and cosmogenic activation, and data on the nucleon spin densities in nuclei.
Light Asymmetric Dark Matter on the Lattice: SU(2) Technicolor with Two Fundamental Flavors
Lewis, Randy; Pica, Claudio; Sannino, Francesco
2012-01-01
The SU(2) gauge theory with two massless Dirac flavors constitutes the building block of several models of Technicolor. Furthermore it has also been used as a template for the construction of a natural light asymmetric, or mixed type, dark matter candidate. We use explicit lattice simulations to ...
Light asymmetric dark matter from new strong dynamics
Frandsen, Mads Toudal; Sarkar, Subir; Schmidt-Hoberg, Kai
2011-01-01
A ~5 GeV `dark baryon' with a cosmic asymmetry similar to that of baryons is a natural candidate for the dark matter. We study the possibility of generating such a state through dynamical electroweak symmetry breaking, and show that it can share the relic baryon asymmetry via sphaleron interactions...
Electrostrong Nuclear Disintegration in Condensed Matter
Swain, J; Widom, A
2013-01-01
Photo- and electro-disintegration techniques have been traditionally used for studying giant dipole resonances and through them nuclear structure. Over a long period, detailed theoretical models for the giant dipole resonances were proposed and low energy electron accelerators were constructed to perform experiments to test their veracity. More recently, through laser and "smart" material devices, electrons have been accelerated in condensed matter systems up to several tens of MeV. We discuss here the possibility of inducing electro-disintegration of nuclei through such devices. It involves a synthesis of electromagnetic and strong forces in condensed matter via giant dipole resonances to give an effective "electro-strong interaction" - a large coupling of electromagnetic and strong interactions in the tens of MeV range.
Relativity Damps OPEP in Nuclear Matter
Banerjee, Manoj K.
1998-01-01
Using a relativistic Dirac-Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. We find that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. We show that the damping of derivative-coupled OPEP is actually due to the decrease of $M^*/M$ with increasing density. We point out that if derivative-coupled OPEP...
Mass shift of -meson in nuclear matter
J R Morones-Ibarra; Mónica Menchaca Maciel; Ayax Santos-Guevara; Felipe Robledo Padilla
2013-03-01
The propagation of -meson in nuclear matter is studied in the Walecka model, by assuming that the sigma couples to a pair of nucleon–antinucleon states and to particle–hole states. The in-medium effect of - mixing is also studied. For completeness, the coupling of sigma to two virtual pions was also considered. It is found that the -meson mass decreases with respect to its value in vacuum and that the contribution of the - mixing effect on the mass shift is relatively small.
Hadronization measurements in cold nuclear matter
Dupre, Raphael [Inst. de Physique Nucleaire (IPN), Orsay (France). et al.
2015-05-01
Hadronization is the non-perturbative process of QCD by which partons become hadrons. It has been studied at high energies through various processes, we focus here on the experiments of lepto-production of hadrons in cold nuclear matter. By studying the dependence of observables to the atomic number of the target, these experimentscan give information on the dynamic of the hadronization at the femtometer scale. In particular, we will present preliminary results from JLab Hall B (CLAS collaboration), which give unprecedented statistical precision. Then, we will present results of a phenomenological study showing how HERMES data can be described with pure energyloss models.
Nuclear matter fourth-order symmetry energy in relativistic mean field models
Cai, Bao-Jun
2011-01-01
Within the nonlinear relativistic mean field model, we derive the analytical expression of the nuclear matter fourth-order symmetry energy $E_{4}(\\rho)$. Our results show that the value of $E_{4}(\\rho)$ at normal nuclear matter density $\\rho_{0}$ is generally less than 1 MeV, confirming the empirical parabolic approximation to the equation of state for asymmetric nuclear matter at $\\rho_{0}$. On the other hand, we find that the $E_{4}(\\rho)$ may become nonnegligible at high densities. Furthermore, the analytical form of the $E_{4}(\\rho)$ provides the possibility to study the higher-order effects on the isobaric incompressibility of asymmetric nuclear matter, i.e., $K_{\\mathrm{sat}}(\\delta)=K_{0}+K_{\\mathrm{{sat},2}}\\delta ^{2}+K_{\\mathrm{{sat},4}}\\delta ^{4}+\\mathcal{O}(\\delta ^{6})$ where $\\delta =(\\rho_{n}-\\rho_{p})/\\rho $ is the isospin asymmetry, and we find that the value of $K_{\\mathrm{{sat},4}}$ is generally comparable with that of the $K_{\\mathrm{{sat},2}}$. In addition, we study the effects of the $E...
Asymmetric dark matter from spontaneous cogenesis in the supersymmetric standard model
Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yamaguchi, Masahide [Tokyo Institute of Technology (Japan). Dept. of Physics
2012-01-15
The observational relation between the density of baryon and dark matter in the Universe, {omega}{sub DM}/{omega}{sub B}{approx_equal}5, is one of the most difficult problems to solve in modern cosmology. We discuss a scenario that explains this relation by combining the asymmetric dark matter scenario and the spontaneous baryogenesis associated with the flat direction in the supersymmetric standard model. A part of baryon asymmetry is transferred to charge asymmetry D that dark matter carries, if a symmetry violating interaction that works at high temperature breaks not only B-L but also D symmetries simultaneously. In this case, the present number density of baryon and dark matter can be same order if the symmetric part of dark matter annihilates sufficiently. Moreover, the baryon number density can be enhanced as compared to that of dark matter if another B-L violating interaction is still in thermal equilibrium after the spontaneous genesis of dark matter, which accommodates a TeV scale asymmetric dark matter model. (orig.)
Collective modes in strange and isospin asymmetric hadronic matter
2004-01-01
We study the propagation of non-strange and strange meson modes in hadronic matter considering both isospin and strangeness mixings induced by quantum fluctuations in the medium. Baryons are described using the Quark Meson Coupling model extended to include interactions of strange quarks. In particular we evaluate the dependence of the meson masses on the baryonic density, the strangeness fraction and the isospin asymmetry of the medium. We have found a considerable admixture of strangeness a...
Asymmetric Dark Matter and CP Violating Scatterings in a UV Complete Model
Baldes, Iason; Millar, Alexander J; Volkas, Raymond R
2015-01-01
We explore possible asymmetric dark matter models using CP violating scatterings to generate an asymmetry. In particular, we introduce a new model, based on DM fields coupling to the SM Higgs and lepton doublets, $\\overline{L}H$, and explore its UV completions. We study the CP violation and asymmetry formation of this model, to demonstrate that it is capable of producing the correct abundance of dark matter and the observed matter-antimatter asymmetry. Crucial to achieving this is the introduction of interactions which violate CP with a $T^{2}$ dependence.
Does asymmetric dark matter always lead to an anti-neutrino signal?
Fukuda, Hajime; Mukhopadhyay, Satyanarayan
2014-01-01
Under rather generic assumptions, we show that in the asymmetric dark matter (ADM) scenario, the sign of the B-L asymmetry stored in the dark matter sector and the standard model sector are always the same. One particularly striking consequence of this result is that, when the dark matter decays or annihilates in the present universe, the resulting final state always involves an anti-neutrino. As a concrete example of this, we construct a composite ADM model and explore the feasibility of detecting such an anti-neutrino signal in atmospheric neutrino detectors.
Incomprehensibility in finite nuclei and nuclear matter
Stone, J R; Moszkowski, S A
2014-01-01
The incompressibility (compression modulus) $K_{\\rm 0}$ of infinite symmetric nuclear matter at saturation density has become one of the major constraints on mean-field models of nuclear many-body systems as well as of models of high density matter in astrophysical objects and heavy-ion collisions. We present a comprehensive re-analysis of recent data on GMR energies in even-even $^{\\rm 112-124}$Sn and $^{\\rm 106,100-116}$Cd and earlier data on 58 $\\le$ A $\\le$ 208 nuclei. The incompressibility of finite nuclei $K_{\\rm A}$ is expressed as a leptodermous expansion with volume, surface, isospin and Coulomb coefficients $K_{\\rm vol}$, $K_{\\rm surf}$, $K_\\tau$ and $K_{\\rm coul}$. \\textit{Assuming} that the volume coefficient $K_{\\rm vol}$ is identified with $K_{\\rm 0}$, the $K_{\\rm coul}$ = -(5.2 $\\pm$ 0.7) MeV and the contribution from the curvature term K$_{\\rm curv}$A$^{\\rm -2/3}$ in the expansion is neglected, compelling evidence is found for $K_{\\rm 0}$ to be in the range 250 $ < K_{\\rm 0} < $ 315 MeV,...
Lepton-Flavored Asymmetric Dark Matter and Interference in Direct Detection
Hamze, Ali; Koeller, Jason; Trendafilova, Cynthia; Yu, Jiang-Hao
2014-01-01
In flavored dark matter models, dark matter can scatter off of nuclei through Higgs and photon exchange, both of which can arise from renormalizable interactions and individually lead to strong constraints from direct detection. While these two interaction channels can destructively interfere in the scattering amplitude, for a thermal relic with equal abundances for the dark matter particle and its antiparticle, this produces no effect on the total event rate. Focusing on lepton-flavored dark matter, we show that it is quite natural for dark matter to have become asymmetric during high-scale leptogenesis, and that in this case the direct detection bounds can be significantly weakened due to interference. We quantify this by mapping out and comparing the regions of parameter space that are excluded by direct detection for the symmetric and asymmetric cases of lepton-flavored dark matter. In particular, we show that the entire parameter region is ruled out for symmetric dark matter, while large portions of para...
Cosmic Ray-Dark Matter Scattering: a New Signature of (Asymmetric) Dark Matter in the Gamma Ray Sky
Profumo, Stefano
2011-01-01
We consider the process of scattering of Galactic cosmic-ray electrons and protons off of dark matter with the radiation of a final-state photon. This process provides a novel way to search for Galactic dark matter with gamma rays. We argue that for a generic weakly interacting massive particle, barring effects such as co-annihilation or a velocity-dependent cross section, the gamma-ray emission from cosmic-ray scattering off of dark matter is typically smaller than that from dark matter pair-annihilation. However, if dark matter particles cannot pair-annihilate, as is the case for example in asymmetric dark matter scenarios, cosmic-ray scattering with final state photon emission provides a unique window to detect a signal from dark matter with gamma rays. We estimate the expected flux level and its spectral features for a generic supersymmetric setup, and we also discuss dipolar and luminous dark matter. We show that in some cases the gamma-ray emission might be large enough to be detectable with the Fermi L...
Phases of kinky holographic nuclear matter
Elliot-Ripley, Matthew; Zamaklar, Marija
2016-01-01
Holographic QCD at finite baryon number density and zero temperature is studied within the five-dimensional Sakai-Sugimoto model. We introduce a new approximation that models a smeared crystal of solitonic baryons by assuming spatial homogeneity to obtain an effective kink theory in the holographic direction. The kink theory correctly reproduces a first order phase transition to lightly bound nuclear matter. As the density is further increased the kink splits into a pair of half-kink constituents, providing a concrete realization of the previously suggested dyonic salt phase, where the bulk soliton splits into constituents at high density. The kink model also captures the phenomenon of baryonic popcorn, in which a first order phase transition generates an additional soliton layer in the holographic direction. We find that this popcorn transition takes place at a density below the dyonic salt phase, making the latter energetically unfavourable. However, the kink model predicts only one pop, rather than the seq...
Symmetry energy of dilute warm nuclear matter.
Natowitz, J B; Röpke, G; Typel, S; Blaschke, D; Bonasera, A; Hagel, K; Klähn, T; Kowalski, S; Qin, L; Shlomo, S; Wada, R; Wolter, H H
2010-05-21
The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei, heavy-ion collisions, and astrophysical phenomena. New data from heavy-ion collisions can be used to extract the free symmetry energy and the internal symmetry energy at subsaturation densities and temperatures below 10 MeV. Conventional theoretical calculations of the symmetry energy based on mean-field approaches fail to give the correct low-temperature, low-density limit that is governed by correlations, in particular, by the appearance of bound states. A recently developed quantum-statistical approach that takes the formation of clusters into account predicts symmetry energies that are in very good agreement with the experimental data. A consistent description of the symmetry energy is given that joins the correct low-density limit with quasiparticle approaches valid near the saturation density.
Light Asymmetric Dark Matter on the Lattice: SU(2) Technicolor with Two Fundamental Flavors
Lewis, Randy; Sannino, Francesco
2012-01-01
The SU(2) gauge theory with two massless Dirac flavors constitutes the building block of several models of Technicolor. Furthermore it has also been used as a template for the construction of a natural light asymmetric, or mixed type, dark matter candidate. We use explicit lattice simulations to confirm the pattern of chiral symmetry breaking by determining the Goldstone spectrum and therefore show that the dark matter candidate can, de facto, be constituted by a complex Goldstone boson. We also determine the phenomenologically relevant spin one and spin zero isovector spectrum and demonstrate that it is well separated from the Goldstone spectrum.
Recent progress on dense nuclear matter in skyrmion approaches
Ma, YongLiang; Rho, Mannque
2017-03-01
The Skyrme model provides a novel unified approach to nuclear physics. In this approach, single baryon, baryonic matter and medium-modified hadron properties are treated on the same footing. Intrinsic density dependence (IDD) reflecting the change of vacuum by compressed baryonic matter figures naturally in the approach. In this article, we review the recent progress on accessing dense nuclear matter by putting baryons treated as solitons, namely, skyrmions, on crystal lattice with accents on the implications in compact stars.
Strangeness and charm in nuclear matter
Tolos, Laura, E-mail: tolos@ice.csic.es [Instituto de Ciencias del Espacio (IEEC/CSIC), Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Cabrera, Daniel [Departamento de Física Teórica II, Universidad Complutense, 28040 Madrid (Spain); Garcia-Recio, Carmen [Departamento de Física Atómica, Molecular y Nuclear, and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Molina, Raquel [Research Center for Nuclear Physics (RCNP), Mihogaoka 10-1, Ibaraki 567-0047 (Japan); Nieves, Juan; Oset, Eulogio [Instituto de Física Corpuscular (Centro Mixto CSIC-UV), Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Ramos, Angels [Departament d' Estructura i Constituents de la Matèria, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Romanets, Olena [Theory Group, KVI, University of Groningen, Zernikelaan 25, 9747 AA Groningen (Netherlands); Salcedo, Lorenzo Luis [Departamento de Física Atómica, Molecular y Nuclear, and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain)
2013-09-20
The properties of strange (K, K{sup ¯} and K{sup ¯⁎}) and open-charm (D, D{sup ¯} and D{sup ⁎}) mesons in dense matter are studied using a unitary approach in coupled channels for meson–baryon scattering. In the strangeness sector, the interaction with nucleons always comes through vector-meson exchange, which is evaluated by chiral and hidden gauge Lagrangians. For the interaction of charmed mesons with nucleons we extend the SU(3) Weinberg–Tomozawa Lagrangian to incorporate spin–flavor symmetry and implement a suitable flavor symmetry breaking. The in-medium solution for the scattering amplitude accounts for Pauli blocking effects and meson self-energies. On one hand, we obtain the K, K{sup ¯} and K{sup ¯⁎} spectral functions in the nuclear medium and study their behaviour at finite density, temperature and momentum. We also make an estimate of the transparency ratio of the γA→K{sup +}K{sup ⁎−}A{sup ′} reaction, which we propose as a tool to detect in-medium modifications of the K{sup ¯⁎} meson. On the other hand, in the charm sector, several resonances with negative parity are generated dynamically by the s-wave interaction between pseudoscalar and vector meson multiplets with 1/2{sup +} and 3/2{sup +} baryons. The properties of these states in matter are analyzed and their influence on the open-charm meson spectral functions is studied. We finally discuss the possible formation of D-mesic nuclei at FAIR energies.
Strangeness and Charm in Nuclear Matter
Tolos, Laura; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; Romanets, Olena; Salcedo, Lorenzo Luis
2012-01-01
The properties of strange ($K$, $\\bar K$ and $\\bar K^*$) and open-charm ($D$, $\\bar D$ and $D^*$) mesons in dense matter are studied using a unitary approach in coupled channels for meson-baryon scattering. In the strangeness sector, the interaction with nucleons always comes through vector-meson exchange, which is evaluated by chiral and hidden gauge Lagrangians. For the interaction of charmed mesons with nucleons we extend the SU(3) Weinberg-Tomozawa Lagrangian to incorporate spin-flavor symmetry and implement a suitable flavor symmetry breaking. The in-medium solution for the scattering amplitude accounts for Pauli blocking effects and meson self-energies. On one hand, we obtain the $K$, $\\bar K$ and $\\bar K^*$ spectral functions in the nuclear medium and study their behaviour at finite density, temperature and momentum. We also make an estimate of the transparency ratio of the $\\gamma A \\to K^+ K^{*-} A^\\prime$ reaction, which we propose as a tool to detect in-medium modifications of the $\\bar K^*$ meson....
Kaons in nuclear matter; Kaonen in Kernmaterie
Kolomeitsev, E.E.
1997-02-01
The subject of the doctoral thesis is examination of the properties of kaons in nuclear matter. A specific method is explained that has been developed for the scientific objectives of the thesis and permits description of the kaon-nucleon interactions and kaon-nucleon scattering in a vacuum. The main challenge involved was to find approaches that would enable application of the derived relations out of the kaon mass shell, connected with the second objective, namely to possibly find methods which are independent of models. The way chosen to achieve this goal relied on application of reduction formulas as well as current algebra relations and the PCAC hypothesis. (orig./CB) [Deutsch] Die Arbeit befasst sich mit der Untersuchung der Eigenschaften von Kao nen in Kernmaterie. Zu diesem Zweck wurde ein Verfahren entwickelt, di e Kaon- Nukleon- Wechselwirkung und Kaon- Nukleon- Streuung im Vakuumzu beschreiben. Die Hauptherausforderung bestand darin, dass die abgel eiteten Relationen ausserhalb der Kaonen- Massenschale anwendbar werde n. Eine Nebenforderung war, dass die vorgeschlagenen Verfahren moeglic hst modell- unabhaengig sind. Um dieses Ziel zu erreichen, wurden Redu ktionsformeln, Stromalgebra- Relationen und die PCAC- Hypothese angewe ndet.
QMD application of sub-saturated nuclear matter
Maruyama, Toshiki; Maruyama, Tomoyuki; Iwamoto, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Niita, Koji; Chikamatsu, Kazuhiro
1997-05-01
QMD (quantum molecular dynamics) has not been applied to supernova and neutron star matter. We begun to apply QMD, microscopic simulation of nuclear reaction, to the infinite system of nuclear matter. The infinite system was simulated by N particles system under the periodic boundary condition. Pauli potential introduced repulsive force which the same kinds of particles could not approach at phase space, instead of antisymmetrization of the system. Supernova matter was appropriate to the symmetric nuclear matter, the inhomogeneous structure was observed less than 0.8 {rho}{sub 0} of density, but homogeneous more than it. Each nucleus was seen to separate from others less than 0.2 {rho}{sub 0}. Neutron star matter attains {beta} equilibrium and not symmetric matter and the lowest energy was obtained at about 0.03-0.08 of proton content. (S.Y.)
Pion Effect of Nuclear Matter in a Chiral Sigma Model
HU Jin-niu; Y.Ogawa; H.Toki; A.Hosaka; SHEN Hong
2009-01-01
We develop a new framework for the study of the nuclear matter based on the linear sigma model.We introduce a completely new viewpoint on the treatment of the nuclear matter with the inclusion of the pion.We extend the relativistic chiral mean field model by using the similar method in the tensor optimized shell model.We also regulate the pion-nucleon interaction by considering the form-factor and short range repulsion effects.We obtain the equation of state of nuclear matter and study the importance of the pion effect.
Surface Tension between Kaon Condensate and Normal Nuclear Matter Phase
Christiansen, Michael B.; Glendenning, Norman K.; Schaffner-Bielich, Jurgen
2000-01-01
We calculate for the first time the surface tension and curvature coefficient of a first order phase transition between two possible phases of cold nuclear matter, a normal nuclear matter phase in equilibrium with a kaon condensed phase, at densities a few times the saturation density. We find the surface tension is proportional to the difference in energy density between the two phases squared. Furthermore, we show the consequences for the geometrical structures of the mixed phase region in ...
Many-body theory of nuclear and neutron star matter
Pandharipande, V.R.; Akmal, A.; Ravenhall, D.G. [Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)
1998-06-01
We present results obtained for nuclei, nuclear and neutron star matter, and neutron star structure obtained with the recent Argonne v{sub 18} two- nucleon and Urbana IX three-nucleon interactions including relativistic boost corrections. These interactions predict that matter will undergo a transition to a spin layered phase with neutral pion condensation. We also consider the possibility of a transition to quark matter. (orig.)
Is there a crystalline state of nuclear matter?
Yakhshiev, U T; Kim, H C; Kim, H C
2005-01-01
The possibility of a crystalline state of nuclear matter is discussed in a medium--modified Skyrme model. The interaction energy per nucleon in nuclear matter is evaluated by taking into account the medium influence on a single nucleon--skyrmion properties and the tensor part of the nucleon--nucleon potential, and by using a variational method of a Hartree--Fock type including zero--point quantum fluctuations. It is shown that in this approach the ground state of the skyrmionic matter has no crystalline structure due to quantum fluctuations as well as medium modifications of hadron properties.
Typel, S.; Wolter, H.H. [Sektion Physik, Univ. Muenchen, Garching (Germany)
1998-06-01
Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)
Simulations of cold nuclear matter at sub-saturation densities
Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina); Nichols, J.I. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina); López, J.A. [Department of Physics, University of Texas at El Paso, El Paso, TX 79968 (United States); Dorso, C.O. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina)
2014-03-01
Ideal nuclear matter is expected to undergo a first order phase transition at the thermodynamic limit. At such phase transitions the size of density fluctuations (bubbles or droplets) scale with the size of the system. This means that simulations of nuclear matter at sub-saturation densities will inexorably suffer from what is vaguely referred to as “finite size effects”. It is usually thought that these finite size effects can be diminished by imposing periodic boundary conditions and making the system large enough, but as we show in this work, that is actually not the case at sub-saturation densities. In this paper we analyze the equilibrium configurations of molecular dynamics simulations of a classical model for symmetric ideal (uncharged) nuclear matter at sub-saturation densities and low temperatures, where phase coexistence is expected at the thermodynamic limit. We show that the most stable configurations in this density range are almost completely determined by artificial aspects of the simulations (i.e. boundary conditions) and can be predicted analytically by surface minimization. This result is very general and is shown to hold true for several well known semi-classical models of nuclear interaction and even for a simple Lennard-Jones potential. Also, in the limit of very large systems, when “small size” effects can be neglected, those equilibrium configurations seem to be restricted to a few structures reminiscent to the “Pasta Phases” expected in Neutron Star matter, but arising from a completely different origin: In Neutron Star matter, the non-homogeneous structures arise from a competition between nuclear and Coulomb interactions while for ideal nuclear matter they emerge from finite (yet not “small”) size effects. The role of periodic boundary conditions and finite size effects in Neutron Star matter simulations are reexamined.
Relativistic Effects and Three-Nucleon Forces in Nuclear Matter and Nuclei
Müther, Herbert; Ma, Zhongyu
2016-01-01
We review a large body of predictions obtained within the framework of relativistic meson theory together with the Dirac-Brueckner-Hartree-Fock approach to nuclear matter and finite nuclei. The success of this method has been largely related to its ability to take into account important three-body effects. Therefore, the overarching theme of this article is the interpretation of the so-called "Dirac effects" as an effective three-nucleon force. We address the equation of state of isospin symmetric and asymmetric nucleonic matter and related issues, ranging from proton and neutron density distributions to momentum distributions and short-range correlations. A central part of the discussion is devoted to the optical model potential for nucleon-nucleus scattering. We also take the opportunity to explore similarities and differences with predictions based on the increasingly popular chiral effective field theory.
Oscillating asymmetric sneutrino dark matter from the maximally U(1)L supersymmetric inverse seesaw
Chen, Shao-Long; Kang, Zhaofeng
2016-10-01
The inverse seesaw mechanism provides an attractive approach to generate small neutrino mass, which origins from a tiny U(1)L breaking. In this paper, we work in the supersymmetric version of this mechanism, where the singlet-like sneutrino could be an asymmetric dark matter (ADM) candidate in the maximally U(1)L symmetric limit. However, even a tiny δm, the mass splitting between sneutrino and anti-sneutrino as a result of the tiny U(1)L breaking effect, could lead to fast oscillation between sneutrino and anti-sneutrino and thus spoils the ADM scenario. We study the evolution of this oscillation and find that a weak scale sneutrino, which tolerates a relatively larger δm ∼10-5 eV, is strongly favored. We also investigate possible natural ways to realize that small δm in the model.
Oscillating asymmetric sneutrino dark matter from the maximally U(1L supersymmetric inverse seesaw
Shao-Long Chen
2016-10-01
Full Text Available The inverse seesaw mechanism provides an attractive approach to generate small neutrino mass, which origins from a tiny U(1L breaking. In this paper, we work in the supersymmetric version of this mechanism, where the singlet-like sneutrino could be an asymmetric dark matter (ADM candidate in the maximally U(1L symmetric limit. However, even a tiny δm, the mass splitting between sneutrino and anti-sneutrino as a result of the tiny U(1L breaking effect, could lead to fast oscillation between sneutrino and anti-sneutrino and thus spoils the ADM scenario. We study the evolution of this oscillation and find that a weak scale sneutrino, which tolerates a relatively larger δm∼10−5 eV, is strongly favored. We also investigate possible natural ways to realize that small δm in the model.
$J/\\Psi$ mass shift in nuclear matter
Gastao Krein, Anthony Thomas, Kazuo Tsushima
2011-02-01
The $J/\\Psi$ mass shift in cold nuclear matter is computed using an effective Lagrangian approach. The mass shift is computed by evaluating $D$ and $D^*$ meson loop contributions to the $J/\\Psi$ self-energy employing medium-modified meson masses. The modification of the $D$ and $D^*$ masses in nuclear matter is obtained using the quark-meson coupling model. The loop integrals are regularized with dipole form factors and the sensitivity of the results to the values of form-factor cutoff masses is investigated. The $J/\\Psi$ mass shift arising from the modification of the $D$ and $D^*$ loops at normal nuclear matter density is found to range from $-16$~MeV to $-24$~MeV under a wide variation of values of the cutoff masses. Experimental perspectives for the formation of a bound state of $J/\\Psi$ to a nucleus are investigated.
Alam, N.; Agrawal, B. K.; Fortin, M.; Pais, H.; Providência, C.; Raduta, Ad. R.; Sulaksono, A.
2016-11-01
We examine the correlations of neutron star radii with the nuclear matter incompressibility, symmetry energy, and their slopes, which are the key parameters of the equation of state (EoS) of asymmetric nuclear matter. The neutron star radii and the EoS parameters are evaluated using a representative set of 24 Skyrme-type effective forces and 18 relativistic mean field models, and two microscopic calculations, all describing 2 M⊙ neutron stars. Unified EoSs for the inner-crust-core region have been built for all the phenomenological models, both relativistic and nonrelativistic. Our investigation shows the existence of a strong correlation of the neutron star radii with the linear combination of the slopes of the nuclear matter incompressibility and the symmetry energy coefficients at the saturation density. Such correlations are found to be almost independent of the neutron star mass in the range 0.6 -1.8 M⊙ . This correlation can be linked to the empirical relation existing between the star radius and the pressure at a nucleonic density between one and two times saturation density, and the dependence of the pressure on the nuclear matter incompressibility, its slope, and the symmetry energy slope. The slopes of the nuclear matter incompressibility and the symmetry energy coefficients as estimated from the finite nuclei data yield the radius of a 1.4 M⊙ neutron star in the range 11.09 -12.86 km.
Supernovae and high density nuclear matter
Kahana, S.
1986-01-01
The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.
The role of tensor force in nuclear matter saturation
Banerjee, M K; Banerjee, Manoj K.; Tjon, John A.
1998-01-01
Using a relativistic Dirac-Brueckner analysis the pion contribution to the ground state energy of nuclear matter is studied. Evidence is presented that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual non-relativistic treatment. The reduction of the pion contribution in nuclear matter is due to many-body effects present in a relativistic treatment. In particular, we show that the damping of OPEP is actually due to the decrease of $M^*/M$ with increasing density.
Lectures notes on phase transformations in nuclear matter
López, Jorge A
2000-01-01
The atomic nucleus, despite of being one of the smallest objects found in nature, appears to be large enough to experience phase transitions. The book deals with the liquid and gaseous phases of nuclear matter, as well as with the experimental routes to achieve transformation between them.Theoretical models are introduced from the ground up and with increasing complexity to describe nuclear matter from a statistical and thermodynamical point of view. Modern critical phenomena, heavy ion collisions and computational techniques are presented while establishing a linkage to experimental data.The
Energy-range relations for hadrons in nuclear matter
Strugalski, Z.
1985-01-01
Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.
Cherenkov and Fano effects at the origin of asymmetric vector mesons in nuclear media
Dremin, I M
2015-01-01
It is argued that the experimentally observed phenomenon of asymmetric vector mesons produced in nuclear media during high energy nucleus-nucleus collisions can be explained as Cherenkov and Fano effects. The mass distributions of lepton pairs created at meson decays decline from the traditional Breit-Wigner shape in the low-mass wing of the resonance. That is explained by the positive real part of the amplitude in this wing for classic Cherenkov treatment and further detalized in quantum mechanics as the interference of direct and continuum states in Fano effect. The corresponding parameters are found from the comparison with rho-meson data and admit reasonable explanation.
Condensates and correlations in nuclear matter
Röpke G.
2010-10-01
Full Text Available Nuclei in dense matter are inﬂuenced by the medium. Solving an A-particle Schroedinger equation including the eﬀects of self-energy and Pauli blocking, a quasiparticle description is introduced. Deriving thermodynamic properties, this approach contains the NSE at low densities as well as mean-ﬁeld approaches at high densities. Consequences for the symmetry energy, the phase transition, the determination of thermodynamic parameters from cluster yields and astrophysical applications are discussed.
Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters
Robert J. Goldston
2010-03-03
Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.
Ducoin, C
2006-10-15
Nuclear matter presents a phase transition of the liquid-gas type. This well-known feature is due to the nuclear interaction profile (mean-range attractive, short-range repulsive). Symmetric-nuclear-matter thermodynamics is thus analogous to that of a Van der Waals fluid. The study shows up to be more complex in the case of asymmetric matter, composed of neutrons and protons in an arbitrary proportion. Isospin, which distinguishes both constituents, gives a measure of this proportion. Studying asymmetric matter, isospin is an additional degree of freedom, which means one more dimension to consider in the space of observables. The nuclear liquid-gas transition is associated with the multi-fragmentation phenomenon observed in heavy-ion collisions, and to compact-star physics: the involved systems are neutron rich, so they are affected by the isospin degree of freedom. The present work is a theoretical study of isospin effects which appear in the asymmetric nuclear matter liquid-gas phase transition. A mean-field approach is used, with a Skyrme nuclear effective interaction. We demonstrate the presence of a first-order phase transition for asymmetric matter, and study the isospin distillation phenomenon associated with this transition. The case of phase separation at thermodynamic equilibrium is compared to spinodal decomposition. Finite size effects are addressed, as well as the influence of the electron gas which is present in the astrophysical context. (author)
The Modification of the Scalar Field in dense Nuclear Matter
Rożynek J.
2011-04-01
Full Text Available We show the possible evolution of the nuclear deep inelastic structure function with nuclear density ρ. The nucleon deep inelastic structure function represents distribution of quarks as function of Björken variable x which measures the longitudinal fraction of momentum carried by them during the Deep Inelastic Scattering (DIS of electrons on nuclear targets. Starting with small density and negative pressure in Nuclear Matter (NM we have relatively large inter-nucleon distances and increasing role of nuclear interaction mediated by virtual mesons.When the density approaches the saturation point, ρ = ρ0, we have no longer separate mesons and nucleons but eventually modified nucleon Structure Function (SF in medium. The ratio of nuclear to nucleon SF measured at saturation point is well known as “EMC effect”. For larger density, ρ > ρ0, when the localization of quarks is smaller then 0.3 fm, the nucleons overlap. We argue that nucleon mass should start to decrease in order to satisfy the Momentum Sum Rule (MSR of DIS. These modifications of the nucleon Structure Function (SF are calculated in the frame of the nuclear Relativistic Mean Field (RMF convolution model. The correction to the Fermi energy from term proportional to the pressure is very important and its inclusion modifies the Equation of State (EoS for nuclear matter.
Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters
Robert J. Goldston
2011-04-28
Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.
Medium modifications of baryon properties in nuclear matter and hypernuclei
Liang, J S
2013-01-01
We study the medium modifications of baryon properties in nuclear many-body systems, especially in $\\Lambda$ hypernuclei. The nucleon and the $\\Lambda$ hyperon are described in the Friedberg-Lee model as nontopological solitons which interact through the self-consistent exchange of scalar and vector mesons. The quark degrees of freedom are explicitly considered in the model, so that the medium effects on baryons could be investigated. It is found that the model can provide reasonable descriptions for nuclear matter, finite nuclei, and $\\Lambda$ hypernuclei. The present model predicts a significant increase of the baryon radius in nuclear medium.
QCD Factorization Approach to Cold Nuclear Matter Effects
Qiu, Jianwe
2016-09-01
Cold nuclear matter effects exist in all high energy collisions involving identified nucleus (or nuclei). They have been manifested in very significant ways in e-A and p-A, as well as A-A collisions, where the cold nuclear effect is a part of the initial condition which plays a critical role in determining the outcome of heavy ion collisions. In this talk, I will discuss if it is possible to consistently calculate or extract the cold nuclear effect, the advantage and limitation of QCD factorization approach, and the predictive power or the testability of the QCD calculations.
Nuclear "pasta" structures in low-density nuclear matter and neutron star crust
Okamoto, Minoru; Yabana, Kazuhiro; Tatsumi, Toshitaka
2013-01-01
In neutron star crust, non-uniform structure of nuclear matter is expected, which is called the "pasta" structure. From the recent studies of giant flares in magnetars, these structures might be related to some observables and physical quantities of the neutron star crust. To investigate the above quantities, we numerically explore the pasta structures with a fully threedimensional geometry and study the properties of low-density nuclear matter, based on the relativistic mean-field model and the Thomas-Fermi approximation. We observe typical pasta structures for fixed proton number-fraction and two of them for cold catalyzed matter. We also discuss the crystalline configuration of "pasta".
The coexistence curve of finite charged nuclear matter
Elliott, J. B.; Moretto, L. G.; Phair, L.; Wozniak, G. J.; Beaulieu, L.; Breuer, H.; Korteling, R. G.; Kwiatkowski, K.; Lefort, T.; Pienkowski, L.; Ruangma, A.; Viola, V. E.; Yennello, S. J.; Albergo, S.; Bieser, F.; Brady, F. P.; Caccia, Z.; Cebra, D. A.; Chacon, A. D.; Chance, J. L.; Choi, Y.; Costa, S.; Gilkes, M. L.; Hauger, J. A.; Hirsch, A. S.; Hjort, E. L.; Insolia, A.; Justice, M.; Keane, D.; Kintner, J. C.; Lindenstruth, V.; Lisa, M. A.; Matis, H. S.; McMahan, M.; McParland, C.; Müller, W. F. J.; Olson, D. L.; Partlan, M. D.; Porile, N. T.; Potenza, R.; Rai, G.; Rasmussen, J.; Ritter, H. G.; Romanski, J.; Romero, J. L.; Russo, G. V.; Sann, H.; Scharenberg, R. P.; Scott, A.; Shao, Y.; Srivastava, B. K.; Symons, T. J. M.; Tincknell, M.; Tuvé, C.; Wang, S.; Warren, P.; Wieman, H. H.; Wienold, T.; Wolf, K.
2002-04-01
The multifragmentation data of the ISiS Collaboration and the EOS Collaboration are examined. Fisher's droplet formalism, modified to account for Coulomb energy, is used to determine the critical exponents τ and σ, the surface energy coefficient c0, the pressure-temperature-density coexistence curve of finite nuclear matter and the location of the critical point. .
Three-dimensional calculation of inhomogeneous nuclear matter
Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka [Graduate School of Pure and Applied Science, University of Tsukuba (Japan); Advanced Science Research Center, Japan Atomic Energy Agency (Japan); Graduate School of Pure and Applied Science, University of Tsukuba (Japan); Department of Physics, Kyoto University (Japan)
2012-11-12
We numerically explore the pasta structures and properties of low-density symmetric nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta appears as a meta-stable state at some transient densities. We also analyze the lattice structure of droplets.
Three-dimensional structure of low-density nuclear matter
Okamoto, Minoru, E-mail: okamoto@nucl.ph.tsukuba.ac.jp [Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan); Maruyama, Toshiki, E-mail: maruyama.toshiki@jaea.go.jp [Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan); Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Yabana, Kazuhiro, E-mail: yabana@nucl.ph.tsukuba.ac.jp [Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Center of Computational Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Tatsumi, Toshitaka, E-mail: tatsumi@ruby.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)
2012-07-09
We numerically explore the pasta structures and properties of low-density nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta structures appears as a metastable state at some transient densities. We also discuss the lattice structure of droplets.
Three dimensional structure of low-density nuclear matter
Okamoto, Minoru; Yabana, Kazuhiro; Tatsumi, Toshitaka
2011-01-01
We numerically explore the pasta structures and properties of low-density nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta structures appears as a metastable state at some transient densities. We also discuss the lattice structure of droplets.
Extended Skyrme interactions for nuclear matter, finite nuclei and neutron stars
Zhang, Zhen
2015-01-01
Recent progress in theory, experiment and observation challenges the mean field models using the conventional Skyrme interaction, suggesting that the extension of the conventional Skyrme interaction is necessary. In this work, we construct three Skyrme interaction parameter sets, namely, eMSL07, eMSL08 and eMSL09, based on an extended Skyrme interaction which includes additional momentum and density dependent two-body forces to effectively simulate the momentum dependence of the three-body force. The three new interactions can well reproduce both the ground-state properties and isoscalar giant monopole resonance energy of finite nuclei, nicely conform to the current knowledge on the equation of state of asymmetric nuclear matter around and below saturation density $\\rho_0$, eliminate the notorious unphysical instabilities of symmetric nuclear matter and pure neutron matter at densities up to about $7.5\\rho_0$, and simultaneously support heavier neutron stars with mass larger than two times solar mass. The new...
Pairing in bulk nuclear matter beyond BCS
Ding, D; Dickhoff, W H; Dussan, H; Rios, A; Polls, A
2014-01-01
The influence of short-range correlations on the spectral distribution of neutrons is incorporated in the solution of the gap equation for the ${}^3P_2-{}^3F_2$ coupled channel in pure neutron matter. This effect is studied for different realistic interactions including one based on chiral perturbation theory. The gap in this channel vanishes at all relevant densities due to the treatment of these correlations. We also consider the effect of long-range correlations by including polarization terms in addition to the bare interaction which allow the neutrons to exchange density and spin fluctuations governed by the strength of Landau parameters allowed to have reasonable values consistent with the available literature. Preliminary results indicate that reasonable values of these parameters do not generate a gap in the ${}^3P_2-{}^3F_2$ coupled channel either for all three realistic interactions although the pairing interaction becomes slightly more attractive.
Matter in extremis: Ultrarelativistic nuclear collisions at RHIC
Jacobs, Peter; Wang, Xin-Nian
2004-08-20
We review the physics of nuclear matter at high energy density and the experimental search for the Quark-Gluon Plasma at the Relativistic Heavy Ion Collider (RHIC). The data obtained in the first three years of the RHIC physics program provide several lines of evidence that a novel state of matter has been created in the most violent, head-on collisions of Au nuclei at {radical}s = 200 GeV. Jet quenching and global measurements show that the initial energy density of the strongly interacting medium generated in the collision is about two orders of magnitude larger than that of cold nuclear matter, well above the critical density for the deconfinement phase transition predicted by lattice QCD. The observed collective flow patterns imply that the system thermalizes early in its evolution, with the dynamics of its expansion consistent with ideal hydrodynamic flow based on a Quark-Gluon Plasma equation of state.
Relativistic Mean-Field Models and Nuclear Matter Constraints
Dutra, M; Carlson, B V; Delfino, A; Menezes, D P; Avancini, S S; Stone, J R; Providência, C; Typel, S
2013-01-01
This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear \\sigma^3+\\sigma^4 models, (iii) \\sigma^3+\\sigma^4+\\omega^4 models, (iv) models containing mixing terms in the fields \\sigma and \\omega, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the \\sigma (\\omega) field. The isospin dependence of the interaction is modeled by the \\rho meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.
Nuclear matter from effective quark-quark interaction.
Baldo, M; Fukukawa, K
2014-12-12
We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.
Discrete Wave-Packet Representation in Nuclear Matter Calculations
Müther, H; Kukulin, V I; Pomerantsev, V N
2016-01-01
The Lippmann-Schwinger equation for the nucleon-nucleon $t$-matrix as well as the corresponding Bethe-Goldstone equation to determine the Brueckner reaction matrix in nuclear matter are reformulated in terms of the resolvents for the total two-nucleon Hamiltonians defined in free space and in medium correspondingly. This allows to find solutions at many energies simultaneously by using the respective Hamiltonian matrix diagonalization in the stationary wave packet basis. Among other important advantages, this approach simplifies greatly the whole computation procedures both for coupled-channel $t$-matrix and the Brueckner reaction matrix. Therefore this principally novel scheme is expected to be especially useful for self-consistent nuclear matter calculations because it allows to accelerate in a high degree single-particle potential iterations. Furthermore the method provides direct access to the properties of possible two-nucleon bound states in the nuclear medium. The comparison between reaction matrices f...
Nuclear matter in the early universe
Barros, Celso de Camargo, E-mail: barros.celso@ufsc.br [Depto de Física - CFM - Universidade Federal de Santa Catarina - Florianópolis - SC - CP. 476 - CEP 88.040 - 900 - Brazil (Brazil); Cunha, Ivan Eugênio da, E-mail: lordlihige@hotmail.com [Centro Brasileiro de Pesquisas Físicas - CBPF - Rio de Janeiro (Brazil)
2015-12-17
Recently, extreme conditions have been obtained in ultra-relativistic heavy ion collisions at RHIC and at the Large Hadron collider. It is believed that these conditions are similar to the ones of the early Universe, in the time between 10{sup −6}s and 1s, approximately. In this work, the hadrons produced in this range of time will be studied, considering some aspects of the systems produced in the heavy-ion collisions. We will study a phase posterior to the phase transition (in fact it is believed to be a crossover) from the quark-gluon plasma, that is the hadronic phase of the Universe. We will show the model proposed in [1], considering the hadronic matter described by a relativistic model (similar to the Walecka model), considering particles described by quantum equations in a curved spacetime. This curvature is due to the mass and to the strong interactions that appears in the energy-momentum tensor. The set of the equations is proposed in the Robertson-Walker metric, and some approximate solutions are obtained.
Variational theory of nuclear and neutron matter
Pandharipande, V.R.; Wiringa, R.B. (Illinois Univ., Urbana, IL (USA). Dept. of Physics; Argonne National Lab., IL (USA))
1989-06-01
In these lectures we will discuss attempts to solve the A = 3 to {infinity} nuclear many-body problems with the variational method. We choose the form of a variational wave function {Chi}{sub v}(1, 2{hor ellipsis}A) to describe the ground state. The {Chi}{sub v} and the ground-state energy E{sub v} are obtained by minimizing E{sub v} = {l angle}{Chi}{sub v}{vert bar}H{vert bar}{Chi}{sub v}{r angle}/{l angle}{Chi}{sub v}{vert bar}{Chi}{sub v}{r angle} with respect to variations in {Chi}{sub v}. If the form of the variational wave function is chosen properly we can expect {Chi}{sub v} {approx} {Chi}{sub 0} and E{sub v} {approx} E{sub 0} where {Chi}{sub 0} and E{sub 0} are the exact ground-state wave function and energy. In general E{sub v} {ge} E{sub 0} in variational calculations. 63 refs., 11 figs.
