WorldWideScience

Sample records for asymmetric dust shell

  1. Studies of dust shells around stars

    International Nuclear Information System (INIS)

    Bedijn, P.J.

    1977-01-01

    This thesis deals with some aspects of circumstellar dust shells. This dust shell, emitting infrared radiation, is described by way of its absorptive and emissive properties as well as by the transfer of radiation through the dust shell itself. Model calculations are compared to experimental results and agree reasonably well. The author also discusses the dynamics of the extended shells of gas and dust around newly formed stars

  2. Diradical character dependences of the first and second hyperpolarizabilities of asymmetric open-shell singlet systems.

    Science.gov (United States)

    Nakano, Masayoshi; Champagne, Benoît

    2013-06-28

    The static first and second hyperpolarizabilities (referred to as β and γ, respectively) of asymmetric open-shell singlet systems have been investigated using the asymmetric two-site diradical model within the valence configuration interaction level of theory in order to reveal the effect of the asymmetric electron distribution on the diradical character and subsequently on β and γ. It is found that the increase of the asymmetric electron distribution causes remarkable changes in the amplitude and the sign of β and γ, and that their variations are intensified with the increase of the diradical character. These results demonstrate that the asymmetric open-shell singlet systems with intermediate diradical characters can exhibit further enhancements of β and γ as compared to conventional asymmetric closed-shell systems and also to symmetric open-shell singlet systems with intermediate diradical characters.

  3. Analysis of axisymmetric shells subjected to asymmetric loads using field consistent shear flexible curved element

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishna, C; Sarma, B S [Defence Research and Development Laboratory, Hyderabad (India)

    1989-02-01

    A formulation for axisymmetric shell analysis under asymmetric load based on Fourier series representation and using field consistent 3 noded curved axisymmetric shell element is presented. Different field inconsistent/consistent interpolations for an element based on shear flexible theory have been studied for thick and thin shells under asymmetric loads. Various examples covering axisymmetric as well as asymmetric loading cases have been analyzed and numerical results show a good agreement with the available results in the case of thin shells. 12 refs.

  4. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    International Nuclear Information System (INIS)

    Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping

    2016-01-01

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  5. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    Science.gov (United States)

    Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping

    2016-08-01

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  6. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng, E-mail: dai-zhensheng@iapcm.ac.cn; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2016-08-15

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  7. Asymmetric vibrations of thick shells of revolution having meridionally varying curvature

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Kosawada, Tadashi; Yachita, Takumi.

    1988-01-01

    An exact method using power series expansions is presented for solving asymmetric free vibration problems for thick shells of revolution having meridionally varying curvature. Based on the improved thick shell theory, the Lagrangian of the shells of revolution are obtained, and the equations of motion and the boundary conditions are derived from the stationary condition of the Lagrangian. The method is demonstrated for thick shells of revolution having elliptical, cycloidal, parabolical, catenary and hyperbolical meridional curvature. The results by the present method are compared with those by the thin shell theory and the effects of the rotatory inertia and the shear deformation upon the natural frequencies are clarified. (author)

  8. Asymmetric vibrations of shells of revolution having meridionally varying curvature and thickness

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Kosawada, Tadashi; Miura, Kazuyuki.

    1988-01-01

    An exact method using power series expansions is presented for solving asymmetric free vibration problems for shells of revolution having meridionally varying curvature and thickness. The gaverning equations of motion and the boundary conditions are derived from the stationary conditions of the Lagrangian of the shells of revolution. The method is demonstrated for shells of revolution having elliptical, cycloidal, parabolical, catenary and hyperbolical meridional curvature. The natural frequencies are numerically calculated for these shells having second degree thickness variation. (author)

  9. Mid-Infrared Interferometry on Spectral Lines. II. Continuum (Dust) Emission Around IRC +10216 and VY Canis Majoris

    Science.gov (United States)

    Monnier, J. D.; Danchi, W. C.; Hale, D. S.; Lipman, E. A.; Tuthill, P. G.; Townes, C. H.

    2000-11-01

    The University of California Berkeley Infrared Spatial Interferometer has measured the mid-infrared visibilities of the carbon star IRC +10216 and the red supergiant VY CMa. The dust shells around these sources have been previously shown to be time variable, and these new data are used to probe the evolution of the dust shells on a decade timescale, complementing contemporaneous studies at other wavelengths. Self-consistent, spherically symmetric models at maximum and minimum light both show the inner radius of the IRC +10216 dust shell to be much larger (150 mas) than expected from the dust-condensation temperature, implying that dust production has slowed or stopped in recent years. Apparently, dust does not form every pulsational cycle (638 days), and these mid-infrared results are consistent with recent near-infrared imaging, which indicates little or no new dust production in the last 3 yr. Spherically symmetric models failed to fit recent VY CMa data, implying that emission from the inner dust shell is highly asymmetric and/or time variable.

  10. Probing the stability of gravastars by dropping dust shells onto them

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Merse E; Racz, Istvan, E-mail: merse@rmki.kfki.h, E-mail: iracz@rmki.kfki.h [RMKI, H-1121 Budapest, Konkoly Thege Miklos ut 29-33 (Hungary)

    2010-09-21

    As a preparation for the dynamical investigations, this paper begins with a short review of the three-layer gravastar model with distinguished attention to the structure of the pertinent parameter space of gravastars in equilibrium. Then the radial stability of these types of gravastars is studied by determining their response for the totally inelastic collision of their surface layer with a dust shell. It is assumed that the dominant energy condition holds and the speed of sound does not exceed that of the light in the matter of the surface layer. While in the analytic setup the equation of state is kept to be generic, in the numerical investigations three functionally distinct classes of equations of states are applied. In the corresponding particular cases the maximal mass of the dust shell that may fall onto a gravastar without converting it into a black hole is determined. For those configurations which remain stable the excursion of their radius is assigned. It is found that even the most compact gravastars cannot get beyond the lower limit of the size of conventional stars, provided that the dominant energy condition holds in both cases. It is also shown-independent of any assumption concerning the matter interbridging the internal de Sitter and the external Schwarzschild regions-that the better a gravastar in mimicking a black hole the easier is to get the system formed by a dust shell and the gravastar beyond the event horizon of the composite system. In addition, a generic description of the totally inelastic collision of spherical shells in spherically symmetric spacetimes is also provided in the appendix.

  11. IS THE DUST CLOUD AROUND LAMBDA ORIONIS A RING OR A SHELL, OR BOTH?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dukhang; Seon, Kwang-Il; Jo, Young-Soo, E-mail: lee.dukhang@gmail.com [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2015-06-20

    The dust cloud around λ Orionis is observed to be circularly symmetric with a large angular extent (≈8°). However, whether the three-dimensional (3D) structure of the cloud is shell- or ring-like has not yet been fully resolved. We study the 3D structure using a new approach that combines a 3D Monte Carlo radiative transfer model for ultraviolet (UV) scattered light and an inverse Abel transform, which gives a detailed 3D radial density profile from a two-dimensional column density map of a spherically symmetric cloud. By comparing the radiative transfer models for a spherical shell cloud and that for a ring cloud, we find that only the shell model can reproduce the radial profile of the scattered UV light, observed using the S2/68 UV observation, suggesting a dust shell structure. However, the inverse Abel transform applied to the column density data from the Pan-STARRS1 dust reddening map results in negative values at a certain radius range of the density profile, indicating the existence of additional, non-spherical clouds near the nebular boundary. The additional cloud component is assumed to be of toroidal ring shape; we subtracted from the column density to obtain a positive, radial density profile using the inverse Abel transform. The resulting density structure, composed of a toroidal ring and a spherical shell, is also found to give a good fit to the UV scattered light profile. We therefore conclude that the cloud around λ Ori is composed of both ring and shell structures.

  12. Gravitational collapse of charged dust shell and maximal slicing condition

    International Nuclear Information System (INIS)

    Maeda, Keiichi

    1980-01-01

    The maximal slicing condition is a good time coordinate condition qualitatively when pursuing the gravitational collapse by the numerical calculation. The analytic solution of the gravitational collapse under the maximal slicing condition is given in the case of a spherical charged dust shell and the behavior of time slices with this coordinate condition is investigated. It is concluded that under the maximal slicing condition we can pursue the gravitational collapse until the radius of the shell decreases to about 0.7 x (the radius of the event horizon). (author)

  13. Modelling the carbon AGB star R Sculptoris. Constraining the dust properties in the detached shell based on far-infrared and sub-millimeter observations

    Science.gov (United States)

    Brunner, M.; Maercker, M.; Mecina, M.; Khouri, T.; Kerschbaum, F.

    2018-06-01

    Context. On the asymptotic giant branch (AGB), Sun-like stars lose a large portion of their mass in an intensive wind and enrich the surrounding interstellar medium with nuclear processed stellar material in the form of molecular gas and dust. For a number of carbon-rich AGB stars, thin detached shells of gas and dust have been observed. These shells are formed during brief periods of increased mass loss and expansion velocity during a thermal pulse, and open up the possibility to study the mass-loss history of thermally pulsing AGB stars. Aims: We study the properties of dust grains in the detached shell around the carbon AGB star R Scl and aim to quantify the influence of the dust grain properties on the shape of the spectral energy distribution (SED) and the derived dust shell mass. Methods: We modelled the SED of the circumstellar dust emission and compared the models to observations, including new observations of Herschel/PACS and SPIRE (infrared) and APEX/LABOCA (sub-millimeter). We derived present-day mass-loss rates and detached shell masses for a variation of dust grain properties (opacities, chemical composition, grain size, and grain geometry) to quantify the influence of changing dust properties to the derived shell mass. Results: The best-fitting mass-loss parameters are a present-day dust mass-loss rate of 2 × 10-10 M⊙ yr-1 and a detached shell dust mass of (2.9 ± 0.3) × 10-5 M⊙. Compared to similar studies, the uncertainty on the dust mass is reduced by a factor of 4. We find that the size of the grains dominates the shape of the SED, while the estimated dust shell mass is most strongly affected by the geometry of the dust grains. Additionally, we find a significant sub-millimeter excess that cannot be reproduced by any of the models, but is most likely not of thermal origin. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  14. A dust shell around the early-type Wolf-Ryate star WR 19

    International Nuclear Information System (INIS)

    Williams, P.M.; Hucht, K.A. van der; Bouchet, P.

    1990-01-01

    Infrared photometry of the WC4-type Wolf-Rayet star WR 19 (LS 3) in 1988-90 shows evidence for an expanding dust shell in its wind, similar to those observed from late-type WR stars like WR 48a (WC8), WR 140 (WC7+04) and WR 137 (WC7+). This demonstrates that dust formation by Wolf-Rayet stars is not restricted to later WC subtypes and is more common than hitherto supposed. (author)

  15. Robustness of the filamentation instability for asymmetric plasma shells collision in arbitrarily oriented magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2013-10-15

    The filamentation instability triggered when two counter streaming plasma shells overlap appears to be the main mechanism by which collisionless shocks are generated. It has been known for long that a flow aligned magnetic field can completely suppress this instability. In a recent paper [Phys. Plasmas 18, 080706 (2011)], it was demonstrated in two dimensions that for the case of two cold, symmetric, relativistically colliding shells, such cancellation cannot occur if the field is not perfectly aligned. Here, this result is extended to the case of two asymmetric shells. The filamentation instability appears therefore as an increasingly robust mechanism to generate shocks.

  16. Coupled channel calculations of K-shell ionization in asymmetric collision systems

    International Nuclear Information System (INIS)

    Mehler, G.; Greiner, W.; Soff, G.

    1986-07-01

    We report theoretical results on K-shell ionization for a variety of asymmetric collision systems. The calculated ionization rates are compared with experimental data. The coupled channel formalism underlying these calculations is presented. It is based on a set of relativistic target centred states, taking a screened potential of Dirac-Fock-Slater type into account. We discuss the effects of different matrix elements, e.g. continuum-continuum couplings. The binding effect is inherently contained in our approach and described in a dynamical way. (orig.)

  17. Intracluster dust, circumstellar shells, and the wavelength dependence of polarization in orion

    International Nuclear Information System (INIS)

    Breger, M.

    1977-01-01

    The wavelength dependence of polarization of 21 polarized stars near the Orion Nebula has been measured. Most stars fit the standard interstellar law. The wavelength of maximum linear polarization, lambda/sub max/, ranges from normal values to 0.71μm. The polarimetric, spectroscopic, and photometric data support a normal reddening law (Rapprox. =3) for most Orion stars, and present evidence for unusually large grain sizes in front of some Orion stars. For the stars BR 545 and BR 885 large values of lambda/sub max/ are associated with unusually large values of total to selective extinction.A division of the observed polarization into intracluster dust and circumstellar shell components shows that the presence of shells does not usually lead to linear polarization in the optical wavelength region. Also, no association of polarization with known light variability could be found. The nature of the intracluster dust clouds is discussed briefly.The results of searches for circular polarization as well as short-period variability are presented in two appendices

  18. Guilt by Association: The 13 micron Dust Feature in Circumstellar Shells and Related Spectral Features

    Science.gov (United States)

    Sloan, G. C.; Kraemer, K. E.; Goebel, J. H.; Price, S. D.

    A study of spectra from the SWS on ISO of optically thin oxygen-rich dust shells shows that the strength of the 13 micron dust emission feature is correlated with the CO2 bands (13--17 microns) and dust emission features at 19.8 and 28.1 microns. SRb variables tend to show stronger 13 micron features than Mira variables, suggesting that the presence of the 13 micron and related features depends on pulsation mode and mass-loss rate. The absence of any correlation to dust emission features at 16.8 and 32 microns makes spinel an unlikely carrier. The most plausible carrier of the 13 micron feature remains crystalline alumina, and we suggest that the related dust features may be crystalline silicates. When dust forms in regions of low density, it may condense into crystalline grain structures.

  19. Construction of Core-Shell NiMoO4@Ni-Co-S Nanorods as Advanced Electrodes for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Chen, Chao; Yan, Dan; Luo, Xin; Gao, Wenjia; Huang, Guanjie; Han, Ziwu; Zeng, Yan; Zhu, Zhihong

    2018-02-07

    In this work, hierarchical core-shell NiMoO 4 @Ni-Co-S nanorods were first successfully grown on nickel foam by a facile two-step method to fabricate a bind-free electrode. The well-aligned electrode wrapped by Ni-Co-S nanosheets displays excellent nanostructural properties and outstanding electrochemical performance, owing to the synergistic effects of both nickel molybdenum oxides and nickel cobalt sulfides. The prepared core-shell nanorods in a three-electrode cell yielded a high specific capacitance of 2.27 F cm -2 (1892 F g -1 ) at a current density of 5 mA cm -2 and retained 91.7% of the specific capacitance even after 6000 cycles. Their electrochemical performance was further investigated for their use as positive electrode for asymmetric supercapacitors. Notably, the energy density of the asymmetric supercapacitor device reached 2.45 mWh cm -3 at a power density of 0.131 W cm -3 , and still retained a remarkable 80.3% of the specific capacitance after 3500 cycles. There is great potential for the electrode composed of the core-shell NiMoO 4 @Ni-Co-S nanorods for use in an all-solid-state asymmetric supercapacitor device.

  20. Elasto/visco-plastic analysis of moderately thick shells of revolution under asymmetrical loading

    International Nuclear Information System (INIS)

    Tao, K.; Takezono, S.

    1987-01-01

    In the present paper the analytical formulation for the elasto/visco-plastic problems of general, moderately thick shells of revolution subjected to asymmetrical loads is developed in consideration of the effect of shear deformation. The equations of equilibrium and the relations between the strains and displacements are derived by extending the Reissner-Naghdi theory (1941, 1957) for elastic shells with given consideration to the effect of shear deformation. As the constitutive relation, Hooke's law is used in the liner elastic range, and the elasto/visco-plastic equations by Perzyna (1966) are employed in the plastic range. The fundamental equations on the elasto/visco-plastic problems derived for incremental values are numerically solved by a finite difference method and the solutions are obtained by summation of the incremental values. (orig./GL)

  1. Elasto/visco-plastic analysis of orthotropic moderately thick shells of revolution under asymmetrical loading

    International Nuclear Information System (INIS)

    Tao, K.; Takezono, S.

    1989-01-01

    An analytical method for the elasto/visco-plastic problems of general, orthotropic moderately thick shells of revolution subjected to asymmetrical loads is developed in consideration of the effect of shear deformations. The Reissner-Naghdi theory for elastic moderately thick shells is extended in this analysis. As the constitutive equation, Hooke's law for orthotropic materials is used in the elastic region, and equations based on the orthotropic visco-plastic theory derived from the orthotropic plastic theory by Hill are employed in the plastic range. The visco-plastic strain rates are related to the stresses by Perzyna's equation. The fundamental equations for the increment are numerically solved by a finite difference method and the solutions are obtained by summation of the incremental values. In order to check the adequacy of the numerical analysis, experiments are performed on the elasto/visco-plastic deformation of a titanium cylindrical shell subjected to locally distributed loads. Good agreement is obtained between the experimental results and analytical solutions

  2. Experimental study on the strength parameter of Quarry Dust mixed Coconut Shell Concrete adding Coconut Fibre

    Science.gov (United States)

    Matangulu Shrestha, Victor; Anandh, S.; Sindhu Nachiar, S.

    2017-07-01

    Concrete is a heterogeneous mixture constitute of cement as the main ingredient with a different mix of fine and coarse aggregate. The massive use of conventional concrete has a shortfall in its key ingredients, natural sand and coarse aggregate, due to increased industrialisation and globalisation. To overcome the shortage of material, an alternate material with similar mechanical properties and composition has to be studied, as replacement of conventional concrete. Coconut shell concrete is a prime option as replacement of key ingredients of conventional concrete as coconut is produced in massive quantity in south East Asia. Coconut shell concrete is lightweight concrete and different research is still ongoing concerning about its mix design and composition in the construction industry. Concrete is weak in tension as compared to compression, hence the fibre is used to refrain the crack in the concrete. Coconut fibre is one of many fibres which can be used in concrete. The main aim of this project is to analyse the use of natural by-products in the construction industry, make light weight concrete and eco-friendly construction. This project concerns with the comparison of the mechanical properties of coconut shell concrete and conventional concrete, replacing fine aggregate with quarry dust using coconut fibre. M25 grade of concrete was adopted and testing of concrete was done at the age of 3, 7 and 28 days. In this concrete mix, sand was replaced completely in volumetric measurement by quarry dust. The result was analysed and compared with addition of coconut fibre at varying percentage of 1%, 2%, 3%, 4% and 5%. From the test conducted, coconut shell concrete with quarry dust has the maximum value at 4% of coconut fibre while conventional concrete showed the maximum value at 2% of coconut fibre.

  3. ZnO@MnO2 Core-Shell Nanofiber Cathodes for High Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Radhamani, A V; Shareef, K M; Rao, M S Ramachandra

    2016-11-09

    Asymmetric supercapacitors (ASCs) with aqueous electrolyte medium have recently become the focus of increasing research. For high performance ASCs, selection of cathode materials play a crucial role, and core-shell nanostructures are found to be a good choice. We successfully synthesized, ZnO@MnO 2 core-shell nanofibers (NFs) by modification of high-aspect-ratio-electrospun ZnO NFs hydrothermally with MnO 2 nanoflakes. High conductivity of the ZnO NFs and the exceptionally high pseudocapacitive nature of MnO 2 nanoflakes coating delivered a specific capacitance of 907 Fg -1 at 0.6 Ag -1 for the core-shell NFs. A simple and cost-effective ASC construction was demonstrated with ZnO@MnO 2 NFs as a battery-type cathode material and a commercial-quality activated carbon as a capacitor-type anode material. The fabricated device functioned very well in a voltage window of 0-2.0 V, and a red-LED was illuminated using a single-celled fabricated ASC device. It was found to deliver a maximum energy density of 17 Whkg -1 and a power density of 6.5 kWkg -1 with capacitance retention of 94% and Coulombic efficiency of 100%. The novel architecture of the ZnO@MnO 2 core-shell nanofibrous material implies the importance of using simple design of fiber-based electrode material by mere changes of core and shell counterparts.

  4. Detached dust shell around Wolf-Rayet star WR60-6 in the young stellar cluster VVV CL036

    Energy Technology Data Exchange (ETDEWEB)

    Borissova, J.; Amigo, P.; Kurtev, R. [Departamento de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Casilla 5030 (Chile); Kumar, M. S. N. [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Chené, A.-N. [Gemini Observatory, Northern Operations Center, 670 North A' ohoku Place Hilo, HI 96720 (United States); Minniti, D., E-mail: jura.borissova@uv.cl [Pontificia Universidad Católica de Chile, Facultad de Física, Departamento de Astronomía y Astrofísica, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago (Chile)

    2014-01-01

    The discovery of a detached dust shell around the Wolf-Rayet (WR) star WR60-6 in the young stellar cluster VVV CL036 is reported. This shell is uncovered through the Spitzer-MIPS 24 μm image, where it appears brightest, and it is invisible at shorter wavelengths. Using new APEX observations and other data available from the literature, we have estimated some of the shell parameters: the inner and outer radii of 0.15 and 0.90 pc, respectively; the overall systemic velocity of the molecular {sup 12}CO(3 → 2) emission of –45.7 ± 2.3 km s{sup –1}; an expansion velocity of the gas of 16.3 ± 1 km s{sup –1}; the dust temperature and opacity of 122 ± 12 K and 1.04, respectively; and an age of 2.8 × 10{sup 4} yr. The WR star displays some cyclic variability. The mass computed for the WR60-6 nebula indicates that the material was probably ejected during its previous stages of evolution. In addition, we have identified a bright spot very close to the shell, which can be associated with the Midcourse Space Experiment source G312.13+00.20.

  5. A Massive Shell of Supernova-formed Dust in SNR G54.1+0.3

    Energy Technology Data Exchange (ETDEWEB)

    Temim, Tea [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Dwek, Eli; Arendt, Richard G. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Borkowski, Kazimierz J.; Reynolds, Stephen P. [North Carolina State University, Raleigh, NC 27695 (United States); Slane, Patrick; Raymond, John C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gelfand, Joseph D. [New York University, Abu Dhabi (United Arab Emirates)

    2017-02-10

    While theoretical models of dust condensation predict that most refractory elements produced in core-collapse supernovae (SNe) efficiently condense into dust, a large quantity of dust has so far only been observed in SN 1987A. We present an analysis of observations from the Spitzer Space Telescope , Herschel Space Observatory , Stratospheric Observatory for Infrared Astronomy, and AKARI of the infrared shell surrounding the pulsar wind nebula in the supernova remnant G54.1+0.3. We attribute a distinctive spectral feature at 21 μ m to a magnesium silicate grain species that has been invoked in modeling the ejecta-condensed dust in Cas A, which exhibits the same spectral signature. If this species is responsible for producing the observed spectral feature and accounts for a significant fraction of the observed infrared continuum, we find that it would be the dominant constituent of the dust in G54.1+0.3, with possible secondary contributions from other compositions, such as carbon, silicate, or alumina grains. The total mass of SN-formed dust required by this model is at least 0.3 M {sub ⊙}. We discuss how these results may be affected by varying dust grain properties and self-consistent grain heating models. The spatial distribution of the dust mass and temperature in G54.1+0.3 confirms the scenario in which the SN-formed dust has not yet been processed by the SN reverse shock and is being heated by stars belonging to a cluster in which the SN progenitor exploded. The dust mass and composition suggest a progenitor mass of 16–27 M {sub ⊙} and imply a high dust condensation efficiency, similar to that found for Cas A and SN 1987A. The study provides another example of significant dust formation in a Type IIP SN explosion and sheds light on the properties of pristine SN-condensed dust.

  6. Mass loss from OH/IR stars - Models for the infrared emission of circumstellar dust shells

    Science.gov (United States)

    Justtanont, K.; Tielens, A. G. G. M.

    1992-01-01

    The IR emission of a sample of 24 OH/IR stars is modeled, and the properties of circumstellar dust and mass-loss rate of the central star are derived. It is shown that for some sources the observations of the far-IR emission is well fitted with a lambda exp -1 law, while some have a steeper index of 1.5. For a few sources, the presence of circumstellar ice grains is inferred from detailed studies of the observed 10-micron feature. Dust mass-loss rates are determined from detailed studies for all the stars in this sample. They range from 6.0 x 10 exp -10 solar mass/yr for an optically visible Mira to 2.2 x 10 exp -6 solar mass/yr for a heavily obscured OH/IR star. These dust mass-loss rates are compared to those calculated from IRAS photometry using 12-, 25-, and 60-micron fluxes. The dust mass-loss rates are also compared to gas mass-loss rates determined from OH and CO observations. For stars with tenuous shells, a dust-to-gas ratio of 0.001 is obtained.

  7. On the possibility of wormhole formation due to quantum effects in the gravitational collapse of a small dust shell

    Energy Technology Data Exchange (ETDEWEB)

    Cruz P, G.; Minzoni, A.; Padilla, P. [Proyecto Universitario en Fenomenos Nolineales y Mecanica Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, A.P. 20-726, 04510 Mexico, D.F. (Mexico); Rosenbaum, M.; Ryan, M.P. Jr. [Instituto de Ciencias Nucleares, Proyecto Universitario en Fenomenos Nolineales y Mecanica, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico, D.F. (Mexico); Smyth, N.F. [Department of Mathematics and Statistics, University of Edinburgh, The King' s Building, Mayfield Road, Edinburgh, Scotland, UK, EH9 3JZ (United Kingdom); Vukasinac, T. [Facultad de Economia, Universidad Michoacana de San Nicolas de Hidalgo, A.P. 2-82, 58030 Morelia, Michoacan (Mexico)

    2003-07-01

    In the present note we outline the main steps towards the analysis of wormhole formation during the quantum collapse of a spherical dust shell. We define the quantum observable {theta}, corresponding to the classical trace of the expansion tensor, and calculate its expected value in order to obtain information about the geometry of space-time around the shell. We show that the local quantum geometry represents a wormhole. (Author)

  8. On the possibility of wormhole formation due to quantum effects in the gravitational collapse of a small dust shell

    International Nuclear Information System (INIS)

    Cruz P, G.; Minzoni, A.; Padilla, P.; Rosenbaum, M.; Ryan, M.P. Jr.; Smyth, N.F.; Vukasinac, T.

    2003-01-01

    In the present note we outline the main steps towards the analysis of wormhole formation during the quantum collapse of a spherical dust shell. We define the quantum observable Θ, corresponding to the classical trace of the expansion tensor, and calculate its expected value in order to obtain information about the geometry of space-time around the shell. We show that the local quantum geometry represents a wormhole. (Author)

  9. WHAT IS THE SHELL AROUND R CORONAE BOREALIS?

    Energy Technology Data Exchange (ETDEWEB)

    Montiel, Edward J.; Clayton, Geoffrey C.; Marcello, Dominic C. [Dept. of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Lockman, Felix J., E-mail: emonti2@lsu.edu, E-mail: gclayton@fenway.phys.lsu.edu, E-mail: dmarce1@tigers.lsu.edu, E-mail: jlockman@nrao.edu [National Radio Astronomy Observatory, Green Bank, WV 24944 (United States)

    2015-07-15

    The hydrogen-deficient, carbon-rich R Coronae Borealis (RCB) stars are known for being prolific producers of dust which causes their large iconic declines in brightness. Several RCB stars, including R Coronae Borealis (R CrB), itself, have large extended dust shells seen in the far-infrared. The origin of these shells is uncertain but they may give us clues to the evolution of the RCB stars. The shells could form in three possible ways. (1) They are fossil Planetary Nebula (PN) shells, which would exist if RCB stars are the result of a final, helium-shell flash, (2) they are material left over from a white-dwarf (WD) merger event which formed the RCB stars, or (3) they are material lost from the star during the RCB phase. Arecibo 21 cm observations establish an upper limit on the column density of H I in the R CrB shell implying a maximum shell mass of ≲0.3 M{sub ☉}. A low-mass fossil PN shell is still a possible source of the shell although it may not contain enough dust. The mass of gas lost during a WD merger event will not condense enough dust to produce the observed shell, assuming a reasonable gas-to-dust ratio. The third scenario where the shell around R CrB has been produced during the star’s RCB phase seems most likely to produce the observed mass of dust and the observed size of the shell. But this means that R CrB has been in its RCB phase for ∼10{sup 4} years.

  10. The creep of multi-layered moderately thick shells of revolution under asymmetrical loading

    International Nuclear Information System (INIS)

    Takezono, S.; Migita, K.

    1987-01-01

    In the present paper the authors study the creep deformation of the multi-layered thick shells of revolution under asymmetrical loads. The equations of equilibrium and the strain-displacement relations are derived from the Reissner-Naghdi theory (1941, 1957) for elastic shells where a consideration on the effect of shear deformation is given. In the theory of creep it is assumed that in a given increment of time the total strain increments are composed of an elastic part and a part due to creep. The elastic strains are proportional to the stresses by Hooke's law. For the constitutive equations in the creep range, McVetty's equation modified by Arrhenius' equation for thermal effect is employed. The basic differential equations on the creep problems derived for the incremental values with respect to time are numerically solved by a finite difference method and the solutions at any time are obtained by summation of the incremental values. Resultant forces and resultant moments are given from numerical integration of the stresses by Simpson's 1/3 rules. (orig./GL)

  11. High-performance asymmetric supercapacitors based on core/shell cobalt oxide/carbon nanowire arrays with enhanced electrochemical energy storage

    International Nuclear Information System (INIS)

    Pan, G.X.; Xia, X.H.; Cao, F.; Chen, J.; Tang, P.S.; Zhang, Y.J.; Chen, H.F.

    2014-01-01

    Graphical abstract: - Highlights: • We prepared a self-supported porous Co 3 O 4 /C core/shell nanowire array. • Core/shell nanowire array showed high pseudo-capacitive properties. • Core/shell array structure was favorable for fast ion and electron transfer. - Abstract: High-reactivity electrode materials are indispensible for developing high-performance electrochemical energy storage devices. Herein, we report self-supported core/shell Co 3 O 4 /C nanowire arrays by using hydrothermal synthesis and chemical vapor deposition methods. A uniform and thin carbon shell is coated on the surface of Co 3 O 4 nanowire forming core/shell nanowires with diameters of ∼100 nm. Asymmetric supercapacitors have been assembled with the core/shell Co 3 O 4 /C nanowire arrays as the positive electrode and activated carbon (AC) as the negative electrode. The core/shell Co 3 O 4 /C nanowire arrays exhibit a specific capacity of 116 mAh g −1 at the working current of 100 mA (4 A g −1 ), and a long cycle life along with ∼ 92% retention after 8000 cycles at 4 A g −1 , higher than the unmodified Co 3 O 4 nanowire arrays (81 mAh g −1 at 4 A g −1 ). The introduction of uniform carbon layer into the core/shell structure is favorable for the enhancement of supercapacitor due to the improved electrical conductivity and reaction kinetics

  12. Merging of Kirkendall Growth and Ostwald Ripening: CuO@MnO2 Core-shell Architectures for Asymmetric Supercapacitors

    Science.gov (United States)

    Huang, Ming; Zhang, Yuxin; Li, Fei; Wang, Zhongchang; Alamusi; Hu, Ning; Wen, Zhiyu; Liu, Qing

    2014-01-01

    Fabricating hierarchical core-shell nanostructures is currently the subject of intensive research in the electrochemical field owing to the hopes it raises for making efficient electrodes for high-performance supercapacitors. Here, we develop a simple and cost-effective approach to prepare CuO@MnO2 core-shell nanostructures without any surfactants and report their applications as electrodes for supercapacitors. An asymmetric supercapacitor with CuO@MnO2 core-shell nanostructure as the positive electrode and activated microwave exfoliated graphite oxide (MEGO) as the negative electrode yields an energy density of 22.1 Wh kg−1 and a maximum power density of 85.6 kW kg−1; the device shows a long-term cycling stability which retains 101.5% of its initial capacitance even after 10000 cycles. Such a facile strategy to fabricate the hierarchical CuO@MnO2 core-shell nanostructure with significantly improved functionalities opens up a novel avenue to design electrode materials on demand for high-performance supercapacitor applications. PMID:24682149

  13. Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors.

    Science.gov (United States)

    Wang, Fengmei; Zhan, Xueying; Cheng, Zhongzhou; Wang, Zhenxing; Wang, Qisheng; Xu, Kai; Safdar, Muhammad; He, Jun

    2015-02-11

    Among active pseudocapacitive materials, polypyrrole (PPy) is a promising electrode material in electrochemical capacitors. PPy-based materials research has thus far focused on its electrochemical performance as a positive electrode rather than as a negative electrode for asymmetric supercapacitors (ASCs). Here high-performance electrochemical supercapacitors are designed with tungsten oxide@PPy (WO3 @PPy) core-shell nanowire arrays and Co(OH)2 nanowires grown on carbon fibers. The WO3 @PPy core-shell nanowire electrode exhibits a high capacitance (253 mF/cm2) in negative potentials (-1.0-0.0 V). The ASCs packaged with CF-Co(OH)2 as a positive electrode and CF-WO3 @PPy as a negative electrode display a high volumetric capacitance up to 2.865 F/cm3 based on volume of the device, an energy density of 1.02 mWh/cm3 , and very good stability performance. These findings promote the application of PPy-based nanostructures as advanced negative electrodes for ASCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Episodic Dust Emission from Alpha Orionis

    Science.gov (United States)

    Danchi, W. C.; Greenhill, L. J.; Bester, M.; Degiacomi, C.; Townes, C. H.

    1993-05-01

    The spatial distribution of dust surrounding alpha Orionis has been observed with the Infrared Spatial Interferometer (ISI) operating at a wavelength of 11.15 microns. Radiative transfer modeling of the visibility curves obtained by the ISI has yielded estimates of the physical parameters of the dust surrounding the star and new details of the dust distribution. The visibility curves taken in 1992 can be fitted best by a model with two dust shells. One shell has an inner radius of 1.0+/- 0.1{ }('') , a thickness between 50-200 milliarcsec, and a temperature of about 380 K. The second shell has an inner radius of 2.0+/-0.1{ }('') , a thickness less than about 200 milliarcsec, and a temperature of 265 K. These results are consistent with the recent spatially resolved spectroscopy of alpha Orionis reported by Sloan et al. (1993, Ap.J., 404, 303). The dust was modelled with the MRN size distribution with radius varying from 0.005--0.25 microns. The star was assumed to be a blackbody with a temperature of 3500 K and angular radius of 21.8 milliarcsec, consistent with recent interferometric determinations of its diameter (cf. Dyck et al., 1992, A.J., 104, 1992). For an adopted distance of 150 pc, the model for the 1992 data was evolved backward in time for a comparison with previous visibility data of Sutton (1979, Ph.D. Thesis, U.C. Berkeley) and Howell et al. (1981, Ap.J., 251, L21). The velocities, 11 km \\ s(-1) and 18 km \\ s(-1) , were used for the first and second shells respectively, which are the CO velocities measured by Bernat et al. (1979, Ap.J.,233, L135). We find excellent agreement if the dust shells were at approximately 0.80{ }('') and 1.67{ }('') at the epoch of the previous measurements. The data are consistent with the hypothesis that inner dust shell was emitted during the unusual variations in radial velocity and visual magnitude in the early 1940's, described by Goldberg (1984, PASP, 96, 366).

  15. Hydrogenated CoOx nanowire@Ni(OH)2 nanosheet core-shell nanostructures for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Zhu, Jianxiao; Huang, Lei; Xiao, Yuxiu; Shen, Leo; Chen, Qi; Shi, Wangzhou

    2014-05-01

    We report a facile strategy to prepare 3D core-shell nanowire heterostructures with microporous hydrogenated CoOx (H-CoOx) nanowires as the conducting scaffold to support Ni(OH)2 nanosheets. Benefiting from the H-CoOx nanowire core to provide the effective pathway for charge transport and the core-shell heterostructures with synergistic effects, the H-CoOx@Ni(OH)2 core-shell nanowire electrode achieved the specific capacitance of 2196 F g-1 (areal capacitance of 5.73 F cm-2), which is approximately a 1.4-fold enhancement compared with the Co3O4@Ni(OH)2 core-shell nanowires. An aqueous asymmetric supercapacitor (ASC) device was fabricated by using H-CoOx@Ni(OH)2 nanowires as the positive electrode and reduced graphene oxide @Fe3O4 nanocomposites as the negative electrode. The ASCs achieved high energy density (~45.3 W h kg-1 at 1010 W kg-1), high power density (~7080 W kg-1 at 23.4 W h kg-1) and high cycling stability. Furthermore, after charging for ~1 min, one such 22 cm2 ASC device demonstrated to be able to drive a small windmill (0.8 V, 0.1 W) for 20 min. Two such ASCs connected in series can power up a seven-color LED (3.2 V) efficiently.We report a facile strategy to prepare 3D core-shell nanowire heterostructures with microporous hydrogenated CoOx (H-CoOx) nanowires as the conducting scaffold to support Ni(OH)2 nanosheets. Benefiting from the H-CoOx nanowire core to provide the effective pathway for charge transport and the core-shell heterostructures with synergistic effects, the H-CoOx@Ni(OH)2 core-shell nanowire electrode achieved the specific capacitance of 2196 F g-1 (areal capacitance of 5.73 F cm-2), which is approximately a 1.4-fold enhancement compared with the Co3O4@Ni(OH)2 core-shell nanowires. An aqueous asymmetric supercapacitor (ASC) device was fabricated by using H-CoOx@Ni(OH)2 nanowires as the positive electrode and reduced graphene oxide @Fe3O4 nanocomposites as the negative electrode. The ASCs achieved high energy density (~45.3 W h kg-1 at

  16. Dynamic nonlinear analysis of shells of revolution

    International Nuclear Information System (INIS)

    Riesemann, W.A. von; Stricklin, J.A.; Haisler, W.E.

    1975-01-01

    Over the past few years a series of finite element computer programs have been developed at Texas A and M University for the static and dynamic nonlinear analysis of shells of revolution. This paper discusses one of these, DYNAPLAS, which is a program for the transient response of ring stiffened shells of revolution subjected to either asymmetric initial velocities or to asymmetric pressure loadings. Both material and geometric nonlinearities may be considered. (Auth.)

  17. Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core-shell electrode.

    Science.gov (United States)

    Tang, Chun-hua; Yin, Xuesong; Gong, Hao

    2013-11-13

    Pseudocapacitors based on fast surface Faradaic reactions can achieve high energy densities together with high power densities. Usually, researchers develop a thin layer of active materials to increase the energy density by enhancing the surface area; meanwhile, this sacrifices the mass loading. In this work, we developed a novel 3D core-shell Co3O4@Ni(OH)2 electrode that can provide high energy density with very high mass loading. Core-shell porous nanowires (Co3O4@Ni(OH)2) were directly grown on a Ni current collector as an integrated electrode/collector for the supercapacitor anode. This Co3O4@Ni(OH)2 core-shell nanoarchitectured electrode exhibits an ultrahigh areal capacitance of 15.83 F cm(-2). The asymmetric supercapacitor prototypes, assembled using Co3O4@Ni(OH)2 as the anode, reduced graphene oxide (RGO) or active carbon (AC) as the cathode, and 6 M aqueous KOH as the electrolyte, exhibit very high energy densities falling into the energy-density range of Li-ion batteries. Because of the large mass loading and high energy density, the prototypes can drive a minifan or light a bulb even though the size is very small. These results indicate that our asymmetric supercapacitors have outstanding potential in commercial applications. Systematic study and scientific understanding were carried out.

  18. Facile synthesis of hierarchical Co3O4@MnO2 core-shell arrays on Ni foam for asymmetric supercapacitors

    Science.gov (United States)

    Huang, Ming; Zhang, Yuxin; Li, Fei; Zhang, Lili; Wen, Zhiyu; Liu, Qing

    2014-04-01

    Hierarchical Co3O4@MnO2 core-shell arrays on Ni foam have been fabricated by a facile hydrothermal approach and further investigated as the electrode for high-performance supercapacitors. Owing to the high conductivity of the well-defined mesoporous Co3O4 nanowire arrays in combination with the large surface area provided by the ultrathin MnO2 nanosheets, the unique designed Co3O4@MnO2 core-shell arrays on Ni foam have exhibited a high specific capacitance (560 F g-1 at a current density of 0.2 A g-1), good rate capability, and excellent cycling stability (95% capacitance retention after 5000 cycles). An asymmetric supercapacitor with Co3O4@MnO2 core-shell nanostructure as the positive electrode and activated microwave exfoliated graphite oxide activated graphene (MEGO) as the negative electrode yielded an energy density of 17.7 Wh kg-1 and a maximum power density of 158 kW kg-1. The rational design of the unique core-shell array architectures demonstrated in this work provides a new and facile approach to fabricate high-performance electrode for supercapacitors.

  19. Efficient radiative transfer in dust grain mixtures

    OpenAIRE

    Wolf, S.

    2002-01-01

    The influence of a dust grain mixture consisting of spherical dust grains with different radii and/or chemical composition on the resulting temperature structure and spectral energy distribution of a circumstellar shell is investigated. The comparison with the results based on an approximation of dust grain parameters representing the mean optical properties of the corresponding dust grain mixture reveal that (1) the temperature dispersion of a real dust grain mixture decreases substantially ...

  20. Creep deformations of shells of revolution under asymmetrical loading

    International Nuclear Information System (INIS)

    Takezono, S.

    1975-01-01

    The numerical analysis of creep deformations of shells of revolution under unsymmetrical loads is described with application to a cylindrical shell. The analytical formulation of the creep of axisymmetric undergoing unsymmetrical deformations is developed for two hardening laws: the time hardening law and the strain hardening law. The method is based on the creep power law, and on the assumption of plane stress condition and the Euler-Bernoulli hypothesis used in the ordinary thin shell theory. The basic differential equations derived for incremental values with respect to time are numerically solved by a finite difference method and the solutions at any time are obtained by integration of the incremental values. In conclusion the computer programs are developed which can be used to predict the creep deformations of arbitrary axisymmetrical shells. As a numerical example the creep deformation of cylindrical shell of importance in practical use is treated, and the variations of displacements and internal forces with the lapse of time are discussed

  1. RR Tel: Determination of Dust Properties During Minimum Obscuration

    Directory of Open Access Journals (Sweden)

    Jurkić T.

    2012-06-01

    Full Text Available the ISO infrared spectra and the SAAO long-term JHKL photometry of RR Tel in the epochs during minimum obscuration are studied in order to construct a circumstellar dust model. the spectral energy distribution in the near- and the mid-IR spectral range (1–15 μm was obtained for an epoch without the pronounced dust obscuration. the DUSTY code was used to solve the radiative transfer through the dust and to determine the circumstellar dust properties of the inner dust regions around the Mira component. Dust temperature, maximum grain size, dust density distribution, mass-loss rate, terminal wind velocity and optical depth are determined. the spectral energy distribution and the long-term JHKL photometry during an epoch of minimum obscuration show almost unattenuated stellar source and strong dust emission which cannot be explained by a single dust shell model. We propose a two-component model consisting of an optically thin circmustellar dust shell and optically thick dust outside the line of sight in some kind of a flattened geometry, which is responsible for most of the observed dust thermal emission.

  2. Dust properties around evolved stars from far-infrared size limits

    International Nuclear Information System (INIS)

    Harvey, P.M.; Lester, D.F.; Brock, D.; Joy, M.

    1991-01-01

    High angular resolution far-infrared scans were obtained of six stars surrounded by circumstellar dust shells believed to result from mass loss by the central star. None of the dust shells was clearly resolved at either 50 or 100 microns; the upper limits are in the range 4 to 10 arcsec. These size limits place constraints on the far-IR dust emissivity and dust density distribution. For one of the objects, AFGL 2343, larger than normal grains are almost certainly required. For several other stars, the size limits are much more consistent with dust having an emissivity law no steeper than 1/lambda in the 1-100-micron spectral region. For IRC + 10216, an earlier suggestion is confirmed that, assuming reasonable grain properties, a smooth radial dust distribution is not consistent with the scans and the energy distribution of the object. 29 refs

  3. ALMA sub-mm maser and dust distribution of VY Canis Majoris

    Science.gov (United States)

    Richards, A. M. S.; Impellizzeri, C. M. V.; Humphreys, E. M.; Vlahakis, C.; Vlemmings, W.; Baudry, A.; De Beck, E.; Decin, L.; Etoka, S.; Gray, M. D.; Harper, G. M.; Hunter, T. R.; Kervella, P.; Kerschbaum, F.; McDonald, I.; Melnick, G.; Muller, S.; Neufeld, D.; O'Gorman, E.; Parfenov, S. Yu.; Peck, A. B.; Shinnaga, H.; Sobolev, A. M.; Testi, L.; Uscanga, L.; Wootten, A.; Yates, J. A.; Zijlstra, A.

    2014-12-01

    Aims: Cool, evolved stars have copious, enriched winds. Observations have so far not fully constrained models for the shaping and acceleration of these winds. We need to understand the dynamics better, from the pulsating stellar surface to ~10 stellar radii, where radiation pressure on dust is fully effective. Asymmetric nebulae around some red supergiants imply the action of additional forces. Methods: We retrieved ALMA Science Verification data providing images of sub-mm line and continuum emission from VY CMa. This enables us to locate water masers with milli-arcsec accuracy and to resolve the dusty continuum. Results: The 658, 321, and 325 GHz masers lie in irregular, thick shells at increasing distances from the centre of expansion. For the first time this is confirmed as the stellar position, coinciding with a compact peak offset to the NW of the brightest continuum emission. The maser shells overlap but avoid each other on scales of up to 10 au. Their distribution is broadly consistent with excitation models but the conditions and kinematics are complicated by wind collisions, clumping, and asymmetries. Appendices are available in electronic form at http://www.aanda.org

  4. Dense Medium Machine Processing Method for Palm Kernel/ Shell ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Cracked palm kernel is a mixture of kernels, broken shells, dusts and other impurities. In ... machine processing method using dense medium, a separator, a shell collector and a kernel .... efficiency, ease of maintenance and uniformity of.

  5. Dust-gas interaction deduced from Halley multicolour camera observations

    International Nuclear Information System (INIS)

    Huebner, W.F.; Delamere, W.A.; Keller, H.U.; Reitsema, H.J.; Schmidt, H.U.; Whipple, F.L.; Wilhelm, K.

    1986-01-01

    The dust and gas productions of Comet Halley were measured by the dust counter and the mass spectrometers on the Giotto spacecraft. These instruments give only little information about the spatial asymmetry of the activity. The asymmetry in the dust production is clearly evident from the dust jets seen in the Halley Multicolour Camera images. Since the dust is entrained by the gas, production must be similarly asymmetric. The intensity profiles along and across several dust jets are related to their source regions on the nucleus. Properties of the dust jets are investigated. A few compact, but highly active source regions on the nucleus produce most of the visible dust and can account for most of the gas produced by the comet. 2 refs

  6. Long-lived Dust Asymmetries at Dead Zone Edges in Protoplanetary Disks

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Ryan [Cornell Center for Astrophysics and Planetary Science, Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Li, Hui; Li, Shengtai; Jin, Sheng, E-mail: rjm456@cornell.edu [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-02-01

    A number of transition disks exhibit significant azimuthal asymmetries in thermal dust emission. One possible origin for these asymmetries is dust trapping in vortices formed at the edges of dead zones. We carry out high-resolution, two-dimensional hydrodynamic simulations of this scenario, including the effects of dust feedback. We find that, although feedback weakens the vortices and slows down the process of dust accumulation, the dust distribution in the disk can nonetheless remain asymmetric for many thousands of orbits. We show that even after 10{sup 4} orbits, or 2.5 Myr when scaled to the parameters of Oph IRS 48 (a significant fraction of its age), the dust is not dispersed into an axisymmetric ring, in contrast to the case of a vortex formed by a planet. This is because accumulation of mass at the dead zone edge constantly replenishes the vortex, preventing it from being fully destroyed. We produce synthetic dust emission images using our simulation results. We find that multiple small clumps of dust may be distributed azimuthally. These clumps, if not resolved from one another, appear as a single large feature. A defining characteristic of a disk with a dead zone edge is that an asymmetric feature is accompanied by a ring of dust located about twice as far from the central star.

  7. Amphiphilic Quantum Dots with Asymmetric, Mixed Polymer Brush Layers: From Single Core-Shell Nanoparticles to Salt-Induced Vesicle Formation

    Directory of Open Access Journals (Sweden)

    Brian R. Coleman

    2018-03-01

    Full Text Available A mixed micelle approach is used to produce amphiphilic brush nanoparticles (ABNPs with cadmium sulfide quantum dot (QD cores and surface layers of densely grafted (σ = ~1 chain/nm2 and asymmetric (fPS = 0.9 mixed polymer brushes that contain hydrophobic polystyrene (PS and hydrophilic poly(methyl methacrylate (PMAA chains (PS/PMAA-CdS. In aqueous media, the mixed brushes undergo conformational rearrangements that depend strongly on prior salt addition, giving rise to one of two pathways to fluorescent and morphologically disparate QD-polymer colloids. (A In the absence of salt, centrosymmetric condensation of PS chains forms individual core-shell QD-polymer colloids. (B In the presence of salt, non-centrosymmetric condensation of PS chains forms Janus particles, which trigger anisotropic interactions and amphiphilic self-assembly into the QD-polymer vesicles. To our knowledge, this is the first example of an ABNP building block that can form either discrete core-shell colloids or self-assembled superstructures in water depending on simple changes to the chemical conditions (i.e., salt addition. Such dramatic and finely tuned morphological variation could inform numerous applications in sensing, biolabeling, photonics, and nanomedicine.

  8. DIRT: Dust InfraRed Toolbox

    Science.gov (United States)

    Pound, Marc W.; Wolfire, Mark G.; Mundy, Lee G.; Teuben, Peter; Lord, Steve

    2011-02-01

    DIRT is a Java applet for modelling astrophysical processes in circumstellar dust shells around young and evolved stars. With DIRT, you can: select and display over 500,000 pre-run model spectral energy distributions (SEDs) find the best-fit model to your data set account for beam size in model fitting manipulate data and models with an interactive viewer display gas and dust density and temperature profiles display model intensity profiles at various wavelengths

  9. Dynamic nonlinear analysis of shells of revolution

    International Nuclear Information System (INIS)

    Von Riesemann, W.A.; Stricklin, J.A.; Haisler, W.E.

    1975-01-01

    DYNAPLAS is a program for the transient response of ring stiffened shells of revolution subjected to either asymmetric initial velocities or to asymmetric pressure loadings. Both material and geometric nonlinearities may be considered. The present version, DYNAPLAS II, began with the programs SAMMSOR and DYNASOR. As is the case for the earlier programs, a driver program, SAMMSOR III, generates the stiffness and mass matrices for the harmonics under consideration. A highly refined meridionally curved axisymmetric thin shell of revolution element is used in conjunction with beam type ring stiffeners in the circumferential direction. The shell element uses a cubic displacement function and through static condensation a basic eight degree of freedom element is generated. The shell material may be isotropic or orthotropic. DYNAPLAS II uses the 'displacement' method of analysis in which the nonlinearities are treated as pseudo loads on the right-hand side of the equations of motion. The equations are written for each Fourier harmonic used in representing the asymmetric loading components, and although the left-hand side of the equations is uncoupled, the right-hand side is coupled by the nonlinear pseudo loads. The strain displacement equations of Novozhilov are used and the incremental theory of plasticity is used with the von Mises yield condition and associated flow rule. Either isotropic work hardening or the mechanical sublayer model may be used. Strain rate effects may be included. Either the explicit central difference method or the implcit Houbolt method are available. The program has found use in the analysis of containment vessels for light water reactors

  10. From red giants to planetary nebulae: Asymmetries, dust, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.

    1990-01-01

    In order to investigate the development of aspherical planetary nebulae, polarimetry was obtained for a group of planetary nebulae and for objects that will evolve into planetary nebulae, i.e., red giants, late asymptotic giant branch (AGB) objects, proto-planetary nebulae, and young planetary nebulae. To study the dust around the objects in our sample, we also used data from the Infrared Astronomy Satellite (IRAS) mission. The youngest objects in our survey, red giants, had the hottest dust temperatures while planetary nebulae had the coolest. Most of the objects were intrinsically polarized, including the red giants. This indicated that the circumstellar dust shells of these objects were aspherical. Both carbon- and oxygen-rich objects could be intrinsically polarized. The intrinsic polarizations of a sample of our objects were modeled using an ellipsoidal circumstellar dust shell. The findings of this study suggest that the asphericities that lead to an aspherical planetary nebula originate when a red giant begins to undergo mass loss. The polarization and thus the asphericity as the star evolves, with both reaching a maximum during the proto-planetary nebula stage. The circumstellar dust shell will dissipate after the proto-planetary nebulae stage since no new material is being added. The polarization of planetary nebulae will thus be low. In the most evolved planetary nebulae, the dust has either been destroyed or dissipated into the interstellar medium. In these objects no polarization was observed

  11. Pathologies of van Stockum dust/Tipler's time machine

    Science.gov (United States)

    Lindsay, David S.

    2016-09-01

    We study the internal solution, and external vacuum solution for radial cutoff, of "van Stockum dust", an infinitely long rotating pressureless dust column; its density increases with radius. This interesting but poorly explored spacetime turns out to have a number of exotic properties, especially in the external vacuum region. These solutions have been known for decades, but it seems that they have never been investigated in detail. In this paper we analyze them and describe their peculiar properties. There are three regimes of radial cutoff that are of interest: (1) If the dust column is thick enough that closed timelike loops (CTLs or "time machines") exist inside the column, then the radius of the entire "universe" is finite, and in fact does not extend much beyond the edge of the matter, even though the metric's radial parameter is unbounded. This interesting finite proper radius seems to have been missed by earlier investigators. Other exotic properties of the external vacuum in this regime: CTLs exist in cylindrical shells, alternating with shells having no circular CTLs; there are infinitely many such shells, getting closer and closer together as one gets farther from the rotation axis. Also, a separate set of infinitely many cylindrical shells exists, having what might be termed "extreme frame-dragging", within which motion is possible only in one direction; they alternate with "normal" shells allowing motion in either direction. Gravitational attraction and tides increase with distance from the matter column, and diverge at the "edge of the universe". In addition, though the radius of the universe is finite, its circumference is infinite; and its boundary is a circle, not a cylinder (the z-axis has shrunk to nothing at the edge). (2) For smaller radial cutoff, but still large enough to produce CTLs, the radius of the universe is infinite; but there are still infinitely many cylindrical shells of CTLs alternating with non-CTL shells. However, the innermost

  12. Stationary spherical shells around Kerr-Newman naked singularities

    International Nuclear Information System (INIS)

    Zdenek Stuchlik; Stanislav Hledik

    1998-01-01

    It is shown that in the field of some Kerr-Newman naked singularities a stationary spherical shell of charged dust can exist, with the specific charge being the same for all particles of the dusty shell. Gravitational attractions acting on the particles are balanced by electromagnetic repulsion in such a way that the shell is stable against radial perturbations. Particles of the shell move along orbits with constant latitude and radius. Rotation of the shell is differential. The shell is corotating relative to static observers at infinity, but it is counter rotating relative to the family of locally non-rotating observers. No such a shell can exist in the field of Kerr-Newman black holes. (authors)

  13. Hydrodynamic model of a self-gravitating optically thick gas and dust cloud

    Science.gov (United States)

    Zhukova, E. V.; Zankovich, A. M.; Kovalenko, I. G.; Firsov, K. M.

    2015-10-01

    We propose an original mechanism of sustained turbulence generation in gas and dust clouds, the essence of which is the consistent provision of conditions for the emergence and maintenance of convective instability in the cloud. We considered a quasi-stationary one-dimensional model of a selfgravitating flat cloud with stellar radiation sources in its center. The material of the cloud is considered a two-component two-speed continuous medium, the first component of which, gas, is transparent for stellar radiation and is supposed to rest being in hydrostatic equilibrium, and the second one, dust, is optically dense and is swept out by the pressure of stellar radiation to the periphery of the cloud. The dust is specified as a set of spherical grains of a similar size (we made calculations for dust particles with radii of 0.05, 0.1, and 0.15 μm). The processes of scattering and absorption of UV radiation by dust particles followed by IR reradiation, with respect to which the medium is considered to be transparent, are taken into account. Dust-driven stellar wind sweeps gas outwards from the center of the cloud, forming a cocoon-like structure in the gas and dust. For the radiation flux corresponding to a concentration of one star with a luminosity of about 5 ×104 L ⊙ per square parsec on the plane of sources, sizes of the gas cocoon are equal to 0.2-0.4 pc, and for the dust one they vary from tenths of a parsec to six parsecs. Gas and dust in the center of the cavity are heated to temperatures of about 50-60 K in the model with graphite particles and up to 40 K in the model with silicate dust, while the background equilibrium temperature outside the cavity is set equal to 10 K. The characteristic dust expansion velocity is about 1-7 kms-1. Three structural elements define the hierarchy of scales in the dust cocoon. The sizes of the central rarefied cavity, the dense shell surrounding the cavity, and the thin layer inside the shell in which dust is settling provide

  14. Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life

    Science.gov (United States)

    Yi, Huan; Wang, Huanwen; Jing, Yuting; Peng, Tianquan; Wang, Xuefeng

    2015-07-01

    Aqueous electrolyte based asymmetric supercapacitors (ASCs) has recently attracted increasing interest by virtue of their operation voltage and high ionic conductivity. Herein, we developed a novel ASC based on carbon nanotubes@nickel oxide nanosheets (CNT@NiO) core-shell composites as positive electrode and porous carbon polyhedrons (PCPs) as negative electrode in aqueous KOH solution as electrolyte. The CNT@NiO core-shell hybrids were prepared through a facile chemical bath deposition method followed by thermal annealing, while PCPs were obtained by direct carbonization of Zn-based metal-organic frameworks (MOFs). Owing to their unique microstructures, outstanding electrochemical properties have been achieved in three-electrode configuration, e.g., 996 F g-1 at 1 A g-1, 500 at 20 A g-1 for the CNT@NiO electrode within 0-0.5 V window, and 245 F g-1 at 1 A g-1 for the PCPs electrode within -1-0 V window. Resulting from these merits, the as-fabricated CNT@NiO//PCPs ASC exhibits maximum energy density of 25.4 Wh kg-1 at a power density of 400 W kg-1 and even remains 9.8 Wh kg-1 at 16,000 W kg-1 (a full charge-discharge within 4.4 s) in the wide voltage region of 0-1.6 V. More importantly, the CNT@NiO//PCPs asymmetric supercapacitor shows ultralong cycling stability, with 93% capacitance retention after 10,000 cycles.

  15. Dust around the Cool Component of D-Type Symbiotic Binaries

    Science.gov (United States)

    Jurkic, Tomislav; Kotnik-Karuza, Dubravka

    2018-04-01

    D type symbiotic binaries are an excellent astrophysical laboratory for investigation of the dust properties and dust formation under the influence of theMira stellar wind and nova activity and of the mass loss and mass transfer between components in such a widely separated system. We present a study of the properties of circumstellar dust in symbiotic Miras by use of long-term near-IR photometry and colour indices. The published JHKL magnitudes of o Ceti, RX Pup, KM Vel, V366 Car, V835 Cen, RR Tel, HM Sge and R Aqr have been collected, analyzed and corrected for short-term variations caused by Mira pulsations. Assuming spherical temperature distribution of the dust in the close neighbourhood of the Mira, the DUSTY code was used to solve the radiative transfer in order to determine the dust temperature and its properties in each particular case. Common dust properties of the symbiotic Miras have been found, suggesting similar conditions in the condensation region of the studied symbiotic Miras. Silicate dust with the inner dust shell radius determined by the dust condensation and with the dust temperature of 900-1200 K can fully explain the observed colour indices. R Aqr is an exception and showed lower dust temperature of 650 K. Obscuration events visible in light curves can be explained by variable dust optical depth with minimal variations of other dust properties. More active symbioticMiras that underwent recent nova outbursts showed higher dust optical depths and larger maximum grain sizes of the order of μm, which means that the post-nova activity could stimulate the dust formation and the grain growth. Optically thicker dust shells and higher dust condensation temperatures have been found in symbiotic Miras compared to their single counterparts, suggesting different conditions for dust production.