Heavy vector and axial-vector mesons in hot and dense asymmetric strange hadronic matter
Kumar, Arvind; Chhabra, Rahul
2015-09-01
We calculate the effects of finite density and temperature of isospin asymmetric strange hadronic matter, for different strangeness fractions, on the in-medium properties of vector (D*,Ds*,B*,Bs*) and axial-vector (D1,D1 s,B1,B1 s) mesons, using the chiral hadronic SU(3) model and QCD sum rules. We focus on the evaluation of in-medium mass-shift and shift in decay constant of above vector and axial-vector mesons. In the quantum chromodynamics sum rule approach, the properties, e.g., the masses and decay constants of vector and axial-vector mesons are written in terms of quark and gluon condensates. These quark and gluon condensates are evaluated in the present work within the chiral SU(3) model, through the medium modification of scalar-isoscalar fields σ and ζ , the scalar-isovector field δ , and the scalar dilaton field χ , in the strange hadronic medium which includes both nucleons as well as hyperons. As we shall see in detail, the masses and decay constants of heavy vector and axial-vector mesons are affected significantly from isospin asymmetry and the strangeness fraction of the medium, and these modifications may influence the experimental observables produced in heavy-ion collision experiments. The results of present investigations of in-medium properties of vector and axial-vector mesons at finite density and temperature of strange hadronic medium may be helpful for understanding the experimental data from heavy-ion collision experiments in particular for the compressed baryonic matter (CBM) experiment of the FAIR facility at GSI, Germany.
Discrete wave-packet representation in nuclear matter calculations
Müther, H.; Rubtsova, O. A.; Kukulin, V. I.; Pomerantsev, V. N.
2016-08-01
The Lippmann-Schwinger equation for the nucleon-nucleon t matrix as well as the corresponding Bethe-Goldstone equation to determine the Brueckner reaction matrix in nuclear matter are reformulated in terms of the resolvents for the total two-nucleon Hamiltonians defined in free space and in medium correspondingly. This allows one to find solutions at many energies simultaneously by using the respective Hamiltonian matrix diagonalization in the stationary wave-packet basis. Among other important advantages, this approach simplifies greatly the whole computation procedures both for the coupled-channel t matrix and the Brueckner reaction matrix. Therefore this principally novel scheme is expected to be especially useful for self-consistent nuclear matter calculations because it allows one to accelerate in a high degree single-particle potential iterations. Furthermore the method provides direct access to the properties of possible two-nucleon bound states in the nuclear medium. The comparison between reaction matrices found via the numerical solution of the Bethe-Goldstone integral equation and the straightforward Hamiltonian diagonalization shows a high accuracy of the method suggested. The proposed fully discrete approach opens a new way to an accurate treatment of two- and three-particle correlations in nuclear matter on the basis of the three-particle Bethe-Faddeev equation by an effective Hamiltonian diagonalization procedure.
Martins, André; Lopes, Ilídio; Casanellas, Jordi
2017-01-01
So far, direct detection searches have come up empty handed in their quest for dark matter (DM). Meanwhile, asteroseismology arises as a complementary tool to study DM, as its accumulation in a star can enhance energy transport by providing a conduction mechanism, producing significant changes in the stellar structure during the course of the star's evolution. The stellar core, particularly affected by the presence of DM, can be investigated through precise asteroseismic diagnostics. We modeled three stars including DM energy transport: the Sun; a slightly less massive and much older star, KIC 7871531 (0.85 M⊙ , 9.41 Gyr); and a more massive and younger one, KIC 8379927 (1.12 M⊙ , 1.82 Gyr). We considered both the case of weakly interactive massive particles, albeit with a low annihilation, and the case of asymmetric DM for which the number of trapped particles in the star can be much greater. By analyzing these models with asteroseismic separation ratios weighted towards the core, we found indications limiting the effective spin-dependent DM-proton coupling for masses of a few GeV. This independent result is very close to the most recent and most stringent direct detection DM constraints.
Appearance of the Gyroid Network Phase in Nuclear Pasta Matter
Schuetrumpf, B; Iida, K; Schroeder-Turk, G E; Maruhn, J A; Mecke, K; Reinhard, P -G
2014-01-01
Nuclear matter under the conditions of a supernova explosion unfolds into a rich variety of spatially structured phases, called nuclear pasta. We investigate the role of periodic networklike structures with negatively curved interfaces in nuclear pasta structures, by static and dynamic Hartree-Fock simulations in periodic lattices. We investigate particularly the role of minimal surfaces in that context. As the most prominent result, we identify the single gyroid network structure of cubic chiral symmetry, a well known configuration in nanostructured softmatter systems, both as a dynamical state and as a cooled static solution. While most observed gyroids are only meta-stable, the very small energy differences to the ground state indicate its relevance for structures in nuclear pasta.
Gap bridging enhancement of modified Urca process in nuclear matter
Alford, Mark G
2016-01-01
In nuclear matter at neutron-star densities and temperatures, Cooper pairing leads to the formation of a gap in the nucleon excitation spectra resulting in exponentially strong Boltzmann suppression of many transport coefficients. Previous calculations have shown evidence that density oscillations of sufficiently large amplitude can overcome this suppression for flavor-changing beta processes, via the mechanism of "gap bridging". We address the simplifications made in that initial work, and show that gap bridging can counteract Boltzmann suppression of neutrino emissivity for the realistic case of modified Urca processes in matter with $^3P_2$ neutron pairing.
The EMC effect of Nuclear Matter with Coulomb Corrections
Li, Shujie; Solvignon, Patricia; Arrington, John; Gaskell, Dave
2016-09-01
Extraction of the EMC effect for nuclear matter is of great interest since it allows comparison to theoretical calculations in a regime where ``exact'' nuclear wave functions can be used. Earlier extractions from (e,e') cross sections ignored the contribution of the Coulomb distortion, which can be approximated as an electron energy shift on the order of MeV. Though small, this shift can cause a noticeable change in cross sections in certain kinematic regimes. In this study, we applied Coulomb corrections on the per-nucleon ratios from the published SLAC E139 data and preliminary JLAB E03-103 data. I will show preliminary results for an extrapolation of the EMC ratios from finite nuclei to symmetric nuclear matter, including Coulomb Corrections and examining the sensitivity to different approximations for the nuclear density. The data from two experiments will also be combined to study the nuclear dependence of R =σL /σT . Supported in part by DOE Grant No. DE-AC05-06OR23177, No. DE-AC02-06CH11357, and No. DE-SC0014168.
Nucleon propagation through nuclear matter in chiral effective field theory
Mallik, S; Mishra, Hiranmaya
2007-01-01
We treat the propagation of nucleon in nuclear matter by evaluating the ensemble average of the two-point function of nucleon currents in the framework of the chiral effective field theory. We first derive the effective parameters of nucleon to one loop. The resulting formula for the effective mass was known previously and gives an absurd value at normal nuclear density. We then modify it following Weinberg's method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of nucleon are compared with those in the literature.
Chiral symmetry and nuclear matter equation of state
A B Santra
2001-08-01
We investigate the effect on the nuclear matter equation of state (EOS) due to modiﬁcation of meson and nucleon parameters in nuclear medium as a consequence of partial restoration of chiral symmetry. To get the EOS, we have used Brueckner–Bethe–Golstone formalism with Bonn- potential as two-body interaction and QCD sum rule and Brown–Rho scaling prescriptions for modiﬁcation of hadron parameters. We ﬁnd that EOS is very much sensitive to the meson parameters. We can ﬁt, with two body interaction alone, both the saturation density and the binding energy per nucleon.
Nucleon propagation through nuclear matter in chiral effective field theory
Mallik, S. [Saha Institute of Nuclear Physics, Kolkata (India); Mishra, H. [Physical Research Laboratory, Theory Divison, Ahmedabad (India)
2007-05-15
We treat the propagation of a nucleon in nuclear matter by evaluating the ensemble average of the two-point function of the nucleon currents in the framework of chiral effective field theory. We first derive the effective parameters of the nucleon to one loop. The resulting formula for the effective mass has been known since before and gives an absurd value at normal nuclear density. We then modify it following Weinberg's method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of the nucleon are compared with those in the literature. (orig.)
Nucleon propagation through nuclear matter in chiral effective field theory
Mallik, S.; Mishra, H.
2007-05-01
We treat the propagation of a nucleon in nuclear matter by evaluating the ensemble average of the two-point function of the nucleon currents in the framework of chiral effective field theory. We first derive the effective parameters of the nucleon to one loop. The resulting formula for the effective mass has been known since before and gives an absurd value at normal nuclear density. We then modify it following Weinberg’s method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of the nucleon are compared with those in the literature.
Margueron, J
2001-07-01
We study the elementary interactions between neutrinos and dense matter in a proto-neutron star. Equations of state obtained with different nuclear effective interactions (Skyrme, Gogny, Relativistic Lagrangians) are first discussed. Then, we characterize their stability in spin and isospin. We derive magnetic susceptibilities for all isospin asymmetry values as a function of Landau parameters G{sup {pi}}{sup {pi}}{sup '}{sub 0} (where {pi}, {pi}' = proton or neutron). From this work, we select a parametrization for each of the 3 effective forces: Sly230b,D1P,NL3. We calculate the pure neutron matter and asymmetric nuclear matter response functions with and without charge exchange, describing nuclear correlations in both approaches: non-relativistic (Hartree-Fock with Skyrme forces, then complete RPA) and relativistic (in the Hartree approximation). At the end, we calculate neutrino mean free paths neutral current and charged current reactions. Comparisons between relativistic and non-relativistic approaches allow us to identify relativistic effects in nuclear matter at densities as low as twice the saturation density. RPA correlations make the medium more transparent to neutrinos compared to free Fermi gas. The importance of the effective mass in mean free path calculations is also shown. (author)
Effects of Induced Surface Tension in Nuclear and Hadron Matter
Sagun, V V; Ivanytskyi, A I; Oliinychenko, D R; Mishustin, I N
2016-01-01
Short range particle repulsion is rather important property of the hadronic and nuclear matter equations of state. We present a novel equation of state which is based on the virial expansion for the multicomponent mixtures with hard-core repulsion. In addition to the hard-core repulsion taken into account by the proper volumes of particles, this equation of state explicitly contains the surface tension which is induced by another part of the hard-core repulsion between particles. At high densities the induced surface tension vanishes and the excluded volume treatment of hard-core repulsion is switched to its proper volume treatment. Possible applications of this equation of state to a description of hadronic multiplicities measured in A+A collisions, to an investigation of the nuclear matter phase diagram properties and to the neutron star interior modeling are discussed.
Electric-dipole sum rule in nuclear matter
Fabrocini, A.; Fantoni, S.
1985-03-01
The enhancement factor K in the electric-dipole sum rule for some realistic models of symmetrical nuclear matter is calculated using variational theory. The nuclear-matter wave function used contains central, spin, isospin, tensor and spin-orbit pair correlations. The non-central correlations, particularly the tensor one, give the major contribution to K. At experimental equilibrium density K. turns out to be ≈ 1.8, of which 65% comes from OPEP and 30% from the short-range part of the interaction. The two-pion-exchange three-nucleon interaction contributes ≈ 0.2% and is cancelled, to a large extent, by the contribution due to the intermediate-range two-body potential. The relationship of the summed oscillator strength with the effective mass is also discussed.
Finite size effects in Neutron Star and Nuclear matter simulations
Molinelli, P A Giménez
2014-01-01
In this work we study molecular dynamics simulations of symmetric nuclear matter using a semi-classical nucleon interaction model. We show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the ``nuclear pasta'' phases expected in Neutron Star Matter simulations, but shaped by artificial aspects of the simulations. We explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. We find that different cells may yield different solutions for the same physical conditions (i.e. density and temperature). The particular shape of the solution at a given density can be predicted analytically by energy minimization. We also show that even if this behavior is due to finite size effects, it does not mean that it vanishes for very large systems and it actually is independent of the system size: The system size sets the only characteristic length scale for the inhomogeneitie...
Strangeness in nuclear matter at DA{Phi}NE
Gianotti, P. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)
1998-01-01
The low energy kaons from the {phi} meson produced at DA{Phi}NE offer a unique opportunity to study strangeness in nuclear matter. The interaction of kaons with hadronic matter can be investigated at DA{Phi}NE using three main approaches: study of hypernuclei production and decay, kaons scattering on nucleons, kaonic atoms formation. These studies explore kaon-nucleon and hyperon-nucleon forces at very low energy, the nuclear shell model in presence of strangeness quantum number and eventual quarks deconfinement phenomena. The experiments devoted to study this physical program at DA{Phi}NE are FINUDA and DEAR. The physics topics of both experiments are illustrated together with a detailed descriptions of the two detectors.
Scattering and stopping of hadrons in nuclear matter
Strugalski, Z.
1985-01-01
It was observed, in the 180 litre xenon bubble chamber, that when hadrons with kinetic energy higher than the pion production threshold fall on a layer of nuclear matter - on an atomic nucleus in other words - in many cases they can pass through it without causing particles production but they are deflected through some deflection angles; if the energy is lower than a few GeV and the nuclear matter layer is thick enough, the hadrons can be stopped in it. The amount of the deflection at a given incident hadron energy varies with the way the hadron strikes the atomic nucleus; the probability of the occurrence of stopping depends on the incident hadron identity and energy, and on the way the hadron passed through the nucleus, as well.
Mondal, C; De, J N
2015-01-01
Elements of nuclear symmetry energy evaluated from different energy density functionals parametrized by fitting selective bulk properties of few representative nuclei are seen to vary widely. Those obtained from experimental data on nuclear masses across the periodic table, however, show that they are better constrained. A possible direction in reconciling this paradox may be gleaned from comparison of results obtained from use of the binding energies in the fitting protocol within a microscopic model with two sets of nuclei, one a representative standard set and another where very highly asymmetric nuclei are additionally included. A covariance analysis reveals that the additional fitting protocol reduces the uncertainties in the nuclear symmetry energy coefficient, its slope parameter as well as the neutron-skin thickness in $^{208}$Pb nucleus by $\\sim 50\\%$. The central values of these entities are also seen to be slightly reduced.
Constructing the phase diagram of finite neutral nuclear matter
Elliott, J. B.; Moretto, L. G.; Phair, L.; Wozniak, G. J.; Albergo, S.; Bieser, F.; Brady, F. P.; Caccia, Z.; Cebra, D. A.; Chacon, A. D.; Chance, J. L.; Choi, Y.; Costa, S.; Gilkes, M. L.; Hauger, J. A.; Hirsch, A. S.; Hjort, E. L.; Insolia, A.; Justice, M.; Keane, D.; Kintner, J. C.; Lindenstruth, V.; Lisa, M. A.; Matis, H. S.; McMahan, M.; McParland, C.; Müller, W. F.; Olson, D. L.; Partlan, M. D.; Porile, N. T.; Potenza, R.; Rai, G.; Rasmussen, J.; Ritter, H. G.; Romanski, J.; Romero, J. L.; Russo, G. V.; Sann, H.; Scharenberg, R. P.; Scott, A.; Shao, Y.; Srivastava, B. K.; Symons, T. J.; Tincknell, M.; Tuvé, C.; Wang, S.; Warren, P.; Wieman, H. H.; Wienold, T.; Wolf, K.
2003-02-01
The fragment yields from the multifragmentation of gold, lanthanum, and krypton nuclei obtained by the EOS Collaboration are examined in terms of Fisher’s droplet formalism modified to account for Coulomb energy. The critical exponents σ and τ and the surface energy coefficient c0 are obtained. Estimates are made of the pressure-temperature and temperature-density coexistence curve of finite neutral nuclear matter as well as the location of the critical point.
Compression modes and the nuclear matter incompressibility coefﬁcient
Shalom Shlomo
2001-08-01
We review the current status of the nuclear matter ( = and no Coulomb interaction) incompressibility coefﬁcient, , and describe the theoretical and the experimental methods used to determine from properties of compression modes in nuclei. In particular we consider the long standing problem of the conﬂicting results obtained for , deduced from experimental data on excitation cross sections for the isoscalar giant monopole resonance (ISGMR) and data for the isoscalar giant dipole resonance (ISGDR).
Nuclear Matter Phase Transition in Infinite and Finite Systems
Terranova, S.; Bonasera, A.
2005-04-01
A new "semiclassical" model of the nuclear matter, composed of u, d colored quarks, is proposed. The approach, named Constrained Molecular Dynamics (CoMD) is based on the molecular dynamics simulation of the quarks, which interact through the Richardson's potential, and on a constraint due to Pauli blocking. With a suitable choice of the quark masses, some possible Equation of State (EOS) of the nuclear matter, at temperature equal to zero and finite baryon density, are obtained. These equations of state, not only present some known properties of the nuclear matter, as the Quark-Gluon Plasma (QGP) phase transition, but also shown the existence of a new state, the Exotic Color Clustering (ECC) state, in which cluster of quarks with the same color are formed. Some new quantities, "indicators" of the phase transition, are introduced: three order parameters, Mc2, Mc3, Mc4 defined trough the Gell-Mann matrices λα, and the lifetime of the J/Ψ particle. The behavior of the J/Ψ particle is studied also in the "finite" systems, obtained by expanding the corresponding "infinite" systems. It seems that the dynamics and the finite size effects do not wash completely the phase transition occurred in infinite systems, and the J/Ψ particle is still a good signature.
Some Properties of π Meson in Nuclear Matter with Finite Density
YANGLan－Fei; LUXiao－Fu
2002-01-01
In the GCM we study some properties of π meson as the Goldstone bosons in a nuclear matter with finite density.Using the effective action in a nuclear matter,we calculate the decay constant and π mass as functions of the chemical potential.The relation between the chemical potential and the density of a nuclear matter is firstly given here.We find that fπ and mπ monotonously decrease as nuclear matter density increases.The result is consistent with the usual assumption that the chiral symmetry is gradually restored as the density of a nuclear matter increases.
Dark Matter Particle Spectroscopy at the LHC: Generalizing M(T2) to Asymmetric Event Topologies
Konar, Partha; /Florida U.; Kong, Kyoungchul; /SLAC; Matchev, Konstantin T.; Park, Myeonghun; /Florida U.
2012-04-03
We consider SUSY-like missing energy events at hadron colliders and critically examine the common assumption that the missing energy is the result of two identical missing particles. In order to experimentally test this hypothesis, we generalize the subsystem M{sub T2} variable to the case of asymmetric event topologies, where the two SUSY decay chains terminate in different 'children' particles. In this more general approach, the endpoint M{sub T2(max)} of the M{sub T2} distribution now gives the mass {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}) of the parent particles as a function of two input children masses {tilde M}{sub c}{sup (a)} and {tilde M}{sub c}{sup (b)}. We propose two methods for an independent determination of the individual children masses M{sub c}{sup (a)} and M{sub c}{sup (b)}. First, in the presence of upstream transverse momentum PUTM the corresponding function {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}, P{sub UTM}) is independent of P{sub UTM} at precisely the right values of the children masses. Second, the previously discussed MT2 'kink' is now generalized to a 'ridge' on the 2-dimensional surface {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}). As we show in several examples, quite often there is a special point along that ridge which marks the true values of the children masses. Our results allow collider experiments to probe a multi-component dark matter sector directly and without any theoretical prejudice.
Finite size effects in neutron star and nuclear matter simulations
Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar; Dorso, C.O.
2015-01-15
In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called “finite size effects”, unavoidable in this kind of simulations, and to understand what they actually affect. To do so, we explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. For nuclear matter simulations we show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the “nuclear pasta” phases expected in neutron star matter simulations, but only one structure per cell and shaped by specific artificial aspects of the simulations—for the same physical conditions (i.e. number density and temperature) different cells yield different solutions. The particular shape of the solution at low enough temperature and a given density can be predicted analytically by surface minimization. We also show that even if this behavior is due to the imposition of periodic boundary conditions on finite systems, this does not mean that it vanishes for very large systems, and it is actually independent of the system size. We conclude that, for nuclear matter simulations, the cells' size sets the only characteristic length scale for the inhomogeneities, and the geometry of the periodic cell determines the shape of those inhomogeneities. To model neutron star matter we add a screened Coulomb interaction between protons, and perform simulations in the three cell geometries. Our simulations indeed produce the well known nuclear pasta, with (in most cases) several structures per cell. However, we find that for systems not too large results are affected by finite size in different ways depending on the geometry of the cell. In particular, at the same certain physical conditions and system size, the hexagonal prism yields a
Superconducting Nuclear Recoil Sensor for Directional Dark Matter Detection
Junghans, Ann; Baldwin, Kevin; Hehlen, Markus; Lafler, Randy; Loomba, Dinesh; Phan, Nguyen; Weisse-Bernstein, Nina
The Universe consists of 72% dark energy, 23% dark matter and only 5% of ordinary matter. One of the greatest challenges of the scientific community is to understand the nature of dark matter. Current models suggest that dark matter is made up of slowly moving, weakly interacting massive particles (WIMPs). But detecting WIMPs is challenging, as their expected signals are small and rare compared to the large background that can mimic the signal. The largest and most robust unique signature that sets them apart from other particles is the day-night variation of the directionality of dark matter on Earth. This modulation could be observed with a direction-sensitive detector and hence, would provide an unambiguous signature for the galactic origin of WIMPs. There are many studies underway to attempt to detect WIMPs both directly and indirectly, but solid-state WIMP detectors are widely unexplored although they would present many advantages to prevalent detectors that use large volumes of low pressure gas. We present first results of a novel multi-layered architecture, in which WIMPs would interact primarily with solid layers to produce nuclear recoils that then induce measureable voltage pulses in adjacent superconductor layers. This work was supported by the U.S. Department of Energy through the LANL Laboratory Directed Research and Development Program.
Extraction of Nuclear Matter Properties from Nuclear Masses by a Model of Equation of State
K.C.Chung; C.S.Wang; A.J.Santiago
2001-01-01
The extraction of nuclear matter properties from measured nuclear masses is investigated in the energy density functional formalism of nuclei.It is shown that the volume energy a1 and the nuclear incompressibility Ko depend essentially on μnN -+- pZ - 2EN,whereas the symmetry energy J and the density symmetry coefficient L as well as symmetry incompressibility Ks depend essentially on μn - μp,where μp ＝μp - Ec/ Z,μn and μp are the neutron and proton chemical potentials respectively,EN the nuclear energy,and Ec the Coulomb energy.The obtained symmetry energy is J ＝ 28.5 MeV,while other coefficients are uncertain within ranges depending on the model of nuclear equation of state.``
Relativistic mean-field models and nuclear matter constraints
Dutra, M.; Lourenco, O.; Carlson, B. V. [Departamento de Fisica, Instituto Tecnologico de Aeronautica-CTA, 12228-900, Sao Jose dos Campos, SP (Brazil); Delfino, A. [Instituto de Fisica, Universidade Federal Fluminense, 24210-150, Boa Viagem, Niteroi, RJ (Brazil); Menezes, D. P.; Avancini, S. S. [Departamento de Fisica, CFM, Universidade Federal de Santa Catarina, CP. 476, CEP 88.040-900, Florianopolis, SC (Brazil); Stone, J. R. [Oxford Physics, University of Oxford, OX1 3PU Oxford (United Kingdom) and Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Providencia, C. [Centro de Fisica Computacional, Department of Physics, University of Coimbra, P-3004-516 Coimbra (Portugal); Typel, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Theorie, Planckstrasse 1,D-64291 Darmstadt (Germany)
2013-05-06
This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear {sigma}{sup 3}+{sigma}{sup 4} models, (iii) {sigma}{sup 3}+{sigma}{sup 4}+{omega}{sup 4} models, (iv) models containing mixing terms in the fields {sigma} and {omega}, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the {sigma} ({omega}) field. The isospin dependence of the interaction is modeled by the {rho} meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.
Reducible chiral four-body interactions in nuclear matter
Kaiser, N.; Milkus, R. [Technische Universitaet Muenchen, Physik-Department T39, Garching (Germany)
2016-01-15
The method of unitary transformations generates five classes of leading-order reducible chiral four-nucleon interactions which involve pion exchanges and a spin-spin contact term. Their first-order contributions to the energy per particle of isospin-symmetric nuclear matter and pure neutron matter are evaluated in detail. For most of the closed four-loop diagrams the occurring integrals over four Fermi spheres can be reduced to easily manageable one- or two-parameter integrals. One finds substantial compensations among the different contributions arising from 2-ring and 1-ring diagrams. Altogether, the net attraction generated by the chiral four-nucleon interaction does not exceed values of -1.3 MeV for densities ρ < 2ρ{sub 0}. (orig.)
Three nucleon forces in nuclear matter in QCD sum rules
Drukarev, E. G.; Ryskin, M. G.; Sadovnikova, V. A.
2017-03-01
We calculate the single-particle nucleon characteristics in symmetric nuclear matter with inclusion of the 3N interactions. The contributions of the 3N forces to nucleon self energies are expressed in terms of the nonlocal scalar condensate (d = 3) and of the configuration of the four-quark condensates (d = 6) in which two diquark operators act on two different nucleons of the matter. The most important part of the contribution of the four-quark condensate is calculated in a model-independent way. We employed a relativistic quark model of nucleon for calculation of the other parts. The density dependence of the vector and scalar nucleon self energies and of the single-particle potential energy are obtained. Estimations on contributions of the 4N forces to the nucleon self energies are made.
Conventional and Unconventional Pairing and Condensates in Dilute Nuclear Matter
Clark, John W; Stein, Martin; Huang, Xu-Guang; Khodel, Victor A; Shaginyan, Vasily R; Zverev, Mikhail V
2016-01-01
This contribution will survey recent progress toward an understanding of diverse pairing phenomena in dilute nuclear matter at small and moderate isospin asymmetry, with results of potential relevance to supernova envelopes and proto-neutron stars. Application of {\\it ab initio} many-body techniques has revealed a rich array of temperature-density phase diagrams, indexed by isospin asymmetry, which feature both conventional and unconventional superfluid phases. At low density there exist a homogeneous translationally invariant BCS phase, a homogeneous LOFF phase violating translational invariance, and an inhomogeneous translationally invariant phase-separated BCS phase. The transition from the BCS to the BEC phases is characterized in terms of the evolution, from weak to strong coupling, of the pairing gap, condensate wave function, and quasiparticle occupation numbers and spectra. Additionally, a schematic formal analysis of pairing in neutron matter at low to moderate densities is presented that establishes...
Reducible chiral four-body interactions in nuclear matter
Kaiser, N
2015-01-01
The method of unitary transformations generates five classes of leading-order reducible chiral four-nucleon interactions which involve pion-exchanges and a spin-spin contact-term. Their first-order contributions to the energy per particle of isospin-symmetric nuclear matter and pure neutron matter are evaluated in detail. For most of the closed four-loop diagrams the occurring integrals over four Fermi-spheres can be reduced to easily manageable one- or two-parameter integrals. One observes substantial cancelations among the different contributions arising from 2-ring and 1-ring diagrams. Altogether, the net attraction generated by the chiral four-nucleon interaction does not exceed values of $-1.3$\\,MeV for densities $\\rho<2\\rho_0$.
Sakuragi, Y
2016-01-01
Yoichiro Nambu put a great foot print in nuclear physics in the era of its fundamental developments including his pioneering insight into essential ingredients of repulsive core of nuclear force and its relation to the saturation of nuclear matter. The present review article focuses onto recent developments of the interaction models between colliding nuclei in terms of Brueckner's G-matrix theory staring from realistic nuclear forces and the saturation property of symmetric nuclear matter as well as neutron-star matter. A recently proposed unique scenario of extracting the saturation property of nuclear matter and stiffness of neutron stars through the analysis of nucleus-nucleus elastic scattering in laboratories is presented in some detail.
Shear viscosity of $\\beta$-stable nuclear matter
Benhar, Omar
2009-01-01
Viscosity plays a critical role in determining the stability of rotating neutron stars. We report the results of a calculation of the shear viscosity of $\\beta$~-~stable matter, carried out using an effective interaction based on a state-of-the-art nucleon-nucleon potential and the formalism of correlated basis functions. Within our approach the equation of state, determining the proton fraction, and the nucleon-nucleon scattering probability are consistently obtained from the same dynamical model. The results show that, while the neutron contribution to the viscosity is always dominant, above nuclear saturation density the electron contribution becomes appreciable.
Nuclear matter equation of state and -meson parameters
A B Santra; U Lambardo
2005-01-01
We try to determine phenomenologically the extent of in-medium modification of -meson parameters so that the saturation observables of the nuclear matter equation of state (EOS) are reproduced. To calculate the EOS we have used Brueckner–Bethe–Goldstone formalism with Bonn potential as two-body interaction. We find that it is possible to understand all the saturation observables, namely, saturation density, energy per nucleon and incompressibility, by incorporating in-medium modification of -meson–nucleon coupling constant and -meson mass by a few per cent.
Modification of the $\\omega$-Meson Lifetime in Nuclear Matter
Kotulla, M; Mühlich, P; Anton, G; Bacelar, J C S; Bartholomy, O; Bayadilov, D; Beloglasov, Yu A; Bogendörfer, R; Castelijns, R; Credé, V; Dutz, H; Ehmanns, A; Elsner, D; Ewald, R; Fabry, I; Fuchs, M; Essig, K; Funke, Ch; Gothe, R; Gregor, R; Gridnev, A B; Gutz, E; Höffgen, S; Hoffmeister, P; Horn, I; Hössl, J; Jaegle, I; Junkersfeld, J; Kalinowsky, H; Klein, Frank; Klein, Fritz; Klempt, E; Konrad, M; Kopf, B; Krusche, B; Langheinrich, J; Löhner, H; Lopatin, I V; Lotz, J; Lugert, S; Menze, D; Messchendorp, J G; Mertens, T; Metag, V; Mosel, U; Nanova, M; Novotny, R; Ostrick, M; Pant, L M; Van Pee, H; Pfeiffer, M; Roy, A; Radkov, A; Schadmand, S; Schmidt, Ch; Schmieden, H; Schoch, B; Shende, S; Suft, G; Sumachev, V V; Szczepanek, T; Süle, A; Thoma, U; Varma, R; Walther, D; Weinheimer, Ch; Wendel, Ch
2008-01-01
The photo production of $\\omega$ mesons on the nuclei C, Ca, Nb and Pb has been measured using the Crystal Barrel/TAPS detector at the ELSA tagged photon facility in Bonn. The dependence of the $\\omega$ meson cross section on the nuclear mass number has been compared with three different types of models, a Glauber analysis, a BUU analysis of the Giessen theory group and a calculation by the Valencia theory group. In all three cases, the inelastic $\\omega$ width is found to be $130-150 \\rm{MeV/c^2}$ at normal nuclear matter density for an average 3-momentum of 1.1 GeV/c. In the restframe of the $\\omega$ meson, this inelastic $\\omega$ width corresponds to a reduction of the $\\omega$ lifetime by a factor $\\approx 30$. For the first time, the momentum dependent $\\omega$N cross section has been extracted from the experiment and is in the range of 70 mb.
Negative-parity nucleon excited state in nuclear matter
Ohtani, Keisuke; Gubler, Philipp; Oka, Makoto
2016-10-01
Spectral functions of the nucleon and its negative-parity excited state in nuclear matter are studied by using QCD sum rules and the maximum entropy method (MEM). It is found that in-medium modifications of the spectral functions are attributed mainly to density dependencies of the and condensates. The MEM reproduces the lowest-energy peaks of both the positive- and negative-parity nucleon states at finite density up to ρ ˜ρN (normal nuclear matter density). As the density grows, the residue of the nucleon ground state decreases gradually while the residue of the lowest negative-parity excited state increases slightly. On the other hand, the positions of the peaks, which correspond to the total energies of these states, are almost density independent for both parity states. The density dependencies of the effective masses and vector self-energies are also extracted by assuming phenomenological mean-field-type propagators for the peak states. We find that, as the density increases, the nucleon effective mass decreases while the vector self-energy increases. The density dependence of these quantities for the negative-parity state on the other hand turns out to be relatively weak.
Open heavy flavor in QCD matter and in nuclear collisions
Prino, Francesco; Rapp, Ralf
2016-09-01
We review the experimental and theoretical status of open heavy-flavor (HF) production in high-energy nuclear collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). We first overview the theoretical concepts and pertinent calculations of HF transport in strong-interaction matter, including perturbative and non-perturbative approaches in quark-gluon plasma, effective models in hadronic matter, as well as implementations of heavy-quark (HQ) hadronization. This is followed by a brief discussion of bulk evolution models for heavy-ion collisions and initial conditions for the HQ distributions which are needed to calculate HF spectra in comparison to observables. We then turn to a discussion of experimental data that have been collected to date at RHIC and the LHC, specifically for the nuclear modification factor and elliptic flow of leptons from semileptonic HF decays, D mesons, non-prompt J/\\psi from B-meson decays, and b-jets. Model comparisons to HF data are conducted with regards to extracting the magnitude, temperature and momentum dependence of HF transport coefficients from experiment.
Open Heavy Flavor in QCD Matter and in Nuclear Collisions
Prino, Francesco
2016-01-01
We review the experimental and theoretical status of open heavy-flavor (HF) production in high-energy nuclear collisions at RHIC and LHC. We first overview the theoretical concepts and pertinent calculations of HF transport in QCD matter, including perturbative and non-perturbative approaches in the quark-gluon plasma, effective models in hadronic matter, as well as implementations of heavy-quark (HQ) hadronization. This is followed by a brief discussion of bulk evolution models for heavy-ion collisions and initial conditions for the HQ distributions which are needed to calculate HF spectra in comparison to observables. We then turn to a discussion of experimental data that have been collected to date at RHIC and LHC, specifically for the nuclear suppression factor and elliptic flow of semileptonic HF decays, D mesons, non-prompt $J/\\psi$ from B-meson decays, and b-jets. Model comparisons to HF data are conducted with regards to extracting the magnitude, temperature and momentum-dependence of HF transport coe...
Negative-parity nucleon excited state in nuclear matter
Ohtani, Keisuke; Oka, Makoto
2016-01-01
Spectral functions of the nucleon and its negative parity excited state in nuclear matter are studied using QCD sum rules and the maximum entropy method (MEM). It is found that in-medium modifications of the spectral functions are attributed mainly to density dependencies of the $\\langle \\bar{q}q \\rangle $ and $\\langle q^{\\dagger}q \\rangle $ condensates. The MEM reproduces the lowest-energy peaks of both the positive and negative parity nucleon states at finite density up to $\\rho \\sim \\rho_N$ (normal nuclear matter density). As the density grows, the residue of the nucleon ground state decreases gradually while the residue of the lowest negative parity excited state increases slightly. On the other hand, the positions of the peaks, which correspond to the total energies of these states, are almost density independent for both parity states. The density dependencies of the effective masses and vector self-energies are also extracted by assuming the mean-field green functions for the peak states. We find that,...
Alam, N; Fortin, M; Pais, H; Providência, C; Raduta, Ad R; Sulaksono, A
2016-01-01
We examine the correlations of neutron star radii with the nuclear matter incompressibility, symmetry energy, and their slopes, which are the key parameters of the equation of state (EoS) of asymmetric nuclear matter. The neutron star radii and the EoS parameters are evaluated using a representative set of 24 Skyrme-type effective forces and 18 relativistic mean field models, and two microscopic calculations, all describing 2$M_\\odot$ neutron stars. Unified EoSs for the inner-crust-core region have been built for all the phenomenological models, both relativistic and non-relativistic. Our investigation shows the existence of a strong correlation of the neutron star radii with the linear combination of the slopes of the nuclear matter incompressibility and the symmetry energy coefficients at the saturation density. Such correlations are found to be almost independent of the neutron star mass in the range $0.6\\text{-}1.8M_{\\odot}$. This correlation can be linked to the empirical relation existing between the st...
Reinhard, P.-G.; Nazarewicz, W.
2016-05-01
Background: Radii of charge and neutron distributions are fundamental nuclear properties. They depend on both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal shell effects, which are strongly impacted by the presence of nuclear surface. Purpose: In this work, by studying the correlation of charge and neutron radii, and neutron skin, with nuclear matter parameters, we assess different mechanisms that drive nuclear sizes. Method: We apply nuclear density functional theory using a family of Skyrme functionals obtained by means of optimization protocols, which do not include any radius information. By performing the Monte Carlo sampling of reasonable functionals around the optimal parametrization, we scan all correlations between nuclear matter properties and observables characterizing charge and neutron distributions of spherical closed-shell nuclei 48Ca,208Pb, and 298Fl. Results: By considering the influence of various nuclear matter properties on charge and neutron radii in a multidimensional parameter space of Skyrme functionals, we demonstrate the existence of two strong relationships: (i) between the nuclear charge radii and the saturation density of symmetric nuclear matter ρ0, and (ii) between the neutron skins and the slope of the symmetry energy L . The impact of other nuclear matter properties on nuclear radii is weak or nonexistent. For functionals optimized to experimental binding energies only, proton and neutron radii are found to be weakly correlated due to canceling trends from different nuclear matter characteristics. Conclusion: The existence of only two strong relations connecting nuclear radii with nuclear matter properties has important consequences. First, by requiring that the nuclear functional reproduces the empirical saturation point of symmetric nuclear matter practically fixes the charge (or proton) radii, and vice versa. This explains the recent results of ab initio calculations
Quark and gluon condensates in nuclear matter with Brown- Rho scaling
郭华; 杨树; 刘玉鑫
2001-01-01
Quark and gluon condensates in nuclear matter are investigated in a density-dependent relativistic mean-field theory. The in-medium quark condensate decreases rapidly as the density of nu-clear matter increases, if the Brown-Rho scaling is included. The decrease in the in-medium quark condensate with the nuclear matter density is consistent with the result predicted by the partial chiral symmetry restoration. The gluon condensate and the influence of the strange quark contents on the gluon condensate in nuclear matter are discussed.
A Study of Nuclear Recoil Backgrounds in Dark Matter Detectors
Westerdale, Shawn S. [Princeton U.
2016-01-01
Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the $1-1000$ GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering from nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating ($\\alpha$, n)yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and
Hybrid stars Spin polarised nuclear matter and density dependent quark masses
Maheswari, V S U; Samaddar, S K
1998-01-01
The possibility of formation of a droplet phase (DP) inside a star and its consequences on the structural properties of the star are investigated. For nuclear matter (NM), an equation of state (EOS) based on finite range, momentum and density dependent interaction, and which predicts that neutron matter undergoes ferromagnetic transition at densities realisable inside the neutron star is employed. An EOS for quark matter (QM) with density dependent quark masses, the so-called effective mass model, is constructed by correctly treating the quark chemical potentials. It is then found that a droplet phase consisting of strange quark matter and unpolarised nuclear matter sandwiched between a core of polarised nuclear matter and a crust containing unpolarised nuclear matter exists. Moreover, we could explain the mass and surface magnetic field satisfactorily, and as well allow, due to the presence of a droplet phase, the direct URCA process to happen.
$\\rho$ - meson spectral function in hot nuclear matter
Bhageerathi, P C Raje
2010-01-01
We study the $\\rho$-meson spectral function in hot nuclear matter by taking into account the isospin-symmetric pion and the nucleon loops within the quantum hadrodynamics (QHD) model as well as using an effective chiral SU(3) model. The spectral function of the $\\rho$ meson is studied in the mean field approximation (MFA) as well as in the relativistic Hartree (RHA) approximation. The inclusion of the nucleon loop considerably changes the $\\rho$-meson spectral function. Due to a larger mass drop of $ \\rho $ meson in the RHA, it is seen that the spectral function shifts towards the low invariant mass region, whereas in the MFA the spectral function is seen to be slightly shifted towards the high mass region. Moreover, while the spectral function is observed to be sharper with the nucleon-antinucleon polarization in RHA, the spectral function is seen to be broader in the MFA.
Thermodynamic properties of nuclear matter with three-body forces
Somà, V.; Bożek, P.
2009-08-01
We calculate thermodynamic quantities in symmetric nuclear matter within the self-consistent Green's functions method including three-body forces. The thermodynamic potential is computed directly from a diagrammatic expansion, implemented with the CD-Bonn and Nijmegen nucleon-nucleon potentials and the Urbana three-body forces. We present results for entropy and pressure up to temperatures of 20 MeV and densities of 0.32fm-3. While the pressure is sensitive to the inclusion of three-body forces, the entropy is not. The unstable spinodal region is identified and the critical temperature associated to the liquid-gas phase transition is determined. When three-body forces are added we find a strong reduction of the critical temperature, obtaining Tc≃12MeV.
Thermodynamic properties of nuclear matter with three-body forces
Soma, V
2009-01-01
We calculate thermodynamic quantities in symmetric nuclear matter within the self-consistent Green's functions method including three-body forces. The thermodynamic potential is computed directly from a diagrammatic expansion, implemented with the CD-Bonn and Nijmegen nucleon-nucleon potentials and the Urbana three-body forces. We present results for entropy and pressure up to temperatures of 20 MeV and densities of 0.32 fm^-3. While the pressure is sensitive to the inclusion of three-body forces, the entropy is not. The unstable spinodal region is identified and the critical temperature associated to the liquid-gas phase transition is determined. When three-body forces are added we find a strong reduction of the critical temperature, obtaining T_c ~ 12 MeV.
Short-range correlations in quark and nuclear matter
Froemel, Frank
2007-06-15
In the first part of this thesis, the role of short-range correlations in quark matter is explored within the framework of the Nambu-Jona-Lasinio model. Starting from a next-to-leading order expansion in the inverse number of the quark colors, a fully self-consistent model constructed that employs the close relations between spectral functions and self-energies. In contrast to the usual quasiparticle approximations, this approach allows the investigation of the collisional broadening of the quark spectral function. Numerical calculations at various chemical potentials and zero temperature show that the short-range correlations do not only induce a finite width of the spectral function but also have some influence on the structure of the chiral phase transition. In the second part of this thesis, the temperature and density dependence of the nucleon spectral function in symmetric nuclear matter is investigated. The short-range correlations can be well described by a simple, self-consistent model on the one-particle-two-hole and two-particle-one-hole level (1p2h, 2p1h). The thermodynamically consistent description of the mean-field properties of the nucleons is ensured by incorporating a Skyrme-type potential. Calculations at temperatures and densities that can also be found in heavy-ion collisions or supernova explosions and the formation of neutron stars show that the correlations saturate at high temperatures and densities. (orig.)
Quantum Corrections on Relativistic Mean Field Theory for Nuclear Matter
ZHANG Qi-Ren; GAO Chun-Yuan
2011-01-01
We propose a quantization procedure for the nucleon-scalar meson system, in which an arbitrary mean scalar meson field Φ is introduced.The equivalence of this procedure with the usual one is proven for any given value of Φ.By use of this procedure, the scalar meson field in the Walecka's MFA and in Chin's RHA are quantized around the mean field.Its corrections on these theories are considered by perturbation up to the second order.The arbitrariness of Φ makes us free to fix it at any stage in the calculation.When we fix it in the way of Walecka's MFA, the quantum corrections are big, and the result does not converge.When we fix it in the way of Chin's RHA, the quantum correction is negligibly small, and the convergence is excellent.It shows that RHA covers the leading part of quantum field theory for nuclear systems and is an excellent zeroth order approximation for further quantum corrections, while the Walecka's MFA does not.We suggest to fix the parameter Φ at the end of the whole calculation by minimizing the total energy per-nucleon for the nuclear matter or the total energy for the finite nucleus, to make the quantized relativistic mean field theory (QRMFT) a variational method.
Directional Search for Isospin-Violating Dark Matter with Nuclear Emulsion
Nagao, Keiko I
2012-01-01
Some of direct dark matter searches reported not only positive signals but also annual modulation of the signal event. However, the parameter spaces have been excluded by other experiments. Isospin violating dark matter solves the contradiction by supposing different coupling to proton and neutron. We study the possibility to test the favored parameter region by isospin violating dark matter model with the future detector of dark matter using the nuclear emulsion. Since the nuclear emulsion detector has directional sensitivity, the detector is expected to examine whether the annual modulations observed other experiments is caused by dark matter or background signals.
Chaturvedi, O. S. K.; Srivastava, P. K.; Kumar, Ashwini; Singh, B. K.
2016-12-01
The charged particle multiplicity (n_{ch}) and pseudorapidity density (dn_{ch}/dη) are key observables to characterize the properties of matter created in heavy-ion collisions. The dependence of these observables on collision energy and the collision geometry are a key tool to understand the underlying particle production mechanism. Recently much interest has been focused on asymmetric and deformed nuclei collisions since these collisions can provide a deeper understanding about the nature of quantum chromodynamics (QCD). From the phenomenological perspective, a unified model which describes the experimental data coming from various kinds of collision experiments is much needed to provide physical insights on the production mechanism. In this paper, we have calculated the charged hadron multiplicities for nucleon-nucleus, such as proton-lead ( p-Pb) and asymmetric nuclei collisions like deutron-gold ( d-Au), and copper-gold (Cu-Au) within a new version of the wounded quark model (WQM) and we have shown their variation with respect to centrality. Further we have used a suitable density function within our WQM to calculate pseudorapidity density of charged hadrons at midrapidity in the collisions of deformed uranium nuclei. We found that our model with suitable density functions describes the experimental data for symmetric, asymmetric and deformed nuclei collisions simultaneously over a wide range of the collision energy.
Relativistic description of BCS-BEC crossover in nuclear matter
Sun, Bao Yuan; Toki, Hiroshi; Meng, Jie
2010-01-01
We study theoretically the di-neutron spatial correlations and the crossover from superfluidity of neutron Cooper pairs in the S10 pairing channel to Bose-Einstein condensation (BEC) of di-neutron pairs for both symmetric and neutron matter in the microscopic relativistic pairing theory. We take the bare nucleon-nucleon interaction Bonn-B in the particle-particle channel and the effective interaction PK1 of the relativistic mean-field approach in the particle-hole channel. It is found that the spatial structure of neutron Cooper pair wave function evolves continuously from BCS-type to BEC-type as density decreases. We see a strong concentration of the probability density revealed for the neutron pairs in the fairly small relative distance around 1.5 fm and the neutron Fermi momentum kFn ∈ [ 0.6 , 1.0 ] fm-1. However, from the effective chemical potential and the quasiparticle excitation spectrum, there is no evidence for the appearance of a true BEC state of neutron pairs at any density. The most BEC-like state may appear at kFn ∼ 0.2 fm-1 by examining the density correlation function. From the coherence length and the probability distribution of neutron Cooper pairs as well as the ratio between the neutron pairing gap and the kinetic energy at the Fermi surface, some features of the BCS-BEC crossover are seen in the density regions, 0.05 fm-1
A new explanation to the cold nuclear matter effects in heavy ion collisions
Liu, Zhi-Feng
2014-01-01
The J/Psi cross section ratios of p-A/p-p under different collision energy is calculated with cold nuclear matter effects redefined in this paper. The advantage of these new definitions is that all cold nuclear matter effects have clear physical origins.The radios are compared with the corresponding experiment data and that calculated with classic nuclear effects. The ratios calculated with new definitions can reproduce almost all existing J/Psi measurements in p-A collisions more accuratly than that calculated with classic nuclear effects. Hence, this paper presents a new approach to explain cold nuclear effects in the hardproduction of quarkonium.
Updated constraints on velocity and momentum-dependent asymmetric dark matter
Vincent, Aaron C; Serenelli, Aldo
2016-01-01
We present updated constraints on dark matter models with momentum-dependent or velocity-dependent interactions with nuclei, based on direct detection and solar physics. We improve our previous treatment of energy transport in the solar interior by dark matter scattering, leading to significant changes in fits to many observables. Based on solar physics alone, DM with a spin-independent $q^{4}$ coupling provides the best fit to data, and a statistically satisfactory solution to the solar abundance problem. Once direct detection limits are accounted for however, the best solution is spin-dependent $v^2$ scattering with a reference cross-section of 10$^{-35}$ cm$^2$ (at a reference velocity of $v_0=220$ km s$^{-1}$), and a dark matter mass of about 5 GeV.
On the Origin of the Charge-Asymmetric Matter. II. Localized Dirac Waveforms
Makhlin, Alexander
2016-01-01
This paper continues the author's work \\cite{PartI}, where a new framework of the matter-induced physical geometry was built and an intrinsic nonlinearity of the Dirac equation discovered. Here, the nonlinear Dirac equation is solved and the localized configurations are found analytically. Of the two possible types of the potentially stationary localized configurations of the Dirac field, only one is stable with respect to the action of an external field and it corresponds to a positive charge. A connection with the global charge asymmetry of matter in the Universe and with the recently observed excess of the cosmic positrons is discussed.
Hadronization time of heavy quarks in nuclear matter
Song, Taesoo; Berrehrah, Hamza
2016-09-01
We study the hadronization time of heavy quark in nuclear matter by using the coalescence model and the spatial diffusion constant of a heavy quark from lattice quantum chromodynamic calculations, assuming that the main interaction of a heavy quark at the critical temperature is hadronization. It is found that the hadronization time of a heavy quark is about 3 fm /c for 2 π TcDs=6 , if a heavy quark is combined with the nearest light antiquark in coordinate space without any correlation between the momentum of a heavy quark and that of a light antiquark which forms a heavy meson. However, the hadronization time reduces to 0.6 - 1.2 fm /c for charm and 0.4 - 0.9 fm /c for bottom, depending on the heavy meson radius, in the presence of momentum correlation. Considering the interspace between quarks and antiquarks at the critical temperature, it seems that the hadronization of a heavy quark does not happen instantaneously but gradually for a considerable time, if started from the thermal distribution of quarks and antiquarks.
Correlations between critical parameters and bulk properties of nuclear matter
Lourenço, O; Dutra, M; Delfino, A
2016-01-01
The present work starts by providing a clear identification of correlations between critical parameters ($T_c$, $P_c$, $\\rho_c$) and bulk quantities at zero temperature of relativistic mean-field models (RMF) presenting third and fourth order self-interactions in the scalar field $\\sigma$. Motivated by the nonrelativistic version of this RMF model, we show that effective nucleon mass ($M^*$) and incompressibility ($K_o$), at the saturation density, are correlated with $T_c$, $P_c$, and $\\rho_c$, as well as, binding energy and saturation density itself. We verify agreement of results with previous theoretical ones regarding different hadronic models. Concerning recent experimental data of the symmetric nuclear matter critical parameters, our study allows a prediction of $T_c$, $P_c$ and $\\rho_c$ compatible with such values, by combining them, through the correlations found, with previous constraints related to $M^*$ and $K_o$. An improved RMF parametrization, that better agrees with experimental values for $T_...
Effect of a strong magnetic field on the energy yield of nuclear reactions in dense nuclear matter
Sekerzhitskii, V.S. [Pushkin Pedagogical Institute, Brest (Belarus)
1995-01-01
According to modern concepts, the electron-neutron-nuclear (Aen) phase of dense highly degenerate matter can be realized in the shells of neutron stars. This phase has relatively stable and absolutely stable states of thermodynamic equilibrium. Strong magnetic fields can exist in neutron stars. For this reason, analysis of their effect on the characteristics of the Aen phase is of great interest. It is specially important to study the influence of strong magnetic fields on the energy yield of nuclear reactions in dense nuclear matter because the transition to the absolute equilibrium state proceeds through these reactions.
In-medium effective chiral lagrangians and the pion mass in nuclear matter
Wirzba, A; Wirzba, Andreas; Thorsson, Vesteinn
1995-01-01
We argue that the effective pion mass in nuclear matter obtained from chiral effective lagrangians is unique and does not depend on off-mass-shell extensions of the pion fields as e.g. the PCAC choice. The effective pion mass in isospin symmetric nuclear matter is predicted to increase slightly with increasing nuclear density, whereas the effective time-like pion decay constant and the magnitude of the density-dependent quark condensate decrease appreciably. The in-medium Gell-Mann-Oakes-Renner relation as well as other in-medium identities are studied in addition. Finally, several constraints on effective lagrangians for the description of the pion propagation in isospin symmetric, isotropic and homogenous nuclear matter are discussed. (Talk presented at the workshop ``Hirschegg '95: Hadrons in Nuclear Matter'', Hirschegg, Kleinwalsertal, Austria, January 16-21, 1995)
Experimental aspects of quarkonia production and suppression in cold and hot nuclear matter
Frawley, A D
2015-01-01
When heavy Quarkonia are formed in collisions between between nuclei, their production cross section is modified relative to that in p+p collisions. The physical effects that cause this modification fall into two categories. Hot matter effects are due to the large energy density generated in the nuclear collision, which disrupts the formation of the quarkonium state. Cold nuclear matter effects are due to the fact that the quarkonium state is created in a nuclear target. I will review experimental aspects of quarkonia production due to both hot and cold matter effects.
Neutron-Proton Mass Difference in Nuclear Matter and in Finite Nuclei and the Nolen-Schiffer Anomaly
Yakhshiev U.T.
2010-04-01
Full Text Available The neutron-proton mass diﬀerence in (isospin asymmetric nuclear matter and ﬁnite nuclei is studied in the framework of a medium-modiﬁed Skyrme model. The proposed eﬀective Lagrangian incorporates both the medium inﬂuence of the surrounding nuclear environment on the single nucleon properties and an explicit isospin-breaking eﬀect in the mesonic sector. Energy-dependent charged and neutral pion optical potentials in the s- and p-wave channels are included as well. The present approach predicts that the neutron-proton mass diﬀerence is mainly dictated by its strong part and that it markedly decreases in neutron matter. Furthermore, the possible interplay between the eﬀective nucleon mass in ﬁnite nuclei and the Nolen-Schiﬀer anomaly is discussed. In particular, we ﬁnd that a correct description of the properties of mirror nuclei leads to a stringent restriction of possible modiﬁcations of the nucleon’s eﬀective mass in nuclei.
Dark Matter Particle Spectroscopy at the LHC: Generalizing MT2 to Asymmetric Event Topologies
Konar, Partha; Matchev, Konstantin T; Park, Myeonghun
2009-01-01
We consider SUSY-like missing energy events at hadron colliders and critically examine the common assumption that the missing energy is the result of two identical missing particles. In order to experimentally test this hypothesis, we generalize the subsystem MT2 variable to the case of asymmetric event topologies, where the two SUSY decay chains terminate in different "children" particles. In this more general approach, the endpoint MT2max of the MT2 distribution now gives the mass Mp(Mc(a),Mc(b)) of the parent particle as a function of two input children masses Mc(a) and Mc(b). We propose two methods for an independent determination of the individual children masses Mc(a) and Mc(b). First, in the presence of upstream transverse momentum P(UTM) the corresponding function Mp(Mc(a),Mc(b),P(UTM)) is independent of P(UTM) at precisely the right values of the children masses. Second, the previously discussed MT2 "kink" is now generalized to a "ridge" on the 2-dimensional surface Mp(Mc(a),Mc(b)). As we show in sev...
Sammarruca, Francesca
2016-01-01
We present predictions of the binding energy per nucleon and the neutron skin thickness in highly neutron-rich isotopes of Oxygen, Magnesium, and Aluminum. The calculations are carried out at and below the neutron drip line. The nuclear properties are obtained via an energy functional whose input is the equation of state of isospin-asymmetric in?finite matter. The latter is based on a microscopic derivation applying chiral few-nucleon forces. We highlight the impact of the equation of state at diff?erent orders of chiral effective fi?eld theory and discuss the role of three-neutron forces.
Localized control of light-matter interactions by using nanoscale asymmetric TiO2
Zhou, Shifeng; Matsuoka, Tomoyo; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Nishi, Masayuki; Hong, Zhanglian; Qiu, Jianrong; Hirao, Kazuyuki; Miura, Kiyotaka
2012-11-01
This paper reports an asymmetry structure-mediated route for highly localized control of light-matter interactions by using tapered TiO2. We demonstrate for the first time that the growth habit of Ag nanostructures on tapered TiO2 can be tuned by controllable photolysis. Site-selective anchoring of Ag nanoparticles or nanowires on tapered TiO2 can be achieved by simply changing the external light. We further show that the obtained tapered TiO2-Ag hetero-nanostructures present excellent light-trapping ability over a wide range of wavelengths which is considered to originate from the unique synergistic effects of graded waveguiding and plasmonic light trapping. This improved photon-management capability renders the prepared substrate a very promising candidate for optical sensing application. For this purpose, an enhanced sensitivity for trace detection is confirmed. These findings open up promising avenues for tailoring of light-matter interactions which are of special interest for studying controllable photolysis activation processes and diverse applications such as nanostructure growth, trace detection, photocatalysis and solar cells.
The Heart of Matter: A Nuclear Chemistry Module. Teacher's Guide.
Viola, Vic; Hearle, Robert
This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching nuclear chemistry. In this book, the fundamental concepts of nuclear science and the applications of nuclear energy are discussed. The material in this book can be integrated with the other modules in a sequence that helps students…
Equation of State of Nuclear Matter in Chiral σ-ω Model
CHEN Wei; DONG Dong-Qiao; WEN De-Hua; LIU Guo-Tao; LIU Liang-Gang
2004-01-01
The equation of state of nuclear matter is studied in the 1-loop approximation of chiral linear σ-ω model.By introducing the density-dependent coupling constants, the problem of tachyon pole in the chiral σ-ω model is resolved.The 1-loop contributions ofσ and π mesons to the nucleon's binding energy are included, while the empirical properties of nuclear matter such as saturation density, binding energy, and incompressibility are well reproduced.
Do Skyrme forces that fit nuclear matter work well in finite nuclei?
Stevenson, P D; Stone, J R; Dutra, M
2012-01-01
A shortlist of Skyrme force parameterizations, recently found to have passed a series of constraints relating to nuclear matter properties is analyzed for their ability to reproduce data in finite nuclei. We analyse binding energies, isotope shifts and fission barriers. We find that the subset of forces have no common ability to reproduce (or otherwise) properties of finite nuclei, despite passing the extensive range of nuclear matter constraints.
Chaturvedi, O S K; Kumar, Ashwini; Singh, B K
2016-01-01
The charged particle multiplicity ($n_{ch}$) and pseudorapidity density $(dn_{ch}/d\\eta)$ are key observables to characterize the properties of matter created in heavy ion collisions. The dependence of these observables on collision energy and the collision geometry are a key tool to understand the underlying particle production mechanism. Recently a lot of focus on asymmetric nuclei as well as deformed nuclei collisions has been made as these collisions can provide a deeper understanding of the nature of quantum chromodynamics (QCD). On phenomenological perspective a unified model which describes the experimental data coming from various kind of collision experiments, is much needed to provide the physical insights about the production mechanism. In this paper, firstly we have calculated the charged hadron multiplicities for nucleon-nucleus (such as proton-lead (p-Pb) and asymmetric nuclei collisions like deutron-gold (d-Au), and copper-gold (Cu-Au) within our recently proposed wounded quark model (WQM) and ...
Saturation properties of nuclear matter in the presence of strong magnetic field
Rezaei, Z. [Shiraz University, Department of Physics and Biruni Observatory, Shiraz (Iran, Islamic Republic of); Bordbar, G.H. [Shiraz University, Department of Physics and Biruni Observatory, Shiraz (Iran, Islamic Republic of); Center for Excellence in Astronomy and Astrophysics (CEAA-RIAAM)-Maragha, P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)
2016-05-15
Different saturation properties of cold symmetric nuclear matter in strong magnetic field have been considered. We have seen that for magnetic fields about B>3 x 10{sup 17} G, for both cases with and without nucleon anomalous magnetic moments, the saturation density and saturation energy grow by increasing the magnetic field. It is indicated that the magnetic susceptibility of symmetric nuclear matter becomes negative showing the diamagnetic response especially at B<3 x 10{sup 17} G. We have found that for the nuclear matter, the magnitude of orbital magnetization reaches higher values comparing to the spin magnetization. Our results for the incompressibility show that at high enough magnetic fields, i.e. B>3 x 10{sup 17} G, the softening of the equation of state caused by Landau quantization is overwhelmed by stiffening due to the magnetization of nuclear matter. We have shown that the effects of strong magnetic field on nuclear matter may affect the constraints on the equation of state of symmetric nuclear matter obtained by applying the experimental observables. (orig.)
The phase diagram of nuclear and quark matter at high baryon density
Fukushima, Kenji
2013-01-01
We review theoretical approaches to explore the phase diagram of nuclear and quark matter at high baryon density. We first look over the basic properties of quantum chromodynamics (QCD) and address how to describe various states of QCD matter. In our discussions on nuclear matter we cover the relativistic mean-field model, the chiral perturbation theory, and the approximation based on the large-Nc limit where Nc is the number of colors. We then explain the liquid-gas phase transition and the inhomogeneous meson condensation in nuclear matter with emphasis put on the relevance to quark matter. We commence the next part focused on quark matter with the bootstrap model and the Hagedorn temperature. Then we turn to properties associated with chiral symmetry and exposit theoretical descriptions of the chiral phase transition. There emerge some quark-matter counterparts of phenomena seen in nuclear matter such as the liquid-gas phase transition and the inhomogeneous structure of the chiral condensate. The third reg...
Benvenuto, O.G. [La Plata Univ. (Argentina). Fac. of Astron. and Geophys.; Civitarese, O. [Dept. of Physics, Univ. of La Plata (Argentina); Reboiro, M. [Dept. of Physics, Univ. of La Plata (Argentina)
1997-05-01
Effects due to the temperature dependence of the nuclear binding energy upon the equation of state (EOS) for hot nuclear matter are studied. Nuclear contributions to the free energy are represented by temperature dependent liquid drop model terms. Phase coexistence is assumed for temperatures of the order of 1 MeV {<=} T {<=} 6 MeV, baryon number densities {rho} of the order of 10{sup -4}fm{sup -3} {<=} {rho} {<=} 10{sup -1}fm{sup -3} and lepton fractions of the order of 0.2 {<=} y{sub 1} {<=} 0.4. It is found that the total pressure of the system is not affected by the temperature dependence of the nuclear free energy, in spite of changes observed in the nuclear pressure due to the different parametrizations used to represent the nuclear binding energy. (orig.).
Some Recent Progress on Quark Pairings in Dense Quark and Nuclear Matter
庞锦毅; 王金成; 王群
2012-01-01
In this review article we give a brief overview on some recent progress in quark pairings in dense quark~nuclear matter mostly developed in the past five years. We focus on following aspects in particular： the BCS-BEC crossover in the CSC phase, the baryon formation and dissociation in dense quark/nuclear matter, the Ginzburg-Landau theory for three-flavor dense matter with UA （1） anomaly, and the collective and Nambu-Goldstone modes for the spin-one CSC.
Quark and gluon condensates in nuclear matter with Brown- Rho scaling
GUO; Hua(
2001-01-01
［1］Brown, G. E., Rho, M., Scaling effective Lagrangian in a dense medium, Phys. Rev. Lett., 1991, 66: 2720-2723.［2］Delfino, A., Dey, J., Dey, M. et al., Decoupling of quark condensate from the effective nucleon at high density and tem-perature, Phys. Lett. B, 1995, 363: 17-23.［3］Guo, H., In-medium QMC model parameters and quark condensate in nuclear matter, J. Physics (London) G, 1999, 25: 1701-1711.［4］Li, G. Q., Ko, C. M., Quark condensate in nuclear matter, Phys. Lett. B, 1994, 338: 118-122.［5］Mitsumori, T., Noda, N., Kouno, H. et al., Quark condensate in nuclear matter based on nuclear Schwinger-Dyson for-mulism, Phys. Rev. C, 1997, 55: 1577-1579.［6］Malheiro, M., Dey, M., Delfino, A. et al., Connection between the nuclear matter mean-field equation of state and the quark and gluon condensates at high density, Phys. Rev. C, 1997, 55: 521-524.［7］Li, L., Shen, H., Ning, P. Z., Quark condensate in dense and hot baryonic matter, in Proceedings of CCAST-World Labo-ratory Workshop (CCAST-WL, Beijing), 1996, 77-98.［8］Haddad, S., Weigel, M. K., Finite nuclear systems in a relativistic extended Thomas-Fermi approach with density-dependent coupling parameters, Phys. Rev. C, 1993, 48: 2740-2745.［9］Brockman, R., Machleidt, R., Relativistic nuclear structure. I. Nuclear Matter, Phys. Rev. C, 1990, 42: 1965-1980.［10］Haddad, S., Weigel, M. K., Thermostatic properties and Coulomb instability of highly excited nuclei, Phys. Rev. C, 1994, 49: 3228-3233.［11］Fuchs, C., Lenske, H., Wolter, H., Density dependent hadron field theory, Phys. Rev. C, 1995, 52: 3043-3060.［12］Ineichen, F., Weigel, M. K., Eiff, D., Nuclear structure calculation in the density-dependent relativistic Hartree theory, Phys. Rev. C, 1996, 53: 2158-2162.［13］Guo, H., Liu, B., Toro, D. M., Phase transition in warm nuclear matter, Phys. Rev. C, 2000, 62: 1-8.［14］Cohen, T. D., Furnstahl, R. J., Griegel, D. K., Quark and gluon condensates in nuclear matter, Phys
Delfino, A; Frederico, T
1996-01-01
The link between non-linear chiral effective Lagrangians and the Walecka model description of bulk nuclear matter [1] is questioned. This fact is by itself due to the Mean Field Approximation (MFA) which in nuclear mater makes the picture of a nucleon-nucleon interaction based on scalar(vector) meson exchange, equivalent to the description of a nuclear matter based on attractive and repulsive contact interactions. We present a linear chiral model where this link between the Walecka model and an underlying to chiral symmetry realization still holds, due to MFA.
Can Tonne-Scale Direct Detection Experiments Discover Nuclear Dark Matter?
Butcher, A; Monroe, J; West, S M
2016-01-01
Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the $3\\,\\sigma$ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a $2\\,\\sigma$ distinction is possible by these e...
Study of the nuclear matter distribution in neutron-rich Li isotopes
Dobrovolsky, A.V. [Petersburg Nuclear Physics Institute (PNPI), 188300 Gatchina (Russian Federation)]. E-mail: dobrov@pnpi.spb.ru; Alkhazov, G.D. [Petersburg Nuclear Physics Institute (PNPI), 188300 Gatchina (Russian Federation); Andronenko, M.N. [Petersburg Nuclear Physics Institute (PNPI), 188300 Gatchina (Russian Federation); Bauchet, A. [Gesellschaft fuer Schwerionenforschung (GSI), 64291 Darmstadt (Germany); Egelhof, P. [Gesellschaft fuer Schwerionenforschung (GSI), 64291 Darmstadt (Germany); Fritz, S. [Gesellschaft fuer Schwerionenforschung (GSI), 64291 Darmstadt (Germany); Geissel, H. [Gesellschaft fuer Schwerionenforschung (GSI), 64291 Darmstadt (Germany); Gross, C. [Gesellschaft fuer Schwerionenforschung (GSI), 64291 Darmstadt (Germany); Khanzadeev, A.V. [Petersburg Nuclear Physics Institute (PNPI), 188300 Gatchina (Russian Federation); Korolev, G.A. [Petersburg Nuclear Physics Institute (PNPI), 188300 Gatchina (Russian Federation); Kraus, G. [Gesellschaft fuer Schwerionenforschung (GSI), 64291 Darmstadt (Germany); Lobodenko, A.A. [Petersburg Nuclear Physics Institute (PNPI), 188300 Gatchina (Russian Federation); Muenzenberg, G. [Gesellschaft fuer Schwerionenforschung (GSI), 64291 Darmstadt (Germany); Mutterer, M. [Institut fuer Kernphysik (IKP), TU-Darmstadt, 64289 Darmstadt (Germany); Neumaier, S.R. [Gesellschaft fuer Schwerionenforschung (GSI), 64291 Darmstadt (Germany); Institut fuer Kernphysik (IKP), TU-Darmstadt, 64289 Darmstadt (Germany); Schaefer, T. [Gesellschaft fuer Schwerionenforschung (GSI), 64291 Darmstadt (Germany); Scheidenberger, C. [Gesellschaft fuer Schwerionenforschung (GSI), 64291 Darmstadt (Germany); Seliverstov, D.M. [Petersburg Nuclear Physics Institute (PNPI), 188300 Gatchina (Russian Federation); Timofeev, N.A. [Petersburg Nuclear Physics Institute (PNPI), 188300 Gatchina (Russian Federation); Vorobyov, A.A.; Yatsoura, V.I. [Petersburg Nuclear Physics Institute (PNPI), 188300 Gatchina (Russian Federation)
2006-02-20
The differential cross sections for small-angle proton elastic scattering on the {sup 6,8,9,11}Li nuclei at energies near 700 MeV/nucleon were measured in inverse kinematics using secondary nuclear beams at GSI Darmstadt. The hydrogen-filled ionization chamber IKAR was employed as target and recoil proton detector. For determining the nuclear matter radii and radial matter distributions, the measured cross sections have been analysed with the aid of the Glauber multiple-scattering theory. The nuclear matter distribution deduced for {sup 11}Li exhibits a very pronounced halo structure, the matter radius of {sup 11}Li being significantly larger than those of the {sup 6,8,9}Li isotopes. The data on {sup 8,9}Li are consistent with the existence of sizable neutron skins in these nuclei. The obtained data allow for a test of various theoretical model calculations of the structure of the studied neutron-rich nuclei.
Gupta, V K; Singh, S; Anand, J D; Gupta, Asha
2002-01-01
We have studied phase transition from hadron matter to quark matter in the presence of high magnetic fields incorporating the trapped electron neutrinos at finite temperatures. We have used the density dependent quark mass (DDQM) model for the quark phase while the hadron phase is treated in the frame-work of relativistic mean field theory. It is seen that the nuclear energy at phase transition decreases with both magnetic field and temperature. A brief discussion of the effect of magnetic field in supernova explosions and proto-neutron star evolution is given.
Effective interaction: From nuclear reactions to neutron stars
D N Basu
2014-05-01
An equation of state (EoS) for symmetric nuclear matter is constructed using the density-dependent M3Y effective interaction and extended for isospin asymmetric nuclear matter. Theoretically obtained values of symmetric nuclear matter incompressibility, isobaric incompressibility, symmetry energy and its slope agree well with experimentally extracted values. Folded microscopic potentials using this effective interaction, whose density dependence is determined from nuclear matter calculations, provide excellent descriptions for proton, alpha and cluster radioactivities, elastic and inelastic scattering. The nuclear deformation parameters extracted from inelastic scattering of protons agree well with other available results. The high density behaviour of symmetric and asymmetric nuclear matter satisfies the constraints from the observed flow data of heavy-ion collisions. The neutron star properties studied using -equilibrated neutron star matter obtained from this effective interaction reconcile with the recent observations of the massive compact stars.
Diffusion of dark matter in a hot and dense nuclear environment
Cermeño, Marina; Silk, Joseph
2015-01-01
We calculate the mean free path in a hot and dense nuclear environment for a fermionic dark matter particle candidate interacting with nucleons via scalar and vector couplings. We determine the effects of density and temperature in the medium by using nuclear distribution functions to size the importance of the final state blocking. Our results show that stellar nuclear scenarios, where dark matter may be accreted, provide opacities several orders of magnitude larger than those for Standard Model neutrinos in the context of cooling of proto-neutron stars. We also show that in a diffusive approximation with couplings of Fermi's constant strength the obtained dark matter-nucleon crosss sections display the same sensitivity that upper limits constrained with collider searches in the mass region $m_\\chi \\lesssim$ 5 GeV.
Study of Charmonium Production in Asymmetric Nuclear Collisions by the PHENIX Experiment at RHIC
,
2015-01-01
The measurement of quarkonia production in relativistic heavy ion collisions provides a powerful tool for studying the properties of the hot and dense matter created in these collisions. To be really useful, however, such measurements must cover a wide range of quarkonia states and colliding species. The PHENIX experiment at RHIC has successfully measured J/psi, psi-prime, chi_c and Upsilon production in different colliding systems at various energies. In this talk I will present recent results from the PHENIX collaboration on charmonium production in d+Au, Cu+Au and U+U collisions at 200 GeV/c.
Microscopic calculations and energy expansions for neutron-rich matter
Drischler, Christian; Soma, Vittorio [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Schwenk, Achim [ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)
2014-07-01
We investigate the properties of asymmetric nuclear matter with two- and three-nucleon interactions based on chiral effective field theory. Focusing on neutron-rich matter, we calculate the energy for different proton fractions and include estimates of the theoretical uncertainty. We use our ab-initio results to test the quadratic expansion around symmetric matter with the symmetry energy term, and confirm its validity for highly asymmetric systems. Our calculated energy densities are in remarkable agreement with an empirical parameterization, developed to interpolate between pure neutron and symmetric nuclear matter. These findings are very useful for astrophysical applications and for developing new equations of state.
Pinning down nuclear. To the core of the matter
Boeck, Helmut; Gerstmayr, Michael [Technische Univ., Vienna (Austria); International Atomic Energy Agency, Vienna (Austria); Radde, Eileen [Nuclear Engineering Seibersdorf GmbH (Austria); International Atomic Energy Agency, Vienna (Austria)
2014-07-01
The nuclear disaster in Fukushima shocked the world tremendously. The call to pull out of nuclear energy is getting louder - and more often than not by politicians trying to lure the favour of voters. Through the media there are half-truths and false information floating about the global consequences of the disaster and sensational prognoses for the future, all of which are in turn unsettling for the general public. Are the opposers to nuclear energy playing with the fear of the public or is the threat real? This book tells, in a captivating manner - authenticated with examples and incidents not known by many - what the threat for the area actually looks like. They confront the level of truth in the frightening scenarios and inform about the situation in case of emergency. Furthermore, they examine factors that preceded the disaster and broach the subject of the incredible hunger for energy, which dominates the world and continues to drive the commercial use of nuclear energy. Also the ghost of Chernobyl and its aftermath, which has been dismissed from our minds, is re-examined based on current knowledge. The book impresses with insider know-how, latest detailed knowledge, amazing facts and an entertaining narrative style.
LIU Xin-Wen; Tang Ning
2004-01-01
The interest of the coordination chemistry of manganese has been driver by the important roles of metalloenzymes and highly valuable catalysts in olefin expoxidation.1 Jacobsen Salen-Mn complexes with a simple structure have been commercially utilized to catalyze asymmetric epoxidation of unfunctionalized cis-alkenes2, but the catalytic enantioselectivity for trans-alkenes, unfortunately, are lower and this kinds of complexes are unstable and difficult to be recovered for reuse.3 In order to improve the catalytic activity and recyclability, many new catalysts including the supported catalysts,heterogeneous catalysts and else modified catalysts have been studied, however their comprehensive effects are unsatisfying.4Recently, some studies in interrelated realm showed that the catalytic performance of bi- or poly-nuclear complexes was superior to that of monomer.5 Meanwhile, our previous studies also showed that properly increasing the molecular weight of catalysts as well as the extent of conjugation of active center would not only result in high activity or reactivity but also its stability and recyclablity, aiding product isolation and catalyst recovery.6For these reasons we designed and synthesized the chiral poly-Mn(Ⅲ) complexes in which active sites were conjugated in certain distance side by side though central nucleus of 4, 6-dihydroxy- isophthalaldehyde (see the scheme). These novel Mn(Ⅲ) complexes have been investigated for the first time as catalysts (lmol%)for the asymmetric epoxidation of alkenes by using pure urea-H2O2 as oxidant and NH4OAc as additive in CH2Cl2/MeOH, showing high activity and good enantioselectivity. All reactions were finished in 1.5h. Rather surprisingly, a marginal increase in ee was observed when the concentration of the substrate was increased from 0.01 to 0.5M. The poly-nuclear complex formation enhanced the catalyst's reactivity and stability. It, unlike mononuclear, could be easily recovered and reused several cycles with a
Jet-induced modifications of the characteristic of the bulk nuclear matter
Marcinkowski, P; Kikoła, D; Sikorski, J; Porter-Sobieraj, J; Gawryszewski, P; Zygmunt, B
2015-01-01
We present our studies on jet-induced modifications of the characteristic of the bulk nuclear matter. To describe such a matter, we use efficient relativistic hydrodynamic simulations in (3+1) dimensions employing the Graphics Processing Unit (GPU) in the parallel programming framework. We use Cartesian coordinates in the calculations to ensure a high spatial resolution that is constant throughout the evolution of the system. We show our results on how jets modify the hydrodynamics fields and discuss the implications.
Jet-induced modifications of the characteristic of the bulk nuclear matter
Marcinkowski, P.; Słodkowski, M.; Kikoła, D.; Sikorski, J.; Porter-Sobieraj, J.; Gawryszewski, P.; Zygmunt, B.
2016-01-01
We present our studies on jet induced modifications of the characteristics of bulk nuclear matter. To describe such matter, we use efficient relativistic hydrodynamic simulations in (3+1)-dimension, employing the Graphics Processing Unit (GPU) in the parallel programming framework. We use Cartesian coordinates in the calculations to ensure a high spatial resolution that is constant throughout the evolution of the system. We show our results on how jets modify the hydrodynamics fields and discuss the implications.
舒崧; 李家荣
2012-01-01
We used the Cornwall, Jackiw and Tomboulis （CJT） resummation scheme to study nuclear matter. In the CJT formalism the meson propagators are treated as the bare propagators and the the higher order loop corrections of the thermodynamic potential are evaluated at the Hartree approximation, while the vacuum fluctuations are ignored. Under these treatments in the CJT formalism we derived exact mean-field theory （MFT） results for the nuclear matter. The results are thermodynamically consistent, and our study indicates that the MFT result is the lowest order resummation result in the CJT resummation scheme. The relation between CJT formalism and MFT is clearly presented through the calculations.
-matrix approach to the equation of state of dilute nuclear matter
J N De; S K Samaddar; B K Agrawal
2014-04-01
Based on the general analysis of the grand canonical partition function in the -matrix framework, a method is presented to calculate the equation of state of dilute warm nuclear matter. The result is a model-independent virial series for the pressure and density that systematically includes contributions from all the ground and excited states of all the stable nuclear species and their scattering channels. The multiplicity distribution of these species to keep the matter in statistical equilibrium is found out and then the pressure, incompressibility and the symmetry energy of the system are evaluated. The calculated symmetry energy coefficients are found to be in fair agreement with the recent experimental data.
Constraining the nuclear matter equation of state around twice saturation density
Leifels Y.
2015-01-01
Full Text Available Using data on elliptic flow measured by the FOPI collaboration we extract constraints for the equation of state (EOS of symmetric nuclear matter with the help of the microscopic transport code IQMD. Best agreement between data and calculations is obtained with a ’soft’ equation of state including a momentum dependent interaction. From the model it can be deduced that the characteristic density related to the observed flow signal is around twice saturation density and that both compression within the fireball and the presence of the surrounding spectator matter is necessary for the development of the signal and its sensitivity to the nuclear equation of state.
BCS-BEC crossover and liquid-gas phase transition in nuclear matter
Jin Meng [Institute of Particle Physics and Physical Department, Central China Normal University, Wuhan 4300079 (China); Urban, Michael [Groupe de Physique Theorique, Institut de Physique Nucleaire -Centre Scientifique d' Orsay, F-91406 Orsay (France); Schuck, Peter, E-mail: jinm@iopp.ccnu.edu.cn [Laboratoire de Physique et Modelisation des Milieux Condenses,CNRS and Universite Joseph Fourier, BP 166, 38042 Grenoble Cedex (France)
2011-09-16
The effect of nucleon-nucleon correlations in symmetric nuclear matter at finite temperature is studied beyond BCS theory. We calculate the critical temperature for a BEC superfluid of deuterons, of a BCS superfluid of nucleons, and in the crossover between these limits. The effect of the correlations on the liquid-gas phase transition is discussed. Our results show that nucleon-nucleon correlations beyond BCS play an important role for the properties of nuclear matter, especially in the low-density region.
Spin-dependent structure functions in nuclear matter and the polarized EMC effect.
Cloët, I C; Bentz, W; Thomas, A W
2005-07-29
An excellent description of both spin-independent and spin-dependent quark distributions and structure functions has been obtained with a modified Nambu--Jona-Lasinio model, which is free of unphysical thresholds for nucleon decay into quarks--hence incorporating an important aspect of confinement. We utilize this model to investigate nuclear medium modifications to structure functions and find that we are readily able to reproduce both nuclear matter saturation and the experimental F2N(A)/F2N ratio, that is, the European Muon Collaboration (EMC) effect. Applying this framework to determine g1p(A), we find that the ratio g1p(A)/g1p differs significantly from unity, with the quenching caused by the nuclear medium being about twice that of the spin-independent case. This represents an exciting result, which, if confirmed experimentally, will reveal much about the quark structure of nuclear matter.
Appearance of the single gyroid network phase in "nuclear pasta" matter
Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Schröder-Turk, G. E.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.
2015-02-01
Nuclear matter under the conditions of a supernova explosion unfolds into a rich variety of spatially structured phases, called nuclear pasta. We investigate the role of periodic networklike structures with negatively curved interfaces in nuclear pasta structures, by static and dynamic Hartree-Fock simulations in periodic lattices. As the most prominent result, we identify for the first time the single gyroid network structure of cubic chiral I 4123 symmetry, a well-known configuration in nanostructured soft-matter systems, both as a dynamical state and as a cooled static solution. Single gyroid structures form spontaneously in the course of the dynamical simulations. Most of them are isomeric states. The very small energy differences from the ground state indicate its relevance for structures in nuclear pasta.
Observing compact quark matter droplets in relativistic nuclear collisions
Paech, Kerstin; Lisa, M A; Dumitru, A; Stöcker, H; Greiner, W
2000-01-01
Compactness is introduced as a new method to search for the onset of the quark matter transition in relativistic heavy ion collisions. That transition supposedly leads to stronger compression and higher compactness of the source in coordinate space. That effect could be observed via pion interferometry. We propose to measure the compactness of the source in the appropriate principal axis frame of the compactness tensor in coordinate space.
Gu, Peili; Morgan, Daniel H; Sattar, Minawar; Xu, Xueping; Wagner, Ryan; Raviscioni, Michele; Lichtarge, Olivier; Cooney, Austin J
2005-09-01
Germ cell nuclear factor (GCNF) is an orphan nuclear receptor that plays important roles in development and reproduction, by repressing the expression of essential genes such as Oct4, GDF9, and BMP15, through binding to DR0 elements. Surprisingly, whereas recombinant GCNF binds to DR0 sequences as a homodimer, endogenous GCNF does not exist as a homodimer but rather as part of a large complex termed the transiently retinoid-induced factor (TRIF). Here, we use evolutionary trace (ET) analysis to design mutations and peptides that probe the molecular basis for the formation of this unusual complex. We find that GCNF homodimerization and TRIF complex formation are DNA-dependent, and ET suggests that dimerization involves key functional sites on both helix 3 and helix 11, which are located on opposing surfaces of the ligand binding domain. Targeted mutations in either helix of GCNF disrupt the formation of both the homodimer and the endogenous TRIF complex. Moreover, peptide mimetics of both of these ET-determined sites inhibit dimerization and TRIF complex formation. This suggests that a novel helix 3-helix 11 heterotypic interaction mediates GCNF interaction and would facilitate oligomerization. Indeed, it was determined that the endogenous TRIF complex is composed of a GCNF oligomer. These findings shed light on an evolutionarily selected mechanism that reveals the unusual DNA-binding, dimerization, and oligomerization properties of GCNF.
ERK5 and cell proliferation: nuclear localization is what matters
Nestor Gomez
2016-09-01
Full Text Available ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumour growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote
Functional renormalization group approach to neutron matter
Matthias Drews
2014-11-01
Full Text Available The chiral nucleon-meson model, previously applied to systems with equal number of neutrons and protons, is extended to asymmetric nuclear matter. Fluctuations are included in the framework of the functional renormalization group. The equation of state for pure neutron matter is studied and compared to recent advanced many-body calculations. The chiral condensate in neutron matter is computed as a function of baryon density. It is found that, once fluctuations are incorporated, the chiral restoration transition for pure neutron matter is shifted to high densities, much beyond three times the density of normal nuclear matter.
Nuclear-matter distributions of halo nuclei from elastic proton scattering in inverse kinematics
Egelhof, P.; Bauchet, A.; Fritz, S.; Geissel, H.; Gross, C.; Kraus, G.; Muenzenberg, G.; Neumaier, S.R.; Schaefer, T.; Scheidenberger, C. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Alkhazov, G.D.; Andronenko, M.N.; Gavrilov, G.E.; Khanzadeev, A.V.; Korolev, G.A.; Lobodenko, A.A.; Seliverstov, D.M.; Timofeev, N.A. [Petersburg Nuclear Physics Institute (PNPI), RU-188300 Gatchina (Russian Federation); Dobrovolsky, A.V. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Petersburg Nuclear Physics Institute (PNPI), RU-188300 Gatchina (Russian Federation); Mutterer, M. [Institut fuer Kernphysik (IKP), Technische Universitaet, D-64289 Darmstadt (Germany); Vorobyov, A.A.; Yatsoura, V.I.
2002-10-01
Proton-nucleus elastic scattering at intermediate energies, a well-established method for probing nuclear-matter density distributions of stable nuclei, was applied for the first time to exotic nuclei. This method is demonstrated to be an effective means for obtaining accurate and detailed information on the size and radial shape of halo nuclei. Absolute differential cross-sections for small-angle scattering were measured at energies near 700 MeV/u for the neutron-rich helium isotopes {sup 6}He and {sup 8}He, and more recently for the lithium isotopes {sup 6}Li, {sup 8}Li, {sup 9}Li and {sup 11}Li, using He and Li beams provided by the fragment separator FRS at GSI Darmstadt. Experiments were performed in inverse kinematics using the hydrogen-filled ionization chamber IKAR which served simultaneously as target and recoil-proton detector. For deducing nuclear-matter distributions, differential cross-sections calculated with the aid of the Glauber multiple-scattering theory, using various parametrizations for the nucleon density distributions as input, were fitted to the experimental cross-sections. The results on nuclear-matter radii and matter distributions are presented, and the significance of the data for a halo structure is discussed. Nuclear-matter distributions obtained for {sup 6}He and {sup 8}He conform with the concept that both nuclei compose of {alpha}-particle like cores and significant neutron halos. The matter distribution in {sup 11}Li exhibits, as expected from previous reaction cross-section studies with nuclear targets, the by far most extended halo component of all nuclei being investigated. In addition the present data allow a quantitative comparison of the structure of the He and Li isobars of either the mass number A=6 or A=8. The measured differential cross-sections have also been used for probing density distributions as predicted from various microscopic calculations. A few examples are presented. (orig.)
Nuclear matter properties from local chiral interactions with Δ isobar intermediate states
Logoteta, Domenico; Bombaci, Ignazio; Kievsky, Alejandro
2016-12-01
Using two-nucleon and three-nucleon interactions derived in the framework of chiral perturbation theory (ChPT) with and without the explicit Δ isobar contributions, we calculate the energy per particle of symmetric nuclear matter and pure neutron matter in the framework of the microscopic Brueckner-Hartree-Fock approach. In particular, we present for the first time nuclear matter calculations using the new fully local in coordinate-space two-nucleon interaction at the next-to-next-to-next-to-leading-order (N3LO) of ChPT with Δ isobar intermediate states (N 3 LO Δ ) recently developed by Piarulli et al. [arXiv:1606.06335]. We find that using this N 3 LO Δ potential, supplemented with a local N2LO three-nucleon interaction with explicit Δ isobar degrees of freedom, it is possible to obtain a satisfactory saturation point of symmetric nuclear matter. For this combination of two- and three-nucleon interactions we also calculate the nuclear symmetry energy and we compare our results with the empirical constraints on this quantity obtained using the excitation energies to isobaric analog states in nuclei and using experimental data on the neutron skin thickness of heavy nuclei, finding a very good agreement in all the considered nucleonic density range. In addition, we find that the explicit inclusion of Δ isobars diminishes the strength of the three-nucleon interactions needed to get a good saturation point of symmetric nuclear matter. We also compare the results of our calculations with those obtained by other research groups using chiral nuclear interactions with different many-body methods, finding in many cases a very satisfactory agreement.
Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter
Sorensen, P; Dahl, C E
2011-02-14
We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al.. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well-described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.
The optical model potential of the $\\Sigma$ hyperon in nuclear matter
Dabrowski, J; Rozynek, J.
2009-01-01
We present our attempts to determine the optical model potential $U_\\Sigma = V_\\Sigma -iW_\\Sigma$ of the $\\Sigma$ hyperon in nuclear matter. We analyze the following sources of information on $U_\\Sigma$: $\\Sigma N$ scattering, $\\Sigma^-$ atoms, and final state interaction of $\\Sigma$ hyperons in the $(\\pi,K^+)$ and $(K^-.\\pi)$ reactions on nuclear targets. We conclude that $V_\\Sigma$ is repulsive inside the nucleus and has a shallow a tractive pocket at the nuclear surface. These features of ...
QCD evolution equations for high energy partons in nuclear matter
Kinder-Geiger, Klaus; Geiger, Klaus; Mueller, Berndt
1994-01-01
We derive a generalized form of Altarelli-Parisi equations to decribe the time evolution of parton distributions in a nuclear medium. In the framework of the leading logarithmic approximation, we obtain a set of coupled integro- differential equations for the parton distribution functions and equations for the virtuality (``age'') distribution of partons. In addition to parton branching processes, we take into account fusion and scattering processes that are specific to QCD in medium. Detailed balance between gain and loss terms in the resulting evolution equations correctly accounts for both real and virtual contributions which yields a natural cancellation of infrared divergences.
Asymmetric radiation of seismic waves from an atoll: nuclear tests in French Polynesia
Weber, Michael; Wicks, Charles W.; Krüger, Frank; Jahnke, Gunnar; Schlittenhardt, Jörg
1998-01-01
Seismic records of nuclear tests detonated in the Mururoa Atoll in French Polynesia show large unpredicted arrivals 2.2 and 4.5 seconds (X1 and X2) after the P-wave at the Australian Warramunga Array. These arrivals are not observed at the Canadian Yellowknife Array. X1 and X2 are also absent on Warramunga Array recordings of tests carried out at the Fangataufa Atoll situated 40 km SSE of Mururoa. Array analysis shows that X1 and X2 are produced within the source area. The layered crustal structure of the atoll, significant local inhomogeneities, and focusing effects due to the elongated shape and the steep flanks of the Mururoa Atoll are most likely responsible for X1 and X2. The form of Mururoa (28 × 10 km) and its East-West orientation is due to its location on the Austral Fracture Zone (AFZ). The Fangataufa Atoll on the other hand is almost circular (10 km diameter) and is unaffected by the dynamics along the AFZ. Our observations demonstrate that complicated structures in the source area can significantly alter the wave field at teleseismic distances and produce a large magnitude (mb) bias. A better understanding of the exact cause of these unusual seismic observations will only become possible, if the coordinates of the tests and information on the detailed 3-D structure of the atolls are released.
Gourier, Didier; Delpoux, Olivier; Binet, Laurent; Vezin, Hervé
2013-10-01
The search for organic biosignatures is motivated by the hope of understanding the conditions of emergence of life on Earth and the perspective of finding traces of extinct life in martian sediments. Paramagnetic radicals, which exist naturally in amorphous carbonaceous matter fossilized in Precambrian cherts, were used as local structural probes and studied by electron paramagnetic resonance (EPR) spectroscopy. The nuclear magnetic resonance transitions of elements inside and around these radicals were detected by monitoring the nuclear modulations of electron spin echo in pulsed EPR. We found that the carbonaceous matter of fossilized microorganisms with age up to 3.5 billion years gives specific nuclear magnetic signatures of hydrogen (¹H), carbon (¹³C), and phosphorus (³¹P) nuclei. We observed that these potential biosignatures of extinct life are found neither in the carbonaceous matter of carbonaceous meteorites (4.56 billion years), the most ancient objects of the Solar System, nor in any carbonaceous matter resulting from carbonization of organic and bioorganic precursors. These results indicate that these nuclear signatures are sensitive to thermal episodes and can be used for Archean cherts with metamorphism not higher than the greenschist facies.
Nuclear matter properties from local chiral interactions with $\\Delta$ isobar intermediate states
Logoteta, Domenico; Kievsky, Alejandro
2016-01-01
Using two-nucleon and three-nucleon interactions derived in the framework of chiral perturbation theory (ChPT) with and without the explicit $\\Delta$ isobar contributions, we calculate the energy per particle of symmetric nuclear matter and pure neutron matter in the framework of the microscopic Brueckner-Hartree-Fock approach. In particular, we present for the first time nuclear matter calculations using the new fully local in coordinate-space two-nucleon interaction at the next-to-next-to-next-to-leading-order (N3LO) of ChPT with $\\Delta$ isobar intermediate states (N3LO$\\Delta$) recently developed by Piarulli et al. [arXiv:1606:06335]. We find that using this N3LO$\\Delta$ potential, supplemented with a local N2LO three-nucleon interaction with explicit $\\Delta$ isobar degrees of freedom, it is possible to obtain a satisfactory saturation point of symmetric nuclear matter. For this combination of two- and three-nucleon interactions we also calculate the nuclear symmetry energy and we compare our results wit...
Cold Nuclear Matter Effects on Open and Hidden Heavy Flavor Production at the LHC
Vogt, R
2015-01-01
We discuss a number of cold nuclear matter effects that can modify open heavy flavor and quarkonium production in proton-nucleus collisions and could thus also affect their production in nucleus-nucleus collisions, in addition to hot quark-gluon plasma production. We show some results for $p+$Pb collisions at sqrt s = 5 TeV at the LHC.
Heavy-quark expansion for D and B mesons in nuclear matter
Buchheim, Thomas; Kampfer, Burkhard
2014-01-01
The planned experiments at FAIR enable the study of medium modifications of $D$ and $B$ mesons in (dense) nuclear matter. Evaluating QCD sum rules as a theoretical prerequisite for such investigations encounters heavy-light four-quark condensates. We utilize an extended heavy-quark expansion to cope with the condensation of heavy quarks.
Heavy-quark expansion for D and B mesons in nuclear matter
Buchheim Thomas
2014-01-01
Full Text Available The planned experiments at FAIR enable the study of medium modifications of D and B mesons in (dense nuclear matter. Evaluating QCD sum rules as a theoretical prerequisite for such investigations encounters heavy-light four-quark condensates. We utilize an extended heavy-quark expansion to cope with the condensation of heavy quarks.
The nuclear symmetry energy and stability of matter in neutron star
Kubis, S
2006-01-01
It is shown that behavior of the nuclear symmetry energy is the key quantity in the stability consideration in neutron star matter. The symmetry energy controls the position of crust-core transition and also may lead to new effects in the inner core of neutron star.
von Schmid, M.; Bagchi, S.; Bonig, S.; Csatlos, M.; Dillmann, I.; Dimopoulou, C.; Egelhof, P.; Eremin, V.; Furuno, T.; Geissel, H.; Gernhaeuser, R.; Harakeh, M. N.; Hartig, A-L; Ilieva, S.; Kalantar-Nayestanaki, N.; Kiselev, O.; Kollmus, H.; Kozhuharov, C.; Krasznahorkay, A.; Kroell, T.; Kuilman, M.; Litvinov, S.; Litvinov, Yu A.; Mahjour-Shafiei, M.; Mutterer, M.; Nagae, D.; Najafi, M. A.; Nociforo, C.; Nolden, F.; Popp, U.; Rigollet, C.; Roy, S.; Scheidenberger, C.; Steck, M.; Streicher, B.; Stuhl, L.; Thuerauf, M.; Uesaka, T.; Weick, H.; Winfield, J. S.; Winters, D.; Woods, P. J.; Yamaguchi, T.; Yue, K.; Zamora, J. C.; Zenihiro, J.
2015-01-01
We have measured the nuclear-matter distribution of the doubly-magic N = Z nucleus Ni-56 by investigating elastic proton scattering in inverse kinematics. The radioactive beam of Ni-56 was injected and stored in the experimental storage ring (ESR, GSI) and interacted with an internal hydrogen gas-je
Intrinsic neutron background of nuclear emulsions for directional Dark Matter searches
Aleksandrov, A; Buonaura, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; Di Crescenzo, A; Di Marco, N; Di Vacri, M L; Furuya, S; Galati, G; Gentile, V; Katsuragawa, T; Laubenstein, M; Lauria, A; Loverre, P F; Machii, S; Monacelli, P; Montesi, M C; Naka, T; Pupilli, F; Rosa, G; Sato, O; Tioukov, V; Umemoto, A; Yoshimoto, M
2015-01-01
Recent developments of the nuclear emulsion technology led to the production of films with nanometric silver halide grains suitable to track low energy nuclear recoils with submicrometric length. This improvement opens the way to a directional Dark Matter detection, thus providing an innovative and complementary approach to the on-going WIMP searches. An important background source for these searches is represented by neutron-induced nuclear recoils that can mimic the WIMP signal. In this paper we provide an estimation of the contribution to this background from the intrinsic radioactive contamination of nuclear emulsions. We also report the induced background as a function of the read-out threshold, by using a GEANT4 simulation of the nuclear emulsion, showing that it amounts to about 0.02 neutrons per year per kilogram, fully compatible with the design of a 10 kg$\\times$year exposure.
A further update on possible crises in nuclear-matter theory
Dickhoff, W H
2015-01-01
The ancient problem of the saturation of symmetric nuclear matter is reviewed with an update on the status of the crises that were identified at an early stage by John Clark. We discuss how the initial problem with variational calculations providing more binding than the two hole-line contribution for the same interaction was overcome by calculations including three hole-line contributions without however reproducing the empirical nuclear saturation properties. It is argued that this remaining problem is still open because many solutions have been proposed or ad hoc adjustments implemented without generating universal agreement on the proper interpretation of the physics. The problem of nuclear saturation therefore persists leading to the necessity of an analysis of the way the nuclear saturation properties are obtained from experimental data. We clarify the role of short-range correlations and review results for nuclear saturation when such ingredients are completely taken into account using the Green's func...
Intrinsic neutron background of nuclear emulsions for directional Dark Matter searches
Alexandrov, A.; Asada, T.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Di Vacri, M. L.; Furuya, S.; Galati, G.; Gentile, V.; Katsuragawa, T.; Laubenstein, M.; Lauria, A.; Loverre, P. F.; Machii, S.; Monacelli, P.; Montesi, M. C.; Naka, T.; Pupilli, F.; Rosa, G.; Sato, O.; Strolin, P.; Tioukov, V.; Umemoto, A.; Yoshimoto, M.
2016-07-01
Recent developments of the nuclear emulsion technology led to the production of films with nanometric silver halide grains suitable to track low energy nuclear recoils with submicrometric length. This improvement opens the way to a directional Dark Matter detection, thus providing an innovative and complementary approach to the on-going WIMP searches. An important background source for these searches is represented by neutron-induced nuclear recoils that can mimic the WIMP signal. In this paper we provide an estimation of the contribution to this background from the intrinsic radioactive contamination of nuclear emulsions. We also report the neutron-induced background as a function of the read-out threshold, by using a GEANT4 simulation of the nuclear emulsion, showing that it amounts to about 0.06 per year per kilogram, fully compatible with the design of a 10 kg × year exposure.
Study of Cold Nuclear Matter Effects on Heavy Quarkonia in Proton-Lead Collisions at LHCb
Jing, Fanfan; Yang, Zhenwei; Schmidt, Burkhard
Proton-nucleus ($p\\rm{A}$) collisions play an important role in high energy nuclear physics as they allow to study nuclear matter effects and the parton distribution functions in the nuclear environment (nPDF). The quantum chromodynamics (QCD) phase transition from hadron gas to the the quark-gluon plasma (QGP) is not expected to occur in a $p\\rm{A}$ collision due to its limited space-time size. Therefore, the $p\\rm{A}$ collisions provide an ideal platform to study cold nuclear matter (CNM) effects, which are also known as normal nuclear matter effects. The measurements of the productions and correlations of the final-state particles in $p\\rm{A}$ collisions serve the purpose to test various theoretical models for CNM effects, to constrain the benchmarking nPDFs, and thus provide a baseline to understand and interpret the QGP created in ultra-relativistic heavy-ion collisions. Heavy quarkonia (including charmonia and bottomonia), which are produced at the early stage of heavy-ion collisions, are considered goo...
Onset of nuclear matter expansion in Au+Au collisions
Crochet, Philippe; Gobbi, A; Donà, R; Coffin, J P; Fintz, P; Guillaume, G; Jundt, F; Kühn, C E; Roy, C; De Schauenburg, B; Tizniti, L; Wagner, P; Alard, J P; Amouroux, V; Andronic, A; Basrak, Z; Bastid, N; Belyaev, I; Best, D; Biegansky, J; Butà, A; Caplar, R; Cindro, N; Dupieux, P; Dzelalija, M; Fan, Z G; Fodor, Z; Fraysse, L; Freifelder, R P; Herrmann, N; Hildenbrand, K D; Hong, B H; Jeong, S C; Kecskeméti, J; Kirejczyk, M; Koncz, P; Korolija, M; Kotte, R; Lebedev, A; Leifels, Y; Man'ko, V I; Moisa, D; Mösner, J; Neubert, W; Pelte, D; Petrovici, M; Pinkenburg, C H; Pras, P; Ramillien, V; Reisdorf, W; Ritman, J L; Sadchikov, A G; Schüll, D; Seres, Z; Sikora, B; Simion, V; Siwek-Wilczynska, K; Sodan, U; Teh, K M; Trzaska, M; Vasilev, M A; Wang, G S; Wessels, J P; Wienold, T; Wisniewski, K; Wohlfarth, D; Zhilin, A V
1997-01-01
Using the FOPI detector at GSI Darmstadt, excitation functions of collective flow components were measured for the Au+Au system, in the reaction plane and out of this plane, at seven incident energies ranging from 100AMeV to 800AMeV. The threshold energies, corresponding to the onset of sideward-flow (balance energy) and squeeze-out effect (transition energy), are extracted from extrapolations of these excitation functions toward lower beam energies for charged products with Z>2. The transition energy is found to be larger than the balance energy. The impact parameter dependence of both balance and transition energies, when extrapolated to central collisions, suggests comparable although slightly higher values than the threshold energy for the radial flow. The relevant parameter seems to be the energy deposited into the system in order to overcome the attractive nuclear forces.
Onset of nuclear matter expansion in Au+Au collisions
Crochet, P.; Rami, F.; Gobbi, A.; Dona, R.; Coffin, J. P.; Fintz, P.; Guillaume, G.; Jundt, F.; Kuhn, C.; Roy, C.; de Schauenburg, B.; Tizniti, L.; Wagner, P.; Alard, J. P.; Amouroux, V.; Andronic, A.; Basrak, Z.; Bastid, N.; Belyaev, I.; Best, D.; Biegansky, J.; Buta, A.; Čaplar, R.; Cindro, N.; Dupieux, P.; Dželalija, M.; Fan, Z. G.; Fodor, Z.; Fraysse, L.; Freifelder, R. P.; Berrmann, N.; Hildenbrand, K. D.; Hong, B.; Jeong, S. C.; Kecskemeti, J.; Kirejczyk, M.; Koncz, P.; Korolija, M.; Kotte, R.; Lebedev, A.; Leifels, Y.; Manko, V.; Moisa, D.; Mösner, J.; Neubert, W.; Pelte, D.; Petrovici, M.; Pinkenburg, C.; Pras, P.; Ramillien, V.; Reisdorf, W.; Ritman, J. L.; Sadchikov, A. G.; Schüll, D.; Seres, Z.; Sikora, B.; Simion, V.; Siwek-Wilczyńska, K.; Sodan, U.; Teh, K. M.; Trzaska, M.; Vasiliev, M.; Wang, G. S.; Wessels, J. P.; Wienold, T.; Wisniewski, K.; Wohlfarth, D.; Zhilin, A.; FOPI Collaboration
1997-02-01
Using the FOPI detector at GSI Darmstadt, excitation functions of collective flow components were measured for the Au+Au system, in the reaction plane and out of this plane, at seven incident energies ranging from 100 A MeV to 800 A MeV. The threshold energies, corresponding to the onset of sideward-flow (balance energy) and squeeze-out effect (transition energy), are extracted from extrapolations of these excitation functions toward lower beam energies for charged products with Z ⩾ 2. The transition energy is found to be larger than the balance energy. The impact parameter dependence of both balance and transition energies, when extrapolated to central collisions, suggests comparable although slightly higher values than the threshold energy for the radial flow. The relevant parameter seems to be the energy deposited into the system in order to overcome the attractive nuclear forces.
Cold Nuclear Matter Effects on J/psi Production: Intrinsic and Extrinsic Transverse Momentum Effects
Ferreiro, E.G.; /Santiago de Compostela U.; Fleuret, F.; /Ecole Polytechnique; Lansberg, J.P.; /Heidelberg U.; Rakotozafindrabe, A.; /SPhN, DAPNIA, Saclay
2010-08-26
Cold nuclear matter effects on J/{psi} production in proton-nucleus and nucleus-nucleus collisions are evaluated taking into account the specific J/{psi}-production kinematics at the partonic level, the shadowing of the initial parton distributions and the absorption in the nuclear matter. We consider two different parton processes for the c{bar c}-pair production: one with collinear gluons and a recoiling gluon in the final state and the other with initial gluons carrying intrinsic transverse momentum. Our results are compared to RHIC observables. The smaller values of the nuclear modification factor R{sub AA} in the forward rapidity region (with respect to the mid rapidity region) are partially explained, therefore potentially reducing the need for recombination effects.
Calculation of nuclear matter in the presence of strong magnetic field using LOCV technique
Bordbar, G H
2015-01-01
In the present work, we are interested in the properties of nuclear matter at zero temperature in the presence of strong magnetic fields using the lowest order constraint variational (LOCV) method employing $AV_{18}$ nuclear potential. Our results indicate that in the absence of a magnetic field, the energy per particle is a symmetric function of the spin polarization parameter. This shows that for the nuclear matter, the spontaneous phase transition to a ferromagnetic state does not occur. However, we have found that for the magnetic fields $ B\\gtrsim 10 ^ {18}\\ G$, the symmetry of energy is broken and the energy has a minimum at a positive value of the spin polarization parameter. We have also found that the effect of magnetic field on the value of energy is more significant at the low densities. Our calculations show that at lower densities, the spin polarization parameter is more sensitive to the magnetic field.
Deformation of Lattice in a Solid Nuclear Matter
Takahashi, K.
1994-02-01
The effect of the deformation of lattice in the three dimensional (3D) ALS (i.e., alternating layer spin) solid of neutron matter is investigated, taking the elastic-, spin- and isospin-wave excitations into account in the model with Pandharipande-Smith (PS)'s potential and non-vanishing classical pion field. The q-number part of pion-field is replaced by the effective one-pion-exchange potential (OPEP). The tetragonal structure of lattice is presumed. Solutions of the equation of motion (EOM) for the ground state are sought by the variational method for two cases in which c-number part of π--field is non-vanishing and is supposed to be propagating either (i) perpendicularly to or (ii) within layers of 3D ALS solid. The phonon and magnon sectors of Hamiltonian are diagonalized for case (i) and the phonon sector for case (ii). The criterion of the stability is the absence of imaginary part in the dispersion relations of phonon and of magnon. In both cases, tetragonal lattices have energies about 40 MeV/nucleon lower than the simple cubic (sc) lattices in the density region of [0.35 fm-3, 0.75 fm-3]. In (i), the zero-point energy of magnon is a few percent of phonon. Both in (i) and (ii), the charged pion condensations are negligible.
Specific Heat of Matter Formed in Relativistic Nuclear Collisions
Basu, Sumit; Chatterjee, Rupa; Nayak, Tapan K; Nandi, Basanta K
2016-01-01
We report the excitation energy dependence of specific heat (\\cv) of hadronic matter at freeze-out in Au+Au and Cu+Cu collisions at the Relativistic Heavy Ion Collider energies by analyzing the published data on event-by-event mean transverse momentum (\\meanpt) distributions. The \\meanpt~distributions in finite \\pt~ranges are converted to distributions of effective temperatures, and dynamical fluctuations in temperature are extracted by subtracting widths of the corresponding mixed event distributions. The heat capacity per particle at the kinetic freezeout surface is presented as a function of collision energy, which shows a sharp rise in \\cv~below \\sNN~=~62.4~GeV. We employ the Hadron Resonance Gas (HRG) model to estimate \\cv~at the chemical and kinetic freezeout surfaces. The experimental results are compared to the HRG and other theoretical model calculations. HRG results show good agreement with data. Model predictions for \\cv~at the Large Hadron Collider energy are presented.
A further update on possible crises in nuclear-matter theory
Dickhoff, W. H.
2016-03-01
The ancient problem of the saturation of symmetric nuclear matter is reviewed with an update on the status of the crises that were identified at an early stage by John Clark. We discuss how the initial problem with variational calculations providing more binding than the two hole-line contribution for the same interaction was overcome by calculations including three hole-line contributions without however reproducing the empirical nuclear saturation properties. It is argued that this remaining problem is still open because many solutions have been proposed or ad hoc adjustments implemented without generating universal agreement on the proper interpretation of the physics. The problem of nuclear saturation therefore persists leading to the necessity of an analysis of the way the nuclear saturation properties are obtained from experimental data. We clarify the role of short-range correlations and review results for nuclear saturation when such ingredients are completely taken into account using the Green’s function method. The role of long-range correlations is then analyzed with special emphasis on the importance of attractive pion-dominated excitation modes which inevitably lead to higher saturation densities than observed. Because such modes have no counterpart in finite nuclear systems, it is therefore argued that they should not be considered when calculating nuclear matter properties. The remaining open question is then whether long-range correlations in finite nuclei which in turn have no counterpart in infinite matter, represent the remaining missing ingredient in this analysis. We also briefly comment on the role of three-body interactions in the context of the dispersive optical model description of experimental data. It is further noted that interactions based on chiral perturbation theory at present do not generate a sufficient number of high-momentum nucleons leading to radii that are too small and substantial overbinding in finite nuclei.
Maria Takacs
Full Text Available BACKGROUND: PGC-1α is a crucial regulator of cellular metabolism and energy homeostasis that functionally acts together with the estrogen-related receptors (ERRα and ERRγ in the regulation of mitochondrial and metabolic gene networks. Dimerization of the ERRs is a pre-requisite for interactions with PGC-1α and other coactivators, eventually leading to transactivation. It was suggested recently (Devarakonda et al that PGC-1α binds in a strikingly different manner to ERRγ ligand-binding domains (LBDs compared to its mode of binding to ERRα and other nuclear receptors (NRs, where it interacts directly with the two ERRγ homodimer subunits. METHODS/PRINCIPAL FINDINGS: Here, we show that PGC-1α receptor interacting domain (RID binds in an almost identical manner to ERRα and ERRγ homodimers. Microscale thermophoresis demonstrated that the interactions between PGC-1α RID and ERR LBDs involve a single receptor subunit through high-affinity, ERR-specific L3 and low-affinity L2 interactions. NMR studies further defined the limits of PGC-1α RID that interacts with ERRs. Consistent with these findings, the solution structures of PGC-1α/ERRα LBDs and PGC-1α/ERRγ LBDs complexes share an identical architecture with an asymmetric binding of PGC-1α to homodimeric ERR. CONCLUSIONS/SIGNIFICANCE: These studies provide the molecular determinants for the specificity of interactions between PGC-1α and the ERRs, whereby negative cooperativity prevails in the binding of the coactivators to these receptors. Our work indicates that allosteric regulation may be a general mechanism controlling the binding of the coactivators to homodimers.
2010-12-01
... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Toshiba America Nuclear Energy Corporation and All Other Persons Who Seek or... U.S. Nuclear Regulatory Commission (the Commission or NRC) published a rulemaking in the...
2010-06-23
... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Babcock & Wilcox Nuclear Operations Group, Inc., Lynchburg, VA; Order Imposing Civil Monetary Penalty I Babcock & Wilcox Nuclear Operations Group, Inc., (Licensee) is the holder...
2013-07-10
...; EA-13-010] In the Matter of Duke Energy Carolinas, LLC; (Oconee Nuclear Station, Units 1, 2, and 3... Energy Carolinas, LLC, Oconee Nuclear Station, 7800 Rochester Highway, Seneca, SC 29672. Filing is... From the Federal Register Online via the Government Publishing Office NUCLEAR...
2011-03-02
... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear... relating to pending appeal filed by the Nuclear Regulatory Commission staff in this case. Mr. Dehmel...
2012-02-24
... License] In the Matter of Exelon Corporation; Constellation Energy Group, Inc.; R.E. Ginna Nuclear Power Plant, LLC; R.E. Ginna Nuclear Power Plant; R.E. Ginna Independent Spent Fuel Storage Installation.... Ginna Nuclear Power Plant, LLC (R.E. Ginna LLC, or the licensee), is the holder of Renewed...
Density of Saturated Nuclear Matter at Large $N_{c}$ and Heavy Quark Mass Limits
Adhikari, Prabal; Datta, Ishaun
2013-01-01
We exhibit the existence of stable, saturated nuclear matter in the large $N_{c}$ and heavy quark mass limits of QCD. In this limit, baryons (with the same spin flavor structure) interact at leading order in $N_{c}$ via a repulsive interaction due to the Pauli exclusion principle and at subleading order in $1/N_c$ via the exchange of glueballs. Assuming that the lightest glueball is a scalar, which implies that the subleading baryon interaction is attractive, we find that nuclear matter saturates since the subleading attractive interaction is longer ranged than the leading order repulsive one. We find that the saturated matter is in the form of a crystal with either a face-centered cubic or a hexagonal-close-packed symmetry with baryon densities of $\\mathcal{O}((\\, \\tilde{\\alpha}_{s} m_q (\\ln (N_{c}m_{q}\\Lambda_{\\textrm{QCD}}^{-1}))^{-1})^3 )$. Remarkably, the leading order expression for the density of saturated nuclear matter is independent of the lighest glueball mass and scalar-glueball-baryon coupling in...
Nuclear matter saturation with chiral three-nucleon interactions fitted to light nuclei properties
Logoteta, Domenico; Bombaci, Ignazio; Kievsky, Alejandro
2016-07-01
The energy per particle of symmetric nuclear matter and pure neutron matter is calculated using the many-body Brueckner-Hartree-Fock approach and employing the Chiral Next-to-next-to-next-to leading order (N3LO) nucleon-nucleon (NN) potential, supplemented with various parametrizations of the Chiral Next-to-next-to leading order (N2LO) three-nucleon interaction. Such combination is able to reproduce several observables of the physics of light nuclei for suitable choices of the parameters entering in the three-nucleon interaction. We find that some of these parametrizations provide a satisfactory saturation point of symmetric nuclear matter and values of the symmetry energy and its slope parameter L in very good agreement with those extracted from various nuclear experimental data. Thus, our results represent a significant step toward a unified description of few- and many-body nuclear systems starting from two- and three-nucleon interactions based on the symmetries of QCD.
Nuclear matter saturation with chiral three-nucleon interactions fitted to light nuclei properties
Logoteta, Domenico [INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Bombaci, Ignazio, E-mail: ignazio.bombaci@unipi.it [Dipartimento di Fisica, Universitá di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); European Gravitational Observatory, Via E. Amaldi, I-56021 S. Stefano a Macerata, Cascina (Italy); Kievsky, Alejandro [INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy)
2016-07-10
The energy per particle of symmetric nuclear matter and pure neutron matter is calculated using the many-body Brueckner–Hartree–Fock approach and employing the Chiral Next-to-next-to-next-to leading order (N3LO) nucleon–nucleon (NN) potential, supplemented with various parametrizations of the Chiral Next-to-next-to leading order (N2LO) three-nucleon interaction. Such combination is able to reproduce several observables of the physics of light nuclei for suitable choices of the parameters entering in the three-nucleon interaction. We find that some of these parametrizations provide a satisfactory saturation point of symmetric nuclear matter and values of the symmetry energy and its slope parameter L in very good agreement with those extracted from various nuclear experimental data. Thus, our results represent a significant step toward a unified description of few- and many-body nuclear systems starting from two- and three-nucleon interactions based on the symmetries of QCD.
The Imaginary Part of Nucleon Self-energy in hot nuclear matter
Alvarez-Ruso, L; Oset, E
1996-01-01
A semiphenomenological approach to the nucleon self-energy in nuclear matter at finite temperatures is followed. It combines elements of Thermo Field Dynamics for the treatment of finite temperature with a model for the self-energy, which evaluates the second order diagrams taking the needed dynamics of the NN interaction from experiment. The approach proved to be accurate at zero temperature to reproduce Im(Sigma) and other properties of nucleons in matter. In the present case we apply it to determine Im(Sigma) at finite temperatures. An effective NN cross section is deduced which can be easily used in analyses of heavy ion reactions.
Lee, Sang Tak; Yang, Boram; Kim, Jin-Yong; Park, Ji-Hyung; Moon, Myeong Hee
2015-08-28
This study demonstrated that asymmetrical flow field-flow fractionation (AF4) coupled with on-line UV and fluorescence detection (FLD) and off-line excitation-emission matrix (EEM) fluorescence spectroscopy can be employed to analyze the influence of microbial metabolic activity on the consumption and production of freshwater organic matter. With the AF4 system, organic matter is on-line enriched during a focusing/relaxation period, which is an essential process prior to separation. Size-fractionated chromophoric and fluorophoric organic materials were simultaneously monitored during the 30-min AF4 separation process. Two fractions of different sizes (dissolved organic matter (DOM) and particulate organic matter (POM)) of freshwater samples from three locations (up-, mid-, and downstream) along the Han River basin of Korea were incubated with the same inoculum for 14 days to analyze fraction-specific alterations in optical properties using AF4-UV-FLD. A comparison of AF4 fractograms obtained from pre- and post-incubation samples revealed that POM-derived DOM were more susceptible to microbial metabolic activity than was DOM. Preferential microbial consumption of protein-like DOM components concurred with enhanced peaks of chromophoric and humic-like fluorescent components, presumably formed as by-products of microbial processing. AF4-UV-FLD combined with off-line identification of microbially processed components using EEM fluorescence spectroscopy provides a powerful tool to study the relationship between microbial activity and composition as well as biodegradability of DOM and POM-derived DOM from different origins, especially for the analysis of chromophoric and fluorophoric organic matter that are consumed and produced by microbial metabolic activity. The proposed AF4 system can be applied to organic matter in freshwater samples having low concentration range (0.3-2.5ppm of total organic carbon) without a pre-concentration procedure.
Magnetic Moments of Octet Baryons in Hot and Dense Nuclear Matter
Singh, Harpreet; Dahiya, Harleen
2016-01-01
We have calculated the in-medium magnetic moments of octet baryons in the presence of hot and dense symmetric nuclear matter. Effective magnetic moments of baryons have been derived from medium modified quark masses within chiral SU(3) quark mean field model.Further, for better insight of medium modification of baryonic magnetic moments, we have considered the explicit contributions from the valence as well as sea quark effects. These effects have been successful in giving the description of baryonic magnetic moments in vacuum. The magnetic moments of baryons are found to vary significantly as a function of density of nuclear medium.
Nuclear Matter with Quark-Meson Coupling; 1, Comparison of Nontopological Soliton Models
Barnea, N; Barnea, Nir; Walhout, Timothy S.
1999-01-01
A system of nontopological solitons interacting through scalar and vector meson exchange is used to model nuclear matter. The models studied are of the Friedberg-Lee type, which exhibit dynamical bag formation due to the coupling of quarks to a scalar composite gluon field. It is shown that the chiral chromodielectric model gives the best fit to the empirical data. The presence of the scalar meson guarantees saturation and an increase of the proton charge radius with nuclear density consistent with the EMC effect.
Natural orbitals representation and Fermi sea depletion in finite nuclei and nuclear matter
Psonis, V P; Massen, S E
2013-01-01
The natural orbitals and natural occupation numbers of various N = Z, sp and sd shell nuclei are calculated by applying a correlated one-body density matrix. The correlated density matrix has been evaluated by considering central correlations of Jastrow type and an approximation named factor cluster expansion. The correlation effects on the natural orbitals, natural occupation numbers and the Fermi sea depletion are discussed and analysed. In addition, an approximate expression for the correlated one-body density matrix of the nuclear matter has been used for the evaluation of the relative momentum distribution and the Fermi sea depletion. We found that the value of the Fermi sea depletion is higher in closed shell nuclei compared to open shell ones and it is lower compared to the case of nuclear matter. This statement could be confirmed by relevant experimental studies.
Kondo effect of D\\xAFs and D\\xAFs* mesons in nuclear matter
Yasui, Shigehiro; Sudoh, Kazutaka
2017-03-01
We study the Kondo effect for D¯s and D¯s* mesons as impurity particles in nuclear matter. The spin-exchange interaction between the D¯s or D¯s* meson and the nucleon induces the enhancement of the effective coupling in the low-energy scattering in the infrared region, whose energy scale of singularity is given by the Kondo scale. We investigate the Kondo scale in the renormalization group equation at nucleon one-loop level. We furthermore study the ground state with the Kondo effect in the mean-field approach, and present that the Kondo scale is related to the mixing strength between the D¯s or D¯s* meson and the nucleon in nuclear matter. We show the spectral function of the impurity when the Kondo effect occurs.
Zinyuk, Victoria [Universitaet Heidelberg, Heidelberg (Germany); Collaboration: FOPI-Collaboration
2014-07-01
In compressed baryonic matter the properties of hadrons are believed to alter as a result of various non-trivial in -medium effects such as the partial restoration of the spontaneously broken chiral symmetry, the modified baryon-meson couplings and the nuclear potential. Possible modification of properties like mass, width and dispersion relation can be experimentally observed for strange particles produced sub- or close-to-production threshold energies. The FOPI detector at SIS18 provides a possibility to investigate the production and propagation of charged and neutral strange particles in a wide range of phase space. This presentation gives an overview of FOPI's recent results on collective behavior and modification of phase space distribution for strange mesons at densities up to 2-3 ρ{sub 0}, investigated in heavy-ion collisions, and at normal nuclear matter density as observed in pion-induced reactions.
Three-body Effect on Equation of State of Spin-polarized Nuclear Matter
ZuoWei
2003-01-01
The equation of state (EOS) of spin-polarized nuclear matter has been investigated within the spin-dependent; Brueckner-Hartree-Fock framework by adopting the realistic nucleon-nucleon interaction supplemented with a microscopic three-body force. The three-body force effects have been studied and stressed with a special attention. The calculated results are given in Fig.1. It is seen that; in the Brueckner-Hartree-Fock framework the predicted energy per particle of spin-polarized nuclear matter versus the neutron and proton spin-polarization parameters fulfills a quadratic law in the whole range of spin-polarization. The related physical quantities such as spin the Landau parameters Go in spin channel and G′0 in spin-isospin channel, have been also calculated.
NDM06: 2. symposium on neutrinos and dark matter in nuclear physics
Akerib, D.; Arnold, R.; Balantekin, A.; Barabash, A.; Barnabe, H.; Baroni, S.; Baussan, E.; Bellini, F.; Bobisut, F.; Bongrand, M.; Brofferio, Ch.; Capolupo, A.; Carrara Enrico; Caurier, E.; Cermak, P.; Chardin, G.; Civitarese, O.; Couchot, F.; Kerret, H. de; Heros, C. de los; Detwiler, J.; Dracos, M.; Drexlin, G.; Efremenko, Y.; Ejiri, H.; Falchini, E.; Fatemi-Ghomi, N.; Finger, M.Ch.; Finger Miroslav, Ch.; Fiorillo, G.; Fiorini, E.; Fracasso, S.; Frekers, D.; Fushimi, K.I.; Gascon, J.; Genest, M.H.; Georgadze, A.; Giuliani, A.; Goeger-Neff, M.; Gomez-Cadenas, J.J.; Greenfield, M.; H de Jesus, J.; Hallin, A.; Hannestad, St.; Hirai, Sh.; Hoessl, J.; Ianni, A.; Ieva, M.B.; Ishihara, N.; Jullian, S.; Kaim, S.; Kajino, T.; Kayser, B.; Kochetov, O.; Kopylov, A.; Kortelainen, M.; Kroeninger, K.; Lachenmaier, T.; Lalanne, D.; Lanfranchi, J.C.; Lazauskas, R.; Lemrani, A.R.; Li, J.; Mansoulie, B.; Marquet, Ch.; Martinez, J.; Mirizzi, A.; Morfin Jorge, G.; Motz, H.; Murphy, A.; Navas, S.; Niedermeier, L.; Nishiura, H.; Nomachi, M.; Nones, C.; Ogawa, H.; Ogawa, I.; Ohsumi, H.; Palladino, V.; Paniccia, M.; Perotto, L.; Petcov, S.; Pfister, S.; Piquemal, F.; Poves, A.; Praet, Ch.; Raffelt, G.; Ramberg, E.; Rashba, T.; Regnault, N.; Ricol, J.St.; Rodejohann, W.; Rodin, V.; Ruz, J.; Sander, Ch.; Sarazin, X.; Scholberg, K.; Sigl, G.; Simkovic, F.; Sousa, A.; Stanev, T.; Strolger, L.; Suekane, F.; Thomas, J.; Titov, N.; Toivanen, J.; Torrente-Lujan, E.; Tytler, D.; Vala, L.; Vignaud, D.; Vitiello, G.; Vogel, P.; Volkov, G.; Volpe, C.; Wong, H.; Yilmazer, A
2006-07-01
This second symposium on neutrinos and dark matter is aimed at discussing research frontiers and perspectives on currently developing subjects. It has been organized around 6 topics: 1) double beta decays, theory and experiments (particularly: GERDA, MOON, SuperNEMO, CUORE, CANDLES, EXO, and DCBA), 2) neutrinos and nuclear physics, 3) single beta decays and nu-responses, 4) neutrino astrophysics, 5) solar neutrino review, and 6) neutrino oscillations. This document is made up of the slides of the presentations.
Pötzschner, B.; Mohamed, F.; Lichtinger, A.; Bock, D.; Rössler, E. A., E-mail: ernst.roessler@uni-bayreuth.de [Experimentalphysik II, Universität Bayreuth, 95440 Bayreuth (Germany)
2015-10-21
We study a dynamically asymmetric binary glass former with the low-T{sub g} component m-tri-cresyl phosphate (m-TCP: T{sub g} = 206 K) and a spirobichroman derivative as a non-polymeric high-T{sub g} component (T{sub g} = 382 K) by means of {sup 1}H nuclear magnetic resonance (NMR), {sup 31}P NMR, and dielectric spectroscopy which allow component-selectively probing the dynamics. The entire concentration range is covered, and two main relaxation processes with two T{sub g} are identified, T{sub g1} and T{sub g2}. The slower one is attributed to the high-T{sub g} component (α{sub 1}-process), and the faster one is related to the m-TCP molecules (α{sub 2}-process). Yet, there are indications that a small fraction of m-TCP is associated also with the α{sub 1}-process. While the α{sub 1}-relaxation only weakly broadens upon adding m-TCP, the α{sub 2}-relaxation becomes extremely stretched leading to quasi-logarithmic correlation functions at low m-TCP concentrations—as probed by {sup 31}P NMR stimulated echo experiments. Frequency-temperature superposition does not apply for the α{sub 2}-process and it reflects an isotropic, liquid-like motion which is observed even below T{sub g1}, i.e., in the matrix of the arrested high-T{sub g} molecules. As proven by 2D {sup 31}P NMR, the corresponding dynamic heterogeneities are of transient nature, i.e., exchange occurs within the distribution G(lnτ{sub α2}). At T{sub g1} a crossover is found for the temperature dependence of (mean) τ{sub α2}(T) from non-Arrhenius above to Arrhenius below T{sub g1} which is attributed to intrinsic confinement effects. This “fragile-to-strong” transition also leads to a re-decrease of T{sub g2}(c{sub m−TCP}) at low concentration c{sub m−TCP}, i.e., a maximum is observed in T{sub g2}(c{sub m−TCP}) while T{sub g1}(c{sub m−TCP}) displays the well-known plasticizer effect. Although only non-polymeric components are involved, we re-discover essentially all features previously
New Kohn-Sham density functional based on microscopic nuclear and neutron matter equations of state
Baldo, M.; Robledo, L. M.; Schuck, P.; Viñas, X.
2013-06-01
A new version of the Barcelona-Catania-Paris energy functional is applied to a study of nuclear masses and other properties. The functional is largely based on calculated ab initio nuclear and neutron matter equations of state. Compared to typical Skyrme functionals having 10-12 parameters apart from spin-orbit and pairing terms, the new functional has only 2 or 3 adjusted parameters, fine tuning the nuclear matter binding energy and fixing the surface energy of finite nuclei. An energy rms value of 1.58 MeV is obtained from a fit of these three parameters to the 579 measured masses reported in the Audi and Wapstra [Nucl. Phys. ANUPABL0375-947410.1016/j.nuclphysa.2003.11.003 729, 337 (2003)] compilation. This rms value compares favorably with the one obtained using other successful mean field theories, which range from 1.5 to 3.0 MeV for optimized Skyrme functionals and 0.7 to 3.0 for the Gogny functionals. The other properties that have been calculated and compared to experiment are nuclear radii, the giant monopole resonance, and spontaneous fission lifetimes.
General aspects of the nucleon-nucleon interaction and nuclear matter properties
Plohl, Oliver
2008-07-25
The subject of the present thesis is at first the investigation of model independent properties of the nucleon-nucleon (NN) interaction in the vacuum concerning the relativistic structure and the implications for nuclear matter properties. Relativistic and non-relativistic meson-exchange potentials, phenomenological potentials s well as potentials based on effective field theory (EFT) are therefore mapped on a relativistic operator basis given by the Clifford Algebra. This allows to compare the various approaches at the level of covariant amplitudes where a remarkable agreement is found. Furthermore, the relativistic self-energy is determined in the Hartree-Fock (HF) approximation. The appearance of a scalar and vector field of several hundred MeV magnitude is a general feature of relativistic descriptions of nuclear matter. Within QCD sum rules these fields arise due to the density dependence of chiral condensates. We find that independent of the applied NN interaction large scalar and vector fields are generated when the symmetries of the Lorentz group are restored. In the framework of chiral EFT (chEFT) it is shown, that these fields are generated by short-range next-to-leading order (NLO) contact terms, which are connected to the spin-orbit interaction. To estimate the effect arising from NN correlations the equation of state of nuclear and neutron matter is calculated in the Brueckner-HF (BHF) approximation applying chEFT. Although, as expected, a clear over-binding is found (at NLO a saturating behavior is observed), the symmetry energy shows realistic properties when compared to phenomenological potentials (within the same approximation) and other approaches. The investigation of the pion mass dependence within chEFT at NLO shows that the magnitude of the scalar and vector fields persists in the chiral limit - nuclear matter is still bound. In contrast to the case of a pion mass larger than the physical one the binding energy and saturation density are
Menke, Lorenz Harry, E-mail: lnz2004@mindspring.com [University of Pittsburgh (United States)
2012-05-15
This paper derives all 36 analytical solutions of the energy eigenvalues for nuclear electric quadrupole interaction Hamiltonian and equivalent rigid asymmetric rotor for polynomial degrees 1 through 4 using classical algebraic theory. By the use of double-parameterization the full general solution sets are illustrated in a compact, symmetric, structural, and usable form that is valid for asymmetry parameter {eta} is an element of (- {infinity}, + {infinity}). These results are useful for code developers in the area of Perturbed Angular Correlation (PAC), Nuclear Quadrupole Resonance (NQR) and rotational spectroscopy who want to offer exact solutions whenever possible, rather that resorting to numerical solutions. In addition, by using standard linear algebra methods, the characteristic equations of all integer and half-integer spins I from 0 to 15, inclusive are represented in a compact and naturally parameterized form that illustrates structure and symmetries. This extends Nielson's listing of characteristic equations for integer spins out to I = 15, inclusive.