  16. WO{sub 3-x}/MoO{sub 3-x} core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xu; Ding, Tianpeng; Yuan, Longyan; Shen, Yongqi; Zhong, Qize; Zhang, Xianghui; Cao, Yuanzhi; Hu, Bin; Zhou, Jun [Wuhan National Laboratory for Optoelectronics (WNLO), College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan (China); Zhai, Teng; Tong, Yexiang [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou (China); Gong, Li; Chen, Jian [Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou (China); Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    2012-11-15

    Flexible all-solid-state asymmetric supercapacitors (ASCs) are fabricated from a novel anode - WO{sub 3-x}/MoO{sub 3-x} core/shell nanowires on carbon fabric - and a polyaniline cathode (figure). In addition to the high electrochemical performance of the devices, other characteristics, such as low toxicity, flexibility, environmental compatibility, light weight, and low requirements for packaging, make the all-solid-state ASCs potential candidates for applications in energy storage, flexible electronics, and other consumer electronics. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. The Lunar Dust Environment

    Science.gov (United States)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  18. Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors

    Science.gov (United States)

    Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong

    2016-12-01

    As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo2S4@NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm-2 at the current density of 1 mA cm-2 and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo2S4@NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg-1 at 0.288 KW kg-1 and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo2S4@NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations.

  19. Hierarchical Fe₃O₄@Fe₂O₃ Core-Shell Nanorod Arrays as High-Performance Anodes for Asymmetric Supercapacitors.

    Science.gov (United States)

    Tang, Xiao; Jia, Ruyue; Zhai, Teng; Xia, Hui

    2015-12-16

    Anode materials with relatively low capacitance remain a great challenge for asymmetric supercapacitors (ASCs) to pursue high energy density. Hematite (α-Fe2O3) has attracted intensive attention as anode material for ASCs, because of its suitable reversible redox reactions in a negative potential window (from 0 V to -1 V vs Ag/AgCl), high theoretical capacitance, rich abundance, and nontoxic features. Nevertheless, the Fe2O3 electrode cannot deliver large volumetric capacitance at a high rate, because of its poor electrical conductivity (∼10(-14) S/cm), resulting in low power density and low energy density. In this work, a hierarchical heterostructure comprising Fe3O4@Fe2O3 core-shell nanorod arrays (NRAs) is presented and investigated as the negative electrode for ASCs. Consequently, the Fe3O4@Fe2O3 electrode exhibits superior supercapacitive performance, compared to the bare Fe2O3 and Fe3O4 NRAs electrodes, demonstrating large volumetric capacitance (up to 1206 F/cm(3) with a mass loading of 1.25 mg/cm(2)), as well as good rate capability and cycling stability. The hybrid electrode design is also adopted to prepare Fe3O4@MnO2 core-shell NRAs as the positive electrode for ASCs. Significantly, the as-assembled 2 V ASC device delivered a high energy density of 0.83 mWh/cm(3) at a power density of 15.6 mW/cm(3). This work constitutes the first demonstration of Fe3O4 as the conductive supports for Fe2O3 to address the concerns about its poor electronic and ionic transport.

  20. Scattering analysis of asymmetric metamaterial resonators by the Riemann-Hilbert approach

    DEFF Research Database (Denmark)

    Kaminski, Piotr Marek; Ziolkowski, Richard W.; Arslanagic, Samel

    2016-01-01

    This work presents an analytical treatment of an asymmetric metamaterial-based resonator excited by an electric line source, and explores its beam shaping capabilities. The resonator consists of two concentric cylindrical material layers covered with an infinitely thin conducting shell with an ap......This work presents an analytical treatment of an asymmetric metamaterial-based resonator excited by an electric line source, and explores its beam shaping capabilities. The resonator consists of two concentric cylindrical material layers covered with an infinitely thin conducting shell...... with an aperture. Exact analytical solution of the problem is derived; it is based on the n-series approach which is casted into the equivalent Riemann-Hilbert problem. The examined configuration leads to large enhancements of the radiated field and to steerable Huygens-like directivity patterns. Particularly...

  1. Size Distribution and Rate of Dust Generated During Grain Elevator Handling

    Science.gov (United States)

    Dust generated during grain handling is an air pollutant that produces safety and health hazards. This study was conducted to characterize the particle size distribution (PSD) of dust generated during handling of wheat and shelled corn in the research elevator of the USDA Grain Marketing and Product...

  2. The Shell Collapsar—A Possible Alternative to Black Holes

    Directory of Open Access Journals (Sweden)

    Trevor W. Marshall

    2016-10-01

    Full Text Available This article argues that a consistent description is possible for gravitationally collapsed bodies, in which collapse stops before the object reaches its gravitational radius, the density reaching a maximum close to the surface and then decreasing towards the centre. The way towards such a description was indicated in the classic Oppenheimer-Snyder (OS 1939 analysis of a dust star. The title of that article implied support for a black-hole solution, but the present article shows that the final OS density distribution accords with gravastar and other shell models. The parallel Oppenheimer-Volkoff (OV study of 1939 used the equation of state for a neutron gas, but could consider only stationary solutions of the field equations. Recently we found that the OV equation of state permits solutions with minimal rather than maximal central density, and here we find a similar topology for the OS dust collapsar; a uniform dust-ball which starts with large radius, and correspondingly small density, and collapses to a shell at the gravitational radius with density decreasing monotonically towards the centre. Though no longer considered central in black-hole theory, the OS dust model gave the first exact, time-dependent solution of the field equations. Regarded as a limiting case of OV, it indicates the possibility of neutron stars of unlimited mass with a similar shell topology. Progress in observational astronomy will distinguish this class of collapsars from black holes.

  3. Three-dimensional hierarchical NiCo2O4 nanowire@Ni3S2 nanosheet core/shell arrays for flexible asymmetric supercapacitors

    Science.gov (United States)

    Liu, Bo; Kong, Dezhi; Huang, Zhi Xiang; Mo, Runwei; Wang, Ye; Han, Zhaojun; Cheng, Chuanwei; Yang, Hui Ying

    2016-05-01

    Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power density of 56.33 W cm-3 at 0.94 mW h cm-3. As a result, the hybrid nanoarchitecture opens a new way to design high performance electrodes for electrochemical energy storage applications.Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power

  4. Constructing Asymmetric Polyion Complex Vesicles via Template Assembling Strategy: Formulation Control and Tunable Permeability

    Directory of Open Access Journals (Sweden)

    Junbo Li

    2017-11-01

    Full Text Available A strategy for constructing polyion complex vesicles (PICsomes with asymmetric structure is described. Poly(methylacrylic acid-block-poly(N-isopropylacrylamide modified gold nanoparticles (PMAA-b-PNIPAm-@-Au NPs were prepared and then assembled with poly(ethylene glycol-block-poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine] (PEG-b-PMMPImB via polyion complex of PMMA and PMMPImB. After removing the Au NPs template, asymmetric PICsomes composed of a PNIPAm inner-shell, PIC wall, and PEG outer-corona were obtained. These PICsomes have low protein absorption and thermally tunable permeability, provided by the PEG outer-corona and the PNIPAm inner-shell, respectively. Moreover, PICsome size can be tailored by using templates of predetermined sizes. This novel strategy for constructing asymmetric PICsomes with well-defined properties and controllable size is valuable for applications such as drug delivery, catalysis and monitoring of chemical reactions, and biomimetics.

  5. Polarization due to dust scattering in the planetary nebula Cn1-1

    International Nuclear Information System (INIS)

    Bhatt, H.C.

    1989-01-01

    The peculiar emission-line object Cn1-1 (=HDE330036=PK330+4 degrees 1), classified both as a symbiotic star and as a planetary nebula, was detected by the Infrared Astronomical Satellite (IRAS) as a strong source of far-infrared dust in the system. Bhatt and Mallik (1986) discussed the nature of the dust in Cn1-1 and argued that the object is a Type I protoplanetary nebula in a binary system. The argument presented here is that the polarization is intrinsic to Cn1-1 and is due to scattering by large (compared to interstellar) dust grains in the protoplanetary nebula that are asymmetrically distributed around the central star. The large degree of polarization (approximately 3 percent for the Cn1-1 distance of approximately 450 pc) with a large lambda(sub max) is naturally explained if it is caused by scattering by large dust grains in the Cn1-1 nebula. Since the H(sub alpha) line is also polarized at the same level and position angle as the continuum, the dust must be asymmetrically distributed around the central star. The morphology of the protoplanetary nebula in Cn1-1 may be bipolar. Thus, the polarization observations support the suggestion that Cn1-1 is a bipolar Type I planetary nebula

  6. A SPITZER SURVEY FOR DUST IN TYPE IIn SUPERNOVAE

    International Nuclear Information System (INIS)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (>100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (<10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This paper presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days post-discovery. The detection of late-time emission from 10 targets (∼15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at ∼1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable progenitors.

  7. EVOLUTION OF THE DUST IN V4332 SAGITTARII

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Dipankar P. K.; Ashok, N. M. [Astronomy and Astrophysics Division, Physical Research Laboratory, Ahmedabad, 380009 (India); Nuth, Joseph A. III [NASA/GSFC, Mail Code: 690, Greenbelt, MD 20771 (United States); Misselt, Karl A.; Su, K. Y. L. [Steward Observatory, University of Arizona, Tucson, AZ 85721-0065 (United States); Varricatt, Watson P. [United Kingdom Infrared Telescope, 660 N. Aohoku Place, University Park Hilo, Hawaii-96720 (United States); Sand, David [Physics Department, Texas Tech University, Lubbock, TX 79409 (United States); Marion, G. H. [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Marengo, Massimo [Physics and Astronomy Department, Iowa State University, Ames, IA 50011 (United States)

    2015-12-01

    An eruptive nova-like event took place in 1994 in the stellar-merger candidate V4332 Sgr. Following the eruption, dust consisting of refractory silicate-rich dust grains containing a significant component of AlO bonding was formed sometime between 1998 and 2003. Observations using Spitzer between 2005 and 2009 show significant changes in the 10 μm silicate stretch feature. There is a deepening of the 10 μm silicate stretch as well as the development of a feature between about 13 and 20 μm consistent with a blend of the MgO and FeO stretching features and the O–Si–O bending mode of increasingly ordered silicate dust. Near-infrared observations show the presence of AlO and water vapor in the outflow in 2003, 2004, and 2005: the AlO has significantly decreased in spectra obtained in 2014 while the water vapor remains largely unchanged. An attempt is made to correlate these observations and understand the significance of these changes using DUSTY modeling. The observations appear consistent with the kinetically controlled condensation of highly underoxidized SiO/AlO/Fe/Mg dust grains in the outflow followed by the continuous evolution of the initial condensate due to thermal annealing and oxidation of the dust via reaction with ambient O, OH, and H{sub 2}O in the expanding, cooling shell. Periodic monitoring of this dust shell over the mid-infrared spectral range could yield useful information on the evolution of underoxidized silicate condensates exposed to hot water vapor in more conventional circumstellar environments.

  8. The composition of circumstellar and interstellar dust

    NARCIS (Netherlands)

    Tielens, AGGM; Woodward, CE; Biscay, MD; Shull, JM

    2001-01-01

    A large number of solid dust components have been identified through analysis of stardust recovered from meteorites, and analysis of IR observations of circumstellar shells and the interstellar medium. These include graphite, hydrogenated amorphous carbon, diamond, PAHs, silicon-, iron-, and

  9. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    Science.gov (United States)

    Fuente, Asunción; Baruteau, Clément; Neri, Roberto; Carmona, Andrés; Agúndez, Marcelino; Goicoechea, Javier R; Bachiller, Rafael; Cernicharo, José; Berné, Olivier

    2017-09-01

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0".58×0".78 ≈ 80×110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.

  10. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    Energy Technology Data Exchange (ETDEWEB)

    Fuente, Asunción; Bachiller, Rafael [Observatorio Astronómico Nacional (OAN, IGN), Apdo 112, E-28803 Alcalá de Henares (Spain); Baruteau, Clément; Carmona, Andrés; Berné, Olivier [IRAP, Université de Toulouse, CNRS, UPS, Toulouse (France); Neri, Roberto [Institut de Radioastronomie Millimétrique (IRAM), 300 rue de la Piscine, F-38406 Saint Martin d’Hères (France); Agúndez, Marcelino; Goicoechea, Javier R.; Cernicharo, José, E-mail: a.fuente@oan.es [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), E-28049 Cantoblanco, Madrid (Spain)

    2017-09-01

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0.″58 × 0.″78 ≈ 80 × 110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.

  11. Statistical analysis of temporal and spatial evolution of in-vessel dust particles in KSTAR

    International Nuclear Information System (INIS)

    Kim, Kyung-Rae; Hong, Suk-Ho; Nam, Yong-Un; Jung, Jinil; Kim, Woong-Chae

    2013-01-01

    Images of wide-angle visible standard CCD cameras contain information on in-vessel dusts such as dust creation events (DCEs) that occur during plasma operations, and their velocity. Analyzing the straight line-like dust traces in the shallow cylindrical shell-structured scrape-off layer along the vacuum vessel, a database on the short/long term temporal evolutions, spatial locations of DCEs caused by plasma–dust interaction, and the dust velocity distribution are built. We have studied DCEs of 2010 and 2011 KSTAR campaign

  12. A Spitzer Survey for Dust in Type IIn Supernovae

    Science.gov (United States)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (greater than 100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (less than 10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This article presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days postdiscovery. The detection of late-time emission from ten targets (approximately 15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at approximately 1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable (LBV) progenitors.

  13. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  14. Heterodyne spatial interferometry of circumstellar dust shells at a wavelength of 11 microns

    International Nuclear Information System (INIS)

    Sutton, E.C.

    1979-01-01

    The spatial distribution of the 11 micron thermal emission from circumstellar dust envelopes has been studied using an infrared heterodyne interferometer. Circumstellar dust envelopes often exist around cool, late-type stars. These envelopes radiate strongly at 11 microns, particularly if they are composed of silicate grains, which have a strong emission feature near this wavelength. By measuring the spatial distribution of this dust emission it is possible to probe the temperatures and densities of the circumstellar material and thereby to gain an understanding of the structures of circumstellar envelopes. Among the sources which have been observed with this interferometer are α Orionis, o Ceti, VY Canis Majoris, and IRC + 10216. The 11 micron brightness distributions of these objects all have spatially extended dust-emission components which are resolved in these measurements. The dust envelopes of α Orionis and o Ceti are optically thin, having optical depths at 11 microns of 0.02 and 0.04, respectively. In addition, variations are seen in the 11 micron brightness distribution of o Ceti which correlate with the stellar variability. These variations primarily represent changes in the relative amount of spatially compact photospheric emission and spatially extended dust emission. The source VY Canis Majoris, on the other had, has a dust envelope which is optically thick at 11 microns. The dust envelope of IRC + 10216, although optically thick at visible wavelengths, does not seem to be optically thick at 11 microns since there is a spatially compact component of the 11 micron brightness distribution which presumably represents emission from the central star

  15. DEEP CHANDRA OBSERVATIONS OF THE CRAB-LIKE PULSAR WIND NEBULA G54.1+0.3 AND SPITZER SPECTROSCOPY OF THE ASSOCIATED INFRARED SHELL

    International Nuclear Information System (INIS)

    Temim, Tea; Slane, Patrick; Raymond, John C.; Reynolds, Stephen P.; Borkowski, Kazimierz J.

    2010-01-01

    G54.1+0.3 is a young pulsar wind nebula (PWN), closely resembling the Crab, for which no thermal shell emission has been detected in X-rays. Recent Spitzer observations revealed an infrared (IR) shell containing a dozen point sources arranged in a ring-like structure, previously proposed to be young stellar objects. An extended knot of emission located in the NW part of the shell appears to be aligned with the pulsar's X-ray jet, suggesting a possible interaction with the shell material. Surprisingly, the IR spectrum of the knot resembles the spectrum of freshly formed dust in Cas A, and is dominated by an unidentified dust emission feature at 21 μm. The spectra of the shell also contain various emission lines and show that some are significantly broadened, suggesting that they originate in rapidly expanding supernova (SN) ejecta. We present the first evidence that the PWN is driving shocks into expanding SN ejecta and we propose an alternative explanation for the origin of the IR emission in which the shell is composed entirely of SN ejecta. In this scenario, the freshly formed SN dust is being heated by early-type stars belonging to a cluster in which the SN exploded. Simple dust models show that this interpretation can give rise to the observed shell emission and the IR point sources.

  16. Charged dust structures in plasmas

    International Nuclear Information System (INIS)

    Cramer, N.F.; Vladimirov, S.V.

    1999-01-01

    We report here on theoretical investigations of the mechanical-electrostatic modes of vibration of a dust-plasma crystal, extending earlier work on the transverse modes of a horizontal line of grains (where the ions flow vertically downward to a plane horizontal cathode), the modes of two such lines of grains, and the modes of a vertical string of grains. The last two arrangements have the unique feature that the effect of the background plasma on the mutual grain interaction is asymmetric because of the wake downstream of the grains studied in. The characteristic frequencies of the vibrations are dependent on the parameters of the plasma and the dust grains, such as the Debye length and the grain charge, and so measurement of the frequencies could provide diagnostics of these quantities. Although the current boom in dusty plasma research is driven mainly by such industrial applications as plasma etching, sputtering and deposition, the physical outcomes of investigations in this rapidly expanding field cover many important topics in space physics and astrophysics as well. Examples are the interaction of dust with spacecraft, the structure of planetary rings, star formation, supernova explosions and shock waves. In addition, the study of the influence of dust in environmental research, such as in the Earth's ionosphere and atmosphere, is important. The unique binding of dust particles in a plasma opens possibilities for so-called super-chemistry, where the interacting bound elements are not atoms but dust grains

  17. The character and behaviour of circumstellar shells at T Tauri stars

    International Nuclear Information System (INIS)

    Goetz, W.

    1988-01-01

    T Tauri stars are extremely young low-mass stars in the pre-main sequence stage. A brief review of investigations made at the Sonneberg observatory concerning the character and the behaviour of circumstellar shells at T Tauri stars is given. They lead to the construction of a shell model on the basis of observational facts. The idea rests upon the causal connection between the gas and dust shell phenomenon and the cosmogonic mass loss of the stars, which is the connecting link between the stars and their shells and which appears in the early phase of the pre-main sequence stage and decreases, like the accompanying shell phenomena, during the evolution of the stars. (author)

  18. Hierarchical 3D NiFe2O4@MnO2 core-shell nanosheet arrays on Ni foam for high-performance asymmetric supercapacitors.

    Science.gov (United States)

    Zhang, Xinyang; Zhang, Ziqing; Sun, Shuanggan; Sun, Qiushi; Liu, Xiaoyang

    2018-02-13

    Hierarchical NiFe 2 O 4 @MnO 2 core-shell nanosheet arrays (NSAs) were synthesized on Ni foam as an integrated electrode for supercapacitors, using a facile two-step hydrothermal method followed by calcination treatment. The NiFe 2 O 4 nanosheets were designed as the core and ultrathin MnO 2 nanoflakes as the shell, creating a unique three-dimensional (3D) hierarchical electrode on Ni foam. The composite electrode exhibited remarkable electrochemical performance with a high specific capacitance of 1391 F g -1 at a current density of 2 mA cm -2 and long cycling stability at a high current density of 10 mA cm -2 (only 11.4% loss after 3000 cycles). Additionally, an asymmetric supercapacitor (ASC) device was fabricated with a NiFe 2 O 4 @MnO 2 composite as the positive electrode material and activated carbon (AC) as the negative one. The ASC device exhibited a high energy density (45.2 W h kg -1 ) at a power density of 174 W kg -1 , and an excellent cycling stability over 3000 cycles with 92.5% capacitance retention. The remarkable electrochemical performance demonstrated its great potential as a promising candidate for high-performance supercapacitors.

  19. An Asymmetric Supercapacitor Based on Activated Porous Carbon Derived from Walnut Shells and NiCo₂O₄ Nanoneedle Arrays Electrodes.

    Science.gov (United States)

    Wang, Wei; Qi, Jiqiu; Sui, Yanwei; He, Yezeng; Meng, Qingkun; Wei, Fuxiang; Jin, Yunxue

    2018-08-01

    A facile method was utilized to convert a common biomass of walnut shells into activated porous carbon by carbonization and activation with nitricacid treatment. The obtained activated carbon (WSs-2) exhibited excellent electrochemical performance with high specific capacitance of 137 F · g-1 at 1 A · g-1 and super cycling performance of 96% capacitance retention at 5 A · g-1 after 5000 cycles. In addition, NiCo2O4 nanoneedle arrays with good electrochemical properties were successfully prepared by a simple hydrothermal method. An aqueous asymmetric supercapacitor (ASC) device based on WSs-2 and NiCo2O4 was assembled, which delivered 21 Wh · kg-1 at a power density of 424.5 W · kg-1, and maintained 19 Wh · kg-1 at power density of 4254 W · kg-1 as well as excellent cycling stability of 99.3% capacitance retention after 5000 cycles at 4 A · g-1. Through this method, low-cost, environmentally friendly and large-scale carbon materials can be fabricated and applied in supercapacitor electrodes.

  20. Mapping the three-dimensional dust extinction towards the supernova remnant S147 - the S147 dust cloud

    Science.gov (United States)

    Chen, B.-Q.; Liu, X.-W.; Ren, J.-J.; Yuan, H.-B.; Huang, Y.; Yu, B.; Xiang, M.-S.; Wang, C.; Tian, Z.-J.; Zhang, H.-W.

    2017-12-01

    We present a three-dimensional (3D) extinction analysis in the region towards the supernova remnant (SNR) S147 (G180.0-1.7) using multiband photometric data from the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anticentre (XSTPS-GAC), 2MASS and WISE. We isolate a previously unrecognized dust structure likely to be associated with SNR S147. The structure, which we term as 'S147 dust cloud', is estimated to have a distance d = 1.22 ± 0.21 kpc, consistent with the conjecture that S147 is associated with pulsar PSR J0538 + 2817. The cloud includes several dense clumps of relatively high extinction that locate on the radio shell of S147 and coincide spatially with the CO and gamma-ray emission features. We conclude that the usage of CO measurements to trace the SNR associated MCs is unavoidably limited by the detection threshold, dust depletion and the difficulty of distance estimates in the outer Galaxy. 3D dust extinction mapping may provide a better way to identify and study SNR-MC interactions.

  1. Trapping Dust to Form Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Growing a planet from a dust grain is hard work! A new study explores how vortices in protoplanetary disks can assist this process.When Dust Growth FailsTop: ALMA image of the protoplanetary disk of V1247 Orionis, with different emission components labeled. Bottom: Synthetic image constructed from the best-fit model. [Kraus et al. 2017]Gradual accretion onto a seed particle seems like a reasonable way to grow a planet from a grain of dust; after all, planetary embryos orbit within dusty protoplanetary disks, which provides them with plenty of fuel to accrete so they can grow. Theres a challenge to this picture, though: the radial drift problem.The radial drift problem acknowledges that, as growing dust grains orbit within the disk, the drag force on them continues to grow as well. For large enough dust grains perhaps around 1 millimeter the drag force will cause the grains orbits to decay, and the particles drift into the star before they are able to grow into planetesimals and planets.A Close-Up Look with ALMASo how do we overcome the radial drift problem in order to form planets? A commonly proposed mechanism is dust trapping, in which long-lived vortices in the disk trap the dust particles, preventing them from falling inwards. This allows the particles to persist for millions of years long enough to grow beyond the radial drift barrier.Observationally, these dust-trapping vortices should have signatures: we would expect to see, at millimeter wavelengths, specific bright, asymmetric structures where the trapping occurs in protoplanetary disks. Such disk structures have been difficult to spot with past instrumentation, but the Atacama Large Millimeter/submillimeter Array (ALMA) has made some new observations of the disk V1247 Orionis that might be just what were looking for.Schematic of the authors model for the disk of V1247 Orionis. [Kraus et al. 2017]Trapped in a Vortex?ALMAs observations of V1247 Orionis are reported by a team of scientists led by Stefan

  2. Radiative transfer in dust clouds

    International Nuclear Information System (INIS)

    Rowan-Robinson, M.; Harris, S.

    1983-01-01

    The infrared emission has been modelled from 85 late-type M stars, essentially all such stars in the AFGL catalogue with substantial circumstellar dust shells and for which adequate observational data are currently available. The dependence of the emergent spectrum on the temperature of the stars, the condensation temperature of the grains, and the density distribution, optical depth and extent of the shell have been investigated. Consistent models for most stars have been found using dirty silicate grains, with an n(r) proportional to r - 2 density distribution and a grain melting temperature of 1000 K. Allowance has been made for the effect of molecular bands. Although these bands have a dramatic effect on the spectrum of late-type stars at visual wavelengths, there is little effect on the infrared emission from the circumstellar shell. All stars in the study except GL 915, VY CMa and NML Cyg are consistent with having spherically symmetric shells. Except for VY CMa and NML Cyg, for which other evidence suggests a disc geometry, the intensity distributions predicted by the models are consistent with interferometric measurements at infrared wavelengths. (author)

  3. FASOR - A second generation shell of revolution code

    Science.gov (United States)

    Cohen, G. A.

    1978-01-01

    An integrated computer program entitled Field Analysis of Shells of Revolution (FASOR) currently under development for NASA is described. When completed, this code will treat prebuckling, buckling, initial postbuckling and vibrations under axisymmetric static loads as well as linear response and bifurcation under asymmetric static loads. Although these modes of response are treated by existing programs, FASOR extends the class of problems treated to include general anisotropy and transverse shear deformations of stiffened laminated shells. At the same time, a primary goal is to develop a program which is free of the usual problems of modeling, numerical convergence and ill-conditioning, laborious problem setup, limitations on problem size and interpretation of output. The field method is briefly described, the shell differential equations are cast in a suitable form for solution by this method and essential aspects of the input format are presented. Numerical results are given for both unstiffened and stiffened anisotropic cylindrical shells and compared with previously published analytical solutions.

  4. THE CIRCUMSTELLAR ENVIRONMENT OF R CORONAE BOREALIS: WHITE DWARF MERGER OR FINAL-HELIUM-SHELL FLASH?

    International Nuclear Information System (INIS)

    Clayton, Geoffrey C.; Andrews, J. E.; Sugerman, Ben E. K.; Adam Stanford, S.; Whitney, B. A.; Honor, J.; Babler, B.; Barlow, M. J.; Gordon, K. D.; Bond, Howard E.; Matsuura, M.; Geballe, T. R.; De Marco, O.; Lawson, W. A.; Sibthorpe, B.; Olofsson, G.; Polehampton, E.; Gomez, H. L.; Hargrave, P. C.; Ivison, R. J.

    2011-01-01

    In 2007, R Coronae Borealis (R CrB) went into a historically deep and long decline. In this state, the dust acts like a natural coronagraph at visible wavelengths, allowing faint nebulosity around the star to be seen. Imaging has been obtained from 0.5 to 500 μm with Gemini/GMOS, Hubble Space Telescope/WFPC2, Spitzer/MIPS, and Herschel/SPIRE. Several of the structures around R CrB are cometary globules caused by wind from the star streaming past dense blobs. The estimated dust mass of the knots is consistent with their being responsible for the R CrB declines if they form along the line of sight to the star. In addition, there is a large diffuse shell extending up to 4 pc away from the star containing cool 25 K dust that is detected all the way out to 500 μm. The spectral energy distribution of R CrB can be well fitted by a 150 AU disk surrounded by a very large diffuse envelope which corresponds to the size of the observed nebulosity. The total masses of the disk and envelope are 10 –4 and 2 M ☉ , respectively, assuming a gas-to-dust ratio of 100. The evidence pointing toward a white dwarf merger or a final-helium-shell flash origin for R CrB is contradictory. The shell and the cometary knots are consistent with a fossil planetary nebula. Along with the fact that R CrB shows significant lithium in its atmosphere, this supports the final-helium-shell flash. However, the relatively high inferred mass of R CrB and its high fluorine abundance support a white dwarf merger.

  5. Orientation- and position-controlled alignment of asymmetric silicon microrod on a substrate with asymmetric electrodes

    Science.gov (United States)

    Shibata, Akihide; Watanabe, Keiji; Sato, Takuya; Kotaki, Hiroshi; Schuele, Paul J.; Crowder, Mark A.; Zhan, Changqing; Hartzell, John W.; Nakatani, Ryoichi

    2014-03-01

    In this paper, we demonstrate the orientation-controlled alignment of asymmetric Si microrods on a glass substrate with an asymmetric pair of electrodes. The Si microrods have the shape of a paddle with a blade and a shaft part, and the pair of electrodes consists of a narrow electrode and a wide electrode. By applying AC bias to the electrodes, the Si microrods suspended in a fluid align in such a way to settle across the electrode pair, and over 80% of the aligned Si microrods have an orientation with the blade and the shaft of the paddle on the wide and the narrow electrodes, respectively. When Si microrods have a shell of dielectric film and its thickness on the top face is thicker than that on the bottom face, 97.8% of the Si microrods are aligned with the top face facing upwards. This technique is useful for orientation-controlled alignment of nano- and microsized devices that have polarity or a distinction between the top and bottom faces.

  6. Micromagnetic studies of three-dimensional pyramidal shell structures

    International Nuclear Information System (INIS)

    Knittel, A; Franchin, M; Fischbacher, T; Fangohr, H; Nasirpouri, F; Bending, S J

    2010-01-01

    We present a systematic numerical analysis of the magnetic properties of pyramidal-shaped core-shell structures in a size range below 400 nm. These are three-dimensional structures consisting of a ferromagnetic shell which is grown on top of a non-magnetic core. The standard micromagnetic model without the magnetocrystalline anisotropy term is used to describe the properties of the shell. We vary the thickness of the shell between the limiting cases of an ultra-thin shell and a conventional pyramid and delineate different stable magnetic configurations. We find different kinds of single-domain states, which predominantly occur at smaller system sizes. In analogy to equivalent states in thin square films we term these onion, flower, C and S states. At larger system sizes, we also observe two types of vortex states, which we refer to as symmetric and asymmetric vortex states. For a classification of the observed states, we derive a phase diagram that specifies the magnetic ground state as a function of structure size and shell thickness. The transitions between different ground states can be understood qualitatively. We address the issue of metastability by investigating the stability of all occurring configurations for different shell thicknesses. For selected geometries and directions hysteresis measurements are analysed and discussed. We observe that the magnetic behaviour changes distinctively in the limit of ultra-thin shells. The study has been motivated by the recent progress made in the growth of faceted core-shell structures.

  7. Three-Dimensional NiCo2O4@MnMoO4 Core-Shell Nanoarrays for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Yuan, Yuliang; Wang, Weicheng; Yang, Jie; Tang, Haichao; Ye, Zhizhen; Zeng, Yujia; Lu, Jianguo

    2017-10-10

    Design of new materials with sophisticated nanostructure has been proven to be an efficient strategy to improve their properties in many applications. Herein, we demonstrate the successful combination of high electron conductive materials of NiCo 2 O 4 with high capacitance materials of MnMoO 4 by forming a core-shell nanostructure. The NiCo 2 O 4 @MnMoO 4 core-shell nanoarrays (CSNAs) electrode possesses high capacitance of 1169 F g -1 (4.24 F cm -2 ) at a current density of 2.5 mA cm -2 , obviously larger than the pristine NiCo 2 O 4 electrode. The asymmetric supercapacitors (ASCs), assembled with NiCo 2 O 4 @MnMoO 4 CSNAs as binder-free cathode and active carbon (AC) as anode, exhibit high energy density of 15 Wh kg -1 and high power density of 6734 W kg -1 . Cycle performance of NiCo 2 O 4 @MnMoO 4 CSNAs//AC ASCs, conducted at current density of 20 mA cm -2 , remain 96.45% of the initial capacitance after 10,000 cycles, demonstrating its excellent long-term cycle stability. Kinetically decoupled analysis reveals that the capacitive capacitance is dominant in the total capacitance of NiCo 2 O 4 @MnMoO 4 CSNAs electrode, which may be the reason for ultra long cycle stability of ASCs. Our assembled button ASC can easily light up a red LED for 30 min and a green LED for 10 min after being charged for 30 s. The remarkable electrochemical performance of NiCo 2 O 4 @MnMoO 4 CSNAs//AC ASCs is attributed to its enhanced surface area, abundant electroactive sites, facile electrolyte infiltration into the 3D NiCo 2 O 4 @MnMnO 4 nanoarrays and fast electron and ion transport path.

  8. Guilt by Association: The 13 Micron Dust Emission Feature and Its Correlation to Other Gas and Dust Features

    Science.gov (United States)

    Sloan, G. C.; Kraemer, Kathleen E.; Goebel, J. H.; Price, Stephan D.

    2003-09-01

    A study of all full-scan spectra of optically thin oxygen-rich circumstellar dust shells in the database produced by the Short Wavelength Spectrometer on ISO reveals that the strength of several infrared spectral features correlates with the strength of the 13 μm dust feature. These correlated features include dust features at 19.8 and 28.1 μm and the bands produced by warm carbon dioxide molecules (the strongest of which are at 13.9, 15.0, and 16.2 μm). The database does not provide any evidence for a correlation of the 13 μm feature with a dust feature at 32 μm, and it is more likely that a weak emission feature at 16.8 μm arises from carbon dioxide gas rather than dust. The correlated dust features at 13, 20, and 28 μm tend to be stronger with respect to the total dust emission in semiregular and irregular variables associated with the asymptotic giant branch than in Mira variables or supergiants. This family of dust features also tends to be stronger in systems with lower infrared excesses and thus lower mass-loss rates. We hypothesize that the dust features arise from crystalline forms of alumina (13 μm) and silicates (20 and 28 μm). Based on observations with the ISO, a European Space Agency (ESA) project with instruments funded by ESA member states (especially the Principal Investigator countries: France, Germany, the Netherlands, and the United Kingdom) and with the participation of the Institute of Space and Astronautical Science (ISAS) and the National Aeronautics and Space Administration (NASA).

  9. Composite grains: Application to circumstellar dust

    Directory of Open Access Journals (Sweden)

    D. B. Vaidya

    2011-09-01

    Full Text Available Using the discrete dipole approximation (DDA we calculate the absorption efficiency of the composite grain, made up of a host silicate spheroid and inclusions of graphite, in the spectral region 5.0-25.0μm. We study the absorption as a function of the voulume fraction of the inclusions. In particular, we study the variation in the 10.0μm and 18.0μm emission features with the volume fraction of the inclusions. Using the extinction efficiencies, of the composite grains we calculate the infrared fluxes at several dust temperatures and compare the model curves with the observed infrared emission curves (IRAS-LRS, obtained for circumstellar dust shells around oxygen rich M-type stars.

  10. A yolk-shell V2O5 structure assembled from ultrathin nanosheets and coralline-shaped carbon as advanced electrodes for a high-performance asymmetric supercapacitor.

    Science.gov (United States)

    Xing, Ling-Li; Zhao, Gang-Gang; Huang, Ke-Jing; Wu, Xu

    2018-02-13

    Various V 2 O 5 three-dimensional nanostructures are synthesized using a facile template-free hydrothermal method and evaluated for use as supercapacitor electrode materials. As a result, the yolk-shell structure assembled from ultrathin nanosheets shows the best electrochemical performance, with a specific capacitance of 704.17 F g -1 at 1.0 A g -1 and a high capacity retention of 89% over 4000 cycles at 3.0 A g -1 . In addition, a continuous three-dimensional porous coralline-shaped carbon is synthesized from osmanthus and has a large Brunauer-Emmett-Teller surface area of 2840.88 m 2 g -1 . Then, an asymmetric supercapacitor is developed using the as-prepared yolk-shell V 2 O 5 as a positive electrode and the osmanthus derived coralline-shaped carbon as a negative electrode. This exhibits an energy density of 29.49 W h kg -1 at a power density of 800 W kg -1 with a good cycling performance that retains 90.6% of its initial capacity after 2000 cycles at 3.0 A g -1 . Furthermore, two cells in series can easily brightly light up a light-emitting diode (3 V), further demonstrating the great potential of the prepared materials for high-performance supercapacitor devices.

  11. Noncrossing timelike singularities of irrotational dust collapse

    International Nuclear Information System (INIS)

    Liang, E.P.T.

    1979-01-01

    Known naked singularities in spherical dust collapse are either due to shell-crossing or localized to the central world line. They will probably be destroyed by pressure gradients or blue-shift instabilities. To violate the cosmic censorship hypothesis in a more convincing and general context, collapse solutions with naked singularities that are at least nonshell-crossing and nonlocalized need to be constructed. Some results concerning the probable structure of a class of nonshellcrossing and nonlocalized timelike singularities are reviewed. The cylindrical dust model is considered but this model is not asymptotically flat. To make these noncrossing singularities viable counter examples to the cosmic censorship hypothesis, the occurrence of such singularities in asymptotically flat collapse needs to be demonstrated. (UK)

  12. The effect of dust on electron heating and dc self-bias in hydrogen diluted silane discharges

    International Nuclear Information System (INIS)

    Schüngel, E; Mohr, S; Iwashita, S; Schulze, J; Czarnetzki, U

    2013-01-01

    In capacitive hydrogen diluted silane discharges the formation of dust affects plasma processes used, e.g. for thin film solar cell manufacturing. Thus, a basic understanding of the interaction between plasma and dust is required to optimize such processes. We investigate a highly diluted silane discharge experimentally using phase-resolved optical emission spectroscopy to study the electron dynamics, laser light scattering on the dust particles to relate the electron dynamics with the spatial distribution of dust, and current and voltage measurements to characterize the electrical symmetry of the discharge via the dc self-bias. The measurements are performed in single and dual frequency discharges. A mode transition from the α-mode to a bulk drift mode (Ω-mode) is found, if the amount of silane and, thereby, the amount of dust and negative ions is increased. By controlling the electrode temperatures, the dust can be distributed asymmetrically between the electrodes via the thermophoretic force. This affects both the electron heating and the discharge symmetry, i.e. a dc self-bias develops in a single frequency discharge. Using the Electrical Asymmetry Effect (EAE), the dc self-bias can be controlled in dual frequency discharges via the phase angle between the two applied frequencies. The Ω-mode is observed for all phase angles and is explained by a simple model of the electron power dissipation. The model shows that the mode transition is characterized by a phase shift between the applied voltage and the electron conduction current, and that the plasma density profile can be estimated using the measured phase shift. The control interval of the dc self-bias obtained using the EAE will be shifted, if an asymmetric dust distribution is present. However, the width of the interval remains unchanged, because the dust distribution is hardly affected by the phase angle. (paper)

  13. THE CIRCUMSTELLAR ENVIRONMENT OF R CORONAE BOREALIS: WHITE DWARF MERGER OR FINAL-HELIUM-SHELL FLASH?

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Geoffrey C.; Andrews, J. E. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Sugerman, Ben E. K. [Department of Physics and Astronomy, Goucher College, 1021 Dulaney Valley Rd., Baltimore, MD 21204 (United States); Adam Stanford, S. [IGPP, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Whitney, B. A. [Space Science Institute, 4750 Walnut St. Suite 205, Boulder, CO 80301 (United States); Honor, J.; Babler, B. [Department of Astronomy, 475 North Charter St., University of Wisconsin, Madison, WI 53706 (United States); Barlow, M. J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Gordon, K. D.; Bond, Howard E.; Matsuura, M. [STScI, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Geballe, T. R. [Gemini Observatory, 670 N. A' ohoku Place, Hilo, HI 96720 (United States); De Marco, O. [Department of Physics, Macquarie University, Sydney, NSW 2109 (Australia); Lawson, W. A. [School of PEMS, University of New South Wales, ADFA, P.O. Box 7916, Canberra, ACT 2610 (Australia); Sibthorpe, B. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Olofsson, G. [Department of Astronomy, Stockholm University, AlbaNova University Center, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden); Polehampton, E. [Space Science and Technology Department, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Gomez, H. L.; Hargrave, P. C. [School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, Wales CF24 3YB (United Kingdom); Ivison, R. J., E-mail: gclayton@phys.lsu.edu, E-mail: jandrews@phys.lsu.edu, E-mail: ben.sugerman@goucher.edu, E-mail: stanford@physics.ucdavis.edu, E-mail: bwhitney@spacescience.org, E-mail: jhonor@astro.wisc.edu, E-mail: brian@astro.wisc.edu, E-mail: mjb@star.ucl.ac.uk [UK Astronomy Technology Centre, ROE, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); and others

    2011-12-10

    In 2007, R Coronae Borealis (R CrB) went into a historically deep and long decline. In this state, the dust acts like a natural coronagraph at visible wavelengths, allowing faint nebulosity around the star to be seen. Imaging has been obtained from 0.5 to 500 {mu}m with Gemini/GMOS, Hubble Space Telescope/WFPC2, Spitzer/MIPS, and Herschel/SPIRE. Several of the structures around R CrB are cometary globules caused by wind from the star streaming past dense blobs. The estimated dust mass of the knots is consistent with their being responsible for the R CrB declines if they form along the line of sight to the star. In addition, there is a large diffuse shell extending up to 4 pc away from the star containing cool 25 K dust that is detected all the way out to 500 {mu}m. The spectral energy distribution of R CrB can be well fitted by a 150 AU disk surrounded by a very large diffuse envelope which corresponds to the size of the observed nebulosity. The total masses of the disk and envelope are 10{sup -4} and 2 M{sub Sun }, respectively, assuming a gas-to-dust ratio of 100. The evidence pointing toward a white dwarf merger or a final-helium-shell flash origin for R CrB is contradictory. The shell and the cometary knots are consistent with a fossil planetary nebula. Along with the fact that R CrB shows significant lithium in its atmosphere, this supports the final-helium-shell flash. However, the relatively high inferred mass of R CrB and its high fluorine abundance support a white dwarf merger.

  14. Structure and Spectrum of Dust Coulomb Clusters

    International Nuclear Information System (INIS)

    Cheung, F.M.H.; Ford, C.; Barkby, S.; Samarian, A.A.; Vladimirov, S.V.

    2005-01-01

    In our study, the dynamics of Coulomb cluster systems were simulated for different number of particles. The spectra of energy states of dust Coulomb clusters corresponding to various packing sequences were obtained. The broadening of the spectrum due to inter-ring twist was discovered. It was found that the inter-ring twist will lead to a change in the energy spectrum of Coulomb cluster. This change was accompanied by a distortion of stable shells such that particles are able to compensate for any additional Coulomb energy (owing to the inter-ring twist) by further reducing their radial distance as much as possible. The overall effect is a change in the shape of the outer-shell from circular to elliptical

  15. Platinum-Group Elements in Soils and Street Dust of the Southeastern Administrative District of Moscow

    Science.gov (United States)

    Ladonin, D. V.

    2018-03-01

    The contents of five platinum-group metals (Ru, Rh, Pd, Ir, and Pt) in soils and street dust of the Southeastern administrative district (SEAD) of Moscow have been determined. The contents of these elements in soils may considerably exceed their natural abundances in the lithosphere and are characterized by considerable variability and asymmetric frequency distribution. A close correlation between Rh, Pd, and Pt contents in soils and street dust has been shown. The data on the contents of the elements and the ratios between them suggest that motor vehicles are the major source of pollution of soils and street dust in the studied district.

  16. New type of asymmetric fission in proton-rich nuclei

    CERN Document Server

    Andreyev, A N; Huyse, M; Van Duppen, P; Antalic, S; Barzakh, A; Bree, N; Cocolios, T E; Comas, V F; Diriken, J; Fedorov, D; Fedosseev, V; Franchoo, S; Heredia, J A; Ivanov, O; Koster, U; Marsh, B A; Nishio, K; Page, R D; Patronis, N; Seliverstov, M; Tsekhanovich, I; Van den Bergh, P; Van De Walle, J; Venhart, M; Vermote, S; Veselsky, M; Wagemans, C; Ichikawa, T; Iwamoto, A; Moller, P; Sierk, A J

    2010-01-01

    A very exotic process of ${\\beta}$-delayed fission of $^{180}$Tl is studied in detail by using resonant laser ionization with subsequent mass separation at ISOLDE (CERN). In contrast to common expectations, the fission-fragment mass distribution of the post-${\\beta}$-decay daughter nucleus $^{180}$Hg (N/Z=1.25) is asymmetric. This asymmetry is more surprising since a mass-symmetric split of this extremely neutron-deficient nucleus would lead to two $^{90}$Zr fragments, with magic N=50 and semimagic Z=40. This is a new type of asymmetric fission, not caused by large shell effects related to fragment magic proton and neutron numbers, as observed in the actinide region. The newly measured branching ratio for $\\beta$-delayed fission of $^{180}$Tl is 3.6(7)×10$^{-3}$%, approximately 2 orders of magnitude larger than in an earlier study.

  17. SEARCHING FOR COOL DUST IN THE MID-TO-FAR INFRARED: THE MASS-LOSS HISTORIES OF THE HYPERGIANTS μ Cep, VY CMa, IRC+10420, AND ρ Cas

    Energy Technology Data Exchange (ETDEWEB)

    Shenoy, Dinesh; Humphreys, Roberta M.; Jones, Terry J.; Gehrz, Robert D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, SE, Minneapolis, MN 55455 (United States); Marengo, Massimo [Department of Physics, Iowa State University, Ames, IA 50011 (United States); Helton, L. Andrew [USRA-SOFIA Science Center, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Hoffmann, William F.; Skemer, Andrew J.; Hinz, Philip M., E-mail: shenoy@astro.umn.edu [Department of Astronomy/Steward Observatory, University of Arizona, 933N. Cherry Avenue, Tucson, AZ 85721 (United States)

    2016-03-15

    We present mid- and far-IR imaging of four famous hypergiant stars: the red supergiants μ Cep and VY CMa, and the warm hypergiants IRC +10420 and ρ Cas. Our 11–37 μm SOFIA/FORCAST imaging probes cool dust not detected in visual and near-IR imaging studies. Adaptive optics 8–12 μm imaging of μ Cep and IRC +10420 with MMT/MIRAC reveals extended envelopes that are the likely sources of these stars’ strong silicate emission features. We find μ Cep’s mass-loss rate to have declined by about a factor of five over a 13,000 year history, ranging from 5 × 10{sup −6} down to ∼1× 10{sup −6} M{sub ⊙} yr{sup −1}. The morphology of VY CMa indicates a cooler dust component coincident with the highly asymmetric reflection nebulae seen in the visual and near-IR. The lack of cold dust at greater distances around VY CMa indicates that its mass-loss history is limited to the last ∼1200 years, with an average rate of 6 × 10{sup −4} M{sub ⊙} yr{sup −1}. We find two distinct periods in the mass-loss history of IRC +10420 with a high rate of 2 × 10{sup −3} M{sub ⊙} yr{sup −1} until approximately 2000 years ago, followed by an order of magnitude decrease in the recent past. We interpret this change as evidence of its evolution beyond the RSG stage. Our new infrared photometry of ρ Cas is consistent with emission from the expanding dust shell ejected in its 1946 eruption, with no evidence of newer dust formation from its more recent events.

  18. Rigid-Plastic Approximations for Predicting Plastic Deformation of Cylindrical Shells Subject to Dynamic Loading

    Directory of Open Access Journals (Sweden)

    Michelle S. Hoo Fatt

    1996-01-01

    Full Text Available A theoretical approach was developed for predicting the plastic deformation of a cylindrical shell subject to asymmetric dynamic loads. The plastic deformation of the leading generator of the shell is found by solving for the transverse deflections of a rigid-plastic beam/string-on-foundation. The axial bending moment and tensile force in the beam/string are equivalent to the longitudinal bending moments and membrane forces of the shell, while the plastic foundation force is equivalent to the shell circumferential bending moment and membrane resistances. Closed-form solutions for the transient and final deformation profile of an impulsive loaded shell when it is in a “string” state were derived using the eigenfunction expansion method. These results were compared to DYNA 3D predictions. The analytical predictions of the transient shell and final centerline deflections were within 25% of the DYNA 3D results.

  19. Scanning the parameter space of collapsing rotating thin shells

    Science.gov (United States)

    Rocha, Jorge V.; Santarelli, Raphael

    2018-06-01

    We present results of a comprehensive study of collapsing and bouncing thin shells with rotation, framing it in the context of the weak cosmic censorship conjecture. The analysis is based on a formalism developed specifically for higher odd dimensions that is able to describe the dynamics of collapsing rotating shells exactly. We analyse and classify a plethora of shell trajectories in asymptotically flat spacetimes. The parameters varied include the shell’s mass and angular momentum, its radial velocity at infinity, the (linear) equation-of-state parameter and the spacetime dimensionality. We find that plunges of rotating shells into black holes never produce naked singularities, as long as the matter shell obeys the weak energy condition, and so respects cosmic censorship. This applies to collapses of dust shells starting from rest or with a finite velocity at infinity. Not even shells with a negative isotropic pressure component (i.e. tension) lead to the formation of naked singularities, as long as the weak energy condition is satisfied. Endowing the shells with a positive isotropic pressure component allows for the existence of bouncing trajectories satisfying the dominant energy condition and fully contained outside rotating black holes. Otherwise any turning point occurs always inside the horizon. These results are based on strong numerical evidence from scans of numerous sections in the large parameter space available to these collapsing shells. The generalisation of the radial equation of motion to a polytropic equation-of-state for the matter shell is also included in an appendix.

  20. Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors

    Science.gov (United States)

    Grote, Fabian; Wen, Liaoyong; Lei, Yong

    2014-06-01

    Large-scale arrays of core/shell nanostructures are highly desirable to enhance the performance of supercapacitors. Here we demonstrate an innovative template-based fabrication technique with high structural controllability, which is capable of synthesizing well-ordered three-dimensional arrays of SnO2/MnO2 core/shell nanotubes for electrochemical energy storage in supercapacitor applications. The SnO2 core is fabricated by atomic layer deposition and provides a highly electrical conductive matrix. Subsequently a thin MnO2 shell is coated by electrochemical deposition onto the SnO2 core, which guarantees a short ion diffusion length within the shell. The core/shell structure shows an excellent electrochemical performance with a high specific capacitance of 910 F g-1 at 1 A g-1 and a good rate capability of remaining 217 F g-1 at 50 A g-1. These results shall pave the way to realize aqueous based asymmetric supercapacitors with high specific power and high specific energy.

  1. Exchange bias and asymmetric hysteresis loops from a microscopic model of core/shell nanoparticles

    International Nuclear Information System (INIS)

    Iglesias, Oscar; Batlle, Xavier; Labarta, Amilcar

    2007-01-01

    We present Monte Carlo simulations of hysteresis loops of a model of a magnetic nanoparticle with a ferromagnetic core and an antiferromagnetic shell with varying values of the core/shell interface exchange coupling which aim to clarify the microscopic origin of exchange bias observed experimentally. We have found loop shifts in the field direction as well as displacements along the magnetization axis that increase in magnitude when increasing the interfacial exchange coupling. Overlap functions computed from the spin configurations along the loops have been obtained to explain the origin and magnitude of these features microscopically

  2. The Asymmetric Nebula Surrounding the Extreme Red Supergiant VY Canis Majoris

    Science.gov (United States)

    Smith, Nathan; Humphreys, Roberta M.; Davidson, Kris; Gehrz, Robert D.; Schuster, M. T.; Krautter, Joachim

    2001-02-01

    We present HST/WFPC2 images plus ground-based infrared images and photometry of the very luminous OH/IR star VY Canis Majoris. Our WFPC2 data show a complex distribution of knots and filamentary arcs in the asymmetric reflection nebula around the obscured central star. The reflection arcs may result from multiple, asymmetric ejection episodes due to localized events on VY CMa's surface. Such events probably involve magnetic fields and convection, by analogy with solar activity. Surface photometry indicates that the star may have experienced enhanced mass loss over the past 1000 yr. We also demonstrate that the apparent asymmetry of the nebula results from a combination of high extinction and backscattering by dust grains. Thermal-infrared images reveal a more symmetric distribution, elongated along a nearly east-west direction. VY CMa probably has a flattened disklike distribution of dust with a northeast-southwest polar axis and may be experiencing activity analogous to solar prominences. The presence of an axis of symmetry raises interesting questions for a star the size of Saturn's orbit. Magnetic fields and surface activity may play an important role in VY CMa's mass-loss history. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  3. Canonical theory of spherically symmetric spacetimes with cross-streaming null dusts

    Science.gov (United States)

    Bičák, Jiří; Hájíček, Petr

    2003-11-01

    The Hamiltonian dynamics of two-component spherically symmetric null dust is studied with regard to the quantum theory of gravitational collapse. The components—the ingoing and outgoing dusts—are assumed to interact only through gravitation. Different kinds of singularities, naked or “clothed,” which can form during collapse processes are described. The general canonical formulation of the one-component null-dust dynamics by Bičák and Kuchař is restricted to the spherically symmetric case and used to construct an action for the two components. The transformation from a metric variable to the quasilocal mass is shown to simplify the mathematics. The action is reduced by a choice of gauge and the corresponding true Hamiltonian is written down. Asymptotic coordinates and energy densities of dust shells are shown to form a complete set of Dirac observables. The action of the asymptotic time translation on the observables is defined but it has been calculated explicitly only in the case of one-component dust (Vaidya metric).

  4. Matrix analysis of the asymmetrical bending of conical shell-beams and their singular assemblies

    International Nuclear Information System (INIS)

    Kiedrzynski, A.; Coppens, L.

    1979-01-01

    As an alternative to refined finite element methodology a new method has been derived to investigate in much detail the linear static behaviour of singular assemblies of moderately thick conical shells of revolution submitted to non-axisymmetrical loads at their ends (an assembly of conical sections is said to be singular when the geometrical discontinuities are deformable, i.e. not stiffened by diaphragms). A detailed preliminary study has shown that the currently adopted simplifying assumptions in shell theories for moderate thickness lead to unconsistencies at any departure from axisymmetric loading. Therefore, FLUEGGE's general shell theory has been applied to a conical section, yielding a set of mixed first order differential equations in terms of displacements and conjuguated stress resultants well suited for a matrix formalism. The numerical integration is based on a fourth-order Runge-Kutta method and provides an 8 x 8 mixed matrix. This matrix contains complete information on the distribution of the displacements (exhibiting the warping and ovalization of the cross-section) and of the stress resultants along the meridian; also the stiffness coefficients proceed from it. (orig.)

  5. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. II. DUST PROPERTIES FOR OXYGEN-RICH ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Sargent, Benjamin A.; Meixner, M.; Gordon, Karl D.; Srinivasan, S.; Kemper, F.; Woods, Paul M.; Tielens, A. G. G. M.; Speck, A. K.; Matsuura, M.; Bernard, J.-Ph.; Hony, S.; Indebetouw, R.; Marengo, M.; Sloan, G. C.

    2010-01-01

    We model multi-wavelength broadband UBVIJHK s and Spitzer IRAC and MIPS photometry and Infrared Spectrograph spectra from the SAGE and SAGE-Spectroscopy observing programs of two oxygen-rich asymptotic giant branch (O-rich AGB) stars in the Large Magellanic Cloud (LMC) using radiative transfer (RT) models of dust shells around stars. We chose a star from each of the bright and faint O-rich AGB populations found by earlier studies of the SAGE sample in order to derive a baseline set of dust properties to be used in the construction of an extensive grid of RT models of the O-rich AGB stars found in the SAGE surveys. From the bright O-rich AGB population, we chose HV 5715, and from the faint O-rich AGB population we chose SSTISAGE1C J052206.92-715017.6 (SSTSAGE052206). We found the complex indices of refraction of oxygen-deficient silicates from Ossenkopf et al. and a power law with exponential decay grain size distribution like what Kim et al. used but with γ of -3.5, a min of 0.01 μm, and a 0 of 0.1 μm to be reasonable dust properties for these models. There is a slight indication that the dust around the faint O-rich AGB may be more silica-rich than that around the bright O-rich AGB. Simple models of gas emission suggest a relatively extended gas envelope for the faint O-rich AGB star modeled, consistent with the relatively large dust shell inner radius for the same model. Our models of the data require the luminosity of SSTSAGE052206 and HV 5715 to be ∼5100 L sun and ∼36,000 L sun , respectively. This, combined with the stellar effective temperatures of 3700 K and 3500 K, respectively, that we find best fit the optical and near-infrared data, suggests stellar masses of ∼3 M sun and ∼7 M sun . This, in turn, suggests that HV 5715 is undergoing hot-bottom burning and that SSTSAGE052206 is not. Our models of SSTSAGE052206 and HV 5715 require dust shells of inner radius ∼17 and ∼52 times the stellar radius, respectively, with dust temperatures there of

  6. The Structure of Pre-Transitional Protoplanetary Disks. II Azimuthal Asymmetries, Different Radial Distributions of Large and Small Dust Grains in PDS 70

    Science.gov (United States)

    Hashimoto, J.; Tsukagoshi, T.; Brown, J. M.; Dong, R.; Muto, T.; Zhu, Z.; Wisniewski, J.; Ohashi, N.; Kudo, T.; Kusakabe, N.; hide

    2015-01-01

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-micron size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and CO-12 J = 2 yields 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of approx. 65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of approx. 80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.

  7. THE STRUCTURE OF PRE-TRANSITIONAL PROTOPLANETARY DISKS. II. AZIMUTHAL ASYMMETRIES, DIFFERENT RADIAL DISTRIBUTIONS OF LARGE AND SMALL DUST GRAINS IN PDS 70 {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, J.; Wisniewski, J. [Department of Physics and Astronomy, The University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Tsukagoshi, T. [College of Science, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Brown, J. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Dong, R. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Muto, T. [Division of Liberal Arts, Kogakuin University, 1-24-2, Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Zhu, Z. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Ohashi, N.; Kudo, T.; Egner, S.; Guyon, O. [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Kusakabe, N.; Akiyama, E. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Abe, L. [Laboratoire Hippolyte Fizeau, UMR6525, Universite de Nice Sophia-Antipolis, 28, avenue Valrose, F-06108 Nice Cedex 02 (France); Brandner, W.; Carson, J.; Feldt, M. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Brandt, T. [Astrophysics Department, Institute for Advanced Study, Princeton, NJ (United States); Currie, T. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON (Canada); Grady, C. A., E-mail: jun.hashimoto@ou.edu [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); and others

    2015-01-20

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-μm size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and {sup 12}CO J = 2 → 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of ∼65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of ∼80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.

  8. Multiple void formation in plasmas containing multispecies charged grains

    International Nuclear Information System (INIS)

    Liu, Y. H.; Chen, Z. Y.; Bogaerts, A.; Yu, M. Y.

    2006-01-01

    Self-organized separation of charged-dust species in two-dimensional dusty plasmas is studied by means of molecular-dynamics simulation. The multispecies dust grains, interacting through a screened Coulomb potential with a long-range attractive component, are confined by an external quadratic potential and subjected to a radially outward ion drag force. It is found that, in general, the species are spatially separated by bandlike dust-free (or void) regions, and grains of the same species tend to populate a common shell. At large ion drag and/or large plasma screening, a central disklike void as well as concentric bandlike voids separating the different species appear. Because of the outward drag and the attractive component of the dust-dust interaction forces, highly asymmetrical states consisting of species-separated dust clumps can also exist despite the fact that all the forces are either radial or central

  9. Dynamics of plasma−dust structures formed in a trap created in the narrowing of a current channel in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Dzlieva, E. S., E-mail: plasmadust@yandex.ru; Karasev, V. Yu., E-mail: v.karasev@spbu.ru; Pavlov, S. I. [St. Petersburg State University (Russian Federation)

    2016-02-15

    The geometry and dynamics of plasma−dust structures in a longitudinal magnetic field is studied experimentally. The structures are formed in a glow-discharge trap created in the double electric layer produced as a result of discharge narrowing by means of a dielectric insert introduced in the discharge tube. Studies of structures formed in the new type of glow-discharge trap are of interest from the standpoint of future experiments with complex plasmas in superstrong magnetic fields in which the dust component is magnetized. Different types of dielectric inserts were used: conical and plane ones with symmetric and asymmetric apertures. Conditions for the existence of stable dust structures are determined for dust grains of different density and different dispersity. According to the experimental results, the angular velocity of dust rotation is ≥10 s{sup –1}, which is the fastest type of dust motion for all types of discharges in a magnetic field. The rotation is interpreted by analyzing the dynamics of individual dust grains.

  10. 2D Dust Clusters in Theory and Experiments

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Gousein-zade, N.G.; Morfill, G.E.

    2005-01-01

    The theory is applied for more detail analysis of existing experiments of 2D dust clusters with parabolic confinement. It is shown that the equilibrium condition and the frequency of one of the modes of the cluster determines all dimensionless parameters of the cluster allowing to predict the value of other modes and compare them with existing experimental data. This comparison depends on the shielding model, the calculations starting with N = 4 cluster breathing mode predict for Debye shielding model without attraction the frequency of the antisymmetric mode in disagreement with the observed value about 6 standard deviations, while the same calculations for the non-linear screening model gives disagreement about 1 standard deviation. Including the attraction provides an agrement with observations only for non-linear screening model showing the sensitivity of cluster structure to dust attraction. The value of the obtained attractions coefficient is in reasonable agreement with the theoretically expected value. It is shown theoretically that in absence of external parabolic confinement a weak shadow attraction can provide an existence of equilibria for 2D clusters. The equilibrium radius is rapidly decreasing with an increase of the attraction coefficient and with number of grains N in a cluster. The energies of one shell clusters with different N and the energies of N - 1 grain clusters with additional grain in the center of the shell are calculated as functions of attraction coefficient. It is demonstrated that a dissociation of cluster in several smaller clusters needs less energy than a removal of one grain from the cluster. The calculations were performed for Yukawa screening and for non-linear screening and demonstrate the sensitivity of cluster structures to the screening. Frequencies of all modes are calculated up to N = 7 for one shell structure. Stable and unstable modes as well as universal magic numbers are found

  11. Core shell structured nanoparticles of Eu3+ doped SnO2 with SiO2 shell: luminescence studies

    International Nuclear Information System (INIS)

    Ningthoujam, R.S.; Sudarsan, V.; Kulshreshtha, S.K.

    2005-01-01

    Re dispersible SnO 2 nanoparticles with and without Eu 3+ doping nanoparticles were prepared at 185 deg C by the urea hydrolysis of Sn 4+ in ethylene glycol medium. X-ray diffraction and 119 Sn MAS NMR studies of these particles revealed that these nanoparticles are crystalline with Cassiterite structure having an average crystallite size of 7 nm. Undoped SnO 2 gave a emission peak centered around 470 nm characteristic of the traps present in the nanoparticles. For Eu 3+ doped samples, emission around 590 and 615 nm was observed on both direct excitation as well as indirect excitation through traps, indicating that there is an energy transfer between the traps present in the nanoparticles and Eu 3+ ions. The asymmetric ratio of luminescence (relative intensity ratio of 590 to 615 nm transitions) has been found to be 1.2. For SnO 2 :Eu(5%)-SiO 2 nanoparticles, the asymmetric ratio of luminescence change significantly indicating the formation of nanoparticles with SnO 2 :Eu(5%) core covered with SiO 2 shell. (author)

  12. Experimental study of thermal properties of a new ecological building material based on peanut shells and plaster

    Directory of Open Access Journals (Sweden)

    M. Lamrani

    2017-12-01

    Full Text Available The aim of the present work was to investigate the thermal properties of a new building material consisting of a mixture of plaster and peanut shells for use as insulating materials in building. The properties are commonly measured by using the steady state asymmetric hot plate method, the asymmetrical transient hot plate method and the flash method. The experimental study that we have conducted, enabled us to determine the conductivity, the effusivity and the thermal diffusivity of our material. The influence of the size and the mass fraction of the peanut shell shards on thermophysical properties of tested material, was investigated. Our experimental data show a good efficiency and a significant decrease in the thermal conductivity of material with peanut shell shards compared to simple plaster material. The purpose is to obtain ecological composite materials with better thermal performance, which can contribute to improve the thermal comfort in constructions in Morocco. The results show that the density of the new material was not substantially influenced by the size of the peanut shell shards. However, the thermal conductivity and diffusivity decrease from 0.3 Wm−1 K−1 and 3.75 × 10−7 m2 s−1 to 0.14 Wm−1 K−1 and 2.11 × 10−7m2 s−1, respectively, according to the variation of the mass fraction of peanut from 0 to20%.

  13. Effects of a Deep Mixed Shell on Solar g-Modes, p-Modes, and Neutrino Flux

    Science.gov (United States)

    Wolff, Charles L.

    2009-08-01

    A mixed-shell model that reflects g-modes away from the Sun's center is developed further by calibrating its parameters and evaluating a mixing mechanism: buoyancy. The shell roughly doubles g-mode oscillation periods and would explain why there is no definitive detection of their periods. But the shell has only minor effects on most p-modes. The model provides a mechanism for causing short-term fluctuations in neutrino flux and makes plausible the correlations between this flux and solar activity levels. Relations are derived for a shell heated asymmetrically by transient increases in nuclear burning in small "hot spots." The size of these spots and the timing of a heating event are governed by sets(ell) of standing asymptotic g-modes, coupled by a maximal principle that greatly enhances their excitation and concentrates power toward the equator, assisting the detection of higher-ell sets. Signals from all sets, except one, in the range 2 energy to mix the corresponding shell in a standard solar model in Lt107 yr.

  14. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors

    Science.gov (United States)

    Wan, Caichao; Jiao, Yue; Li, Jian

    2017-09-01

    An easily-operated and inexpensive strategy (pencil-drawing-electrodeposition-electro-oxidation) is proposed to synthesize a novel class of multilayer core-shell structured composite paper electrode, which consists of copper, cuprous oxide and graphite assembled on cellulose fibers. This interesting electrode structure plays a pivotal role in providing more active sites for electrochemical reactions, facilitating ion and electron transport and shorting their diffusion pathways. This electrode demonstrates excellent electrochemical properties with a high specific capacitance of 601 F g-1 at 2 A g-1 and retains 83% of this capacitance when operated at an ultrahigh current density of 100 A g-1. In addition, a high energy density of 13.4 W h kg-1 at the power density of 0.40 kW kg-1 and a favorable cycling stability (95.3%, 8000 cycles) were achieved for this electrode. When this electrode was assembled into an asymmetric supercapacitor with carbon paper as negative electrode, the device displays remarkable electrochemical performances with a large areal capacitances (122 mF cm-2 at 1 mA cm-2), high areal energy density (10.8 μW h cm-2 at 402.5 μW cm-2) and outstanding cycling stability (91.5%, 5000 cycles). These results unveil the potential of this composite electrode as a high-performance electrode material for supercapacitors.

  15. Direct Interferometric Imaging with IOTA Interferometer: Morphology of the Water Shell around U Ori

    Science.gov (United States)

    Pluzhnik, Eugene; Ragland, S.; Le Coroller, H.; Cotton, W.; Danchi, W.; Traub, W.; Willson, L.

    2007-12-01

    Optical interferometric observations of Mira stars with adequate resolution using the 3-telescope Infrared Optical Telescope Array (IOTA) interferometer have shown detectable asymmetry in several Mira stars. Several mechanisms have been proposed to explain the observed asymmetry. In this paper, we present subsequent IOTA observations of a Mira star, namely, U Ori taken at 1.51, 1.64 and 1.78 μm in 2005. The reconstructed images based on a model independent algorithm are also presented. These images show asymmetric structures of the water shell that is similar to the structure of 22 GHz masers obtained by Vlemmings et al. in 2003. We explore the possibility of the detection of molecular shell rotation with a period of about 30 years by comparing our results with radio observations and discuss a possible geometric structure of the shell.

  16. EVIDENCE FOR H{sub 2} FORMATION DRIVEN DUST GRAIN ALIGNMENT IN IC 63

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, B-G; De Buizer, J.; Charcos-Llorens, M. [SOFIA Science Center, USRA, NASA Ames Research Center, M.S. N211-3 Moffett Field, CA 94035 (United States); Piirola, V. [Finnish Centre for Astronomy with ESO, University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); Clemens, D. P. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Uomoto, A. [Observatories of the Carnegie Institution, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Geballe, T. R. [Gemini Observatory, Northern Operations Center, 670 N. A' ohoku Place, Hilo, HI 96720 (United States); Lazarian, A.; Hoang, T. [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Vornanen, T., E-mail: bg@sofia.usra.edu [Tuorla Observatory, University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland)

    2013-10-01

    In the interstellar medium (ISM), molecular hydrogen is expected to form almost exclusively on the surfaces of dust grains. Due to that molecule's large formation energy (–4.5 eV), several dynamical effects are likely associated with the process, including the alignment of asymmetric dust grains with the ambient magnetic field. Such aligned dust grains are, in turn, believed to cause the broadband optical/infrared polarization observed in the ISM. Here, we present the first observational evidence for grain alignment driven by H{sub 2} formation, by showing that the polarization of the light from stars behind the reflection nebula IC 63 appears to correlate with the intensity of H{sub 2} fluorescence. While our results strongly suggest a role for 'Purcell rockets' in grain alignment, additional observations are needed to conclusively confirm their role. By showing a direct connection between H{sub 2} formation and a probe of the dust characteristics, these results also provide one of the first direct confirmations of the grain-surface formation of H{sub 2}. We compare our observations to ab initio modeling based on Radiative Torque Alignment (RAT) theory.

  17. Role of angular momentum and cosmic censorship in (2+1)-dimensional rotating shell collapse

    International Nuclear Information System (INIS)

    Mann, Robert B.; Oh, John J.; Park, Mu-In

    2009-01-01

    We study the gravitational collapse problem of rotating shells in three-dimensional Einstein gravity with and without a cosmological constant. Taking the exterior and interior metrics to be those of stationary metrics with asymptotically constant curvature, we solve the equations of motion for the shells from the Darmois-Israel junction conditions in the corotating frame. We study various collapse scenarios with arbitrary angular momentum for a variety of geometric configurations, including anti-de Sitter, de Sitter, and flat spaces. We find that the collapsing shells can form a BTZ black hole, a three-dimensional Kerr-dS spacetime, and an horizonless geometry of point masses under certain initial conditions. For pressureless dust shells, the curvature singularity is not formed due to the angular momentum barrier near the origin. However when the shell pressure is nonvanishing, we find that for all types of shells with polytropic-type equations of state (including the perfect fluid and the generalized Chaplygin gas), collapse to a naked singularity is possible under generic initial conditions. We conclude that in three dimensions angular momentum does not in general guard against violation of cosmic censorship.

  18. NESTED SHELLS REVEAL THE REJUVENATION OF THE ORION–ERIDANUS SUPERBUBBLE

    International Nuclear Information System (INIS)

    Ochsendorf, Bram B.; Brown, Anthony G. A.; Tielens, Alexander G. G. M.; Bally, John

    2015-01-01

    The Orion–Eridanus superbubble is the prototypical superbubble owing to its proximity and evolutionary state. Here we provide a synthesis of recent observational data from WISE and Planck with archival data, allowing us to draw a new and more complete picture on the history and evolution of the Orion–Eridanus region. We discuss the general morphological structures and observational characteristics of the superbubble and derive quantitative properties of the gas and dust inside Barnard’s Loop. We reveal that Barnard’s Loop is a complete bubble structure that, together with the λ Ori region and other smaller-scale bubbles, expands within the Orion–Eridanus superbubble. We argue that the Orion–Eridanus superbubble is larger and more complex than previously thought, and that it can be viewed as a series of nested shells, superimposed along the line of sight. During the lifetime of the superbubble, Hii region champagne flows and thermal evaporation of embedded clouds continuously mass-load the superbubble interior, while winds or supernovae from the Orion OB association rejuvenate the superbubble by sweeping up the material from the interior cavities in an episodic fashion, possibly triggering the formation of new stars that form shells of their own. The steady supply of material into the superbubble cavity implies that dust processing from interior supernova remnants is more efficient than previously thought. The cycle of mass loading, interior cleansing, and star formation repeats until the molecular reservoir is depleted or the clouds have been disrupted. While the nested shells come and go, the superbubble remains for tens of millions of years

  19. NESTED SHELLS REVEAL THE REJUVENATION OF THE ORION–ERIDANUS SUPERBUBBLE

    Energy Technology Data Exchange (ETDEWEB)

    Ochsendorf, Bram B.; Brown, Anthony G. A.; Tielens, Alexander G. G. M. [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA (Netherlands); Bally, John, E-mail: ochsendorf@strw.leidenuniv.nl [CASA, APS, UCB389, University of Colorado, Boulder, CO 80389 (United States)

    2015-08-01

    The Orion–Eridanus superbubble is the prototypical superbubble owing to its proximity and evolutionary state. Here we provide a synthesis of recent observational data from WISE and Planck with archival data, allowing us to draw a new and more complete picture on the history and evolution of the Orion–Eridanus region. We discuss the general morphological structures and observational characteristics of the superbubble and derive quantitative properties of the gas and dust inside Barnard’s Loop. We reveal that Barnard’s Loop is a complete bubble structure that, together with the λ Ori region and other smaller-scale bubbles, expands within the Orion–Eridanus superbubble. We argue that the Orion–Eridanus superbubble is larger and more complex than previously thought, and that it can be viewed as a series of nested shells, superimposed along the line of sight. During the lifetime of the superbubble, Hii region champagne flows and thermal evaporation of embedded clouds continuously mass-load the superbubble interior, while winds or supernovae from the Orion OB association rejuvenate the superbubble by sweeping up the material from the interior cavities in an episodic fashion, possibly triggering the formation of new stars that form shells of their own. The steady supply of material into the superbubble cavity implies that dust processing from interior supernova remnants is more efficient than previously thought. The cycle of mass loading, interior cleansing, and star formation repeats until the molecular reservoir is depleted or the clouds have been disrupted. While the nested shells come and go, the superbubble remains for tens of millions of years.

  20. Paleo-dust insights onto dust-climate interactions

    Science.gov (United States)

    Albani, S.; Mahowald, N. M.

    2017-12-01

    Mineral dust emissions are affected by changing climate conditions, and in turn dust impacts the atmospheric radiation budget, clouds and biogeochemical cycles. Climate and public health dust-related issues call for attention on the fate of the dust cycle in the future, and the representation of the dust cycle is now part of the strategy of the Paleoclimate Modelling Intercomparison Project phase 4 and the Coupled Model Intercomparison Project phase 6 (PMIP4-CMIP6). Since mineral aerosols are one of the most important natural aerosols, understanding past dust responses to climate in the paleoclimate will allow us to better understand mineral aerosol feedbacks with climate and biogeochemistry in the Anthropocene. Modern observations and paleoclimate records offer the possibility of multiple, complementary views on the global dust cycle, and allow to validate and/or constrain the numerical representation of dust in climate and Earth system models. We present our results from a set of simulations with the Community Earth System Model for different climate states, including present and past climates such as the pre-industrial, the mid-Holocene and the Last Glacial Maximum. A set of simulations including a prognostic dust cycle was thoroughly compared with a wide set of present day observations from different platforms and regions, in order to realistically constrain the magnitude of dust load, surface concentration, deposition, optical properties, and particle size distributions. The magnitude of emissions for past climate regimes was constrained based on compilations of paleodust mass accumulation rates and size distributions, as well as based on information on dust provenance. The comparison with a parallel set of simulations without dust allows estimating the impacts of dust on surface climate. We analyze impacts of dust on the mean and variability of surface temperature and precipitation in each climate state, as well as the impacts that changing dust emissions had

  1. Respirable dust measured downwind during rock dust application.

    Science.gov (United States)

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  2. Ion-streaming induced order transition in three-dimensional dust clusters

    International Nuclear Information System (INIS)

    Ludwig, Patrick; Kählert, Hanno; Bonitz, Michael

    2012-01-01

    Dust dynamics simulations utilizing a dynamical screening approach are performed to study the effect of ion-streaming on the self-organized structures in a three-dimensional spherically confined complex (dusty) plasma. Varying the Mach number M, the ratio of ion drift velocity to the sound velocity, the simulations reproduce the experimentally observed cluster configurations in the two limiting cases: at M = 0 strongly correlated crystalline structures consisting of nested spherical shells (Yukawa balls) and, for M ⩾ 1, flow-aligned dust chains, respectively. In addition, our simulations reveal a discontinuous transition between these two limits. It is found that already a moderate ion drift velocity (M ≈ 0.1 for the plasma conditions considered here) destabilizes the highly ordered Yukawa balls and initiates an abrupt melting transition. The critical value of M is found to be independent of the cluster size. (paper)

  3. Dynamic instability analysis of axisymmetric shells by finite element method with convected coordinates

    International Nuclear Information System (INIS)

    Hsieh, B.J.

    1977-01-01

    The instability of axisymmetric shells has been used in engineering fields as a safety device such as the rupture discs used in the LMFBR (Liquid Metal Fast Breeder Reactor) design to relieve the excessive pressure caused by the water and sodium reaction when there is a leak in the piping system. Hence, the analysis of the instability of shells under time varying loading is becoming more and more important. However, notorious discrepancy has been observed between various analytical predications and experimental results for the buckling of shells. Various theories have been proposed to explain these discrepancies. Most of these theories are concerned with two aspects: initial imperfections and asymmetric responses. Both theories do narrow the gap between theoretical and experimental results; however, the remaining discrepancy is still not small. Other possible causes of this discrepancy have to be studied- among them, the boundary conditions. It has been pointed out that the slip at the boundary may have noticeable effect on the transient behavior of a plate. In this paper, the effect of various boundary conditions on the dynamic instability of axisymmetric shells is studied using the numerical discretization technique--convective finite element method

  4. H I and dust in the high latitude dark cloud L1642

    International Nuclear Information System (INIS)

    Liljestroem, T.; Mattila, K.

    1989-01-01

    The high latitude dark cloud L1642 in the 21 cm H I region was mapped using a 100 m radio telescope. A remarkable H I line broadening from 2.5 to 2.9 km/s is observed over a small area on the bright side of L1642, i.e., the side facing the galactic plane. Results are presented concerning the effects of the asymmetrical UV radiation field of OB stars on the H I gas and the very small dust grains associated with L1642

  5. Anomalous transport of charged dust grains in a magnetized collisional plasma: A molecular dynamics study

    Science.gov (United States)

    Bezbaruah, Pratikshya; Das, Nilakshi

    2018-05-01

    Anomalous diffusion of charged dust grains immersed in a plasma in the presence of strong ion-neutral collision, flowing ions, and a magnetic field has been observed. Molecular Dynamics simulation confirms the deviation from normal diffusion in an ensemble of dust grains probed in laboratory plasma chambers. Collisional effects are significant in governing the nature of diffusion. In order to have a clear idea on the transport of particles in a real experimental situation, the contribution of streaming ions and the magnetic field along with collision is considered through the relevant interaction potential. The nonlinear evolution of Mean Square Displacement is an indication of the modification in particle trajectories due to several effects as mentioned above. It is found that strong collision and ion flow significantly affect the interparticle interaction potential in the presence of the magnetic field and lead to the appearance of the asymmetric type of Debye Hückel (D H) potential. Due to the combined effect of the magnetic field, ion flow, and collision, dusty plasma exhibits a completely novel behavior. The coupling parameter Γ enhances the asymmetric D H type potential arising due to ion flow, and this may drive the system to a disordered state.

  6. Enhanced T-odd, P-odd electromagnetic moments in reflection asymmetric nuclei

    International Nuclear Information System (INIS)

    Spevak, V.; Auerbach, N.; Flambaum, V.V.

    1997-01-01

    Collective P- and T-odd moments produced by parity and time invariance violating forces in reflection asymmetric nuclei are considered. The enhanced collective Schiff, electric dipole, and octupole moments appear due to the mixing of rotational levels of opposite parity. These moments can exceed single-particle moments by more than 2 orders of magnitude. The enhancement is due to the collective nature of the intrinsic moments and the small energy separation between members of parity doublets. In turn these nuclear moments induce enhanced T- and P-odd effects in atoms and molecules. A simple estimate is given and a detailed theoretical treatment of the collective T-, P-odd electric moments in reflection asymmetric, odd-mass nuclei is presented. In the present work we improve on the simple liquid drop model by evaluating the Strutinsky shell correction and include corrections due to pairing. Calculations are performed for octupole deformed long-lived odd-mass isotopes of Rn, Fr, Ra, Ac, and Pa and the corresponding atoms. Experiments with such atoms may improve substantially the limits on time reversal violation. copyright 1997 The American Physical Society

  7. The Interplay between Radiation Pressure and the Photoelectric Instability in Optically Thin Disks of Gas and Dust

    Science.gov (United States)

    Richert, Alexander J. W.; Lyra, Wladimir; Kuchner, Marc J.

    2018-03-01

    In optically thin disks, dust grains are photoelectrically stripped of electrons by starlight, heating nearby gas and possibly creating a dust clumping instability—the photoelectric instability (PeI)—that significantly alters global disk structure. In the current work, we use the Pencil Code to perform the first numerical models of the PeI that include stellar radiation pressure on dust grains in order to explore the parameter regime in which the instability operates. In some models with low gas and dust surface densities, we see a variety of dust structures, including sharp concentric rings. In the most gas- and dust-rich models, nonaxisymmetric clumps, arcs, and spiral arms emerge that represent dust surface density enhancements of factors of ∼5–20. In one high gas surface density model, we include a large, low-order gas viscosity and find that it observably smooths the structures that form in the gas and dust, suggesting that resolved images of a given disk may be useful for deriving constraints on the effective viscosity of its gas. Our models show that radiation pressure does not preclude the formation of complex structure from the PeI, but the qualitative manifestation of the PeI depends strongly on the parameters of the system. The PeI may provide an explanation for unusual disk morphologies, such as the moving blobs of the AU Mic disk, the asymmetric dust distribution of the 49 Ceti disk, and the rings and arcs found in the HD 141569A disk.

  8. Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by differential quadrature method

    Energy Technology Data Exchange (ETDEWEB)

    Alashti, R. Akbari, E-mail: raalashti@nit.ac.ir [Mechanical Engineering Department, Babol University of Technology, P.O. Box 484, Shariati Avenue, Babol (Iran, Islamic Republic of); Khorsand, M. [Mechanical Engineering Department, Babol University of Technology, P.O. Box 484, Shariati Avenue, Babol (Iran, Islamic Republic of)

    2011-05-15

    Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers under the effect of asymmetric thermo-electro-mechanical loads is carried out. Numerical results of displacement, stress and thermal fields are obtained using two versions of the differential quadrature methods, namely polynomial and Fourier quadrature methods. Material properties of the shell are assumed to be graded in the radial direction according to a power law but the Poisson's ratio is assumed to be constant. Shells are considered to be under the effect of the pressure loading in the form of cosine and ring pressure loads, electric potentials and temperature fields. Numerical results for various boundary conditions are obtained and the effects of the thickness of piezoelectric layers, grading index of material properties and the ratio of the thickness to the radius of the shell on these results is presented. - Highlights: > A numerical study of an FGM cylindrical shell with piezoelectric layers is made. > Governing equations are solved by two versions of differential quadrature methods. > The effect of layers thickness, grading index and geometrical ratios is presented.

  9. Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by differential quadrature method

    International Nuclear Information System (INIS)

    Alashti, R. Akbari; Khorsand, M.

    2011-01-01

    Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers under the effect of asymmetric thermo-electro-mechanical loads is carried out. Numerical results of displacement, stress and thermal fields are obtained using two versions of the differential quadrature methods, namely polynomial and Fourier quadrature methods. Material properties of the shell are assumed to be graded in the radial direction according to a power law but the Poisson's ratio is assumed to be constant. Shells are considered to be under the effect of the pressure loading in the form of cosine and ring pressure loads, electric potentials and temperature fields. Numerical results for various boundary conditions are obtained and the effects of the thickness of piezoelectric layers, grading index of material properties and the ratio of the thickness to the radius of the shell on these results is presented. - Highlights: → A numerical study of an FGM cylindrical shell with piezoelectric layers is made. → Governing equations are solved by two versions of differential quadrature methods. → The effect of layers thickness, grading index and geometrical ratios is presented.

  10. Finite element analysis program for shells of revolution: ISTRAN/SR, 4

    International Nuclear Information System (INIS)

    Chiba, Toshio

    1980-01-01

    The computational capabilities available in the current version of ISTRAN/SR for stress analysis of shells of revolution have been described in the 1st, 2nd and 3rd reports. This report describes the linear elastic dynamic analysis of shells of revolution under axisymmetric and asymmetric loadings. The shell, idealized as a curved element and cubic function for all displacements, is used. A method for solution of the equations of motion is described with special emphasis on the computational aspect of the solution. Three solution methods, which can be employed for the linear dynamic analysis, are possible - direct integration method, mode superposition method, and spectrum analysis method. Each method involves a numerical method which must be formulated in effective form for computer implementation - solution of linear equations, evaluation of eigenvalues and eigenvectors, and step-by-step numerical integration. In this program, the skyline method is employed for the solution of linear equations, and the subspace method and the determinant search method are employed for eigenproblem. The Newmark-Wilson method is employed for the step-by-step integration. The comparison of the solution of ISTRAN/SR and other numerical solution shows good agreement. (author)

  11. Thin Static Charged Dust Majumdar–Papapetrou Shells with High Symmetry in D ≥ 4

    Czech Academy of Sciences Publication Activity Database

    Čermák, Martin; Zouhar, M.

    2012-01-01

    Roč. 51, č. 8 (2012), s. 2455-2469 ISSN 0020-7748 Institutional research plan: CEZ:AV0Z20410507 Keywords : Majumdar–Papapetrou * Kastor–Traschen * higher dimensional thin charged shell Subject RIV: BE - Theoretical Physics Impact factor: 1.086, year: 2012

  12. POLARIZATION MEASUREMENTS OF HOT DUST STARS AND THE LOCAL INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, J. P.; Cotton, D. V.; Bott, K.; Bailey, J.; Kedziora-Chudczer, L. [School of Physics, UNSW Australia, High Street, Kensington, NSW 2052 (Australia); Ertel, S. [Steward Observatory, Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Kennedy, G. M.; Wyatt, M. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Burgo, C. del [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla (Mexico); Absil, O. [Institut d’Astrophysique et de Géophysique, University of Liège, 19c allée du Six Août, B-4000 Liège (Belgium)

    2016-07-10

    Debris discs are typically revealed through the presence of excess emission at infrared wavelengths. Most discs exhibit excess at mid- and far-infrared wavelengths, analogous to the solar system’s Asteroid and Edgeworth-Kuiper belts. Recently, stars with strong (∼1%) excess at near-infrared wavelengths were identified through interferometric measurements. Using the HIgh Precision Polarimetric Instrument, we examined a sub-sample of these hot dust stars (and appropriate controls) at parts-per-million sensitivity in SDSS g ′ (green) and r ′ (red) filters for evidence of scattered light. No detection of strongly polarized emission from the hot dust stars is seen. We, therefore, rule out scattered light from a normal debris disk as the origin of this emission. A wavelength-dependent contribution from multiple dust components for hot dust stars is inferred from the dispersion (the difference in polarization angle in red and green) of southern stars. Contributions of 17 ppm (green) and 30 ppm (red) are calculated, with strict 3- σ upper limits of 76 and 68 ppm, respectively. This suggests weak hot dust excesses consistent with thermal emission, although we cannot rule out contrived scenarios, e.g., dust in a spherical shell or face-on discs. We also report on the nature of the local interstellar medium (ISM), obtained as a byproduct of the control measurements. Highlights include the first measurements of the polarimetric color of the local ISM and the discovery of a southern sky region with a polarization per distance thrice the previous maximum. The data suggest that λ {sub max}, the wavelength of maximum polarization, is bluer than typical.

  13. Shell model estimate of electric dipole moments in medium and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Teruya E.

    2014-03-01

    Full Text Available It is evidence for an extension of the Standard Model in particle physics, if static electric dipole moments (EDMs are measured for any elementary particle. The nuclear EDM arises mainly from two sources: one comes from asymmetric charge distribution in a nucleus and the other is due to the nucleon intrinsic EDM. We estimate the nuclear EDMs from two sources for the 1/21+ states in Xe isotopes by a shell model approach using full orbitals between magic numbers 50 and 82.

  14. DustEM: Dust extinction and emission modelling

    Science.gov (United States)

    Compiègne, M.; Verstraete, L.; Jones, A.; Bernard, J.-P.; Boulanger, F.; Flagey, N.; Le Bourlot, J.; Paradis, D.; Ysard, N.

    2013-07-01

    DustEM computes the extinction and the emission of interstellar dust grains heated by photons. It is written in Fortran 95 and is jointly developed by IAS and CESR. The dust emission is calculated in the optically thin limit (no radiative transfer) and the default spectral range is 40 to 108 nm. The code is designed so dust properties can easily be changed and mixed and to allow for the inclusion of new grain physics.

  15. Coplanar asymmetric angles and symmetric energy sharing triple differential cross sections for 200 eV electron-impact ionization of Ar (3p)

    International Nuclear Information System (INIS)

    Ozer, Zehra N; Varol, Onur; Yavuz, Murat; Dogan, Mevlut; Amami, Sadek; Madison, Don

    2015-01-01

    We have measured triple differential cross sections (TDCSs) for electron-impact ionization of the 3p shell of Ar at 200 eV incident electron energy. The experiments have been performed in coplanar asymmetric energy sharing geometry. The experimental results are compared with the theoretical models of three body distorted wave (3DW) and distorted wave Born approximation (DWBA). (paper)

  16. NIF Double Shell outer/inner shell collision experiments

    Science.gov (United States)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  17. Accelerator experiments with soft protons and hyper-velocity dust particles: application to ongoing projects of future X-ray missions

    DEFF Research Database (Denmark)

    Perinati, E.; Diebold, S.; Kendziorra, E.

    2012-01-01

    and hyper-velocity dust particles off X-ray mirror shells. These activities have been identified as a goal in the context of a number of ongoing space projects in order to assess the risk posed by environmental radiation and dust and qualify the adopted instrumentation with respect to possible damage...... or performance degradation. In this paper we focus on tests for the Silicon Drift Detectors (SDDs) used aboard the LOFT space mission. We use the Van de Graaff accelerators at the University of T\\"ubingen and at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg, for soft proton and hyper...

  18. Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@MnO2 perfect core-shell nanostructures for high-performance flexible supercapacitors

    Science.gov (United States)

    Zhou, Jinyuan; Zhao, Hao; Mu, Xuemei; Chen, Jiayi; Zhang, Peng; Wang, Yaling; He, Yongmin; Zhang, Zhenxing; Pan, Xiaojun; Xie, Erqing

    2015-08-01

    This study reports the preparation of 3D hierarchical carbon nanotube (CNT) @MnO2 core-shell nanostructures under the assistance of polypyrrole (PPy). The as-prepared CNT@PPy@MnO2 core-shell structures show a perfect coating of MnO2 on each CNT and, more importantly, a robust bush-like pseudocapacitive shell to effectively increase the specific surface area and enhance the ion accessibility. As expected, a high specific capacity of 490-530 F g-1 has been achieved from CNT@PPy@MnO2 single electrodes. And about 98.5% of the capacity is retained after 1000 charge/discharge cycles at a current density of 5 A g-1. Furthermore, the assembled asymmetric CNT@PPy@MnO2//AC capacitors show the maximum energy density of 38.42 W h kg-1 (2.24 mW h cm-3) at a power density of 100 W kg-1 (5.83 mW cm-3), and they maintain 59.52% of the initial value at 10 000 W kg-1 (0.583 W cm-3). In addition, the assembled devices show high cycling stabilities (89.7% after 2000 cycles for asymmetric and 87.2% for symmetric), and a high bending stability (64.74% after 200 bending tests). This ability to obtain high energy densities at high power rates while maintaining high cycling stability demonstrates that this well-designed structure could be a promising electrode material for high-performance supercapacitors.This study reports the preparation of 3D hierarchical carbon nanotube (CNT) @MnO2 core-shell nanostructures under the assistance of polypyrrole (PPy). The as-prepared CNT@PPy@MnO2 core-shell structures show a perfect coating of MnO2 on each CNT and, more importantly, a robust bush-like pseudocapacitive shell to effectively increase the specific surface area and enhance the ion accessibility. As expected, a high specific capacity of 490-530 F g-1 has been achieved from CNT@PPy@MnO2 single electrodes. And about 98.5% of the capacity is retained after 1000 charge/discharge cycles at a current density of 5 A g-1. Furthermore, the assembled asymmetric CNT@PPy@MnO2//AC capacitors show the

  19. Dust acoustic shock wave at high dust density

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Sarkar, Susmita; Khan, Manoranjan; Avinash, K.; Gupta, M. R.

    2003-01-01

    Dust acoustic (DA) shock wave at high dust density, i.e., the dust electroacoustic (DEA) or dust Coulomb (DC) shock wave has been investigated incorporating the nonadiabatic dust charge variation. The nonlinear DEA (DC) shock wave is seen to be governed by the Korteweg-de Vries Burger equation, in which the Burger term is proportional to the nonadiabaticity generated dissipation. It is seen that the shock strength decreases but after reaching minimum, it increases as the dust space charge density |q d n d | increases and the shock strength of DA wave is greater than that of DEA (DC) wave. Moreover the DEA (DC) shock width increases appreciably with increase mass m i of the ion component of the dusty plasma but for DA shock wave the effect is weak

  20. SOFIA OBSERVATIONS OF SN 2010jl: ANOTHER NON-DETECTION OF THE 9.7 μm SILICATE DUST FEATURE

    International Nuclear Information System (INIS)

    Williams, Brian J.; Fox, Ori D.

    2015-01-01

    We present photometric observations from the Stratospheric Observatory for Infrared Astronomy (SOFIA) at 11.1 μm of the Type IIn supernova (SN IIn) 2010jl. The SN is undetected by SOFIA, but the upper limits obtained, combined with new and archival detections from Spitzer at 3.6 and 4.5 μm, allow us to characterize the composition of the dust present. Dust in other SN IIn has been shown in previous works to reside in a circumstellar shell of material ejected by the progenitor system in the few millenia prior to explosion. Our model fits show that the dust in the system shows no evidence for the strong, ubiquitous 9.7 μm feature from silicate dust, suggesting the presence of carbonaceous grains. The observations are best fit with 0.01–0.05 M ⊙ of carbonaceous dust radiating at a temperature of ∼550–620 K. The dust composition may reveal clues concerning the nature of the progenitor system, which remains ambiguous for this subclass. Most of the single star progenitor systems proposed for SNe IIn, such as luminous blue variables, red supergiants, yellow hypergiants, and B[e] stars, all clearly show silicate dust in their pre-SN outflows. However, this post-SN result is consistent with the small sample of SNe IIn with mid-IR observations, none of which show signs of emission from silicate dust in their IR spectra

  1. SOFIA OBSERVATIONS OF SN 2010jl: ANOTHER NON-DETECTION OF THE 9.7 μm SILICATE DUST FEATURE

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Brian J. [CRESST and X-ray Astrophysics Laboratory, NASA/GSFC, Code 662, 8800 Greenbelt Road, Greenbelt, MD (United States); Fox, Ori D., E-mail: brian.j.williams@nasa.gov [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2015-07-20

    We present photometric observations from the Stratospheric Observatory for Infrared Astronomy (SOFIA) at 11.1 μm of the Type IIn supernova (SN IIn) 2010jl. The SN is undetected by SOFIA, but the upper limits obtained, combined with new and archival detections from Spitzer at 3.6 and 4.5 μm, allow us to characterize the composition of the dust present. Dust in other SN IIn has been shown in previous works to reside in a circumstellar shell of material ejected by the progenitor system in the few millenia prior to explosion. Our model fits show that the dust in the system shows no evidence for the strong, ubiquitous 9.7 μm feature from silicate dust, suggesting the presence of carbonaceous grains. The observations are best fit with 0.01–0.05 M{sub ⊙} of carbonaceous dust radiating at a temperature of ∼550–620 K. The dust composition may reveal clues concerning the nature of the progenitor system, which remains ambiguous for this subclass. Most of the single star progenitor systems proposed for SNe IIn, such as luminous blue variables, red supergiants, yellow hypergiants, and B[e] stars, all clearly show silicate dust in their pre-SN outflows. However, this post-SN result is consistent with the small sample of SNe IIn with mid-IR observations, none of which show signs of emission from silicate dust in their IR spectra.

  2. Dispersion properties of three-layered orthotropic shells

    International Nuclear Information System (INIS)

    Markus, S.

    1995-01-01

    This paper studies the harmonic wave propagation in thick, cylindrical, three-layered shells of infinite length. Both the outer layers and the core are composites made of short strand fiberglass and polyester resin. The randomly oriented fibers were approximately in parallel planes to constitute a transversely isotropic fibre composite. The planes of isotropy in the outer layers are orthogonal to the plane of isotropy at the core. A closed form solution of the exact linear equations of elasticity in sought in terms of a Frobenius series. The influence of the core thickness on the dynamics of the wave motion is estimated from numerically computed dispersion curves. Asymmetric wave motion is given prime consideration and the different types of waves which can occur are identified over a wide range of wave numbers

  3. Direct Radiative Effect of Mineral Dust on the Middle East and North Africa Climate

    KAUST Repository

    Bangalath, Hamza Kunhu

    2016-11-01

    Dust-climate interaction over the Middle East and North Africa (MENA) has long been studied, as it is the "dustiest" region on earth. However, the quantitative and qualitative understanding of the role of dust direct radiative effect on MENA climate is still rudimentary. The present dissertation investigates dust direct radiative effect on MENA climate during summer with a special emphasis on the sensitivity of climate response to dust shortwave absorption, which is one of the most uncertain components of dust direct radiative effect. Simulations are conducted with and without dust radiative effect, to differentiate the effect of dust on climate. To elucidate the sensitivity of climate response to dust shortwave absorption, simulations with dust assume three different cases of dust shortwave absorption, representing dust as a very efficient, standard and inefficient shortwave absorber. The non-uniformly distributed dust perturb circulations at various scales. Therefore, the present study takes advantage of the high spatial resolution capabilities of an Atmospheric General Circulation Model (AGCM), High Resolution Atmospheric Model (HiRAM), which incorporates global and regional circulations. AMIP-style global high-resolution simulations are conducted at a spatial resolution of 25 km. A significant response in the strength and position of the local Hadley circulation is predicted in response to meridionally asymmetric distribution of dust and the corresponding radiative effects. Significant responses are also found in regional circulation features such as African Easterly Jet and West African Monsoon circulation. Consistent with these dynamic responses at various scales, the tropical rainbelt across MENA strengthens and shifts northward. Similarly, the temperature under rainbelt cools and that over subtropical deserts warms. Inter-comparison of various dust shortwave absorption cases shows that the response of the MENA tropical rainbelt is extremely sensitive to the

  4. Cometary Dust

    Science.gov (United States)

    Levasseur-Regourd, Anny-Chantal; Agarwal, Jessica; Cottin, Hervé; Engrand, Cécile; Flynn, George; Fulle, Marco; Gombosi, Tamas; Langevin, Yves; Lasue, Jérémie; Mannel, Thurid; Merouane, Sihane; Poch, Olivier; Thomas, Nicolas; Westphal, Andrew

    2018-04-01

    This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.

  5. Shell structures and chaos in nuclei and large metallic clusters

    International Nuclear Information System (INIS)

    Heiss, W.D.; University of the Witwatersrand, Johannesburg; Nazmitdinov, R.G.; Radu, S.; University of the Witwatersrand, Johannesburg

    1995-01-01

    A reflection-asymmetric deformed oscillator potential is analyzed from the classical and quantum mechanical point of view. The connection between occurrence of shell structures and classical periodic orbits is studied using the ''removal of resonances method'' in a classical analysis. In this approximation, the effective single particle potential becomes separable and the frequencies of the classical trajectories are easily determined. It turns out that the winding numbers calculated in this way are in good agreement with the ones found from the corresponding quantum mechanical spectrum using the particle number dependence of the fluctuating part of the total energy. When the octupole term is switched on it is found that prolate shapes are stable against chaos and can exhibit shells where spherical and oblate cases become chaotic. An attempt is made to explain this difference in the quantum mechanical context by looking at the distribution of exceptional points which results from the matrix structure of the respective Hamiltonians. In a similar way we analyze the modified Nilsson model and discuss its consequences for metallic clusters. (orig.)

  6. Time dependent response of low velocity impact induced composite conical shells under multiple delamination

    Science.gov (United States)

    Dey, Sudip; Karmakar, Amit

    2014-02-01

    This paper presents the time dependent response of multiple delaminated angle-ply composite pretwisted conical shells subjected to low velocity normal impact. The finite element formulation is based on Mindlin's theory incorporating rotary inertia and effects of transverse shear deformation. An eight-noded isoparametric plate bending element is employed to satisfy the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. A multipoint constraint algorithm is incorporated which leads to asymmetric stiffness matrices. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the contact force, and the time dependent equations are solved by Newmark's time integration algorithm. Parametric studies are conducted with respect to triggering parameters like laminate configuration, location of delamination, angle of twist, velocity of impactor, and impactor's displacement for centrally impacted shells.

  7. Structure of liposome encapsulating proteins characterized by X-ray scattering and shell-modeling

    International Nuclear Information System (INIS)

    Hirai, Mitsuhiro; Kimura, Ryota; Takeuchi, Kazuki; Hagiwara, Yoshihiko; Kawai-Hirai, Rika; Ohta, Noboru; Igarashi, Noriyuki; Shimuzu, Nobutaka

    2013-01-01

    Wide-angle X-ray scattering data using a third-generation synchrotron radiation source are presented. Lipid liposomes are promising drug delivery systems because they have superior curative effects owing to their high adaptability to a living body. Lipid liposomes encapsulating proteins were constructed and the structures examined using synchrotron radiation small- and wide-angle X-ray scattering (SR-SWAXS). The liposomes were prepared by a sequential combination of natural swelling, ultrasonic dispersion, freeze-throw, extrusion and spin-filtration. The liposomes were composed of acidic glycosphingolipid (ganglioside), cholesterol and phospholipids. By using shell-modeling methods, the asymmetric bilayer structure of the liposome and the encapsulation efficiency of proteins were determined. As well as other analytical techniques, SR-SWAXS and shell-modeling methods are shown to be a powerful tool for characterizing in situ structures of lipid liposomes as an important candidate of drug delivery systems

  8. Interplay of spherical closed shells and N /Z asymmetry in quasifission dynamics

    Science.gov (United States)

    Mohanto, G.; Hinde, D. J.; Banerjee, K.; Dasgupta, M.; Jeung, D. Y.; Simenel, C.; Simpson, E. C.; Wakhle, A.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; Palshetkar, C. S.; Rafferty, D. C.

    2018-05-01

    Background: Quasifission (QF) has gained tremendous importance in heavy-ion nuclear physics research because of its strong influence on superheavy-element synthesis. Collisions involving closed-shell nuclei in the entrance channel are found to affect the QF reaction mechanism. Hence, it is important to improve the understanding of their effect on QF. Apart from that, some recent studies show that the difference in N /Z of reaction partners influences the reaction dynamics. Since heavier doubly magic nuclei have different N /Z than lighter doubly magic nuclei, it is important to understand the effect of N /Z mismatch as well as the effect of shell closures. Purpose: To investigate the effect of entrance-channel shell closures and N /Z asymmetry on QF. The reactions were chosen to decouple these effects from the contributions of other entrance-channel parameters. Method: Fission fragment mass-angle distributions were measured using the CUBE fission spectrometer, consisting of two large area position-sensitive multi-wire proportional counters (MWPCs), for five reactions, namely, 50Cr+208Pb , 52Cr+Pb,208206 , 54Cr+Pb,208204 . Result: Two components were observed in the measured fragment mass angle distribution, a fast mass-asymmetric quasifission and a slow mass-symmetric component having a less significant mass-angle correlation. The ratio of these components was found to depend on spherical closed shells in the entrance channel nuclei and the magnitude of the N /Z mismatch between the two reaction partners, as well as the beam energy. Conclusions: Entrance-channel spherical closed shells can enhance compound nucleus formation provided the N /Z asymmetry is small. Increase in the N /Z asymmetry is expected to destroy the effect of entrance-channel spherical closed shells, through nucleon transfer reactions.

  9. Dust reddening and extinction curves toward gamma-ray bursts at z > 4

    Science.gov (United States)

    Bolmer, J.; Greiner, J.; Krühler, T.; Schady, P.; Ledoux, C.; Tanvir, N. R.; Levan, A. J.

    2018-01-01

    Context. Dust is known to be produced in the envelopes of asymptotic giant branch (AGB) stars, the expanded shells of supernova (SN) remnants, and in situ grain growth within the interstellar medium (ISM), although the corresponding efficiency of each of these dust formation mechanisms at different redshifts remains a topic of debate. During the first Gyr after the Big Bang, it is widely believed that there was not enough time to form AGB stars in high numbers, hence the dust at this epoch is expected to be purely from SNe or subsequent grain growth in the ISM. The time period corresponding to z 5-6 is thus expected to display the transition from SN-only dust to a mixture of both formation channels as is generally recognized at present. Aims: Here we aim to use afterglow observations of gamma-ray bursts (GRBs) at redshifts larger than z > 4 to derive host galaxy dust column densities along their line of sight and to test if a SN-type dust extinction curve is required for some of the bursts. Methods: We performed GRB afterglow observations with the seven-channel Gamma-Ray Optical and Near-infrared Detector (GROND) at the 2.2 m MPI telescope in La Silla, Chile (ESO), and we combined these observations with quasi-simultaneous data gathered with the XRT telescope on board the Swift satellite. Results: We increase the number of measured AV values for GRBs at z > 4 by a factor of 2-3 and find that, in contrast to samples at mostly lower redshift, all of the GRB afterglows have a visual extinction of AV different scenarios. For the first time we also report a photometric redshift of zphot = 7.88-0.94+0.75 for GRB 100905A, making it one of the most distant GRBs known to date.

  10. Mixing states of aerosols over four environmentally distinct atmospheric regimes in Asia: coastal, urban, and industrial locations influenced by dust.

    Science.gov (United States)

    Ramachandran, S; Srivastava, Rohit

    2016-06-01

    Mixing can influence the optical, physical, and chemical characteristics of aerosols, which in turn can modify their life cycle and radiative effects. Assumptions on the mixing state can lead to uncertain estimates of aerosol radiative effects. To examine the effect of mixing on the aerosol characteristics, and their influence on radiative effects, aerosol mixing states are determined over four environmentally distinct locations (Karachi, Gwangju, Osaka, and Singapore) in Asia, an aerosol hot spot region, using measured spectral aerosol optical properties and optical properties model. Aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry parameter (g) exhibit spectral, spatial, and temporal variations. Aerosol mixing states exhibit large spatial and temporal variations consistent with aerosol characteristics and aerosol type over each location. External mixing of aerosol species is unable to reproduce measured SSA over Asia, thus providing a strong evidence that aerosols exist in mixed state. Mineral dust (MD) (core)-Black carbon (BC) (shell) is one of the most preferred aerosol mixing states. Over locations influenced by biomass burning aerosols, BC (core)-water soluble (WS, shell) is a preferred mixing state, while dust gets coated by anthropogenic aerosols (BC, WS) over urban regions influenced by dust. MD (core)-sea salt (shell) mixing is found over Gwangju corroborating the observations. Aerosol radiative forcing exhibits large seasonal and spatial variations consistent with features seen in aerosol optical properties and mixing states. TOA forcing is less negative/positive for external mixing scenario because of lower SSA. Aerosol radiative forcing in Karachi is a factor of 2 higher when compared to Gwangju, Osaka, and Singapore. The influence of g on aerosol radiative forcing is insignificant. Results emphasize that rather than prescribing one single aerosol mixing state in global climate models regionally and temporally varying aerosol

  11. Flow characteristics of bounded self-organized dust vortex in a complex plasma

    Science.gov (United States)

    Laishram, Modhuchandra; Sharma, D.; Chattopdhyay, P. K.; Kaw, P. K.

    2018-01-01

    Dust clouds are often formed in many dusty plasma experiments, when micron size dust particles introduced in the plasma are confined by spatial non-uniformities of the potential. These formations show self-organized patterns like vortex or circulation flows. Steady-state equilibrium dynamics of such dust clouds is analyzed by 2D hydrodynamics for varying Reynolds number, Re, when the cloud is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in a dynamic equilibrium with an unbounded sheared plasma flow. The nonconservative forcing due to ion flow shear generates finite vorticity in the confined dust clouds. In the linear limit (Re ≪ 1), the collective flow is characterized by a single symmetric and elongated vortex with scales correlating with the driving field and those generated by friction with the boundaries. However in the high Re limit, (Re ≥ 1), the nonlinear inertial transport (u . ∇u) is effective and the vortex structure is characterized by an asymmetric equilibrium and emergence of a circular core region with uniform vorticity, over which the viscous stress is negligible. The core domain is surrounded by a virtual boundary of highly convective flow followed by thin shear layers filled with low-velocity co- and counter-rotating vortices, enabling the smooth matching with external boundary conditions. In linear regime, the effective boundary layer thickness is recovered to scale with the dust kinematic viscosity as Δr ≈ μ1/3 and is modified as Δr ≈ (μL∥/u)1/2 in the nonlinear regime through a critical kinematic viscosity μ∗ that signifies a structural bifurcation of the flow field solutions. The flow characteristics recovered are relevant to many microscopic biological processes at lower Re, as well as gigantic vortex flows such as Jovian great red spot and white ovals at higher Re.

  12. Chemical insights into the roles of nanowire cores on the growth and supercapacitor performances of Ni-Co-O/Ni(OH)₂ core/shell electrodes.

    Science.gov (United States)

    Yin, Xuesong; Tang, Chunhua; Zhang, Liuyang; Yu, Zhi Gen; Gong, Hao

    2016-02-09

    Nanostructured core/shell electrodes have been experimentally demonstrated promising for high-performance electrochemical energy storage devices. However, chemical insights into the significant roles of nanowire cores on the growth of shells and their supercapacitor behaviors still remain as a research shortfall. In this work, by substituting 1/3 cobalt in the Co3O4 nanowire core with nickel, a 61% enhancement of the specific mass-loading of the Ni(OH)2 shell, a tremendous 93% increase of the volumetric capacitance and a superior cyclability were achieved in a novel NiCo2O4/Ni(OH)2 core/shell electrode in contrast to a Co3O4/Ni(OH)2 one. A comparative study suggested that not only the growth of Ni(OH)2 shells but also the contribution of cores were attributed to the overall performances. Importantly, their chemical origins were revealed through a theoretical simulation of the core/shell interfacial energy changes. Besides, asymmetric supercapacitor devices and applications were also explored. The scientific clues and practical potentials obtained in this work are helpful for the design and analysis of alternative core/shell electrode materials.

  13. Does asymmetric correlation affect portfolio optimization?

    Science.gov (United States)

    Fryd, Lukas

    2017-07-01

    The classical portfolio optimization problem does not assume asymmetric behavior of relationship among asset returns. The existence of asymmetric response in correlation on the bad news could be important information in portfolio optimization. The paper applies Dynamic conditional correlation model (DCC) and his asymmetric version (ADCC) to propose asymmetric behavior of conditional correlation. We analyse asymmetric correlation among S&P index, bonds index and spot gold price before mortgage crisis in 2008. We evaluate forecast ability of the models during and after mortgage crisis and demonstrate the impact of asymmetric correlation on the reduction of portfolio variance.

  14. Shell Venster

    International Nuclear Information System (INIS)

    De Wit, P.; Looijesteijn, B.; Regeer, B.; Stip, B.

    1995-03-01

    In the bi-monthly issues of 'Shell Venster' (window on Shell) attention is paid to the activities of the multinational petroleum company Shell Nederland and the Koninklijke/Shell Groep by means of non-specialist articles

  15. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    The employment of metal salts is quite limited in asymmetric catalysis, although it would provide an additional arsenal of safe and inexpensive reagents to create molecular functions with high optical purity. Cation chelation by polyethers increases the salts' solubility in conventional organic...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...... highly enantioselective silylation reactions in polyether-generated chiral environments, and leading to a record-high turnover in asymmetric organocatalysis. This can lead to further applications by the asymmetric use of other inorganic salts in various organic transformations....

  16. Importance-truncated shell model for multi-shell valence spaces

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Christina; Vobig, Klaus; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)

    2016-07-01

    The valence-space shell model is one of the work horses in nuclear structure theory. In traditional applications, shell-model calculations are carried out using effective interactions constructed in a phenomenological framework for rather small valence spaces, typically spanned by one major shell. We improve on this traditional approach addressing two main aspects. First, we use new effective interactions derived in an ab initio approach and, thus, establish a connection to the underlying nuclear interaction providing access to single- and multi-shell valence spaces. Second, we extend the shell model to larger valence spaces by applying an importance-truncation scheme based on a perturbative importance measure. In this way, we reduce the model space to the relevant basis states for the description of a few target eigenstates and solve the eigenvalue problem in this physics-driven truncated model space. In particular multi-shell valence spaces are not tractable otherwise. We combine the importance-truncated shell model with refined extrapolation schemes to approximately recover the exact result. We present first results obtained in the importance-truncated shell model with the newly derived ab initio effective interactions for multi-shell valence spaces, e.g., the sdpf shell.

  17. Dust Measurements in Tokamaks

    International Nuclear Information System (INIS)

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-01-01

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 (micro)m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics

  18. Effect of Stochastic Charge Fluctuations on Dust Dynamics

    Science.gov (United States)

    Matthews, Lorin; Shotorban, Babak; Hyde, Truell

    2017-10-01

    The charging of particles in a plasma environment occurs through the collection of electrons and ions on the particle surface. Depending on the particle size and the plasma density, the standard deviation of the number of collected elementary charges, which fluctuates due to the randomness in times of collisions with electrons or ions, may be a significant fraction of the equilibrium charge. We use a discrete stochastic charging model to simulate the variations in charge across the dust surface as well as in time. The resultant asymmetric particle potentials, even for spherical grains, has a significant impact on the particle coagulation rate as well as the structure of the resulting aggregates. We compare the effects on particle collisions and growth in typical laboratory and astrophysical plasma environments. This work was supported by the National Science Foundation under Grant PHY-1414523.

  19. Faceted shell structure in grain boundary diffusion-processed sintered Nd–Fe–B magnets

    International Nuclear Information System (INIS)

    Seelam, U.M.R.; Ohkubo, T.; Abe, T.; Hirosawa, S.; Hono, K.

    2014-01-01

    Graphical abstract: The grain boundary diffusion process (GBDP) using a heavy rare earth elements (HRE) such as Dy and Tb is known as an effective method to enhance the coercivity of Nd–Fe–B sintered magnets without reducing remanence. This process has been industrially implemented to manufacture Nd–Fe–B based sintered magnets with high coercivity and high remanence. In this process, Dy is considered to diffuse through grain boundaries (GBs) to form (Nd 1−x Dy x ) 2 Fe 14 B shells surrounding the Nd 2 Fe 14 B grains and the higher anisotropy field of the Dy-rich shell is considered to suppress the nucleation of reverse domains at low magnetic field. Although there are several investigations on the microstructure of HRE GBDP Nd–Fe–B magnets, no paper addressed the origin of the asymmetric formation of HRE rich shells. Based on detailed analysis of facet planes of core/shell interfaces, we propose a mechanism of the faceted core/shell microstructure formation in the GBDP sintered magnets. We believe that this gives new insights on understanding the coercivity enhancement by the GBDP. - Highlights: • Faceting was observed at the interfaces of cores and shells. • The core/shell interfaces are sharp with an abrupt change in Dy concentration. • Meting occurs at the interfaces of metalic Nd-rich/Nd 2 Fe 14 B phases above 685 °C due to eutectic reaction. • Solidification of Dy-enriched liquid phase from 900 °C can result in the shell formation. - Abstract: Dysprosium enriched shell structure formed by the grain boundary diffusion process (GBDP) of a sintered Nd–Fe–B magnet was characterized by using scanning electron microscopy, electron back-scattered diffraction and transmission electron microscopy. Faceted core–shell interfaces with an abrupt change in Dy concentration suggest the Dy-rich shells are formed by the solidification of the liquid phase during cooling from the GBDP temperature. The Nd-rich phases are almost free from Dy, and

  20. MicroShell Minimalist Shell for Xilinx Microprocessors

    Science.gov (United States)

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  1. Dust confinement and dust acoustic waves in a magnetized plasma

    Science.gov (United States)

    Piel, A.

    2005-10-01

    Systematic laboratory experiments on dust acoustic waves require the confinement of dust particles. Here we report on new experiments in a magnetized plasma region in front of an additional positively biased disk electrode in a background plasma which is generated in argon at 27MHz between a disk and grid electrode. The plasma diffuses through the grid along the magnetic field. The three-dimensional dust distribution is measured with a horizontal sheet of laser light and a CCD camera, which are mounted on a vertical translation stage. Depending on magnetic field and discharge current, cigar or donut-shaped dust clouds are generated, which tend to rotate about the magnetic field direction. Measurements with emissive probes show that the axial confinement of dust particles with diameters between 0.7-2 μm is achieved by a balance of ion-drag force and electric field force. Dust levitation and radial confinement is due to a strong radial electric field. Dust acoustic waves are destabilized by the ion flow or can be stimulated by a periodic bias on the disk electrode. The observed wave dispersion is compared with fluid and kinetic models of the dust acoustic wave.

  2. Allergies, asthma, and dust

    Science.gov (United States)

    Reactive airway disease - dust; Bronchial asthma - dust; Triggers - dust ... Things that make allergies or asthma worse are called triggers. Dust is a common trigger. When your asthma or allergies become worse due to dust, you are ...

  3. Charge Asymmetric Cosmic Rays as a probe of Flavor Violating Asymmetric Dark Matter

    DEFF Research Database (Denmark)

    Masina, Isabella; Sannino, Francesco

    2011-01-01

    The recently introduced cosmic sum rules combine the data from PAMELA and Fermi-LAT cosmic ray experiments in a way that permits to neatly investigate whether the experimentally observed lepton excesses violate charge symmetry. One can in a simple way determine universal properties of the unknown...... component of the cosmic rays. Here we attribute a potential charge asymmetry to the dark sector. In particular we provide models of asymmetric dark matter able to produce charge asymmetric cosmic rays. We consider spin zero, spin one and spin one-half decaying dark matter candidates. We show that lepton...... flavor violation and asymmetric dark matter are both required to have a charge asymmetry in the cosmic ray lepton excesses. Therefore, an experimental evidence of charge asymmetry in the cosmic ray lepton excesses implies that dark matter is asymmetric....

  4. Charged shells in Lovelock gravity: Hamiltonian treatment and physical implications

    International Nuclear Information System (INIS)

    Dias, Goncalo A. S.; Gao, Sijie; Lemos, Jose P. S.

    2007-01-01

    Using a Hamiltonian treatment, charged thin shells, static and dynamic, in spherically symmetric spacetimes, containing black holes or other specific types of solutions, in d dimensional Lovelock-Maxwell theory are studied. The free coefficients that appear in the Lovelock theory are chosen to obtain a sensible theory, with a negative cosmological constant appearing naturally. Using an Arnowitt-Deser-Misner (ADM) description, one then finds the Hamiltonian for the charged shell system. Variation of the Hamiltonian with respect to the canonical coordinates and conjugate momenta, and the relevant Lagrange multipliers, yields the dynamic and constraint equations. The vacuum solutions of these equations yield a division of the theory into two branches, namely d-2k-1>0 (which includes general relativity, Born-Infeld type theories, and other generic gravities) and d-2k-1=0 (which includes Chern-Simons type theories), where k is the parameter giving the highest power of the curvature in the Lagrangian. There appears an additional parameter χ=(-1) k+1 , which gives the character of the vacuum solutions. For χ=1 the solutions, being of the type found in general relativity, have a black hole character. For χ=-1 the solutions, being of a new type not found in general relativity, have a totally naked singularity character. Since there is a negative cosmological constant, the spacetimes are asymptotically anti-de Sitter (AdS), and AdS when empty (for zero cosmological constant the spacetimes are asymptotically flat). The integration from the interior to the exterior vacuum regions through the thin shell takes care of a smooth junction, showing the power of the method. The subsequent analysis is divided into two cases: static charged thin shell configurations, and gravitationally collapsing charged dust shells (expanding shells are the time reversal of the collapsing shells). In the collapsing case, into an initially nonsingular spacetime with generic character or an empty

  5. Exact solutions for shells collapsing towards a pre-existing black hole

    International Nuclear Information System (INIS)

    Liu Yuan; Zhang Shuangnan

    2009-01-01

    The gravitational collapse of a star is an important issue both for general relativity and astrophysics, which is related to the well-known 'frozen star' paradox. This paradox has been discussed intensively and seems to have been solved in the comoving-like coordinates. However, to a real astrophysical observer within a finite time, this problem should be discussed in the point of view of the distant rest-observer, which is the main purpose of this Letter. Following the seminal work of Oppenheimer and Snyder (1939), we present the exact solution for one or two dust shells collapsing towards a pre-existing black hole. We find that the metric of the inner region of the shell is time-dependent and the clock inside the shell becomes slower as the shell collapses towards the pre-existing black hole. This means the inner region of the shell is influenced by the property of the shell, which is contrary to the result in Newtonian theory. It does not contradict the Birkhoff's theorem, since in our case we cannot arbitrarily select the clock inside the shell in order to ensure the continuity of the metric. This result in principle may be tested experimentally if a beam of light travels across the shell, which will take a longer time than without the shell. It can be considered as the generalized Shapiro effect, because this effect is due to the mass outside, but not inside as the case of the standard Shapiro effect. We also found that in real astrophysical settings matter can indeed cross a black hole's horizon according to the clock of an external observer and will not accumulate around the event horizon of a black hole, i.e., no 'frozen star' is formed for an external observer as matter falls towards a black hole. Therefore, we predict that only gravitational wave radiation can be produced in the final stage of the merging process of two coalescing black holes. Our results also indicate that for the clock of an external observer, matter, after crossing the event horizon

  6. Optical properties of core-shell and multi-shell nanorods

    Science.gov (United States)

    Mokkath, Junais Habeeb; Shehata, Nader

    2018-05-01

    We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.