Hu, Jinniu; Shen, Hong
2016-01-01
We study the properties of nuclear matter with lattice nucleon-nucleon ($NN$) potential in the relativistic Brueckner-Hartree-Fock (RBHF) theory. To use this potential in such a microscopic many-body theory, we firstly have to construct a one-boson-exchange potential (OBEP) based on the latest lattice $NN$ potential. Three mesons, pion, $\\sigma$ meson, and $\\omega$ meson, are considered. Their coupling constants and cut-off momenta are determined by fitting the on-shell behaviors and phase shifts of the lattice force, respectively. Therefore, we obtain two parameter sets of the OBEP potential (named as LOBEP1 and LOBEP2) with these two fitting ways. We calculate the properties of symmetric and pure neutron matter with LOBEP1 and LOBEP2. In non-relativistic Brueckner-Hartree-Fock case, the binding energies of symmetric nuclear matter are around $-3$ and $-5$ MeV at saturation densities, while it becomes $-8$ and $-12$ MeV in relativistic framework with $^1S_0,~^3S_1,$ and $^3D_1$ channels using our two paramet...
Di-nucleon structures in homogeneous nuclear matter based on two- and three-nucleon interactions
Arellano, Hugo F. [University of Chile, Department of Physics - FCFM, Santiago (Chile); CEA, DAM, DIF, Arpajon (France); Isaule, Felipe [University of Chile, Department of Physics - FCFM, Santiago (Chile); Rios, Arnau [University of Surrey, Department of Physics, Faculty of Engineering and Physical Sciences, Guildford (United Kingdom)
2016-09-15
We investigate homogeneous nuclear matter within the Brueckner-Hartree-Fock (BHF) approach in the limits of isospin-symmetric nuclear matter (SNM) as well as pure neutron matter at zero temperature. The study is based on realistic representations of the internucleon interaction as given by Argonne v{sub 18}, Paris, Nijmegen I and II potentials, in addition to chiral N{sup 3}LO interactions, including three-nucleon forces up to N{sup 2}LO. Particular attention is paid to the presence of di-nucleon bound states structures in {sup 1}S{sub 0} and {sup 3}SD{sub 1} channels, whose explicit account becomes crucial for the stability of self-consistent solutions at low densities. A characterization of these solutions and associated bound states is discussed. We confirm that coexisting BHF single-particle solutions in SNM, at Fermi momenta in the range 0.13-0.3 fm{sup -1}, is a robust feature under the choice of realistic internucleon potentials. (orig.)
Kang, Zhaofeng [Korea Institute for Advanced Study, School of Physics, Seoul (Korea, Republic of); Institute of Theoretical Physics, Chinese Academy of Sciences, Key Laboratory of Frontiers in Theoretical Physics, Beijing (China); Li, Jinmian [Institute of Theoretical Physics, Chinese Academy of Sciences, Key Laboratory of Frontiers in Theoretical Physics, Beijing (China); University of Adelaide, ARC Centre of Excellence for Particle Physics at the Terascale and CSSM, Department of Physics, Adelaide, SA (Australia); Li, Tianjun [Institute of Theoretical Physics, Chinese Academy of Sciences, Key Laboratory of Frontiers in Theoretical Physics, Beijing (China); University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Liu, Tao [University of Alberta, Department of Physics, Edmonton, Alberta (Canada); Yang, Jin Min [Institute of Theoretical Physics, Chinese Academy of Sciences, Key Laboratory of Frontiers in Theoretical Physics, Beijing (China)
2016-05-15
The maximal U(1){sub L} supersymmetric inverse seesaw mechanism (MLSIS) provides a natural way to relate asymmetric darkmatter (ADM)with neutrino physics. In this paper we point out that MLSIS is a natural outcome if one dynamically realizes the inverse seesaw mechanism in the next-to minimal supersymmetric standard model (NMSSM) via the dimension-five operator (N){sup 2}S{sup 2}/M{sub *}, with S the NMSSM singlet developing TeV scale VEV; it slightly violates lepton number due to the suppression by the fundamental scale M{sub *}, thus preserving U(1){sub L} maximally. The resulting sneutrino is a distinguishable ADM candidate, oscillating and favored to have weak scale mass. A fairly large annihilating cross section of such a heavy ADM is available due to the presence of singlet. (orig.)
Equation of state of the neutron star matter, and the nuclear symmetry energy
Loan, Doan Thi; Khoa, Dao T; Margueron, Jerome
2011-01-01
The nuclear mean-field potentials obtained in the Hartree-Fock method with different choices of the in-medium nucleon-nucleon (NN) interaction have been used to study the equation of state (EOS) of the neutron star (NS) matter. The EOS of the uniform NS core has been calculated for the np$e\\mu$ composition in the $\\beta$-equilibrium at zero temperature, using version Sly4 of the Skyrme interaction as well as two density-dependent versions of the finite-range M3Y interaction (CDM3Y$n$ and M3Y-P$n$), and versions D1S and D1N of the Gogny interaction. Although the considered effective NN interactions were proven to be quite realistic in numerous nuclear structure and/or reaction studies, they give quite different behaviors of the symmetry energy of nuclear matter at supranuclear densities that lead to the \\emph{soft} and \\emph{stiff} scenarios discussed recently in the literature. Different EOS's of the NS core and the EOS of the NS crust given by the compressible liquid drop model have been used as input of the...
ϕ meson self-energy in nuclear matter from ϕ N resonant interactions
Cabrera, D.; Hiller Blin, A. N.; Vicente Vacas, M. J.
2017-01-01
The ϕ -meson properties in cold nuclear matter are investigated by implementing resonant ϕ N interactions as described in effective approaches including the unitarization of scattering amplitudes. Several N*-like states are dynamically generated in these models around 2 GeV, in the vicinity of the ϕ N threshold. We find that both these states and the non-resonant part of the amplitude contribute sizably to the ϕ collisional self-energy at finite nuclear density. These contributions are of a similar strength as the widely studied medium effects from the K ¯K cloud. Depending on model details (position of the resonances and strength of the coupling to ϕ N ) we report a ϕ broadening up to about 40-50 MeV, to be added to the ϕ →K ¯K in-medium decay width, and an attractive optical potential at threshold up to about 35 MeV at normal matter density. The ϕ spectral function develops a double peak structure as a consequence of the mixing of resonance-hole modes with the ϕ quasiparticle peak. The former results point in the direction of making up for missing absorption as reported in ϕ nuclear production experiments.
Cold nuclear matter effects on the color singlet J/psi production in d-Au collisions at RHIC
Jiang, Zefang; Yin, Zhongbao; Shi, Yafei; Yuan, Xianbao
2014-01-01
We develop a Modified DKLMT model (called M-DKLMT model) to study the cold nuclear matter (CNM) effects on the color singlet J/psi production in d-Au collisions at RHIC. The cold nuclear effect has been investigated by introducing a nuclear geometric effect function f({\\xi}) and considering the nuclear geometry effect. The dependencies of nuclear modification factors (RdA) on rapidity and centrality are studied and compared to experimental data. It is found that the M-DKLMT model can well describe the experimental results at both forward- and mid-rapidity regions in collisions at RHIC.
Inoue, Takashi; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji
2013-09-13
Quark mass dependence of the equation of state (EOS) for nucleonic matter is investigated, on the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon interaction extracted from lattice QCD simulations. We observe saturation of nuclear matter at the lightest available quark mass corresponding to the pseudoscalar meson mass ≃469 MeV. Mass-radius relation of the neutron stars is also studied with the EOS for neutron-star matter from the same nuclear force in lattice QCD. We observe that the EOS becomes stiffer and thus the maximum mass of neutron star increases as the quark mass decreases toward the physical point.
2015-05-05
AND SUBTITLE LASER-DRIVEN ULTRA-RELATIVISTIC PLASMAS - NUCLEAR FUSION IN COULOMB SHOCK WAVES, ROUGE WAVES, AND BACKGROUND MATTER. 5a. CONTRACT...blackbody radiation on free electrons .........................9 2.vi. Proposal of ultimate test of laser nuclear fusion efficiency in clusters...domain of energies and temperatures, with applications in particular to controlled nuclear fusion . 2. Final technical report on the grant #F49620-11-1
da Providëncia, J.; Jalkanen, Karl J.; Bohr, Henrik
2013-01-01
relativistic fluid of elementary particles is studied. We find that the magnetic field of spin polarized matter with densities of 2 to 30, where 0 is the equilibrium density of nuclear matter, is rather huge, of the order of 1017 Gauss. Finally we look at the chiral nature of nuclear forces and interactions...... as they possibly relate to chirality of nuclei (atoms) in molecules as a source of chirality in amino acids and hence in life. Previous works have not investigated the nuclear forces as a possible bias which initiated the bias towards L-amino acids as the building blocks on proteins, and later life....
Three nucleon forces in nuclear matter in the QCD sum rules
Drukarev, E G; Sadovnikova, V A
2016-01-01
We calculate the single-particle nucleon characteristics in symmetric nuclear matter with inclusion of the 3N interactions. The contribution of the 3N forces to the nucleon self energies are expressed in terms of the nonlocal scalar condensate (d=3) and of the configuration of the two four-quark condensates (d=6) in which two diquark operators act on two different nucleons of the matter. The most important part of the contribution of the four-quark condensate is calculated in a model-independent way. We employed a relativistic quark model of nucleon for calculation of the rest part. The density dependence of the vector and scalar nucleon self energies and of the single-particle potential energy are obtained.
Effects of nuclear deformation on the form factor for direct dark matter detection
CHEN Ya-Zheng; CHEN Jun-Mou; LUO Yan-An; SHEN Hong; LI Xue-Qian
2012-01-01
For the detection of direct dark matter,in order to extract useful information about the fundamental interactions from the data,it is crucial to properly determine the nuclear form factor.The form factor for the spin-independent cross section of collisions between dark matter particles and the nucleus has been thoroughly studied by many authors.When the analysis was carried out,the nuclei were always supposed to be spherically symmetric.In this work,we investigate the effects of the deformation of nuclei from a spherical shape to an elliptical one on the form factor.Our results indicate that as long as the ellipticity is not too large,such deformation will not cause any substantial effects.In particular,when the nuclei are randomly orientated in room-temperature circumstances,one can completely neglect them.
Georges eSt. Laurent
2012-04-01
Full Text Available Perhaps no other topic in contemporary genomics has inspired such diverse viewpoints as the 95+% of the genome, previously known as junk DNA, that does not code for proteins. Here, we present a theory in which dark matter RNA plays a role in the generation of a landscape of spatial micro-domains coupled to the information signaling matrix of the nuclear landscape. Within and between these microdomains, dark matter RNAs additionally function to tether RNA interacting proteins and complexes of many different types, and by doing so, allow for a higher performance of the various processes requiring them at ultra-fast rates. This improves signal to noise characteristics of RNA processing, trafficking, and epigenetic signaling, where competition and differential RNA binding among proteins drives the computational decisions inherent in regulatory events.
First measurement of nuclear recoil head-tail sense in a fiducialised WIMP dark matter detector
Battat, J B R; Ezeribe, A C; Gauvreau, J -L; Harton, J L; Lafler, R; Lee, E R; Loomba, D; Lumnah, A; Miller, E H; Mouton, F; Murphy, A StJ; Paling, S M; Phan, N S; Robinson, M; Sadler, S W; Scarff, A; Schuckman, F G; Snowden-Ifft, D P; Spooner, N J C
2016-01-01
Recent computational results suggest that directional dark matter detectors have potential to probe for WIMP dark matter particles below the neutrino floor. The DRIFT-IId detector used in this work is a leading directional WIMP search time projection chamber detector. We report the first measurements of the detection of the directional nuclear recoils in a fully fiducialised low-pressure time projection chamber. In this new operational mode, the distance between each event vertex and the readout plane is determined by the measurement of minority carriers produced by adding a small amount of oxygen to the nominal CS$_{2}$ + CF$_{4}$ target gas mixture. The CS$_2$ + CF$_4$ + O$_2$ mixture has been shown to enable background-free operation at current sensitivities. Sulfur, fluorine, and carbon recoils were generated using neutrons emitted from a $^{252}$Cf source positioned at different locations around the detector. Measurement of the relative energy loss along the recoil tracks allowed the track vector sense, ...
Beane, S R; Chang, E; Cohen, S D; Detmold, W; Lin, H-W; Luu, T C; Orginos, K; Parreño, A; Savage, M J; Walker-Loud, A
2012-10-26
The low-energy nΣ(-) interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase shifts for this system are obtained from a numerical evaluation of the QCD path integral using the technique of lattice QCD. Our calculations, performed at a pion mass of m(π)~389 MeV in two large lattice volumes and at one lattice spacing, are extrapolated to the physical pion mass using effective field theory. The interactions determined from lattice QCD are consistent with those extracted from hyperon-nucleon experimental data within uncertainties and strengthen model-dependent theoretical arguments that the strange quark is a crucial component of dense nuclear matter.
Hyperon-Nucleon Interactions and the Composition of Dense Nuclear Matter from Quantum Chromodynamics
Beane, S R; Cohen, S D; Detmold, W; Lin, H -W; Luu, T C; Orginos, K; Parreno, A; Savage, M J
2012-10-01
The low-energy neutron-{Sigma}{sup -} interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase shifts for this system are obtained from a numerical evaluation of the QCD path integral using the technique of Lattice QCD. Our calculations, performed at a pion mass of m{sub pi} ~ 389 MeV in two large lattice volumes, and at one lattice spacing, are extrapolated to the physical pion mass using effective field theory. The interactions determined from QCD are consistent with those extracted from hyperon-nucleon experimental data within uncertainties, and strengthen theoretical arguments that the strange quark is a crucial component of dense nuclear matter.
Hyperon-Nucleon Interactions and the Composition of Dense Nuclear Matter from Quantum Chromodynamics
Beane, S R; Cohen, S D; Detmold, W; Lin, H -W; Luu, T C; Orginos, K; Parreno, A; Savage, M J; Walker-Loud, A
2012-01-01
The low-energy neutron-Sigma^- interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase shifts for this system are obtained from a numerical evaluation of the QCD path integral using the technique of Lattice QCD. Our calculations, performed at a pion mass of m_pi ~ 389 MeV in two large lattice volumes, and at one lattice spacing, are extrapolated to the physical pion mass using effective field theory. The interactions determined from QCD are consistent with those extracted from hyperon-nucleon experimental data within uncertainties, and strengthen theoretical arguments that the strange quark is a crucial component of dense nuclear matter.
Critical phenomena of nuclear matter in the extended Zimanyi-Moszkowski model
Miyazaki, K
2005-01-01
We have studied the thermodynamics of warm nuclear matter below the saturation density in the extended Zimanyi-Moszkowski model. The EOS behaves like van der Waals one and shows the liquid-gas phase transition as the other microscopic EOSs. It predicts the critical temperature T_{C}=16.36MeV that agrees well with its empirical value. We have further calculated the phase coexistence curve and obtained the critical exponents beta=0.34 and gamma=1.22, which also agree with their universal values and empirical values derived in the recent experimental efforts.
Nuclear matter hole spectral function in the Bethe-Brueckner-Goldstone approach
Baldo, Marcello
2002-01-01
The hole spectral function is calculated in nuclear matter to assess the relevance of nucleon-nucleon short range correlations. The calculation is carried out within the Brueckner scheme of many-body theory by using several nucleon-nucleon realistic interactions. Results are compared with other approaches based on variational methods and transport theory. Discrepancies appear in the high energy region, which is sensitive to short range correlations, and are due to the different many-body treatment more than to the specific N-N interaction used. Another conclusion is that the momentum dependence of the G-matrix should be taken into account in any self consistent approach.
Weak response of cold symmetric nuclear matter at three-body cluster level
Lovato, Alessandro; Benhar, Omar
2012-01-01
We studied the Fermi and Gamow-Teller responses of cold symmetric nuclear matter within a unified dynamical model, suitable to account for both short- and long-range correlation effects. The formalism of correlated basis functions has been used to construct two-body effective interactions and one-body effective weak operators. The inclusion of the three-body cluster term allowed for incorporating in the effective interaction a realistic model of three- nucleon forces, namely the UIX potential. Moreover, the sizable unphysical dependence of the effective weak operator is removed once the three-body cluster term is taken into account.
Braghin, F L
2004-01-01
Symmetry energy terms from macroscopic mass formulae are investigated as generalized polarizabilities of nuclear matter. Besides the neutron-proton (n-p) symmetry energy the spin dependent symmetry energies and a scalar one are also defined. They depend on the nuclear densities ($\\rho$), neutron-proton asymmetry ($b$), temperature ($T$) and exchanged energy and momentum ($q$). Based on a standard expression for the generalized polarizabilities, a differential equation is proposed to constrain the dependence of the symmetry energy on the n-p asymmetry and on the density. Some solutions are discussed. The q-dependence (zero frequence) of the symmetry energy coefficients with Skyrme-type forces is investigated in the four channels of the particle-hole interaction. Spin dependent symmetry energies are also investigated indicating much stronger differences in behavior with $q$ for each Skyrme force than the results for the neutron-proton one.
Exploring the Quark-Gluon Content of Hadrons: From Mesons to Nuclear Matter
Matevosyan, Hrayr [Louisiana State Univ., Baton Rouge, LA (United States)
2007-08-01
Even though Quantum Chromodynamics (QCD) was formulated over three decades ago, it poses enormous challenges for describing the properties of hadrons from the underlying quark-gluon degrees of freedom. Moreover, the problem of describing the nuclear force from its quark-gluon origin is still open. While a direct solution of QCD to describe the hadrons and nuclear force is not possible at this time, we explore a variety of developed approaches ranging from phenomenology to first principle calculations at one or other level of approximation in linking the nuclear force to QCD. The Dyson Schwinger formulation (DSE) of coupled integral equations for the QCD Green’s functions allows a non-perturbative approach to describe hadronic properties, starting from the level of QCD n-point functions. A significant approximation in this method is the employment of a finite truncation of the system of DSEs, that might distort the physical picture. In this work we explore the effects of including a more complete truncation of the quark-gluon vertex function on the resulting solutions for the quark 2-point functions as well as the pseudoscalar and vector meson masses. The exploration showed strong indications of possibly large contributions from the explicit inclusion of the gluon 3- and 4-point functions that are omitted in this and previous analyses. We then explore the possibility of extrapolating state of the art lattice QCD calculations of nucleon form factors to the physical regime using phenomenological models of nucleon structure. Finally, we further developed the Quark Meson Coupling model for describing atomic nuclei and nuclear matter, where the quark-gluon structure of nucleons is modeled by the MIT bag model and the nucleon many body interaction is mediated by the exchange of scalar and vector mesons. This approach allows us to formulate a fully relativistic theory, which can be expanded in the nonrelativistic limit to reproduce the well known phenomenological Skyrme
Covariant energy density functionals: nuclear matter constraints and global ground state properties
Afanasjev, A V
2016-01-01
The correlations between global description of the ground state properties (binding energies, charge radii) and nuclear matter properties of the state-of-the-art covariant energy density functionals have been studied. It was concluded that the strict enforcement of the constraints on the nuclear matter properties (NMP) defined in Ref.\\ \\cite{RMF-nm} will not necessary lead to the functionals with good description of the binding energies and other ground and excited state properties. In addition, it will not substantially reduce the uncertainties in the predictions of the binding energies in neutron-rich systems. It turns out that the functionals, which come close to satisfying these NMP constraints, have some problems in the description of existing data. On the other hand, these problems are either absent or much smaller in the functionals which are carefully fitted to finite nuclei but which violate some NMP constraints. This is a consequence of the fact that the properties of finite nuclei are defined not o...
Beyond the Quasi-Particle picture in Nuclear Matter calculations using Green's function techniques
Köhler, H S
2006-01-01
Widths of low-lying states in nuclei are of the order of 30 MeV. These large widths are a consequence of the strong interactions leading to a strongly correlated many body system at the typical densities of nuclear matter. Nevertheless "traditional" Brueckner calculations treat these states as quasiparticles i.e. with spectral functions of zero widths. The width is related to the imaginary part of the selfenergy and is included selfconsistently in an extension of the Brueckner theory using T-matrix and Green's function techniques. A more general formulation applicable also to non-equilibrium systems is contained in the Kadanoff-Baym (KB) equations while still maintaining the basic many-body techniques of Bruecknet theory. In the present work the two-time KB-equations are time-stepped along the imaginary time-axis to calculate the binding energy of nuclear matter as a function of density, including the spectral widths self-consistently. These zero temperature calculations are compared with quasi-particle calcu...
Low mass dielectrons radiated off cold nuclear matter measured with HADES
Lorenz M.
2014-03-01
Full Text Available The High Acceptance DiElectron Spectrometer HADES [1] is installed at the Helmholtzzentrum für Schwerionenforschung (GSI accelerator facility in Darmstadt. It investigates dielectron emission and strangeness production in the 1-3 AGeV regime. A recent experiment series focusses on medium-modifications of light vector mesons in cold nuclear matter. In two runs, p+p and p+Nb reactions were investigated at 3.5 GeV beam energy; about 9·109 events have been registered. In contrast to other experiments the high acceptance of the HADES allows for a detailed analysis of electron pairs with low momenta relative to nuclear matter, where modifications of the spectral functions of vector mesons are predicted to be most prominent. Comparing these low momentum electron pairs to the reference measurement in the elementary p+p reaction, we find in fact a strong modification of the spectral distribution in the whole vector meson region.
$\\phi$ meson self-energy in nuclear matter from $\\phi N$ resonant interactions
Cabrera, D; Vacas, M J Vicente
2016-01-01
The $\\phi$-meson properties in cold nuclear matter are investigated by implementing resonant $\\phi N$ interactions as described in effective approaches including the unitarization of scattering amplitudes. Several $N^*$-like states are dynamically generated in these models around $2$ GeV, in the vicinity of the $\\phi N$ threshold. We find that both these states and the non-resonant part of the amplitude contribute sizably to the $\\phi$ collisional self-energy at finite nuclear density. These contributions are of a similar strength as the widely studied medium effects from the $\\bar K K$ cloud. Depending on model details (position of the resonances and strength of the coupling to $\\phi N$) we report a $\\phi$ broadening up to about $40$-$50$ MeV, to be added to the $\\phi\\to\\bar K K$ in-medium decay width, and an attractive optical potential at threshold up to about $35$ MeV at normal matter density. The $\\phi$ spectral function develops a double peak structure as a consequence of the mixing of resonance-hole mo...
Hadron resonance gas and mean-field nuclear matter for baryon number fluctuations
Fukushima, Kenji
2014-01-01
We give an estimate for the skewness and the kurtosis of the baryon number distribution in two representative models; i.e., models for a hadron resonance gas and relativistic mean-field nuclear matter. We emphasize formal similarity between these two descriptions. The hadron resonance gas leads to a deviation from the Skellam distribution if quantum statistical correlation is taken into account at high baryon density, but this effect is not strong enough to explain fluctuation data seen in the beam-energy scan at RHIC/STAR. In the calculation of mean-field nuclear matter the density correlation with the vector \\omega-field rather than the effective mass with the scalar \\sigma-field renders the kurtosis suppressed at higher baryon density so as to account for the observed behavior of the kurtosis. We finally discuss the difference between the baryon number and the proton number fluctuations from correlation effects in isospin space. Our numerical results suggest that such effects are only minor even in the cas...
Nucleon Finite Volume Effect and Nuclear Matter Properties in a Relativistic Mean-Field Theory
R. Costa; A.J. Santiago; H. Rodrigues; J. Sa Borges
2006-01-01
Effects of excluded volume of nucleons on nuclear matter are studied, and the nuclear properties that follow from different relativistic mean-field model parametrizations are compared. We show that, for all tested parametrizations,the resulting volume energy a1 and the symmetry energy J are around the acceptable values of 16 MeV and 30 MeV,and the density symmetry L is around 100 Me V. On the other hand, models that consider only linear terms lead to incompressibility K0 much higher than expected. For most parameter sets there exists a critical point (ρc,δc), where the minimum and the maximum of the equation of state are coincident and the incompressibility equals zero. This critical point depends on the excluded volume parameter r. If this parameter is larger than 0.5 fm, there is no critical point and the pure neutron matter is predicted to be bound. The maximum value for neutron star mass is 1.85M⊙, which is in agreement with the mass of the heaviest observed neutron star 4U0900-40 and corresponds to r = 0.72 fm. We also show that the light neutron star mass (1.2M⊙) is obtained for r (≌) 0.9 fm.
Mass predictions of atomic nuclei in the infinite nuclear matter model
Nayak, R. C.; Satpathy, L.
2012-07-01
We present here the mass excesses, binding energies, one- and two-neutron, one- and two-proton and α-particle separation energies of 6727 nuclei in the ranges 4≤Z≤120 and 8≤A≤303 calculated in the infinite nuclear matter model. Compared to our predictions of 1999 mass table, the present ones are obtained using larger data base of 2003 mass table of Wapstra and Audi and resorting to higher accuracy in the solutions of the η-differential equations of the INM model. The local energy η's supposed to carry signature of the characteristic properties of nuclei are found to possess the predictive capability. In fact η-systematics reveal new magic numbers in the drip-line regions giving rise to new islands of stability supported by relativistic mean field theoretic calculations. This is a manifestation of a new phenomenon where shell-effect overcomes the instability due to repulsive components of the nucleon-nucleon force broadening the stability peninsula. The two-neutron separation energy-systematics derived from the present mass predictions reveal a general new feature for the existence of islands of inversion in the exotic neutron-rich regions of nuclear landscape, apart from supporting the presently known islands around 31Na and 62Ti. The five global parameters representing the properties of infinite nuclear matter, the surface, the Coulomb and the pairing terms are retained as per our 1999 mass table. The root-mean-square deviation of the present mass-fit to 2198 known masses is 342 keV, while the mean deviation is 1.3 keV, reminiscent of no left-over systematic effects. This is a substantive improvement over our 1999 mass table having rms deviation of 401 keV and mean deviation of 9 keV for 1884 data nuclei.
Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Al-Bataineh, H; Al-Ta'ani, H; Alexander, J; Andrews, K R; Angerami, A; Aoki, K; Apadula, N; Appelt, E; Aramaki, Y; Armendariz, R; Aschenauer, E C; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Bannier, B; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Ben-Benjamin, J; Bennett, R; Bhom, J H; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Broxmeyer, D; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Castera, P; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa Del Valle, Z; Connors, M; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Gal, C; Garishvili, I; Glenn, A; Gong, H; Gong, X; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gunji, T; Guo, L; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Harper, C; Hashimoto, K; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Hollis, R S; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Inaba, M; Iordanova, A; Isenhower, D; Ishihara, M; Issah, M; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; John, D; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kamin, J; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D J; Kim, E-J; Kim, Y-J; Kim, Y K; Kinney, E; Kiss, A; Kistenev, E; Kleinjan, D; Kline, P; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotov, D; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Lee, S H; Lee, S R; Leitch, M J; Leite, M A L; Li, X; Lichtenwalner, P; Liebing, P; Lim, S H; Linden Levy, L A; Liška, T; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malik, M D; Manion, A; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Miyachi, Y; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Motschwiller, S; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, B H; Park, I H; Park, S K; Park, W J; Pate, S F; Patel, L; Pei, H; Peng, J-C; Pereira, H; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Rembeczki, S; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sarsour, M; Sato, T; Savastio, M; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shim, H H; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Sodre, T; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sun, J; Sziklai, J; Takagui, E M; Takahara, A; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tennant, E; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Tomášek, M; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Utsunomiya, K; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vossen, A; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Watanabe, Y S; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M
2014-06-27
The PHENIX experiment has measured open heavy-flavor production via semileptonic decay over the transverse momentum range 1 < p(T) < 6 GeV/c at forward and backward rapidity (1.4 < |y| < 2.0) in d+Au and p + p collisions at √sNN = 200 GeV. In central d+Au collisions, relative to the yield in p + p collisions scaled by the number of binary nucleon-nucleon collisions, a suppression is observed at forward rapidity (in the d-going direction) and an enhancement at backward rapidity (in the Au-going direction). Predictions using nuclear-modified-parton-distribution functions, even with additional nuclear-p(T) broadening, cannot simultaneously reproduce the data at both rapidity ranges, which implies that these models are incomplete and suggests the possible importance of final-state interactions in the asymmetric d + Au collision system. These results can be used to probe cold-nuclear-matter effects, which may significantly affect heavy-quark production, in addition to helping constrain the magnitude of charmonia-breakup effects in nuclear matter.
Moghrabi, Kassem
2016-01-01
We present the explicit form of the next-to-next-to-leading order (N$^2$LO) Skyrme interaction in momentum space by including the fourth-order gradient potentials to the standard Skyrme interaction. With the N$^2$LO Skyrme interaction, we evaluate the second-order corrections to the nuclear bulk quantities of nuclear matter: equation of state (EoS) of isospin symmetric and pure neutron matter, density-dependent in-medium effective nucleon mass, isospin-asymmetry energy, pressure and incompressibility. These second-order contributions are ultraviolet (UV) divergent due to the zero range character of the interaction and renormalized using the techniques of dimensional regularization (DR) with the minimal subtraction scheme (MS). We adjust the 18 parameters of the interaction by performing a global fit to the nuclear bulk quantities. Besides the too strong dependence $k_F^{12}$ of several second-order corrections, a very good reproduction of a realistic nuclear matter saturation curve with all the nuclear bulk q...
Pradhan, Santosh K., E-mail: santosh@aerb.gov.in [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India); Obaidurrahman, K. [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India); Iyer, Kannan N. [Department of Mechanical Engineering, IIT Bombay, Mumbai 400076 (India); Gaikwad, Avinash J. [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India)
2016-04-15
Highlights: • A multi-point kinetics model is developed for RELAP5 system thermal hydraulics code. • Model is validated against extensive 3D kinetics code. • RELAP5 multi-point kinetics formulation is used to investigate critical break for LOCA in PHWR. - Abstract: Point kinetics approach in system code RELAP5 limits its use for many of the reactivity induced transients, which involve asymmetric core behaviour. Development of fully coupled 3D core kinetics code with system thermal-hydraulics is the ultimate requirement in this regard; however coupling and validation of 3D kinetics module with system code is cumbersome and it also requires access to source code. An intermediate approach with multi-point kinetics is appropriate and relatively easy to implement for analysis of several asymmetric transients for large cores. Multi-point kinetics formulation is based on dividing the entire core into several regions and solving ODEs describing kinetics in each region. These regions are interconnected by spatial coupling coefficients which are estimated from diffusion theory approximation. This model offers an advantage that associated ordinary differential equations (ODEs) governing multi-point kinetics formulation can be solved using numerical methods to the desired level of accuracy and thus allows formulation based on user defined control variables, i.e., without disturbing the source code and hence also avoiding associated coupling issues. Euler's method has been used in the present formulation to solve several coupled ODEs internally at each time step. The results have been verified against inbuilt point-kinetics models of RELAP5 and validated against 3D kinetics code TRIKIN. The model was used to identify the critical break in RIH of a typical large PHWR core. The neutronic asymmetry produced in the core due to the system induced transient was effectively handled by the multi-point kinetics model overcoming the limitation of in-built point kinetics model
Tachyon Pole in σ Meson Propagator in Nuclear Matter in the Relativistic σ-ω Model
CHEN Wei; AI Bao-Quan; LIU Liang-Gang
2001-01-01
The conditions that the tachyon pole of the σ meson propagator in nuclear matter appears are studied in the one-loop approximation in the relativistic σ-ω model. Different from the results of the previous paper, we find that the effect of the constant a in the self-interaction, U(σ) = aσ+ bσ + cσ + dσ , of the σ meson cannot be neglected.It determines the critical density where tachyon appears. The smaller the a, the larger the critical density. The binding energy, pressure, incompressibility coefficient, nucleon effective mass are calculated and the relation between parameters to the tachyon pole is also studied.
Nuclear matter incompressibility from a semi-empirical analysis of breathing-mode energies
Sharma, M. M.; Stocker, W.; Gleissl, P.; Brack, M.
1989-11-01
We check the validity and applicability of a liquid-drop model type expansion for the incompressibility KA of finite nuclei: K A = K V + K SA {-1}/{3} + (higher-order terms). Our theoretical considerations are based upon calculations of breathing-mode energies following from a density variational framework taking into account various Skyrme interactions. Using a semi-empirical procedure based upon this expansion of KA, we corroborate that new precision data for the monopole energies favour a volume coefficient KV (300±25) MeV and an appreciable surface coefficient KS (-750±80) MeV. We discuss the implication of this result for the incompressibility K∞ of infinite nuclear matter.
Low-energy pions in nuclear matter and pi pi photoproduction within a BUU transport model
Buss, O; Mühlich, P; Mosel, U; Shyam, R; Buss, Oliver; Alvarez-Ruso, Luis; Muehlich, Pascal; Mosel, Ulrich; Shyam, Radhey
2006-01-01
In the present paper we investigate a method to describe low-energy scattering events of pions and nuclei within a Boltzmann-Uehling-Uhlenbeck (BUU) transport model. Implementing different scenarios of medium modifications, we studied the mean free path of pions in nuclear matter at low momenta and compared pion absorption simulations to data. Pursuing these studies we have shown, that also in a regime of a long pionic wave length the semi-classical BUU model still generates reasonable results. We present results on pi-induced events in the regime of 10 MeV < Tkin < 130 MeV and photo-induced pi pi production at incident beam energies of 400-460 MeV.
Low-energy pions in nuclear matter and 2pi photoproduction within a BUU transport model
Buss, O; Mosel, U; Mühlich, P; Alvarez-Ruso, Luis; Buss, Oliver; Mosel, Ulrich; Muehlich, Pascal
2006-01-01
A description of low-energy scattering of pions and nuclei within a BUU transport model is presented. Implementing different scenarios of medium modifications, the mean free path of pions in nuclear matter at low momenta and pion absorption reactions on nuclei have been studied and compared to data and to results obtained via quantum mechanical scattering theory. We show that even in a regime of a long pionic wave length the semi-classical transport model is still a reliable framework for pion kinetic energies greater than ~20-30 MeV. Results are presented on pion-absorption cross sections in the regime of 10 MeV < E(kin) < 130 MeV and on photon-induced double-pion production at incident beam energies of 400-500 MeV.
Toward the Limits of Matter: Ultra-relativistic nuclear collisions at CERN
Schukraft, Jurgen
2015-01-01
Strongly interacting matter as described by the thermodynamics of QCD undergoes a phase transition, from a low temperature hadronic medium to a high temperature quark-gluon plasma state. In the early universe this transition occurred during the early microsecond era. It can be investigated in the laboratory, in collisions of nuclei at relativistic energy, which create "fireballs" of sufficient energy density to cross the QCD Phase boundary. We describe 3 decades of work at CERN, devoted to the study of the QCD plasma and the phase transition. From modest beginnings at the SPS, ultra-relativistic heavy ion physics has evolved today into a central pillar of contemporary nuclear physics and forms a significant part of the LHC program.
Nandi, Rana
2016-01-01
We study the effect of isospin-dependent nuclear forces on the pasta phase in the inner crust of neutron stars. To this end we model the crust within the framework of quantum molecular dynamics (QMD). For maximizing the numerical performance, the newly developed code has been implemented on GPU processors. As a first application of the crust studies we investigate the dependence of the particular pasta phases on the slope of the symmetry energy slope L. To isolate the effect of different values of L, we adopt an established QMD Hamiltonian and extend it to include non-linear terms in the isospin-dependent interaction. The strengths of the isospin-dependent forces are used to adjust the asymmetry energy and slope of the matter. Our results indicate that in contrast to earlier studies the phase diagram of the pasta phase is not very sensitive to the value of L.
Phase diagram of dilute nuclear matter: Unconventional pairing and the BCS-BEC crossover
Stein, Martin; Sedrakian, Armen [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik
2013-07-01
We report on a comprehensive study of the phase structure of cold, dilute nuclear matter featuring a {sup 3}S{sub 1}-{sup 3}D{sub 1} condensate at non-zero isospin asymmetry, within wide ranges of temperatures and densities. We find a rich phase diagram comprising three superfluid phases, namely a LOFF phase, the ordinary BCS phase, and a heterogeneous, phase-separated BCS phase, with associated crossovers from the latter two phases to a homogeneous or phase-separated Bose-Einstein condensate of deuterons. The phase diagram contains two tri-critical points (one a Lifshitz point), which may degenerate into a single tetra-critical point for some degree of isospin asymmetry.
Onset transition to cold nuclear matter from lattice QCD with heavy quarks.
Fromm, M; Langelage, J; Lottini, S; Neuman, M; Philipsen, O
2013-03-22
Lattice QCD at finite density suffers from a severe sign problem, which has so far prohibited simulations of the cold and dense regime. Here we study the onset of nuclear matter employing a three-dimensional effective theory derived by combined strong coupling and hopping expansions, which is valid for heavy but dynamical quarks and has a mild sign problem only. Its numerical evaluations agree between a standard Metropolis and complex Langevin algorithm, where the latter is free of the sign problem. Our continuum extrapolated data approach a first order phase transition at μ(B) ≈ m(B) as the temperature approaches zero. An excellent description of the data is achieved by an analytic solution in the strong coupling limit.
Microscopic Three-Body Force Effect on Nucleon-Nucleon Cross Sections in Symmetric Nuclear Matter
ZHANG Hong-Fei; ZUO Wei; Lombardo Umberto; LI Zeng-Hua; LI Jun-Qing
2008-01-01
We provide a microscopic calculation of neutron-proton and proton-proton cross sections in symmetric nuclear matter at various densities, using the Brueckner-Hartree-Fock approximation scheme with the Argonne V14 potential including the contribution of microscopic three-body force. We investigate separately the effects of three-body force on the effective mass and on the scattering amplitude. In the present calculation, the rearrangement contribution of three-body force is considered, which will reduce the neutron and proton effective mass, and depress the amplitude of cross section. The effect of three body force is shown to be repulsive, especially in high densities and large momenta, which will suppress the cross section markedly.
Measurement of Nuclear Recoils in the CDMS II Dark Matter Search
Fallows, Scott Mathew [Univ. of Minnesota, Minneapolis, MN (United States)
2014-12-01
The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for \\background- free" operation of CDMS II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space.
Study of hot and dense nuclear matter in effective QCD model
Islam, Chowdhury Aminul
2016-01-01
In this thesis we use various effective QCD models to investigate hot and dense nuclear matter created in heavy ion collisions. To characterize such matter, we mainly exploit correlation functions and some of the associated spectral properties. We explore the vector meson current-current correlation function with and without the influence of vector interaction in Nambu\\textendash Jona-Lasinio (NJL) model and also in its Polyakov loop extended version (PNJL). As a spectral property we have computed the dilepton rate which is found to be enhanced in strongly interacting QGP (sQGP) as compared to the Born rate in a weakly coupled QGP. We further consider the idea of entanglement between the chiral and confinement dynamics through the entangled PNJL (EPNJL) model and re-explore the vector spectral function and the spectral property such as the dilepton production rate studied in our earlier effort. Because of the strong entanglement, the coupling strengths run with the temperature and chemical potential. The impl...
Thermodynamic coupling of heat and matter flows in near-field regions of nuclear waste repositories
Carnahan, C.L.
1983-11-01
In near-field regions of nuclear waste repositories, thermodynamically coupled flows of heat and matter can occur in addition to the independent flows in the presence of gradients of temperature, hydraulic potential, and composition. The following coupled effects can occur: thermal osmosis, thermal diffusion, chemical osmosis, thermal filtration, diffusion thermal effect, ultrafiltration, and coupled diffusion. Flows of heat and matter associated with these effects can modify the flows predictable from the direct effects, which are expressed by Fourier's law, Darcy's law, and Fick's law. The coupled effects can be treated quantitatively together with the direct effects by the methods of the thermodynamics of irreversible processes. The extent of departure of fully coupled flows from predictions based only on consideration of direct effects depends on the strengths of the gradients driving flows, and may be significant at early times in backfills and in near-field geologic environments of repositories. Approximate calculations using data from the literature and reasonable assumptions of repository conditions indicate that thermal-osmotic and chemical-osmotic flows of water in semipermeable backfills may exceed Darcian flows by two to three orders of magnitude, while flows of solutes may be reduced greatly by ultrafiltration and chemical osmosis, relative to the flows predicted by advection and diffusion alone. In permeable materials, thermal diffusion may contribute to solute flows to a smaller, but still significant, extent.
Van der Waals interactions in hadron resonance gas: From nuclear matter to lattice QCD
Vovchenko, Volodymyr; Stoecker, Horst
2016-01-01
An extension of the ideal non-interacting hadron resonance gas (HRG) model is constructed which includes the attractive and repulsive van der Waals (VDW) interactions between baryons. This VDW-HRG model yields the nuclear liquid-gas transition at low temperatures and high baryon densities. The VDW parameters $a$ and $b$ are fixed by the ground state properties of nuclear matter, and the temperature dependence of various thermodynamic observables at zero chemical potential are calculated within VDW-HRG model. Compared to the ideal non-interacting HRG, the inclusion of VDW interactions between baryons leads to a qualitatively different behavior of 2nd and higher moments of fluctuations of conserved charges, in particular in the so-called crossover region $T \\sim 140 \\div 190$ MeV. For many observables this behavior resembles closely the results obtained from lattice QCD simulations. These results imply that VDW interactions play a crucial role in thermodynamics of hadron gas. Thus, the commonly performed compar...
Nuclear uncertainties in the spin-dependent structure functions for direct dark matter detection
Cerdeno, David G; Huh, Ji-Haeng; Peiro, Miguel
2012-01-01
We study the effect that uncertainties in the nuclear spin-dependent structure functions have in the determination of the dark matter (DM) parameters in a direct detection experiment. We show that different nuclear models that describe the spin-dependent structure function of specific target nuclei can lead to variations in the reconstructed values of the DM mass and scattering cross-section. We propose a parametrization of the spin structure functions that allows us to treat these uncertainties as variations of three parameters, with a central value and deviation that depend on the specific nucleus. The method is illustrated for germanium and xenon detectors with an exposure of 300 kg yr, assuming a hypothetical detection of DM and studying a series of benchmark points for the DM properties. We find that the effect of these uncertainties can be similar in amplitude to that of astrophysical uncertainties, especially in those cases where the spin-dependent contribution to the elastic scattering cross-section i...
Vasconcellos, C. A. Zen
2015-12-01
Nuclear science has developed many excellent theoretical models for many-body systems in the domain of the baryon-meson strong interaction for the nucleus and nuclear matter at low, medium and high densities. However, a full microscopic understanding of nuclear systems in the extreme density domain of compact stars is still lacking. The aim of this contribution is to shed some light on open questions facing the nuclear many-body problem at the very high density domain. Here we focus our attention on the conceptual issue of naturalness and its role in shaping the baryon-meson phase space dynamics in the description of the equation of state (EoS) of nuclear matter and neutrons stars. In particular, in order to stimulate possible new directions of research, we discuss relevant aspects of a recently developed relativistic effective theory for nuclear matter within Quantum Hadrodynamics (QHD) with genuine many-body forces and derivative natural parametric couplings. Among other topics we discuss in this work the connection of this theory with other known effective QHD models of the literature and its potentiality in describing a new physics for dense matter. The model with parameterized couplings exhausts the whole fundamental baryon octet (n, p, Σ-, Σ0, Σ+, Λ, Ξ-, Ξ0) and simulates n-order corrections to the minimal Yukawa baryon couplings by considering nonlinear self-couplings of meson fields and meson-meson interaction terms coupled to the baryon fields involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, ɸ), vector-isovector (ϱ) and scalar-isovector (δ) virtual sectors. Following recent experimental results, we consider in our calculations the extreme case where the Σ- experiences such a strong repulsion that its influence in the nuclear structure of a neutron star is excluded at all. A few examples of calculations of properties of neutron stars are shown and prospects for the future are discussed.