  7. Carbohydrate and protein contents of grain dusts in relation to dust morphology.

    Science.gov (United States)

    Dashek, W V; Olenchock, S A; Mayfield, J E; Wirtz, G H; Wolz, D E; Young, C A

    1986-01-01

    Grain dusts contain a variety of materials which are potentially hazardous to the health of workers in the grain industry. Because the characterization of grain dusts is incomplete, we are defining the botanical, chemical, and microbial contents of several grain dusts collected from grain elevators in the Duluth-Superior regions of the U.S. Here, we report certain of the carbohydrate and protein contents of dusts in relation to dust morphology. Examination of the gross morphologies of the dusts revealed that, except for corn, each dust contained either husk or pericarp (seed coat in the case of flax) fragments in addition to respirable particles. When viewed with the light microscope, the fragments appeared as elongated, pointed structures. The possibility that certain of the fragments within corn, settled, and spring wheat were derived from cell walls was suggested by the detection of pentoses following colorimetric assay of neutralized 2 N trifluoroacetic acid hydrolyzates of these dusts. The presence of pentoses together with the occurrence of proteins within water washings of grain dusts suggests that glycoproteins may be present within the dusts. With scanning electron microscopy, each dust was found to consist of a distinct assortment of particles in addition to respirable particles. Small husk fragments and "trichome-like" objects were common to all but corn dust. Images FIGURE 4. FIGURE 5. PMID:3709476

  8. UNUSUAL CARBONACEOUS DUST DISTRIBUTION IN PN G095.2+00.7

    International Nuclear Information System (INIS)

    Ohsawa, Ryou; Onaka, Takashi; Sakon, Itsuki; Mori, Tamami I.; Miyata, Takashi; Asano, Kentaro; Matsuura, Mikako; Kaneda, Hidehiro

    2012-01-01

    We investigate the polycyclic aromatic hydrocarbon (PAH) features in the young Galactic planetary nebula PN G095.2+00.7 based on mid-infrared observations. The near- to mid-infrared spectra obtained with the AKARI/IRC and the Spitzer/IRS show the PAH features as well as the broad emission feature at 12 μm usually seen in proto-planetary nebulae (pPNe). The spatially resolved spectra obtained with Subaru/COMICS suggest that the broad emission around 12 μm is distributed in a shell-like structure, but the unidentified infrared band at 11.3 μm is selectively enhanced at the southern part of the nebula. The variation can be explained by a difference in the amount of the UV radiation to excite PAHs, and does not necessarily require the chemical processing of dust grains and PAHs. It suggests that the UV self-extinction is important to understand the mid-infrared spectral features. We propose a mechanism which accounts for the evolutionary sequence of the mid-infrared dust features seen in a transition from pPNe to PNe.

  9. Dust Devil Tracks

    Science.gov (United States)

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  10. MULTIPLE SHELLS AROUND G79.29+0.46 REVEALED FROM NEAR-IR TO MILLIMETER DATA

    International Nuclear Information System (INIS)

    Jimenez-Esteban, F. M.; Rizzo, J. R.; Palau, Aina

    2010-01-01

    Aiming to perform a study of the warm dust and gas in the luminous blue variable star G79.29+0.46 and its associated nebula, we present infrared Spitzer imaging and spectroscopy, and new CO J = 2 → 1 and 4 → 3 maps obtained with the IRAM 30 m radio telescope and the Submillimeter Telescope, respectively. We have analyzed the nebula detecting multiple shells of dust and gas connected to the star. Using Infrared Spectrograph-Spitzer spectra, we have compared the properties of the central object, the nebula, and their surroundings. These spectra show a rich variety of solid-state features (amorphous silicates, polycyclic aromatic hydrocarbons, and CO 2 ices) and narrow emission lines, superimposed on a thermal continuum. We have also analyzed the physical conditions of the nebula, which point to the existence of a photo-dissociation region.

  11. Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas

    International Nuclear Information System (INIS)

    Tian Bo; Gao Yitian

    2007-01-01

    In this Letter, for the dust-ion-acoustic waves with azimuthal perturbation in a dusty plasma, a cylindrical modified Kadomtsev-Petviashvili (CMKP) model is constructed by virtue of symbolic computation, with three families of exact analytic solutions obtained as well. Dark and bright CMKP nebulons are investigated with pictures and related to such dusty-plasma environments as the supernova shells and Saturn's F-ring. Difference of the CMKP nebulons from other known nebulons is also analyzed, and possibly-observable CMKP-nebulonic effects for the future plasma experiments are proposed, especially those on the possible notch/slot and dark-bright bi-existence

  12. Cyclodextrins in Asymmetric and Stereospecific Synthesis

    Directory of Open Access Journals (Sweden)

    Fliur Macaev

    2015-09-01

    Full Text Available Since their discovery, cyclodextrins have widely been used as green and easily available alternatives to promoters or catalysts of different chemical reactions in water. This review covers the research and application of cyclodextrins and their derivatives in asymmetric and stereospecific syntheses, with their division into three main groups: (1 cyclodextrins promoting asymmetric and stereospecific catalysis in water; (2 cyclodextrins’ complexes with transition metals as asymmetric and stereospecific catalysts; and (3 cyclodextrins’ non-metallic derivatives as asymmetric and stereospecific catalysts. The scope of this review is to systematize existing information on the contribution of cyclodextrins to asymmetric and stereospecific synthesis and, thus, to facilitate further development in this direction.

  13. Role of dust direct radiative effect on the tropical rainbelt over Middle East and North Africa: A high resolution AGCM study

    KAUST Repository

    Bangalath, Hamza Kunhu

    2015-04-25

    To investigate the influence of direct radiative effect of dust on the tropical summer rainbelt across the Middle East and North Africa (MENA), the present study utilizes the high resolution capability of an Atmospheric General Circulation Model (AGCM),the High Resolution Atmospheric Model (HiRAM). Ensembles of Atmospheric Model Inter-comparison Project (AMIP)-style simulations have been conducted with and without dust radiative impacts, to differentiate the influence of dust on the tropical rainbelt. The analysis focuses on summer season. The results highlight the role of dust induced responses in global and regional scale circulations in determining the strength and the latitudinal extent of the tropical rainbelt. A significant response in the strength and position of the local Hadley circulation is predicted in response to meridionally asymmetric distribution of dust and the corresponding radiative effects. Significant responses are also found in regional circulation features such as African Easterly Jet (AEJ) and West African Monsoon (WAM) circulation. Consistent with these dynamic responses at various scales, the tropical rainbelt across MENA strengthens and shifts northward. Importantly, the summer precipitation over the semi-arid strip south of Sahara, including Sahel, increases up to 20%. As this region is characterized by the “Sahel drought" , the predicted precipitation sensitivity to the dust loading over this region has a wide-range of socioeconomic implications. Overall, the study demonstrates the extreme importance of incorporating dust radiative effects and the corresponding circulation responses at various scales, in the simulations and future projections of this region\\'s climate.

  14. Deflection effects and charge transfer in inner-shell vacancy production

    International Nuclear Information System (INIS)

    Swafford, G.L.

    1978-01-01

    A method used in the calculation of inner shell ionization in asymmetric ion-atom collisions is extended to include projectile deflection effects and charge transfer to the projectile. Work is done in an independent electron model (Hartree-Fock) for the target, and the interaction is treated with the projectile as a time-dependent perturbation of the system. It is shown tht the time-dependent problem can be solved for the projectile moving along the classical hyperbolic trajectory that results from the nuclear repulsion. The method is very efficient due to the utilization the target-centered expansion of the system wave function. This means that all the required matrix elements can be pretabulated and are then available for use at all impact parameters. The method is first applied to the impact-parameter dependence of K-shell ionization by protons incident upon copper in the energy range 0.5 to 2 MeV. Excellent agreement with the experiments of Andersen et al., is found at the lower energy. Less satisfactory agreement is obtained in the higher energy region. Next the projectile is considered to move in a straight line path with constant velocity, and extend the method to include charge transfer between the target inner shells and the K-shell of the projectile. A critical feature of the results is the recognition of the importance of target continuum states of energy approximately equal to the kinetic energy (in the target frame) of the electron on the projectile. An approach is developed to properly include such resonance states in our pseudostate calculation. Selected numerical results are presented to illustrate the method and to demonstrate the projectile energy and nuclear charge dependence of the charge transfer cross sections

  15. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    Science.gov (United States)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  16. Principles of asymmetric synthesis

    CERN Document Server

    Gawley, Robert E; Aube, Jeffrey

    2012-01-01

    The world is chiral. Most of the molecules in it are chiral, and asymmetric synthesis is an important means by which enantiopure chiral molecules may be obtained for study and sale. Using examples from the literature of asymmetric synthesis, this book presents a detailed analysis of the factors that govern stereoselectivity in organic reactions. After an explanation of the basic physical-organic principles governing stereoselective reactions, the authors provide a detailed, annotated glossary of stereochemical terms. A chapter on "Practical Aspects of Asymmetric Synthesis" provides a critical overview of the most common methods for the preparation of enantiomerically pure compounds, techniques for analysis of stereoisomers using chromatographic, spectroscopic, and chiroptical methods. The authors then present an overview of the most important methods in contemporary asymmetric synthesis organized by reaction type. Thus, there are four chapters on carbon-carbon bond forming reactions, one chapter on reductions...

  17. Role of deformed shell effects on the mass asymmetry in nuclear fission of mercury isotopes

    International Nuclear Information System (INIS)

    Panebianco, Stefano; Sida, Jean-Luc; Goutte, Heloise; Lemaitre, Jean-Francois; Dubray, Noel; Hilaire, Stephane

    2012-01-01

    Until now, the mass asymmetry in the nuclear fission process has been understood in terms of the strong influence of the nuclear structure of the nascent fragments. Recently, a surprising asymmetric fission has been discovered in the light mercury region and has been interpreted as the result of the influence of the nuclear structure of the parent nucleus, totally discarding the influence of the fragments' structure. To assess the role of the fragment shell effects in the mass asymmetry in this particular region, a scission-point model, based on a full energy balance between the two nascent fragments, has been developed using one of the best theoretical descriptions of microscopic nuclear structure. As for actinides, this approach shows that the asymmetric splitting of the Hg-180 nucleus and the symmetric one of Hg-198 can be understood on the basis of only the microscopic nuclear structure of the fragments at scission. (authors)

  18. Inactivation of dust mites, dust mite allergen, and mold from carpet.

    Science.gov (United States)

    Ong, Kee-Hean; Lewis, Roger D; Dixit, Anupma; MacDonald, Maureen; Yang, Mingan; Qian, Zhengmin

    2014-01-01

    Carpet is known to be a reservoir for biological contaminants, such as dust mites, dust mite allergen, and mold, if it is not kept clean. The accumulation of these contaminants in carpet might trigger allergies or asthma symptoms in both children and adults. The purpose of this study is to compare methods for removal of dust mites, dust mite allergens, and mold from carpet. Carpets were artificially worn to simulate 1 to 2 years of wear in a four-person household. The worn carpets were inoculated together with a common indoor mold (Cladosporium species) and house dust mites and incubated for 6 weeks to allow time for dust mite growth on the carpet. The carpets were randomly assigned to one of the four treatment groups. Available treatment regimens for controlling carpet contaminants were evaluated through a literature review and experimentation. Four moderately low-hazard, nondestructive methods were selected as treatments: vacuuming, steam-vapor, Neem oil (a natural tree extract), and benzalkonium chloride (a quaternary ammonium compound). Steam vapor treatment demonstrated the greatest dust mite population reduction (p 0.05) for both physical and chemical methods. The steam-vapor treatment effectively killed dust mites and denatured dust mite allergen in the laboratory environment.

  19. Synthesis method of asymmetric gold particles.

    Science.gov (United States)

    Jun, Bong-Hyun; Murata, Michael; Hahm, Eunil; Lee, Luke P

    2017-06-07

    Asymmetric particles can exhibit unique properties. However, reported synthesis methods for asymmetric particles hinder their application because these methods have a limited scale and lack the ability to afford particles of varied shapes. Herein, we report a novel synthetic method which has the potential to produce large quantities of asymmetric particles. Asymmetric rose-shaped gold particles were fabricated as a proof of concept experiment. First, silica nanoparticles (NPs) were bound to a hydrophobic micro-sized polymer containing 2-chlorotritylchloride linkers (2-CTC resin). Then, half-planar gold particles with rose-shaped and polyhedral structures were prepared on the silica particles on the 2-CTC resin. Particle size was controlled by the concentration of the gold source. The asymmetric particles were easily cleaved from the resin without aggregation. We confirmed that gold was grown on the silica NPs. This facile method for synthesizing asymmetric particles has great potential for materials science.

  20. Whither Cometary Dust?

    Science.gov (United States)

    Lisse, Carey M.

    2010-10-01

    In this paper I will discuss recent findings that have important implications for our understanding of the formation and evolution of primitive solar system dust, including: - Nesvorny et al. (2010), following up on their dynamical analyses of the zodiacal dust bands as sourced by the breakup of the Karin (5Mya) and Veritas (8Mya) asteroid families, argue that over 90% of the interplanetary dust cloud at 1 AU comes from JFC comets with near-circularized, low inclination orbits. This implies that the noted IPD collections of anhydrous and hydrous dust particles are likely to be from Oort cloud and JFC comets, respectively, not from asteroids and comets as thought in the past. Hydrous dust particles from comets like 85P/Wild2 and 9P/Tempel 1 would be consistent with results from the STARDUST and Deep Impact experiments. - Estimates of the dust particle size distributions (PSDs) in the comae of 85P/Wild2 (Green et al. 2004, 2007) and 73P/SW-3 (Sitko et al. 2010, Vaubaillon & Reach 2010) and in the trails of comets (Reach et al. 2007) have broken power law structure, with a plateau enhancement of particles of 1 mm - 1 cm in size. This size is also the size of most chondritic inclusions, and the predicted size range of the "aggregational barrier", where collisions between dust particles become destructive. - Studies of the albedo and polarization properties of cometary dust (Kolokolova et al. 2007) suggest there are 2 major groupings, one with low scattering capability and one with high. While these families could possibly have been explained by systematics in the PSDs of the emitted dust, independent work by Lisse et al. (2008) on the mineralogy of a number of highly dusty comets has shown evidence for one family of comets with highly crystalline dust and another with highly amorphous dust.

  1. Integrative Analysis of Desert Dust Size and Abundance Suggests Less Dust Climate Cooling

    Science.gov (United States)

    Kok, Jasper F.; Ridley, David A.; Zhou, Qing; Miller, Ron L.; Zhao, Chun; Heald, Colette L.; Ward, Daniel S.; Albani, Samuel; Haustein, Karsten

    2017-01-01

    Desert dust aerosols affect Earths global energy balance through interactions with radiation, clouds, and ecosystems. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change, and the climate impact of possible future alterations in dust loading is similarly disputed. Here we use an integrative analysis of dust aerosol sizes and abundance to constrain the climatic impact of dust through direct interactions with radiation. Using a combination of observational, experimental, and model data, we find that atmospheric dust is substantially coarser than represented in current climate models. Since coarse dust warms global climate, the dust direct radiative effect (DRE) is likely less cooling than the 0.4 W m superscript 2 estimated by models in a current ensemble. We constrain the dust DRE to -0.20 (-0.48 to +0.20) W m superscript 2, which suggests that the dust DRE produces only about half the cooling that current models estimate, and raises the possibility that dust DRE is actually net warming the planet.

  2. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    International Nuclear Information System (INIS)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J.

    2013-01-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S ν (880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S ν (880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10 11 (L ☉ ) and 4-14 × 10 7 (M ☉ ), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution

  3. Dust Destruction in the ISM: A Re-Evaluation of Dust Lifetimes

    Science.gov (United States)

    Jones, A. P.; Nuth, J. A., III

    2011-01-01

    There is a long-standing conundrum in interstellar dust studies relating to the discrepancy between the time-scales for dust formation from evolved stars and the apparently more rapid destruction in supernova-generated shock waves. Aims. We re-examine some of the key issues relating to dust evolution and processing in the interstellar medium. Methods. We use recent and new constraints from observations, experiments, modelling and theory to re-evaluate dust formation in the interstellar medium (ISM). Results. We find that the discrepancy between the dust formation and destruction time-scales may not be as significant as has previously been assumed because of the very large uncertainties involved. Conclusions. The derived silicate dust lifetime could be compatible with its injection time-scale, given the inherent uncertainties in the dust lifetime calculation. The apparent need to re-form significant quantities of silicate dust in the tenuous interstellar medium may therefore not be a strong requirement. Carbonaceous matter, on the other hand, appears to be rapidly recycled in the ISM and, in contrast to silicates, there are viable mechanisms for its re-formation in the ISM.

  4. Faceted shell structure in grain boundary diffusion-processed sintered Nd–Fe–B magnets

    Energy Technology Data Exchange (ETDEWEB)

    Seelam, U.M.R.; Ohkubo, T.; Abe, T.; Hirosawa, S.; Hono, K., E-mail: kazuhiro.hono@nims.go.jp

    2014-12-25

    Graphical abstract: The grain boundary diffusion process (GBDP) using a heavy rare earth elements (HRE) such as Dy and Tb is known as an effective method to enhance the coercivity of Nd–Fe–B sintered magnets without reducing remanence. This process has been industrially implemented to manufacture Nd–Fe–B based sintered magnets with high coercivity and high remanence. In this process, Dy is considered to diffuse through grain boundaries (GBs) to form (Nd{sub 1−x}Dy{sub x}){sub 2}Fe{sub 14}B shells surrounding the Nd{sub 2}Fe{sub 14}B grains and the higher anisotropy field of the Dy-rich shell is considered to suppress the nucleation of reverse domains at low magnetic field. Although there are several investigations on the microstructure of HRE GBDP Nd–Fe–B magnets, no paper addressed the origin of the asymmetric formation of HRE rich shells. Based on detailed analysis of facet planes of core/shell interfaces, we propose a mechanism of the faceted core/shell microstructure formation in the GBDP sintered magnets. We believe that this gives new insights on understanding the coercivity enhancement by the GBDP. - Highlights: • Faceting was observed at the interfaces of cores and shells. • The core/shell interfaces are sharp with an abrupt change in Dy concentration. • Meting occurs at the interfaces of metalic Nd-rich/Nd{sub 2}Fe{sub 14}B phases above 685 °C due to eutectic reaction. • Solidification of Dy-enriched liquid phase from 900 °C can result in the shell formation. - Abstract: Dysprosium enriched shell structure formed by the grain boundary diffusion process (GBDP) of a sintered Nd–Fe–B magnet was characterized by using scanning electron microscopy, electron back-scattered diffraction and transmission electron microscopy. Faceted core–shell interfaces with an abrupt change in Dy concentration suggest the Dy-rich shells are formed by the solidification of the liquid phase during cooling from the GBDP temperature. The Nd-rich phases

  5. Effects of Interstellar Dust Scattering on the X-ray Eclipses of the LMXB AX J1745.6-2901 in the Galactic Center

    Science.gov (United States)

    Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall; Valencic, Lynne

    2018-04-01

    AX J1745.6-2901 is an eclipsing low mass X-ray binary (LMXB) in the Galactic Centre (GC). It shows significant X-ray excess emission during the eclipse phase, and its eclipse light curve shows an asymmetric shape. We use archival XMM-Newton and Chandra observations to study the origin of these peculiar X-ray eclipsing phenomena. We find that the shape of the observed X-ray eclipse light curves depends on both photon energy and the shape of the source extraction region, and also shows differences between the two instruments. By performing detailed simulations for the time-dependent X-ray dust scattering halo, as well as directly modelling the observed eclipse and non-eclipse halo profiles of AX J1745.6-2901, we obtained solid evidence that its peculiar eclipse phenomena are indeed caused by the X-ray dust scattering in multiple foreground dust layers along the line-of-sight (LOS). The apparent dependence on the instruments is caused by different instrumental point-spread-functions. Our results can be used to assess the influence of dust scattering in other eclipsing X-ray sources, and raise the importance of considering the timing effects of dust scattering halo when studying the variability of other X-ray sources in the GC, such as Sgr A⋆. Moreover, our study of halo eclipse reinforces the existence of a dust layer local to AX J1745.6-2901 as reported by Jin et al. (2017), as well as identifying another dust layer within a few hundred parsecs to Earth, containing up to several tens of percent LOS dust, which is likely to be associated with the molecular clouds in the Solar neighbourhood. The remaining LOS dust is likely to be associated with the molecular clouds located in the Galactic disk in-between.

  6. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J., E-mail: hhwang@cfa.harvard.edu, E-mail: sandrews@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-11-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S{sub ν}(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S{sub ν}(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10{sup 11}(L{sub ☉}) and 4-14 × 10{sup 7}(M{sub ☉}), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.

  7. Core-shell microspheres with porous nanostructured shells for liquid chromatography.

    Science.gov (United States)

    Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei

    2018-01-01

    The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites. In this review, we first introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hi shells, supershells, shell-like objects, and ''worms''

    International Nuclear Information System (INIS)

    Heiles, C.

    1984-01-01

    We present photographic representations of the combination of two Hi surveys, so as to eliminate the survey boundaries at Vertical BarbVertical Bar = 10 0 . We also present high-contrast photographs for particular velocities to exhibit weak Hi features. All of these photographs were used to prepare a new list of Hi shells, supershells, and shell-like objects. We discuss the structure of three shell-like objects that are associated with high-velocity gas, and with gas at all velocities that is associated with radio continuum loops I, II, and III. We use spatial filtering to find wiggly gas filaments: ''worms'': crawling away from the galactic plane in the inner Galaxy. The ''worms'' are probably parts of shells that are open at the top; such shells should be good sources of hot gas for the galactic halo

  9. Organic Signature of Dust from the Interstellar Medium (ISM)

    Science.gov (United States)

    Freund, Friedemann; Freund, Minoru; Staple, Aaron; Scoville, John

    2001-01-01

    Dust in the ISM carries an "organic" signature in form of a distinct group of C-H stretching bands, both in emission and absorption, around 3.4 micrometers. These bands agree with the symmetrical and asymmetrical C-H stretching vibrations of aliphatic -CH2- entities and are thought to be associated with organic molecules on the surface of dust grains. We show that this interpretation is inconsistent with laboratory experiments. Synthetic MgO and natural olivine single crystals, grown from a CO/CO2/H2O-saturated melt, exhibit the same C-H stretching bands but those bands are clearly associated with C-H entities inside the dense mineral matrix. The multitude of C-H stretching bands suggests that the C-H bonds arise from polyatomic C(sub n) entities. We heated the MgO and olivine crystals to temperatures between 550-1000 K to pyrolyze the C-H bonds and to cause the C-H stretching bands to disappear. Upon annealing at moderate temperatures between 300-390 K the C-H stretching bands reappear within a few days to weeks. The C-H stretching band intensity increases linearly with the square root of time. Thus, while the pyrolysis broke the C-H bonds and caused the H to disperse in the mineral matrix, the H atoms (or H2 molecules) are sufficiently mobile to return during annealing and reestablish the C-H bonds. Dust grains that condense in a gas-laden environment (outflow of late-stage stars or in dense molecular clouds) probably incorporate the same type of Cn-H entities. Imbedded in and in part bonded to the surrounding mineral matrix, the Cn-H entities display C-H stretching bands in the 3.4 micrometer region, but their lower frequency librational modes are so strongly coupled to the lattice modes that they broaden excessively and thus become unobservable.

  10. Collisionless damping of nonlinear dust ion acoustic wave due to dust charge fluctuation

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Chaudhuri, Tushar K.; Sarkar, Susmita; Khan, Manoranjan; Gupta, M.R.

    2002-01-01

    A dissipation mechanism for the damping of the nonlinear dust ion acoustic wave in a collisionless dusty plasma consisting of nonthermal electrons, ions, and variable charge dust grains has been investigated. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust ion acoustic wave propagation to be described by the damped Korteweg-de Vries equation. Due to the presence of nonthermal electrons, the dust ion acoustic wave admits both positive and negative potential and it suffers less damping than the dust acoustic wave, which admits only negative potential

  11. Bounded dust-acoustic waves in a cylindrically bounded collisional dusty plasma with dust charge variation

    International Nuclear Information System (INIS)

    Wei Nanxia; Xue Jukui

    2006-01-01

    Taking into account the boundary, particle collisions, and dust charging effects, dust-acoustic waves in a uniform cylindrically bounded dusty plasma is investigated analytically, and the dispersion relation for the dust-acoustic wave is obtained. The effects of boundary, dust charge variation, particle collision, and dust size on the dust-acoustic wave are discussed in detail. Due to the bounded cylindrical boundary effects, the radial wave number is discrete, i.e., the spectrum is discrete. It is shown that the discrete spectrum, the adiabatic dust charge variation, dust grain size, and the particle collision have significant effects on the dust-acoustic wave

  12. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    Science.gov (United States)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  13. Asymmetric Evolutionary Games

    Science.gov (United States)

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326

  14. Asymmetrical field emitter

    Science.gov (United States)

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  15. Fractal dust grains in plasma

    International Nuclear Information System (INIS)

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-01-01

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  16. The Circumstellar Disk and Asymmetric Outflow of the EX Lup Outburst System

    Science.gov (United States)

    Hales, A. S.; Pérez, S.; Saito, M.; Pinte, C.; Knee, L. B. G.; de Gregorio-Monsalvo, I.; Dent, B.; López, C.; Plunkett, A.; Cortés, P.; Corder, S.; Cieza, L.

    2018-06-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations at 0.″3 resolution of EX Lup, the prototype of the EXor class of outbursting pre-main-sequence stars. The circumstellar disk of EX Lup is resolved for the first time in 1.3 mm continuum emission and in the J = 2–1 spectral line of three isotopologues of CO. At the spatial resolution and sensitivity achieved, the compact dust continuum disk shows no indications of clumps, fragments, or asymmetries above the 5σ level. Radiative transfer modeling constrains the characteristic radius of the dust disk to 23 au and the total dust mass to 1.0 × 10‑4 M ⊙ (33 M ⊕), similar to other EXor sources. The 13CO and C18O line emissions trace the disk rotation and are used to constrain the disk geometry, kinematics, and a total gas disk mass of 5.1 × 10‑4 M ⊙. The 12CO emission extends out to a radius of 200 au and is asymmetric, with one side deviating from Keplerian rotation. We detect blueshifted, 12CO arc-like emission located 0.″8 to the northwest and spatially disconnected from the disk emission. We interpret this extended structure as the brightened walls of a cavity excavated by an outflow, which are more commonly seen in FUor sources. Such outflows have also been seen in the borderline FU/EXor object V1647 Ori, but not toward EXor objects. Our detection provides evidence that the outflow phenomenon persists into the EXor phase, suggesting that FUor and EXor objects are a continuous population in which outflow activity declines with age, with transitional objects such as EX Lup and V1647 Ori.

  17. Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust.

    Science.gov (United States)

    Perera, Inoka E; Sapko, Michael J; Harris, Marcia L; Zlochower, Isaac A; Weiss, Eric S

    2016-01-01

    Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that "… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …" However, a proper definition or quantification of "light blast of air" is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule.

  18. Wood Dust

    Science.gov (United States)

    Learn about wood dust, which can raise the risk of cancers of the paranasal sinuses and nasal cavity. High amounts of wood dust are produced in sawmills, and in the furniture-making, cabinet-making, and carpentry industries.

  19. Thirteen years of Aeolian dust dynamics in a desert region (Negev desert, Israel): analysis of horizontal and vertical dust flux, vertical dust distribution and dust grain size

    NARCIS (Netherlands)

    Offer, Z.Y.; Goossens, D.

    2004-01-01

    At Sede Boqer (northern Negev desert, Israel), aeolian dust dynamics have been measured during the period 1988–2000. This study focuses on temporal records of the vertical and horizontal dust flux, the vertical distribution of the dust particles in the atmosphere, and the grain size of the

  20. Free vibration analysis of delaminated composite shells using different shell theories

    International Nuclear Information System (INIS)

    Nanda, Namita; Sahu, S.K.

    2012-01-01

    Free vibration response of laminated composite shells with delamination is presented using the finite element method based on first order shear deformation theory. The shell theory used is the extension of dynamic, shear deformable theory according to the Sanders' first approximation for doubly curved shells, which can be reduced to Love's and Donnell's theories by means of tracers. An eight-noded C 0 continuity, isoparametric quadrilateral element with five degrees of freedom per node is used in the formulation. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. The natural frequencies of the delaminated cylindrical (CYL), spherical (SPH) and hyperbolic paraboloid (HYP) shells are determined by using the above mentioned shell theories, namely Sanders', Love's, and Donnell's. The validity of the present approach is established by comparing the authors' results with those available in the literature. Additional studies on free vibration response of CYL, SPH and HYP shells are conducted to assess the effects of delamination size and number of layers considering all three shell theories. It is shown that shell theories according to Sanders and Love always predict practically identical frequencies. Donnell's theory gives reliable results only for shallow shells. Moreover, the natural frequency is found to be very sensitive to delamination size and number of layers in the shell.

  1. Cinchona alkaloids in asymmetric organocatalysis

    NARCIS (Netherlands)

    Marcelli, T.; Hiemstra, H.

    2010-01-01

    This article reviews the applications of cinchona alkaloids as asymmetric catalysts. In the last few years, characterized by the resurgence of interest in asymmetric organocatalysis, cinchona derivatives have been shown to catalyze an outstanding array of chemical reactions, often with remarkable

  2. Nonsymmetric dynamical thin-shell wormhole in Robinson-Trautman class

    Science.gov (United States)

    Svítek, O.; Tahamtan, T.

    2018-02-01

    The thin-shell wormhole created using the Darmois-Israel formalism applied to Robinson-Trautman family of spacetimes is presented. The stress energy tensor created on the throat is interpreted in terms of two dust streams and it is shown that asymptotically this wormhole settles to the Schwarzschild wormhole with a throat located at the position of the horizon. This behavior shows a nonlinear stability (within the Robinson-Trautman class) of this spherically symmetric wormhole. The gravitational radiation emitted by the Robinson-Trautman wormhole during the transition to spherical symmetry is indistinguishable from that of the corresponding black hole Robinson-Trautman spacetime. Subsequently, we show that the higher-dimensional generalization of Robinson-Trautman geometry offers a possibility of constructing wormholes without the need to violate the energy conditions for matter induced on the throat.

  3. Nonsymmetric dynamical thin-shell wormhole in Robinson-Trautman class

    Energy Technology Data Exchange (ETDEWEB)

    Svitek, O. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague (Czech Republic); Tahamtan, T. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague (Czech Republic); Czech Academy of Sciences, Astronomical Institute, Prague (Czech Republic)

    2018-02-15

    The thin-shell wormhole created using the Darmois-Israel formalism applied to Robinson-Trautman family of spacetimes is presented. The stress energy tensor created on the throat is interpreted in terms of two dust streams and it is shown that asymptotically this wormhole settles to the Schwarzschild wormhole with a throat located at the position of the horizon. This behavior shows a nonlinear stability (within the Robinson-Trautman class) of this spherically symmetric wormhole. The gravitational radiation emitted by the Robinson-Trautman wormhole during the transition to spherical symmetry is indistinguishable from that of the corresponding black hole Robinson-Trautman spacetime. Subsequently, we show that the higher-dimensional generalization of Robinson-Trautman geometry offers a possibility of constructing wormholes without the need to violate the energy conditions for matter induced on the throat. (orig.)

  4. THE ROLE OF THE ACCRETION DISK, DUST, AND JETS IN THE IR EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Mason, R. E. [Gemini Observatory, Northern Operations Center, 670 N. A' ohoku Place, Hilo, HI 96720 (United States); Ramos Almeida, C. [Instituto de Astrofísica de Canarias, C/Vía Láctea, s/n, E-38205 La Laguna, Tenerife (Spain); Levenson, N. A. [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Nemmen, R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Alonso-Herrero, A., E-mail: rmason@gemini.edu [Instituto de Física de Cantabria, CSIC-UC, Avenida de los Castros s/n, E-39005 Santander (Spain)

    2013-11-10

    We use recent high-resolution infrared (IR; 1-20 μm) photometry to examine the origin of the IR emission in low-luminosity active galactic nuclei (LLAGN). The data are compared with published model fits that describe the spectral energy distribution (SED) of LLAGN in terms of an advection-dominated accretion flow, truncated thin accretion disk, and jet. The truncated disk in these models is usually not luminous enough to explain the observed IR emission, and in all cases its spectral shape is much narrower than the broad IR peaks in the data. Synchrotron radiation from the jet appears to be important in very radio-loud nuclei, but the detection of strong silicate emission features in many objects indicates that dust must also contribute. We investigate this point by fitting the IR SED of NGC 3998 using dusty torus and optically thin (τ{sub mid-IR} ∼ 1) dust shell models. While more detailed modeling is necessary, these initial results suggest that dust may account for the nuclear mid-IR emission of many LLAGN.

  5. Alternative Asymmetric Stochastic Volatility Models

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe stochastic volatility model usually incorporates asymmetric effects by introducing the negative correlation between the innovations in returns and volatility. In this paper, we propose a new asymmetric stochastic volatility model, based on the leverage and size effects. The model is

  6. Asymmetric ion trap

    Science.gov (United States)

    Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  7. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.

    Science.gov (United States)

    Lee, Young Han; Islam, Shah Md Asraful; Hong, Sun Joo; Cho, Kye Man; Math, Renukaradhya K; Heo, Jae Young; Kim, Hoon; Yun, Han Dae

    2010-01-01

    Physio-chemical changes in oyster shell were examined, and fresh and composted oyster shell meals were compared as lime fertilizers in soybean cultivation. Structural changes in oyster shell were observed by AFM and FE-SEM. We found that grains of the oyster shell surface became smoother and smaller over time. FT-IR analysis indicated the degradation of a chitin-like compound of oyster shell. In chemical analysis, pH (12.3+/-0.24), electrical conductivity (4.1+/-0.24 dS m(-1)), and alkaline powder (53.3+/-1.12%) were highest in commercial lime. Besides, pH was higher in composted oyster shell meal (9.9+/-0.53) than in fresh oyster shell meal (8.4+/-0.32). The highest organic matter (1.1+/-0.08%), NaCl (0.54+/-0.03%), and moisture (15.1+/-1.95%) contents were found in fresh oyster shell meal. A significant higher yield of soybean (1.33 t ha(-1)) was obtained by applying composted oyster shell meal (a 21% higher yield than with fresh oyster shell meal). Thus composting of oyster shell increases the utility of oyster shell as a liming material for crop cultivation.

  8. Hemispherically asymmetric trade wind changes as signatures of past ITCZ shifts

    Science.gov (United States)

    McGee, David; Moreno-Chamarro, Eduardo; Green, Brian; Marshall, John; Galbraith, Eric; Bradtmiller, Louisa

    2018-01-01

    The atmospheric Hadley cells, which meet at the Intertropical Convergence Zone (ITCZ), play critical roles in transporting heat, driving ocean circulation and supplying precipitation to the most heavily populated regions of the globe. Paleo-reconstructions can provide concrete evidence of how these major features of the atmospheric circulation can change in response to climate perturbations. While most such reconstructions have focused on ITCZ-related rainfall, here we show that trade wind proxies can document dynamical aspects of meridional ITCZ shifts. Theoretical expectations based on angular momentum constraints and results from freshwater hosing simulations with two different climate models predict that ITCZ shifts due to anomalous cooling of one hemisphere would be accompanied by a strengthening of the Hadley cell and trade winds in the colder hemisphere, with an opposite response in the warmer hemisphere. This expectation of hemispherically asymmetric trade wind changes is confirmed by proxy data of coastal upwelling and windblown dust from the Atlantic basin during Heinrich stadials, showing trade wind strengthening in the Northern Hemisphere and weakening in the Southern Hemisphere subtropics in concert with southward ITCZ shifts. Data from other basins show broadly similar patterns, though improved constraints on past trade wind changes are needed outside the Atlantic Basin. The asymmetric trade wind changes identified here suggest that ITCZ shifts are also marked by intensification of the ocean's wind-driven subtropical cells in the cooler hemisphere and a weakening in the warmer hemisphere, which induces cross-equatorial oceanic heat transport into the colder hemisphere. This response would be expected to prevent extreme meridional ITCZ shifts in response to asymmetric heating or cooling. Understanding trade wind changes and their coupling to cross-equatorial ocean cells is key to better constraining ITCZ shifts and ocean and atmosphere dynamical

  9. On the core-mass-shell-luminosity relation for shell-burning stars

    International Nuclear Information System (INIS)

    Jeffery, C.S.; Saint Andrews Univ.

    1988-01-01

    Core-mass-shell-luminosity relations for several types of shell-burning star have been calculated using simultaneous differential equations derived from simple homology approximations. The principal objective of obtaining a mass-luminosity relation for helium giants was achieved. This relation gives substantially higher luminosities than the equivalent relation for H-shell stars with core masses greater than 1 solar mass. The algorithm for calculating mass-luminosity relations in this fashion was investigated in detail. Most of the assumptions regarding the physics in the shell do not play a critical role in determining the core-mass-shell-luminosity relation. The behaviour of the core-mass-core-radius relation for a growing degenerate core as a single unique function of mass and growth rate needs to be defined before a single core-mass-shell-luminosity relation for all H-shell stars can be obtained directly from the homology approximations. (author)

  10. Quantifying Anthropogenic Dust Emissions

    Science.gov (United States)

    Webb, Nicholas P.; Pierre, Caroline

    2018-02-01

    Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.

  11. Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity.

    Science.gov (United States)

    Jackson, Daniel J; Reim, Laurin; Randow, Clemens; Cerveau, Nicolas; Degnan, Bernard M; Fleck, Claudia

    2017-11-01

    Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent "GS" domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Off-shell CHY amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lam, C.S., E-mail: Lam@physics.mcgill.ca [Department of Physics, McGill University, Montreal, Q.C., H3A 2T8 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yao, York-Peng, E-mail: yyao@umich.edu [Department of Physics, The University of Michigan Ann Arbor, MI 48109 (United States)

    2016-06-15

    The Cachazo–He–Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.

  13. Dust storm events over Delhi: verification of dust AOD forecasts with satellite and surface observations

    Science.gov (United States)

    Singh, Aditi; Iyengar, Gopal R.; George, John P.

    2016-05-01

    Thar desert located in northwest part of India is considered as one of the major dust source. Dust storms originate in Thar desert during pre-monsoon season, affects large part of Indo-Gangetic plains. High dust loading causes the deterioration of the ambient air quality and degradation in visibility. Present study focuses on the identification of dust events and verification of the forecast of dust events over Delhi and western part of IG Plains, during the pre-monsoon season of 2015. Three dust events have been identified over Delhi during the study period. For all the selected days, Terra-MODIS AOD at 550 nm are found close to 1.0, while AURA-OMI AI shows high values. Dust AOD forecasts from NCMRWF Unified Model (NCUM) for the three selected dust events are verified against satellite (MODIS) and ground based observations (AERONET). Comparison of observed AODs at 550 nm from MODIS with NCUM predicted AODs reveals that NCUM is able to predict the spatial and temporal distribution of dust AOD, in these cases. Good correlation (~0.67) is obtained between the NCUM predicted dust AODs and location specific observations available from AERONET. Model under-predicted the AODs as compared to the AERONET observations. This may be mainly because the model account for only dust and no anthropogenic activities are considered. The results of the present study emphasize the requirement of more realistic representation of local dust emission in the model both of natural and anthropogenic origin, to improve the forecast of dust from NCUM during the dust events.

  14. Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas

    OpenAIRE

    Barniske, A.; Oskinova, L. M.; Hamann, W. -R.

    2008-01-01

    We study relatively isolated massive WN-type stars in the Galactic center. The K-band spectra of WR102ka and WR102c are exploited to infer the stellar parameters and to compute synthetic stellar spectra using the Potsdam Wolf-Rayet (PoWR) model atmosphere code. These models are combined with dust-shell models for analyzing the Spitzer IRS spectra of these objects. Archival IR images complement the interpretation. We report that WR102ka and WR102c are among the most luminous stars in the Milky...

  15. THE S4G PERSPECTIVE ON CIRCUMSTELLAR DUST EXTINCTION OF ASYMPTOTIC GIANT BRANCH STARS IN M100

    International Nuclear Information System (INIS)

    Meidt, Sharon E.; Schinnerer, Eva; Muñoz-Mateos, Juan-Carlos; Kim, Taehyun; Holwerda, Benne; Ho, Luis C.; Madore, Barry F.; Sheth, Kartik; Menéndez-Delmestre, Karín; Seibert, Mark; Knapen, Johan H.; Bosma, Albert; Athanassoula, E.; Hinz, Joannah L.; Regan, Michael; De Paz, Armando Gil; Mizusawa, Trisha; Gadotti, Dimitri A.; Laurikainen, Eija; Salo, Heikki

    2012-01-01

    We examine the effect of circumstellar dust extinction on the near-IR (NIR) contribution of asymptotic giant branch (AGB) stars in intermediate-age clusters throughout the disk of M100. For our sample of 17 AGB-dominated clusters we extract optical-to-mid-IR spectral energy distributions (SEDs) and find that NIR brightness is coupled to the mid-IR dust emission in such a way that a significant reduction of AGB light, of up to 1 mag in the K band, follows from extinction by the dust shell formed during this stage. Since the dust optical depth varies with AGB chemistry (C-rich or O-rich), our results suggest that the contribution of AGB stars to the flux from their host clusters will be closely linked to the metallicity and the progenitor mass of the AGB star, to which dust chemistry and mass-loss rate are sensitive. Our sample of clusters—each the analogue of a ∼1 Gyr old post-starburst galaxy—has implications within the context of mass and age estimation via SED modeling at high-z: we find that the average ∼0.5 mag extinction estimated here may be sufficient to reduce the AGB contribution in the (rest-frame) K band from ∼70%, as predicted in the latest generation of synthesis models, to ∼35%. Our technique for selecting AGB-dominated clusters in nearby galaxies promises to be effective for discriminating the uncertainties associated with AGB stars in intermediate-age populations that plague age and mass estimation in high-z galaxies.

  16. Worst Asymmetrical Short-Circuit Current

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Holmstrøm, O; Grastrup, L

    2010-01-01

    In a typical power plant, the production scenario and the short-circuit time were found for the worst asymmetrical short-circuit current. Then, a sensitivity analysis on the missing generator values was realized in order to minimize the uncertainty of the results. Afterward the worst asymmetrical...

  17. Parameterizing the interstellar dust temperature

    Science.gov (United States)

    Hocuk, S.; Szűcs, L.; Caselli, P.; Cazaux, S.; Spaans, M.; Esplugues, G. B.

    2017-08-01

    The temperature of interstellar dust particles is of great importance to astronomers. It plays a crucial role in the thermodynamics of interstellar clouds, because of the gas-dust collisional coupling. It is also a key parameter in astrochemical studies that governs the rate at which molecules form on dust. In 3D (magneto)hydrodynamic simulations often a simple expression for the dust temperature is adopted, because of computational constraints, while astrochemical modelers tend to keep the dust temperature constant over a large range of parameter space. Our aim is to provide an easy-to-use parametric expression for the dust temperature as a function of visual extinction (AV) and to shed light on the critical dependencies of the dust temperature on the grain composition. We obtain an expression for the dust temperature by semi-analytically solving the dust thermal balance for different types of grains and compare to a collection of recent observational measurements. We also explore the effect of ices on the dust temperature. Our results show that a mixed carbonaceous-silicate type dust with a high carbon volume fraction matches the observations best. We find that ice formation allows the dust to be warmer by up to 15% at high optical depths (AV> 20 mag) in the interstellar medium. Our parametric expression for the dust temperature is presented as Td = [ 11 + 5.7 × tanh(0.61 - log 10(AV) ]χuv1/5.9, where χuv is in units of the Draine (1978, ApJS, 36, 595) UV field.

  18. Inclined asymmetric librations in exterior resonances

    Science.gov (United States)

    Voyatzis, G.; Tsiganis, K.; Antoniadou, K. I.

    2018-04-01

    Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or π , the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273-281, https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun-Neptune-TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.

  19. Physics of interstellar dust

    CERN Document Server

    Krugel, Endrik

    2002-01-01

    The dielectric permeability; How to evaluate grain cross sections; Very small and very big particles; Case studies of Mie calculus; Particle statistics; The radiative transition probability; Structure and composition of dust; Dust radiation; Dust and its environment; Polarization; Grain alignment; PAHs and spectral features of dust; Radiative transport; Diffuse matter in the Milky Way; Stars and their formation; Emission from young stars. Appendices Mathematical formulae; List of symbols.

  20. The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method

    Science.gov (United States)

    Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny

    2006-01-01

    Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.

  1. Dust as a surfactant

    International Nuclear Information System (INIS)

    Ignatov, A M; Schram, P P J M; Trigger, S A

    2003-01-01

    We argue that dust immersed in a plasma sheath acts as a surfactant. By considering the momentum balance in a plasma sheath, we evaluate the dependence of the plasma surface pressure on the dust density. It is shown that the dust may reduce the surface pressure, giving rise to a sufficiently strong tangential force. The latter is capable of confining the dust layer inside the sheath in the direction perpendicular to the ion flow

  2. INFRARED LUMINOSITIES AND DUST PROPERTIES OF z ∼ 2 DUST-OBSCURED GALAXIES

    International Nuclear Information System (INIS)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.; Borys, C.; Desai, V.; Sheth, K.; Soifer, B. T.; Le Floc'h, E.; Melbourne, J.

    2009-01-01

    We present SHARC-II 350 μm imaging of twelve 24 μm bright (F 24μm > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 μm imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 μm flux density. The 350 μm upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ∼3 x 10 8 M sun . In comparison to other dusty z ∼ 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10 13 L sun versus 6 x 10 12 L sun for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus ∼30 K) and lower inferred dust masses (3 x 10 8 M sun versus 3 x 10 9 M sun ). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 μm bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z ∼ 2 involves a submillimeter bright, cold-dust, and star

  3. Lunar Dust Mitigation Screens

    Science.gov (United States)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  4. Extracting lunar dust parameters from image charge signals produced by the Lunar Dust Experiment

    Science.gov (United States)

    Stanley, J.; Kempf, S.; Horanyi, M.; Szalay, J.

    2015-12-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) is an impact ionization dust detector used to characterize the lunar dust exosphere generated by the impacts of large interplanetary particles and meteor streams (Horanyi et al., 2015). In addition to the mass and speed of these lofted particles, LDEX is sensitive to their charge. The resulting signatures of impact events therefore provide valuable information about not only the ambient plasma environment, but also the speed vectors of these dust grains. Here, impact events produced from LDEX's calibration at the Dust Accelerator Laboratory are analyzed using an image charge model derived from the electrostatic simulation program, Coulomb. We show that parameters such as dust grain speed, size, charge, and position of entry into LDEX can be recovered and applied to data collected during LADEE's seven-month mission.

  5. Reversal modes in asymmetric Ni nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Leighton, B.; Pereira, A. [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Escrig, J., E-mail: jescrigm@gmail.com [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)

    2012-11-15

    We have investigated the evolution of the magnetization reversal mechanism in asymmetric Ni nanowires as a function of their geometry. Circular nanowires are found to reverse their magnetization by the propagation of a vortex domain wall, while in very asymmetric nanowires the reversal is driven by the propagation of a transverse domain wall. The effect of shape asymmetry of the wire on coercivity and remanence is also studied. Angular dependence of the remanence and coercivity is also addressed. Tailoring the magnetization reversal mechanism in asymmetric nanowires can be useful for magnetic logic and race-track memory, both of which are based on the displacement of magnetic domain walls. Finally, an alternative method to detect the presence of magnetic drops is proposed. - Highlights: Black-Right-Pointing-Pointer Asymmetry strongly modifies the magnetic behavior of a wire. Black-Right-Pointing-Pointer Very asymmetric nanowires reverse their magnetization by a transverse domain wall. Black-Right-Pointing-Pointer An alternative method to detect the presence of magnetic drops is proposed. Black-Right-Pointing-Pointer Tailoring the reversal mode in asymmetric nanowires can be useful for potential applications.

  6. Numerical Prediction of Dust. Chapter 10

    Science.gov (United States)

    Benedetti, Angela; Baldasano, J. M.; Basart, S.; Benincasa, F.; Boucher, O.; Brooks, M.; Chen, J. P.; Colarco, P. R.; Gong, S.; Huneeus, N.; hide

    2013-01-01

    Covers the whole breadth of mineral dust research, from a scientific perspective Presents interdisciplinary work including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies Explores the role of dust as a player and recorder of environmental change This volume presents state-of-the-art research about mineral dust, including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies. Dust research is a new, dynamic and fast-growing area of science and due to its multiple roles in the Earth system, dust has become a fascinating topic for many scientific disciplines. Aspects of dust research covered in this book reach from timescales of minutes (as with dust devils, cloud processes, and radiation) to millennia (as with loess formation and oceanic sediments), making dust both a player and recorder of environmental change. The book is structured in four main parts that explore characteristics of dust, the global dust cycle, impacts of dust on the Earth system, and dust as a climate indicator. The chapters in these parts provide a comprehensive, detailed overview of this highly interdisciplinary subject. The contributions presented here cover dust from source to sink and describe all the processes dust particles undergo while travelling through the atmosphere. Chapters explore how dust is lifted and transported, how it affects radiation, clouds, regional circulations, precipitation and chemical processes in the atmosphere, and how it deteriorates air quality. The book explores how dust is removed from the atmosphere by gravitational settling, turbulence or precipitation, how iron contained in dust fertilizes terrestrial and marine ecosystems, and about the role that dust plays in human health. We learn how dust is observed, simulated using computer models and forecast. The book also details the role of dust deposits for climate reconstructions

  7. Sahara Dust Cloud

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24 A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005. In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the AIRS retrieved total water

  8. Structure and trapping of three-dimensional dust clouds in a capacitively coupled rf-discharge

    International Nuclear Information System (INIS)

    Arp, O.; Block, D.; Piel, A.

    2005-01-01

    In this survey the recently found 'Coulomb balls' are discussed, which show an unusual kind of crystalline order. These three-dimensional dust clouds consisting of hundreds or thousands of micrometer-sized dust particles have a spherical shape and exist in a wide range of plasma conditions. Coulomb balls are optically highly transparent and have macroscopic dimensions of several millimeters in diameter. The clouds allow for the observation of each single particle and thus the complete reconstruction of the crystal structure by means of video microscopy techniques. The particles are arranged in distinct nested shells in which they form patterns with mostly five and six neighbors. The confinement of Coulomb balls by dielectric walls involves electric forces, surface charges, ion drag forces, and thermophoretic levitation. The thermophoretic force field is measured with tracer particles and particle image velocimetry (PIV). The electric forces are derived from simulations with the two-dimensional SIGLO-2D code. It is shown the the sum of all confining forces results in a stable potential well that describes levitation and spherical confinement of the Coulomb ball

  9. Dossier Shell Eco-Marathon; Dossier Shell Eco-Marathon

    Energy Technology Data Exchange (ETDEWEB)

    Matla, P.

    2012-05-15

    Three articles address subjects concerning the annual race with highly energy efficient cars: the Shell Eco-Marathon. [Dutch] In 3 artikelen wordt aandacht besteed aan de ontwerpen voor de jaarlijkse race met superzuinige auto's, de Shell Eco-Marathon.

  10. Dominant thermogravimetric signatures of lignin in cashew shell as compared to cashew shell cake.

    Science.gov (United States)

    Gangil, Sandip

    2014-03-01

    Dominant thermogravimetric signatures related to lignin were observed in cashew shell as compared to these signatures in cashew shell cake. The phenomenon of weakening of lignin from cashew shell to cashew shell cake was explained on the basis of changes in the activation energies. The pertinent temperature regimes responsible for the release of different constituents of both the bio-materials were identified and compared. The activation energies of cashew shell and cashew shell cake were compared using Kissinger-Akahira-Sunose method. Thermogravimetric profiling of cashew shell and cashew shell cake indicated that these were different kinds of bio-materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Partial molar volume and isentropic compressibility of symmetrical and asymmetrical quaternary ammonium bromides in aqueous solution

    International Nuclear Information System (INIS)

    Moreno, Nicolás; Buchner, Richard; Vargas, Edgar F.

    2015-01-01

    Highlights: • Structural effects of the cations on surrounding water molecules are discussed. • Alkyl-chain geometry determines the hydration of Bu 4 N + isomers. • The “compactness” in the hydration shells varies significantly among the isomers. - Abstract: Values of apparent molar volume and isentropic compressibility of symmetric and asymmetric isomers of tetrabutylammonium bromide, namely tetra-n-butylammonium bromide, tetra-iso-butylammonium bromide, tetra-sec-butylammonium bromide, di-n-butyl-di-iso-butylammonium bromide and di-n-butyl-di-sec-butylammonium bromide, in aqueous solution were determined from density and speed of sound measurements. These properties were obtained as a function of molal concentration within the range of 0.01 < m/mol · kg −1 < 0.1 covering temperatures from 278.15 ⩽ T/K ⩽ 293.15. The partial molar volumes and the apparent isentropic molar compressibility at infinite dilution were calculated and their dependence on temperature examined. The results show that cations with sec-butyl chains have larger structural volumes compared to those with iso-butyl chains. In addition, cations with sec-butyl chains induce smaller structural changes in their hydration shell than the others

  12. Stripping of gas and dust from the elliptical galaxy M86

    International Nuclear Information System (INIS)

    White, D.A.; Fabian, A.C.; Forman, W.; Jones, C.; Stern, C.

    1990-01-01

    Past observations of the x ray morphology of M86 have revealed that the galaxy is experiencing ram-pressure stripping due to its large velocity (1500 km s(-1)) relative to the intracluster medium of Virgo (Forman et al. 1979, Fabian, Schwartz, and Forman 1980). Observations indicate that the x ray emitting gas in the plume of M86 is still being produced from the continual heating of gas and dust stripped from nearer the galaxy's center. Researchers obtained two-dimensional Infrared Astronomy Satellite (IRAS) images of M86 which have revealed that there are two spatially separated regions of emission, one at 60 microns and the other at 100 microns of the IRAS wavebands. The 100 microns emission, presumably from cool dust (at approximately 20 K), appears to be located near the center of the galaxy together with HI (detected by Bregman, Roberts and Giovanelli 1988), while the 60 microns emission appears to lie more than 3 arcminutes away from the optical center in a direction slightly south of the center of the plume. Optical images produced by scanning U.K. Schmidt plates, reveal asymmetric isophotal contours along the major axis of the galaxy (first reported by Nulsen and Carter in 1987, which they propose as excess emission due to star formation). This excess optical emission is co-incident with the direction of the 60 micron infra-red emission

  13. Asymmetric cryptography based on wavefront sensing.

    Science.gov (United States)

    Peng, Xiang; Wei, Hengzheng; Zhang, Peng

    2006-12-15

    A system of asymmetric cryptography based on wavefront sensing (ACWS) is proposed for the first time to our knowledge. One of the most significant features of the asymmetric cryptography is that a trapdoor one-way function is required and constructed by analogy to wavefront sensing, in which the public key may be derived from optical parameters, such as the wavelength or the focal length, while the private key may be obtained from a kind of regular point array. The ciphertext is generated by the encoded wavefront and represented with an irregular array. In such an ACWS system, the encryption key is not identical to the decryption key, which is another important feature of an asymmetric cryptographic system. The processes of asymmetric encryption and decryption are formulized mathematically and demonstrated with a set of numerical experiments.

  14. THE S{sup 4}G PERSPECTIVE ON CIRCUMSTELLAR DUST EXTINCTION OF ASYMPTOTIC GIANT BRANCH STARS IN M100

    Energy Technology Data Exchange (ETDEWEB)

    Meidt, Sharon E.; Schinnerer, Eva [Max-Planck-Institut fuer Astronomie/Koenigstuhl 17, D-69117 Heidelberg (Germany); Munoz-Mateos, Juan-Carlos; Kim, Taehyun [National Radio Astronomy Observatory, Charlottesville, VA (United States); Holwerda, Benne [European Space Agency, ESTEC, Keplerlaan 1, 2200 AG, Noordwijk (Netherlands); Ho, Luis C.; Madore, Barry F.; Sheth, Kartik; Menendez-Delmestre, Karin; Seibert, Mark [The Observatories of the Carnegie Institution for Science, Pasadena, CA (United States); Knapen, Johan H. [Instituto de Astrofisica de Canarias, Tenerife (Spain); Bosma, Albert; Athanassoula, E. [Laboratoire d' Astrophysique de Marseille (LAM), Marseille (France); Hinz, Joannah L. [Department of Astronomy, University of Arizona, Tucson, AZ (United States); Regan, Michael [Space Telescope Science Institute, Baltimore, MD (United States); De Paz, Armando Gil [Departamento de Astrofisica, Universidad Complutense Madrid, Madrid (Spain); Mizusawa, Trisha [Spitzer Science Center, Pasadena, CA (United States); Gadotti, Dimitri A. [European Southern Observatory, Santiago (Chile); Laurikainen, Eija; Salo, Heikki [Astronomy Division, Department of Physical Sciences, University of Oulu, Oulu (Finland); and others

    2012-04-01

    We examine the effect of circumstellar dust extinction on the near-IR (NIR) contribution of asymptotic giant branch (AGB) stars in intermediate-age clusters throughout the disk of M100. For our sample of 17 AGB-dominated clusters we extract optical-to-mid-IR spectral energy distributions (SEDs) and find that NIR brightness is coupled to the mid-IR dust emission in such a way that a significant reduction of AGB light, of up to 1 mag in the K band, follows from extinction by the dust shell formed during this stage. Since the dust optical depth varies with AGB chemistry (C-rich or O-rich), our results suggest that the contribution of AGB stars to the flux from their host clusters will be closely linked to the metallicity and the progenitor mass of the AGB star, to which dust chemistry and mass-loss rate are sensitive. Our sample of clusters-each the analogue of a {approx}1 Gyr old post-starburst galaxy-has implications within the context of mass and age estimation via SED modeling at high-z: we find that the average {approx}0.5 mag extinction estimated here may be sufficient to reduce the AGB contribution in the (rest-frame) K band from {approx}70%, as predicted in the latest generation of synthesis models, to {approx}35%. Our technique for selecting AGB-dominated clusters in nearby galaxies promises to be effective for discriminating the uncertainties associated with AGB stars in intermediate-age populations that plague age and mass estimation in high-z galaxies.

  15. Optimal inverter logic gate using 10-nm double gate-all-around (DGAA transistor with asymmetric channel width

    Directory of Open Access Journals (Sweden)

    Myunghwan Ryu

    2016-01-01

    Full Text Available We investigate the electrical characteristics of a double-gate-all-around (DGAA transistor with an asymmetric channel width using three-dimensional device simulation. The DGAA structure creates a silicon nanotube field-effect transistor (NTFET with a core-shell gate architecture, which can solve the problem of loss of gate controllability of the channel and provides improved short-channel behavior. The channel width asymmetry is analyzed on both sides of the terminals of the transistors, i.e., source and drain. In addition, we consider both n-type and p-type DGAA FETs, which are essential to forming a unit logic cell, the inverter. Simulation results reveal that, according to the carrier types, the location of the asymmetry has a different effect on the electrical properties of the devices. Thus, we propose the N/P DGAA FET structure with an asymmetric channel width to form the optimal inverter. Various electrical metrics are analyzed to investigate the benefits of the optimal inverter structure over the conventional inverter structure. Simulation results show that 27% delay and 15% leakage power improvement are enabled in the optimum structure.

  16. Universal instability of dust ion-sound waves and dust-acoustic waves

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Watanabe, K.