INFLUENCE OF THE DELTA-DELTA-MESON COUPLING ON NUCLEON AND DELTA PROPERTIES IN NUCLEAR-MATTER
DEJONG, F; MALFLIET, R
1994-01-01
We introduce a scalar and a vector DELTADELTA-meson vertex in the relativistic Dirac-Brueckner model for nuclear matter and investigate the consequences. We find small effects on the effective nucleon properties. The effects in the DELTA sector are more profound, although the DELTA is still effectiv
Veselsky, M.; Klimo, J.; Ma, Yu-Gang; Souliotis, G. A.
2016-12-01
The mechanism of fusion hindrance, an effect preventing the synthesis of superheavy elements in the reactions of cold and hot fusion, is investigated using the Boltzmann-Uehling-Uhlenbeck equation, where Coulomb interaction is introduced. A strong sensitivity is observed both to the modulus of incompressibility of symmetric nuclear matter, controlling the competition of surface tension and Coulomb repulsion, and to the stiffness of the density-dependence of symmetry energy, influencing the formation of the neck prior to scission. The experimental fusion probabilities were for the first time used to derive constraints on the nuclear equation of state. A strict constraint on the modulus of incompressibility of nuclear matter K0=240 -260 MeV is obtained while the stiff density-dependences of the symmetry energy (γ >1 ) are rejected.
Density Dependence of Nuclear Symmetry Energy
Behera, B; Tripathy, S K
2016-01-01
High density behaviour of nuclear symmetry energy is studied on the basis of a stiffest density dependence of asymmetric contribution to energy per nucleon in charge neutral $n+p+e+\\mu$ matter under beta equilibrium. The density dependence of nuclear symmetry energy obtained in this way is neither very stiff nor soft at high densities and is found to be in conformity with recent observations of neutron stars
Density dependence of nuclear symmetry energy
Behera, B.; Routray, T. R.; Tripathy, S. K.
2016-10-01
High density behavior of nuclear symmetry energy is studied on the basis of the stiffest density dependence of asymmetric contribution to energy per nucleon in charge neutral n + p + e + μ matter under beta equilibrium. The density dependence of nuclear symmetry energy obtained in this way is neither very stiff nor soft at high densities and is found to be in conformity with recent observations of neutron stars.
Nuclear matter EOS with light clusters within the mean-field approximation
Ferreira, Márcio
2013-01-01
The crust of a neutron star is essentially determined by the low-density region ($\\rho<\\rho_0\\approx0.15-0.16\\unit{fm}^{-3}$) of the equation of state. At the bottom of the inner crust, where the density is $\\rho\\lesssim0.1\\rho_0$, the formation of light clusters in nuclear matter will be energetically favorable at finite temperature. At very low densities and moderate temperatures, the few body correlations are expected to become important and light nuclei like deuterons, tritons, helions and $\\alpha$-particles will form. Due to Pauli blocking, these clusters will dissolve at higher densities $\\rho\\gtrsim 0.1\\rho_0$. The presence of these clusters influences the cooling process and quantities, such as the neutrino emissivity and gravitational waves emission. The dissolution density of these light clusters, treated as point-like particles, will be studied within the Relativistic Mean Field approximation. In particular, the dependence of the dissolution density on the clusters-meson couplings is studied.
First measurement of low momentum dielectrons radiated off cold nuclear matter
Agakishiev, G; Belver, D; Belyaev, A; Berger-Chen, J C; Blanco, A; Böhmer, M; Boyard, J L; Cabanelas, P; Chernenko, S; Dybczak, A; Epple, E; Fabbietti, L; Fateev, O; Finocchiaro, P; Fonte, P; Friese, J; Fröhlich, I; Galatyuk, T; Garzón, J A; Gernhäuser, R; Göbel, K; Golubeva, M; González-Díaz, D; Guber, F; Gumberidze, M; Heinz, T; Hennino, T; Holzmann, R; Ierusalimov, A; Iori, I; Ivashkin, A; Jurkovic, M; Kämpfer, B; Karavicheva, T; Koenig, I; Koenig, W; Kolb, B W; Kornakov, G; Kotte, R; Krása, A; Krizek, F; Krücken, R; Kuc, H; Kühn, W; Kugler, A; Kurepin, A; Ladygin, V; Lalik, R; Lang, S; Lapidus, K; Lebedev, A; Liu, T; Lopes, L; Lorenz, M; Maier, L; Mangiarotti, A; Markert, J; Metag, V; Michalska, B; Michel, J; Müntz, C; Naumann, L; Pachmayer, Y C; Palka, M; Parpottas, Y; Pechenov, V; Pechenova, O; Pietraszko, J; Przygoda, W; Ramstein, B; Reshetin, A; Rustamov, A; Sadovsky, A; Salabura, P; Schmah, A; Schwab, E; Siebenson, J; Sobolev, Yu G; Spataro, S; Spruck, B; Ströbele, H; Stroth, J; Sturm, C; Tarantola, A; Teilab, K; Tlusty, P; Traxler, M; Trebacz, R; Tsertos, H; Vasiliev, T; Wagner, V; Weber, M; Wendisch, C; Wüstenfeld, J; Yurevich, S; Zanevsky, Y
2012-01-01
We present data on dielectron emission in proton induced reactions on a Nb target at 3.5 GeV kinetic beam energy measured with HADES installed at GSI. The data represent the first high statistics measurement of dielectrons radiated from cold nuclear matter in a kinematic regime, where strong medium effects are expected. Combined with the good mass resolution of 2%, it is the first measurement sensitive to changes of the spectral functions of vector mesons, as predicted by models for hadrons at rest or small relative momenta. Comparing the e+e- invariant mass spectra to elementary p+p data, we observe for e+e- momenta P<0.8 GeV/c a strong modification of the shape of the spectra, which we attribute to an additional rho-like contribution and a decrease in omega yield. These opposite trends are tentatively interpreted as a strong coupling of the rho meson to baryonic resonances and an absorption of the omega meson, which are two aspects of in-medium modification of vector mesons.
On the fate of the matter reinserted within young nuclear stellar clusters
Hueyotl-Zahuantitla, Filiberto; Wunsch, Richard; Tenorio-Tagle, Guillermo; Silich, Sergiy
2013-01-01
This paper presents a hydrodynamical model describing the evolution of the gas reinserted by stars within a rotating young nuclear star cluster (NSC). We explicitly consider the impact of the stellar component to the flow by means of a uniform insertion of mass and energy within the stellar cluster. The model includes the gravity force of the stellar component and a central supermassive black hole (SMBH), and accounts for the heating from the central source of radiation and the radiative cooling of the thermalized gas. By using a set of parameters typical for NSCs and SMBHs in Seyfert galaxies our simulations show that a filamentary/clumpy structure is formed in the inner part of the cluster. This "torus" is Compton thick and covers a large fraction of the sky (as seen from the SMBH). In the outer parts of the cluster a powerful wind is produced, that inhibits the infall of matter from larger scales and thus the NSC-SMBH interplay occurs in isolation.
Cold nuclear matter effects and a modified form of the proximity approach
Gharaei, Reza
2016-01-01
The influence of the cold nuclear matter effects on the Coulomb barriers and also on the fusion cross sections of 47 fusion reactions are systematically investigated within the framework of the proximity formalism. For this purpose, I modify the original version of this formalism (Prox. 77) using a new analytical form of the universal function which is formulated based on the double-folding model with three density-dependent versions of the M3Y-type interactions, namely DDM3Y1, CDM3Y3 and BDM3Y1. It is found that when the Prox. 77 potential is accompanied by each of the formulated universal functions, the agreement between the theoretical and experimental data of the barrier height and also the fusion cross section increase for our selected fusion systems. The present study also provides appropriate conditions to explore theoretically the variation effects of the NM incompressibility constant $K$ on the calculated results caused by the Prox. 77 model. It is shown that the accuracy of this potential model for ...
ON THE FATE OF THE MATTER REINSERTED WITHIN YOUNG NUCLEAR STELLAR CLUSTERS
Hueyotl-Zahuantitla, Filiberto; Palous, Jan; Wuensch, Richard [Astronomical Institute, Academy of Sciences of the Czech Republic, Bocni II 1401, 141 31 Prague (Czech Republic); Tenorio-Tagle, Guillermo; Silich, Sergiy, E-mail: filibert@asu.cas.cz [Instituto Nacional de Astrofisica Optica y Electronica, AP 51, 72000 Puebla (Mexico)
2013-04-01
This paper presents a hydrodynamical model describing the evolution of the gas reinserted by stars within a rotating young nuclear star cluster (NSC). We explicitly consider the impact of the stellar component on the flow by means of a uniform insertion of mass and energy within the stellar cluster. The model includes the gravity force of the stellar component and a central supermassive black hole (SMBH), and accounts for the heating from the central source of radiation and the radiative cooling of the thermalized gas. By using a set of parameters typical for NSCs and SMBHs in Seyfert galaxies, our simulations show that a filamentary/clumpy structure is formed in the inner part of the cluster. This 'torus' is Compton-thick and covers a large fraction of the sky (as seen from the SMBH). In the outer parts of the cluster a powerful wind is produced that inhibits the infall of matter from larger scales and thus the NSC-SMBH interplay occurs in isolation.
Mass Predictions of Atomic Nuclei in the Infinite Nuclear Matter Model
Nayak, R C
2012-01-01
We present here the mass excesses, binding energies, one- and two- neutron, one and two- proton and \\alpha-particle separation energies of 6727 nuclei in the ranges 4 \\leq Z \\leq 120 and 8 \\leq A \\leq 303 calculated in the infinite nuclear matter model. Compared to our predictions of 1999 mass table, the present ones are obtained using larger data base of 2003 mass table of Wapstra and Audi and resorting to higher accuracy in the solutions of the \\eta-differential equations of the INM model. The local energy \\eta's supposed to carry signature of the characteristic properties of nuclei are found to possess the predictive capability. In fact \\eta-systematics reveal new magic numbers in the drip-line regions giving rise to new islands of stability supported by relativistic mean field theoretic calculations. This is a manifestation of a new phenomenon where shell-effect overcomes the instability due to repulsive components of the nucleon-nucleon force broadening the stability peninsula. The two-neutron separation...
Low-density homogeneous symmetric nuclear matter: Disclosing dinucleons in coexisting phases
Arellano, Hugo F. [University of Chile, Department of Physics, Santiago (Chile); DAM, CEA, Arpajon (France); Delaroche, Jean-Paul [DAM, CEA, Arpajon (France)
2015-01-01
The effect of in-medium dinucleon bound states on self-consistent single-particle fields in Brueckner, Bethe and Goldstone theory is investigated in symmetric nuclear matter at zero temperature. To this end, dinucleon bound state occurences in the {sup 1}S{sub 0} and {sup 3}SD{sub 1} channels are explicitly accounted for -within the continuous choice for the auxiliary fields- while imposing self-consistency in Brueckner-Hartree-Fock approximation calculations. Searches are carried out at Fermi momenta in the range 0 < k{sub F} ≤ 1.75 fm{sup -1}, using the Argonne v{sub 18} bare nucleon-nucleon potential without resorting to the effective-mass approximation. As a result, two distinct solutions meeting the self-consistency requirement are found with overlapping domains in the interval 0.130 fm{sup -1} ≤ k{sub F} ≤ 0.285 fm{sup -1}, corresponding to mass densities between 10{sup 11.4} and 10{sup 12.4} g cm{sup -3}. Effective masses as high as three times the nucleon mass are found in the coexistence domain. The emergence of superfluidity in relationship with BCS pairing gap solutions is discussed. (orig.)
Indications for a critical end point in the phase diagram for hot and dense nuclear matter.
Lacey, Roy A
2015-04-10
Excitation functions for the Gaussian emission source radii difference (R_{out}^{2}-R_{side}^{2}) obtained from two-pion interferometry measurements in Au+Au (sqrt[s_{NN}]=7.7-200 GeV) and Pb+Pb (sqrt[s_{NN}]=2.76 TeV) collisions are studied for a broad range of collision centralities. The observed nonmonotonic excitation functions validate the finite-size scaling patterns expected for the deconfinement phase transition and the critical end point (CEP), in the temperature versus baryon chemical potential (T,μ_{B}) plane of the nuclear matter phase diagram. A finite-size scaling (FSS) analysis of these data suggests a second order phase transition with the estimates T^{cep}∼165 MeV and μ_{B}^{cep}∼95 MeV for the location of the critical end point. The critical exponents (ν≈0.66 and γ≈1.2) extracted via the same FSS analysis place this CEP in the 3D Ising model universality class.
Benvenuto, O.G. (Facultad de Ciencias Astronomica y Geofisicas, Universidad Nacional de La Plata, La Plata, Buenos Aires (Argentina)); Civitarese, O.; Reboiro, M. (Departamento de Fisica, Universidad Nacional de La Plata, La Plata, Buenos Aires (Argentina))
1993-05-01
The influence of finite temperature nuclear effects upon the adiabatic index, for a system of nuclei, nucleons, and leptons, is discussed. It is found that the inclusion of temperature-dependent nuclear binding energies affects the behavior of the adiabats and of the adiabatic index, particularly, at low entropies.
Unveiling the equation of state of nuclear matter with binary neutron stars
Galeazzi, F.; Rezzolla, L. [Frankfurt Univ., Frankfurt am Main (Germany). Inst. for Theoretical Physics
2016-11-01
the electromagnetic counterparts of these events, will shed some light on the engine that powers short gamma ray bursts. The properties of matter at the ultra high densities and low temperatures reached inside neutron stars cannot be observed in a conventional laboratory on Earth and for this reason accurate GW astronomy is a unique opportunity to constraint the current knowledge of the equation of state that describes these regimes. But GWs are not the only observable that can be linked to the equation of state of neutron star matter, during the violent merger of two neutron stars large amount of neutron rich material is ejected leading to the creation of heavy elements. While undergoing radioactive decay, these elements emit in near-infrared and optical bands of the electromagnetic spectrum. The characteristics of these emissions are strongly affected by the composition, temperature and total mass of the dynamically ejected material and for this reason we have developed a series of cutting-edge methods to simulate in full general relativity the inspiral, merger and collapse including relativistic hydrodynamics, the use of nuclear finite-temperature equations of state and an approximate treatment of neutrino emission and absorption. Such simulations require the use of computational facilities such as the one at LRZ where we make use of thousands of CPUs every week for each of our simulations and producing several terabytes of data. This data are processed in situ at the LRZ facility and, for a more detailed analysis, transferred to our local cluster in Frankfurt am Main (LOEWE).
Chavarria, A E; Pena, J; Privitera, P; Robinson, A E; Scholz, B; Sengul, C; Zhou, J; Estrada, J; Izraelevitch, F; Tiffenberg, J; Neto, J R T de Mello; Machado, D Torres
2016-01-01
We report a measurement of the ionization efficiency of silicon nuclei recoiling with sub-keV kinetic energy in the bulk silicon of a charge-coupled device (CCD). Nuclear recoils were produced by low-energy neutrons ($<$24 keV) from a $^{124}$Sb-$^{9}$Be photoneutron source, and their ionization signal was measured down to 60 eV electron-equivalent. This energy range, previously unexplored, is relevant for the detection of low-mass dark matter particles. The measured efficiency was found to deviate from the extrapolation to low energies of Lindhard model. This measurement also demonstrates the sensitivity to nuclear recoils of CCDs employed by DAMIC, a dark matter direct detection experiment located in the SNOLAB underground laboratory.
Many-body forces, isospin asymmetry and dense hyperonic matter
Gomes, R O; Schramm, S; Vascconcellos, C A Z
2015-01-01
The equation of state (EoS) of asymmetric nuclear matter at high densities is a key topic for the description of matter inside neutron stars. The determination of the properties of asymmetric nuclear matter, such as the symmetry energy ($a_{sym}$) and the slope of the symmetry energy ($L_0$) at saturation density, has been exaustively studied in order to better constrain the nuclear matter EoS. However, differently from symmetric matter properties that are reasonably constrained, the symmetry energy and its slope still large uncertainties in their experimental values. Regarding this subject, some studies point towards small values of the slope of the symmetry energy, while others suggest rather higher values. Such a lack of agreement raised a certain debate in the scientific community. In this paper, we aim to analyse the role of these properties on the behavior of asymmetric hyperonic matter. Using the formalism presented in Ref. (R.O. Gomes et al 2014}, which considers many-body forces contributions in the ...
Li, Xiao-ya; Wang, Bin; Sun, Win-min; Zong, Hong-shi
2008-01-01
The thermal properties of cold dense nuclear matter are investigated with chiral perturbation theory. The evolution curves for the baryon number density, baryon number susceptibility, pressure and the equation of state are obtained. The chiral condensate is calculated and our result shows that when the baryon chemical potential goes beyond $1150 \\mathrm{MeV}$, the absolute value of the quark condensate decreases rapidly, which indicates a tendency of chiral restoration.
Tan, Ngo Hai; Khoa, Dao T; Margueron, Jerome
2016-01-01
A consistent Hartree-Fock study of the equation of state (EOS) of asymmetric nuclear matter at finite temperature has been performed using realistic choices of the effective, density dependent nucleon-nucleon (NN) interaction, which were successfully used in different nuclear structure and reaction studies. Given the importance of the nuclear symmetry energy in the neutron star formation, EOS's associated with different behaviors of the symmetry energy were used to study hot asymmetric nuclear matter. The slope of the symmetry energy and nucleon effective mass with increasing baryon density was found to affect the thermal properties of nuclear matter significantly. Different density dependent NN interactions were further used to study the EOS of hot protoneutron star (PNS) matter of the $npe\\mu\
Vasconcellos, C. A. Zen, E-mail: cesarzen@cesarzen.com [Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, 91501-970, Porto Alegre (Brazil); International Center for Relativistic Astrophysics Network (ICRANet), Piazza della Repubblica 10, 65122 Pescara (Italy)
2015-12-17
Nuclear science has developed many excellent theoretical models for many-body systems in the domain of the baryon-meson strong interaction for the nucleus and nuclear matter at low, medium and high densities. However, a full microscopic understanding of nuclear systems in the extreme density domain of compact stars is still lacking. The aim of this contribution is to shed some light on open questions facing the nuclear many-body problem at the very high density domain. Here we focus our attention on the conceptual issue of naturalness and its role in shaping the baryon-meson phase space dynamics in the description of the equation of state (EoS) of nuclear matter and neutrons stars. In particular, in order to stimulate possible new directions of research, we discuss relevant aspects of a recently developed relativistic effective theory for nuclear matter within Quantum Hadrodynamics (QHD) with genuine many-body forces and derivative natural parametric couplings. Among other topics we discuss in this work the connection of this theory with other known effective QHD models of the literature and its potentiality in describing a new physics for dense matter. The model with parameterized couplings exhausts the whole fundamental baryon octet (n, p, Σ{sup −}, Σ{sup 0}, Σ{sup +}, Λ, Ξ{sup −}, Ξ{sup 0}) and simulates n-order corrections to the minimal Yukawa baryon couplings by considering nonlinear self-couplings of meson fields and meson-meson interaction terms coupled to the baryon fields involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, Φ), vector-isovector (ϱ) and scalar-isovector (δ) virtual sectors. Following recent experimental results, we consider in our calculations the extreme case where the Σ{sup −} experiences such a strong repulsion that its influence in the nuclear structure of a neutron star is excluded at all. A few examples of calculations of properties of neutron stars are shown and prospects for the future are discussed.
Andronic, A; Braun-Munzinger, P; Cleymans, J; Fukushima, K; McLerran, L D; Oeschler, H; Pisarski, R D; Redlich, K; Sasaki, C; Satz, H; Stachel, J
2009-01-01
We argue that features of hadron production in relativistic nuclear collisions, mainly at CERN-SPS energies, may be explained by the existence of three forms of matter: Hadronic Matter, Quarkyonic Matter, and a Quark-Gluon Plasma. We suggest that these meet at a triple point in the QCD phase diagram. Some of the features explained, both qualitatively and semi-quantitatively, include the curve for the decoupling of chemical equilibrium, along with the non-monotonic behavior of strange particle multiplicity ratios at center of mass energies near 10 GeV. If the transition(s) between the three phases are merely crossover(s), the triple point is only approximate.
Nuclear structure far from stability
Vretenar, D
2005-01-01
Modern nuclear structure theory is rapidly evolving towards regions of exotic short-lived nuclei far from stability, nuclear astrophysics applications, and bridging the gap between low-energy QCD and the phenomenology of finite nuclei. The principal objective is to build a consistent microscopic theoretical framework that will provide a unified description of bulk properties, nuclear excitations and reactions. Stringent constraints on the microscopic approach to nuclear dynamics, effective nuclear interactions, and nuclear energy density functionals, are obtained from studies of the structure and stability of exotic nuclei with extreme isospin values, as well as extended asymmetric nucleonic matter. Recent theoretical advances in the description of structure phenomena in exotic nuclei far from stability are reviewed.
Nuclear structure far from stability
Vretenar, D.
2005-04-01
Modern nuclear structure theory is rapidly evolving towards regions of exotic shortlived nuclei far from stability, nuclear astrophysics applications, and bridging the gap between low-energy QCD and the phenomenology of finite nuclei. The principal objective is to build a consistent microscopic theoretical framework that will provide a unified description of bulk properties, nuclear excitations and reactions. Stringent constraints on the microscopic approach to nuclear dynamics, effective nuclear interactions, and nuclear energy density functionals, are obtained from studies of the structure and stability of exotic nuclei with extreme isospin values, as well as extended asymmetric nucleonic matter. Recent theoretical advances in the description of structure phenomena in exotic nuclei far from stability are reviewed.
2010-01-29
... Gamma Nuclear Radiology; Confirmatory Order Modifying License (Effective Immediately) I Beta Gamma Nuclear Radiology (BGNR) (Licensee) is the holder of medical License No. 52-25542-01, issued by the...
Dielectron spectroscopy in cold nuclear matter; Dielektronen-Spektroskopie in kalter Kernmaterie
Weber, Michael
2011-02-18
The subject of this thesis is the production of light mesons and baryonic resonances in p+Nb collisions at E{sub kin}=3.5 GeV via their decay in e{sup +}e{sup -} pairs and their kinematic observables. This reaction system in particular allows for the production of vector mesons in approximately cold nuclear matter and the study of expected in-medium effects. The experiment was conducted at the dielectron spectrometer HADES at GSI Helmholtzzentrum fuer Schwerionenforschung GmbH. In total, 64827{+-}294 signal pairs with an pair opening angle {alpha}{sub ee}>9 and e{sup +}/e{sup -} momenta 80
550 MeV/c{sup 2}). Inclusive e{sup +}e{sup -} production cross sections inside the HADES acceptance were calculated by analyzing the simultaneously measured charged pions and by comparing the obtained {pi}{sup -} yields to an independent data set. For the vector mesons one obtains {sigma}{sub {omega}}{sub ,acc}=(65.8{+-}4.6(stat){+-}18.4(sys)) nb and {sigma}{sub {phi}}{sub ,acc}=(7.8{+-}1.7(stat){+-}2.2 (sys)) nb. A comparison with cross sections in free p+p collisions at E{sub kin}=3.5 GeV results in the nuclear modification factors R{sub pA} as well as their scaling {alpha} with the nuclear mass number A and their dependence on the pair lab momenta p{sub ee}. While absorption is not important for the {phi} meson ({alpha}{sub {phi}} {approx}1), scaling factors {alpha} {approx}0.7 are established for the quasi free decay (p{sub ee}>800 MeV/c) of all other hadrons. From an adapted Glauber model calculation a minimal absorption >or similar 35% of all contributing hadrons in nuclei can be deduced. At smaller pair momenta different scaling factors are obtained. The {omega} meson is absorbed with a higher probability ({alpha}{sub {omega}}=0.62), but for all other sources above the {pi}{sup 0
2013-05-14
... Nuclear Plant (FNP), Units 1 and 2, in accordance with conditions specified therein. The facility is... investigation, the NRC issued a letter to FNP dated January 9, 2013, which documented an apparent violation that occurred during calendar years 2010 and 2011. Specifically, FNP Technical Specification 5.4.1.a,...
2011-03-30
... asked the NRC to prevent Vermont Yankee from resuming power production until the following efforts have... assigned to the NRC's Office of Nuclear Reactor Regulation (NRR) for review. NRR's Petition Review Board.... Tritium is another name for the radioactive nuclide hydrogen-3. Tritium occurs naturally in...
2006-11-01
Astronomers are reporting remarkable new findings that shed light on a decade-long debate about one kind of supernovae, the explosions that mark a star's final demise: does the star die in a slow burn or with a fast bang? From their observations, the scientists find that the matter ejected by the explosion shows significant peripheral asymmetry but a nearly spherical interior, most likely implying that the explosion finally propagates at supersonic speed. These results are reported today in Science Express, the online version of the research journal Science, by Lifan Wang, Texas A&M University (USA), and colleagues Dietrich Baade and Ferdinando Patat from ESO. "Our results strongly suggest a two-stage explosion process in this type of supernova," comments Wang. "This is an important finding with potential implications in cosmology." ESO PR Photo 44/06 ESO PR Photo 44/06 Clumpy Explosion (Artist's Impression) Using observations of 17 supernovae made over more than 10 years with ESO's Very Large Telescope and the McDonald Observatory's Otto Struve Telescope, astronomers inferred the shape and structure of the debris cloud thrown out from Type Ia supernovae. Such supernovae are thought to be the result of the explosion of a small and dense star - a white dwarf - inside a binary system. As its companion continuously spills matter onto the white dwarf, the white dwarf reaches a critical mass, leading to a fatal instability and the supernova. But what sparks the initial explosion, and how the blast travels through the star have long been thorny issues. The supernovae Wang and his colleagues observed occurred in distant galaxies, and because of the vast cosmic distances could not be studied in detail using conventional imaging techniques, including interferometry. Instead, the team determined the shape of the exploding cocoons by recording the polarisation of the light from the dying stars. Polarimetry relies on the fact that light is composed of electromagnetic waves
Bernardos, P. [Universidad de Cantabria, Departamento de Matematica Aplicada y Ciencias de la Computacion, 39005, Santander (Spain); Fomenko, V.N. [St Petersburg University for Railway Engineering, Department of Mathematics, 190031, St Petersburg (Russian Federation); Marcos, S.; Niembro, R. [Universidad de Cantabria, Departamento de Fisica Moderna, 39005, Santander (Spain); Lopez-Quelle, M. [Universidad de Cantabria, Departamento de Fisica Aplicada, 39005, Santander (Spain); Savushkin, L.N. [St Petersburg University for Telecommunications, Department of Physics, 191186, St Petersburg (Russian Federation)
2001-02-01
An effective nuclear model describing {omega}-, {rho}- and axial-mesons as gauge fields is applied to nuclear matter in the relativistic Hartree-Fock approximation. The isoscalar two-pion exchange is simulated by a scalar field s similar to that used in the conventional relativistic mean-field approach. Two more scalar fields are essential ingredients of the present treatment: the {sigma}-field, the chiral partner of the pion, and the {sigma}-field, the Higgs field for the {omega}-meson. Two versions of the model are used depending on whether the {sigma}-field is considered as a dynamical variable or 'frozen', by taking its mass as infinite. The model contains four free parameters in the first case and three in the second one which are fitted to the nuclear matter saturation conditions. The nucleon and meson effective masses, compressibility modulus and symmetry energy are calculated. The results prove the reliability of the Dirac-Hartree-Fock approach within the linear realization of the chiral symmetry. (author)
Nuclear forces and the properties of matter at high temperature and density
Rayet, M.; Arnould, M.; Paulus, G.; Tondeur, F.
1982-12-01
We present two Skyrme-type forces which are particularly well suited for the description of presupernova core or matter in nascent neutron star. They are compared to other forces currently used in this field, with regard to finite nuclei and infinite matter properties, and to the coexistence of nuclei in a hot and dense nucleon gas.
CAVALIER-SMITH, THOMAS
2005-01-01
• Background Nuclear genome size varies 300 000-fold, whereas transcriptome size varies merely 17-fold. In the largest genomes nearly all DNA is non-genic secondary DNA, mostly intergenic but also within introns. There is now compelling evidence that secondary DNA is functional, i.e. positively selected by organismal selection, not the purely neutral or ‘selfish’ outcome of mutation pressure. The skeletal DNA theory argued that nuclear volumes are genetically determined primarily by nuclear D...
Cluster variational method for nuclear matter with the three-body force
Takano, M.; Togashi, H.; Yamamuro, S.; Nakazato, K.; Suzuki, H. [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan and Department of Physics and Applied Physics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Department of Physics and Applied Physics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510 (Japan)
2012-11-12
We report the current status of our project to construct a new nuclear equation of state (EOS), which may be used for supernova numerical simulations, based on the cluster variational method starting from the realistic nuclear Hamiltonian. We also take into account a higher-order correction to the energy of the nuclear three-body force (TBF). The nuclear EOSs with and without the higher-order TBF correction at zero temperature are very close to each other, when parameters are readjusted so as to reproduce the empirical saturation data.
Electronic and nuclear contributions in sub-GeV dark matter scattering: A case study with hydrogen
Chen, Jiunn-Wei; Liu, C -P; Wu, Chih-Liang; Wu, Chih-Pan
2015-01-01
Scattering of sub-GeV dark matter (DM) particles with hydrogen atoms is studied in this paper. The interactions of DM with electrons and nucleons are both included and formulated in a general framework based on nonrelativistic effective field theory. On the assumption of same dark matter coupling strengths, it is found that DM-electron interactions dominate the inelastic atomic transitions to discrete excited states and ionization continuum around the threshold regions, and DM-nucleon interactions become more important with increasing energy and dominate in elastic scattering. The conclusion should apply, qualitatively, to practical detector species so that electronic and nuclear contributions in DM scattering processes can be disentangled, while issues including binding effects and recoil mechanism in many-body systems will require further detailed calculations.
Excitation function of elliptic flow in Au+Au collisions and the nuclear matter equation of state
Andronic, A; Basrak, Z; Bastid, N; Benabderrahmane, L; Berek, G; Caplar, R; Cordier, E; Crochet, Philippe; Dupieux, P; Dzelalija, M; Fodor, Z; Gasparic, I; Grishkin, Yu; Hartmann, O N; Herrmann, N; Hildenbrand, K D; Hong, B; Kecskeméti, J; Kim, Y J; Kirejczyk, M; Koczón, P; Korolija, M; Kotte, R; Kress, T; Lebedev, A; Leifels, Y; López, X; Mangiarotti, A; Merschmeyer, M; Neubert, W; Pelte, D; Petrovici, M; Rami, F; Reisdorf, W; de Schauenburg, B; Schüttauf, A; Seres, Z; Sikora, B; Sim, K S; Simion, V; Siwek-Wilczynska, K; Smolyankin, V T; Stockmeier, M R; Stoicea, G; Tyminski, Z; Wagner, P; Wisniewski, K; Wohlfarth, D; Xiao, Z G; Yushmanov, I E; Zhilin, A
2005-01-01
We present measurements of the excitation function of elliptic flow at midrapidity in Au+Au collisions at beam energies from 0.09 to 1.49 GeV per nucleon. For the integral flow, we discuss the interplay between collective expansion and spectator shadowing for three centrality classes. A complete excitation function of transverse momentum dependence of elliptic flow is presented for the first time in this energy range, revealing a rapid change with incident energy below 0.4 AGeV, followed by an almost perfect scaling at the higher energies. The equation of state of compressed nuclear matter is addressed through comparisons to microscopic transport model calculations.
Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter
Holt, Jeremy W., E-mail: jwholt.phys@gmail.com [Department of Physics, University of Washington, Seattle, 98195 (United States); Rho, Mannque [Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette (France); Weise, Wolfram [Physik Department, Technische Universität München, D-85747 Garching (Germany); ECT*, Villa Tambosi, I-38123 Villazzano (Italy)
2016-03-21
Chiral symmetry, first entering in nuclear physics in the 1970s for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early, germinal idea conceived with the soft-pion theorems in the pre-QCD era has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: “it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme”. Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.
Momentum dependence of hadronic production of the {phi}-meson and its width in nuclear matter
Hartmann, Michael, E-mail: m.hartmann@fz-juelich.de [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Centre for Hadron Physics (Germany); Kaempfer, Burkhard [Institut fuer Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Kiselev, Yury T. [Institute for Theoretical and Experimental Physics (Russian Federation); Magas, Vacas K. [Universitat de Barcelona, Departament d' Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos (Spain); Paryev, Eduard Ya. [Russian Academy of Science, Institute for Nuclear Research (Russian Federation); Polyanskiy, Andrey [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Centre for Hadron Physics (Germany); Roca, Luis [Universidad de Murcia, Departamento de Fisica (Spain); Schade, Henry [Institut fuer Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Wilkin, Colin [UCL, Physics and Astronomy Department (United Kingdom)
2012-05-15
Information on the properties of the {phi} meson in the nuclear environment has been derived from its production in proton collisions with C, Cu, Al, and Au nuclear targets. The experiment was carried out with 2.83 GeV protons at the Cooler Synchrotron COSY, with the {phi} being detected via its K{sup + }K{sup }- decay using the ANKE magnetic spectrometer. The measured dependence of the production cross section on the nuclear mass number has been compared with calculations within three different nuclear models. These suggest a significant broadening of the width of the {phi} in medium relative to its vacuum value. The ANKE results obtained in the momentum range 0.6 < p{sub {phi}} < 1.6 GeV/c are compared with data from photoproduction experiments at slightly higher momenta.
Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter
Holt, Jeremy W; Weise, Wolfram
2014-01-01
Chiral symmetry, first entering in nuclear physics in the 1970's for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early germinal idea, conceived with the soft-pion theorems in the pre-QCD era, has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: "it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme." Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.
The nuclear matter effects in {pi}{sup 0} photoproduction at high energies
Rodrigues, T.E.; Arruda-Neto, J.D.T.; Garcia, C. [University of Sao Paulo, SP (Brazil). Physics Institute; Mesa, J. [UNESP, Botucatu, SP (Brazil). Dept. de Fisica e Biofisica; Shtejer, K. [Center of Applied Studies for Nuclear Developments (CEADEN), Havana (Cuba); Dale, D. [Idaho State University (United States); Nakagawa, I. [RIKEN, Wako (Japan)
2006-12-15
The in-medium influence on {pi}{sup 0} photoproduction from spin zero nuclei is carefully studied in the GeV range using a straightforward Monte Carlo analysis. The calculation takes into account the relativistic nuclear recoil for coherent mechanisms (electromagnetic and nuclear amplitudes) plus a time dependent multi-collisional intranuclear cascade approach (MCMC) to describe the transport properties of mesons produced in the surroundings of the nucleon. A detailed analysis of the meson energy spectra for the photoproduction on {sup 12}C at 5.5 GeV indicates that both the Coulomb and nuclear coherent events are associated with a small energy transfer to the nucleus (< or {approx} 5 MeV), while the contribution of the nuclear incoherent mechanism is vanishing small within this kinematical range. The angular distributions are dominated by the Primakoff peak at extreme forward angles, with the nuclear incoherent process being the most important contribution above {theta}{sub {pi}}{sup 0} > or {approx} 2{sup 0}. Such consistent Monte Carlo approach provides a suitable method to clean up nuclear backgrounds in some recent high precision experiments, such as the Prim Ex experiment at the Jefferson Laboratory Facility. (author)
Furumoto, T; Yamamoto, Y
2016-01-01
We investigate the property of the high-density nuclear matter probed by the nucleus-nucleus elastic scattering in the framework of the double-folding (DF) model with the complex $G$-matrix interaction. The medium effect including three-body-force (TBF) effect is investigated with present two methods based on the frozen density approximation. With the both methods, the medium effect in the high density region is clearly seen on the potential and the elastic cross section of the $^{16}$O + $^{16}$O system at $E/A =$ 70 MeV. The crucial role of the medium effect for the high-density nuclear matter is also confirmed with other effective nucleon-nucleon ($NN$) interactions. In addition, present methods are applied to other heavy-ion elastic scattering systems. Again, the medium effect in the high-density region is clearly seen in the heavy-ion elastic cross section. The effect on the elastic cross section becomes invisible with the increase of the target mass and the incident energy within existing the experiment...
Barnea, N
2000-01-01
A system of nontopological solitons interacting through meson exchange is used to model dense nuclear matter. The models studied are of the Friedberg-Lee type, which exhibit dynamical bag formation due to the coupling of quarks to a scalar composite gluon field sigma. It is shown in the Wigner-Seitz approximation that the high density behavior of such models depends essentially on the leading power of the quark-sigma coupling vertex. By insisting that the parameters of any soliton model be chosen to reproduce single nucleon properties, this high-density behavior then selects a promising class of models that better fit the empirical results -- the chiral chromodielectric models. The presence of a scalar meson is shown to provide saturation as well as an increase of the proton charge radius with nuclear density. We go beyond the usual Wigner-Seitz approximation by introducing the disorder necessary to reproduce the liquid state, using the significant structure theory of physical chemistry. We study nuclear matt...
Some Aspects of Nuclear Structure in Relativistic Approach
MAZhong-Yu; RONGJian; CAOLi-Gang; CHENBao-Qiu; LIULing
2004-01-01
The nucleon effective interaction in the nuclear medium is investigated in the framework of the DiracBrueckner-Hartree-Fock (DBHF) approach. A new decomposition of the Dirac structure of nucleon self-energy in the DBHF is adopted for asymmetric nuclear matter. The properties of finite nuclei are investigated with the nucleon effective interaction. The agreement with the experimental data is satisfactory. The relativistic microscopic optical potential in asymmetric nuclear matter is investigated in the DBHF approach. The proton scattering from nuclei is calculated and compared with the experimental data. A proper treatment of the resonant continuum for exotic nuclei is studied. The width effect of the resonant continuum on the pairing correlation is discussed. The quasiparticle relativistic random phase approximation based on the relativistic mean-field ground state in the response function formalism is also addressed.
Kizka, V A
2015-01-01
The mathematical foundation of the method not by eye comparison of an experimental data with theoretical predictions is presented in this article. The rule of mixing of different theories to increase a predictive power of theory is presented also. The method of separation of subprocesses having insignificant, negligible contribution to the total process is shown. The published theoretical data of few models (PHSD/HSD both with and without chiral symmetry restoration), applied to experimental data from collisions of nuclei from SIS to LHC energies, were used for demonstration of this method, what allowed to localize a possible phase singularities of nuclear matter created in the central nucleus-nucleus collisions: The ignition of the Quark-Gluon Plasma's (QGP) drop begins already at SIS/BEVALAC energies. This drop of QGP occupies only small part of the whole volume of a fireball created at SIS energies. The phase transition between QGP and Quarkyonic matter was found at energy around $\\sqrt{s_{NN}}\\,=\\,$3.5 Ge...
Elliott, J B; Moretto, L G; Phair, L
2012-01-01
Infinite, neutron-proton symmetric, neutral nuclear matter has a critical temperature of 17.9+-0.4 MeV, a critical density of 0.06+-0.01 nucleons per cubic fermi and a critical pressure of 0.31+-0.07 MeV per cubic fermi. These values have been obtained from our analysis of data from six different reactions studied in three different experiments: two "compound nuclear" reactions: 58Ni+12C-->70Se and 64Ni+12C-->76Se (both performed at the LBNL 88" Cyclotron) and four "multifragmentation" reactions: 1 GeV/c pi+197Au (performed by the ISiS collaboration), 1 AGeV 197Au+C, 1 AGeV 139La+12C and 1 AGeV 84Kr+12C (all performed by the EOS collaboration). The charge yields of all reactions as a function of excitation energy were fit with a version of Fisher's droplet model modified to account for the dual components of the fluid (i.e. protons and neutrons), Coulomb effects, finite size effects and angular momentum arising from the nuclear collisions.
Alner, G J; Bewick, A; Bungau, C; Camanzi, B; Carson, M J; Cashmore, R J; Chagani, H; Chepel, V; Cline, D; Davidge, D; Davies, J C; Daw, E; Dawson, J; Durkin, T; Edwards, B; Gamble, T; Gao, J; Ghag, C; Howard, A S; Jones, W G; Joshi, M; Korolkova, E V; Kudryavtsev, V A; Lawson, T; Lebedenko, V N; Lewin, J D; Lightfoot, P; Lindote, A; Liubarsky, I; Lopes, M I; Lüscher, R; Majewski, P; Mavrokoridis, K; McMillan, J E; Morgan, B; Muna, D; Murphy, A S J; Neves, F; Nicklin, G G; Ooi, W; Paling, S M; Cunha, J P; Plank, S J S; Preece, R M; Quenby, J J; Robinson, M; Sergiampietri, F; Silva, C; Solovov, V N; Smith, N J T; Smith, P F; Spooner, N J C; Sumner, T J; Thorne, C; Tovey, D R; Tziaferi, E; Walker, R J; Wang, H; White, J; Wolfs, F L H
2007-01-01
Results are presented from the first underground data run of ZEPLIN-II, a 31 kg two phase xenon detector developed to observe nuclear recoils from hypothetical weakly interacting massive dark matter particles. Discrimination between nuclear recoils and background electron recoils is afforded by recording both the scintillation and ionisation signals generated within the liquid xenon, with the ratio of these signals being different for the two classes of event. This ratio is calibrated for different incident species using an AmBe neutron source and Co-60 gamma-ray sources. From our first 31 live days of running ZEPLIN-II, the total exposure following the application of fiducial and stability cuts was 225 kgxdays. A background population of radon progeny events was observed in this run, arising from radon emission in the gas purification getters, due to radon daughter ion decays on the surfaces of the walls of the chamber. An acceptance window, defined by the neutron calibration data, of 50% nuclear recoil acce...
D meson mass increase by restoration of chiral symmetry in nuclear matter
Suzuki, Kei; Oka, Makoto
2015-01-01
Spectral functions of the pseudoscalar $D$ meson in the nuclear medium are analyzed using QCD sum rules and the maximum entropy method. This approach enables us to extract the spectral functions without any phenomenological assumption, and thus to visualize in-medium modification of the spectral functions directly. It is found that the reduction of the chiral condensates of dimension 3 and 5 causes the masses of both $D^+$ and $D^-$ mesons to grow gradually at finite density. Additionally, we construct charge-conjugate-projected sum rules and find a $D^+$-$D^-$ mass splitting of about -15 MeV at nuclear saturation density.
Exact solution of equations for proton localization in neutron star matter
Kubis, Sebastian
2016-01-01
The rigorous treatment of proton localization phenomenon in asymmetric nuclear matter is presented. The solution of proton wave function and neutron background distribution is found by the use of the extended Thomas-Fermi approach. The minimum of energy is obtained in the Wigner- Seitz approximation of spherically symmetric cell. The analysis of three different nuclear models suggests that the proton localization is likely to take place in the interior of neutron star.
2011-09-01
... Gulf nuclear power plants; 2. Debriefing the employee in question on the results of the company's... apparent cause evaluation relating to the company's ECP investigation; 5. Holding a management meeting with... NRC review. 6. By no later than December 31, 2012, Entergy will conduct a safety culture survey at...
2012-05-01
... The NRC has issued a general license to Southern Nuclear Operating Company, Inc. (SNC), authorizing... part 72. This Order is being issued to SNC because it has identified near-term plans to store spent... accommodate the specific circumstances existing at SNC's facility, to achieve the intended objectives...
Directional detection of dark matter in universal bound states
Laha, Ranjan
2015-01-01
It has been suggested that several small-scale structure anomalies in $\\Lambda$CDM cosmology can be solved by strong self-interaction between dark matter particles. It was shown by Braaten and Hammer that the presence of a near threshold S-wave resonance can make the scattering cross section at nonrelativistic speeds come close to saturating the unitarity bound. This can result in the formation of a stable bound state of two asymmetric dark matter particles (which we call darkonium). Laha and Braaten studied the nuclear recoil energy spectrum in dark matter direct detection experiments due to this incident bound state. Here we study the angular recoil spectrum, and show that it is uniquely determined up to normalization by the S-wave scattering length. Observing this angular recoil spectrum in a dark matter directional detection experiment will uniquely determine many of the low-energy properties of dark matter independent of the underlying dark matter microphysics.