    2002-01-01

    It is shown that the dust ion-sound waves (DISW) and the dust-acoustic waves (DAW) are universally unstable for wave numbers less than some critical wave number. The basic dusty plasma state is assumed to be quasi-neutral with balance of the plasma particle absorption on the dust particles and the ionization with the rate proportional to the electron density. An analytical expression for the critical wave numbers, for the frequencies and for the growth rates of DISW and DAW are found using the hydrodynamic description of dusty plasma components with self-consistent treatment of the dust charge variations and by taking into account the change of the ion and electron distributions in the dust charging process. Most of the previous treatment do not take into account the latter process and do not treat the basic state self-consistently. The critical lengths corresponding to these critical wave numbers can be easily achieved in the existing experiments. It is shown that at the wave numbers larger than the critical ones DISW and DAW have a large damping which was not treated previously and which can be also measured. The instabilities found in the present work on their non linear stage can lead to formation of different types of dust self-organized structures. (author)

  17. Quantifying social asymmetric structures.

    Science.gov (United States)

    Solanas, Antonio; Salafranca, Lluís; Riba, Carles; Sierra, Vicenta; Leiva, David

    2006-08-01

    Many social phenomena involve a set of dyadic relations among agents whose actions may be dependent. Although individualistic approaches have frequently been applied to analyze social processes, these are not generally concerned with dyadic relations, nor do they deal with dependency. This article describes a mathematical procedure for analyzing dyadic interactions in a social system. The proposed method consists mainly of decomposing asymmetric data into their symmetric and skew-symmetric parts. A quantification of skew symmetry for a social system can be obtained by dividing the norm of the skew-symmetric matrix by the norm of the asymmetric matrix. This calculation makes available to researchers a quantity related to the amount of dyadic reciprocity. With regard to agents, the procedure enables researchers to identify those whose behavior is asymmetric with respect to all agents. It is also possible to derive symmetric measurements among agents and to use multivariate statistical techniques.

  18. Shell-like structures

    CERN Document Server

    Altenbach, Holm

    2011-01-01

    In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar

  19. Fusion oriented plasma research in Bangladesh: theoretical study on low-frequency dust modes and edge plasma control experiment in tandem mirror

    International Nuclear Information System (INIS)

    Khairul Islam, Md.; Salimullah, Mohammed; Yatsu, Kiyoshi; Nakashima, Yousuke; Ishimoto, Yuki

    2003-01-01

    A collaboration with a Japanese institute in the field of plasma-wall interaction and dusty plasma has been formed in order to understand the physical properties of edge plasma. Results of the theoretical study on dusty plasma and the experimental study on GAMMA10 plasma are presented in this paper. Part A deals with the results obtained from the theoretical investigation of the properties and excitation of low-frequency electrostatic dust modes, e.g. the dust-acoustic (DA) and dust-lower-hybrid (DLH) waves, using the fluid models. In this study, dust grain charge is considered as a dynamic variable in streaming magnetized dusty plasmas with a background of neutral atoms. Dust charge fluctuation, collisional and streaming effects on DA and DLH modes are discussed. Part B deals with the results of the plasma control experiment in a non-axisymmetric magnetic field region of the anchor cell of GAMMA10. The observations, which indicate the comparatively low-temperature plasma formation in the anchor cell, are explained from the viewpoint of enhanced outgassing from the wall due to the interaction of the drifted-out ions. The drifting of ions is thought to be due to the effect of a local non-axisymmetric magnetic field. Experimental results on the control of the wall-plasma interaction by covering the flux tube of a non-axisymmetric magnetic field region by conducting plates are given. Possible influences of the asymmetric magnetic field and conducting plates on the GAMMA10 plasma parameters are discussed. (author)

  20. Dust, Climate, and Human Health

    Science.gov (United States)

    Maynard, Nancy G.

    2003-01-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. This paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health.

  1. Extensions to a nonlinear finite-element axisymmetric shell model based on Reissner's shell theory

    International Nuclear Information System (INIS)

    Cook, W.A.

    1981-01-01

    Extensions to shell analysis not usually associated with shell theory are described in this paper. These extensions involve thick shells, nonlinear materials, a linear normal stress approximation, and a changing shell thickness. A finite element shell-of-revolution model has been developed to analyze nuclear material shipping containers under severe impact conditions. To establish the limits for this shell model, the basic assumptions used in its development were studied; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress

  2. Engineering-scale dust control experiments

    International Nuclear Information System (INIS)

    Winberg, M.R.; Pawelko, R.J.; Jacobs, N.C.; Thompson, D.N.

    1990-12-01

    This report presents the results of engineering scale dust-control experiments relating to contamination control during handling of transuranic waste. These experiments focused on controlling dust during retrieval operations of buried waste where waste and soil are intimately mixed. Sources of dust generation during retrieval operations include digging, dumping, and vehicle traffic. Because contaminants are expected to attach to soil particles and move with the generated dust, control of the dust spread may be the key to contamination control. Dust control techniques examined in these experiments include the use of misting systems, soil fixatives, and dust suppression agents. The Dryfog Ultrasonic Misting Head, manufactured by Sonics, Incorporated, and ENTAC, an organic resin derived from tree sap manufactured by ENTAC Corporation, were tested. The results of the experiments include product performance and recommended application methods. 19 figs., 7 refs., 6 tabs

  3. Designing asymmetric multiferroics with strong magnetoelectric coupling

    Science.gov (United States)

    Lu, Xuezeng; Xiang, Hongjun; Rondinelli, James; Materials Theory; Design Group Team

    2015-03-01

    Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the ``asymmetric multiferroic.'' In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.

  4. Dust crystal in the electrode sheath of a gaseous discharge

    International Nuclear Information System (INIS)

    Schweigert, I.V.; Schweigert, V.A.

    2002-01-01

    The phenomena observed in strongly coupled dusty plasmas in the electrode sheath of gas discharge clearly indicate that the screened Coulomb potential is not valid for inter-particle interaction. The reason why the conventional model breaks down is clear now. The strong electric field, accelerating ions toward the cathode, leads to an asymmetrical particle shielding and the appearance of an attractive component in the inter-particle force. The sheath plasma with micro-particles is non Hamiltonian system because of input of energy from ion flux from the bulk plasma. The models of interaction potential of microparticles in sheath are proposed. The first is the linear effective positive charge (EPC). On the basis of this model the stability of the dust crystal in the sheath is analyzed both analytically and in MD simulations. The scenario of crystal melting is described. The role of different types of defects in the local heating of the crystal is considered. The next non-linear model of sheath plasma with micro-particles allows to find all parameter of plasma crystal: particle charge, inter-particle distance and study the structural transition. We constructed the analytical expression for inter-particle potential and have found the mechanism acceleration of extra particle beneath the monolayer. Recently new more simple analytical kinetic approach, accounting for ion collisions, have been developed. The structural transition in the dust molecular was obtained in simulation with multipole expansion model interaction potential

  5. Chaos of several typical asymmetric systems

    International Nuclear Information System (INIS)

    Feng Jingjing; Zhang Qichang; Wang Wei

    2012-01-01

    The threshold for the onset of chaos in asymmetric nonlinear dynamic systems can be determined using an extended Padé method. In this paper, a double-well asymmetric potential system with damping under external periodic excitation is investigated, as well as an asymmetric triple-well potential system under external and parametric excitation. The integrals of Melnikov functions are established to demonstrate that the motion is chaotic. Threshold values are acquired when homoclinic and heteroclinic bifurcations occur. The results of analytical and numerical integration are compared to verify the effectiveness and feasibility of the analytical method.

  6. Gravimetric dust sampling for control purposes and occupational dust sampling.

    CSIR Research Space (South Africa)

    Unsted, AD

    1997-02-01

    Full Text Available Prior to the introduction of gravimetric dust sampling, konimeters had been used for dust sampling, which was largely for control purposes. Whether or not absolute results were achievable was not an issue since relative results were used to evaluate...

  7. DUST AND GAS IN THE DISK OF HL TAURI: SURFACE DENSITY, DUST SETTLING, AND DUST-TO-GAS RATIO

    Energy Technology Data Exchange (ETDEWEB)

    Pinte, C.; Ménard, F. [UMI-FCA, CNRS/INSU, France (UMI 3386), and Dept. de Astronomía, Universidad de Chile, Santiago (Chile); Dent, W. R. F.; Hales, A.; Hill, T.; Cortes, P.; Gregorio-Monsalvo, I. de, E-mail: christophe.pinte@obs.ujf-grenoble.fr [Atacama Large Millimeter/Submillimeter Array, Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago (Chile)

    2016-01-01

    The recent ALMA observations of the disk surrounding HL Tau reveal a very complex dust spatial distribution. We present a radiative transfer model accounting for the observed gaps and bright rings as well as radial changes of the emissivity index. We find that the dust density is depleted by at least a factor of 10 in the main gaps compared to the surrounding rings. Ring masses range from 10–100 M{sub ⊕} in dust, and we find that each of the deepest gaps is consistent with the removal of up to 40 M{sub ⊕} of dust. If this material has accumulated into rocky bodies, these would be close to the point of runaway gas accretion. Our model indicates that the outermost ring is depleted in millimeter grains compared to the central rings. This suggests faster grain growth in the central regions and/or radial migration of the larger grains. The morphology of the gaps observed by ALMA—well separated and showing a high degree of contrast with the bright rings over all azimuths—indicates that the millimeter dust disk is geometrically thin (scale height ≈1 AU at 100 AU) and that a large amount of settling of large grains has already occurred. Assuming a standard dust settling model, we find that the observations are consistent with a turbulent viscosity coefficient of a few 10{sup −4}. We estimate the gas/dust ratio in this thin layer to be of the order of 5 if the initial ratio is 100. The HCO{sup +} and CO emission is consistent with gas in Keplerian motion around a 1.7 M{sub ⊙} star at radii from ≤10–120 AU.

  8. Respiratory Toxicity of Lunar Highland Dust

    Science.gov (United States)

    James, John T.; Lam, Chiu-wing; Wallace, William T.

    2009-01-01

    Lunar dust exposures occurred during the Apollo missions while the crew was on the lunar surface and especially when microgravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes and in some cases respiratory symptoms were elicited. NASA s vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust need to be assessed. NASA has performed this assessment with a series of in vitro and in vivo tests on authentic lunar dust. Our approach is to "calibrate" the intrinsic toxicity of lunar dust by comparison to a nontoxic dust (TiO2) and a highly toxic dust (quartz) using intratrachael instillation of the dusts in mice. A battery of indices of toxicity is assessed at various time points after the instillations. Cultures of selected cells are exposed to test dusts to assess the adverse effects on the cells. Finally, chemical systems are used to assess the nature of the reactivity of various dusts and to determine the persistence of reactivity under various environmental conditions that are relevant to a space habitat. Similar systems are used to assess the dissolution of the dust. From these studies we will be able to set a defensible inhalation exposure standard for aged dust and predict whether we need a separate standard for reactive dust. Presently-available data suggest that aged lunar highland dust is slightly toxic, that it can adversely affect cultured cells, and that the surface reactivity induced by grinding the dust persists for a few hours after activation.

  9. Tidal Distortion of the Envelope of an AGB Star IRS 3 near Sgr A{sup *}

    Energy Technology Data Exchange (ETDEWEB)

    Yusef-Zadeh, F.; Royster, M. J.; Roberts, D. A. [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Wardle, M. [Department of Physics and Astronomy and Research Center for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney NSW 2109 (Australia); Cotton, W.; Kunneriath, D. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Schödel, R. [Instituto de Astfisica de Andalucia (CSIC), Glorieta de la Astronomia S/N, E-18008 Granada (Spain)

    2017-03-01

    We present radio and millimeter continuum observations of the Galactic center taken with the Very Large Array (VLA) and ALMA at 44 and 226 GHz, respectively. We detect radio and millimeter emission from IRS 3, lying ∼4.″5 NW of Sgr A*, with a spectrum that is consistent with the photospheric emission from an AGB star at the Galactic center. Millimeter images reveal that the envelope of IRS 3, the brightest and most extended 3.8 μ m Galactic center stellar source, consists of two semicircular dust shells facing the direction of Sgr A*. The outer circumstellar shell, at a distance of 1.6 × 10{sup 4} au, appears to break up into “fingers” of dust directed toward Sgr A*. These features coincide with molecular CS (5–4) emission and a near-IR extinction cloud distributed between IRS 3 and Sgr A*. The NE–SW asymmetric shapes of the IRS 3 shells seen at 3.8 μ m and radio are interpreted as structures that are tidally distorted by Sgr A*. Using the kinematics of CS emission and the proper motion of IRS 3, the tidally distorted outflowing material from the envelope after 5000 yr constrains the distance of IRS 3 to ∼0.7 pc in front of or ∼0.5 pc behind Sgr A*. This suggests that the mass loss by stars near Sgr A* can supply a reservoir of molecular material near Sgr A*. We also present dark features in radio continuum images coincident with the envelope of IRS 3. These dusty stars provide examples in which high-resolution radio continuum images can identify dust-enshrouded stellar sources embedded in an ionized medium.

  10. Dust-cyclotron and dust-lower-hybrid modes in self-gravitating ...

    Indian Academy of Sciences (India)

    cantly modifies the dispersion properties of these two electrostatic modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. Keywords. Dusty plasmas; dust-cyclotron waves; dust-lower-hybrid waves.

  11. Modelling dust transport in tokamaks

    International Nuclear Information System (INIS)

    Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.

    2008-01-01

    The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)

  12. Self-template synthesis of double shelled ZnS-NiS1.97 hollow spheres for electrochemical energy storage

    Science.gov (United States)

    Wei, Chengzhen; Ru, Qinglong; Kang, Xiaoting; Hou, Haiyan; Cheng, Cheng; Zhang, Daojun

    2018-03-01

    In this work, double shelled ZnS-NiS1.97 hollow spheres have been achieved via a simple self-template route, which involves the synthesis of Zn-Ni solid spheres precursors as the self-template and then transformation into double shelled ZnS-NiS1.97 hollow spheres by sulfidation treatment. The as-prepared double shelled ZnS-NiS1.97 hollow spheres possess a high surface area (105.26 m2 g-1) and porous structures. Benefiting from the combined characteristics of novel structures, multi-component, high surface area and porous. When applied as electrode materials for supercapacitors, the double shelled ZnS-NiS1.97hollow spheres deliver a large specific capacitance of 696.8C g-1 at 5.0 A g-1 and a remarkable long lifespan cycling stability (less 5.5% loss after 6000 cycles). Moreover, an asymmetric supercapacitor (ASC) was assembled by utilizing ZnS-NiS1.97 (positive electrode) and activated carbon (negative electrode) as electrode materials. The as-assembled device possesses an energy density of 36 W h kg-1, which can be yet retained 25.6 W h kg-1 even at a power density of 2173.8 W Kg-1, indicating its promising applications in electrochemical energy storage. More importantly, the self-template route is a simple and versatile strategy for the preparation of metal sulfides electrode materials with desired structures, chemical compositions and electrochemical performances.

  13. Control of harmful dust in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, B; Bower, K; Mitchell, D

    1973-01-01

    This handbook consists of a series of short chapters devoted to: sources of airborne dust; dust standards and methods of sampling; dust prevention on mechanized faces; ventilation and dust extraction; distribution and use of water; dust control on mechanized faces; dust control in drivages and headings; drilling and shotfiring; dust control in transport; some outbye dust control techniques (hygroscopic salts, impingement curtains); water infusion; personal protective equipment. (CIS Abstr.)

  14. Effect of non-Maxwellian particle trapping and dust grain charging on dust acoustic solitary waves

    International Nuclear Information System (INIS)

    Rubab, N.; Murtaza, G.; Mushtaq, A.

    2006-01-01

    The role of adiabatic trapped ions on a small but finite amplitude dust acoustic wave, including the effect of adiabatic dust charge variation, is investigated in an unmagnetized three-component dusty plasma consisting of electrons, ions and massive micron sized negatively charged dust particulates. We have assumed that electrons and ions obey (r,q) velocity distribution while the dust species is treated fluid dynamically. It is found that the dynamics of dust acoustic waves is governed by a modified r dependent Korteweg-de Vries equation. Further, the spectral indices (r,q) affect the charge fluctuation as well as the trapping of electrons and ions and consequently modify the dust acoustic solitary wave

  15. The global distribution of mineral dust

    International Nuclear Information System (INIS)

    Tegen, I; Schepanski, K

    2009-01-01

    Dust aerosol particles produced by wind erosion in arid and semi arid regions affect climate and air quality, but the magnitude of these effects is largely unquantified. The major dust source regions include the Sahara, the Arabian and Asian deserts; global annual dust emissions are currently estimated to range between 1000 and 3000 Mt/yr. Dust aerosol can be transported over long distances of thousands of kilometers, e.g. from source regions in the Saharan desert over the North Atlantic, or from the Asian deserts towards the Pacific Ocean. The atmospheric dust load varies considerably on different timescales. While dust aerosol distribution and dust effects are important on global scales, they strongly depend on dust emissions that are controlled on small spatial and temporal scales.

  16. Effects of back warming in cocoon stars

    International Nuclear Information System (INIS)

    Donnison, J.R.; Williams, I.P.

    1976-01-01

    It is stated that dust shells frequently surround young stars, and attempts have been made to determine some of the properties of these shells. It is probable that the dust absorbs the outgoing radiation from the star and re-emits it in the infrared. If the dust shell does absorb radiation both its inner and outer surfaces will re-emit a certain proportion and some radiation will return to the central star, causing what amounts to 'warming of its own back'. It is interesting to consider how such a star evolves, compared with evolution of a normal pre-main-sequence star. A model for a contracting star that is receiving radiation from an external source has been developed by the authors in connection with the evolution of Jupiter within the radiation field of the Sun (Astrophys. Space Sci., 29:387 (1974)), and this model is here applied to the situation just described. It is emphasised that the discussion is concerned only with the evolution of the central star, the dust being regarded merely as a means of redirecting radiation back on to the surface of this star. Amongst conclusions reached is that a thin shell will cause no significant change in the structure and evolution of the central star, whilst the presence of a thick shell has a substantial effect on the star, slowing down is evolution. Whilst a dust shell is present the star cannot be seen, but only the dust shell emitting in the infrared, but once the dust shell clears the star is seen in a position and with an age that differs considerably from what it would have had if it had evolved without 'back warming' from the dust shell. (U.K.)

  17. Isogeometric shell formulation based on a classical shell model

    KAUST Repository

    Niemi, Antti

    2012-09-04

    This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  18. Large Aperture Electrostatic Dust Detector

    International Nuclear Information System (INIS)

    Skinner, C.H.; Hensley, R.; Roquemore, A.L.

    2007-01-01

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 v has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  19. Dust in H II regions

    International Nuclear Information System (INIS)

    Isobe, S.

    1977-01-01

    Several pieces of evidence indicate that H II regions may contain dust: 1) the continuum light scattered by dust grains (O'Dell and Hubbard, 1965), 2) thermal radiation from dust grains at infrared wavelengths (Ney and Allen, 1969), 3) the abnormal helium abundance in some H II regions (Peimbert and Costero, 1969), etc. Although observations of the scattered continuum suggest that the H II region cores may be dust-free, dust grains and gas must be well mixed in view of the infrared observations. This difficulty may be solved by introducing globules with sizes approximately 0.001 pc. These globules and the molecular clouds adjacent to H II regions are the main sources supplying dust to H II regions. (Auth.)

  20. Congenital asymmetric crying face: a case report

    Directory of Open Access Journals (Sweden)

    Semra Kara

    2011-12-01

    Full Text Available Congenital asymmetric crying face is an anomalia caused by unilateral absence or weakness of depressor anguli oris muscle The major finding of the disease is the absence or weakness in the outer and lower movement of the commissure during crying. The other expression muscles are normal and the face is symmetric at rest. The asymmetry in congenital asymmetric crying face is most evident during infancy but decreases by age. Congenital asymmetric crying face can be associated with cervicofacial, musclebone, respiratory, genitourinary and central nervous system anomalia. It is diagnosed by physical examination. This paper presents a six days old infant with Congenital asymmetric crying face and discusses the case in terms of diagnosis and disease features.

  1. The Spatial Variation of Dust Particulate Matter Concentrations during Two Icelandic Dust Storms in 2015

    Directory of Open Access Journals (Sweden)

    Pavla Dagsson-Waldhauserova

    2016-06-01

    Full Text Available Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from 10 to 1600 µg·m−3 (PM10 = 7 to 583 µg·m−3. The mean PM1 concentrations were 97–241 µg·m−3 with a maximum of 261 µg·m−3 for the first storm. The PM1/PM2.5 ratios of >0.9 and PM1/PM10 ratios of 0.34–0.63 show that suspension of volcanic materials in Iceland causes air pollution with extremely high PM1 concentrations, similar to polluted urban areas in Europe or Asia. Icelandic volcanic dust consists of a higher proportion of submicron particles compared to crustal dust. Both dust storms occurred in relatively densely inhabited areas of Iceland. First results on size partitioning of Icelandic dust presented here should challenge health authorities to enhance research in relation to dust and shows the need for public dust warning systems.

  2. Dust in Snow in the Colorado River Basin: Spatial Variability in Dust Concentrations, Radiative Forcing, and Snowmelt Rates

    Science.gov (United States)

    Skiles, M.; Painter, T.; Deems, J. S.; Landry, C.; Bryant, A.

    2012-12-01

    Since the disturbance of the western US that began with the Anglo settlement in the mid 19th century, the mountain snow cover of the Colorado River Basin (CRB) has been subject to five-fold greater dust loading. This dust deposition accelerates snowmelt through its direct reduction of albedo and its further reduction of albedo by accelerating the growth of snow effective grain size. We have previously quantified the impacts of dust in snow using a 6-year record of dust concentration and energy balance fluxes at the alpine and subalpine towers in the Senator Beck Basin Study Area (SBBSA), San Juan Mountains in southwestern Colorado, USA. Dust loading exhibited interannual variability, and end of year dust concentrations were not necessarily related to the number of dust deposition events. Radiative forcing enhanced springtime melt by 21 to 51 days with the magnitude of advanced loss being linearly related to total dust concentration at the end of snow cover. To expand our understanding of dust on snow deposition patterns we utilize collections of dust concentration at the Colorado Dust on Snow (CODOS) study sites, established in 2009 along the western side of the CRB, to assess spatial variability in dust loading. In situ sampling of dust stratigraphy and concentration occurs twice each season, once over peak snow water equivalent (15 April), and again during melt (15 May). Dust loading occurs at all sites; dust concentrations are always higher in May, vary between sites, and the highest and lowest dust years were 2009 and 2012, respectively. In the absence of regular sampling and energy balance instrumentation these sites do not allow us to quantify the advanced melt due to dust. To facilitate this a new energy balance site, Grand Mesa Study plot (GMSP), was established for water year 2010 in west central Colorado, 150 km north of SBBSA. Back trajectories indicate similar Colorado Plateau dust sources at both SBBSA and GMSP, yet GMSP exhibits slightly lower dust

  3. Dust control at Yucca Mountain project

    International Nuclear Information System (INIS)

    Kissell, F.; Jurani, R.; Dresel, R.; Reaux, C.

    1999-01-01

    This report describes actions taken to control silica dust at the Yucca Mountain Exploratory Studies Facility, a tunnel located in Southern Nevada that is part of a scientific program to determine site suitability for a potential nuclear waste repository. The rock is a volcanic tuff containing significant percentages of both quartz and cristobalite. Water use for dust control was limited because of scientific test requirements, and this limitation made dust control a difficult task. Results are reported for two drifts, called the Main Loop Drift and the Cross Drift. In the Main Loop Drift, dust surveys and tracer gas tests indicated that air leakage from the TBM head, the primary ventilation duct, and movement of the conveyor belt were all significant sources of dust. Conventional dust control approaches yielded no significant reductions in dust levels. A novel alternative was to install an air cleaning station on a rear deck of the TBM trailing gear. It filtered dust from the contaminated intake air and discharged clean air towards the front of the TBM. The practical effect was to produce dust levels below the exposure limit for all TBM locations except close to the head. In the Cross Drift, better ventilation and an extra set of dust seals on the TBM served to cut down the leakage of dust from the TBM cutter head. However, the conveyor belt was much dustier than the belt in the main loop drift. The problem originated with dirt on the bottom of the belt return side and much spillage from the belt top side. Achieving lower dust levels in hard rock tunneling operations will require new approaches as well as a more meticulous application of existing technology. Planning for dust control will require specific means to deal with dust that leaks from the TBM head, dust that originates with leaky ventilation systems, and dust that comes from conveyor belts. Also, the application of water could be more efficient if automatic controls were used to adjust the water flow

  4. Electrostatic Dust Detector with Improved Sensitivity

    International Nuclear Information System (INIS)

    Boyle, D.P.; Skinner, C.H.; Roquemore, A.L.

    2008-01-01

    Methods to measure the inventory of dust particles and to remove dust if it approaches safety limits will be required in next-step tokamaks such as ITER. An electrostatic dust detector, based on a fine grid of interlocking circuit traces, biased to 30 or 50 V, has been developed for the detection of dust on remote surfaces in air and vacuum environments. Gaining operational experience of dust detection on surfaces in tokamaks is important, however the level of dust generated in contemporary short-pulse tokamaks is comparatively low and high sensitivity is necessary to measure dust on a shot-by-shot basis. We report on modifications in the detection electronics that have increased the sensitivity of the electrostatic dust detector by a factor of up to 120, - a level suitable for measurements on contemporary tokamaks.

  5. Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor

    Science.gov (United States)

    Liang, Haoyan; Lin, Jinghuang; Jia, Henan; Chen, Shulin; Qi, Junlei; Cao, Jian; Lin, Tiesong; Fei, Weidong; Feng, Jicai

    2018-02-01

    Constructing rational structure and utilizing distinctive components are two important keys to promote the development of high performance supercapacitor. Herein, we adopt a facile two-step method to develop an in-situ heterostructure with NiCo-LDH nanowire as core and NiOOH nanosheets as shell on carbon fiber cloth. The resultant NiCo-LDH@NiOOH electrode exhibites a high specific capacitance of about 2622 F g-1 at 1 A g-1 and good cycling stability (88.5% remain after 10000 cycles). This reinforced electrochemical performance is benefit from the distinct core-shell structure, and takes advantage of the synergetic effect to supply more electrochemical active spots and pathways to accelerate electron and ion transport. Furthermore, the fabricated asymmetric supercapacitor of optimized NiCo-LDH@NiOOH//AC device displays a high energy density of 51.7 Wh kg-1 while the power density is 599 W kg-1 and presents a satisfying cycling performance.

  6. Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign

    Science.gov (United States)

    Tang, Kai; Huang, Zhongwei; Huang, Jianping; Maki, Teruya; Zhang, Shuang; Shimizu, Atsushi; Ma, Xiaojun; Shi, Jinsen; Bi, Jianrong; Zhou, Tian; Wang, Guoyin; Zhang, Lei

    2018-05-01

    Previous studies have shown that bioaerosols are injected into the atmosphere during dust events. These bioaerosols may affect leeward ecosystems, human health, and agricultural productivity and may even induce climate change. However, bioaerosol dynamics have rarely been investigated along the transport pathway of Asian dust, especially in China where dust events affect huge areas and massive numbers of people. Given this situation, the Dust-Bioaerosol (DuBi) Campaign was carried out over northern China, and the effects of dust events on the amount and diversity of bioaerosols were investigated. The results indicate that the number of bacteria showed remarkable increases during the dust events, and the diversity of the bacterial communities also increased significantly, as determined by means of microscopic observations with 4,6-diamidino-2-phenylindole (DAPI) staining and MiSeq sequencing analysis. These results indicate that dust clouds can carry many bacteria of various types into downwind regions and may have potentially important impacts on ecological environments and climate change. The abundances of DAPI-stained bacteria in the dust samples were 1 to 2 orders of magnitude greater than those in the non-dust samples and reached 105-106 particles m-3. Moreover, the concentration ratios of DAPI-stained bacteria to yellow fluorescent particles increased from 5.1 % ± 6.3 % (non-dust samples) to 9.8 % ± 6.3 % (dust samples). A beta diversity analysis of the bacterial communities demonstrated the distinct clustering of separate prokaryotic communities in the dust and non-dust samples. Actinobacteria, Bacteroidetes, and Proteobacteria remained the dominant phyla in all samples. As for Erenhot, the relative abundances of Acidobacteria and Chloroflexi had a remarkable rise in dust events. In contrast, the relative abundances of Acidobacteria and Chloroflexi in non-dust samples of R-DzToUb were greater than those in dust samples. Alphaproteobacteria made the major

  7. Mineralogy of Interplanetary Dust Particles from the Comet Giacobini-Zinner Dust Stream Collections

    Science.gov (United States)

    Nakamura-Messenger, K.; Messenger, S.; Westphal, A. J.; Palma, R. L.

    2015-01-01

    The Draconoid meteor shower, originating from comet 21P/Giacobini-Zinner, is a low-velocity Earth-crossing dust stream that had a peak anticipated flux on Oct. 8, 2012. In response to this prediction, NASA performed dedicated stratospheric dust collections to target interplanetary dust particles (IDPs) from this comet stream on Oct 15-17, 2012 [3]. Twelve dust particles from this targeted collection were allocated to our coordinated analysis team for studies of noble gas (Univ. Minnesota, Minnesota State Univ.), SXRF and Fe-XANES (SSL Berkeley) and mineralogy/isotopes (JSC). Here we report a mineralogical study of 3 IDPs from the Draconoid collection..

  8. CHARACTERIZATION OF THE DUST GENERATED IN THE RECYCLING PROCESS OF THE ELECTRIC ARC FURNACE DUST

    Directory of Open Access Journals (Sweden)

    Fábio Gonçalves Rizz

    2013-10-01

    Full Text Available Electric Arc Furnace Dust (EAFD is a solid waste generated by the production of steel through the Electric Arc Furnace. This waste is labeled dangerous, which motivates studies aiming its recycling. Experiments were made to study a pyrometallurgical process for the recycling of the dust, using the insertion of dust briquettes in molten pig iron in three temperatures. In the briquettes, there were made additions of calcium fluoride in four different concentrations. This paper has the objective to characterize the dust that results from this process, verifying the influence of the temperature and the concentration of calcium fluoride in the briquette in the morphology and chemical composition of the new dust, determining the optimal conditions for the recovery of the zinc content of the dust. This newly generated dust was analyzed in an Scanning Electronic Microscope, used to capture micrographs and chemical composition by EDS. The micrographs show that the temperature and the calcium fluoride concentration interfere in the way the dust particles agglomerate. Chemical analysis points that the higher zinc recuperation occurrs in the experiments at 1500°C with 7% addition of calcium fluoride.

  9. Synthesis and Plasmonic Understanding of Core/Satellite and Core Shell Nanostructures

    Science.gov (United States)

    Ruan, Qifeng

    exhibit asymmetric Fano line shapes. The Fano resonances result from the coupling between the core and shell, as understood by the mechanical oscillator model. Besides varying the shell thickness, the plasmonic bands of the core shell nanostructures can also be tailored by employing Au nanorods with different aspect ratios. The synthetically tunable plasmonic properties and synergistic interactions between the gold core and the titania shell make the hybrid nanostructure a multifunctional nanomaterial and ideal system for studying the plasmonic hybrid nanostructures.

  10. Effects of dust grain charge fluctuation on obliquely propagating dust-acoustic potential in magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Hassan, M.H.A.

    1999-05-01

    Effects of dust grain charge fluctuation, obliqueness and external magnetic field on finite amplitude dust-acoustic solitary potential in a magnetized dusty plasma, consisting of electrons, ions and charge fluctuating dust grains, have been investigated by the reductive perturbation method. It has been shown that such a magnetized dusty plasma system may support dust-acoustic solitary potential on a very slow time scale involving the motion of dust grains, whose charge is self-consistently determined by local electron and ion currents. The effects of dust grain charge fluctuation, external magnetic field and obliqueness are found to modify the properties of this dust-acoustic solitary potential significantly. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  11. The converse magnetoelectric coupling in asymmetric granule/matrix composite film with Ni/PZT component

    Science.gov (United States)

    Chen, Bo; Su, Ning-Ning; Cui, Wen-Li; Yan, Shi-Nong

    2018-04-01

    In this work, a type of asymmetric granule/matrix composite film is designed, where the Ni granule is dispersed in PZT matrix, meanwhile the top and bottom electrode is constituted by Au and SRO respectively. Predicted through the electrostatic screening model and mean field approximation, considerable electrostatic charge is induced on Ni granule surface by ferroelectric PZT polarization. Predicted through the spin splitting model and spherical shell approximation, both the magnetization and magnetic anisotropy of Ni granule are modulated by ferroelectric PZT polarization. As the volume fraction of Ni granule is increased, the electric modulation of magnetization and magnetic anisotropy is reduced and enhanced respectively. As the dimension of granule/matrix composite is varied, such modulation is retained. Due to the large area-volume ratio of nano-granule, this work benefits to realize the converse magnetoelectric coupling in nanoscale.

  12. Short-term variability of mineral dust, metals and carbon emission from road dust resuspension

    Science.gov (United States)

    Amato, Fulvio; Schaap, Martijn; Denier van der Gon, Hugo A. C.; Pandolfi, Marco; Alastuey, Andrés; Keuken, Menno; Querol, Xavier

    2013-08-01

    Particulate matter (PM) pollution in cities has severe impact on morbidity and mortality of their population. In these cities, road dust resuspension contributes largely to PM and airborne heavy metals concentrations. However, the short-term variation of emission through resuspension is not well described in the air quality models, hampering a reliable description of air pollution and related health effects. In this study we experimentally show that the emission strength of resuspension varies widely among road dust components/sources. Our results offer the first experimental evidence of different emission rates for mineral dust, heavy metals and carbon fractions due to traffic-induced resuspension. Also, the same component (or source) recovers differently in a road in Barcelona (Spain) and a road in Utrecht (The Netherlands). This finding has important implications on atmospheric pollution modelling, mostly for mineral dust, heavy metals and carbon species. After rain events, recoveries were generally faster in Barcelona rather than in Utrecht. The largest difference was found for the mineral dust (Al, Si, Ca). Tyre wear particles (organic carbon and zinc) recovered faster than other road dust particles in both cities. The source apportionment of road dust mass provides useful information for air quality management.

  13. Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin.

    Science.gov (United States)

    Ogrodnik, Mikołaj; Salmonowicz, Hanna; Brown, Rachel; Turkowska, Joanna; Średniawa, Władysław; Pattabiraman, Sundararaghavan; Amen, Triana; Abraham, Ayelet-chen; Eichler, Noam; Lyakhovetsky, Roman; Kaganovich, Daniel

    2014-06-03

    Aging is associated with the accumulation of several types of damage: in particular, damage to the proteome. Recent work points to a conserved replicative rejuvenation mechanism that works by preventing the inheritance of damaged and misfolded proteins by specific cells during division. Asymmetric inheritance of misfolded and aggregated proteins has been shown in bacteria and yeast, but relatively little evidence exists for a similar mechanism in mammalian cells. Here, we demonstrate, using long-term 4D imaging, that the vimentin intermediate filament establishes mitotic polarity in mammalian cell lines and mediates the asymmetric partitioning of damaged proteins. We show that mammalian JUNQ inclusion bodies containing soluble misfolded proteins are inherited asymmetrically, similarly to JUNQ quality-control inclusions observed in yeast. Mammalian IPOD-like inclusion bodies, meanwhile, are not always inherited by the same cell as the JUNQ. Our study suggests that the mammalian cytoskeleton and intermediate filaments provide the physical scaffold for asymmetric inheritance of dynamic quality-control JUNQ inclusions. Mammalian IPOD inclusions containing amyloidogenic proteins are not partitioned as effectively during mitosis as their counterparts in yeast. These findings provide a valuable mechanistic basis for studying the process of asymmetric inheritance in mammalian cells, including cells potentially undergoing polar divisions, such as differentiating stem cells and cancer cells.

  14. Study on the alternative mitigation of cement dust spread by capturing the dust with fogging method

    Science.gov (United States)

    Purwanta, Jaka; Marnoto, Tjukup; Setyono, Prabang; Handono Ramelan, Ari

    2017-12-01

    The existence of a cement plant impact the lives of people around the factory site. For example the air quality, which is polluted by dust. Cement plant has made various efforts to mitigate the generated dust, but there are still alot of dust fly inground either from the cement factory chimneys or transportation. The purpose of this study was to conduct a review of alternative mitigation of the spread of dust around the cement plant. This study uses research methods such as collecting secondary data which includes data of rain density, the average rains duration, wind speed and direction as well as data of dust intensity quality around PT. Semen Gresik (Persero) Tbk.Tuban plant. A soft Wind rose file is used To determine the wind direction propensity models. The impact on the spread of dust into the environment is determined using secondary data monitoring air quality. Results of the study is that the mitigation of dust around the cement plant is influenced by natural factors, such as the tendency of wind direction, rain fall and rainy days, and the rate of dust emission from the chimney. The alternative means proposed is an environmental friendly fogging dust catcher.

  15. Molluscan shell colour.

    Science.gov (United States)

    Williams, Suzanne T

    2017-05-01

    The phylum Mollusca is highly speciose, and is the largest phylum in the marine realm. The great majority of molluscs are shelled, including nearly all bivalves, most gastropods and some cephalopods. The fabulous and diverse colours and patterns of molluscan shells are widely recognised and have been appreciated for hundreds of years by collectors and scientists alike. They serve taxonomists as characters that can be used to recognise and distinguish species, however their function for the animal is sometimes less clear and has been the focus of many ecological and evolutionary studies. Despite these studies, almost nothing is known about the evolution of colour in molluscan shells. This review summarises for the first time major findings of disparate studies relevant to the evolution of shell colour in Mollusca and discusses the importance of colour, including the effects of visual and non-visual selection, diet and abiotic factors. I also summarise the evidence for the heritability of shell colour in some taxa and recent efforts to understand the molecular mechanisms underpinning synthesis of shell colours. I describe some of the main shell pigments found in Mollusca (carotenoids, melanin and tetrapyrroles, including porphyrins and bile pigments), and their durability in the fossil record. Finally I suggest that pigments appear to be distributed in a phylogenetically relevant manner and that the synthesis of colour is likely to be energetically costly. © 2016 Cambridge Philosophical Society.

  16. Health hazards of cement dust

    International Nuclear Information System (INIS)

    Meo, Sultan A.

    2004-01-01

    ven in the 21st century, millions of people are working daily in a dusty environment. They are exposed to different types of health hazards such as fume, gases and dust, which are risk factors in developing occupational disease. Cement industry is involved in the development of structure of this advanced and modern world but generates dust during its production. Cement dust causes lung function impairment, chronic obstructive lung disease, restrictive lung disease, pneumoconiosis and carcinoma of the lungs, stomach and colon. Other studies have shown that cement dust may enter into the systemic circulation and thereby reach the essentially all the organs of body and affects the different tissues including heart, liver, spleen, bone, muscles and hairs and ultimately affecting their micro-structure and physiological performance. Most of the studies have been previously attempted to evaluate the effects of cement dust exposure on the basis of spirometry or radiology, or both. However, collective effort describing the general effects of cement dust on different organ and systems in humans or animals, or both has not been published. Therefore, the aim of this review is to gather the potential toxic effects of cement dust and to minimize the health risks in cement mill workers by providing them with information regarding the hazards of cement dust. (author)

  17. Multicatalyst system in asymmetric catalysis

    CERN Document Server

    Zhou, Jian

    2014-01-01

    This book introduces multi-catalyst systems by describing their mechanism and advantages in asymmetric catalysis.  Helps organic chemists perform more efficient catalysis with step-by-step methods  Overviews new concepts and progress for greener and economic catalytic reactions  Covers topics of interest in asymmetric catalysis including bifunctional catalysis, cooperative catalysis, multimetallic catalysis, and novel tandem reactions   Has applications for pharmaceuticals, agrochemicals, materials, and flavour and fragrance

  18. Sexual selection on land snail shell ornamentation: a hypothesis that may explain shell diversity

    Directory of Open Access Journals (Sweden)

    Schilthuizen Menno

    2003-06-01

    Full Text Available Abstract Background Many groups of land snails show great interspecific diversity in shell ornamentation, which may include spines on the shell and flanges on the aperture. Such structures have been explained as camouflage or defence, but the possibility that they might be under sexual selection has not previously been explored. Presentation of the hypothesis The hypothesis that is presented consists of two parts. First, that shell ornamentation is the result of sexual selection. Second, that such sexual selection has caused the divergence in shell shape in different species. Testing the hypothesis The first part of the hypothesis may be tested by searching for sexual dimorphism in shell ornamentation in gonochoristic snails, by searching for increased variance in shell ornamentation relative to other shell traits, and by mate choice experiments using individuals with experimentally enhanced ornamentation. The second part of the hypothesis may be tested by comparing sister groups and correlating shell diversity with degree of polygamy. Implications of the hypothesis If the hypothesis were true, it would provide an explanation for the many cases of allopatric evolutionary radiation in snails, where shell diversity cannot be related to any niche differentiation or environmental differences.

  19. Respirable versus inhalable dust sampling

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    The ICRP uses a total inhalable dust figure as the basis of calculations on employee lung dose. This paper was written to look at one aspect of the Olympic Dam dust situation, namely, the inhalable versus respirable fraction of the dust cloud. The results of this study will determine whether it is possible to use respirable dust figures, as obtained during routine monitoring to help in the calculations of employee exposure to internal radioactive contaminants

  20. Communication plan for windblown dust.

    Science.gov (United States)

    2015-05-01

    Windblown dust events occur in Arizona, and blowing dust has been considered a contributing factor to serious crashes on the : segment of Interstate 10 (I10) between Phoenix and Tucson, as well as on other Arizona roadways. Arizonas dust events...

  1. House dust in seven Danish offices

    Science.gov (United States)

    Mølhave, L.; Schneider, T.; Kjærgaard, S. K.; Larsen, L.; Norn, S.; Jørgensen, O.

    Floor dust from Danish offices was collected and analyzed. The dust was to be used in an exposure experiment. The dust was analyzed to show the composition of the dust which can be a source of airborne dust indoors. About 11 kg of dust from vacuum cleaner bags from seven Danish office buildings with about 1047 occupants (12 751 m 2) was processed according to a standardized procedure yielding 5.5 kg of processed bulk dust. The bulk dust contained 130.000-160.000 CFU g -1 microorganisms and 71.000-90.000 CFU g -1 microfungi. The content of culturable microfungi was 65-123 CFU 30 g -1 dust. The content of endotoxins ranged from 5.06-7.24 EU g -1 (1.45 ng g -1 to 1.01 ng g -1). Allergens (ng g -1) were from 147-159 (Mite), 395-746 (dog) and 103-330 (cat). The macro molecular organic compounds (the MOD-content) varied from 7.8-9.8 mg g -1. The threshold of release of histamine from basophil leukocytes provoked by the bulk dust was between 0.3 and 1.0 mg ml -1. The water content was 2% (WGT) and the organic fraction 33%. 6.5-5.9% (dry) was water soluble. The fiber content was less than 0.2-1.5% (WGT) and the desorbable VOCs was 176-319 μg g -1. Most of the VOC were aldehydes. However, softeners for plastic (DBP and DEHP) were present. The chemical composition includes human and animal skin fragments, paper fibers, glass wool, wood and textilefibers and inorganic and metal particles. The sizes ranged from 0.001-1 mm and the average specific density was 1.0 g m -3. The bulk dust was resuspended and injected into an exposure chamber. The airborne dust was sampled and analyzed to illustrate the exposures that can result from sedimented dirt and dust. The airborne dust resulting from the bulk dust reached concentrations ranging from 0.26-0.75 mg m -3 in average contained 300-170 CFU m -3. The organic fraction was from 55-70% and the water content about 2.5% (WGT). The content of the dust was compared to the similar results reported in the literature and its toxic potency is

  2. Windows PowerShell 20 Bible

    CERN Document Server

    Lee, Thomas; Schill, Mark E; Tanasovski, Tome

    2011-01-01

    Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b

  3. Effects of dust size distribution on dust acoustic waves in magnetized two-ion-temperature dusty plasmas

    International Nuclear Information System (INIS)

    Liu Zongming; Duan Wenshan; He Guangjun

    2008-01-01

    A Zakharov-Kuznetsov (ZK) equation, a modified ZK (mZK) equation, and a coupled ZK (cZK) equation for small but finite amplitude dust acoustic waves in a magnetized two-ion-temperature dusty plasma with dust size distribution have been investigated in this paper. The variations of the linear dispersion relation and group velocity, nonlinear solitary wave amplitude, and width with an arbitrary dust size distribution function are studied numerically. We conclude that they all increase as the total number density of dust grains increases, and they are greater for unusual dusty plasma (the number density of larger dust grains is greater than that of smaller dust grains) than that of usual dusty plasma (the number density of smaller dust grains is greater than that of larger dust grains). It is noted that the frequency of the linear wave increases as the wave number along the magnetic direction increases. Furthermore, the width of the nonlinear waves increases but its amplitude decreases as the wave number along the magnetic direction increases

  4. The flow of interstellar dust through the solar system: the role of dust charging

    International Nuclear Information System (INIS)

    Sterken, V. J.; Altobelli, N.; Schwehm, G.; Kempf, S.; Srama, R.; Strub, P.; Gruen, E.

    2011-01-01

    Interstellar dust can enter the solar system through the relative motion of the Sun with respect to the Local Interstellar Cloud. The trajectories of the dust through the solar system are not only influenced by gravitation and solar radiation pressure forces, but also by the Lorentz forces due to the interaction of the interplanetary magnetic field with the charged dust particles. The interplanetary magnetic field changes on two major time scales: 25 days (solar rotation frequency) and 22 years (solar cycle). The short-term variability averages out for regions that are not too close (>∼2 AU) to the Sun. This interplanetary magnetic field variability causes a time-variability in the interstellar dust densities, that is correlated to the solar cycle.In this work we characterize the flow of interstellar dust through the solar system using simulations of the dust trajectories. We start from the simple case without Lorentz forces, and expand to the full simulation. We pay attention to the different ways of modeling the interplanetary magnetic field, and discuss the influence of the dust parameters on the resulting flow patterns. We also discuss the possibilities of using this modeling for prediction of dust fluxes for different space missions or planets, and we pay attention to where simplified models are justified, and where or when a full simulation, including all forces is necessary. One of the aims of this work is to understand measurements of spacecraft like Ulysses, Cassini and Stardust.

  5. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-17

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary

  6. Variations between Dust and Gas in the Diffuse Interstellar Medium. III. Changes in Dust Properties

    Science.gov (United States)

    Reach, William T.; Bernard, Jean-Philippe; Jarrett, Thomas H.; Heiles, Carl

    2017-12-01

    We study infrared emission of 17 isolated, diffuse clouds with masses of order {10}2 {M}ȯ to test the hypothesis that grain property variations cause the apparently low gas-to-dust ratios that have been measured in those clouds. Maps of the clouds were constructed from Wide-field Infrared Survey Explorer (WISE) data and directly compared with the maps of dust optical depth from Planck. The mid-infrared emission per unit dust optical depth has a significant trend toward lower values at higher optical depths. The trend can be quantitatively explained by the extinction of starlight within the clouds. The relative amounts of polycyclic aromatic hydrocarbon and very small grains traced by WISE, compared with large grains tracked by Planck, are consistent with being constant. The temperature of the large grains significantly decreases for clouds with larger dust optical depth; this trend is partially due to dust property variations, but is primarily due to extinction of starlight. We updated the prediction for molecular hydrogen column density, taking into account variations in dust properties, and find it can explain the observed dust optical depth per unit gas column density. Thus, the low gas-to-dust ratios in the clouds are most likely due to “dark gas” that is molecular hydrogen.

  7. Excitation of collective plasma modes during collisions between dust grains and the formation of dust plasma crystals

    International Nuclear Information System (INIS)

    Goree, J.A.; Morfill, G.; Tsytovich, V.N.

    1998-01-01

    Dust plasma crystals have recently been produced in experiments in a number of laboratories. For dust crystallization to occur, there should exist an efficient mechanism for the cooling of the dust plasma component. It is shown that the excitation of collective plasma modes during collisions between the grains may serve as the required cooling mechanism. The excitation of dust sound waves is found to be most efficient. It is shown that the cooling of dust grains via the excitation of collective plasma modes can be even more efficient than that due to collisions with neutral particles, which was previously considered to be the only mechanism for cooling of the dust plasma component. At present, the first experiments are being carried out to study collisions between individual dust grains. High efficiency of the excitation of plasma modes caused by collisions between dust grains is attributed to the coherent displacement of the plasma particles that shield the grains. it is shown that the excitation efficiency is proportional to the fourth power of the charge of the dust grains and to a large power of their relative velocity, and is independent of their mass. The results obtained can be checked in experiments studying how the binary collisions between dust grains and the pressure of the neutral component influence the dust crystallization

  8. Dust characterisation for hot gas filters

    Energy Technology Data Exchange (ETDEWEB)

    Dockter, B.; Erickson, T.; Henderson, A.; Hurley, J.; Kuehnel, V.; Katrinak, K.; Nowok, J.; O`Keefe, C.; O`Leary, E.; Swanson, M.; Watne, T. [University of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center (UNDEERC)

    1998-03-01

    Hot gas filtration to remove particulates from the gas flow upstream of the gas turbine is critical to the development of many of the advanced coal-fired power generation technologies such as the Air Blown Gasification Cycle (ABGC), a hybrid gasification combined cycle being developed in the UK. Ceramic candle filters are considered the most promising technology for this purpose. Problems of mechanical failure and of `difficult-to-clean` dusts causing high pressure losses across the filter elements need to be solved. The project investigated the behaviour of high-temperature filter dusts, and the factors determining the ease with which they can be removed from filters. The high-temperature behaviour of dusts from both combustion and gasification systems was investigated. Dust samples were obtained from full-scale demonstration and pilot-scale plant operating around the world. Dust samples were also produced from a variety of coals, and under several different operating conditions, on UNDEERC`s pilot-scale reactor. Key factors affecting dust behaviour were examined, including: the rates of tensile strength developing in dust cakes; the thermochemical equilibria pertaining under filtration conditions; dust adhesivity on representative filter materials; and the build-up and cleaning behaviour of dusts on representative filter candles. The results obtained confirmed the importance of dust temperature, dust cake porosity, cake liquid content, and particle size distribution in determining the strength of a dust cake. An algorithm was developed to indicate the likely sticking propensity of dusts as a function of coal and sorbent composition and combustion conditions. This algorithm was incorporated into a computer package which can be used to judge the degree of difficulty in filter cleaning that can be expected to arise in a real plant based on operating parameters and coal analyzes. 6 figs.

  9. Dust in protoplanetary disks: observations*

    Directory of Open Access Journals (Sweden)

    Waters L.B.F.M.

    2015-01-01

    Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.

  10. Creation of Wood Dust during Wood Processing: Size Analysis, Dust Separation, and Occupational Health

    Directory of Open Access Journals (Sweden)

    Eva Mračková

    2015-11-01

    Full Text Available Mechanical separators and fabric filters are being used to remove airborne fine particles generated during the processing and handling of wood. Such particles might have a harmful effect on employee health, not only in small- but also in large-scale wood processing facilities. The amount of wood dust and its dispersion conditions vary according to geometric boundary conditions. Thus, the dispersion conditions could be changed by changing the linear size of the particles. Moreover, the smaller the particles are, the more harmful they can be. It is necessary to become familiar with properties, from a health point of view, of wood dust generated from processing. Wood dust has to be sucked away from the processing area. The fractional separation efficiency of wood dust can be improved using exhaust and filtering devices. Filtration efficiency depends on moisture content, particle size, and device performance. Because of the carcinogenicity of wood dust, the concentration of wood dust in air has to be monitored regularly. Based on the results hereof, a conclusion can be made that both mechanical separators of types SEA and SEB as well as the fabric filters with FINET PES 1 textile are suitable for the separation of wet saw dust from all types of wooden waste produced within the process.

  11. Galactic dust and extinction

    International Nuclear Information System (INIS)

    Lyngaa, G.

    1979-01-01

    The ratio R between visual extinction and colour excess, is slightly larger than 3 and does not vary much throughout our part of the Galaxy. The distribution of dust in the galactic plane shows, on the large scale, a gradient with higher colour excesses towards l=50 0 than towards l=230 0 . On the smaller scale, much of the dust responsible for extinction is situated in clouds which tend to group together. The correlation between positions of interstellar dust clouds and positions of spiral tracers seems rather poor in our Galaxy. However, concentrated dark clouds as well as extended regions of dust show an inclined distribution similar to the Gould belt of bright stars. (Auth.)

  12. Effects of grain dust on lungs prior to and following dust remediation.

    Science.gov (United States)

    Pahwa, Punam; Dosman, James A; McDuffie, Helen H

    2008-12-01

    To determine longitudinal estimates of pulmonary function decline in Canadian grain elevator workers before and after dust control by analyzing data collected from five regions of Canada over 15 years. Declines in forced expired volume in one second and forced vital capacity before and after dust control were estimated by using a generalized estimating equations approach. For grain workers who were in the grain industry for 20 or more years both before and after dust control: the mean annual loss of forced expired volume in one second was greatest among current smoking grain workers followed by ex-smokers and nonsmokers, respectively. Similar results were obtained for forced vital capacity. Grain dust control was effective in reducing decline in the lung function measurements among grain workers in all smoking and exposure categories.

  13. Simulation study of spheroidal dust gains charging: Applicable to dust grain alignment

    International Nuclear Information System (INIS)

    Zahed, H.; Sobhanian, S.; Mahmoodi, J.; Khorram, S.

    2006-01-01

    The charging process of nonspherical dust grains in an unmagnetized plasma as well as in the presence of a magnetic field is studied. It is shown that unlike the spherical dust grain, due to nonhomogeneity of charge distribution on the spheroidal dust surface, the resultant electric forces on electrons and ions are different. This process produces some surface charge density gradient on the nonspherical grain surface. Effects of a magnetic field and other plasma parameters on the properties of the dust particulate are studied. It has been shown that the alignment direction could be changed or even reversed with the magnetic field and plasma parameters. Finally, the charge distribution on the spheroidal grain surface is studied for different ambient parameters including plasma temperature, neutral collision frequency, and the magnitude of the magnetic field

  14. Dust Studies in DIII-D and TEXTOR

    International Nuclear Information System (INIS)

    Rudakov, D.; Litnovsky, A.; West, W.; Yu, J.; Boedo, J.; Bray, B.; Brezinsek, S.; Brooks, N.; Fenstermacher, M.; Groth, M.; Hollmann, E.; Huber, A.; Hyatt, A.; Krasheninnikov, S.; Lasnier, C.; Moyer, R.; Pigarov, A.; Philipps, V.; Pospieszezyk, A.; Smirnov, R.; Sharpe, J.; Solomon, W.; Watkins, J.; Wong, C.

    2008-01-01

    Studies of naturally occurring and artificially introduced carbon dust are conducted in DIII-D and TEXTOR. In DIII-D, dust does not present operational concerns except immediately after entry vents. Energetic plasma disruptions produce significant amounts of dust. However, dust production by disruptions alone is insufficient to account for the estimated in-vessel dust inventory in DIII-D. Submicron sized dust is routinely observed using Mie scattering from a Nd:Yag laser. The source is strongly correlated with the presence of Type I edge localized modes (ELMs). Larger size (0.005-1 mm diameter) dust is observed by optical imaging, showing elevated dust levels after entry vents. Inverse dependence of the dust velocity on the inferred dust size is found from the imaging data. Migration of pre-characterized carbon dust is studied in DIII-D and TEXTOR by injecting micron-size dust in plasma discharges. In DIII-D, a sample holder filled with ∼30 mg of dust is introduced in the lower divertor and exposed to high-power ELMing H-mode discharges with strike points swept across the divertor floor. After a brief exposure (∼0.1 s) at the outer strike point, part of the dust is injected into the plasma, raising the core carbon density by a factor of 2-3 and resulting in a twofold increase of the radiated power. Individual dust particles are observed moving at velocities of 10-100 m/s, predominantly in the toroidal direction, consistent with the drag force from the deuteron flow and in agreement with modeling by the 3D DustT code. In TEXTOR, instrumented dust holders with 1-45 mg of dust are exposed in the scrape-off layer 0-2 cm radially outside of the last closed flux surface in discharges heated with neutral beam injection (NBI) power of 1.4 MW. Dust is launched either in the beginning of a discharge or at the initiation of NBI, preferentially in a direction perpendicular to the toroidal magnetic field. At the given configuration of the launch, the dust did not penetrate

  15. Dust: Small-scale processes with global consequences

    Science.gov (United States)

    Okin, G.S.; Bullard, J.E.; Reynolds, R.L.; Ballantine, J.-A.C.; Schepanski, K.; Todd, M.C.; Belnap, J.; Baddock, M.C.; Gill, T.E.; Miller, M.E.

    2011-01-01

    Desert dust, both modern and ancient, is a critical component of the Earth system. Atmospheric dust has important effects on climate by changing the atmospheric radiation budget, while deposited dust influences biogeochemical cycles in the oceans and on land. Dust deposited on snow and ice decreases its albedo, allowing more light to be trapped at the surface, thus increasing the rate of melt and influencing energy budgets and river discharge. In the human realm, dust contributes to the transport of allergens and pathogens and when inhaled can cause or aggravate respiratory diseases. Dust storms also represent a significant hazard to road and air travel. Because it affects so many Earth processes, dust is studied from a variety of perspectives and at multiple scales, with various disciplines examining emissions for different purposes using disparate strategies. Thus, the range of objectives in studying dust, as well as experimental approaches and results, has not yet been systematically integrated. Key research questions surrounding the production and sources of dust could benefit from improved collaboration among different research communities. These questions involve the origins of dust, factors that influence dust production and emission, and methods through which dust can be monitored. ?? Author(s) 2011.

  16. TWO-DIMENSIONAL APPROXIMATION OF EIGENVALUE PROBLEMS IN SHELL THEORY: FLEXURAL SHELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The eigenvalue problem for a thin linearly elastic shell, of thickness 2e, clamped along its lateral surface is considered. Under the geometric assumption on the middle surface of the shell that the space of inextensional displacements is non-trivial, the authors obtain, as ε→0,the eigenvalue problem for the two-dimensional"flexural shell"model if the dimension of the space is infinite. If the space is finite dimensional, the limits of the eigenvalues could belong to the spectra of both flexural and membrane shells. The method consists of rescaling the variables and studying the problem over a fixed domain. The principal difficulty lies in obtaining suitable a priori estimates for the scaled eigenvalues.

  17. Cosmological simulation with dust formation and destruction

    Science.gov (United States)

    Aoyama, Shohei; Hou, Kuan-Chou; Hirashita, Hiroyuki; Nagamine, Kentaro; Shimizu, Ikkoh

    2018-06-01

    To investigate the evolution of dust in a cosmological volume, we perform hydrodynamic simulations, in which the enrichment of metals and dust is treated self-consistently with star formation and stellar feedback. We consider dust evolution driven by dust production in stellar ejecta, dust destruction by sputtering, grain growth by accretion and coagulation, and grain disruption by shattering, and treat small and large grains separately to trace the grain size distribution. After confirming that our model nicely reproduces the observed relation between dust-to-gas ratio and metallicity for nearby galaxies, we concentrate on the dust abundance over the cosmological volume in this paper. The comoving dust mass density has a peak at redshift z ˜ 1-2, coincident with the observationally suggested dustiest epoch in the Universe. In the local Universe, roughly 10 per cent of the dust is contained in the intergalactic medium (IGM), where only 1/3-1/4 of the dust survives against dust destruction by sputtering. We also show that the dust mass function is roughly reproduced at ≲ 108 M⊙, while the massive end still has a discrepancy, which indicates the necessity of stronger feedback in massive galaxies. In addition, our model broadly reproduces the observed radial profile of dust surface density in the circum-galactic medium (CGM). While our model satisfies the observational constraints for the dust extinction on cosmological scales, it predicts that the dust in the CGM and IGM is dominated by large (>0.03 μm) grains, which is in tension with the steep reddening curves observed in the CGM.

  18. Experiments on Dust Grain Charging

    Science.gov (United States)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  19. Ulysses dust measurements near Jupiter.

    Science.gov (United States)

    Grün, E; Zook, H A; Baguhl, M; Fechtig, H; Hanner, M S; Kissel, J; Lindblad, B A; Linkert, D; Linkert, G; Mann, I B

    1992-09-11

    Submicrometer- to micrometer-sized particles were recorded by the Ulysses dust detector within 40 days of the Jupiter flyby. Nine impacts were recorded within 50 Jupiter radii with most of them recorded after closest approach. Three of these impacts are consistent with particles on prograde orbits around Jupiter and the rest are believed to have resulted from gravitationally focused interplanetary dust. From the ratio of the impact rate before the Jupiter flyby to the impact rate after the Jupiter flyby it is concluded that interplanetary dust particles at the distance of Jupiter move on mostly retrograde orbits. On 10 March 1992, Ulysses passed through an intense dust stream. The dust detector recorded 126 impacts within 26 hours. The stream particles were moving on highly inclined and apparently hyperbolic orbits with perihelion distances of >5 astronomical units. Interplanetary dust is lost rather quickly from the solar system through collisions and other mechanisms and must be almost continuously replenished to maintain observed abundances. Dust flux measurements, therefore, give evidence of the recent rates of production from sources such as comets, asteroids, and moons, as well as the possible presence of interstellar grains.

  20. Dust evolution in protoplanetary disks

    OpenAIRE

    Gonzalez , Jean-François; Fouchet , Laure; T. Maddison , Sarah; Laibe , Guillaume

    2007-01-01

    6 pages, 5 figures, to appear in the Proceedings of IAU Symp. 249: Exoplanets: Detection, Formation and Dynamics (Suzhou, China); International audience; We investigate the behaviour of dust in protoplanetary disks under the action of gas drag using our 3D, two-fluid (gas+dust) SPH code. We present the evolution of the dust spatial distribution in global simulations of planetless disks as well as of disks containing an already formed planet. The resulting dust structures vary strongly with pa...

  1. Control of dust production in ITER

    International Nuclear Information System (INIS)

    Rodriguez-Rodrigo, L.; Ciattaglia, S.; Elbez-Uzan, J.

    2006-01-01

    In the last years dust has been observed in a number of fusion devices and is being studied more in detail for understanding in particular the physical phenomena related to its formation, its composition, physical and chemical characteristics, and the amount of produced dust. The extrapolation of dust formation to ITER predicts (with large error bars), a large mass of dust production with a scattered size distribution. To evaluate the impact of dust on safety, assumptions have also been made on radionuclide inventory, and mobility in off-normal events, as well as any postulated contributions the dust may make to effluents or accidental releases. Solid activation products in structures are generally not readily mobilisable in incidental and accidental situations, so that activated dust, tritium and activated corrosions products are the important in-vessel source terms in postulated scenarios that assume a mobilisation and release of some fraction of this inventory. Such a release would require the simultaneous leak or bypass of several robust confinement barriers. Further concerns for dust may be the potential for chemical reactions between dust and coolant in the event of an in-vessel leak, and the theoretical possibility of a dust explosion, either of which could in principle cause a pressure rise that challenges one or more of the confinement barriers. Although these hazards can - and will - be controlled by other measures in the ITER design, application of the principle of Defence in Depth dictates that the dust inventory should also be minimised and controlled to prevent the potential hazard. A well-coordinated R-and-D programme is required to support this dust production control. This document provides from the safety point of view, an overview of existing data given in '' Dossier d'Options de Surete '', the first safety report presented in 2001 to the French Safety Authorities, and ITER documents; it also gathers information on status of studies on activated

  2. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles' external mixtures and dust mass concentration retrievals

    Science.gov (United States)

    Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain

    2018-05-01

    Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From

  3. Dust Dynamics Near Planetary Surfaces

    Science.gov (United States)

    Colwell, Joshua; Hughes, Anna; Grund, Chris

    Observations of a lunar "horizon glow" by several Surveyor spacecraft in the 1960s opened the study of the dynamics of charged dust particles near planetary surfaces. The surfaces of the Moon and other airless planetary bodies in the solar system (asteroids, and other moons) are directly exposed to the solar wind and ionizing solar ultraviolet radiation, resulting in a time-dependent electric surface potential. Because these same objects are also exposed to bombardment by micrometeoroids, the surfaces are usually characterized by a power-law size distribution of dust that extends to sub-micron-sized particles. Individual particles can acquire a charge different from their surroundings leading to electrostatic levitation. Once levitated, particles may simply return to the surface on nearly ballistic trajectories, escape entirely from the moon or asteroid if the initial velocity is large, or in some cases be stably levitated for extended periods of time. All three outcomes have observable consequences. Furthermore, the behavior of charged dust near the surface has practical implications for planned future manned and unmanned activities on the lunar surface. Charged dust particles also act as sensitive probes of the near-surface plasma environment. Recent numerical modeling of dust levitation and transport show that charged micron-sized dust is likely to accumulate in topographic lows such as craters, providing a mechanism for the creation of dust "ponds" observed on the asteroid 433 Eros. Such deposition can occur when particles are supported by the photoelectron sheath above the dayside and drift over shadowed regions of craters where the surface potential is much smaller. Earlier studies of the lunar horizon glow are consistent with those particles being on simple ballistic trajectories following electrostatic launching from the surface. Smaller particles may be accelerated from the lunar surface to high altitudes consistent with observations of high altitude

  4. Vortex Dynamics of Asymmetric Heave Plates

    Science.gov (United States)

    Rusch, Curtis; Maurer, Benjamin; Polagye, Brian

    2017-11-01

    Heave plates can be used to provide reaction forces for wave energy converters, which harness the power in ocean surface waves to produce electricity. Heave plate inertia includes both the static mass of the heave plate, as well as the ``added mass'' of surrounding water accelerated with the object. Heave plate geometries may be symmetric or asymmetric, with interest in asymmetric designs driven by the resulting hydrodynamic asymmetry. Limited flow visualization has been previously conducted on symmetric heave plates, but flow visualization of asymmetric designs is needed to understand the origin of observed hydrodynamic asymmetries and their dependence on the Keulegan-Carpenter number. For example, it is hypothesized that the time-varying added mass of asymmetric heave plates is caused by vortex shedding, which is related to oscillation amplitude. Here, using direct flow visualization, we explore the relationship between vortex dynamics and time-varying added mass and drag. These results suggest potential pathways for more advanced heave plate designs that can exploit vortex formation and shedding to achieve more favorable hydrodynamic properties for wave energy converters.

  5. Grain dust and the lungs.

    Science.gov (United States)

    Chan-Yeung, M.; Ashley, M. J.; Grzybowski, S.

    1978-01-01

    Grain dust is composed of a large number of materials, including various types of grain and their disintegration products, silica, fungi, insects and mites. The clinical syndromes described in relation to exposure to grain dust are chronic bronchitis, grain dust asthma, extrinsic allergic alveolitis, grain fever and silo-filler's lung. Rhinitis and conjunctivitis are also common in grain workers. While the concentration and the quality of dust influence the frequency and the type of clinical syndrome in grain workers, host factors are also important. Of the latter, smoking is the most important factor influencing the frequency of chronic bronchitis. The role of atopy and of bronchial hyperreactivity in grain dust asthma has yet to be assessed. Several well designed studies are currently being carried out in North America not only to delineate the frequency of the respiratory abnormalities, the pathogenetic mechanisms and the host factors, but also to establish a meaningful threshold limit concentration for grain dust. Images p1272-a PMID:348288

  6. LADEE LUNAR DUST EXPERIMENT

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive bundle includes data taken by the Lunar Dust Experiment (LDEX) instrument aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft....

  7. Combustible dust tests

    Science.gov (United States)

    The sugar dust explosion in Georgia on February 7, 2008 killed 14 workers and injured many others (OSHA, 2009). As a consequence of this explosion, OSHA revised its Combustible Dust National Emphasis (NEP) program. The NEP targets 64 industries with more than 1,000 inspections and has found more tha...

  8. Renewable resource management under asymmetric information

    DEFF Research Database (Denmark)

    Jensen, Frank; Andersen, Peder; Nielsen, Max

    2013-01-01

    Asymmetric information between fishermen and the regulator is important within fisheries. The regulator may have less information about stock sizes, prices, costs, effort, productivity and catches than fishermen. With asymmetric information, a strong analytical tool is principal-agent analysis....... In this paper, we study asymmetric information about productivity within a principal-agent framework and a tax on fishing effort is considered. It is shown that a second best optimum can be achieved if the effort tax is designed such that low-productivity agents rent is exhausted, while high-productivity agents...... receive an information rent. The information rent is equivalent to the total incentive cost. The incentive costs arise as we want to reveal the agent's type....

  9. Dust particle formation in silane plasmas

    NARCIS (Netherlands)

    Sorokin, M.

    2005-01-01

    Dust can be found anywhere: in the kitchen, in the car, in space… Not surprisingly we also see dust in commercial and laboratory plasmas. Dust can be introduced in the plasma, but it can also grow there by itself. In the microelectronics industry, contamination of the processing plasma by dust is an

  10. Polarized Light Imaging of the HD 142527 Transition Disk with the Gemini Planet Imager: Dust around the Close-in Companion

    Science.gov (United States)

    Rodigas, Timothy J.; Follette, Katherine B.; Weinberger, Alycia; Close, Laird; Hines, Dean C.

    2014-08-01

    When giant planets form, they grow by accreting gas and dust. HD 142527 is a young star that offers a scaled-up view of this process. It has a broad, asymmetric ring of gas and dust beyond ~100 AU and a wide inner gap. Within the gap, a low-mass stellar companion orbits the primary star at just ~12 AU, and both the primary and secondary are accreting gas. In an attempt to directly detect the dusty counterpart to this accreted gas, we have observed HD 142527 with the Gemini Planet Imager in polarized light at Y band (0.95-1.14 μm). We clearly detect the companion in total intensity and show that its position and photometry are generally consistent with the expected values. We also detect a point source in polarized light that may be spatially separated by ~ a few AU from the location of the companion in total intensity. This suggests that dust is likely falling onto or orbiting the companion. Given the possible contribution of scattered light from this dust to previously reported photometry of the companion, the current mass limits should be viewed as upper limits only. If the dust near the companion is eventually confirmed to be spatially separated, this system would resemble a scaled-up version of the young planetary system inside the gap of the transition disk around LkCa 15. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministrio da Cincia, Tecnologia e Inovao (Brazil), and Ministerio de Ciencia, Tecnologa e Innovacin Productiva (Argentina).

  11. Excitation energies and properties of open-shell singlet molecules applications to a new class of molecules for nonlinear optics and singlet fission

    CERN Document Server

    Nakano, Masayoshi

    2014-01-01

    This brief investigates the diradical character, which is one of the ground-state chemical indices for 'bond weakness' or 'electron correlation' and which allows researchers to explore the origins of the electron-correlation-driven physico-chemical phenomena concerned with electronic, optical and magnetic properties as well as to control them in the broad fields of physics and chemistry. It then provides the theoretical fundamentals of ground and excited electronic structures of symmetric and asymmetric open-shell molecular systems by using model molecular systems. Moreover, it presents the th

  12. Subcopula-based measure of asymmetric association for contingency tables.

    Science.gov (United States)

    Wei, Zheng; Kim, Daeyoung

    2017-10-30

    For the analysis of a two-way contingency table, a new asymmetric association measure is developed. The proposed method uses the subcopula-based regression between the discrete variables to measure the asymmetric predictive powers of the variables of interest. Unlike the existing measures of asymmetric association, the subcopula-based measure is insensitive to the number of categories in a variable, and thus, the magnitude of the proposed measure can be interpreted as the degree of asymmetric association in the contingency table. The theoretical properties of the proposed subcopula-based asymmetric association measure are investigated. We illustrate the performance and advantages of the proposed measure using simulation studies and real data examples. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Optical and microphysical properties of natural mineral dust and anthropogenic soil dust near dust source regions over northwestern China

    Science.gov (United States)

    Wang, Xin; Wen, Hui; Shi, Jinsen; Bi, Jianrong; Huang, Zhongwei; Zhang, Beidou; Zhou, Tian; Fu, Kaiqi; Chen, Quanliang; Xin, Jinyuan

    2018-02-01

    Mineral dust aerosols (MDs) not only influence the climate by scattering and absorbing solar radiation but also modify cloud properties and change the ecosystem. From 3 April to 16 May 2014, a ground-based mobile laboratory was deployed to measure the optical and microphysical properties of MDs near dust source regions in Wuwei, Zhangye, and Dunhuang (in chronological order) along the Hexi Corridor over northwestern China. Throughout this dust campaign, the hourly averaged (±standard deviation) aerosol scattering coefficients (σsp, 550 nm) of the particulates with aerodynamic diameters less than 2.5 µm (PM2.5) at these three sites were sequentially 101.5 ± 36.8, 182.2 ± 433.1, and 54.0 ± 32.0 Mm-1. Correspondingly, the absorption coefficients (σap, 637 nm) were 9.7 ± 6.1, 6.0 ± 4.6, and 2.3 ± 0.9 Mm-1; single-scattering albedos (ω, 637 nm) were 0.902 ± 0.025, 0.931 ± 0.037, and 0.949 ± 0.020; and scattering Ångström exponents (Åsp, 450-700 nm) of PM2.5 were 1.28 ± 0.27, 0.77 ± 0.51, and 0.52 ± 0.31. During a severe dust storm in Zhangye (i.e., from 23 to 25 April), the highest values of σsp2.5 ( ˜ 5074 Mm-1), backscattering coefficient (σbsp2.5, ˜ 522 Mm-1), and ω637 ( ˜ 0.993) and the lowest values of backscattering fraction (b2.5, ˜ 0.101) at 550 nm and Åsp2.5 ( ˜ -0.046) at 450-700 nm, with peak values of aerosol number size distribution (appearing at the particle diameter range of 1-3 µm), exhibited that the atmospheric aerosols were dominated by coarse-mode dust aerosols. It is hypothesized that the relatively higher values of mass scattering efficiency during floating dust episodes in Wuwei and Zhangye are attributed to the anthropogenic soil dust produced by agricultural cultivations.

  14. Revisiting chameleon gravity: Thin-shell and no-shell fields with appropriate boundary conditions

    International Nuclear Information System (INIS)

    Tamaki, Takashi; Tsujikawa, Shinji

    2008-01-01

    We derive analytic solutions of a chameleon scalar field φ that couples to a nonrelativistic matter in the weak gravitational background of a spherically symmetric body, paying particular attention to a field mass m A inside of the body. The standard thin-shell field profile is recovered by taking the limit m A r c →∞, where r c is a radius of the body. We show the existence of ''no-shell'' solutions where the field is nearly frozen in the whole interior of the body, which does not necessarily correspond to the 'zero-shell' limit of thin-shell solutions. In the no-shell case, under the condition m A r c >>1, the effective coupling of φ with matter takes the same asymptotic form as that in the thin-shell case. We study experimental bounds coming from the violation of equivalence principle as well as solar-system tests for a number of models including f(R) gravity and find that the field is in either the thin-shell or the no-shell regime under such constraints, depending on the shape of scalar-field potentials. We also show that, for the consistency with local gravity constraints, the field at the center of the body needs to be extremely close to the value φ A at the extremum of an effective potential induced by the matter coupling.

  15. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    Science.gov (United States)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; hide

    2011-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.

  16. Maintaining the Background Dust Opacity During Northern Hemisphere Summer Mars Using Wind Stress Based Dust Lifting

    Science.gov (United States)

    Jha, V.; Kahre, M. A.

    2017-12-01

    The Mars atmosphere has low levels of dust during Northern Hemisphere (NH) spring and summer (the non-dusty season) and increased levels during NH autumn and winter (the dusty season). In the absence of regional or global storms, dust devils and local storms maintain a background minimum dust loading during the non-dusty season. While observational surveys and Global Climate Model (GCM) studies suggest that dust devils are likely to be major contributors to the background haze during NH spring and summer, a complete understanding of the relative contribution of dust devils and local dust storms has not yet been achieved. We present preliminary results from an investigation that focuses on the effects of radiatively active water ice clouds on dust lifting processes during these seasons. Water ice clouds are known to affect atmospheric temperatures directly by absorption and emission of thermal infrared radiation and indirectly through dynamical feedbacks. Our goal is to understand how clouds affect the contribution by local (wind stress) dust storms to the background dust haze during NH spring and summer. The primary tool for this work is the NASA Ames Mars GCM, which contains physical parameterizations for a fully interactive dust cycle. Three simulations that included wind stress dust lifting were executed for a period of 5 Martian years: a case that included no cloud formation, a case that included radiatively inert cloud formation and a case that included radiatively active cloud (RAC) formation. Results show that when radiatively active clouds are included, the clouds in the aphelion cloud belt radiatively heat the atmosphere aloft in the tropics (Figure 1). This heating produces a stronger overturning circulation, which in turn produces an enhanced low-level flow in the Hadley cell return branch. The stronger low-level flow drives higher surface stresses and increased dust lifting in those locations. We examine how realistic these simulated results are by

  17. Properties of interstellar dust in reflection nebulae

    International Nuclear Information System (INIS)

    Sellgren, K.

    1988-01-01

    Observations of interstellar dust in reflection nebulae are the closest analog in the interstellar medium to studies of cometary dust in our solar system. The presence of a bright star near the reflection nebula dust provides the opportunity to study both the reflection and emission characteristics of interstellar dust. At 0.1 to 1 micrometer, the reflection nebula emission is due to starlight scattered by dust. The albedo and scattering phase function of the dust is determined from observations of the scattered light. At 50 to 200 micrometers, thermal emission from the dust in equilibrium with the stellar radiation field is observed. The derived dust temperature determines the relative values of the absorption coefficient of the dust at wavelengths where the stellar energy is absorbed and at far infrared wavelengths where the absorbed energy is reradiated. These emission mechanisms directly relate to those seen in the near and mid infrared spectra of comets. In a reflection nebula the dust is observed at much larger distances from the star than in our solar system, so that the equilibrium dust temperature is 50 K rather than 300 K. Thus, in reflection nebulae, thermal emission from dust is emitted at 50 to 200 micrometer

  18. The dust acoustic wave in a bounded dusty plasma with strong electrostatic interactions between dust grains

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P.K.

    2011-01-01

    The dispersion relation for the dust acoustic wave (DAW) in an unmagnetized dusty plasma cylindrical waveguide is derived, accounting for strong electrostatic interactions between charged dust grains. It is found that the boundary effect limits the radial extent of the DAW. The present result should be helpful for understanding the frequency spectrum of the DAW in a dusty plasma waveguide with strongly coupled charged dust grains. - Highlights: → We study the dust acoustic wave (DAW) in a bounded plasma. → We account for interactions between dust grains. → The boundary effect limits the radial extent of the DAW.

  19. Modelling asymmetric growth in crowded plant communities

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2010-01-01

    A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size......-asymmetric growth part, where growth is assumed to be proportional to a power function of the size of the individual, and a term that reduces the relative growth rate as a decreasing function of the individual plant size and the competitive interactions from other plants in the neighbourhood....

  20. Transport comparison of multiwall carbon nanotubes by contacting outer shell and all shells.

    Science.gov (United States)

    Luo, Qiang; Cui, A-Juan; Zhang, Yi-Guang; Lu, Chao; Jin, Ai-Zi; Yang, Hai-Fang; Gu, Chang-Zhi

    2010-11-01

    Carbon nanotubes, particularly multiwall carbon nanotubes (MWCNTs) can serve as interconnects in nanoelectronic devices and integrated circuits because of their extremely large current-carrying capacity. Many experimental results about the transport properties of individual MWCNTs by contacting outer shell or all shells have been reported. In this work, a compatible method with integrated circuit manufacturing process was presented to compare the transport property of an individual multiwall carbon nanotube (MWCNT) by contacting outer shell only and all shells successively. First of the Ti/Au electrodes contacting outer shell only were fabricated onto the nanotube through the sequence of electron beam lithography (EBL) patterning, metal deposition and lift-off process. After the characterization of its transport property, focused ion beam (FIB) was used to drill holes through the same nanotube at the as-deposited electrodes. Then new contact to the holes and electrodes were made by ion-induced deposition of tungsten from W(CO)6 precursor gas. The transport results indicated that the new contact to all shells can clear up the intershell resistance and the electrical conductance of the tube can be improved about 8 times compared to that of by contacting outer shell only.

  1. Dust Studies in DIII-D and TEXTOR

    International Nuclear Information System (INIS)

    Rudakov, D.L.; Litnovsky, A.; West, W.P.; Yu, J.H.; Boedo, J.A.; Bray, B.D.; Brezinsek, S.; Brooks, N.H.; Fenstermacher, M.E.; Groth, M.; Hollmann, E.M.; Huber, A.; Hyatt, A.W.; Krasheninnikov, S.I.; Lasnier, C.J.; Moyer, R.A.; Pigarov, A.Y.; Philipps, V.; Pospieszczyk, A.; Smirnov, R.D.; Sharpe, J.P.; Solomon, W.M.; Watkins, J.G.; Wong, C.C.

    2009-01-01

    Studies of naturally occurring and artificially introduced carbon dust are conducted in DIII-D and TEXTOR. In DIII-D, dust does not present operational concerns except immediately after entry vents. Submicron sized dust is routinely observed using Mie scattering from a Nd:Yag laser. The source is strongly correlated with the presence of Type I edge localized modes (ELMs). Larger size (0.005-1 mm diameter) dust is observed by optical imaging, showing elevated dust levels after entry vents. Inverse dependence of the dust velocity on the inferred dust size is found from the imaging data. Direct heating of the dust particles by the neutral beam injection (NBI) and acceleration of dust particles by the plasma flows are observed. Energetic plasma disruptions produce significant amounts of dust. Large flakes or debris falling into the plasma may result in a disruption. Migration of pre-characterized carbon dust is studied in DIII-D and TEXTOR by introducing micron-size dust in plasma discharges. In DIII-D, a sample holder filled with ∼30 mg of dust is introduced in the lower divertor and exposed to high-power ELMing H-mode discharges with strike points swept across the divertor floor. After a brief exposure (∼0.1 s) at the outer strike point, part of the dust is injected into the plasma, raising the core carbon density by a factor of 2-3 and resulting in a twofold increase of the radiated power. In TEXTOR, instrumented dust holders with 1-45 mg of dust are exposed in the scrape-off layer 0-2 cm radially outside of the last closed flux surface in discharges heated with neutral beam injection (NBI) power of 1.4 MW. At the given configuration of the launch, the dust did not penetrate the core plasma and only moderately perturbed the edge plasma, as evidenced by an increase of the edge carbon content.

  2. PERSPECTIVE: Dust, fertilization and sources

    Science.gov (United States)

    Remer, Lorraine A.

    2006-11-01

    Aerosols, tiny suspended particles in the atmosphere, play an important role in modifying the Earth's energy balance and are essential for the formation of cloud droplets. Suspended dust particles lifted from the world's arid regions by strong winds contain essential minerals that can be transported great distances and deposited into the ocean or on other continents where productivity is limited by lack of usable minerals [1]. Dust can transport pathogens as well as minerals great distance, contributing to the spread of human and agricultural diseases, and a portion of dust can be attributed to human activity suggesting that dust radiative effects should be included in estimates of anthropogenic climate forcing. The greenish and brownish tints in figure 1 show the wide extent of monthly mean mineral dust transport, as viewed by the MODerate resolution Imaging Spectroradiometer (MODIS) satellite sensor. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite Figure 1. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite. The brighter the color, the greater the aerosol loading. Red and reddish tints indicate aerosol dominated by small particles created primarily from combustion processes. Green and brownish tints indicate larger particles created from wind-driven processes, usually transported desert dust. Note the bright green band at the southern edge of the Saharan desert, the reddish band it must cross if transported to the southwest and the long brownish transport path as it crosses the Atlantic to South America. Image courtesy of the NASA Earth Observatory (http://earthobservatory.nasa.gov). Even though qualitatively we recognize the extent and importance of dust transport and the role that it plays in fertilizing nutrient-limited regions, there is much that is still unknown. We are just now beginning to quantify the amount of dust that exits one continental region and the

  3. Activation analysis of deposited dust brought to Israel by dust storms

    International Nuclear Information System (INIS)

    Ganor, E.; Tal, A.; Donagi, A.

    1975-01-01

    The determination of dust particles deposited in Jerusalem during regional dust storms was carried out by polarized microscopy, X-ray analysis and atomic absorption measurements. These analyses showed the presence of particles of quartz, calcite, dolomite, feldspar, halite, kaolinite, montmorillonite, epidote, tourmaline, glauconite, illite and other heavy minerals. The aims of the present study were to apply activation analysis for the determination of element composition in dust samples; to compare the results obtained by activation analysis with those obtained by other methods, i.e. chemical analysis, polarized microscopy and X-ray analysis. The results obtained by the various methods were in good agreement. (B.G.)

  4. Asymmetric Frontal Brain Activity and Parental Rejection

    NARCIS (Netherlands)

    Huffmeijer, R.; Alink, L.R.A.; Tops, M.; Bakermans-Kranenburg, M.J.; van IJzendoorn, M.H.

    2013-01-01

    Asymmetric frontal brain activity has been widely implicated in reactions to emotional stimuli and is thought to reflect individual differences in approach-withdrawal motivation. Here, we investigate whether asymmetric frontal activity, as a measure of approach-withdrawal motivation, also predicts

  5. ORIGIN OF DUST AROUND V1309 SCO

    International Nuclear Information System (INIS)

    Zhu, Chunhua; Lü, Guoliang; Wang, Zhaojun

    2013-01-01

    The origin of dust grains in the interstellar medium is still an unanswered problem. Nicholls et al. found the presence of a significant amount of dust around V1309 Sco, which may originate from the merger of a contact binary. We investigate the origin of dust around V1309 Sco and suggest that these dust grains are produced in the binary-merger ejecta. By means of the AGBDUST code, we estimate that ∼5.2 × 10 –4 M ☉ dust grains are produced with a radii of ∼10 –5 cm. These dust grains are mainly composed of silicate and iron grains. Because the mass of the binary merger ejecta is very small, the contribution of dust produced by binary merger ejecta to the overall dust production in the interstellar medium is negligible. However, it is important to note that the discovery of a significant amount of dust around V1309 Sco offers a direct support for the idea that common-envelope ejecta provides an ideal environment for dust formation and growth. Therefore, we confirm that common envelope ejecta can be important source of cosmic dust

  6. From red giant to planetary nebula - Dust, asymmetry, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.; Jones, T.J.

    1991-01-01

    The polarization characteristics of stars in the stages of evolution from red giant to planetary nebula are investigated. Polarization is found to be a characteristic of the majority of these stars. The maximum observed polarization increases with age as the star evolves up the asymptotic giant branch (AGB) to the protoplanetary nebula phase, where the polarization reaches a maximum. The polarization then decreases as the star further evolves into a planetary nebula. These results indicate that aspherical mass loss is likely to be a continual feature of the late stages of stellar evolution, maintaining a clear continuity throughout the life of a star from the moment it first develops a measurable dust shell. The aspherical morphology seen in planetary nebulae has its origin in an intrinsic property of the star that is present at least as early as its arrival at the base of the AGB. 77 refs

  7. Dust-Tolerant Intelligent Electrical Connection System

    Science.gov (United States)

    Lewis, Mark; Dokos, Adam; Perotti, Jose; Calle, Carlos; Mueller, Robert; Bastin, Gary; Carlson, Jeffrey; Townsend, Ivan, III; Immer, Chirstopher; Medelius, Pedro

    2012-01-01

    Faults in wiring systems are a serious concern for the aerospace and aeronautic (commercial, military, and civilian) industries. Circuit failures and vehicle accidents have occurred and have been attributed to faulty wiring created by open and/or short circuits. Often, such circuit failures occur due to vibration during vehicle launch or operation. Therefore, developing non-intrusive fault-tolerant techniques is necessary to detect circuit faults and automatically route signals through alternate recovery paths while the vehicle or lunar surface systems equipment is in operation. Electrical connector concepts combining dust mitigation strategies and cable diagnostic technologies have significant application for lunar and Martian surface systems, as well as for dusty terrestrial applications. The dust-tolerant intelligent electrical connection system has several novel concepts and unique features. It combines intelligent cable diagnostics (health monitoring) and automatic circuit routing capabilities into a dust-tolerant electrical umbilical. It retrofits a clamshell protective dust cover to an existing connector for reduced gravity operation, and features a universal connector housing with three styles of dust protection: inverted cap, rotating cap, and clamshell. It uses a self-healing membrane as a dust barrier for electrical connectors where required, while also combining lotus leaf technology for applications where a dust-resistant coating providing low surface tension is needed to mitigate Van der Waals forces, thereby disallowing dust particle adhesion to connector surfaces. It also permits using a ruggedized iris mechanism with an embedded electrodynamic dust shield as a dust barrier for electrical connectors where required.

  8. Ocular toxicity of authentic lunar dust.

    Science.gov (United States)

    Meyers, Valerie E; Garcìa, Hector D; Monds, Kathryn; Cooper, Bonnie L; James, John T

    2012-07-20

    Dust exposure is a well-known occupational hazard for terrestrial workers and astronauts alike and will continue to be a concern as humankind pursues exploration and habitation of objects beyond Earth. Humankind's limited exploration experience with the Apollo Program indicates that exposure to dust will be unavoidable. Therefore, NASA must assess potential toxicity and recommend appropriate mitigation measures to ensure that explorers are adequately protected. Visual acuity is critical during exploration activities and operations aboard spacecraft. Therefore, the present research was performed to ascertain the ocular toxicity of authentic lunar dust. Small (mean particle diameter = 2.9 ± 1.0 μm), reactive lunar dust particles were produced by grinding bulk dust under ultrapure nitrogen conditions. Chemical reactivity and cytotoxicity testing were performed using the commercially available EpiOcularTM assay. Subsequent in vivo Draize testing utilized a larger size fraction of unground lunar dust that is more relevant to ocular exposures (particles lunar dust was minimally irritating. Minor irritation of the upper eyelids was noted at the 1-hour observation point, but these effects resolved within 24 hours. In addition, no corneal scratching was observed using fluorescein stain. Low-titanium mare lunar dust is minimally irritating to the eyes and is considered a nuisance dust for ocular exposure. No special precautions are recommended to protect against ocular exposures, but fully shielded goggles may be used if dust becomes a nuisance.

  9. Asymmetric dominance and asymmetric mate choice oppose premating isolation after allopatric divergence.

    Science.gov (United States)

    Sefc, Kristina M; Hermann, Caroline M; Steinwender, Bernd; Brindl, Hanna; Zimmermann, Holger; Mattersdorfer, Karin; Postl, Lisbeth; Makasa, Lawrence; Sturmbauer, Christian; Koblmüller, Stephan

    2015-04-01

    Assortative mating promotes reproductive isolation and allows allopatric speciation processes to continue in secondary contact. As mating patterns are determined by mate preferences and intrasexual competition, we investigated male-male competition and behavioral isolation in simulated secondary contact among allopatric populations. Three allopatric color morphs of the cichlid fish Tropheus were tested against each other. Dyadic male-male contests revealed dominance of red males over bluish and yellow-blotch males. Reproductive isolation in the presence of male-male competition was assessed from genetic parentage in experimental ponds and was highly asymmetric among pairs of color morphs. Red females mated only with red males, whereas the other females performed variable degrees of heteromorphic mating. Discrepancies between mating patterns in ponds and female preferences in a competition-free, two-way choice paradigm suggested that the dominance of red males interfered with positive assortative mating of females of the subordinate morphs and provoked asymmetric hybridization. Between the nonred morphs, a significant excess of negative assortative mating by yellow-blotch females with bluish males did not coincide with asymmetric dominance among males. Hence, both negative assortative mating preferences and interference of male-male competition with positive assortative preferences forestall premating isolation, the latter especially in environments unsupportive of competition-driven spatial segregation.

  10. Method development of damage detection in asymmetric buildings

    Science.gov (United States)

    Wang, Yi; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Andy

    2018-01-01

    Aesthetics and functionality requirements have caused most buildings to be asymmetric in recent times. Such buildings exhibit complex vibration characteristics under dynamic loads as there is coupling between the lateral and torsional components of vibration, and are referred to as torsionally coupled buildings. These buildings require three dimensional modelling and analysis. In spite of much recent research and some successful applications of vibration based damage detection methods to civil structures in recent years, the applications to asymmetric buildings has been a challenging task for structural engineers. There has been relatively little research on detecting and locating damage specific to torsionally coupled asymmetric buildings. This paper aims to compare the difference in vibration behaviour between symmetric and asymmetric buildings and then use the vibration characteristics for predicting damage in them. The need for developing a special method to detect damage in asymmetric buildings thus becomes evident. Towards this end, this paper modifies the traditional modal strain energy based damage index by decomposing the mode shapes into their lateral and vertical components and to form component specific damage indices. The improved approach is then developed by combining the modified strain energy based damage indices with the modal flexibility method which was modified to suit three dimensional structures to form a new damage indicator. The procedure is illustrated through numerical studies conducted on three dimensional five-story symmetric and asymmetric frame structures with the same layout, after validating the modelling techniques through experimental testing of a laboratory scale asymmetric building model. Vibration parameters obtained from finite element analysis of the intact and damaged building models are then applied into the proposed algorithms for detecting and locating the single and multiple damages in these buildings. The results

  11. Shell report 2001; Les personnes, la planete, les profits. Shell rapport 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    In 2001, Shell saw mixed results across the social, environmental and economic spectrum. In order to contribute to the sustainable development, the Group is on track towards meeting its target to reduce greenhouse gas emissions to 10 % below 1990 levels by the end of 2002, although there was a significant increase in spill volumes and greenhouse gas emissions rose. Shell has articulated the business case and defined seven principles of sustainable development for use across the Group in business plans and daily operations: generating robust profitability; delivering value to customers; protecting the environment; managing resources; respecting and safeguarding people; benefiting communities; and working with stakeholders. Key points from the Shell Report include: in the framework of Managing, an independent review of the Shell Nigeria Community Development programme and testing of a human rights assessment tool in Shell South Africa and the implementing of a new Diversity and Inclusiveness Standard; in the framework of the economy the cost improvements of 5,1 billion dollars, ahead of target, the second highest earnings ever in difficult market conditions and the election of Shell top brand for fifth year running by motorists; in the framework of the Social, the safety performance, the avoidance of 100 contracts for incompatibility with Shell Business Principles; in the framework of the Environment, the publication of the Fresh water usage report for the first time, the Greenhouse gas emissions, the increase of spills as a result of a small number of incidents including a pipeline rupture in Nigeria and a well blow out in Oman. The economic, environmental and social data of the Shell Report are externally verified. (A.L.B.)

  12. Peatland Microbial Communities as Indicators of the Extreme Atmospheric Dust Deposition.

    Science.gov (United States)

    Fiałkiewicz-Kozieł, B; Smieja-Król, B; Ostrovnaya, T M; Frontasyeva, M; Siemińska, A; Lamentowicz, M

    We investigated a peat profile from the Izery Mountains, located within the so-called Black Triangle, the border area of Poland, Czech Republic, and Germany. This peatland suffered from an extreme atmospheric pollution during the last 50 years, which created an exceptional natural experiment to examine the impact of pollution on peatland microbes. Testate amoebae (TA), Centropyxis aerophila and Phryganella acropodia , were distinguished as a proxy of atmospheric pollution caused by extensive brown coal combustion. We recorded a decline of mixotrophic TA and development of agglutinated taxa as a response for the extreme concentration of Al (30 g kg -1 ) and Cu (96 mg kg -1 ) as well as the extreme amount of fly ash particles determined by scanning electron microscopy (SEM) analysis, which were used by TA for shell construction. Titanium (5.9 %), aluminum (4.7 %), and chromium (4.2 %) significantly explained the highest percentage of the variance in TA data. Elements such as Al, Ti, Cr, Ni, and Cu were highly correlated ( r  > 0.7, p  < 0.01) with pseudostome position/body size ratio and pseudostome position. Changes in the community structure, functional diversity, and mechanisms of shell construction were recognized as the indicators of dust pollution. We strengthen the importance of the TA as the bioindicators of the recent atmospheric pollution.

  13. Dust bands in the asteroid belt

    International Nuclear Information System (INIS)

    Sykes, M.V.; Greenberg, R.; Dermott, S.F.; Nicholson, P.D.; Burns, J.A.

    1989-01-01

    This paper describes the original IRAS observations leading to the discovery of the three dust bands in the asteroid belt and the analysis of data. Special attention is given to an analytical model of the dust band torus and to theories concerning the origin of the dust bands, with special attention given to the collisional equilibrium (asteroid family), the nonequilibrium (random collision), and the comet hypotheses of dust-band origin. It is noted that neither the equilibrium nor nonequilibrium models, as currently formulated, present a complete picture of the IRAS dust-band observations. 32 refs

  14. Early-Holocene greening of the Afro-Asian dust belt changed sources of mineral dust in West Asia

    Science.gov (United States)

    Sharifi, Arash; Murphy, Lisa N.; Pourmand, Ali; Clement, Amy C.; Canuel, Elizabeth A.; Naderi Beni, Abdolmajid; Lahijani, Hamid A. K.; Delanghe, Doriane; Ahmady-Birgani, Hesam

    2018-01-01

    Production, transport and deposition of mineral dust have significant impacts on different components of the Earth systems through time and space. In modern times, dust plumes are associated with their source region(s) using satellite and land-based measurements and trajectory analysis of air masses through time. Reconstruction of past changes in the sources of mineral dust as related to changes in climate, however, must rely on the knowledge of the geochemical and mineralogical composition of modern and paleo-dust, and that of their potential source origins. In this contribution, we present a 13,000-yr record of variations in radiogenic Sr-Nd-Hf isotopes and Rare Earth Element (REE) anomalies as well as dust grain size from an ombrotrophic (rain fed) peat core in NW Iran as proxies of past changes in the sources of dust over the interior of West Asia. Our data shows that although the grain size of dust varies in a narrow range through the entire record, the geochemical fingerprint of dust particles deposited during the low-flux, early Holocene period (11,700-6,000 yr BP) is distinctly different from aerosols deposited during high dust flux periods of the Younger Dryas and the mid-late Holocene (6,000-present). Our findings indicate that the composition of mineral dust deposited at the study site changed as a function of prevailing atmospheric circulation regimes and land exposure throughout the last deglacial period and the Holocene. Simulations of atmospheric circulation over the region show the Northern Hemisphere Summer Westerly Jet was displaced poleward across the study area during the early Holocene when Northern Hemisphere insolation was higher due to the Earth's orbital configuration. This shift, coupled with lower dust emissions simulated based on greening of the Afro-Asian Dust Belt during the early Holocene likely led to potential sources in Central Asia dominating dust export to West Asia during this period. In contrast, the dominant western and

  15. Asymmetric Synthesis via Chiral Aziridines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Harden, Adrian; Wyatt, Paul

    1996-01-01

    A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the b......A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines...

  16. Optimal multicopy asymmetric Gaussian cloning of coherent states

    International Nuclear Information System (INIS)

    Fiurasek, Jaromir; Cerf, Nicolas J.

    2007-01-01

    We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and feedforward

  17. Optimal multicopy asymmetric Gaussian cloning of coherent states

    Science.gov (United States)

    Fiurášek, Jaromír; Cerf, Nicolas J.

    2007-05-01

    We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and feedforward.

  18. Dust storms and their impact on ocean and human health: dust in Earth's atmosphere

    Science.gov (United States)

    Griffin, Dale W.; Kellog, Christina A.

    2004-01-01

    Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.

  19. RADIAL DISTRIBUTION OF STARS, GAS AND DUST IN SINGS GALAXIES. I. SURFACE PHOTOMETRY AND MORPHOLOGY

    International Nuclear Information System (INIS)

    Munoz-Mateos, J. C.; Gil de Paz, A.; Zamorano, J.

    2009-01-01

    We present ultraviolet through far-infrared (FIR) surface brightness profiles for the 75 galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS). The imagery used to measure the profiles includes Galaxy Evolution Explorer UV data, optical images from Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and Sloan Digital Sky Survey, near-IR data from Two Micron All Sky Survey, and mid- and FIR images from Spitzer. Along with the radial profiles, we also provide multi-wavelength asymptotic magnitudes and several nonparametric indicators of galaxy morphology: the concentration index (C 42 ), the asymmetry (A), the Gini coefficient (G), and the normalized second-order moment of the brightest 20% of the galaxy's flux (M-bar 20 ). In this paper, the first of a series, we describe the technical aspects regarding the surface photometry, and present a basic analysis of the global and structural properties of the SINGS galaxies at different wavelengths. The homogeneity in the acquisition, reduction, and analysis of the results presented here makes these data ideal for multiple unanticipated studies on the radial distribution of the properties of stars, dust, and gas in galaxies. Our radial profiles show a wide range of morphologies and multiple components (bulges, exponential disks, inner and outer disk truncations, etc.) that vary not only from galaxy to galaxy but also with wavelength for a given object. In the optical and near-IR, the SINGS galaxies occupy the same regions in the C 42 -A-G-M-bar 20 parameter space as other normal galaxies in previous studies. However, they appear much less centrally concentrated, more asymmetric, and with larger values of G when viewed in the UV (due to star-forming clumps scattered across the disk) and in the mid-IR (due to the emission of polycyclic aromatic hydrocarbons at 8.0 μm and very hot dust at 24 μm). In an accompanying paper by Munoz-Mateos et al., we focus on the radial distribution of dust

  20. Electromagnetic dust-lower-hybrid and dust-magnetosonic waves and their instabilities in a dusty magnetoplasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Rahman, M. M.; Zeba, I.; Shah, H. A.; Murtaza, G.; Shukla, P. K.

    2006-01-01

    The electromagnetic waves below the ion-cyclotron frequency have been examined in a collisionless and homogeneous dusty plasma in the presence of a dust beam parallel to the direction of the external magnetic field. The low-frequency mixed electromagnetic dust-lower-hybrid and purely transverse magnetosonic waves become unstable for the sheared flow of dust grains and grow in amplitude when the drift velocity of the dust grains exceeds the parallel phase velocity of the waves. The growth rate depends dominantly upon the thermal velocity and density of the electrons

  1. COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING

    International Nuclear Information System (INIS)

    Matthews, Lorin S.; Hyde, Truell W.; Shotorban, Babak

    2013-01-01

    The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface of an irregularly shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) is affected most strongly

  2. Construction dust amelioration techniques.

    Science.gov (United States)

    2012-04-01

    Dust produced on seasonal road construction sites in Alaska is both a traffic safety and environmental concern. Dust emanating from : unpaved road surfaces during construction severely reduces visibility and impacts stopping sight distance, and contr...

  3. Dust exposure and pneumoconiosis in a South African pottery. 1. Study objectives and dust exposure.

    Science.gov (United States)

    Rees, D; Cronje, R; du Toit, R S

    1992-07-01

    Dust exposure and pneumoconiosis were investigated in a South African pottery that manufactured wall tiles and bathroom fittings. This paper describes the objectives of the investigation and presents dust measurement data. x Ray diffraction showed that the clays used by the pottery had a high quartz content (range 58%-23%, mean 38%). Exposure to respirable dust was measured for 43 workers and was highest (6.6 mg/m3) in a bathroom fitting fettler. Quartz concentrations in excess of 0.1 mg/m3 were found in all sections of the manufacturing process from slip production to biscuit firing and sorting. The proportion of quartz in the respirable dust of these sections was 24% to 33%. This is higher than is usually reported in English potteries. Four hundred and six (80%) of the 509 workers employed at the pottery were potentially at risk of occupational lung disease. The finding of large numbers of pottery workers exposed to unacceptable dust concentrations is not surprising as poor dust control was found in all six wall tile and sanitary ware factories surveyed by the National Centre for Occupational Health between 1973 and 1989. Dust related occupational disease can be expected in potters for many years to come.

  4. Study on treatment of dust by dismantling

    International Nuclear Information System (INIS)

    Torikai, K.; Suzuki, K.

    1987-01-01

    In dismantling of nuclear reactors, various kinds of treatment of dust generated by cutting or dismantling concrete structures of components of reactors are evaluated for safety, cost, and performance comparing the work in air with water. A method of dust treatment for work in air is discussed. The dry method has an easy operation in practice and a good performance in the equipment, but has problem on the prevention from radioactive contamination by diffusion of dust in air. For the purpose of advancing the strong points and eliminating the weak points in dry method, an improved venturi scrubber system is proposed for dismantling work as a dust collecting system. The system consists of dust absorbing pipe, dust collector, separator of dust and water and dust transfer equipment to a storage of waste. This system would be expected to have better performance and lower operating cost in decommissioning nuclear reactors, especially, the number of dust filters, for example, HEPA filters, will be considerably saved

  5. Systematic characterization of structural, dynamical and electrical properties of dust devils and implications for dust lifting processes

    Science.gov (United States)

    Franzese, Gabriele; Esposito, Francesca; Lorenz, Ralph D.; Popa, Ciprian; Silvestro, Simone; Deniskina, Natalia; Cozzolino, Fabio

    2017-04-01

    Dust devils are convective vortices able to lift sand and dust grains from the soil surface, even in conditions of low wind speed environment. They have been observed not only on Earth but also on other planets of the solar system; in particular, they are largely studied on Mars. Indeed, the contribution of the dust devils to the Martian climate is a highly debated question. In order to investigate this topic, it is important to understand the nature of the dust lifting mechanism by the vortex and characterize the induced electric field. As part of the development process of DREAMS, the meteorological station on board the Schiapparelli lander of the ExoMars 2016 mission, and of the Dust complex package of the ExoMars 2020 mission, we performed various field campaigns in the Sahara desert (Tafilalt region, Morocco). We deployed a fully equipped meteorological station and, during the 2014 summer, we observed three months of dust devils activity, collecting almost six hundreds events. For each dust devil, we monitored the horizontal wind speed and direction, the vertical wind speed, the pressure drop due to the vortex core, the temperature, the induced electric field and the concentration of dust lifted. This data set is unique in literature and represents up to now the most comprehensive one available for the dusty convective vortices. Here we will present the analysis of the Moroccan data with particular emphasis on the study of the atmospheric electric field variations due to the passage of the vortices. The distribution of the vortex parameters (wind speed and direction, pressure, E-field and dust lifted) are showed and compared, when possible, to the ones observed by the Martian surveys. The connection between the E-field and the other parameters will be presented. In the terrestrial environment, the development of the convective vortices is restricted by the presence of the vegetation and of the urban areas, hence dust devils can impact the climate only on local

  6. Survey of beta-particle interaction experiments with asymmetric matter

    Science.gov (United States)

    Van Horn, J. David; Wu, Fei

    2018-05-01

    Asymmetry is a basic property found at multiple scales in the universe. Asymmetric molecular interactions are fundamental to the operation of biological systems in both signaling and structural roles. Other aspects of asymmetry are observed and useful in many areas of science and engineering, and have been studied since the discovery of chirality in tartrate salts. The observation of parity violation in beta decay provided some impetus for later experiments using asymmetric particles. Here we survey historical work and experiments related to electron (e-) or positron (e+) polarimetry and their interactions with asymmetric materials in gas, liquid and solid forms. Asymmetric interactions may be classified as: 1) stereorecognition, 2) stereoselection and 3) stereoinduction. These three facets of physical stereochemistry are unique but interrelated; and examples from chemistry and materials science illustrate these aspects. Experimental positron and electron interactions with asymmetric materials may be classified in like manner. Thus, a qualitative assessment of helical and polarized positron experiments with different forms of asymmetric matter from the past 40 years is presented, as well as recent experiments with left-hand and right-hand single crystal quartz and organic compounds. The purpose of this classification and review is to evaluate the field for potential new experiments and directions for positron (or electron) studies with asymmetric materials.

  7. Physical properties of five grain dust types.

    Science.gov (United States)

    Parnell, C B; Jones, D D; Rutherford, R D; Goforth, K J

    1986-01-01

    Physical properties of grain dust derived from five grain types (soybean, rice, corn, wheat, and sorghum) were measured and reported. The grain dusts were obtained from dust collection systems of terminal grain handling facilities and were assumed to be representative of grain dust generated during the handling process. The physical properties reported were as follows: particle size distributions and surface area measurements using a Coulter Counter Model TAII; percent dust fractions less than 100 micron of whole dust; bulk density; particle density; and ash content. PMID:3709482

  8. Dust Evolution in Galaxy Cluster Simulations

    Science.gov (United States)

    Gjergo, Eda; Granato, Gian Luigi; Murante, Giuseppe; Ragone-Figueroa, Cinthia; Tornatore, Luca; Borgani, Stefano

    2018-06-01

    We implement a state-of-the-art treatment of the processes affecting the production and Interstellar Medium (ISM) evolution of carbonaceous and silicate dust grains within SPH simulations. We trace the dust grain size distribution by means of a two-size approximation. We test our method on zoom-in simulations of four massive (M200 ≥ 3 × 1014M⊙) galaxy clusters. We predict that during the early stages of assembly of the cluster at z ≳ 3, where the star formation activity is at its maximum in our simulations, the proto-cluster regions are rich in dusty gas. Compared to the case in which only dust production in stellar ejecta is active, if we include processes occurring in the cold ISM,the dust content is enhanced by a factor 2 - 3. However, the dust properties in this stage turn out to be significantly different from those observationally derived for the average Milky Way dust, and commonly adopted in calculations of dust reprocessing. We show that these differences may have a strong impact on the predicted spectral energy distributions. At low redshift in star forming regions our model reproduces reasonably well the trend of dust abundances over metallicity as observed in local galaxies. However we under-produce by a factor of 2 to 3 the total dust content of clusters estimated observationally at low redshift, z ≲ 0.5 using IRAS, Planck and Herschel satellites data. This discrepancy does not subsist by assuming a lower sputtering efficiency, which erodes dust grains in the hot Intracluster Medium (ICM).

  9. A dust-free dock

    Energy Technology Data Exchange (ETDEWEB)

    Merrion, D. [E & F Services Ltd. (United Kingdom)

    2002-10-01

    This paper describes the process of unloading coal, petcoke and other dusty products in environmentally-sensitive areas. It presents a case study of the deepwater Port of Foynes on the west coast of Ireland which imports animal feed, fertiliser, coal and cement clinker, where dockside mobile loaders (DMLs) have eliminated spillage and controlled dust, and a record case study of the Humber International Terminal in the UK, where air curtinas, dust suppression grids and EFFEX{reg_sign} filters overcome the dust problems. 2 photos.

  10. Importance of dust storms in the diagenesis of sandstones: a case study, Entrada sandstone in the Ghost Ranch area, New Mexico, USA

    Science.gov (United States)

    Orhan, Hükmü

    1992-04-01

    The importance of dust storms on geological processes has only been studied recently. Case-hardening, desert-varnish formation, duricrust development, reddening and cementation of sediments and caliche formation, are some important geological processes related to dust storms. Dust storms can also be a major source for cements in aeolian sandstones. The Jurassic aeolian Entrada Formation in the Ghost Ranch area is composed of quartz with minor amounts of feldspar and rock fragments, and is cemented with smectite as grain coatings and calcite and kaolinite as pore fillings. Smectite shows a crinkly and honeycomb-like morphology which points to an authigenic origin. The absence of smectite as framework grains and the presence of partially dissolved grains, coated with smectite and smectite egg-shells, indicate an external source. Clay and fine silt-size particles are believed to be the major source for cements, smectite and calcite in the Entrada Formation. The common association of kaolinite with altered feldspar, and the absence of kaolinite in spots heavily cemented with calcite, lead to the conclusions that the kaolinite formation postdates carbonates and that framework feldspar grains were the source of kaolinite.

  11. Environmentally dependent dust chemistry of a super Asian dust storm in March 2010: observation and simulation

    Directory of Open Access Journals (Sweden)

    Q. Wang

    2018-03-01

    Full Text Available Near-surface and vertical in situ measurements of atmospheric particles were conducted in Shanghai during 19–23 March 2010 to explore the transport and chemical evolution of dust particles in a super dust storm. An air quality model with optimized physical dust emission scheme and newly implemented dust chemistry was utilized to study the impact of dust chemistry on regional air quality. Two discontinuous dust periods were observed with one traveling over northern China (DS1 and the other passing over the coastal regions of eastern China (DS2. Stronger mixing extents between dust and anthropogenic emissions were found in DS2, reflected by the higher SO2 ∕ PM10 and NO2 ∕ PM10 ratios as well as typical pollution elemental species such as As, Cd, Pb, and Zn. As a result, the concentrations of SO42− and NO3− and the ratio of Ca2+ ∕ Ca were more elevated in DS2 than in DS1 but opposite for the [NH4+] ∕ [SO42−+NO3−] ratio, suggesting the heterogeneous reactions between calcites and acid gases were significantly promoted in DS2 due to the higher level of relative humidity and gaseous pollution precursors. Lidar observation showed a columnar effect on the vertical structure of particle optical properties in DS1 that dust dominantly accounted for ∼ 80–90 % of the total particle extinction from near the ground to ∼ 700 m. In contrast, the dust plumes in DS2 were restrained within lower altitudes while the extinction from spherical particles exhibited a maximum at a high altitude of ∼ 800 m. The model simulation reproduced relatively consistent results with observations that strong impacts of dust heterogeneous reactions on secondary aerosol formation occurred in areas where the anthropogenic emissions were intensive. Compared to the sulfate simulation, the nitrate formation on dust is suggested to be improved in the future modeling efforts.

  12. Environmentally dependent dust chemistry of a super Asian dust storm in March 2010: observation and simulation

    Science.gov (United States)

    Wang, Qiongzhen; Dong, Xinyi; Fu, Joshua S.; Xu, Jian; Deng, Congrui; Jiang, Yilun; Fu, Qingyan; Lin, Yanfen; Huang, Kan; Zhuang, Guoshun

    2018-03-01

    Near-surface and vertical in situ measurements of atmospheric particles were conducted in Shanghai during 19-23 March 2010 to explore the transport and chemical evolution of dust particles in a super dust storm. An air quality model with optimized physical dust emission scheme and newly implemented dust chemistry was utilized to study the impact of dust chemistry on regional air quality. Two discontinuous dust periods were observed with one traveling over northern China (DS1) and the other passing over the coastal regions of eastern China (DS2). Stronger mixing extents between dust and anthropogenic emissions were found in DS2, reflected by the higher SO2 / PM10 and NO2 / PM10 ratios as well as typical pollution elemental species such as As, Cd, Pb, and Zn. As a result, the concentrations of SO42- and NO3- and the ratio of Ca2+ / Ca were more elevated in DS2 than in DS1 but opposite for the [NH4+] / [SO42-+NO3-] ratio, suggesting the heterogeneous reactions between calcites and acid gases were significantly promoted in DS2 due to the higher level of relative humidity and gaseous pollution precursors. Lidar observation showed a columnar effect on the vertical structure of particle optical properties in DS1 that dust dominantly accounted for ˜ 80-90 % of the total particle extinction from near the ground to ˜ 700 m. In contrast, the dust plumes in DS2 were restrained within lower altitudes while the extinction from spherical particles exhibited a maximum at a high altitude of ˜ 800 m. The model simulation reproduced relatively consistent results with observations that strong impacts of dust heterogeneous reactions on secondary aerosol formation occurred in areas where the anthropogenic emissions were intensive. Compared to the sulfate simulation, the nitrate formation on dust is suggested to be improved in the future modeling efforts.

  13. Effect of dust size distribution on ion-acoustic solitons in dusty plasmas with different dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dong-Ning; Yang, Yang; Yan, Qiang [Northwest Normal University, College of Physics and Electronic Engineering (China); Wang, Xiao-Yun [Lanzhou Jiao Tong University, Department of Mathematics and Physics (China); Duan, Wen-Shan, E-mail: duanws@126.com [Northwest Normal University, College of Physics and Electronic Engineering (China)

    2017-02-15

    Theoretical studies are carried out for ion acoustic solitons in multicomponent nonuniform plasma considering the dust size distribution. The Korteweg−de Vries equation for ion acoustic solitons is given by using the reductive perturbation technique. Two special dust size distributions are considered. The dependences of the width and amplitude of solitons on dust size parameters are shown. It is found that the properties of a solitary wave depend on the shape of the size distribution function of dust grains.

  14. Asian dust events of April 1998

    Science.gov (United States)

    Husar, R.B.; Tratt, D.M.; Schichtel, B.A.; Falke, S.R.; Li, F.; Jaffe, D.; Gasso, S.; Gill, T.; Laulainen, N.S.; Lu, F.; Reheis, M.C.; Chun, Y.; Westphal, D.; Holben, B.N.; Gueymard, C.; McKendry, I.; Kuring, N.; Feldman, G.C.; McClain, C.; Frouin, R.J.; Merrill, J.; DuBois, D.; Vignola, F.; Murayama, T.; Nickovic, S.; Wilson, W.E.; Sassen, K.; Sugimoto, N.; Malm, W.C.

    2001-01-01

    On April 15 and 19, 1998, two intense dust storms were generated over the Gobi desert by springtime low-pressure systems descending from the northwest. The windblown dust was detected and its evolution followed by its yellow color on SeaWiFS satellite images, routine surface-based monitoring, and through serendipitous observations. The April 15 dust cloud was recirculating, and it was removed by a precipitating weather system over east Asia. The April 19 dust cloud crossed the Pacific Ocean in 5 days, subsided to the surface along the mountain ranges between British Columbia and California, and impacted severely the optical and the concentration environments of the region. In east Asia the dust clouds increased the albedo over the cloudless ocean and land by up to 10-20%, but it reduced the near-UV cloud reflectance, causing a yellow coloration of all surfaces. The yellow colored backscattering by the dust eludes a plausible explanation using simple Mie theory with constant refractive index. Over the West Coast the dust layer has increased the spectrally uniform optical depth to about 0.4, reduced the direct solar radiation by 30-40%, doubled the diffuse radiation, and caused a whitish discoloration of the blue sky. On April 29 the average excess surface-level dust aerosol concentration over the valleys of the West Coast was about 20-50 ??g/m3 with local peaks >100 ??g/m3. The dust mass mean diameter was 2-3 ??m, and the dust chemical fingerprints were evident throughout the West Coast and extended to Minnesota. The April 1998 dust event has impacted the surface aerosol concentration 2-4 times more than any other dust event since 1988. The dust events were observed and interpreted by an ad hoc international web-based virtual community. It would be useful to set up a community-supported web-based infrastructure to monitor the global aerosol pattern for such extreme aerosol events, to alert and to inform the interested communities, and to facilitate collaborative

  15. Step by step in dust control

    Energy Technology Data Exchange (ETDEWEB)

    Archer, N. [Arch Environmental Equipment, Inc. (United States)

    2003-05-01

    The paper examines the different stages in identifying delegating and controlling dust before it becomes a serious problem for a facility. Material handling, processing, storage and traffic are the major dust producing sources. All industries that convey dry, light material need to install a dust control system. The confine-seal-suppress method of dust control has provided excellent results in numerous applications, only with the combination of all three will maximum dust control. When a system is properly engineered and correctly installed, meeting the EPA Government standards becomes very easy, and is necessary in to the operation of a quality facility. 5 photos.

  16. Local shell-to-shell energy transfer via nonlocal interactions in fluid ...

    Indian Academy of Sciences (India)

    However, the shell-to-shell energy transfer rate is found to be local and forward. .... interaction was strong, but the energy exchange occurred predominantly between ..... The wave-number range considered is in the inverse cascade regime.

  17. Dust coma of Halley comet: measurements with the dust counter and mass analyzer (DUSMA)

    International Nuclear Information System (INIS)

    Simpson, J.A.; Sagdeev, R.Z.; Tuzzolino, A.J.; AN SSSR, Moscow. Inst. Kosmicheskikh Issledovanij)

    1986-01-01

    The paper represents a preliminary report on measurements of spatial and temporal distribution of mass and flows of dust particles coming from comet nucleus performed by means of devices constructed on the new principle of detecting comet dust specks. The device has a high time resolution (∼ 4 μs) in the wide range of mass and dust flows. On the base of a preliminary analysis the following conclusions are drawn: dust coma in quiet state (''Vega-2'') as well as at the presence of considerable emissions (''Vega-1'') manifests the presence of important short-term out-bursts having by time a quasi-periodic structure. Integral mass spectra show flows intensity growth with the decrease of measured mass (which contradicts some theoretical models). Flow levels lie approximately in the region previously determined by ground observations. The coma is extremely dynamic both in space and in time which proves the complex structure of regions of dust emission from the nucleus

  18. Adaptation of the DP 50 dust meter for measuring dust content under isokinetic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, J.; Novak, L.

    1985-03-01

    The DP 50 dust meter, developed by the Scientific Coal Research Institute Ostrava-Radvanice, is used for measuring dust content in the air in underground coal mines. Two versions of the system are used: a type developed in 1970 which is placed in a vertical position and used to measure the content of respirable coal particles in the air; and a type developed in 1983 for isokinetic measurement of dust content in the air. The latter is equipped with 8 cone-shaped adapters (with differing size and dimensions of the cone inlet adjusted to air flow rates from 0.25 to 8.00 m/s). Specifications of the 8 adapters are given in a table. The 1983 version of the DP 50 is placed in a horizontal position with the dust meter axis parallel to the direction of air flow ventilating a mine working. Recommendations for installation of dust meters in underground workings and effects of installation on measurement accuracy are discussed. 16 references.