Tachyon Pole in σ Meson Propagator in Nuclear Matter in the Relativistic σ—ω Model
CHENWei; AIBao－Quan; 等
2001-01-01
The conditions that the tachyon pole of the σ meson propagator in nuclear matter appears are studied in the one-loop approximation in the relativistic σ-ω model.Different from the results of the previous paper,we find that the effect of the constant a in the self-interaction,U(σ)=aσ+1/2! bσ2+1/3!cσ3+1/4!dσ4,of the σ meson cannot be neglected.It determines the critical density where techyon appears.The smaller the a,the larger the critical density.The binding energy,pressure,incompressibility coefficient,nucleon effective mass are calculated and the relation between parameters to the tachyon pole is also studied.
Cold and hot nuclear matter effects on charmonium production in p+Pb collisions at LHC energy
Chen, Baoyi; Guo, Tiecheng; Liu, Yunpeng; Zhuang, Pengfei
2017-02-01
We study cold and hot nuclear matter effects on charmonium production in p+Pb collisions at √{sNN} = 5.02 TeV in a transport approach. At the forward rapidity, the cold medium effect on all the c c bar states and the hot medium effect on the excited c c bar states only can explain well the J / ψ and ψ‧ yield and transverse momentum distribution measured by the ALICE collaboration, and we predict a significantly larger ψ‧pT broadening in comparison with J / ψ. However, we can not reproduce the J / ψ and ψ‧ data at the backward rapidity with reasonable cold and hot medium effects.
Low-energy pions in nuclear matter and {pi}{pi} photoproduction within a BUU transport model
Buss, O.; Alvarez-Ruso, L.; Muehlich, P.; Mosel, U. [Universitaet Giessen, Institut fuer Theoretische Physik (Germany)
2006-08-15
A description of the low-energy scattering of pions and nuclei within a BUU transport model is presented. Implementing different scenarios of medium modifications, the mean free path of pions in nuclear matter at low momenta and pion absorption reactions on nuclei have been studied and compared to data and to results obtained via quantum-mechanical scattering theory. We show that even in a regime of a long pionic wavelength the semi-classical transport model is still a reliable framework for pion kinetic energies greater than {approx}20-30 MeV. Results are presented on {pi}-absorption cross-sections in the regime of 10 MeV{<=}T{sup {pi}}{sub kin}{<=}130 MeV and on photon-induced {pi}{pi} production at incident beam energies of 400-500 MeV. (orig.)
Kang, Zhong-Bo; Xing, Hongxi
2015-01-01
Recent measurements of the centrality and rapidity dependence of single inclusive jet production in p+Pb collisions at the LHC have revealed large and non-trivial nuclear modification of the production cross section for this process. In this paper, we explore to what extent such nuclear modification can be understood by the framework of standard cold nuclear matter effects, in particular initial-state cold nuclear matter energy loss. We demonstrate quantitatively that theoretical calculations which include medium-induced radiative corrections can describe rather reasonably the attenuation of the jet production yields in the large transverse momentum region in d+Au collisions at RHIC and p+Pb collisions at the LHC for central to semi-central collisions. We further show that the observed scaling behavior of the nuclear modification factor as a function of the total jet energy $p_T\\, {\\cosh} (y)$ for various rapidity intervals has a natural explanation in the picture of cold nuclear matter energy loss. On the ot...
Cardone, F; Petrucci, A
2011-01-01
The purpose of this paper is to place side by side the experimental results of Piezonu- clear reactions, which have been recently unveiled, and those collected during the last twenty years of experiments on low energy nuclear reactions (LENR). We will briefy re- port the results of our campaign of piezonuclear reactions experiments where ultrasounds and cavitation were applied to solutions of stable elements. These outcomes will be shown to be compatible with the results and evidences obtained from low energy nuclear reac- tion experiments. Some theoretical concepts and ideas, on which our experiments are grounded, will be sketched and it will be shown that, in order to trigger our measured effects, it exists an energy threshold, that has to be overcome, and a maximum inter- val of time for this energy to be released to the nuclear system. Eventually, a research hypothesis will be put forward about the chance to raise the level of analogy from the mere comparison of results up to the phenomenological level. H...
Nuclear matter properties in the relativistic mean field model with $\\sigma-\\omega$ coupling
Chung, K C; Santiago, A J; Zhang, J W
2001-01-01
The possibility of extending the linear sigma-omega model by introducing a sigma-omega coupling phenomenologically is explored. It is shown that, in contrast to the usual Walecka model, not only the effective nucleon mass M* but also the effective sigma meson mass m*_sigma and the effective omega meson mass m*_omega are nucleon density dependent. When the model parameters are fitted to the nuclear saturation point (the nuclear radius constant r_0=1.14fm and volume energy a_1=16.0MeV) as well as to the effective nucleon mass M*=0.85M, the model yields m*_sigma=1.09m_sigma and m*_omega=0.90m_omega at the saturation point, and the nuclear incompressibility K_0=501MeV. The lowest value of K_0 given by this model by adjusting the model parameters is around 227MeV.
Curceanu, C; Bazzi, M; Berucci, C; Bosnar, D; Bragadireanu, A M; Clozza, A; Cargnelli, M; D'uffizi, A; Fabbietti, L; Fiorini, C; Ghio, F; Guaraldo, C; Iliescu, M; Sandri, P Levi; Marton, J; Pietreanu, D; Lener, M Poli; Quaglia, R; Vidal, A Romero; Sbardella, E; Scordo, A; Shi, H; Sirghi, D; Sirghi, F; Skurzok, M; Tucakovic, I; Doce, O Vazquez; Widmann, E; Zmeskal, J
2015-01-01
The AMADEUS experiment aims to provide unique quality data of $K^-$ hadronic interactions in light nuclear targets, in order to solve fundamental open questions in the non-perturbative strangeness QCD sector, like the controversial nature of the $\\Lambda(1405)$ state, the yield of hyperon formation below threshold, the yield and shape of multi-nucleon $K^-$ absorption, processes which are intimately connected to the possible existence of exotic antikaon multi-nucleon clusters. AMADEUS takes advantage of the DA$\\Phi$NE collider, which provides a unique source of monochromatic low-momentum kaons and exploits the KLOE detector as an active target, in order to obtain excellent acceptance and resolution data for $K^-$ nuclear capture on H, ${}^4$He, ${}^{9}$Be and ${}^{12}$C, both at-rest and in-flight. During the second half of 2012 a successful data taking was performed with a dedicated pure carbon target implemented in the central region of KLOE, providing a high statistic sample of pure at-rest $K^-$ nuclear i...
Nouicer, Rachid
2015-01-01
This article reviews several important results from RHIC experiments and discusses their implications. They were obtained in a unique environment for studying QCD matter at temperatures and densities that exceed the limits wherein hadrons can exist as individual entities and raises to prominence the quark-gluon degrees of freedom. These findings are supported by major experimental observations via measuring of the bulk properties of particle production, particle ratios and chemical freeze-out conditions, and elliptic flow; followed by hard probe measurements. The results reveal that a dense, strongly-interacting medium is created in central Au+Au collisions at 200 GeV at RHIC. This revelation of a new state of nuclear matter has also been observed in measurements at the LHC. Further, the IP-Glasma model coupled with viscous hydrodynamic models, which assumes the formation of a QGP, reproduces well the experimental flow results from Au+Au at 200 GeV. This implies that the fluctuations in the initial geometry s...
Kolomeitsev, E. E.; Voskresensky, D. N.
2016-12-01
The spectrum of bosonic scalar-mode excitations in a normal Fermi liquid with local scalar interaction is investigated for various values and momentum dependence of the scalar Landau parameter f0 in the particle-hole channel. For f0 > 0 the conditions are found when the phase velocity on the spectrum of zero sound acquires a minimum at non-zero momentum. For -1 excitations, and for f0 excitations. An effective Lagrangian for the scalar excitation modes is derived after performing a bosonization procedure. We demonstrate that the instability may be tamed by the formation of a static Bose condensate of the scalar modes. The condensation may occur in a homogeneous or inhomogeneous state relying on the momentum dependence of the scalar Landau parameter. We show that in the isospin-symmetric nuclear matter there may appear a metastable state at subsaturation nuclear density owing to the condensate. Then we consider a possibility of the condensation of the zero-sound-like excitations in a state with a non-zero momentum in Fermi liquids moving with overcritical velocities, provided an appropriate momentum dependence of the Landau parameter f0(k) > 0. We also argue that in peripheral heavy-ion collisions the Pomeranchuk instability may occur already for f0 > -1.
Low-momentum NN interactions and all-order summation of ring diagrams of symmetric nuclear matter
Siu, L.-W.; Holt, J. W.; Kuo, T. T. S.; Brown, G. E.
2009-05-01
We study the equation of state for symmetric nuclear matter using a ring-diagram approach in which the particle-particle hole-hole (pphh) ring diagrams within a momentum model space of decimation scale Λ are summed to all orders. The calculation is carried out using the renormalized low-momentum nucleon-nucleon (NN) interaction Vlow-k, which is obtained from a bare NN potential by integrating out the high-momentum components beyond Λ. The bare NN potentials of CD-Bonn, Nijmegen, and Idaho have been employed. The choice of Λ and its influence on the single particle spectrum are discussed. Ring-diagram correlations at intermediate momenta (k≃2fm-1) are found to be particularly important for nuclear saturation, suggesting the necessity of using a sufficiently large decimation scale so that the above momentum region is not integrated out. Using Vlow-k with Λ~3fm-1, we perform a ring-diagram computation with the above potentials, which all yield saturation energies E/A and Fermi momenta kF(0) considerably larger than the empirical values. On the other hand, similar computations with the medium-dependent Brown-Rho scaled NN potentials give satisfactory results of E/A≃-15 MeV and kF(0)≃1.4fm-1. The effect of this medium dependence is well reproduced by an empirical three-body force of the Skyrme type.
Exploring the nuclear pasta phase in core-collapse supernova matter.
Pais, Helena; Stone, Jirina R
2012-10-12
The core-collapse supernova phenomenon, one of the most explosive events in the Universe, presents a challenge to theoretical astrophysics. Of the large variety of forms of matter present in core-collapse supernova, we focus on the transitional region between homogeneous (uniform) and inhomogeneous (pasta) phases. A three-dimensional, finite temperature Skyrme-Hartree-Fock (3D-SHF)+BCS calculation yields, for the first time fully self-consistently, the critical density and temperature of both the onset of the pasta in inhomogeneous matter, consisting of neutron-rich heavy nuclei and a free neutron and electron gas, and its dissolution to a homogeneous neutron, proton, and electron liquid. We also identify density regions for different pasta formations between the two limits. We employ four different forms of the Skyrme interaction, SkM*, SLy4, NRAPR, and SQMC700 and find subtle variations in the low density and high density transitions into and out of the pasta phase. One new stable pasta shape has been identified, in addition to the classic ones, on the grid of densities and temperatures used in this work. Our results are critically compared to recent calculations of pasta formation in the quantum molecular dynamics approach and Thomas-Fermi and coexisting phase approximations to relativistic mean-field models.
Toroidal Nuclear Matter Distributions of Superheavy Nuclei from Constrained Skyrme-HFB Calculations
Kosior, Amelia [Maria Curie-Sklodowska University, Poland; Staszczak, A. [Maria Curie-Sklodowska University, Poland; Wong, Cheuk-Yin [ORNL
2017-01-01
Using the Hartree Fock Bogoliubov (HFB) self-consistent mean-field theory with the SkM* Skyrme energy-density functional, we study nuclear structure properties of even even superheavy nuclei (SHN) of Z = 120 isotopes and N = 184 isotones. The shape of the nucleus along the lowest energy curve as a function of the quadrupole moment Q20 makes a sud- den transition from the oblate spheroids (biconcave discs) to the toroidal shapes, in the region of large oblate quadrupole moments.
Cold Nuclear Matter Effects in d+Au Collisions at PHENIX
Sahlmueller, Baldo
2012-01-01
To interpret the measurements in heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC), it is crucial to understand the initial state of the colliding gold (Au) nuclei. The parton distribution in Au nuclei is modified compared to protons, and their isospin composition is different due to the presence of neutrons. d+Au collisions at RHIC at the same collision energies are an important tool to study initial state modifications. PHENIX has measured pi0, eta, and reconstructed jets at high transverse momentum. These data are compared to predictions from nuclear parton distribution functions. Furthermore, single electrons from heavy-flavor decays have been measured by PHENIX.
The fate of the weakly-bound $\\psi(2s)$ in nuclear matter
Durham, J Matthew
2014-01-01
We present new results of a completed PHENIX analysis of $\\psi(2s)$ modification at midrapidity in 200 GeV $d+$Au collisions. Strong suppression of the $\\psi(2s)$ relative to the $J/\\psi$ is observed. This difference in suppression is too strong to be explained by breakup effects in the nucleus, due to the short nuclear crossing times at RHIC. Given the observation of long range correlations in $p(d)+$A collisions at LHC and RHIC, consistent with hydrodynamics, these observations raise interesting questions about the mechanism of $\\psi(2s)$ suppression when it is produced in a nuclear target. In 2012, the PHENIX Collaboration installed the FVTX, a silicon tracker that precisely measures muon pair opening angles prior to any multiple scattering in the muon arm absorber, and thus provides an improved dimuon mass resolution. The FVTX allows the $\\psi(2s)$ to be separated from the $J/\\psi$ at forward and backward rapidity for the first time at RHIC. We present new results on $\\psi(2s)$ production in $p+p$ collisi...
Implications of the Oklo phenomenon in a chiral approach to nuclear matter
Davis, Edward D
2014-01-01
It has been customary to use data from the Oklo natural nuclear reactor to place bounds on the change that has occurred in the electromagnetic fine structure constant $\\alpha$ over the last 2 billion years. Alternatively, an analysis could be based on a recently proposed expression for shifts in resonance energies which relates them to changes in both $\\alpha$ and the average $m_q$ of the $u$ and $d$ current quark masses, and which makes explicit the dependence on mass number $A$ and atomic number $Z$. (Recent model independent results on hadronic $\\sigma$-terms suggest sensitivity to the strange quark mass is negligible.) The most sophisticated analysis, to date, of the quark mass term invokes a calculation of the nuclear mean-field within the Walecka model of quantum hadrodynamics. We comment on this study and consider an alternative in which the link to low-energy quantum chromodynamics (QCD) and its pattern of chiral symmetry-breaking is more readily discernible. Specifically, we investigate the sensitivi...
Implications of the Oklo Phenomenon in a Chiral Approach to Nuclear Matter
Davis, Edward D.
2015-09-01
It has been customary to use data from the Oklo natural nuclear reactor to place bounds on the change that has occurred in the electromagnetic fine structure constant α over the last 2 billion years. Alternatively, an analysis could be based on a recently proposed expression for shifts in resonance energies which relates them to changes in both α and the average m q of the u and d current quark masses, and which makes explicit the dependence on mass number A and atomic number Z. (Recent model independent results on hadronic -terms suggest sensitivity to the strange quark mass is negligible.) The most sophisticated analysis, to date, of the quark mass term invokes a calculation of the nuclear mean-field within the Walecka model of quantum hadrodynamics. We comment on this study and consider an alternative in which the link to low-energy quantum chromodynamics and its pattern of chiral symmetry-breaking is more readily discernible. Specifically, we investigate the sensitivity to changes in the pion mass of a single nucleon potential determined by an in-medium chiral perturbation theory (PT) calculation which includes virtual -excitations. Subject to some reasonable assumptions about low-energy constants, we confirm that the m q -contribution to resonance shifts is enhanced by a factor of 10 or so relative to the -term and deduce that the Oklo data for Sm imply that.
First measurement of surface nuclear recoil background for argon dark matter searches
Xu, Jingke; Westerdale, Shawn; Calaprice, Frank; Wright, Alexander; Shi, Zhiming
2016-01-01
One major background in direct searches for weakly interacting massive particles (WIMPs) comes from the deposition of radon progeny on detector surfaces. The most dangerous surface background is the $^{206}$Pb recoils produced by $^{210}$Po decays. In this letter, we report the first characterization of this background in liquid argon. The scintillation signal of low energy Pb recoils is measured to be highly quenched in argon, and we estimate that the 103keV $^{206}$Pb recoil background will produce a signal equal to that of a ~5keV (30keV) electron recoil ($^{40}$Ar recoil). In addition, we demonstrate that this dangerous $^{210}$Po surface background can be suppressed by a factor of ~100 or higher using pulse shape discrimination methods, which can make argon dark matter detectors near background-free and enhance their potential for discovery of medium- and high-mass WIMPs. We also discuss the impact on other low background experiments.
The baryon-decuplet in the chiral dynamics of Lambda-hyperons in nuclear matter
Camalich, J M
2006-01-01
We study the long range part of the $\\Lambda$-hyperon optical potential in nuclei using Quantum Many Body techniques and flavor-SU(3) Chiral Lagrangians as starting point. More precisely, we study the contributions to the $\\Lambda$-hyperon optical potential due to the long-range two-pion exchange, with $\\Sigma$ and $\\Sigma^*$ baryons in the internal baryonic lines and considering Nh and $\\Delta$h excitations. We also consider the contribution to the spin-orbit potentials that comes out from these terms. Our results support a natural explanation of the smallness of the $\\Lambda$-nuclear spin-orbit interaction and shows the importance of the $\\Sigma^*$ and $\\Delta$ degrees of freedom for the hyperon-nucleus interactions.
Veselsky, Martin; Ma, Yu-Gang; Souliotis, Georgios A
2016-01-01
The mechanism of fusion hindrance, an effect preventing the synthesis of superheavy elements in the reactions of cold and hot fusion, is investigated using the Boltzmann-Uehling-Uhlenbeck equation, where Coulomb interaction is introduced. A strong sensitivity is observed both to the modulus of incompressibility of symmetric nuclear matter, controlling the competition of surface tension and Coulomb repulsion, and to the stiffness of the density-dependence of symmetry energy, influencing the formation of the neck prior to scission. The experimental fusion probabilities were for the first time used to derive constraints on the nuclear equation of state. A strict constraint on the modulus of incompressibility of nuclear matter $K_0 = 240 - 260$ MeV is obtained while the stiff density-dependences of the symmetry energy ($\\gamma>1.$) are rejected.
Effective equation of state of hot and dense matter in nuclear collisions around FAIR energy
Bravina L.
2015-01-01
Full Text Available The chemical and thermal equilibration in the central zone of heavy-ion collisions at energies around FAIR is studied within two microscopic models. Two systems are utilized for the analysis: (i central cubic cell of fixed volume V = 125 fm3 and (ii expanding central area of uniformly distributed energy density. It is found that kinetic, thermal, and chemical equilibration of the expanding hadronic matter are nearly approached in both systems for the period of 10–18 fm/c. The expansion proceeds almost isentropically. The extracted equation of state (EOS in P − ɛ plane has a linear dependence P = aɛ, where a ≡ c2s slightly increases with the collision energy from 0.12 to 0.145. Linear dependencies for the EOS are found also in T − μB and T − μS planes. The characteristic kinks observed in the last two phase diagrams are linked to inelastic freeze-out in the expanding fireball.
Nuclear symmetry energy in a modified quark meson coupling model
Mishra, R N; Panda, P K; Barik, N; Frederico, T
2015-01-01
We study nuclear symmetry energy and the thermodynamic instabilities of asymmetric nuclear matter in a self-consistent manner by using a modified quark-meson coupling model where the confining interaction for quarks inside a nucleon is represented by a phenomenologically averaged potential in an equally mixed scalar-vector harmonic form. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to $\\sigma$, $\\omega$, and $\\rho$ mesons through mean-field approximations. We find an analytic expression for the symmetry energy ${\\cal E}_{sym}$ as a function of its slope $L$. Our result establishes a linear correlation between $L$ and ${\\cal E}_{sym}$. We also analyze the constraint on neutron star radii in $(pn)$ matter with $\\beta$ equilibrium.
Coelho, Eduardo L.; Chiapparini, Marcelo [Instituto de Fisica, Universidade do Estado do Rio de Janeiro, 20559-900, Rio de Janeiro, RJ (Brazil); Bracco, Mirian E. [Faculdade de Tecnologia, Universidade do Estado do Rio de Janeiro, 27537-000, Resende, RJ (Brazil)
2013-03-25
Magnetars are neutron stars with a strong surface magnetic field. Observations of soft gamma-ray and anomalous X-ray pulsars pointed out that the surface magnetic field of magnetars is equal or even greater than 10{sup 15} G. In this work we study the influence of a strong magnetic field on the composition of nuclear matter at high densities and zero temperature. We describe the matter through a relativistic mean-field model with eight light baryons (baryon octet), electrons, muons and with magnetic field. As output of the numerical calculations, we obtain the relative population of each species of particles as function of baryon density.
Coelho, Eduardo L.; Chiapparini, Marcelo; Bracco, Mirian E.
2013-03-01
Magnetars are neutron stars with a strong surface magnetic field. Observations of soft gamma-ray and anomalous X-ray pulsars pointed out that the surface magnetic field of magnetars is equal or even greater than 1015 G. In this work we study the influence of a strong magnetic field on the composition of nuclear matter at high densities and zero temperature. We describe the matter through a relativistic mean-field model with eight light baryons (baryon octet), electrons, muons and with magnetic field. As output of the numerical calculations, we obtain the relative population of each species of particles as function of baryon density.
Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baksay, G; Baksay, L; Baldisseri, Alberto; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bickley, A A; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Büsching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Campbell, S; Chand, P; Chang, B S; Chang, W C; Charvet, J L; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Chujo, T; Chung, P; Churyn, A; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanad, M; Csrgo, T; Cussonneau, J P; Dahms, T; Das, K; Dávid, G; Dek, F; Deaton, M B; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Dion, A; Donadelli, M; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dutta, D; Dzhordzhadze, V; Efremenko, Yu V; Egdemir, J; Ellinghaus, F; Emam, W S; Enokizono, A; Enyo, H; Espagnon, B; Esumi, S; Eyser, K O; Fields, D E; Finck, C; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Zeev; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fung, S Y; Fusayasu, T; Gadrat, S; Garishvili, I; Germain, M; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse-Perdekamp, M; Gunji, T; Gustafsson, H; Hachiya, T; Hadj Henni, A; Haegemann, AC; Haggerty, J S; Hamagaki, H; Han, R; Hansen, A G; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Hester, T; Heuser, J M; He, X; Hidas, P; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Hoover, A; Horaguchi, T; Hornback, D; Ichihara, T; Ikonnikov, V V; Imai, K; Inaba, M; Inoue, Y; Inuzuka, M; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneta, M; Kang, J H; Kanou, H; Katou, K; Kawabata, T; Kawall, D; Kazantsev, A V; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, E; Kim, G B; Kim, H J; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klay, J; Klein-Bösing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Kohara, R; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Krl, A; Kravitz, A; Kroon, P J; Kubart, J; Kuberg, C H; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Lim, H; Lika, T; Litvinenko, A; Liu, s M X; Li, X; Li, X H; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Man'ko, V I; Mao, Y; Martínez, G; Maek, L; Masui, H; Matathias, F; Matsumoto, T; McCain, M C; McCumber, M; McGaughey, P L; Miake, Y; Mike, P; Miki, K; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mishra, M; Mitchell, J T; Mitrovski, M; Mohanty, A K; Morreale, A; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Norman, B E; Nyanin, A S; Nystrand, J; O'Brien, E; Oda, S X; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Oka, M; Omiwade, O O; Oskarsson, A; Otterlund, I; Ouchida, M; Oyama, K; Ozawa, K; Pak, R; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Penev, V; Peng, J C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pierson, A; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qualls, J M; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saitô, N; Sakaguchi, T; Sakai, S; Sakata, H; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Seele, J; Seidl, R; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shevel, A; Shibata, T A; Shigaki, K; Shimomura, M; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Sluneka, M; Soldatov, A; Soltz, cR A; Sondheim, W E; Sørensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarjn, P; Thomas, T L; Togawa, M; Toia, A; Tojo, J; Tomaek, L; Torii, H; Towell, asR S; Tram, V N; Tserruya, Itzhak; Tsuchimoto, Y; Tydesj, H; Tyurin, N; Uam, T J; Vale, C; Valle, H; van Hecke, H W; Velkovska, J; Velkovsky, M; Vertesi, R; Veszprmi, V; Vinogradov, A A; Virius, e M; Volkov, M A; Vrba, V; Vznuzdaev, E; Wagner, M; Walker, D; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Wohn, F K; Woody, C L; Wysocki, M; Xie, W; Yamaguchi, Y L; Yanovich, A; Yasin, Z; Ying, J; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zimnyi, J; Zolin, L; Zong, X
2007-01-01
We present a new analysis of J/psi production yields in deuteron-gold collisions at sqrt(s_NN) = 200 GeV using data taken by the PHENIX experiment in 2003 and previously published in [S.S. Adler et al., Phys. Rev. Lett 96, 012304 (2006)]. The high statistics proton-proton J/psi data taken in 2005 is used to improve the baseline measurement and thus construct updated cold nuclear matter modification factors R_dAu. A suppression of J/psi in cold nuclear matter is observed as one goes forward in rapidity (in the deuteron-going direction), corresponding to a region more sensitive to initial state low-x gluons in the gold nucleus. The measured nuclear modification factors are compared to theoretical calculations of nuclear shadowing to which a J/psi (or precursor) break-up cross-section is added. Breakup cross sections of sigma_breakup = 2.8^[+1.7_-1.4] (2.2^[+1.6_-1.5]) mb are obtained by fitting these calculations to the data using two different models of nuclear shadowing. These breakup cross section values are...
Probing the nuclear symmetry energy with heavy-ion collisions
De Filippo E.
2015-01-01
Full Text Available Heavy ion collisions (HIC have been widely used to extract the parametrization of symmetry energy term of nuclear equation of state as a function of barionic density. HIC in fact are a unique tool in terrestrial laboratories to explore the symmetry energy around the saturation density (ρ0 = 0.16fm−3 from sub-saturation densities (Fermi energies towards compressed nuclear matter (ρ > 2 − 3ρ0 that can be reached at relativistic energies, as a function of different conditions of temperature, mass asymmetry and isospin. One of the main study at present is to reach a coherent description of EOS of asymmetric nuclear matter from heavy ion collisions of stable and exotic nuclei, nuclear structure studies and astrophysical observations. In this work an overview of the current status of the research is shortly reviewed together with new perspectives aimed to reduce the present experimental and theoretical uncertainties.
LIU Yu-Xin; CHAO Jing-Yi; CHANG Lei; YUAN Wei
2005-01-01
@@ With the Dyson-Schwinger equation formalism at finite chemical potential, we study the density dependence of the mass and decay constant of pion in nuclear matter. The calculated results indicate that both the mass and the decay constant remain almost constant at small chemical potential. As the chemical potential gets quite large, the decay constant increases and the mass decreases with the increasing of the chemical potential, and both of them vanish suddenly as a critical value is reached.
De Filippo, E; Auditore, L; Baran, V; Berceanu, I; Cardella, G; Colonna, M; Geraci, E; Gianì, S; Grassi, L; Grzeszczuk, A; Guazzoni, P; Han, J; La Guidara, E; Lanzalone, G; Lombardo, I; Maiolino, C; Minniti, T; Pagano, A; Papa, M; Piasecki, E; Pirrone, S; Politi, G; Pop, A; Porto, F; Rizzo, F; Russotto, P; Santoro, S; Trifirò, A; Trimarchi, M; Verde, G; Vigilante, M; Wilczyński, J; Zetta, L
2012-01-01
We show new data from the $^{64}$Ni+$^{124}$Sn and $^{58}$Ni+$^{112}$Sn reactions studied in direct kinematics with the CHIMERA detector at INFN-LNS and compared with the reverse kinematics reactions at the same incident beam energy (35 A MeV). Analyzing the data with the method of relative velocity correlations, fragments coming from statistical decay of an excited projectile-like (PLF) or target-like (TLF) fragments are discriminated from the ones coming from dynamical emission in the early stages of the reaction. By comparing data of the reverse kinematics experiment with a stochastic mean field (SMF) + GEMINI calculations our results show that observables from neck fragmentation mechanism add valuable constraints on the density dependence of symmetry energy. An indication is found for a moderately stiff symmetry energy potential term of EOS.
Spontaneous baryogenesis from asymmetric inflaton
Takahashi, Fuminobu [Tohoku Univ., Sendai (Japan). Dept. of Physics; Tokyo Univ., Chiba (Japan). Kavli IPMU (WPI), UTIAS; Yamada, Masaki [Tokyo Univ., Chiba (Japan). Kavli IPMU (WPI), UTIAS; Tokyo Univ., Chiba (Japan). Inst. for Cosmic Ray Research; DESY Hamburg (Germany)
2015-10-15
We propose a variant scenario of spontaneous baryogenesis from asymmetric inflaton based on current-current interactions between the inflaton and matter fields with a non-zero B-L charge. When the inflaton starts to oscillate around the minimum after inflation, it may lead to excitation of a CP-odd component, which induces an effective chemical potential for the B-L number through the current-current interactions. We study concrete inflation models and show that the spontaneous baryogenesis scenario can be naturally implemented in the chaotic inflation in supergravity.
Cold-nuclear-matter effects on heavy-quark production in d+Au collisions at sqrt[S(NN)]=200 GeV.
Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Angerami, A; Aoki, K; Apadula, N; Aramaki, Y; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bhom, J H; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa Del Valle, Z; Connors, M; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ikeda, Y; Imai, K; Inaba, M; Isenhower, D; Ishihara, M; Issah, M; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D J; Kim, E-J; Kim, Y-J; Kinney, E; Kiss, A; Kistenev, E; Kleinjan, D; Kochenda, L; Komkov, B; Konno, M; Koster, J; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Leitch, M J; Leite, M A L; Li, X; Lichtenwalner, P; Liebing, P; Linden Levy, L A; Liška, T; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Rembeczki, S; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zhou, S
2012-12-14
The PHENIX experiment has measured electrons and positrons at midrapidity from the decays of hadrons containing charm and bottom quarks produced in d+Au and p+p collisions at sqrt[S(NN)]=200 GeV in the transverse-momentum range 0.85 ≤ p(T)(e) ≤ 8.5 GeV/c. In central d+Au collisions, the nuclear modification factor R(dA) at 1.5Collider extends to the heavy D meson family. A comparison with the neutral-pion data suggests that the difference in cold-nuclear-matter effects on light- and heavy-flavor mesons could contribute to the observed differences between the π(0) and heavy-flavor-electron nuclear modification factors R(AA).
Ajaz, M; Khan, K H; Zaman, A; 10.1142/S0218301312500954
2012-01-01
The present work reports the use of nuclear transparency effect of protons in proton and deuteron carbon interactions at 4.2 A GeV/c to get information about the states of nuclear matter. The half angle technique is used to extract the information on nuclear transparency. The results are compared with Dubna version of Cascade model. The average values of multiplicity, momentum and transverse momentum of protons are analyzed as a function of the number of identified protons in an event. We observed some evidence and trends in the data which could be considered as transparency effect. Analysis of the results shows that the leading effect is the basis of the observed transparency. Some contribution to the observed effect could be the existing short range correlations and the scaling power law s^-N, for exclusive two body hard scattering.
Cao, Huajie [Princeton Univ., NJ (United States)
2014-11-01
Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.
2012-02-24
... Exelon Corporation; Constellation Energy Group, Inc.; Nine Mile Nuclear Station, LLC; Nine Mile Point... Ventures), and Constellation Energy Nuclear Group, LLC (CENG), acting on behalf of itself, and the licensee... Committee of Constellation Energy Nuclear Group, LLC, shall prepare an Annual Report regarding the status...
2013-03-05
... Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units 1 and 2; Order Approving the... authorizes the possession, use, and operation of the Comanche Peak Nuclear Power Plant, Units 1 and 2 (CPNPP... From the Federal Register Online via the Government Publishing Office NUCLEAR...
Tsushima, K; Saitô, K; Thomas, A W; Lu, D H
2000-01-01
We discuss the effect of changes in meson properties in a nuclear medium on physical observables, notably, $J/\\Psi$ dissociation on pion and $\\rho$ meson comovers in relativistic heavy ion collisions, and the prediction of the $\\omega$-, $\\eta$- and $\\eta'$-nuclear bound states.
Nazarewicz, W
1999-01-01
Current developments in nuclear structure are discussed from a theoretical perspective. The studies of the nuclear many-body system provide us with invaluable information about the nature of the nuclear interaction, nucleonic correlations at various energy-distance scales, and the modes of the nucleonic matter.
Akerib, D S; Araújo, H M; Bai, X; Bailey, A J; Balajthy, J; Beltrame, P; Bernard, E P; Bernstein, A; Biesiadzinski, T P; Boulton, E M; Bradley, A; Bramante, R; Brás, P; Byram, D; Cahn, S B; Carmona-Benitez, M C; Chan, C; Chapman, J J; Chiller, A A; Chiller, C; Currie, A; Cutter, J E; Davison, T J R; de Viveiros, L; Dobi, A; Dobson, J E Y; Druszkiewicz, E; Edwards, B N; Faham, C H; Fiorucci, S; Gaitskell, R J; Gehman, V M; Ghag, C; Gibson, K R; Gilchriese, M G D; Hall, C R; Hanhardt, M; Haselschwardt, S J; Hertel, S A; Hogan, D P; Horn, M; Huang, D Q; Ignarra, C M; Ihm, M; Jacobsen, R G; Ji, W; Kamdin, K; Kazkaz, K; Khaitan, D; Knoche, R; Larsen, N A; Lee, C; Lenardo, B G; Lesko, K T; Lindote, A; Lopes, M I; Malling, D C; Manalaysay, A; Mannino, R L; Marzioni, M F; McKinsey, D N; Mei, D M; Mock, J; Moongweluwan, M; Morad, J A; Murphy, A St J; Nehrkorn, C; Nelson, H N; Neves, F; O'Sullivan, K; Oliver-Mallory, K C; Palladino, K J; Pangilinan, M; Pease, E K; Phelps, P; Reichhart, L; Rhyne, C A; Shaw, S; Shutt, T A; Silva, C; Solmaz, M; Solovov, V N; Sorensen, P; Stephenson, S; Sumner, T J; Szydagis, M; Taylor, D J; Taylor, W C; Tennyson, B P; Terman, P A; Tiedt, D R; To, W H; Tripathi, M; Tvrznikova, L; Uvarov, S; Verbus, J R; Webb, R C; White, J T; Whitis, T J; Witherell, M S; Wolfs, F L H; Xu, J; Yazdani, K; Young, S K; Zhang, C
2016-01-01
The Large Underground Xenon (LUX) experiment is a dual-phase liquid xenon time projection chamber (TPC) operating at the Sanford Underground Research Facility in Lead, South Dakota. A calibration of nuclear recoils in liquid xenon was performed $\\textit{in situ}$ in the LUX detector using a collimated beam of mono-energetic 2.45 MeV neutrons produced by a deuterium-deuterium (D-D) fusion source. The nuclear recoil energy from the first neutron scatter in the TPC was reconstructed using the measured scattering angle defined by double-scatter neutron events within the active xenon volume. We measured the absolute charge ($Q_{y}$) and light ($L_{y}$) yields at an average electric field of 180 V/cm for nuclear recoil energies spanning 0.7 to 74 keV and 1.1 to 74 keV, respectively. This calibration of the nuclear recoil signal yields will permit the further refinement of liquid xenon nuclear recoil signal models and, importantly for dark matter searches, clearly demonstrates measured ionization and scintillation s...
Probing the nuclear symmetry energy with heavy-ion reactions induced by neutron-rich nuclei
CHEN Lie-wen; KO Che-Ming; LI Bao-an; YONG Gao-chan
2007-01-01
Heavy-ion reactions induced by neutron-rich nuclei provide a unique means to investigate the equation of state of isospin-asymmetric nuclear matter,especially the density dependence of the nuclear symmetry energy.In particular,recent analyses of the isospin diffusion data in heavyion reactions have already put a stringent constraint on thenuclear symmetry energy around the nuclear matter saturation density.We review this exciting result and discuss its implications on nuclear effective interactions and the neutron skin thickness of heavy nuclei.In addition,we also review the theoretical progress on probing the high density behaviors of the nuclear symmetry energy in heavy-ion reactions induced by high energy radioactive beams.
From nuclear structure to neutron stars
Gandolfi, Stefano
2013-01-01
Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. As a demonstration, we show that the agreement between theoretical calculations of the charge form factor of 12C and the experimental data is excellent. Applying similar methods to isospin-asymmetric systems allows one to describe neutrons confined in an external potential and homogeneous neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.
Alkhazov, G.D. E-mail: alkhazov@pcfarm.pnpi.spb.ru; Dobrovolsky, A.V.; Egelhof, P.; Geissel, H.; Irnich, H.; Khanzadeev, A.V.; Korolev, G.A.; Lobodenko, A.A.; Muenzenberg, G.; Mutterer, M.; Neumaier, S.R.; Schwab, W.; Seliverstov, D.M.; Suzuki, T.; Vorobyov, A.A
2002-12-30
A Glauber based analysis of the experimental cross sections for small-angle elastic p {sup 6,8}He scattering at 0.7 GeV has been performed. The radii and radial shape of the {sup 6}He and {sup 8}He nuclei have been determined using phenomenological nuclear density distributions with two free parameters. The deduced shapes of the {sup 6}He and {sup 8}He nuclear matter radial distributions conform with the concept that both nuclei consist of an {alpha}-particle core and a significant neutron halo. The accuracy of the theoretical analysis of the elastic-scattering cross-section data is discussed, and possible sources of systematic uncertainty related to some basic limitations in the applied method are outlined. The experimental p {sup 6,8}He elastic-scattering cross sections have also been utilized for probing the matter density distributions resulting from various nuclear microscopic models. Besides, the sensitivity of the total p {sup 6,8}He reaction cross sections to the size of the {sup 6}He and {sup 8}He nuclei has been considered.
Nuclear energy density functional inspired by an effective field theory
Papakonstantinou, Panagiota; Lim, Yeunhwan; Hyun, Chang Ho
2016-01-01
Inspired by an effective field theory (EFT) for Fermi systems, we write the nuclear energy density functional (EDF) as an expansion in powers of the Fermi momentum $k_F$, or the cubic root of the density $\\rho^{1/3}$. With the help of pseudodata from microscopic calculations we fit the coefficients of the functional within a wide range of densities relevant for nuclei and neutron stars. The functional already at low order can reproduce known or adopted values of nuclear matter near saturation, a range of existing microscopic results on asymmetric matter, and a neutron-star mass-radius relation consistent with observations. Our approach leads to a transparent expansion of Skyrme-type EDFs and opens up many possibilities for future explorations in nuclei and homogeneous matter.
Asymmetric multiscale behavior in PM2.5 time series: Based on asymmetric MS-DFA
Zhang, Chen; Ni, Zhiwei; Ni, Liping
2016-11-01
Particulate matter with an aerodynamic diameter of 2.5 mm or less (PM2.5) is one of the most serious air pollution, considered most harmful for people by World Health Organisation. In this paper, we utilized the asymmetric multiscale detrended fluctuation analysis (A-MSDFA) method to explore the existence of asymmetric correlation properties for PM2.5 daily average concentration in two USA cities (Fresno and Los Angeles) and two Chinese cities (Hong Kong and Shanghai), and to assess the properties of these asymmetric correlations. The results show the existences of asymmetric correlations, and the degree of asymmetric for two USA cities is stronger than that of two Chinese cities. Further, most of the local exponent β(n) are smaller than 0.5, which indicates the existence of anti-persistent long-range correlation for PM2.5 time series in four cities. In addition, we reanalyze the asymmetric correlation by the A-MSDFA method with secant rolling windows of different sizes, which can investigate dynamic changes in the multiscale correlation for PM2.5 time series with changing window size. Whatever window sizes, the correlations are asymmetric and display smaller asymmetries at small scales and larger asymmetries at large scales. Moreover, the asymmetries become increasingly weaker with the increase of window sizes.
Nuclear symmetry energy in a modified quark-meson coupling model
Mishra, R. N.; Sahoo, H. S.; Panda, P. K.; Barik, N.; Frederico, T.
2015-10-01
We study nuclear symmetry energy and the thermodynamic instabilities of asymmetric nuclear matter in a self-consistent manner by using a modified quark-meson coupling model where the confining interaction for quarks inside a nucleon is represented by a phenomenologically averaged potential in an equally mixed scalar-vector harmonic form. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to σ ,ω , and ρ mesons through mean-field approximations. We find an analytic expression for the symmetry energy Esym as a function of its slope L . Our result establishes a linear correlation between L and Esym. We also analyze the constraint on neutron star radii in (p n ) matter with β equilibrium.
2010-09-09
... management of the Diablo Canyon Nuclear Power Plant's design/ licensing basis which undermines PG&E's ability... Electronic Hearing Docket webpage at http://ehd1.nrc.gov/EHD/ . The time and date of the evidentiary...
Kumblad, Linda; Söderbäck, Björn; Löfgren, Anders; Lindborg, Tobias; Wijnbladh, Erik; Kautsky, Ulrik
2006-12-01
To provide information necessary for a license application for a deep repository for spent nuclear fuel, the Swedish Nuclear Fuel and Waste Management Co is carrying out site investigations, including extensive studies of different parts of the surface ecosystems, at two sites in Sweden. Here we use the output from detailed modeling of the carbon dynamics in the terrestrial, limnic and marine ecosystems to describe and compare major pools and fluxes of organic matter in the Simpevarp area, situated on the southeast coast of Sweden. In this study, organic carbon is used as a proxy for radionuclides incorporated into organic matter. The results show that the largest incorporation of carbon into living tissue occurs in terrestrial catchments. Carbon is accumulated in soil or sediments in all ecosystems, but the carbon pool reaches the highest values in shallow near-land marine basins. The marine basins, especially the outer basins, are dominated by large horizontal water fluxes that transport carbon and any associated contaminants into the Baltic Sea. The results suggest that the near-land shallow marine basins have to be regarded as focal points for accumulation of radionuclides in the Simpevarp area, as they receive a comparatively large amount of carbon as discharge from terrestrial catchments, having a high NPP and a high detrital accumulation in sediments. These focal points may constitute a potential risk for exposure to humans in a future landscape as, due to post-glacial land uplift, previous accumulation bottoms are likely to be used for future agricultural purposes.
Noncongruence of phase transitions in strongly interacting matter
Hempel, Matthias; Schramm, Stefan; Iosilevskiy, Igor
2015-01-01
First-order phase transitions (PTs) with more than one globally conserved charge, so-called noncongruent PTs, have characteristic differences compared to congruent PTs (e.g., dimensionality of phase diagrams and location of critical points and endpoints). Here we discuss the noncongruent features of the QCD PT and compare it with the nuclear liquid-gas (LG) PT, for symmetric and asymmetric matter in heavy-ion collisions and neutron stars. In addition, we have identified a principle difference between the LG and the QCD PT: they have opposite slopes in the pressure-temperature plane.