  19. Response of the Eastern Mediterranean microbial ecosystem to dust and dust affected by acid processing in the atmosphere

    Directory of Open Access Journals (Sweden)

    Michael David Krom

    2016-08-01

    Full Text Available Acid processes in the atmosphere, particularly those caused by anthropogenic acid gases, increase the amount of bioavailable P in dust and hence are predicted to increase microbial biomass and primary productivity when supplied to oceanic surface waters. This is likely to be particularly important in the Eastern Mediterranean Sea (EMS, which is P limited during the winter bloom and N&P co-limited for phytoplankton in summer. However, it is not clear how the acid processes acting on Saharan dust will affect the microbial biomass and primary productivity in the EMS. Here, we carried out bioassay manipulations on EMS surface water on which Saharan dust was added as dust (Z, acid treated dust (ZA, dust plus excess N (ZN and acid treated dust with excess N (ZNA during springtime (May 2012 and measured bacterioplankton biomass, metabolic and other relevant chemical and biological parameters. We show that acid treatment of Saharan dust increased the amount of bioavailable P supplied by a factor of ~40 compared to non-acidified dust (18.4 nmoles P mg-1 dust vs. 0.45 nmoles P mg-1 dust, respectively. The increase in chlorophyll, primary and bacterial productivity for treatments Z and ZA were controlled by the amount of N added with the dust while those for treatments ZN and ZNA (in which excessive N was added were controlled by the amount of P added. These results confirm that the surface waters were N&P co-limited for phytoplankton during springtime. However, total chlorophyll and primary productivity in the acid treated dust additions (ZA and ZNA were less than predicted from that calculated from the amount of the potentially limiting nutrient added. This biological inhibition was interpreted as being due to labile trace metals being added with the acidified dust. A probable cause for this biological inhibition was the addition of dissolved Al, which forms potentially toxic Al nanoparticles when added to seawater. Thus, the effect of anthropogenic acid

  20. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  1. Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor

    Science.gov (United States)

    Xiong, Ya; Zhu, Zongye; Ding, Degong; Lu, Wenbo; Xue, Qingzhong

    2018-06-01

    In the present study, multi-shelled ZnCo2O4 yolk-shell spheres have been successfully prepared by using carbonaceous microspheres as templates. It is found that the multi-shelled ZnCo2O4 yolk-shell spheres based sensor shows optimal sensing performances (response value of 38.2, response/recovery time of 19 s/71 s) toward 500 ppm acetone at 200 °C. In addition, this sensor exhibits a low detection limit of 0.5 ppm acetone (response value of 1.36) and a good selectivity toward hydrogen, methane, ethanol, ammonia and carbon dioxide. Furthermore, it is demonstrated that acetone gas response of multi-shelled ZnCo2O4 yolk-shell spheres is significantly better than that of ZnCo2O4 nanotubes and ZnCo2O4 nanosheets. High acetone response of the multi-shelled ZnCo2O4 yolk-shell spheres is attributed to the enhanced gas accessibility of the multi-shell morphology caused by the small crystalline size and high specific surface area while the short response/recovery time is mainly related to the rapid gas diffusion determined by the highly porous structure. Our work puts forward an exciting opportunity in designing various yolk-shelled structures for multipurpose applications.

  2. Influence of Shell Thickness on the Colloidal Stability of Magnetic Core-Shell Particle Suspensions.

    Science.gov (United States)

    Neville, Frances; Moreno-Atanasio, Roberto

    2018-01-01

    We present a Discrete Element study of the behavior of magnetic core-shell particles in which the properties of the core and the shell are explicitly defined. Particle cores were considered to be made of pure iron and thus possessed ferromagnetic properties, while particle shells were considered to be made of silica. Core sizes ranged between 0.5 and 4.0 μm with the actual particle size of the core-shell particles in the range between 0.6 and 21 μm. The magnetic cores were considered to have a magnetization of one tenth of the saturation magnetization of iron. This study aimed to understand how the thickness of the shell hinders the formation of particle chains. Chain formation was studied with different shell thicknesses and particle sizes in the presence and absence of an electrical double layer force in order to investigate the effect of surface charge density on the magnetic core-shell particle interactions. For core sizes of 0.5 and 4.0 μm the relative shell thicknesses needed to hinder the aggregation process were approximately 0.4 and 0.6 respectively, indicating that larger core sizes are detrimental to be used in applications in which no flocculation is needed. In addition, the presence of an electrical double layer, for values of surface charge density of less than 20 mC/m 2 , could stop the contact between particles without hindering their vertical alignment. Only when the shell thickness was considerably larger, was the electrical double layer able to contribute to the full disruption of the magnetic flocculation process.

  3. Time-Dependent-Asymmetric-Linear-Parsimonious Ancestral State Reconstruction.

    Science.gov (United States)

    Didier, Gilles

    2017-10-01

    The time-dependent-asymmetric-linear parsimony is an ancestral state reconstruction method which extends the standard linear parsimony (a.k.a. Wagner parsimony) approach by taking into account both branch lengths and asymmetric evolutionary costs for reconstructing quantitative characters (asymmetric costs amount to assuming an evolutionary trend toward the direction with the lowest cost). A formal study of the influence of the asymmetry parameter shows that the time-dependent-asymmetric-linear parsimony infers states which are all taken among the known states, except for some degenerate cases corresponding to special values of the asymmetry parameter. This remarkable property holds in particular for the Wagner parsimony. This study leads to a polynomial algorithm which determines, and provides a compact representation of, the parametric reconstruction of a phylogenetic tree, that is for all the unknown nodes, the set of all the possible reconstructed states associated with the asymmetry parameters leading to them. The time-dependent-asymmetric-linear parsimony is finally illustrated with the parametric reconstruction of the body size of cetaceans.

  4. Interelectron correlations in photoionization of outer shells near inner shell thresholds

    International Nuclear Information System (INIS)

    Amusia, M Ya; Chernysheva, L V; Drukarev, E G

    2015-01-01

    We have studied the role of virtual excitations of inner shells upon outer shell photoionization. The calculations were performed in the frames of the Random Phase Approximation with Exchange (RPAE) and its generalized version GRPAE that take into account variation of the atomic field due to electron elimination and the inner vacancies decay. We apply both analytic approximation and numeric computations. The results are presented for 3p electrons in Ar and for 4d-electrons in Pd near inner shells thresholds. The effect considered proved to be quite noticeable. (paper)

  5. Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach

    Directory of Open Access Journals (Sweden)

    Pankaj Chauhan

    2012-12-01

    Full Text Available Ball-milling and pestle and mortar grinding have emerged as powerful methods for the development of environmentally benign chemical transformations. Recently, the use of these mechanochemical techniques in asymmetric organocatalysis has increased. This review highlights the progress in asymmetric organocatalytic reactions assisted by mechanochemical techniques.

  6. Measurement of nicotine in household dust

    International Nuclear Information System (INIS)

    Kim, Sungroul; Aung, Ther; Berkeley, Emily; Diette, Gregory B.; Breysse, Patrick N.

    2008-01-01

    An analytical method of measuring nicotine in house dust was optimized and associations among three secondhand smoking exposure markers were evaluated, i.e., nicotine concentrations of both house dust and indoor air, and the self-reported number of cigarettes smoked daily in a household. We obtained seven house dust samples from self-reported nonsmoking homes and 30 samples from smoking homes along with the information on indoor air nicotine concentrations and the number of cigarettes smoked daily from an asthma cohort study conducted by the Johns Hopkins Center for Childhood Asthma in the Urban Environment. House dust nicotine was analyzed by isotope dilution gas chromatography-mass spectrometry (GC/MS). Using our optimized method, the median concentration of nicotine in the dust of self-reported nonsmoking homes was 11.7 ng/mg while that of smoking homes was 43.4 ng/mg. We found a substantially positive association (r=0.67, P<0.0001) between house dust nicotine concentrations and the numbers of cigarettes smoked daily. Optimized analytical methods showed a feasibility to detect nicotine in house dust. Our results indicated that the measurement of nicotine in house dust can be used potentially as a marker of longer term SHS exposure

  7. Correlation between Yellow Dust and Radioactivity

    International Nuclear Information System (INIS)

    AIZaabia, Mouza A; Kim, Byoung-Jik

    2015-01-01

    In East Asia, yellow dust or Asian Dust (AD) outbreaks are among the largest contributors of wind-blown dust that carry natural and anthropogenic radionuclides and subsequently alter their concentration and distribution throughout the environment. Although the Korean Peninsula has been experiencing AD events since ancient times, the research has tended to focus on the transport routes and characteristics of AD, rather than on its impact on radionuclide activity levels. This paper examines the relationship between radionuclide concentration in the air and the frequency of dusty days in South Korea during AD intrusion events. It also investigates whether increased radionuclide concentration is a function of either more mass or more dust contamination. In this study, significant linear correlations of gamma-emitting radionuclides were found with mass of dust and occurrence frequency of AD. Regardless of the source origin of the dust, 137 Cs and 7 Be concentration primarily depended on dust mass in the filter. Nonetheless, the correlations were greatly distorted in 2011 and in the spring season, particularly the correlations with AD days that were far below that of the correlations obtained for the whole study period. A possible explanation of these conflicting results is that a change in the dust source could appreciably alter the concentration, deposition, and distribution of airborne radionuclides

  8. Dust limit management strategy in tokamaks

    Science.gov (United States)

    Rosanvallon, S.; Grisolia, C.; Andrew, P.; Ciattaglia, S.; Delaporte, P.; Douai, D.; Garnier, D.; Gauthier, E.; Gulden, W.; Hong, S. H.; Pitcher, S.; Rodriguez, L.; Taylor, N.; Tesini, A.; Vartanian, S.; Vatry, A.; Wykes, M.

    2009-06-01

    Dust is produced in tokamaks by the interaction between the plasma and the plasma facing components. Dust has not yet been of a major concern in existing tokamaks mainly because the quantity is small and these devices are not nuclear facilities. However, in ITER and in future reactors, it will represent operational and potential safety issues. From a safety point of view, in order to control the potential dust hazard, the current ITER strategy is based on a defense in depth approach designed to provide reliable confinement systems, to avoid failures, and to measure and minimise the dust inventory. In addition, R&D is put in place for optimisation of the proposed methods, such as improvement of measurement, dust cleaning and the reduction of dust production. The aim of this paper is to present the approach for the control of the dust inventory, relying on the monitoring of envelope values and the development of removal techniques already developed in the existing tokamaks or plasma dedicated devices or which will need further research and development in order to be integrated in ITER.

  9. Dust limit management strategy in tokamaks

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Grisolia, C.; Andrew, P.; Ciattaglia, S.; Delaporte, P.; Douai, D.; Garnier, D.; Gauthier, E.; Gulden, W.; Hong, S.H.; Pitcher, S.; Rodriguez, L.; Taylor, N.; Tesini, A.; Vartanian, S.; Vatry, A.; Wykes, M.

    2009-01-01

    Dust is produced in tokamaks by the interaction between the plasma and the plasma facing components. Dust has not yet been of a major concern in existing tokamaks mainly because the quantity is small and these devices are not nuclear facilities. However, in ITER and in future reactors, it will represent operational and potential safety issues. From a safety point of view, in order to control the potential dust hazard, the current ITER strategy is based on a defense in depth approach designed to provide reliable confinement systems, to avoid failures, and to measure and minimise the dust inventory. In addition, R and D is put in place for optimisation of the proposed methods, such as improvement of measurement, dust cleaning and the reduction of dust production. The aim of this paper is to present the approach for the control of the dust inventory, relying on the monitoring of envelope values and the development of removal techniques already developed in the existing tokamaks or plasma dedicated devices or which will need further research and development in order to be integrated in ITER.

  10. THE DUST BUDGET OF THE SMALL MAGELLANIC CLOUD: ARE ASYMPTOTIC GIANT BRANCH STARS THE PRIMARY DUST SOURCE AT LOW METALLICITY?

    International Nuclear Information System (INIS)

    Boyer, M. L.; Gordon, K. D.; Meixner, M.; Sargent, B. A.; Srinivasan, S.; Riebel, D.; McDonald, I.; Van Loon, J. Th.; Clayton, G. C.; Sloan, G. C.

    2012-01-01

    We estimate the total dust input from the cool evolved stars in the Small Magellanic Cloud, using the 8 μm excess emission as a proxy for the dust-production rate (DPR). We find that asymptotic giant branch (AGB) and red supergiant (RSG) stars produce (8.6-9.5) × 10 –7 M ☉ yr –1 of dust, depending on the fraction of far-infrared sources that belong to the evolved star population (with 10%-50% uncertainty in individual DPRs). RSGs contribute the least ( –3 M ☉ of dust each, then the total SN dust input and AGB input are roughly equivalent. We consider several scenarios of SN dust production and destruction and find that the interstellar medium (ISM) dust can be accounted for solely by stellar sources if all SNe produce dust in the quantities seen around the dustiest examples and if most SNe explode in dense regions where much of the ISM dust is shielded from the shocks. We find that AGB stars contribute only 2.1% of the ISM dust. Without a net positive contribution from SNe to the dust budget, this suggests that dust must grow in the ISM or be formed by another unknown mechanism.

  11. Asymmetric strand segregation: epigenetic costs of genetic fidelity?

    Directory of Open Access Journals (Sweden)

    Diane P Genereux

    2009-06-01

    Full Text Available Asymmetric strand segregation has been proposed as a mechanism to minimize effective mutation rates in epithelial tissues. Under asymmetric strand segregation, the double-stranded molecule that contains the oldest DNA strand is preferentially targeted to the somatic stem cell after each round of DNA replication. This oldest DNA strand is expected to have fewer errors than younger strands because some of the errors that arise on daughter strands during their synthesis fail to be repaired. Empirical findings suggest the possibility of asymmetric strand segregation in a subset of mammalian cell lineages, indicating that it may indeed function to increase genetic fidelity. However, the implications of asymmetric strand segregation for the fidelity of epigenetic information remain unexplored. Here, I explore the impact of strand-segregation dynamics on epigenetic fidelity using a mathematical-modelling approach that draws on the known molecular mechanisms of DNA methylation and existing rate estimates from empirical methylation data. I find that, for a wide range of starting methylation densities, asymmetric -- but not symmetric -- strand segregation leads to systematic increases in methylation levels if parent strands are subject to de novo methylation events. I found that epigenetic fidelity can be compromised when enhanced genetic fidelity is achieved through asymmetric strand segregation. Strand segregation dynamics could thus explain the increased DNA methylation densities that are observed in structured cellular populations during aging and in disease.

  12. Characterization of high concentration dust generator

    International Nuclear Information System (INIS)

    Shimura, Toichiro; Yokochi, Akira

    1999-01-01

    This paper describes the development of fluidized bed type high concentration dust generator that keeps for long period dust concentration range of about 10 mg/m 3 for the study of working place monitoring system and evaluation of respirator. The generator is keeping constant powder in fluidized bed for keeping the dust concentration. It is necessary to keep constant feeding rate of powder in order to keep the quantity of dust in the fluidized bed. Our generator enables to obtain constant feeding rate by a screw feeder and by using mixed powder with fluidising particles (glass beads) before feeding. The generator produces high concentration dust of 11.3 mg/m 3 ± 1.0 mg/m 3 for about 5 hours and keeps the dust size 4.2-4.6 μm in mass median aerodynamic diameter with reasonable reproducibility. (author)

  13. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  14. Dust in flowing magnetized plasma

    International Nuclear Information System (INIS)

    Pandey, Birendra P.; Samarian, Alex A.; Vladimirov, Sergey V.

    2009-01-01

    Plasma flows occur in almost every laboratory device and interactions of flowing plasmas with near-wall impurities and/or dust significantly affects the efficiency and lifetime of such devices. The charged dust inside the magnetized flowing plasma moves primarily under the influence of the plasma drag and electric forces. Here, the charge on the dust, plasma potential, and plasma density are calculated self-consistently. The electrons are assumed non-Boltzmannian and the effect of electron magnetization and electron-atom collisions on the dust charge is calculated in a self-consistent fashion. For various plasma magnetization parameters viz. the ratio of the electron and ion cyclotron frequencies to their respective collision frequencies, plasma-atom and ionization frequencies, the evolution of the plasma potential and density in the flow region is investigated. The variation of the dust charge profile is shown to be a sensitive function of plasma parameters. (author)

  15. Time-Dependent Dust Formation in Novae

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    1991-06-01

    Full Text Available The dust formation processes in novae are investigated with close attention to recent infrared observations. Using mainly the classical nucleation theory, we have calculated the time scales of dust formation and growth in the environments of novae. Those time scales roughly resemble the typical observations. We have classified the dust-forming novae into three classes according to their explosion properties and the thermodynamic properties of dust grains. Oxygen grains from much later than carbon grains because of their thermodynamic properties. The effect of grain formation to the efficiency of stellar winds to drive the material outward is tested with newly obtained Planck mean values of dust grains.

  16. Linear Alkylbenzenesulfonates in indoor Floor Dust

    DEFF Research Database (Denmark)

    Madsen, Jørgen Øgaard; Wolkoff, Peder; Madsen, Jørgen Øgaard

    1999-01-01

    The amount of Linear Alkylbenzenesulfonates (LAS) in the particle fraction of floor dust sampled from 7 selected public buildings varied between 34 and 1500 microgram per gram dust, while the contents of the fibre fractions generally were higher with up to 3500 microgram LAS/g dust. The use...... of a cleaning agent with LAS resulted in an increase of the amount of LAS in the floor dust after floor wash relative to just before floor wash. However, the most important source of LAS in the indoor floor dust appears to be residues of detergent in clothing. Thus, a newly washed shirt contained 2960 microgram...

  17. A simplified Suomi NPP VIIRS dust detection algorithm

    Science.gov (United States)

    Yang, Yikun; Sun, Lin; Zhu, Jinshan; Wei, Jing; Su, Qinghua; Sun, Wenxiao; Liu, Fangwei; Shu, Meiyan

    2017-11-01

    Due to the complex characteristics of dust and sparse ground-based monitoring stations, dust monitoring is facing severe challenges, especially in dust storm-prone areas. Aim at constructing a high-precision dust storm detection model, a pixel database, consisted of dusts over a variety of typical feature types such as cloud, vegetation, Gobi and ice/snow, was constructed, and their distributions of reflectance and Brightness Temperatures (BT) were analysed, based on which, a new Simplified Dust Detection Algorithm (SDDA) for the Suomi National Polar-Orbiting Partnership Visible infrared Imaging Radiometer (NPP VIIRS) is proposed. NPP VIIRS images covering the northern China and Mongolian regions, where features serious dust storms, were selected to perform the dust detection experiments. The monitoring results were compared with the true colour composite images, and results showed that most of the dust areas can be accurately detected, except for fragmented thin dusts over bright surfaces. The dust ground-based measurements obtained from the Meteorological Information Comprehensive Analysis and Process System (MICAPS) and the Ozone Monitoring Instrument Aerosol Index (OMI AI) products were selected for comparison purposes. Results showed that the dust monitoring results agreed well in the spatial distribution with OMI AI dust products and the MICAPS ground-measured data with an average high accuracy of 83.10%. The SDDA is relatively robust and can realize automatic monitoring for dust storms.

  18. Planar dust-acoustic waves in electron–positron–ion–dust plasmas ...

    Indian Academy of Sciences (India)

    2014-09-19

    Sep 19, 2014 ... ever, Xue [19] and Tarsem et al [20] proved that the observed wave phenomena in the low-altitude and .... tot. ∫ amax amin a−β da, β is the power-law index. n(a) = 0 when aamax. If the dust grain size a<λDd, the mass of the dust grain can be given as mdj = kma3 j. , where km ≈ 4. 3 πρd (ρd is ...

  19. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2011-01-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells

  20. Dust in cosmic plasma environments

    International Nuclear Information System (INIS)

    Mendis, D.A.

    1979-01-01

    Cosmic dust is invariably immersed in a plasma and a radiative environment. Consequently, it is charged to some electrostatic potential which depends on the properties of the environment as well as the nature of the dust. This charging affects the physical and dynamical properties of the dust. In this paper the basic aspects of this dust-plasma interaction in several cosmic environments - including planetary magnetospheres, the heliosphere and the interstellar medium - are discussed. The physical and dynamical consequences of the interaction, as well as the pertinent observational evidence, are reviewed. Finally, the importance of the surface charge during the condensation process in plasma environments is stressed. (Auth.)

  1. Exact solutions for rotating charged dust

    International Nuclear Information System (INIS)

    Islam, J.N.

    1984-01-01

    Earlier work by the author on rotating charged dust is summarized. An incomplete class of exact solutions for differentially rotating charged dust in Newton-Maxwell theory for the equal mass and charge case that was found earlier is completed. A new global exact solution for cylindrically symmetric differentially rotating charged dust in Newton-Maxwell theory is presented. Lastly, a new exact solution for cylindrically symmetric rigidly rotating charged dust in general relativity is given. (author)

  2. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    Science.gov (United States)

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  3. Instant Windows PowerShell

    CERN Document Server

    Menon, Vinith

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A practical, hands-on tutorial approach that explores the concepts of PowerShell in a friendly manner, taking an adhoc approach to each topic.If you are an administrator who is new to PowerShell or are looking to get a good grounding in these new features, this book is ideal for you. It's assumed that you will have some experience in PowerShell and Windows Server, as well being familiar with the PowerShell command-line.

  4. Coal option. [Shell Co

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  5. Photoelectric charging of dust grains

    International Nuclear Information System (INIS)

    Ignatov, A. M.

    2009-01-01

    Photoemission from the surface of a dust grain in vacuum is considered. It is shown that the cutoff in the energy spectrum of emitted electrons leads to the formation of a steady-state electron cloud. The equation describing the distribution of the electric potential in the vicinity of a dust grain is solved numerically. The dust grain charge is found as a function of the grain size.

  6. Toxicity of lunar dust

    NARCIS (Netherlands)

    Linnarsson, D.; Carpenter, J.; Fubini, B.; Gerde, P.; Loftus, D.; Prisk, K.; Staufer, U.; Tranfield, E.; van Westrenen, W.

    2012-01-01

    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of

  7. Cosmic dust investigations. Pt. 2

    International Nuclear Information System (INIS)

    Simpson, J.A.; Tuzzolino, A.J.

    1989-01-01

    A series of experiments have been completed using accelerator dust particles in the mass range ≅ 10 -9 -10 -6 g and velocity range ≅ 2-12 km/s to measure the velocity loss and degree of fragmentation for dust particles penetrating 6 and 28 μm thick polyvinylidene fluoride (PVDF) dust detectors. These measurements prove that even for a ratio of PVDF foil thickness to particle diameter as large as 0.6, the velocity loss and fragmentation is far less than expected from earlier reports in the literature. For 6 μm thick foils the velocity loss is ≤5%. These experiments are based on an extension of our earlier work which showed that two PVDF foils spaced a given distance apart could provide accurate time-of-flight (TOF) information due to the fast pulse rise time of PVDF detector response. We also report on our present state of development of PVDF position-sensing detectors which identify the x, y coordinates of particle impact, using detector and electronic pulse techniques adapted from our semiconductor position-sensing cosmic-ray detectors. Typical position errors of ≅ 1 mm are readily achieved. Finally, we have combined the above developments into a dust-particle telescope which accurately (≅ 1 0 angular accuracy) measures the trajectory of the incident particle as well as its mass and incident velocity, irrespective of whether it is a charged or neutral particle. We discuss how this practical dust telescope can be combined with dust capture cells for space flight and later recovery for laboratory determination of elemental and isotopic composition of captured dust. We also describe a simpler trajectory array based on discrete mosaics of thin detectors which would measure trajectories with a mean angular error of ≅ 4 0 . We discuss the application of these instruments for distinguishing between interplanetary dust of cometary and asteroidal origin, and for measurements on a space station, from near-Earth trapped dust of artificial origin. (orig.)

  8. Physical properties of five grain dust types.

    OpenAIRE

    Parnell, C B; Jones, D D; Rutherford, R D; Goforth, K J

    1986-01-01

    Physical properties of grain dust derived from five grain types (soybean, rice, corn, wheat, and sorghum) were measured and reported. The grain dusts were obtained from dust collection systems of terminal grain handling facilities and were assumed to be representative of grain dust generated during the handling process. The physical properties reported were as follows: particle size distributions and surface area measurements using a Coulter Counter Model TAII; percent dust fractions less tha...

  9. 'Nuisance Dust' - a Case for Recalibration?

    Science.gov (United States)

    Datson, Hugh; Marker, Brian

    2013-04-01

    This paper considers the case for a review and recalibration of limit values and acceptability criteria for 'nuisance dust', a widely encountered but poorly defined and regulated aspect of particulate matter pollution. Specific dust fractions such as PM10 and asbestiforms are well characterised and have limit values enshrined in legislation. National, and international, limit values for acceptable concentrations of PM10 and other fractions of particulate matter have been defined and agreed. In the United Kingdom (UK), these apply to both public and workplace exposures. By contrast, there is no standard definition or universal criteria against which acceptable levels for 'nuisance dust' can be assessed. This has implications for land-use planning and resource utilisation. Without meaningful limit values, inappropriate development might take place too near to residential dwellings or land containing economically important mineral resources may be effectively sterilised. Furthermore, the expression 'nuisance dust' is unhelpful in that 'nuisance' has a specific meaning in environmental law whilst 'nuisance dust' is often taken to mean 'generally visible particulate matter'. As such, it is associated with the social and broader environmental impacts of particulate matter. PM10 concentrations are usually expressed as a mass concentration over time. These can be determined using a range of techniques. While results from different instruments are generally comparable, data obtained from alternative methods for measuring 'nuisance dust' are rarely interchangeable. In the UK, many of the methods typically used are derived from approaches developed under the HMIP (Her Majesty's Inspectorate of Pollution) regime in the 1960s onwards. Typical methods for 'nuisance dust' sampling focus on measurement of dust mass (from the weight of dust collected in an open container over time) or dust soiling (from loss of reflectance and or obscuration of a surface discoloured by dust over

  10. Nuclear shell theory

    CERN Document Server

    de-Shalit, Amos; Massey, H S W

    1963-01-01

    Nuclear Shell Theory is a comprehensive textbook dealing with modern methods of the nuclear shell model. This book deals with the mathematical theory of a system of Fermions in a central field. It is divided into three parts. Part I discusses the single particle shell model. The second part focuses on the tensor algebra, two-particle systems. The last part covers three or more particle systems. Chapters on wave functions in a central field, tensor fields, and the m-Scheme are also presented. Physicists, graduate students, and teachers of nuclear physics will find the book invaluable.

  11. Glass Frit Clumping And Dusting

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J. L.

    2013-09-26

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for

  12. Glass Frit Clumping And Dusting

    International Nuclear Information System (INIS)

    Steimke, J. L.

    2013-01-01

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for

  13. Dust emission: small-scale processes with global consequences

    Science.gov (United States)

    Okin, Gregory S.; Bullard, Joanna E.; Reynolds, Richard L.; Ballantine, John-Andrew C.; Schepanski, Kerstin; Todd, Martin C.; Belnap, Jayne; Baddock, Matthew C.; Gill, Thomas E.; Miller, Mark E.

    2011-01-01

    Desert dust, both modern and ancient, is a critical component of the Earth system. Atmospheric dust has important effects on climate by changing the atmospheric radiation budget, while deposited dust influences biogeochemical cycles in the oceans and on land. Dust deposited on snow and ice decreases its albedo, allowing more light to be trapped at the surface, thus increasing the rate of melt and influencing energy budgets and river discharge. In the human realm, dust contributes to the transport of allergens and pathogens and when inhaled can cause or aggravate respiratory diseases. Dust storms also represent a significant hazard to road and air travel. Because it affects so many Earth processes, dust is studied from a variety of perspectives and at multiple scales, with various disciplines examining emissions for different purposes using disparate strategies. Thus, the range of objectives in studying dust, as well as experimental approaches and results, has not yet been systematically integrated. Key research questions surrounding the production and sources of dust could benefit from improved collaboration among different research communities. These questions involve the origins of dust, factors that influence dust production and emission, and methods through which dust can be monitored.

  14. Palaeo-dust records: A window to understanding past environments

    Science.gov (United States)

    Marx, Samuel K.; Kamber, Balz S.; McGowan, Hamish A.; Petherick, Lynda M.; McTainsh, Grant H.; Stromsoe, Nicola; Hooper, James N.; May, Jan-Hendrik

    2018-06-01

    Dust entrainment, transport over vast distances and subsequent deposition is a fundamental part of the Earth system. Yet the role and importance of dust has been underappreciated, due largely to challenges associated with recognising dust in the landscape and interpreting its depositional history. Despite these challenges, interest in dust is growing. Technical advances in remote sensing and modelling have improved understanding of dust sources and production, while advances in sedimentology, mineralogy and geochemistry (in particular) have allowed dust to be more easily distinguished within sedimentary deposits. This has facilitated the reconstruction of records of dust emissions through time. A key advance in our understanding of dust has occurred following the development of methods to geochemically provenance (fingerprint) dust to its source region. This ability has provided new information on dust transport pathways, as well as the reach and impact of dust. It has also expanded our understanding of the processes driving dust emissions over decadal to millennial timescales through linking dust deposits directly to source area conditions. Dust provenance studies have shown that dust emission, transport and deposition are highly sensitive to variability in climate. They also imply that dust emissions are not simply a function of the degree of aridity in source areas, but respond to a more complex array of conditions, including sediment availability. As well as recording natural variability, dust records are also shown to sensitively track the impact of human activity. This is reflected by both changing dust emission rates and changing dust chemistry. Specific examples of how dust responds to, and records change, are provided with our work on dust emissions from Australia, the most arid inhabited continent and the largest dust source in the Southern Hemisphere. These case studies show that Australian dust emissions reflect hydro-climate variability, with

  15. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic

    2011-10-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.

  16. Co3O4 nanoneedle@electroactive nickel boride membrane core/shell arrays: A novel hybrid for enhanced capacity

    International Nuclear Information System (INIS)

    Li, Tingting; Zhu, Congxu; Yang, Xiaogang; Gao, Yuanhao; He, Weiwei; Yue, Hongwei; Zhao, Hongxiao

    2017-01-01

    Graphical abstract: Active nickel boride membrane anchored Co 3 O 4 nanoneedle arrays hybrid is synthesized via rapid interface reaction. The optimized core/shell nanostructure demonstrates greatly enhanced electrochemical properties. Display Omitted -- Highlights: •Active nickel boride membrane anchored Co 3 O 4 nanoneedle arrays core-shell hybrid architectures was fabricated via rapid interface reaction. •Specific capacity was improved by synergy between highly active components and optimized electron transfer microstructure. •The assembled asymmetric supercapacitor device exhibited excellent electrochemical performance. -- Abstract: Exploring novel hybrid materials with efficient microstructure using facile approaches is highly urgent in designing supercapacitor electrodes. Here, the Ni-B membrane was used for coating the porous Co 3 O 4 nanoneedle arrays which supported on the nickel foam (NF) frameworks through a rapid chemical reduction process (denoted as NF/Co 3 O 4 @NiB). The Ni-B membrane both provided sufficient active sites for redox reactions and inhibited the aggregation of formed hybrid architectures. Benefiting from the unique structural design and strongly coupled effects between porous Co 3 O 4 arrays and Ni-B membrane, the resulted NF/Co 3 O 4 @NiB electrode exhibited high areal capacitance of 3.47 F cm −2 (0.48 mAh cm −2 ) at a current density of 2.5 mA cm −2 , an excellent rate capability while maintaining 95.5% capacity retention after 2000 cycles. The asymmetric supercapacitor constructed with the NF/Co 3 O 4 @NiB as positive electrode and hierarchical porous carbon (HPC) as negative electrode also showed ideal capacitive behavior, and simultaneously delivered high energy and power densities. The easily decoration of Ni-B membrane on various active nanoarrays may arouse more novel design about hybrid architectures for large-scale applications.

  17. Asymmetric hindwing foldings in rove beetles.

    Science.gov (United States)

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.

  18. Stability of charged thin shells

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2011-01-01

    In this article we study the mechanical stability of spherically symmetric thin shells with charge, in Einstein-Maxwell and Einstein-Born-Infeld theories. We analyze linearized perturbations preserving the symmetry, for shells around vacuum and shells surrounding noncharged black holes.

  19. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1978-01-01

    The author's review concentrates on theoretical aspects of dust in planetary nebulae (PN). He considers the questions: how much dust is there is PN; what is its composition; what effects does it have on the ionization structure, on the dynamics of the nebula. (Auth.)

  20. Synthesis and characterization of noble metal–titania core–shell nanostructures with tunable shell thickness

    Directory of Open Access Journals (Sweden)

    Bartosz Bartosewicz

    2017-10-01

    Full Text Available Core–shell nanostructures have found applications in many fields, including surface enhanced spectroscopy, catalysis and solar cells. Titania-coated noble metal nanoparticles, which combine the surface plasmon resonance properties of the core and the photoactivity of the shell, have great potential for these applications. However, the controllable synthesis of such nanostructures remains a challenge due to the high reactivity of titania precursors. Hence, a simple titania coating method that would allow better control over the shell formation is desired. A sol–gel based titania coating method, which allows control over the shell thickness, was developed and applied to the synthesis of Ag@TiO2 and Au@TiO2 with various shell thicknesses. The morphology of the synthesized structures was investigated using scanning electron microscopy (SEM. Their sizes and shell thicknesses were determined using tunable resistive pulse sensing (TRPS technique. The optical properties of the synthesized structures were characterized using UV–vis spectroscopy. Ag@TiO2 and Au@TiO2 structures with shell thickness in the range of ≈40–70 nm and 90 nm, for the Ag and Au nanostructures respectively, were prepared using a method we developed and adapted, consisting of a change in the titania precursor concentration. The synthesized nanostructures exhibited significant absorption in the UV–vis range. The TRPS technique was shown to be a very useful tool for the characterization of metal–metal oxide core–shell nanostructures.

  1. Shell supports

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2004-01-01

    A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....

  2. Electrodynamic Dust Shield Demonstrator

    Science.gov (United States)

    Stankie, Charles G.

    2013-01-01

    The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid

  3. Correlation between Yellow Dust and Radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    AIZaabia, Mouza A [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Byoung-Jik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    In East Asia, yellow dust or Asian Dust (AD) outbreaks are among the largest contributors of wind-blown dust that carry natural and anthropogenic radionuclides and subsequently alter their concentration and distribution throughout the environment. Although the Korean Peninsula has been experiencing AD events since ancient times, the research has tended to focus on the transport routes and characteristics of AD, rather than on its impact on radionuclide activity levels. This paper examines the relationship between radionuclide concentration in the air and the frequency of dusty days in South Korea during AD intrusion events. It also investigates whether increased radionuclide concentration is a function of either more mass or more dust contamination. In this study, significant linear correlations of gamma-emitting radionuclides were found with mass of dust and occurrence frequency of AD. Regardless of the source origin of the dust, {sup 137}Cs and {sup 7}Be concentration primarily depended on dust mass in the filter. Nonetheless, the correlations were greatly distorted in 2011 and in the spring season, particularly the correlations with AD days that were far below that of the correlations obtained for the whole study period. A possible explanation of these conflicting results is that a change in the dust source could appreciably alter the concentration, deposition, and distribution of airborne radionuclides.

  4. A refined element-based Lagrangian shell element for geometrically nonlinear analysis of shell structures

    Directory of Open Access Journals (Sweden)

    Woo-Young Jung

    2015-04-01

    Full Text Available For the solution of geometrically nonlinear analysis of plates and shells, the formulation of a nonlinear nine-node refined first-order shear deformable element-based Lagrangian shell element is presented. Natural co-ordinate-based higher order transverse shear strains are used in present shell element. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Furthermore, a refined first-order shear deformation theory for thin and thick shells, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. To avoid difficulties resulting from large increments of the rotations, a scheme of attached reference system is used for the expression of rotations of shell normal. Numerical examples demonstrate that the present element behaves reasonably satisfactorily either for the linear or for geometrically nonlinear analysis of thin and thick plates and shells with large displacement but small strain. Especially, the nonlinear results of slit annular plates with various loads provided the benchmark to test the accuracy of related numerical solutions.

  5. Quantifying dust plume formation and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali

    2015-01-01

    Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface. Their cumulative radiative impact on earth’s meteorological processes and climate might be significant despite their relatively small contribution to total dust abundance. One example is the elevated dust--laden Saharan Air Layer (SAL) over the equatorial North Atlantic, which cools the sea surface and likely suppresses hurricane activity. To understand the formation mechanisms of SAL, we combine model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM--I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. We employed the Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF--Chem) to reproduce the meteorological environment and spatial and size distributions of dust. The experimental domain covers northwest Africa including the southern Sahara, Morocco and part of the Atlantic Ocean with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of most intensive dust outbreaks. Comparisons of model results with available airborne and ground--based observations show that WRF--Chem reproduces observed meteorological fields as well as aerosol distribution across the entire region and along the airplane’s tracks. We evaluated several aerosol uplift processes and found that orographic lifting, aerosol transport through the land/sea interface with steep gradients of meteorological characteristics, and interaction of sea breezes with the continental outflow are key mechanisms that form a surface--detached aerosol plume over the ocean. Comparisons of simulated dust size distributions with airplane and ground--based observations are generally good, but suggest

  6. Asymmetric Aldol Additions: A Guided-Inquiry Laboratory Activity on Catalysis

    Science.gov (United States)

    King, Jorge H. Torres; Wang, Hong; Yezierski, Ellen J.

    2018-01-01

    Despite the importance of asymmetric catalysis in both the pharmaceutical and commodity chemicals industries, asymmetric catalysis is under-represented in undergraduate chemistry laboratory curricula. A novel guided-inquiry experiment based on the asymmetric aldol addition was developed. Students conduct lab work to compare the effectiveness of…

  7. Parallel coupling of symmetric and asymmetric exclusion processes

    International Nuclear Information System (INIS)

    Tsekouras, K; Kolomeisky, A B

    2008-01-01

    A system consisting of two parallel coupled channels where particles in one of them follow the rules of totally asymmetric exclusion processes (TASEP) and in another one move as in symmetric simple exclusion processes (SSEP) is investigated theoretically. Particles interact with each other via hard-core exclusion potential, and in the asymmetric channel they can only hop in one direction, while on the symmetric lattice particles jump in both directions with equal probabilities. Inter-channel transitions are also allowed at every site of both lattices. Stationary state properties of the system are solved exactly in the limit of strong couplings between the channels. It is shown that strong symmetric couplings between totally asymmetric and symmetric channels lead to an effective partially asymmetric simple exclusion process (PASEP) and properties of both channels become almost identical. However, strong asymmetric couplings between symmetric and asymmetric channels yield an effective TASEP with nonzero particle flux in the asymmetric channel and zero flux on the symmetric lattice. For intermediate strength of couplings between the lattices a vertical-cluster mean-field method is developed. This approximate approach treats exactly particle dynamics during the vertical transitions between the channels and it neglects the correlations along the channels. Our calculations show that in all cases there are three stationary phases defined by particle dynamics at entrances, at exits or in the bulk of the system, while phase boundaries depend on the strength and symmetry of couplings between the channels. Extensive Monte Carlo computer simulations strongly support our theoretical predictions. Theoretical calculations and computer simulations predict that inter-channel couplings have a strong effect on stationary properties. It is also argued that our results might be relevant for understanding multi-particle dynamics of motor proteins

  8. Multipartite asymmetric quantum cloning

    International Nuclear Information System (INIS)

    Iblisdir, S.; Gisin, N.; Acin, A.; Cerf, N.J.; Filip, R.; Fiurasek, J.

    2005-01-01

    We investigate the optimal distribution of quantum information over multipartite systems in asymmetric settings. We introduce cloning transformations that take N identical replicas of a pure state in any dimension as input and yield a collection of clones with nonidentical fidelities. As an example, if the clones are partitioned into a set of M A clones with fidelity F A and another set of M B clones with fidelity F B , the trade-off between these fidelities is analyzed, and particular cases of optimal N→M A +M B cloning machines are exhibited. We also present an optimal 1→1+1+1 cloning machine, which is an example of a tripartite fully asymmetric cloner. Finally, it is shown how these cloning machines can be optically realized

  9. Suspended dust in Norwegian cities

    International Nuclear Information System (INIS)

    2001-01-01

    According to calculations, at least 80 000 people in Oslo and 8 000 in Trondheim were annoyed by too much suspended dust in 2000. The dust concentration is greatest in the spring, presumably because dust is swirling up from melting snow and ice on the streets. Car traffic is the main source of the dust, except for some of the most highly exposed regions where wood-firing from old stoves contributes up to 70 percent of the dust. National targets for air quality include suspended dust, nitrogen dioxide, sulphur dioxide and benzene. Calculations show that nitrogen dioxide emissions exceeding the limit affected 4 000 people in Oslo and 1 000 people in Trondheim. The sulphur dioxide emissions in the major cities did non exceed the national quality limit; they did exceed the limit in some of the smaller industrial centres. In Trondheim, measurements show that the national limit for benzene was exceeded. Most of the emission of nitrogen dioxide comes from the road traffic. Local air pollution at times causes considerable health- and well-being problems in the larger cities and industrial centres, where a great part of the population may be at risk of early death, infection of the respiratory passage, heart- and lung diseases and cancer

  10. Transport of Mineral Dust and Its Impact on Climate

    Directory of Open Access Journals (Sweden)

    Kerstin Schepanski

    2018-04-01

    Full Text Available Mineral dust plays a pivotal role in the Earth’s system. Dust modulates the global energy budget directly via its interactions with radiation and indirectly via its influence on cloud and precipitation formation processes. Dust is a micro-nutrient and fertilizer for ecosystems due to its mineralogical composition and thus impacts on the global carbon cycle. Hence, dust aerosol is an essential part of weather and climate. Dust suspended in the air is determined by the atmospheric dust cycle: Dust sources and emission processes define the amount of dust entrained into the atmosphere. Atmospheric mixing and circulation carry plumes of dust to remote places. Ultimately, dust particles are removed from the atmosphere by deposition processes such as gravitational settling and rain wash out. During its residence time, dust interacts with and thus modulates the atmosphere resulting into changes such as in surface temperature, wind, clouds, and precipitation rates. There are still uncertainties regarding individual dust interactions and their relevance. Dust modulates key processes that are inevitably influencing the Earth energy budget. Dust transport allows for these interactions and at the same time, the intermittency of dust transport introduces additional fluctuations into a complex and challenging system.

  11. Seasonally asymmetric enhancement of northern vegetation productivity

    Science.gov (United States)

    Park, T.; Myneni, R.

    2017-12-01

    Multiple evidences of widespread greening and increasing terrestrial carbon uptake have been documented. In particular, enhanced gross productivity of northern vegetation has been a critical role leading to observed carbon uptake trend. However, seasonal photosynthetic activity and its contribution to observed annual carbon uptake trend and interannual variability are not well understood. Here, we introduce a multiple-source of datasets including ground, atmospheric and satellite observations, and multiple process-based global vegetation models to understand how seasonal variation of land surface vegetation controls a large-scale carbon exchange. Our analysis clearly shows a seasonally asymmetric enhancement of northern vegetation productivity in growing season during last decades. Particularly, increasing gross productivity in late spring and early summer is obvious and dominant driver explaining observed trend and variability. We observe more asymmetric productivity enhancement in warmer region and this spatially varying asymmetricity in northern vegetation are likely explained by canopy development rate, thermal and light availability. These results imply that continued warming may facilitate amplifying asymmetric vegetation activity and cause these trends to become more pervasive, in turn warming induced regime shift in northern land.

  12. Statistical Mechanics of Thin Spherical Shells

    Directory of Open Access Journals (Sweden)

    Andrej Košmrlj

    2017-01-01

    Full Text Available We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes, and the local out-of-plane undulations leads to novel phenomena. In spherical shells, thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated “pressure.” Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows nonlinearly with increasing outward pressure, with the same universal power-law exponent that characterizes the response of fluctuating flat membranes to a uniform tension.

  13. Molecules and dust in Cassiopeia A

    DEFF Research Database (Denmark)

    Biscaro, Chiara; Cherchneff, Isabelle

    2016-01-01

    We study the dust evolution in the supernova remnant Cassiopeia A. We follow the processing of dust grains that formed in the Type II-b supernova ejecta by modelling the sputtering of grains. The dust is located in dense ejecta clumps that are crossed by the reverse shock. We also investigate......-rich clumps that correspond to the outermost carbon-rich ejecta zone. We consider the various dust components that form in the supernova, several reverse shock velocities and inter-clump gas temperatures, and derive grain-size distributions and masses for the dust as a function of time. Both non...... and size, and the shock velocity in the clump. A Type II-b SN forms small grains that are sputtered within the clumps and in the inter-clump medium. For Cas A, silicate grains do not survive thermal sputtering in the inter-clump medium, while alumina, silicon carbide, and carbon dust may survive...

  14. Active Dust Experiment in the Mesosphere

    International Nuclear Information System (INIS)

    Norberg, Carol; Pellinen-Wannberg, Asta

    2008-01-01

    The mesosphere stretches from an altitude of about 50 to 90 km above the Earth's surface. Meteors entering the Earth's atmosphere are believed to ablate and hence give rise to a thin layer of dust particles in the upper part of the Earth's mesosphere. It seems that the dust is most dense in a layer that lies between 80 and 90 km. The dust particles are thought to have sizes of a few to tens of nanometers. Efforts have been made to measure these particles using rockets and radar techniques with limited success. We propose to release dust into the mesosphere over northern Sweden at a height of about 90 km and observe the released dust using the EISCAT radar system. The dust will be launched from the Swedish Space Corporation Esrange Space Centre on a single-stage Improved-Orion rocket that will be launched so that its flight path will be in the radar field of view.

  15. Optical and microphysical properties of natural mineral dust and anthropogenic soil dust near dust source regions over northwestern China

    Directory of Open Access Journals (Sweden)

    X. Wang

    2018-02-01

    Full Text Available Mineral dust aerosols (MDs not only influence the climate by scattering and absorbing solar radiation but also modify cloud properties and change the ecosystem. From 3 April to 16 May 2014, a ground-based mobile laboratory was deployed to measure the optical and microphysical properties of MDs near dust source regions in Wuwei, Zhangye, and Dunhuang (in chronological order along the Hexi Corridor over northwestern China. Throughout this dust campaign, the hourly averaged (±standard deviation aerosol scattering coefficients (σsp, 550 nm of the particulates with aerodynamic diameters less than 2.5 µm (PM2.5 at these three sites were sequentially 101.5 ± 36.8, 182.2 ± 433.1, and 54.0 ± 32.0 Mm−1. Correspondingly, the absorption coefficients (σap, 637 nm were 9.7 ± 6.1, 6.0 ± 4.6, and 2.3 ± 0.9 Mm−1; single-scattering albedos (ω, 637 nm were 0.902 ± 0.025, 0.931 ± 0.037, and 0.949 ± 0.020; and scattering Ångström exponents (Åsp, 450–700 nm of PM2.5 were 1.28 ± 0.27, 0.77 ± 0.51, and 0.52 ± 0.31. During a severe dust storm in Zhangye (i.e., from 23 to 25 April, the highest values of σsp2.5 ( ∼  5074 Mm−1, backscattering coefficient (σbsp2.5,  ∼  522 Mm−1, and ω637 ( ∼  0.993 and the lowest values of backscattering fraction (b2.5,  ∼  0.101 at 550 nm and Åsp2.5 ( ∼  −0.046 at 450–700 nm, with peak values of aerosol number size distribution (appearing at the particle diameter range of 1–3 µm, exhibited that the atmospheric aerosols were dominated by coarse-mode dust aerosols. It is hypothesized that the relatively higher values of mass scattering efficiency during floating dust episodes in Wuwei and Zhangye are attributed to the anthropogenic soil dust produced by agricultural cultivations.

  16. Temporal structures in shell models

    DEFF Research Database (Denmark)

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  17. Expert system development (ESD) shell

    International Nuclear Information System (INIS)

    Padmini, S.; Diwakar, M.P.; Rathode, N.C.; Bairi, B.R.

    1991-01-01

    An Expert System Development (ESD) Shell design implementation is desribed in detail. The shell provides high-level generic facilities for Knowledge Representation (KR) and inferencing and tools for developing user interfaces. Powerful set of tools in the shell relieves much of the programming burden in the ES development. The shell is written in PROLOG under IBM PC/AT. KR facilities are based on two very powerful formalisms namely, frames and rules. Inference Engine (IE) draws most of its power from unification and backward reasoning strategy in PROLOG. This basic mechanism is enhanced further by incorporating both forward and backward chaining of rules and frame-based inferencing. Overall programming style integrates multiple paradigms including logic, object oriented, access-oriented and imperative programming. This permits ES designer a lot of flexibility in organizing inference control. Creation and maintainance of knowledge base is a major activity. The shell, therefore, provides number of facilities to simplify these tasks. Shell design also takes note of the fact that final success of any system depends on end-user satisfaction and hence provides features to build use-friendly interfaces. The shell also provides a set of interfacing predicates so that it can be embedded within any PROLOG program to incorporate functionalilty of the shell in the user program. (author). 10 refs., 8 figs

  18. Asymmetric Price Responses of Gasoline Stations. Evidence for Heterogeneity of Retailers

    Energy Technology Data Exchange (ETDEWEB)

    Faber, R.P. [Erasmus University Rotterdam, Rotterdam (Netherlands)

    2009-11-15

    This paper studies asymmetric price responses of individual firms, via daily retail prices of almost all gasoline stations in the Netherlands and suggested prices of the five largest oil companies over more than two years. I find that 38% of the stations respond asymmetrically to changes in the spot market price. Hence, asymmetric pricing is not a feature of the market as a whole, but of individual firms. For asymmetrically pricing stations, the asymmetry is substantial directly after a change but disappears after one or two days. I study station-specific characteristics and conclude that asymmetric pricing seems to be a phenomenon that is randomly distributed across stations. I also find that none of the five largest oil companies adjust their suggested prices asymmetrically.

  19. Asymmetric Price Responses of Gasoline Stations. Evidence for Heterogeneity of Retailers

    International Nuclear Information System (INIS)

    Faber, R.P.

    2009-11-01

    This paper studies asymmetric price responses of individual firms, via daily retail prices of almost all gasoline stations in the Netherlands and suggested prices of the five largest oil companies over more than two years. I find that 38% of the stations respond asymmetrically to changes in the spot market price. Hence, asymmetric pricing is not a feature of the market as a whole, but of individual firms. For asymmetrically pricing stations, the asymmetry is substantial directly after a change but disappears after one or two days. I study station-specific characteristics and conclude that asymmetric pricing seems to be a phenomenon that is randomly distributed across stations. I also find that none of the five largest oil companies adjust their suggested prices asymmetrically.

  20. Role of dust in H II regions

    International Nuclear Information System (INIS)

    Sarazin, C.L.

    1975-01-01

    The purpose of this dissertation is to determine quantitatively the effects of U.V. absorbing dust on H II regions, and compare these effects with observations. Many observations indicate that dust grains are present within H II regions. An analytic theory is presented which describes all three of the effects of dust in H II regions. Although this model is relatively crude, it is useful in determining the approximate size of the modifications due to dust. In order to explore this problem more carefully, detailed numerical models of H II regions with dust were constructed. The ionization and thermal structure of these model H II regions is discussed. The observational consequences of the presence of dust are explored; the optical line intensities, radio continuum and line fluxes, and infrared emission of model H II regions with dust are given. These numerical models are compared with observations of diffuse nebulae. The optical line ratios are compared to several nearby bright H II regions, and it is found that the dust models may explain several anomalies in their spectrum

  1. M-shell ionization of heavy elements by 0.1-1.0 MeV/amu 1,2H and 3,4He ions

    International Nuclear Information System (INIS)

    Pajek, M.; Banas, D.; Braziewicz, J.; Czarnota, M.; Bienkowski, A.; Jaskola, M.; Korman, A.; Trautmann, D.; Lapicki, G.

    2006-01-01

    The M-shell ionization in high-Z atoms by low-energy light 1 1 H, 1 2 H, 2 3 He, and 2 4 He ions have been studied systematically in the energy range 0.1-1.0 MeV/amu in order to verify the available theoretical approaches describing the M-shell ionization by charged particles in asymmetric collisions. The present low-energy data, combined with our earlier results reported for M-shell ionization by hydrogen and helium ions for higher energies, form a systematic experimental basis to test the theoretical predictions of M-shell ionization based on the plane-wave Born approximation (PWBA), the semiclassical approximation (SCA), and the binary-encounter approximation (BEA). In the PWBA based approaches the energy loss (E), Coulomb deflection (C), perturbed stationary state (PSS), and relativistic (R) effects were considered within the ECPSSR theory and its recent modification, called the ECUSAR theory, in which a description of the PSS effect was corrected to account for the united- and separated-atom (USA) electron binding energy limits. In the SCA calculations with relativistic wave functions the binding effect was included only in the limiting cases of separated-atom and united-atom limits. Possible contribution of the electron capture, multiple ionization, and recoil ionization to the M-shell vacancy production, which is dominated for light ions impact by direct single ionization process, are also discussed. The universal scaling of measured M-shell x-ray production and ionization cross sections was investigated in detail. Using the present data the isotopic effect has been studied by comparing the measured M-shell ionization cross-section ratios for equal-velocity hydrogen 1 1 H and 1 2 H as well as helium 2 3 He and 2 4 He isotopes. In addition, the ratios of measured ionization cross sections for 1 2 H and 2 4 He were used to investigate the role of the binding effect. The present results are of practical importance for the application of particle-induced x

  2. Design aids for stiffened composite shells with cutouts

    CERN Document Server

    Sahoo, Sarmila

    2017-01-01

    This book focuses on the free vibrations of graphite-epoxy laminated composite stiffened shells with cutout both in terms of the natural frequencies and mode shapes. The dynamic analysis of shell structures, which may have complex geometry and arbitrary loading and boundary conditions, is solved efficiently by the finite element method, even including cutouts in shells. The results may be readily used by practicing engineers dealing with stiffened composite shells with cutouts. Several shell forms viz. cylindrical shell, hypar shell, conoidal shell, spherical shell, saddle shell, hyperbolic paraboloidal shell and elliptic paraboloidal shell are considered in the book. The dynamic characteristics of stiffened composite shells with cutout are described in terms of the natural frequency and mode shapes. The size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints of cross-ply and angle-ply laminated composite shells. The effects of these parametric variat...

  3. Electron capture in asymmetric collisions

    International Nuclear Information System (INIS)

    Graviele, M.S.; Miraglia, J.E.

    1988-01-01

    It is calculated the electronic capture of K shell by protons using the on-shell impulsive wave functions, exact and eikonal, in the initial and final channels respectively. Both wave functions are normalized and have the correct asyntotic conditions. A good agreement to the experimental data is found. (A.C.A.S.) [pt

  4. Activated carbons prepared from hazelnut shells, walnut shells and peanut shells for high CO2 adsorption

    Directory of Open Access Journals (Sweden)

    Lewicka Katarzyna

    2017-06-01

    Full Text Available Research treats about producing activated carbons for CO2 capture from hazelnut shells (HN, walnut shells (WN and peanut shells (PN. Saturated solution of KOH was used as an activating agent in ratio 1:1. Samples were carbonized in the furnace in the range of temperatures 600°C–900°C. Properties of carbons were tested by N2 adsorption method, using BET equation, DFT method and volumetric CO2 adsorption method. With the increase of carbonization temperature specific surface area of studied samples increased. The largest surface area was calculated for samples carbonized at 900°C and the highest values of CO2 adsorption had samples: PN900 at 0°C (5.5 mmol/g and WN900 at 25°C (4.34 mmol/g. All of the samples had a well-developed microporous structure.

  5. Radio frequency discharge with dust particles

    NARCIS (Netherlands)

    Chutov, Y. I.; W. J. Goedheer,; Kravchenko, O. Y.; Zuz, V. M.; Yan, M.; Martins, R.; Ferreira, I.; Fortunato, E.; Kroesen, G.

    2000-01-01

    A 1D PIC/MCC method has been developed for computer simulations of low-pressure RF discharges with dust particles using the method for dust-free discharges. A RF discharge in argon with dust particles distributed uniformly in the interelectrode gap is simulated at parameters providing a possibility

  6. Heating of Porous Icy Dust Aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Sirono, Sin-iti [Earth and Environmental Sciences, Nagoya University, Tikusa-ku, Furo-cho, Nagoya 464-8601 (Japan)

    2017-06-10

    At the beginning of planetary formation, highly porous dust aggregates are formed through coagulation of dust grains. Outside the snowline, the main component of an aggregate is H{sub 2}O ice. Because H{sub 2}O ice is formed in amorphous form, its thermal conductivity is extremely small. Therefore, the thermal conductivity of an icy dust aggregate is low. There is a possibility of heating inside an aggregate owing to the decay of radionuclides. It is shown that the temperature increases substantially inside an aggregate, leading to crystallization of amorphous ice. During the crystallization, the temperature further increases sufficiently to continue sintering. The mechanical properties of icy dust aggregates change, and the collisional evolution of dust aggregates is affected by the sintering.

  7. Observation of asymmetric electromagnetic field profiles in chiral metamaterials

    Science.gov (United States)

    Hisamoto, Nobuyuki; Ueda, Tetsuya; Sawada, Kei; Tomita, Satoshi

    2018-02-01

    We experimentally observe asymmetric electromagnetic field profiles along two-dimensional chiral metamaterials. The asymmetric field profiles depending on the chirality and the operation frequency have been reproduced well by the numerical simulation. Around a chiral meta-atom, distribution of a Poynting vector is found to be shifted asymmetrically. These results are explained in terms of an analogy with the side-jump mechanism in the electronic anomalous Hall systems.

  8. Simulating Mars' Dust Cycle with a Mars General Circulation Model: Effects of Water Ice Cloud Formation on Dust Lifting Strength and Seasonality

    Science.gov (United States)

    Kahre, Melinda A.; Haberle, Robert; Hollingsworth, Jeffery L.

    2012-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere [1,2,3]. Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer [4]. Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across [5]. Regional storm activity is enhanced before northern winter solstice (Ls200 degrees - 240 degrees), and after northern solstice (Ls305 degrees - 340 degrees ), which produces elevated atmospheric dust loadings during these periods [5,6,7]. These pre- and post- solstice increases in dust loading are thought to be associated with transient eddy activity in the northern hemisphere with cross-equatorial transport of dust leading to enhanced dust lifting in the southern hemisphere [6]. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles [8,9,10]. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading.

  9. Characterization of graphite dust produced by pneumatic lift

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Kang, Feiyu [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Yang, Xiaoyong; Li, Weihua [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Highlights: • Generation of graphite dust by pneumatic lift. • Determination of morphology and particle size distribution of graphite dust. • The size of graphite dust in this study is compared to AVR and THTR-300 results. • Graphite dust originates from both filler and binder of the matrix graphite. - Abstract: Graphite dust is an important safety concern of high-temperature gas-cooled reactor (HTR). The graphite dust could adsorb fission products, and the radioactive dust is transported by the coolant gas and deposited on the surface of the primary loop. The simulation of coagulation, aggregation, deposition, and resuspension behavior of graphite dust requires parameters such as particle size distribution and particle shape, but currently very limited data on graphite dust is available. The only data we have are from AVR and THTR-300, however, the AVR result is likely to be prejudiced by the oil ingress. In pebble-bed HTR, graphite dust is generally produced by mechanical abrasion, in particular, by the abrasion of graphite pebbles in the lifting pipe of the fuel handling system. Here we demonstrate the generation and characterization of graphite dust that were produced by pneumatic lift. This graphite dust could substitute the real dust in HTR for characterization. The dust, exhibiting a lamellar morphology, showed a number-weighted average particle size of 2.38 μm and a volume-weighted average size of 14.62 μm. These two sizes were larger than the AVR and THTR results. The discrepancy is possibly due to the irradiation effect and prejudice caused by the oil ingress accident. It is also confirmed by the Raman spectrum that both the filler particle and binder contribute to the dust generation.

  10. Dust grain charges in a nuclear-track plasma and the formation of dynamic vortex dust structures

    International Nuclear Information System (INIS)

    Rykov, V.A.; Khudyakov, A.V.; Filinov, V.S.; Vladimirov, V.I.; Deputatova, L.V.; Krutov, D.V.; Nefedov, A.P.; Fortov, V.E.