Fornet R, O.M. [Delegacion Territorial CITMA. Peralta No.16, Rpto Peralta, Holguin, CP 80400 (Cuba); Guillen C, A.; Betancourt H, L.A. [Centro Nacional de Seguridad Nuclear, Calle 28 No.504, Miramar Playa, La Habana (Cuba)]. e-mail: ofelia@citmahlg.holguin.inf.cu
2006-07-01
The effectiveness of the regulatory activity in matter of safety and radiological protection it depends in great measure of the practical implementation level of the legislation in this matter. In our country this objective has been achieved through the one continuous improvement of the Hierarchical System of Nuclear Regulation, the reconciliation with specialists and national experts in each matter during the elaboration of the legal documents; the popularization and gratuitous distribution of it approved; the precision in the validation conditions of the authorizations of those main precepts applicable to the practices; the legal foundation of the deficiencies evidenced in the regulatory inspections; the development of a Safety Culture; the realization of Annual Regulatory Conferences and mainly in the training of the personnel related with the safety. Also, the constant analysis on the part of the specialists of the Regulatory Authority of the grade of implementation of this legislation, it discussion in national and international events and the actions recommended in these works. As a result of this focus, it is considered that the Regulatory Authority has impacted appropriately in the implementation of this legislation. (Author)
Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV
Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Angerami, A; Aoki, K; Apadula, N; Aramaki, Y; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bhom, J H; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Chen, C -H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; del Valle, Z Conesa; Connors, M; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Grim, G; Perdekamp, M Grosse; Gunji, T; Gustafsson, H -Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ikeda, Y; Imai, K; Inaba, M; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D J; Kim, E -J; Kim, Y -J; Kinney, E; Kiss, Á; Kistenev, E; Kleinjan, D; Kochenda, L; Komkov, B; Konno, M; Koster, J; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Leitch, M J; Leite, M A L; Li, X; Lichtenwalner, P; Liebing, P; Levy, L A Linden; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J -C; Pereira, H; Peresedov, V; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Rembeczki, S; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rukoyatkin, P; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T -A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zhou, S; Zolin, L
2012-01-01
The PHENIX experiment has measured electrons and positrons at midrapidity from the decays of hadrons containing charm and bottom quarks produced in d+Au and p+p collisions at sqrt(s_NN)=200 GeV at the Relativistic Heavy Ion Collider, in the transverse-momentum range 0.85 < pT < 8.5 GeV/c. In central d+Au collisions, the nuclear modification factor R_dA at 1.5 < pT < 5 GeV/c displays evidence of enhancement of these electrons, relative to those produced in p+p collisions, and shows that the mass-dependent Cronin enhancement observed at RHIC extends to the heavy-D-meson family. A comparison with the neutral-pion data suggests that the difference in cold-nuclear-matter effects on light- and heavy-flavor mesons could contribute to the observed differences between the pi0 and heavy-flavor-electron nuclear modification factor R_AA.
2013-08-06
... Entergy because it has identified near-term plans to store spent fuel in an ISFSI under the general... 20852. FOR FURTHER INFORMATION, CONTACT: L. Raynard Wharton, Office of Nuclear Material Safety and... because it has identified near- term plans to store spent fuel in an ISFSI under the general...
2012-07-16
... need for such training thereafter. f. TVA will enhance existing 10 CFR 50.9-related general employee training (GET) for new employees, including contractor and subcontractor employees located at TVA nuclear... training (both manager/supervisor as well as craft-level) to employees, including contractor...
2010-02-02
...). License No. DPR-20. (Big Rock Point) Docket Nos. 50-155 and 72-43. License No. DPR-6. I Entergy Nuclear... No. DPR-06, which authorizes the possession of Big Rock Point. Big Rock Point is an independent spent..., such date ] was extended by the Commission. By Order dated July 24, 2009, the NRC staff determined...
Sanchez J, G
2006-07-01
Mexico, as many other countries, it gives to this energy resource multiple uses in such activities as: the electric power generation in nuclear central, the industry, the medicine and the research. In the one acting of the referred activities intervenes individuals that, in reason of their work, they have contact with this energy type, which is potentially dangerous for the health in reason of the radioactivity flight. Although those workers are 'aided' for a series of relative standards to the observance of safety, hygiene and protection measures in the event of work risks, the technicity that is required to determine the potential risk that it is generated with the handling of radioactive products it makes that single specialized in the matter authorities can evaluate and, therefore, to watch over the safety conditions in those that work is developed. In that virtue, with this investigation it is sought to demonstrate that the Secretary of Energy, through a dis concentrated specialized organ and endowed with technical autonomy denominated National Commission of Nuclear Safety and Safeguards, it is a dependence that in their performance like Regulator Organ in the matter, intervenes in the labor relationships circles, being, therefore, an authority in work matter. By this way, the development of the present study is made in the following manner: In the first chapter indispensable aspects are approached to locate to the authorities inside the mark of the power exercise by the part of the State through their diverse organs; topics like jurisdiction and competition are treated for later to analyze the structure, according to the Mexican Administrative Law, of the Federal Executive Organ, referring a brief analysis of the application of work standards for diverse administrative authorities to determine of their multiple intervention and important performance in the labor relationships. In the second it is analyzed the structure of the National Commission of
Rafelski, Johann [CERN-PH/TH, Geneva 23 (Switzerland); The University of Arizona, Department of Physics, Tucson, Arizona (United States)
2015-09-15
The theory of hot nuclear fireballs consisting of all possible finite-size hadronic constituents in chemical and thermal equilibrium is presented. As a complement of this hadronic gas phase characterized by maximal temperature and energy density, the quark bag description of the hadronic fireball is considered. Preliminary calculations of temperatures and mean transverse momenta of particles emitted in high multiplicity relativistic nuclear collisions together with some considerations on the observability of quark matter are offered. (orig.)
Fleming, J.G.; Smith, B.K.
1995-10-10
A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.
Iwamura, Y.; Itoh, T.; Sakano, M.; Sakai, S.; Kuribayashi, S.
2005-12-01
Observations of low energy nuclear reactions induced by D2 gas permeation through Pd complexes (Pd/CaO/Pd) were presented at ICCF-91 and in a paper2 published in the Japanese Journal of Applied Physics. When Cs was added on the surface of a Pd complex, Pr emerged on the surface while Cs decreased after the Pd complex was subjected to D2 gas permeation. When Sr was added to the surface, Mo emerged while the Sr decreased after D2 gas permeation. The isotopic composition of the detected Mo was different from the natural abundance. In this paper, recent progress of our research is described. The detected Pr was confirmed by various methods such as TOF-SIMS, XANES, X-ray Fluorescence Spectrometry and ICP-MS. Analysis of the depth profile of Pr indicated that a very thin surface region up to 100 Å was the active transmutation zone. Many experimental results showed that the quantity of Pr was proportional to the deuterium flux through Pd complex. The cross-section of transmutation of Cs into Pr can be roughly estimated at 1 barn if we consider the deuterium flux as an ultra low energy deuteron beam.
Study of J/ψ production and cold nuclear matter effects in pPb collisions at √(s{sub NN})=5 TeV
Aaij, R. [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands); Adeva, B. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Adinolfi, M. [H.H. Wills Physics Laboratory, University of Bristol, Bristol (United Kingdom); Adrover, C. [CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille (France); Collaboration: The LHCb Collaboration; and others
2014-02-18
The production of J/ψ mesons with rapidity 1.5
Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Cheung, S -F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A
2014-01-01
The production of $J/\\psi$ mesons with rapidity 1.5 < $y$ < 4.0 or -5.0 < $y$ <-2.5 and transverse momentum $p_\\mathrm{T}$ < 14 GeV/$c$ is studied with the LHCb detector in proton-lead collisions at a proton-nucleon centre-of-mass energy $\\sqrt{s_{NN}}=5~\\mathrm{TeV}$. The J/ψ mesons are reconstructed using the dimuon decay mode. The analysis is based on a data sample corresponding to an integrated luminosity of about 1.6 nb$^{−1}$. For the first time the nuclear modification factor and forward-backward production ratio are determined separately for prompt J/ψ mesons and J/ψ from b-hadron decays. Clear suppression of prompt J/ψ production with respect to proton-proton collisions at large rapidity is observed, while the production of J/ψ from b-hadron decays is less suppressed. These results show good agreement with available theoretical predictions. The measurement shows that cold nuclear matter effects are important for interpretations of the related quark-gluon plasma signatures in he...
Asymmetrical international attitudes
Van Oudenhoven, JP; Askevis-Leherpeux, F; Hannover, B; Jaarsma, R; Dardenne, B
2002-01-01
In general, attitudes towards nations have a fair amount of reciprocity: nations either like each other are relatively indifferent to each other or dislike each other Sometimes, however international attitudes are asymmetrical. In this study, we use social identity theory in order to explain asymmet
Asymmetric reactions in continuous flow
Xiao Yin Mak
2009-04-01
Full Text Available An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed.
Asymmetric catalysis with helical polymers
Megens, Rik P.; Roelfes, Gerard
2011-01-01
Inspired by nature, the use of helical biopolymer catalysts has emerged over the last years as a new approach to asymmetric catalysis. In this Concept article the various approaches and designs and their application in asymmetric catalysis will be discussed.
Enhancing molecule fluorescence with asymmetrical plasmonic antennas.
Lu, Guowei; Liu, Jie; Zhang, Tianyue; Shen, Hongming; Perriat, Pascal; Martini, Matteo; Tillement, Olivier; Gu, Ying; He, Yingbo; Wang, Yuwei; Gong, Qihuang
2013-07-21
We propose and justify by the finite-difference time-domain method an efficient strategy to enhance the spontaneous emission of a fluorophore with a multi-resonance plasmonic antenna. The custom-designed asymmetrical antenna consists of two plasmonic nanoparticles with different sizes and is able to couple efficiently to free space light through multiple localized surface plasmon resonances. This design simultaneously permits a large near-field excitation near the antenna as well as a high quantum efficiency, which results in an unusual and significant enhancement of the fluorescence of a single emitter. Such an asymmetrical antenna presents intrinsic advantages over single particle or dimer based antennas made using two identical nanostructures. This promising concept can be exploited in the large domain of light-matter interaction processes involving multiple frequencies.
Cosmological signatures of time-asymmetric gravity
Cortês, Marina; Smolin, Lee
2016-01-01
We develop the model proposed by Cort\\^es, Gomes & Smolin, to predict cosmological signatures of time-asymmetric extensions of general relativity they proposed recently. Within this class of models the equation of motion of chiral fermions is modified by a torsion term. This term leads to a dispersion law for neutrinos that associates a new time-varying energy with each particle. We find a new neutrino contribution to the Friedmann equation resulting from the torsion term in the Ashtekar connection. In this note we explore the phenomenology of this term and observational consequences for cosmological evolution. We show that constraints on the critical energy density will ordinarily render this term unobservably small, a maximum of order $10^{-25}$ of the neutrino energy density today. However, if the time-asymmetric dark energy is tuned to cancel the cosmological constant, the torsion effect may be a dark matter candidate.
Nuclear lattice simulations using symmetry-sign extrapolation
Laehde, Timo A.; Luu, Thomas [Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Juelich (Germany); Lee, Dean [North Carolina State University, Department of Physics, Raleigh, NC (United States); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, JARA - High Performance Computing, Juelich (Germany); Epelbaum, Evgeny; Krebs, Hermann [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Bochum (Germany); Rupak, Gautam [Mississippi State University, Department of Physics and Astronomy, Mississippi State, MS (United States)
2015-07-15
Projection Monte Carlo calculations of lattice Chiral Effective Field Theory suffer from sign oscillations to a varying degree dependent on the number of protons and neutrons. Hence, such studies have hitherto been concentrated on nuclei with equal numbers of protons and neutrons, and especially on the alpha nuclei where the sign oscillations are smallest. Here, we introduce the ''symmetry-sign extrapolation'' method, which allows us to use the approximate Wigner SU(4) symmetry of the nuclear interaction to systematically extend the Projection Monte Carlo calculations to nuclear systems where the sign problem is severe. We benchmark this method by calculating the ground-state energies of the {sup 12}C, {sup 6}He and {sup 6}Be nuclei, and discuss its potential for studies of neutron-rich halo nuclei and asymmetric nuclear matter. (orig.)
Burgos, S; Forbes, J; Ghag, C; Gold, M; Hagemann, C; Kudryavtsev, V A; Lawson, T B; Loomba, D; Majewski, P; Muna, D; Murphy, A St J; Paling, S M; Petkov, A; Plank, S J S; Robinson, M; Sanghi, N; Snowden-Ifft, D P; Spooner, N J C; Turk, J; Tziaferi, E
2009-01-01
Understanding the ability to measure and discriminate particle events at the lowest possible energy is an essential requirement in developing new experiments to search for weakly interacting massive particle (WIMP) dark matter. In this paper we detail an assessment of the potential sensitivity below 10 keV in the 1 m^3 DRIFT-II directionally sensitive, low pressure, negative ion time projection chamber (NITPC), based on event-by-event track reconstruction and calorimetry in the multiwire proportional chamber (MWPC) readout. By application of a digital smoothing polynomial it is shown that the detector is sensitive to sulfur and carbon recoils down to 3.5 and 2.2 keV respectively, and 1.2 keV for electron induced tracks. The energy sensitivity is demonstrated through the 5.9 keV gamma spectrum of 55Fe, where the energy resolution is sufficient to identify the escape peak. In addition to recoil direction reconstruction for WIMP searches this sensitivity suggests new prospects for applications also in KK axion s...
Frantál Bohumil
2016-03-01
Full Text Available The effect of geographical distance on the extent of socioeconomic impacts of the Dukovany nuclear power plant in the Czech Republic is assessed by combining two different research approaches. First, we survey how people living in municipalities in the vicinity of the power plant perceive impacts on their personal quality of life. Second, we explore the effects of the power plant on regional development by analysing long-term statistical data about the unemployment rate, the share of workers in the energy sector and overall job opportunities in the respective municipalities. The results indicate that the power plant has had significant positive impacts on surrounding communities both as perceived by residents and as evidenced by the statistical data. The level of impacts is, however, significantly influenced by the spatial and social distances of communities and individuals from the power plant. The perception of positive impacts correlates with geographical proximity to the power plant, while the hypothetical distance where positive effects on the quality of life are no longer perceived was estimated at about 15 km. Positive effects are also more likely to be reported by highly educated, young and middle-aged and economically active persons, whose work is connected to the power plant.
Asymmetric Threat Assessment Using Electro-Optical Image Systems
Schwering, P.B.W.; Schutte, K.
2010-01-01
Asymmetric threat assessment from military platforms, including early detection and classification by electro-optical means, is a complicated matter. These threats can be for instance explosives-packed rubber boats, minecarrying swimmers and divers in a marine environment or terrorists, improvised e
Asymmetric information and economics
Frieden, B. Roy; Hawkins, Raymond J.
2010-01-01
We present an expression of the economic concept of asymmetric information with which it is possible to derive the dynamical laws of an economy. To illustrate the utility of this approach we show how the assumption of optimal information flow leads to a general class of investment strategies including the well-known Q theory of Tobin. Novel consequences of this formalism include a natural definition of market efficiency and an uncertainty principle relating capital stock and investment flow.
Asymmetric extractions in orthodontics
Camilo Aquino Melgaço; Mônica Tirre de Souza Araújo
2012-01-01
INTRODUCTION: Extraction decisions are extremely important in during treatment planning. In addition to the extraction decision orthodontists have to choose what tooth should be extracted for the best solution of the problem and the esthetic/functional benefit of the patient. OBJECTIVE: This article aims at reviewing the literature relating the advantages, disadvantages and clinical implications of asymmetric extractions to orthodontics. METHODS: Keywords were selected in English and Portugue...
Asymmetric Evolutionary Games.
Alex McAvoy
2015-08-01
Full Text Available Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.
Asymmetric extractions in orthodontics
Camilo Aquino Melgaço
2012-04-01
Full Text Available INTRODUCTION: Extraction decisions are extremely important in during treatment planning. In addition to the extraction decision orthodontists have to choose what tooth should be extracted for the best solution of the problem and the esthetic/functional benefit of the patient. OBJECTIVE: This article aims at reviewing the literature relating the advantages, disadvantages and clinical implications of asymmetric extractions to orthodontics. METHODS: Keywords were selected in English and Portuguese and the EndNote 9 program was used for data base search in PubMed, Web of Science (WSc and LILACS. The selected articles were case reports, original articles and prospective or retrospective case-control studies concerning asymmetrical extractions of permanent teeth for the treatment of malocclusions. CONCLUSION: According to the literature reviewed asymmetric extractions can make some specific treatment mechanics easier. Cases finished with first permanent molars in Class II or III relationship in one or both sides seem not to cause esthetic or functional problems. However, diagnosis knowledge and mechanics control are essential for treatment success.
Bonutti, F; Fragiacomo, E; Grion, N; Rui, R; Brack, J T; Felawka, L; Gibson, E F; Hofman, G J; Kermani, M; Mathie, E L; Meier, R; Ottewell, D; Raywood, K; Sevior, M E; Smith, G R; Tacik, R
2000-01-01
The pion-production reactions pi sup + A-> pi sup +pi sup+-A' were studied on sup 2 H, sup 1 sup 2 C, sup 4 sup 0 Ca, and sup 2 sup 0 sup 8 Pb nuclei at an incident pion energy of T subpi sub sup + =283 MeV. Pions were detected in coincidence using the CHAOS spectrometer. The experimental results are reduced to differential cross sections and compared to both theoretical predictions and the reaction phase space. The composite ratio C subpi subpi sup A between the pi sup +pi sup+- invariant masses on nuclei and on the nucleon is also presented. Near the 2m subpi threshold pion pairs couple to (pi pi) sub I sub = sub J sub = sub 0 when produced in the pi sup +-> pi sup +pi sup - reaction channel. There is a marked near-threshold enhancement of C subpi sub sup + subpi sub sup - sup A which is consistent with theoretical predictions addressing the partial restoration of chiral symmetry in nuclear matter. Furthermore, the behaviour of C subpi sub sup + subpi sub sup - sup A is well described when the restoration o...
RHIC operation with asymmetric collisions in 2015
Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Aschenauer, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Atoian, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Connolly, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ottavio, T. D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Drees, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gu, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hayes, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Laster, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Makdisi, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marr, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morris, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Narayan, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nayak, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nemesure, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pile, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Poblaguev, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schmidke, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Severino, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shrey, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Steski, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); White, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yip, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zeno, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhang, S. Y. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2015-08-07
To study low-x shadowing/saturation physics as well as other nuclear effects [1], [2], proton-gold (p-Au, for 5 weeks) and proton-Aluminum (p-Al, for 2 weeks) collisions were provided for experiments in 2015 at the Relativistic Heavy Ion Collider (RHIC), with polarized proton beam in the Blue ring and Au/Al beam in the Yellow ring. The special features of the asymmetric run in 2015 will be introduced. The operation experience will be reviewed as well in the report.
Probing the nuclear equation-of-state and the symmetry energy with heavy-ion collisions
Verde Giuseppe
2014-03-01
Full Text Available The present status of studies aimed at constraining the nuclear equation of state with heavy-ion collision dynamics is presented. Multifragmentation phenomena, including their isotopic distributions, charge correlations and emission time-scales, may revel the existence of liquid-gas transitions in the phase diagram. Exploring the isotopic degree of freedom in nuclear dynamics is then required in order to constrain the equation of state of asymmetric nuclear matter which presently represents a major priority due to its relevance to both nuclear physics and astrophysics. Some observables that have successfully constrained the density dependence of the symmetry energy are presented, such as neutron-proton yield ratios and isospin diffusion and drift phenomena. The reported results and status of the art is discussed by also considering some of the present problems and some future perspectives for the heavy-ion collision community.
2014-01-01
WE RECOMMEND Nuclear Radiation DVD is an excellent introduction to nuclear radiation WORTH A LOOK The Theoretical Minimum and Time Reborn Can mathematics be the key to reality? Cobra4 Data Logger Apparatus provides an extensive collection of sensors Stuff Matters Materials book deserves a wide readership Hunting the Higgs Higgs book a bit light on detail but good for visits to CERN My Brief History Hawking's book is readable but inconclusive APPS Using apps to help students visualize fields WEB WATCH Vintage film of Eric Laithwaite ... induction hobs as an example of electromagnetic induction ... the deconstruction of a CRO tube ... the Brocken spectre ... the Square Kilometre Array telescope
Density content of nuclear symmetry energy from nuclear observables
B K Agrawal
2014-11-01
The nuclear symmetry energy at a given density measures the energy transferred in converting symmetric nuclear matter into the pure neutron matter. The density content of nuclear symmetry energy remains poorly constrained. Our recent results for the density content of the nuclear symmetry energy, around the saturation density, extracted using experimental data for accurately known nuclear masses, giant resonances and neutron-skin thickness in heavy nuclei are summarized.
Morrison, James
1984-01-01
Asymmetric Synthesis, Volume 4: The Chiral Carbon Pool and Chiral Sulfur, Nitrogen, Phosphorus, and Silicon Centers describes the practical methods of obtaining chiral fragments. Divided into five chapters, this book specifically examines initial chiral transmission and extension. The opening chapter describes the so-called chiral carbon pool, the readily available chiral carbon fragments used as building blocks in synthesis. This chapter also provides a list of 375 chiral building blocks, along with their commercial sources, approximate prices, and methods of synthesis. Schemes involving
Olaizola Ortega, María Norma; Valenciano Llovera, Federico
2012-01-01
This paper provides a new model of network formation that bridges the gap between the two benchmark models by Bala and Goyal, the one-way flow model, and the two-way flow model, and includes both as particular extreme cases. As in both benchmark models, in what we call an "asymmetric flow" network a link can be initiated unilaterally by any player with any other, and the flow through a link towards the player who supports it is perfect. Unlike those models, in the opposite direction there is ...
Matter: the fundamental particles
Landua, Rolf
2007-01-01
"The largest particle physics centre in the world is located in Europe. It straddles the Franco-Swiss border, near Geneva. At CERN - the European Organisation for Nuclear Research , which is focused on the science of nuclear matter rather than on the exploitation of atomic energy - there are over 6 500 scientists." (1 page)
Brune, D.; Forkman, B.; Persson, B.
1984-01-01
This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.
Additive Effects on Asymmetric Catalysis.
Hong, Liang; Sun, Wangsheng; Yang, Dongxu; Li, Guofeng; Wang, Rui
2016-03-23
This review highlights a number of additives that can be used to make asymmetric reactions perfect. Without changing other reaction conditions, simply adding additives can lead to improved asymmetric catalysis, such as reduced reaction time, improved yield, or/and increased selectivity.
Nuclear Lattice Simulations using Symmetry-Sign Extrapolation
Lähde, Timo A; Lee, Dean; Meißner, Ulf-G; Epelbaum, Evgeny; Krebs, Hermann; Rupak, Gautam
2015-01-01
Projection Monte Carlo calculations of lattice Chiral Effective Field Theory suffer from sign oscillations to a varying degree dependent on the number of protons and neutrons. Hence, such studies have hitherto been concentrated on nuclei with equal numbers of protons and neutrons, and especially on the alpha nuclei where the sign oscillations are smallest. We now introduce the technique of "symmetry-sign extrapolation" which allows us to use the approximate Wigner SU(4) symmetry of the nuclear interaction to control the sign oscillations without introducing unknown systematic errors. We benchmark this method by calculating the ground-state energies of the $^{12}$C, $^6$He and $^6$Be nuclei, and discuss its potential for studies of neutron-rich halo nuclei and asymmetric nuclear matter.
Nuclear Matters. A Practical Guide
2008-01-01
1948 on towers on the Enewetak Atoll in the Pacific, testing three different weapon designs. These first six tests began with no previous data, and...included the Nevada Test Site (NTS), the Enewetak Atoll , Bikini Island, the Pacific Ocean, and the Nellis Air Force Range in Nevada. Some of the...produced a 10.4 MT detonation on October 31, 1952 at Enewetak , was almost seven feet in diameter, 20 feet long, and weighed 82 tons.2 On February 28
The asymmetric sandwich theorem
Simons, Stephen
2011-01-01
We discuss the asymmetric sandwich theorem, a generalization of the Hahn-Banach theorem. As applications, we derive various results on the existence of linear functionals that include bivariate, trivariate and quadrivariate generalizations of the Fenchel duality theorem. Most of the results are about affine functions defined on convex subsets of vector spaces, rather than linear functions defined on vector spaces. We consider both results that use a simple boundedness hypothesis (as in Rockafellar's version of the Fenchel duality theorem) and also results that use Baire's theorem (as in the Robinson-Attouch-Brezis version of the Fenchel duality theorem). This paper also contains some new results about metrizable topological vector spaces that are not necessarily locally convex.
I. Cabrera-Munguia
2015-04-01
Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.
Incompressibility of strange matter
Sinha, M N; Dey, J; Dey, M; Ray, S; Bhowmick, S; Sinha, Monika; Bagchi, Manjari; Dey, Jishnu; Dey, Mira; Ray, Subharthi; Bhowmick, Siddhartha
2002-01-01
Strange stars calculated from a realistic equation of state (EOS) show compact objects in the mass radius curve, when they are solved for gravitational fields via TOV equation. Many of the observed stars seem to fit in with this kind of compactness irrespective of whether they are X-ray pulsars, bursters or soft $\\gamma$ repeaters or radio pulsars. Calculated incompressibility of this strange matter shows continuity with that of nuclear matter. This is important in the cosmic separation of phase scenario. We compare our calculations of incompressibility with that of a nuclear matter EOS. This EOS has a continuous transition to ud-matter at about five times normal density. From a look at the consequent velocity of sound it is found that the transition to ud-matter seems necessary.
Asymmetric nanoparticle may go "active" at room temperature
Sheng, Nan; Tu, YuSong; Guo, Pan; Wan, RongZheng; Wang, ZuoWei; Fang, HaiPing
2017-04-01
Using molecular dynamics simulations, we show that an asymmetrically shaped nanoparticle in dilute solution possesses a spontaneously curved trajectory within a finite time interval, instead of the generally expected random walk. This unexpected dynamic behavior has a similarity to that of active matters, such as swimming bacteria, cells, or even fish, but is of a different physical origin. The key to the curved trajectory lies in the non-zero resultant force originated from the imbalance of the collision forces acted by surrounding solvent molecules on the asymmetrically shaped nanoparticle during its orientation regulation. Theoretical formulae based on microscopic observations have been derived to describe this non-zero force and the resulting motion of the asymmetrically shaped nanoparticle.
Iwagami, Sho; Onda, Yuichi; Tsujimura, Maki; Abe, Yutaka
2017-01-01
Radiocesium ((137)Cs) migration from headwaters in forested areas provides important information, as the output from forest streams subsequently enters various land-use areas and downstream rivers. Thus, it is important to determine the composition of (137)Cs fluxes (dissolved fraction, suspended sediment, or coarse organic matter) that migrate through a headwater stream. In this study, the (137)Cs discharge by suspended sediment and coarse organic matter from a forest headwater catchment was monitored. The (137)Cs concentrations in suspended sediment and coarse organic matter, such as leaves and branches, and the amounts of suspended sediment and coarse organic matter were measured at stream sites in three headwater catchments in Yamakiya District, located ∼35 km northwest of Fukushima Dai-ichi Nuclear Power Plant (FDNPP) from August 2012 to September 2013, following the earthquake and tsunami disaster. Suspended sediment and coarse organic matter were sampled at intervals of approximately 1-2 months. The (137)Cs concentrations of suspended sediment and coarse organic matter were 2.4-49 kBq/kg and 0.85-14 kBq/kg, respectively. The (137)Cs concentrations of the suspended sediment were closely correlated with the average deposition density of the catchment. The annual proportions of contribution of (137)Cs discharge by suspended sediment, coarse organic matter, and dissolved fraction were 96-99%, 0.0092-0.069%, and 0.73-3.7%, respectively. The total annual (137)Cs discharge from the catchment was 0.02-0.3% of the deposition.
Ferreiro, E.G.; /Santiago de Compostela U.; Fleuret, F.; /Ecole Polytechnique; Lansberg, J.P.; /Ecole Polytechnique /SLAC; Rakotozafindrabe, A.; /SPhN, DAPNIA, Saclay
2011-11-11
We have carried out a wide study of Cold Nuclear Matter (CNM) effects on J/{Psi} = production in dAu, CuCu and AuAu collisions at {radical}s{sub NN} = 200 GeV. We have studied the effects of three different gluon-shadowing parameterizations, using the usual simplified kinematics for which the momentum of the gluon recoiling against the J/{Psi} is neglected as well as an exact kinematics for a 2 {yields} 2 process, namely g + g {yields} J/{psi} + g as expected from LO pQCD. We have shown that the rapidity distribution of the nuclear modification factor R{sub dAu}, and particularly its anti-shadowing peak, is systematically shifted toward larger rapidities in the 2 {yields} 2 kinematics, irrespective of which shadowing parameterization is used. In turn, we have noted differences in the effective final-state nuclear absorption needed to fit the PHENIX dAu data. Taking advantage of our implementation of a 2 {yields} 2 kinematics, we have also computed the transverse momentum dependence of the nuclear modification factor, which cannot be predicted with the usual simplified kinematics. All the corresponding observables have been computed for CuCu and AuAu collisions and compared to the PHENIX and STAR data. Finally, we have extracted the effective nuclear absorption from the recent measurements of RCP in dAu collisions by the PHENIX collaboration.
Flavor Symmetry and Topology Change in Nuclear Symmetry Energy for Compact Stars
Lee, Hyun Kyu; Rho, Mannque
2013-03-01
The nuclear symmetry energy figures crucially in the structure of asymmetric nuclei and, more importantly, in the equation of state (EoS) of compact stars. At present it is almost totally unknown, both experimentally and theoretically, in the density regime appropriate for the interior of neutron stars. Basing on a strong-coupled structure of dense baryonic matter encoded in the skyrmion crystal approach with a topology change and resorting to the notion of generalized hidden local symmetry in hadronic interactions, we address a variety of hitherto unexplored issues of nuclear interactions associated with the symmetry energy, i.e., kaon condensation and hyperons, possible topology change in dense matter, nuclear tensor forces, conformal symmetry, chiral symmetry, etc., in the EoS of dense compact-star matter. One of the surprising results coming from HLS structure that is distinct from what is given by standard phenomenological approaches is that at high density, baryonic matter is driven by renormalization group flow to the "dilaton-limit fixed point" constrained by "mended symmetries". We further propose how to formulate kaon condensation and hyperons in compact-star matter in a framework anchored on a single effective Lagrangian by treating hyperons as the Callan-Klebanov kaon-skyrmion bound states simulated on crystal lattice. This formulation suggests that hyperons can figure in the stellar matter — if at all — when or after kaons condense, in contrast to the standard phenomenological approaches where the hyperons appear as the first strangeness degree of freedom in matter, thereby suppressing or delaying kaon condensation. In our simplified description of the stellar structure in terms of symmetry energies, which is compatible with that of the 1.97 solar mass star, kaon condensation plays a role of "doorway state" to strange quark matter.
de Melo, J P B C; El-Bennich, Bruno; Rojas, E; Frederico, T
2014-01-01
Using the light-front pion wave function based on a Bethe-Salpeter amplitude model, we study the properties of the pion in symmetric nuclear matter. The pion model we adopt is well constrained by previous studies to explain the pion properties in vacuum. In order to consistently incorporate the constituent up and down quarks of the pion immersed in symmetric nuclear matter, we use the quark-meson coupling model, which has been widely applied to various hadronic and nuclear phenomena in a nuclear medium with success. We predict the in-medium modifications of the pion lectromagnetic form factor, charge radius and weak decay constant in symmetric nuclear matter.
Asymmetric Gepner Models (Revisited)
Gato-Rivera, B
2010-01-01
We reconsider a class of heterotic string theories studied in 1989, based on tensor products of N=2 minimal models with asymmetric simple current invariants. We extend this analysis from (2,2) and (1,2) spectra to (0,2) spectra with SO(10) broken to the Standard Model. In the latter case the spectrum must contain fractionally charged particles. We find that in nearly all cases at least some of them are massless. However, we identify a large subclass where the fractional charges are at worst half-integer, and often vector-like. The number of families is very often reduced in comparison to the 1989 results, but there are no new tensor combinations yielding three families. All tensor combinations turn out to fall into two classes: those where the number of families is always divisible by three, and those where it is never divisible by three. We find an empirical rule to determine the class, which appears to extend beyond minimal N=2 tensor products. We observe that distributions of physical quantities such as th...
NONE
2003-11-01
This file treats the legislative dispositions devoted to the clearness and security in the nuclear field. It is divided in four great parts. The first part is devoted to the general dispositions, the second part concerns public information, the third part is relative to the local information commissions, a special point is noticed for the creation of a high comity of clearness in nuclear safety, a fourth part is devoted to the nuclear facilities and the transport of nuclear materials, control and monitoring are included, legal dispositions and sanctions are tackled. (N.C.)
Mixed dark matter from technicolor
Belyaev, Alexander; T. Frandsen, Mads; Sannino, Francesco
2011-01-01
We study natural composite cold dark matter candidates which are pseudo Nambu-Goldstone bosons (pNGB) in models of dynamical electroweak symmetry breaking. Some of these can have a significant thermal relic abundance, while others must be mainly asymmetric dark matter. By considering the thermal...... abundance alone we find a lower bound of MW on the pNGB mass when the (composite) Higgs is heavier than 115 GeV. Being pNGBs, the dark matter candidates are in general light enough to be produced at the LHC....
Magnetically Modified Asymmetric Supercapacitors Project
National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is for the development of an asymmetric supercapacitor that will have improved energy density and cycle life....
Ilieva, Stoyanka
2008-07-01
In the current experiment, the differential cross sections for proton elastic scattering on the isotopes {sup 7,9,10,11,12,14}Be and {sup 8}B were measured. As results from the experiment, the absolute differential cross sections d{sigma}/dt as a function of the four momentum transfer t were obtained. In this work the differential cross sections for elastic p-{sup 12}Be, p-{sup 14}Be and p-{sup 8}B scattering at low t (t{<=}0.05(GeV/c){sup 2}) are presented. The measured cross sections were analyzed within the Glauber multiple-scattering theory using different density parameterizations, and the nuclear matter density distributions and radii of the investigated isotopes were determined. The determined rms matter radius is 3.11{+-}0.04{+-}0.13 fm. In the case of the {sup 12}Be nucleus the results showed an extended matter distribution as well. For this nucleus a matter radius of 2.82{+-}0.03{+-}0.12 fm was determined. An interesting result is that the free {sup 12}Be nucleus behaves differently from the core of {sup 14}Be and is much more extended than it. Preliminary experimental results for the isotope {sup 8}B are also presented. An extended matter distribution was obtained (though much more compact as compared to the neutron halos). A proton halo structure was observed for the first time with the proton elastic scattering method. The deduced matter radius is 2.60{+-}0.02{+-}0.26 fm. Results from the feasibility studies of the EXL detector setup, performed at the present ESR storage ring, are presented. (orig.)
Chilly Dark Sectors and Asymmetric Reheating
Adshead, Peter; Shelton, Jessie
2016-01-01
In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, $N_{\\mathrm{eff}}$, we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and ...
Multicatalyst system in asymmetric catalysis
Zhou, Jian
2014-01-01
This book introduces multi-catalyst systems by describing their mechanism and advantages in asymmetric catalysis. Helps organic chemists perform more efficient catalysis with step-by-step methods Overviews new concepts and progress for greener and economic catalytic reactions Covers topics of interest in asymmetric catalysis including bifunctional catalysis, cooperative catalysis, multimetallic catalysis, and novel tandem reactions Has applications for pharmaceuticals, agrochemicals, materials, and flavour and fragrance
On Asymmetric Quantum MDS Codes
Ezerman, Martianus Frederic; Ling, San
2010-01-01
Assuming the validity of the MDS Conjecture, the weight distribution of all MDS codes is known. Using a recently-established characterization of asymmetric quantum error-correcting codes, linear MDS codes can be used to construct asymmetric quantum MDS codes with $d_{z} \\geq d_{x}\\geq 2$ for all possible values of length $n$ for which linear MDS codes over $\\F_{q}$ are known to exist.
Asymmetric cation-binding catalysis
Oliveira, Maria Teresa; Lee, Jiwoong
2017-01-01
and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...
Schade, Henry
2010-09-15
Strange particles play an important role as probes of relativistic heavy-ion collisions where hot and dense matter is studied. The focus of this thesis is on the production of strange particles within a transport model of Boltzmann-Uehling-Uhlenbeck (BUU) type. Current data of the HADES Collaboration concerning K{sup {+-}} and {phi} spectra provide the appropriate experimental framework. Moreover, the double-strange hyperon {xi}{sup -} is analyzed below the free NN production threshold. Hadron multiplicities, transversemomentum and rapidity spectra are compared with recent experimental data. Further important issues are in-medium mass shifts, the nuclear equation of state as well as the mean field of nucleons. Besides the study of AA collisions a comparison with recent ANKE data regarding the {phi} yield in pA collisions is done. Transparency ratios are determined and primarily investigated for absorption of {phi} mesons by means of the BUU transport code. Thereby, secondary {phi} production channels, isospin asymmetry and detector acceptance are important issues. A systematic analysis is presented for different system sizes. The momentum integrated Boltzmann equations describe dense nuclear matter on a hadronic level appearing in the Big Bang as well as in little bangs, in the context of kinetic off-equilibrium dynamics. This theory is applied to antiprotons and numerically calculated under consideration of various expansion models. Here, the evolution of proton- and antiproton densities till freeze-out is analyzed for ultra-relativistic heavy-ion collisions within a hadrochemic resonance gas model acting as a possible ansatz for solving the ''antiproton puzzle''. Furthermore, baryonic matter and antimatter is investigated in the early universe and the adiabatic path of cosmic matter is sketched in the QCD phase diagram. (orig.)
Tunable asymmetric transmission of THz wave through a graphene planar chiral structure
Zhao, Junyang; Zhu, Zhihong; Yuan, Xiaodong; Qin, Shiqiao
2015-01-01
In this letter, we show that asymmetric transmission of circularly polarized waves through a nanostructured planar chiral graphene film can be observed in terahertz range. The asymmetric transmission effect of monatomic layer graphene closely resembles that of metallic planar chiral nanostructures which has previously been demonstrated. And the relative enantiomeric difference in the total transmission varies with the change of graphene's Fermi level. The plasmonic excitation in the graphene nanostructure is the enantiometically sensitive which is asymmetric for opposite propagating directions. This phenomenon will deepen our understanding of light-matter interactions in planar chiral structures and may find applications in polarization-sensitive devices, sensors, detectors and other areas.
Thermal properties of hot and dense matter with finite range interactions
Constantinou, Constantinos; Prakash, Madappa; Lattimer, James M
2015-01-01
We explore the thermal properties of hot and dense matter using a model that reproduces the empirical properties of isospin symmetric and asymmetric bulk nuclear matter, optical model fits to nucleon-nucleus scattering data, heavy-ion flow data in the energy range 0.5-2 GeV/A, and the largest well-measured neutron star mass of 2 $\\rm{M}_\\odot$. Results of this model which incorporates finite range interactions through Yukawa type forces are contrasted with those of a zero-range Skyrme model that yields nearly identical zero-temperature properties at all densities for symmetric and asymmetric nucleonic matter and the maximum neutron star mass, but fails to account for heavy-ion flow data due to the lack of an appropriate momentum dependence in its mean field. Similarities and differences in the thermal state variables and the specific heats between the two models are highlighted. Checks of our exact numerical calculations are performed from formulas derived in the strongly degenerate and non-degenerate limits....
Schneider, A S; Hughto, J; Berry, D K
2013-01-01
The formation of complex nonuniform phases of nuclear matter, known as nuclear pasta, is studied with molecular dynamics simulations containing 51200 nucleons. A phenomenological nuclear interaction is used that reproduces the saturation binding energy and density of nuclear matter. Systems are prepared at an initial density of 0.10fm$^{-3}$ and then the density is decreased by expanding the simulation volume at different rates to densities of 0.01 fm$^{-3}$ or less. An originally uniform system of nuclear matter is observed to form spherical bubbles ("swiss cheese"), hollow tubes, flat plates ("lasagna"), thin rods ("spaghetti") and, finally, nearly spherical nuclei with decreasing density. We explicitly observe nucleation mechanisms, with decreasing density, for these different pasta phase transitions. Topological quantities known as Minkowski functionals are obtained to characterize the pasta shapes. Different pasta shapes are observed depending on the expansion rate. This indicates non equilibrium effects...
Phase transition to QGP matter : confined vs deconfined matter
Maire, Antonin
2015-01-01
Simplified phase diagram of the nuclear phase transition, from the regular hadronic matter to the QGP phase. The sketch is meant to describe the transition foreseen along the temperature axis, at low baryochemical potential, µB.
Einasto, Jaan
2013-01-01
I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Dark matter is the dominant matter component in the Universe, thus properties of dark matter particles determine the structure of the cosmic...
Bendarag, A
1999-07-09
In this work we study the collective phenomena in the central collisions of heavy ions for the Au + Au, Xe + CsI and Ni + Ni systems at incident energies from 150 to 400 MeV/nucleon with the data of the FOPI detector. In order to describe completely the flow of the nuclear matter, we fit the double differential momentum distributions with two-dimensional Gaussian. We study the characteristic parameters of the collective flow (flow range, aspect ratios, flow parameter) versus the charge and the mass of the fragments as well as the incident energy and the centrality of the collisions. The transverse energy is used for selecting the central collisions. The method of the Gaussian fits requires also to reconstruct the reaction plane of the event. Then we correct the parameters for the finite number of particles effects and account for the influence of the acceptance of the detector. We confirm the importance of the thermal motion for the light charge or mass fragments and, conversely, the predominance of the collective motion for the heavy fragments. A common flow angle for all the types of particles is highlighted for the first time, demonstrating the power of the method of the Gaussian fits; The evolution of the other parameters confirms the observations done with other methods of flow analysis. These results should contribute to put constraints on the collision models and to enlarge our knowledge of the properties of the nuclear matter. (author)
Quark matter droplets in neutron stars
Heiselberg, H.; Pethick, C. J.; Staubo, E. F.
1993-01-01
We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.
Nonlinear effects in asymmetric catalysis.
Satyanarayana, Tummanapalli; Abraham, Susan; Kagan, Henri B
2009-01-01
There is a need for the preparation of enantiomerically pure compounds for various applications. An efficient approach to achieve this goal is asymmetric catalysis. The chiral catalyst is usually prepared from a chiral auxiliary, which itself is derived from a natural product or by resolution of a racemic precursor. The use of non-enantiopure chiral auxiliaries in asymmetric catalysis seems unattractive to preparative chemists, since the anticipated enantiomeric excess (ee) of the reaction product should be proportional to the ee value of the chiral auxiliary (linearity). In fact, some deviation from linearity may arise. Such nonlinear effects can be rich in mechanistic information and can be synthetically useful (asymmetric amplification). This Review documents the advances made during the last decade in the use of nonlinear effects in the area of organometallic and organic catalysis.
Asymmetric distances for binary embeddings.
Gordo, Albert; Perronnin, Florent; Gong, Yunchao; Lazebnik, Svetlana
2014-01-01
In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes that binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances that are applicable to a wide variety of embedding techniques including locality sensitive hashing (LSH), locality sensitive binary codes (LSBC), spectral hashing (SH), PCA embedding (PCAE), PCAE with random rotations (PCAE-RR), and PCAE with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.
Asymmetric Synthesis via Chiral Aziridines
Tanner, David Ackland; Harden, Adrian; Wyatt, Paul
1996-01-01
A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the b......A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines...
C. elegans HAM-1 functions in the nucleus to regulate asymmetric neuroblast division.
Leung, Amy; Hua, Khang; Ramachandran, Pavitra; Hingwing, Kyla; Wu, Maria; Koh, Pei Luan; Hawkins, Nancy
2016-02-01
All 302 neurons in the C. elegans hermaphrodite arise through asymmetric division of neuroblasts. During embryogenesis, the C. elegans ham-1 gene is required for several asymmetric neuroblast divisions in lineages that generate both neural and apoptotic cells. By antibody staining, endogenous HAM-1 is found exclusively at the cell cortex in many cells during embryogenesis and is asymmetrically localized in dividing cells. Here we show that in transgenic embryos expressing a functional GFP::HAM-1 fusion protein, GFP expression is also detected in the nucleus, in addition to the cell cortex. Consistent with the nuclear localization is the presence of a putative DNA binding winged-helix domain within the N-terminus of HAM-1. Through a deletion analysis we determined that the C-terminus of the protein is required for nuclear localization and we identified two nuclear localization sequences (NLSs). A subcellular fractionation experiment from wild type embryos, followed by Western blotting, revealed that endogenous HAM-1 is primarily found in the nucleus. Our analysis also showed that the N-terminus is necessary for cortical localization. While ham-1 function is essential for asymmetric division in the lineage that generates the PLM mechanosensory neuron, we showed that cortical localization may not required. Thus, our results suggest that there is a nuclear function for HAM-1 in regulating asymmetric neuroblast division and that the requirement for cortical localization may be lineage dependent.
Quark matter or new particles?
Michel, F. Curtis
1988-01-01
It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).