    2002-01-01

    Results are presented from Monte Carlo calculations of the electric charge of dust grains in a plasma produced during the slowing down of the radioactive decay products of californium nuclei in neon. The dust grain charging is explained for the first time as being due to the drift of electrons and ions in an external electric field. It is shown that the charges of the grains depend on their coordinates and strongly fluctuate with time. The time-averaged grain charges agree with the experimental data obtained on ordered liquidlike dust structures in a nuclear-track plasma. The time-averaged dust grain charges are used to carry out computer modeling of the formation of dynamic vortex structures observed in experiments. Evidence is obtained of the fact that the electrostatic forces experienced by the dust grains are potential in character

  11. Mineral Dust Instantaneous Radiative Forcing in the Arctic

    Science.gov (United States)

    Kylling, A.; Groot Zwaaftink, C. D.; Stohl, A.

    2018-05-01

    Mineral dust sources at high and low latitudes contribute to atmospheric dust loads and dust deposition in the Arctic. With dust load estimates from Groot Zwaaftink et al. (https://doi.org/10.1002/2016JD025482), we quantify the mineral dust instantaneous radiative forcing (IRF) in the Arctic for the year 2012. The annual-mean top of the atmosphere IRF is 0.225 W/m2, with the largest contributions from dust transported from Asia south of 60°N and Africa. High-latitude (>60°N) dust sources contribute about 39% to top of the atmosphere IRF and have a larger impact (1 to 2 orders of magnitude) on IRF per emitted kilogram of dust than low-latitude sources. Mineral dust deposited on snow accounts for nearly all of the bottom of the atmosphere IRF of 0.135 W/m2. More than half of the bottom of the atmosphere IRF is caused by dust from high-latitude sources, indicating substantial regional climate impacts rarely accounted for in current climate models.

  12. Formation and dissociation of dust molecules in dusty plasma

    International Nuclear Information System (INIS)

    Yan Jia; Feng Fan; Liu Fucheng; Dong Lifang; He Yafeng

    2016-01-01

    Dust molecules are observed in a dusty plasma experiment. By using measurements with high spatial resolution, the formation and dissociation of the dust molecules are studied. The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby. When the interparticle distance between the upper dust grain and the lower one is less than a critical value, the two dust grains would form a dust molecule. The upper dust grain always leads the lower one as they travel. When the interparticle distance between them is larger than the critical value, the dust molecule would dissociate. (paper)

  13. Coal dust symposium

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    This paper gives a report of the paper presented at the symposium held in Hanover on 9 and 10 February 1981. The topics include: the behaviour of dust and coal dust on combustion and explosion; a report on the accidents which occurred at the Laegerdorf cement works' coal crushing and drying plant; current safety requirements at coal crushing and drying plant; and coal crushing and drying. Four papers are individually abstracted. (In German)

  14. Spirit Feels Dust Gust

    Science.gov (United States)

    2007-01-01

    On sol 1149 (March 28, 2007) of its mission, NASA's Mars Exploration Rover Spirit caught a wind gust with its navigation camera. A series of navigation camera images were strung together to create this movie. The front of the gust is observable because it was strong enough to lift up dust. From assessing the trajectory of this gust, the atmospheric science team concludes that it is possible that it passed over the rover. There was, however, no noticeable increase in power associated with this gust. In the past, dust devils and gusts have wiped the solar panels of dust, making it easier for the solar panels to absorb sunlight.

  15. Obliquely propagating dust-density waves

    International Nuclear Information System (INIS)

    Piel, A.; Arp, O.; Klindworth, M.; Melzer, A.

    2008-01-01

    Self-excited dust-density waves are experimentally studied in a dusty plasma under microgravity. Two types of waves are observed: a mode inside the dust volume propagating in the direction of the ion flow and another mode propagating obliquely at the boundary between the dusty plasma and the space charge sheath. The dominance of oblique modes can be described in the frame of a fluid model. It is shown that the results fom the fluid model agree remarkably well with a kinetic electrostatic model of Rosenberg [J. Vac. Sci. Technol. A 14, 631 (1996)]. In the experiment, the instability is quenched by increasing the gas pressure or decreasing the dust density. The critical pressure and dust density are well described by the models

  16. The Electric Environment of Martian Dust Devils

    Science.gov (United States)

    Barth, E. L.; Farrell, W. M.; Rafkin, S. C.

    2017-12-01

    While Martian dust devils have been monitored through decades of observations, we have yet to study their possible electrical effects from in situ instrumentation. However, evidence for the existence of active electrodynamic processes on Mars is provided by laboratory studies of analog material and field campaigns of dust devils on Earth. We have enabled our Mars regional scale atmospheric model (MRAMS) to estimate an upper limit on electric fields generated through dust devil circulations by including charged particles as defined from the Macroscopic Triboelectric Simulation (MTS) code. MRAMS is used to investigate the complex physics of regional, mesoscale, and microscale atmospheric phenomena on Mars; it is a 3-D, nonhydrostatic model, which permits the simulation of atmospheric flows with large vertical accelerations, such as dust devils. MTS is a 3-D particle code which quantifies charging associated with swirling, mixing dust grains; grains of pre-defined sizes and compositions are placed in a simulation box and allowed to move under the influence of winds and gravity. Our MRAMS grid cell size makes our results most applicable to dust devils of a few hundred meters in diameter. We have run a number of simulations to understand the sensitivity of the electric field strength to the particle size and abundance and the amount of charge on each dust grain. We find that Efields can indeed develop in Martian dust convective features via dust grain filtration effects. The overall value of these E-fields is strongly dependent upon dust grain size, dust load, and lifting efficiency, and field strengths can range from 100s of mV/m to 10s of kV/m.

  17. Density currents as a desert dust mobilization mechanism

    Directory of Open Access Journals (Sweden)

    S. Solomos

    2012-11-01

    Full Text Available The formation and propagation of density currents are well studied processes in fluid dynamics with many applications in other science fields. In the atmosphere, density currents are usually meso-β/γ phenomena and are often associated with storm downdrafts. These storms are responsible for the formation of severe dust episodes (haboobs over desert areas. In the present study, the formation of a convective cool pool and the associated dust mobilization are examined for a representative event over the western part of Sahara desert. The physical processes involved in the mobilization of dust are described with the use of the integrated atmospheric-air quality RAMS/ICLAMS model. Dust is effectively produced due to the development of near surface vortices and increased turbulent mixing along the frontal line. Increased dust emissions and recirculation of the elevated particles inside the head of the density current result in the formation of a moving "dust wall". Transport of the dust particles in higher layers – outside of the density current – occurs mainly in three ways: (1 Uplifting of preexisting dust over the frontal line with the aid of the strong updraft (2 Entrainment at the upper part of the density current head due to turbulent mixing (3 Vertical mixing after the dilution of the system. The role of the dust in the associated convective cloud system was found to be limited. Proper representation of convective processes and dust mobilization requires the use of high resolution (cloud resolving model configuration and online parameterization of dust production. Haboob-type dust storms are effective dust sources and should be treated accordingly in dust modeling applications.

  18. Investigations of Wind/WAVES Dust Impacts

    Science.gov (United States)

    St Cyr, O. C.; Wilson, L. B., III; Rockcliffe, K.; Mills, A.; Nieves-Chinchilla, T.; Adrian, M. L.; Malaspina, D.

    2017-12-01

    The Wind spacecraft launched in November 1994 with a primary goal to observe and understand the interaction between the solar wind and Earth's magnetosphere. The waveform capture detector, TDS, of the radio and plasma wave investigation, WAVES [Bougeret et al., 1995], onboard Wind incidentally detected micron-sized dust as electric field pulses from the recollection of the impact plasma clouds (an unintended objective). TDS has detected over 100,000 dust impacts spanning almost two solar cycles; a dataset of these impacts has been created and was described in Malaspina & Wilson [2016]. The spacecraft continues to collect data about plasma, energetic particles, and interplanetary dust impacts. Here we report on two investigations recently conducted on the Wind/WAVES TDS database of dust impacts. One possible source of dust particles is the annually-recurring meteor showers. Using the nine major showers defined by the American Meteor Society, we compared dust count rates before, during, and after the peak of the showers using averaging windows of varying duration. However, we found no statistically significant change in the dust count rates due to major meteor showers. This appears to be an expected result since smaller grains, like the micron particles that Wind is sensitive to, are affected by electromagnetic interactions and Poynting-Robertson drag, and so are scattered away from their initial orbits. Larger grains tend to be more gravitationally dominated and stay on the initial trajectory of the parent body so that only the largest dust grains (those that create streaks as they burn up in the atmosphere) are left in the orbit of the parent body. Ragot and Kahler [2003] predicted that coronal mass ejections (CMEs) near the Sun could effectively scatter dust grains of comparable size to those observed by Wind. Thus, we examined the dust count rates immediately before, during, and after the passage of the 350 interplanetary CMEs observed by Wind over its 20+ year

  19. Dust grains from the heart of supernovae

    Science.gov (United States)

    Bocchio, M.; Marassi, S.; Schneider, R.; Bianchi, S.; Limongi, M.; Chieffi, A.

    2016-03-01

    Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. With this aim, we have developed a new code, GRASH_Rev, that allows following the dynamics of dust grains in the shocked SN ejecta and computing the time evolution of the mass, composition, and size distribution of the grains. We considered four well-studied SNe in the Milky Way and Large Magellanic Cloud: SN 1987A, CasA, the Crab nebula, and N49. These sources have been observed with both Spitzer and Herschel, and the multiwavelength data allow a better assessment the mass of warm and cold dust associated with the ejecta. For each SN, we first identified the best explosion model, using the mass and metallicity of the progenitor star, the mass of 56Ni, the explosion energy, and the circumstellar medium density inferred from the data. We then ran a recently developed dust formation model to compute the properties of freshly formed dust. Starting from these input models, GRASH_Rev self-consistently follows the dynamics of the grains, considering the effects of the forward and reverse shock, and allows predicting the time evolution of the dust mass, composition, and size distribution in the shocked and unshocked regions of the ejecta. All the simulated models aagree well with observations. Our study suggests that SN 1987A is too young for the reverse shock to have affected the dust mass. Hence the observed dust mass of 0.7-0.9 M⊙ in this source can be safely considered as indicative of the mass of freshly formed dust in SN ejecta. Conversely, in the other three SNe, the reverse shock has already destroyed between 10-40% of the

  20. The physics of wind-blown sand and dust.

    Science.gov (United States)

    Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  1. A new convenient asymmetric approach to herbarumin Ⅲ

    Institute of Scientific and Technical Information of China (English)

    Xue Song Chen; Shi Jun Da; Li Hong Yang; Bo Yan Xu; Zhi Xiang Xie; Ying Li

    2007-01-01

    The asymmetric total synthesis of herbarumin Ⅲ 3, a naturally occurred phytotoxin, along with 8-epi-herbarumin Ⅲ 22, was succeeded in 12 steps from n-butyraldehyde based on Brown's asymmetric allylation, taking modified Julia olefination and Yamaguchi's macro-lactonization as key steps.

  2. Dyson shells: a retrospective

    Science.gov (United States)

    Bradbury, Robert J.

    2001-08-01

    More than 40 years have passed since Freeman Dyson suggested that advanced technological civilizations are likely to dismantle planets in their solar systems to harvest all of the energy their stars wastefully radiate into space. Clearly this was an idea that was ahead of its time. Since that time, dozens of SETI searches have been conducted and almost all of them have focused their attention on stars which by definition cannot be the advanced civilizations that Dyson envisioned. I will review the data that created the confusion between Dyson spheres and Dyson shells. The sources that disprove Dyson spheres while still allowing Dyson shells will be discussed. The use of outmoded ideas that have biased the few searches for Dyson Shells that have occurred will be pointed out. An update of the concept of Dyson shells to include our current knowledge of biotechnology, nanotechnology and computer science will be explored. Finally, an approach to setting limits on the abundance of Dyson shells in our galaxy using existing optical astronomical data and future optical satellites will be proposed.

  3. Fourier synthesis of asymmetrical optical potentials for atoms

    International Nuclear Information System (INIS)

    Ritt, G.

    2007-01-01

    In this work a dissipationless asymmetrical optical potential for cold atoms was produced. In a first step a new type of optical lattice was generated, whose spatial periodicity only corresponds to a quarter of the wavelength of the light used for the generation. This corresponds to the half of the periodicity of a conventional optical lattice, which is formed by the light of the same wavelength. The generation of this new type of optical lattice was reached by the use of two degenerated raman transitions. Virtual processes occur, in which four photons are involved. In conventional optical lattices however virtual two-photon processes occur. By spatially superimposing this optical lattice with a conventional optical lattice an asymmetrical optical potential could be formed. By diffraction of a Bose Einstein condensate of rubidium atoms at the transient activated asymmetrical potential the asymmetrical structure was proven. (orig.)

  4. Mussel Shell Impaction in the Esophagus

    Directory of Open Access Journals (Sweden)

    Sunmin Kim

    2013-03-01

    Full Text Available Mussels are commonly used in cooking around the world. The mussel shell breaks more easily than other shells, and the edge of the broken mussel shell is sharp. Impaction can ultimately cause erosion, perforation and fistula. Aside from these complications, the pain can be very intense. Therefore, it is essential to verify and remove the shell as soon as possible. In this report we describe the process of diagnosing and treating mussel shell impaction in the esophagus. Physicians can overlook this unusual foreign body impaction due to lack of experience. When physicians encounter a patient with severe chest pain after a meal with mussels, mussel shell impaction should be considered when diagnosing and treating the patient.

  5. Testing of a Plasmadynamic Hypervelocity Dust Accelerator

    Science.gov (United States)

    Ticos, Catalin M.; Wang, Zhehui; Dorf, Leonid A.; Wurden, G. A.

    2006-10-01

    A plasmadynamic accelerator for microparticles (or dust grains) has been designed, built and tested at Los Alamos National laboratory. The dust grains are expected to be accelerated to hypervelocities on the order of 1-30 km/s, depending on their size. The key components of the plasmadynamic accelerator are a coaxial plasma gun operated at 10 kV, a dust dispenser activated by a piezoelectric transducer, and power and remote-control systems. The coaxial plasma gun produces a high density (10^18 cm-3) and low temperature (˜ 1 eV) plasma in deuterium ejected by J x B forces, which provides drag on the dust particles in its path. Carbon dust particles will be used, with diameters from 1 to 50 μm. The plasma parameters produced in the coaxial gun are presented and their implication to dust acceleration is discussed. High speed dust will be injected in the National Spherical Torus Experiment to measure the pitch angle of magnetic field lines.

  6. Engineered Asymmetric Composite Membranes with Rectifying Properties.

    Science.gov (United States)

    Wen, Liping; Xiao, Kai; Sainath, Annadanam V Sesha; Komura, Motonori; Kong, Xiang-Yu; Xie, Ganhua; Zhang, Zhen; Tian, Ye; Iyoda, Tomokazu; Jiang, Lei

    2016-01-27

    Asymmetric composite membranes with rectifying properties are developed by grafting pH-stimulus-responsive materials onto the top layer of the composite structure, which is prepared by two novel block copolymers using a phase-separation technique. This engineered asymmetric composite membrane shows potential applications in sensors, filtration, and nanofluidic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Plate shell structures of glass

    DEFF Research Database (Denmark)

    Bagger, Anne

    to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....

  8. Development of High-Resolution Dynamic Dust Source Function - A Case Study with a Strong Dust Storm in a Regional Model

    Science.gov (United States)

    Kim, Dongchul; Chin, Mian; Kemp, Eric M.; Tao, Zhining; Peters-Lidard, Christa D.; Ginoux, Paul

    2017-01-01

    A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 0203 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.

  9. Development of High-Resolution Dynamic Dust Source Function -A Case Study with a Strong Dust Storm in a Regional Model.

    Science.gov (United States)

    Kim, Dongchul; Chin, Mian; Kemp, Eric M; Tao, Zhining; Peters-Lidard, Christa D; Ginoux, Paul

    2017-06-01

    A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 02-03 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.

  10. Effects of dust size distribution on dust negative ion acoustic solitary waves in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Ma, Yi-Rong; Qi, Xin; Sun, Jian-An; Duan, Wen-Shan; Yang, Lei

    2013-01-01

    Dust negative ion acoustic solitary waves in a magnetized multi-ion dusty plasma containing hot isothermal electron, ions (light positive ions and heavy negative ions) and extremely massive charge fluctuating dust grains are investigated by employing the reductive perturbation method. How the dust size distribution affect the height and the thickness of the nonlinear solitary wave are given. It is noted that the characteristic of the solitary waves are different with the different dust size distribution. The magnitude of the external magnetic field also affects the solitary wave form

  11. Instability of dust ion-acoustic waves in a dusty plasma containing elongated and rotating charged dust grains

    International Nuclear Information System (INIS)

    Shukla, P.K.; Tskhakaya, D.D.

    2001-01-01

    The dispersion properties of the dust ion-acoustic waves (DIAWs) in an unmagnetized dusty plasma is examined when the plasma constituents are electrons, ions, and charged dust grains which are elongated and rotating. Since the dipole moment of elongated and rotating dust grains is nonzero, significant modifications of the DIAW spectrum emerge. It is found that the DIAWs are subjected to an instability when the DIAW frequency approximately equals the angular rotation frequency of the elongated dust grains. The relevance of our investigation to enhanced fluctuations in space and laboratory dusty plasmas is pointed out

  12. Control of dust hazards in mines

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V V

    1981-09-01

    This paper analyzes health hazards associated with air pollution by respirable coal dust which causes pneumoconioses. The following directions in pneumoconioses prevention are discussed: improved protective systems (e.g. respirators), mining schemes optimized from a health hazards point of view, correct determination of the maximum permissible level of respirable dusts, reducing working time. Safety regulations in the USSR on the critical amount of coal dust in the miner respiratory system are insufficient as the 20 g limit is too high and does not guarantee safety. Using regression analysis influence of the factors which cause pneumoconioses is analyzed. This influence is described by an equation which considers the following factors: number of shifts associated with contact of a miner with coal dusts, dust concentration in mine air, amount of air with coal dust being respirated, miner's age, years as miner, coal rank. It is stated that use of the proposed equation (derived by computer calculations) permits the safe working time to be correctly determined considering all factors which cause pneumoconioses.

  13. Long-term variability of dust-storms in Iceland

    Science.gov (United States)

    Dagsson-Waldhauserová, Pavla; Ólafsson, Haraldur; Arnalds, Ólafur

    2013-04-01

    Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland are volcanic sandy deserts. Natural emissions from these sources influenced by strong winds affect not only regional air quality in Iceland ("Reykjavik haze") but dust particles are transported over the Atlantic ocean and Arctic Ocean > 1000 km at times. The study places Icelandic dust production area into international perspective, present long term frequency of dust storm events in NE Iceland, and estimate dust aerosol concentrations during reported dust events. Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in NE Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the NE erosion area, indicating extreme dust plume activity and erosion within the NE deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and aeolian transport during dust/volcanic ash storms in Iceland which give some of the most intense wind erosion events ever measured. Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust is not only a substantial source for regional air pollution, but may be considered to contribute to the Arctic haze phenomena and Arctic air pollution.

  14. Dust devil generation

    International Nuclear Information System (INIS)

    G Onishchenko, O; A Pokhotelov, O; Horton, W; Stenflo, L

    2014-01-01

    The equations describing axi-symmetric nonlinear internal gravity waves in an unstable atmosphere are derived. A hydrodynamic model of a dust devil generation mechanism in such an atmosphere is investigated. It is shown that in an unstably stratified atmosphere the convective plumes with poloidal motion can grow exponentially. Furthermore, it is demonstrated that these convective plumes in an atmosphere with weak large scale toroidal motion are unstable with respect to three-dimensional dust devil generation. (papers)

  15. Variable angle asymmetric cut monochromator

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-09-01

    A variable incident angle, asymmetric cut, double crystal monochromator was tested for use on beamlines at the Advanced Photon Source (APS). For both undulator and wiggler beams the monochromator can expand area of footprint of beam on surface of the crystals to 50 times the area of incident beam; this will reduce the slope errors by a factor of 2500. The asymmetric cut allows one to increase the acceptance angle for incident radiation and obtain a better match to the opening angle of the incident beam. This can increase intensity of the diffracted beam by a factor of 2 to 5 and can make the beam more monochromatic, as well. The monochromator consists of two matched, asymmetric cut (18 degrees), silicon crystals mounted so that they can be rotated about three independent axes. Rotation around the first axis controls the Bragg angle. The second rotation axis is perpendicular to the diffraction planes and controls the increase of the area of the footprint of the beam on the crystal surface. Rotation around the third axis controls the angle between the surface of the crystal and the wider, horizontal axis for the beam and can make the footprint a rectangle with a minimum. length for this area. The asymmetric cut is 18 degrees for the matched pair of crystals, which allows one to expand the footprint area by a factor of 50 for Bragg angles up to 19.15 degrees (6 keV for Si[111] planes). This monochromator, with proper cooling, will be useful for analyzing the high intensity x-ray beams produced by both undulators and wigglers at the APS

  16. Long-term effects of aluminium dust inhalation.

    Science.gov (United States)

    Peters, Susan; Reid, Alison; Fritschi, Lin; de Klerk, Nicholas; Musk, A W Bill

    2013-12-01

    During the 1950s and 1960s, aluminium dust inhalation was used as a potential prophylaxis against silicosis in underground miners, including in Australia. We investigated the association between aluminium dust inhalation and cardiovascular, cerebrovascular and Alzheimer's diseases in a cohort of Australian male underground gold miners. We additionally looked at pneumoconiosis mortality to estimate the effect of the aluminium therapy. SMRs and 95% CI were calculated to compare mortality of the cohort members with that of the Western Australian male population (1961-2009). Internal comparisons on duration of aluminium dust inhalation were examined using Cox regression. Aluminium dust inhalation was reported for 647 out of 1894 underground gold miners. During 42 780 person-years of follow-up, 1577 deaths were observed. An indication of increased mortality of Alzheimer's disease among miners ever exposed to aluminium dust was found (SMR=1.38), although it was not statistically significant (95% CI 0.69 to 2.75). Rates for cardiovascular and cerebrovascular death were above population levels, but were similar for subjects with or without a history of aluminium dust inhalation. HRs suggested an increasing risk of cardiovascular disease with duration of aluminium dust inhalation (HR=1.02, 95% CI 1.00 to 1.04, per year of exposure). No difference in the association between duration of work underground and pneumoconiosis was observed between the groups with or without aluminium dust exposure. No protective effect against silicosis was observed from aluminium dust inhalation. Conversely, exposure to aluminium dust may possibly increase the risk of cardiovascular disease and dementia of the Alzheimer's type.

  17. High-latitude dust in the Earth system

    Science.gov (United States)

    Bullard, Joanna E; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; NcKenna Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (≥50°N and ≥40°S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 km2 and contribute at least 80–100 Tg yr−1 of dust to the Earth system (~5% of the global dust budget); both are projected to increase under future climate change scenarios.

  18. High Latitude Dust in the Earth System

    Science.gov (United States)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; hide

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (> or = 50degN and > or = 40degS) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 sq km and contribute at least 80-100 Tg/yr1 of dust to the Earth system (approx. 5% of the global dust budget); both are projected to increase under future climate change scenarios.

  19. Dust removal system for fusion experimental reactors

    International Nuclear Information System (INIS)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y.; Seki, Y.; Ueda, S.; Aoki, I.

    1995-01-01

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors

  20. Dust removal system for fusion experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y. [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Seki, Y.; Ueda, S.; Aoki, I. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)

    1995-12-31

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors.

  1. Optimised photocatalytic hydrogen production using core–shell AuPd promoters with controlled shell thickness

    DEFF Research Database (Denmark)

    Jones, Wilm; Su, Ren; Wells, Peter

    2014-01-01

    of these materials towards the reforming of alcohols for hydrogen production. The core–shell structured Au–Pd bimetallic nanoparticle supported on TiO2 has being of interest as it exhibited extremely high quantum efficiencies for hydrogen production. However, the effect of shell composition and thickness...... of the nanoparticles by a combination of X-ray absorption fine structure and X-ray photoelectron spectroscopy. Photocatalytic ethanol reforming showed that the core–shell structured Au–Pd promoters supported on TiO2 exhibit enhanced activity compared to that of monometallic Au and Pd as promoters, whilst the core......–shell Au–Pd promoters containing one ML equivalent Pd provide the optimum reactivity....

  2. Nanostructued core–shell Sn nanowires @ CNTs with controllable thickness of CNT shells for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yu; Li, Xifei; Zhang, Yong; Li, Ruying [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada); Cai, Mei [General Motors Research and Development Center, Warren, MI 48090-9055 (United States); Sun, Xueliang, E-mail: xsun@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2015-03-30

    Graphical abstract: - Highlights: • Sn nanowires encapsulated in CNTs directly grew on current collectors. • The thickness of CNTs were controlled via growth time, gas flow rate and synthesis temperature. • Thick CNTs contributed to a better capacity retention while thin CNTs led to a higher capacity. • The core–shell structures formed in one-step CVD process. - Abstract: Core–shell structure of Sn nanowires encapsulated in amorphous carbon nanotubes (Sn@CNTs) with controlled thickness of CNT shells was in situ prepared via chemical vapor deposition (CVD) method. The thickness of CNT shells was accurately controlled from 4 to 99 nm by using different growth time, flow rate of hydrocarbon gas (C{sub 2}H{sub 4}) and synthesis temperature. The microstructure and composition of the coaxial Sn@CNTs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) techniques. Moreover, the Sn@CNTs were studied as anode materials for Li-ion batteries and showed excellent cycle performance. The capacity was affected by the thickness of outer CNT shells: thick CNT shells contributed to a better retention while thin CNT shells led to a higher capacity. The thin CNT shell of 6 nm presented the highest capacity around 630 mAh g{sup −1}.

  3. Nanostructued core–shell Sn nanowires @ CNTs with controllable thickness of CNT shells for lithium ion battery

    International Nuclear Information System (INIS)

    Zhong, Yu; Li, Xifei; Zhang, Yong; Li, Ruying; Cai, Mei; Sun, Xueliang

    2015-01-01

    Graphical abstract: - Highlights: • Sn nanowires encapsulated in CNTs directly grew on current collectors. • The thickness of CNTs were controlled via growth time, gas flow rate and synthesis temperature. • Thick CNTs contributed to a better capacity retention while thin CNTs led to a higher capacity. • The core–shell structures formed in one-step CVD process. - Abstract: Core–shell structure of Sn nanowires encapsulated in amorphous carbon nanotubes (Sn@CNTs) with controlled thickness of CNT shells was in situ prepared via chemical vapor deposition (CVD) method. The thickness of CNT shells was accurately controlled from 4 to 99 nm by using different growth time, flow rate of hydrocarbon gas (C 2 H 4 ) and synthesis temperature. The microstructure and composition of the coaxial Sn@CNTs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) techniques. Moreover, the Sn@CNTs were studied as anode materials for Li-ion batteries and showed excellent cycle performance. The capacity was affected by the thickness of outer CNT shells: thick CNT shells contributed to a better retention while thin CNT shells led to a higher capacity. The thin CNT shell of 6 nm presented the highest capacity around 630 mAh g −1

  4. Extensions to a nonlinear finite element axisymmetric shell model based on Reissner's shell theory

    International Nuclear Information System (INIS)

    Cook, W.A.

    1981-01-01

    A finite element shell-of-revolution model has been developed to analyze shipping containers under severe impact conditions. To establish the limits for this shell model, I studied the basic assumptions used in its development; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress. (orig./HP)

  5. Origin of Harmattan dust settled in Northern Ghana – Long transported or local dust?

    DEFF Research Database (Denmark)

    Lyngsie, Gry; Awadzi, Theodore W; Breuning-Madsen, Henrik

    2011-01-01

    is that the majority of dust deposited in northern Ghana may not be from the original Harmattan source in the Bodélé Depression. The aim of this study is therefore to investigate the origin of deposited dust in Tamale, Ghana. This is examined by comparing wind data, grain size distribution, mineralogical......The Harmattan is a dry, dust-laden continental wind which has its origin in the Bodélé Depression in the Chad basin. In Ghana the Harmattan can be experienced from November to March, when the Harmattan replaces the dominant south westerly maritime Monsoon wind. The hypothesis of this study...... and geochemical data from dust samples deposited during the Harmattan and Monsoon seasons, and topsoil. This study shows that despite a clear difference between the wind directions in the Harmattan and Monsoon seasons in Tamale, northern Ghana, no distinct differences are observed between the mineral or elemental...

  6. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies.

    Science.gov (United States)

    Shu, Anthony; Collette, Andrew; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Kempf, Sascha; Mocker, Anna; Munsat, Tobin; Northway, Paige; Srama, Ralf; Sternovsky, Zoltán; Thomas, Evan

    2012-07-01

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Institüt für Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10(-7) torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10(-10) torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  7. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Anthony; Horanyi, Mihaly; Kempf, Sascha; Thomas, Evan [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Collette, Andrew; Drake, Keith; Northway, Paige [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Gruen, Eberhard [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Mocker, Anna [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Munsat, Tobin [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Srama, Ralf [MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); and others

    2012-07-15

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Instituet fuer Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10{sup -7} torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10{sup -10} torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  8. Core-Shell-Corona Micelles with a Responsive Shell.

    Science.gov (United States)

    Gohy, Jean-François; Willet, Nicolas; Varshney, Sunil; Zhang, Jian-Xin; Jérôme, Robert

    2001-09-03

    A reactor for the synthesis of gold nanoparticles is one of the uses of a poly(styrene)-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) triblock copolymer (PS-b-P2VP-b-PEO) which forms core-shell-corona micelles in water. Very low polydispersity spherical micelles are observed that consist of a PS core surrounded by a pH-sensitive P2VP shell and a corona of PEO chains end-capped by a hydroxyl group. The corona can act as a site for attaching responsive or sensing molecules. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  9. Simulation of dust-acoustic waves

    International Nuclear Information System (INIS)

    Winske, D.; Murillo, M.S.; Rosenberg, M.

    1998-01-01

    The authors use molecular dynamics (MD) and particle-in-cell (PIC) simulation methods to investigate the dispersion relation of dust-acoustic waves in a one-dimensional, strongly coupled (Coulomb coupling parameter Λ = ratio of the Coulomb energy to the thermal energy = 120) dusty plasma. They study both cases where the dust is represented by a small number of simulation particles that form into a regular array structure (crystal limit) as well as where the dust is represented by a much larger number of particles (fluid limit)

  10. Biomineral repair of abalone shell apertures.

    Science.gov (United States)

    Cusack, Maggie; Guo, Dujiao; Chung, Peter; Kamenos, Nicholas A

    2013-08-01

    The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, Haliotis gigantea and Haliotis rufescens reveals that, like the shell, the infill is composed mainly of nacre with an outer prismatic layer. The infill prismatic layer has identical mineralogy as the original shell prismatic layer. In H. asinina and H. gigantea, the prismatic layer of the shell and infill are made of aragonite while in H. rufescens both are composed of calcite. Abalone builds the infill material with the same high level of biological control, replicating the structure, mineralogy and crystallographic orientation as for the shell. The infill of abalone apertures presents us with insight into what is, effectively, shell repair. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Fusability and survivability in reactions leading to heavy nuclei in the vicinity of the N = 126 shell

    International Nuclear Information System (INIS)

    Sagajdak, R.N.

    2008-01-01

    The production of heavy nuclei from Rn to Th around the N = 126 neutron shell in complete fusion reactions of nuclei has been considered in a systematic way in the framework of the conventional barrier-passing fusion model coupled with the Standard Statistical Model (SSM). Available data on the excitation functions for fusion and production of evaporation residues obtained in very asymmetric combinations are described with these models rather well. In the interaction of massive projectiles with heavy target nuclei quasi-fission effects appear in the entrance reaction channel. The quantity of the fusion probability introduced empirically has been used to reproduce excitation functions with the same SSM parameters (fission barriers) as those obtained in the analysis of very asymmetric combinations. A lack of stabilization against fission around N = 126 for Th nuclei was earlier explained with a reduced collective contribution to the level density in spherical nuclei. However, the present analysis shows severe inhibition for fusion, i.e., the drop in production cross sections of Th nuclei in the vicinity of N = 126 is mainly caused by entrance channel effects. The macroscopic component of fission barriers for nuclei involved in a deexcitation cascade has been derived and compared with the theoretical model predictions and available data

  12. Decrease in back strength in asymmetric trunk postures

    NARCIS (Netherlands)

    Vink, P.; Daanen, H. A M; Meijst, W. J.; Ligteringen, J.

    1992-01-01

    The extension force against resistance was recorded in 23 postures for 12 subjects to find explanations for the decrease in back strength in asymmetric postures. A reduction in muscle force in asymmetric postures was found up to 40%, but was strongly dependent on the plane in which asymmetry

  13. Featured Image: Making Dust in the Lab

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    This remarkable photograph (which spans only 10 m across; click for a full view) reveals what happens when you form dust grains in a laboratory under conditions similar to those of interstellar space. The cosmic life cycle of dust grains is not well understood we know that in the interstellar medium (ISM), dust is destroyed at a higher rate than it is produced by stellar sources. Since the amount of dust in the ISM stays constant, however, there must be additional sources of dust production besides stars. A team of scientists led by Daniele Fulvio (Pontifical Catholic University of Rio de Janeiro and the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena) have now studied formation mechanisms of dust grains in the lab by mimicking low-temperature ISM conditions and exploring how, under these conditions, carbonaceous materials condense from gas phase to form dust grains. To read more about their results and see additional images, check out the paper below.CitationDaniele Fulvio et al 2017 ApJS 233 14. doi:10.3847/1538-4365/aa9224

  14. Identifying sources of aeolian mineral dust: Present and past

    Science.gov (United States)

    Muhs, Daniel R; Prospero, Joseph M; Baddock, Matthew C; Gill, Thomas E

    2014-01-01

    Aeolian mineral dust is an important component of the Earth’s environmental systems, playing roles in the planetary radiation balance, as a source of fertilizer for biota in both terrestrial and marine realms and as an archive for understanding atmospheric circulation and paleoclimate in the geologic past. Crucial to understanding all of these roles of dust is the identification of dust sources. Here we review the methods used to identify dust sources active at present and in the past. Contemporary dust sources, produced by both glaciogenic and non-glaciogenic processes, can be readily identified by the use of Earth-orbiting satellites. These data show that present dust sources are concentrated in a global dust belt that encompasses large topographic basins in low-latitude arid and semiarid regions. Geomorphic studies indicate that specific point sources for dust in this zone include dry or ephemeral lakes, intermittent stream courses, dune fields, and some bedrock surfaces. Back-trajectory analyses are also used to identify dust sources, through modeling of wind fields and the movement of air parcels over periods of several days. Identification of dust sources from the past requires novel approaches that are part of the geologic toolbox of provenance studies. Identification of most dust sources of the past requires the use of physical, mineralogical, geochemical, and isotopic analyses of dust deposits. Physical properties include systematic spatial changes in dust deposit thickness and particle size away from a source. Mineralogy and geochemistry can pinpoint dust sources by clay mineral ratios and Sc-Th-La abundances, respectively. The most commonly used isotopic methods utilize isotopes of Nd, Sr, and Pb and have been applied extensively in dust archives of deep-sea cores, ice cores, and loess. All these methods have shown that dust sources have changed over time, with far more abundant dust supplies existing during glacial periods. Greater dust supplies in

  15. Dust-cyclotron and dust-lower-hybrid modes in self-gravitating magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.

    1999-07-01

    A theoretical investigation has been made of two new ultra-low-frequency electrostatic modes, namely, dust-cyclotron mode and dust-lower-hybrid mode, propagating perpendicular to the external magnetic field, in a self-gravitating magnetized two fluid dusty plasma system. It has been shown that the effect of the self-gravitational force, acting on both dust grains and ions, significantly modifies the dispersion properties of both of these two electrostatic modes. It is also found that under certain conditions, this self-gravitational effect can destabilize these ultra-low-frequency electrostatic modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  16. Permanence of diced cartilage, bone dust and diced cartilage/bone dust mixture in experimental design in twelve weeks.

    Science.gov (United States)

    Islamoglu, Kemal; Dikici, Mustafa Bahadir; Ozgentas, Halil Ege

    2006-09-01

    Bone dust and diced cartilage are used for contour restoration because their minimal donor site morbidity. The purpose of this study is to investigate permanence of bone dust, diced cartilage and bone dust/diced cartilage mixture in rabbits over 12 weeks. New Zealand white rabbits were used for this study. There were three groups in the study: Group I: 1 mL bone dust. Group II: 1 mL diced cartilage. Group III: 0.5 mL bone dust + 0.5 mL diced cartilage mixture. They were placed into subcutaneous tissue of rabbits and removed 12 weeks later. The mean volumes of groups were 0.23 +/- 0.08 mL in group I, 0.60 +/- 0.12 mL in group II and 0.36 +/- 0.10 mL in group III. The differences between groups were found statistically significant. In conclusion, diced cartilage was found more reliable than bone dust aspect of preserving its volume for a long period in this study.

  17. Quasar Winds as Dust Factories at High Redshift

    OpenAIRE

    Elvis, Martin; Marengo, Massimo; Karovska, Margarita

    2003-01-01

    Winds from AGN and quasars will form large amounts of dust, as the cool gas in these winds passes through the (pressure, temperature) region where dust is formed in AGB stars. Conditions in the gas are benign to dust at these radii. As a result quasar winds may be a major source of dust at high redshifts, obviating a difficulty with current observations, and requiring far less dust to exist at early epochs.

  18. Porous Core-Shell Nanostructures for Catalytic Applications

    Science.gov (United States)

    Ewers, Trevor David

    Porous core-shell nanostructures have recently received much attention for their enhanced thermal stability. They show great potential in the field of catalysis, as reactant gases can diffuse in and out of the porous shell while the core particle is protected from sintering, a process in which particles coalesce to form larger particles. Sintering is a large problem in industry and is the primary cause of irreversible deactivation. Despite the obvious advantages of high thermal stability, porous core-shell nanoparticles can be developed to have additional interactive properties from the combination of the core and shell together, rather than just the core particle alone. This dissertation focuses on developing new porous core-shell systems in which both the core and shell take part in catalysis. Two types of systems are explored; (1) yolk-shell nanostructures with reducible oxide shells formed using the Kirkendall effect and (2) ceramic-based porous oxide shells formed using sol-gel chemistry. Of the Kirkendall-based systems, Au FexOy and Cu CoO were synthesized and studied for catalytic applications. Additionally, ZnO was explored as a potential shelling material. Sol-gel work focused on optimizing synthetic methods to allow for coating of small gold particles, which remains a challenge today. Mixed metal oxides were explored as a shelling material to make dual catalysts in which the product of a reaction on the core particle becomes a reactant within the shell.

  19. ADSORPTION OF BOVINE SERUM ALBUMIN ONTO ACTIVATED ...

    African Journals Online (AJOL)

    values of adsorbent dosage, pH, and contact time were determined to be 1 ... walnut shell, almond shell, hazelnut shell, apricot stone [19], pine cone [20], coconut shell, groundnut shell and bamboo dust [21], pea shell [22], pistachio shell [23], ...

  20. Subglottic cysts and asymmetrical subglottic narrowing on neck radiograph

    International Nuclear Information System (INIS)

    Holinger, L.D.; Torium, D.M.; Anandappa, E.C.

    1988-01-01

    The congenital subglottic hemangioma typically appears as an asymmetric subglottic narrowing or mass on frontal neck radiograph. Therefore, soft tissue neck radiography has been advocated as a definitive non-operative approach for diagnosing these lesions. However, we have noted similar asymmetric subglottic narrowing in patients with acquired subglottic cysts. These retention cysts occur following long-term intubation in the neonate. The mechanism probably involves subglottic fibrosis which obstructs glands with subsequent cyst formation. Acquired subglottic cysts typically appear as an asymmetric narrowing on frontal or lateral soft tissue neck radiographs. These lesions may produce airway compromise but are effectively treated by forceps or laser removal. Acquired subglottic cysts must be included in the differential diagnosis of asymmetric subglottic narrowing. The definitive diagnosis is made by direct laryngoscopy, not soft tissue neck radiograph. (orig.)

  1. THE EXPANDING BIPOLAR SHELL OF THE HELIUM NOVA V445 PUPPIS

    International Nuclear Information System (INIS)

    Woudt, P. A.; Warner, B.; Steeghs, D.; Marsh, T. R.; Karovska, M.; Roelofs, G. H. A.; Groot, P. J.; Nelemans, G.; Nagayama, T.; Smits, D. P.; O'Brien, T.

    2009-01-01

    From multi-epoch adaptive optics imaging and integral field unit spectroscopy, we report the discovery of an expanding and narrowly confined bipolar shell surrounding the helium nova V445 Puppis (Nova Puppis 2000). An equatorial dust disc obscures the nova remnant, and the outflow is characterized by a large polar outflow velocity of 6720 ± 650 km s -1 and knots moving at even larger velocities of 8450 ± 570 km s -1 . We derive an expansion parallax distance of 8.2 ± 0.5 kpc and deduce a pre-outburst luminosity of the underlying binary of log L/L sun = 4.34 ± 0.36. The derived luminosity suggests that V445 Puppis probably contains a massive white dwarf accreting at high rate from a helium star companion making it part of a population of binary stars that potentially lead to supernova Ia explosions due to accumulation of helium-rich material on the surface of a massive white dwarf.

  2. The Expanding Bipolar Shell of the Helium Nova V445 Puppis

    Science.gov (United States)

    Woudt, P. A.; Steeghs, D.; Karovska, M.; Warner, B.; Groot, P. J.; Nelemans, G.; Roelofs, G. H. A.; Marsh, T. R.; Nagayama, T.; Smits, D. P.; O'Brien, T.

    2009-11-01

    From multi-epoch adaptive optics imaging and integral field unit spectroscopy, we report the discovery of an expanding and narrowly confined bipolar shell surrounding the helium nova V445 Puppis (Nova Puppis 2000). An equatorial dust disc obscures the nova remnant, and the outflow is characterized by a large polar outflow velocity of 6720 ± 650 km s-1 and knots moving at even larger velocities of 8450 ± 570 km s-1. We derive an expansion parallax distance of 8.2 ± 0.5 kpc and deduce a pre-outburst luminosity of the underlying binary of log L/L sun = 4.34 ± 0.36. The derived luminosity suggests that V445 Puppis probably contains a massive white dwarf accreting at high rate from a helium star companion making it part of a population of binary stars that potentially lead to supernova Ia explosions due to accumulation of helium-rich material on the surface of a massive white dwarf.

  3. Lower Bounds in the Asymmetric External Memory Model

    DEFF Research Database (Denmark)

    Jacob, Riko; Sitchinava, Nodari

    2017-01-01

    Motivated by the asymmetric read and write costs of emerging non-volatile memory technologies, we study lower bounds for the problems of sorting, permuting and multiplying a sparse matrix by a dense vector in the asymmetric external memory model (AEM). Given an AEM with internal (symmetric) memory...... of size M, transfers between symmetric and asymmetric memory in blocks of size B and the ratio ω between write and read costs, we show Ω(min (N, ωN/B logω M/B N/B) lower bound for the cost of permuting N input elements. This lower bound also applies to the problem of sorting N elements. This proves...

  4. Ge/Si core/shell quantum dots in alumina: tuning the optical absorption by the core and shell size

    Directory of Open Access Journals (Sweden)

    Nekić Nikolina

    2017-03-01

    Full Text Available Ge/Si core/shell quantum dots (QDs recently received extensive attention due to their specific properties induced by the confinement effects of the core and shell structure. They have a type II confinement resulting in spatially separated charge carriers, the electronic structure strongly dependent on the core and shell size. Herein, the experimental realization of Ge/Si core/shell QDs with strongly tunable optical properties is demonstrated. QDs embedded in an amorphous alumina glass matrix are produced by simple magnetron sputtering deposition. In addition, they are regularly arranged within the matrix due to their self-assembled growth regime. QDs with different Ge core and Si shell sizes are made. These core/shell structures have a significantly stronger absorption compared to pure Ge QDs and a highly tunable absorption peak dependent on the size of the core and shell. The optical properties are in agreement with recent theoretical predictions showing the dramatic influence of the shell size on optical gap, resulting in 0.7 eV blue shift for only 0.4 nm decrease at the shell thickness. Therefore, these materials are very promising for light-harvesting applications.

  5. Reconstructing transport pathways for late Quaternary dust from eastern Australia using the composition of trace elements of long traveled dusts

    Science.gov (United States)

    Petherick, Lynda M.; McGowan, Hamish A.; Kamber, Balz S.

    2009-04-01

    The southeast Australian dust transport corridor is the principal pathway through which continental emissions of dust from central and eastern Australia are carried to the oceans by the prevailing mid-latitude westerly circulation. The analysis of trace elements of aeolian dust, preserved in lake sediment on North Stradbroke Island, southeast Queensland, is used to reconstruct variation in the intensity and position of dust transport to the island over the past 25,000 yrs. Separation of local and long traveled dust content of lake sediments is achieved using a unique, four-element (Ga, Ni, Tl and Sc) separation method. The local and continental chronologies of aeolian deposition developed by this study show markedly different records, and indicate varied responses to climate variability on North Stradbroke Island (local aeolian sediment component) and in eastern and central Australia (long traveled dust component). The provenance of the continental component of the record to sub-geologic catchment scales was accomplished using a ternary mixing model in which the chemical identification of dusts extracted, from the lake sediments, was compared to potential chemical characteristics of surface dust from the source areas using 16 trace elements. The results indicate that the position and intensity of dust transport pathways during the late Quaternary varied considerably in response to changing atmospheric circulation patterns as well as to variations in sediment supply to dust source areas, which include the large anabranching river systems of the Lake Eyre and Murray-Darling Basins.

  6. Frontiers in In-Situ Cosmic Dust Detection and Analysis

    International Nuclear Information System (INIS)

    Sternovsky, Zoltan; Auer, Siegfried; Drake, Keith; Gruen, Eberhard; Horanyi, Mihaly; Le, Huy; Xie Jianfeng; Srama, Ralf

    2011-01-01

    In-situ cosmic dust instruments and measurements played a critical role in the emergence of the field of dusty plasmas. The major breakthroughs included the discovery of β-meteoroids, interstellar dust particles within the solar system, Jovian stream particles, and the detection and analysis of Enceladus's plumes. The science goals of cosmic dust research require the measurements of the charge, the spatial, size and velocity distributions, and the chemical and isotopic compositions of individual dust particles. In-situ dust instrument technology has improved significantly in the last decade. Modern dust instruments with high sensitivity can detect submicron-sized particles even at low impact velocities. Innovative ion optics methods deliver high mass resolution, m/dm>100, for chemical and isotopic analysis. The accurate trajectory measurement of cosmic dust is made possible even for submicron-sized grains using the Dust Trajectory Sensor (DTS). This article is a brief review of the current capabilities of modern dust instruments, future challenges and opportunities in cosmic dust research.

  7. Characteristics of mineral dust impacting the Persian Gulf

    Science.gov (United States)

    Ahmady-Birgani, Hesam; McQueen, Kenneth G.; Mirnejad, Hassan

    2018-02-01

    It is generally assumed that severe dust events in western Iran could be responsible for elevated levels of toxic and radioactive elements in the region. Over a period of 5 months, from January 2012 to May 2012, dust particles in the size range PM10 (i.e. chemical compositions of dust and aerosol samples collected during the non-dusty periods and during two severe dust events. Results of ICP-MS analysis of components indicate that during dust events the concentrations of major elements such as Ca, Mg, Al and K increase relative to ambient conditions when Fe and trace elements such as Cu, Cr, Ni, Pb and Zn are in higher proportions. Toxic trace elements that are generally ascribed to human activities, including industrial and urban pollution, are thus proportionately more abundant in the dust under calm conditions than during dust events, when their concentration is diluted by more abundant mineral particles of quartz, calcite and clay. The variability of chemical species during two dust events, noted by tracking the dust plumes in satellite images, was also assessed and the results relate to two different source areas, namely northern Iraq and northwestern Syria.

  8. Interstellar dust and extinction

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1990-01-01

    It is noted that the term interstellar dust refers to materials with rather different properties, and that the mean extinction law of Seaton (1979) or Savage and Mathis (1979) should be replaced by the expression given by Cardelli et al. (1989), using the appropriate value of total-to-selective extinction. The older laws were appropriate for the diffuse ISM but dust in clouds differs dramatically in its extinction law. Dust is heavily processed while in the ISM by being included within clouds and cycled back into the diffuse ISM many times during its lifetime. Hence, grains probably reflect only a trace of their origin, although meteoritic inclusions with isotopic anomalies demonstrate that some tiny particles survive intact from a supernova origin to the present. 186 refs

  9. Dust control for draglines

    Energy Technology Data Exchange (ETDEWEB)

    Grad, P.

    2009-09-15

    Monitoring dust levels inside draglines reveals room for improvement in how filtration systems are used and maintained. The Australian firm BMT conducted a field test program to measure airflow parameters, dust fallout rates and dust concentrations, inside and outside the machine house, on four draglines and one shovel. The study involved computational fluid dynamics (CFD) simulations. The article describes how the tests were made and gives results. It was not possible to say which of the two main filtration systems currently used on Australian draglines - Dynavane or Floseps - performs better. It would appear that more frequent maintenance and cleaning would increase the overall filtration performance and systems could be susceptible to repeat clogging in a short time. 2 figs., 1 photos.

  10. Covarying Shell Growth Parameters and the Regulation of Shell Shape in Marine Bivalves: A Case Study on Tellinoidea

    Directory of Open Access Journals (Sweden)

    Jean Béguinot

    2014-01-01

    Full Text Available Specific parameters characterising shell shape may arguably have a significant role in the adaptation of bivalve molluscs to their particular environments. Yet, such functionally relevant shape parameters (shell outline elongation, dissymmetry, and ventral convexity are not those parameters that the animal may directly control. Rather than shell shape, the animal regulates shell growth. Accordingly, an alternative, growth-based description of shell-shape is best fitted to understand how the animal may control the achieved shell shape. The key point is, in practice, to bring out the link between those two alternative modes of shell-shape descriptions, that is, to derive the set of equations which connects the growth-based shell-shape parameters to the functionally relevant shell-shape parameters. Thus, a preliminary object of this note is to derive this set of equations as a tool for further investigations. A second object of this work is to provide an illustrative example of implementation of this tool. I report on an unexpected negative covariance between growth-based parameters and show how this covariance results in a severe limitation of the range of interspecific variability of the degree of ventral convexity of the shell outline within the superfamily Tellinoidea. Hypotheses are proposed regarding the constraints possibly at the origin of this limitation of interspecific variability.

  11. Pressure Shell Approach to Integrated Environmental Protection

    Science.gov (United States)

    Kennedy, Kriss J.

    2011-01-01

    The next generation of exploration mission human systems will require environmental protection such as radiation protection that is effective and efficient. In order to continue human exploration, habitat systems will require special shells to protect astronauts from hostile environments. The Pressure Shell Approach to integrated environmental (radiation) protection is a multi-layer shell that can be used for multifunctional environmental protection. Self-healing, self-repairing nano technologies and sensors are incorporated into the shell. This shell consists of multiple layers that can be tailored for specific environmental protection needs. Mainly, this innovation focuses on protecting crew from exposure to micrometeorites, thermal, solar flares, and galactic cosmic ray (GCR) radiation. The Pressure Shell Approach consists of a micrometeoroid and secondary ejecta protection layer; a thin, composite shell placed in between two layers that is non-structural; an open cavity layer that can be filled with water, regolith, or polyethylene foam; a thicker composite shell that is a structural load bearing that is placed between two layers; and a bladder coating on the interior composite shell. This multi-layer shell creates an effective radiation protection system. Most of its layers can be designed with the materials necessary for specific environments. In situ materials such as water or regolith can be added to the shell design for supplemental radiation protection.

  12. Engineered inorganic core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mélinon, Patrice, E-mail: patrice.melinon@univ-lyon1.fr [Institut Lumière matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Begin-Colin, Sylvie [IPCMS et OMNT, 23 rue du Loess BP 43, 67034 STRASBOURG Cedex 2 (France); Duvail, Jean Luc [IMN UMR 6502 et OMNT Campus Sciences : 2 rue de la Houssinire, BP32229, 44322 Nantes Cedex3 (France); Gauffre, Fabienne [SPM et OMNT : Institut des sciences chimiques de Rennes - UMR 6226, 263 Avenue du General Leclerc, CS 74205, 35042 RENNES Cedex (France); Boime, Nathalie Herlin [IRAMIS-NIMBE, Laboratoire Francis Perrin (CEA CNRS URA 2453) et OMNT, Bat 522, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Ledoux, Gilles [Institut Lumière Matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Alfred Kastler 43 Boulevard du 11 Novembre 1918 F 69622 Villeurbanne (France); Plain, Jérôme [Universit de technologie de Troyes LNIO-ICD, CNRS et OMNT 12 rue Marie Curie - CS 42060 - 10004 Troyes cedex (France); Reiss, Peter [CEA Grenoble, INAC-SPrAM, UMR 5819 CEA-CNRS-UJF et OMNT, Grenoble cedex 9 (France); Silly, Fabien [CEA, IRAMIS, SPEC, TITANS, CNRS 2464 et OMNT, F-91191 Gif sur Yvette (France); Warot-Fonrose, Bénédicte [CEMES-CNRS, Université de Toulouse et OMNT, 29 rue Jeanne Marvig F 31055 Toulouse (France)

    2014-10-20

    It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.

  13. Dust Measurements Onboard the Deep Space Gateway

    Science.gov (United States)

    Horanyi, M.; Kempf, S.; Malaspina, D.; Poppe, A.; Srama, R.; Sternovsky, Z.; Szalay, J.

    2018-02-01

    A dust instrument onboard the Deep Space Gateway will revolutionize our understanding of the dust environment at 1 AU, help our understanding of the evolution of the solar system, and improve dust hazard models for the safety of crewed and robotic missions.

  14. Pebble Bed Reactor Dust Production Model

    Energy Technology Data Exchange (ETDEWEB)

    Abderrafi M. Ougouag; Joshua J. Cogliati

    2008-09-01

    The operation of pebble bed reactors, including fuel circulation, can generate graphite dust, which in turn could be a concern for internal components; and to the near field in the remote event of a break in the coolant circuits. The design of the reactor system must, therefore, take the dust into account and the operation must include contingencies for dust removal and for mitigation of potential releases. Such planning requires a proper assessment of the dust inventory. This paper presents a predictive model of dust generation in an operating pebble bed with recirculating fuel. In this preliminary work the production model is based on the use of the assumption of proportionality between the dust production and the normal force and distance traveled. The model developed in this work uses the slip distances and the inter-pebble forces computed by the authors’ PEBBLES. The code, based on the discrete element method, simulates the relevant static and kinetic friction interactions between the pebbles as well as the recirculation of the pebbles through the reactor vessel. The interaction between pebbles and walls of the reactor vat is treated using the same approach. The amount of dust produced is proportional to the wear coefficient for adhesive wear (taken from literature) and to the slip volume, the product of the contact area and the slip distance. The paper will compare the predicted volume with the measured production rates. The simulation tallies the dust production based on the location of creation. Two peak production zones from intra pebble forces are predicted within the bed. The first zone is located near the pebble inlet chute due to the speed of the dropping pebbles. The second peak zone occurs lower in the reactor with increased pebble contact force due to the weight of supported pebbles. This paper presents the first use of a Discrete Element Method simulation of pebble bed dust production.

  15. Pebble Bed Reactor Dust Production Model

    International Nuclear Information System (INIS)

    Abderrafi M. Ougouag; Joshua J. Cogliati

    2008-01-01

    The operation of pebble bed reactors, including fuel circulation, can generate graphite dust, which in turn could be a concern for internal components; and to the near field in the remote event of a break in the coolant circuits. The design of the reactor system must, therefore, take the dust into account and the operation must include contingencies for dust removal and for mitigation of potential releases. Such planning requires a proper assessment of the dust inventory. This paper presents a predictive model of dust generation in an operating pebble bed with recirculating fuel. In this preliminary work the production model is based on the use of the assumption of proportionality between the dust production and the normal force and distance traveled. The model developed in this work uses the slip distances and the inter-pebble forces computed by the authors PEBBLES. The code, based on the discrete element method, simulates the relevant static and kinetic friction interactions between the pebbles as well as the recirculation of the pebbles through the reactor vessel. The interaction between pebbles and walls of the reactor vat is treated using the same approach. The amount of dust produced is proportional to the wear coefficient for adhesive wear (taken from literature) and to the slip volume, the product of the contact area and the slip distance. The paper will compare the predicted volume with the measured production rates. The simulation tallies the dust production based on the location of creation. Two peak production zones from intra pebble forces are predicted within the bed. The first zone is located near the pebble inlet chute due to the speed of the dropping pebbles. The second peak zone occurs lower in the reactor with increased pebble contact force due to the weight of supported pebbles. This paper presents the first use of a Discrete Element Method simulation of pebble bed dust production

  16. Dust observations by PFS on Mars Express

    Science.gov (United States)

    Zasova, L. V.; Formisano, V.; Moroz, V. I.; Grassi, D.; Ignatiev, N. I.; Blecka, M. I.; Maturilli, A.; Palomba, E.; Piccioni, G.; Pfs Team

    Dust is always present in the Martian atmosphere with opacity, which changes from values below 0.1 (at 9 μ m) up to several units during the dust storms. From the thermal IR (LW channel of PFS) the dust opacity is retrieved in a self consistent way together with the temperature profile from the same spectrum A preliminary investigation along the orbit, which comes through Hellas, shows that the value of dust opacity anticorrelates with surface altitude. From -70 to +25 of latitude the vertical dust distribution follows the exponential low with the scale of 12 km, which corresponds to the gaseous scale height near noon and indicates for well mixed condition. The dust opacity, corresponding to the zero surface altitude, is found of 0.25+-0.05. More detailed investigations of all available data will be presented, including analysis of both short- and long- wavelength spectra of PFS.

  17. Carbon isotopes in mollusk shell carbonates

    Science.gov (United States)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  18. Dust in the Quasar Wind (Artist Concept)

    Science.gov (United States)

    2007-01-01

    Dusty grains -- including tiny specks of the minerals found in the gemstones peridot, sapphires and rubies -- can be seen blowing in the winds of a quasar, or active black hole, in this artist's concept. The quasar is at the center of a distant galaxy. Astronomers using NASA's Spitzer Space Telescope found evidence that such quasar winds might have forged these dusty particles in the very early universe. The findings are another clue in an ongoing cosmic mystery: where did all the dust in our young universe come from? Dust is crucial for efficient star formation as it allows the giant clouds where stars are born to cool quickly and collapse into new stars. Once a star has formed, dust is also needed to make planets and living creatures. Dust has been seen as far back as when the universe was less than a tenth of its current age, but how did it get there? Most dust in our current epoch forms in the winds of evolved stars that did not exist when the universe was young. Theorists had predicted that winds from quasars growing in the centers of distant galaxies might be a source of this dust. While the environment close to a quasar is too hot for large molecules like dust grains to survive, dust has been found in the cooler, outer regions. Astronomers now have evidence that dust is created in these outer winds. Using Spitzer's infrared spectrograph instrument, scientists found a wealth of dust grains in a quasar called PG2112+059 located at the center of a galaxy 8 billion light-years away. The grains - including corundum (sapphires and rubies); forsterite (peridot); and periclase (naturally occurring in marble) - are not typically found in galaxies without quasars, suggesting they might have been freshly formed in the quasar's winds.

  19. Dynamic centering of liquid shells

    International Nuclear Information System (INIS)

    Tsamopoulos, J.A.; Brown, R.A.

    1987-01-01

    The moderate-amplitude axisymmetric oscillations of an inviscid liquid shell surrounding an incompressible gas bubble are calculated by a multiple-time-scale expansion for initial deformations composed of two-lobed perturbations of the shell and a displacement of the bubble from the center of mass of the liquid. Two types of small-amplitude motion are identified and lead to very different nonlinear dynamic interactions, as described by the results valid up to second order in the amplitude of the initial deformation. In the ''bubble mode,'' the oscillations of the captive bubble and the liquid shell are exactly in phase and the bubble vibrates about its initial eccentric location. The bubble moves toward the center of the drop when the shell is perturbed into a ''sloshing mode'' of oscillation where both interfaces move out of phase. These results explain the centering of liquid shells observed in several experiments

  20. Shells and Patterns

    Science.gov (United States)

    Sutley, Jane

    2009-01-01

    "Shells and Patterns" was a project the author felt would easily put smiles on the faces of her fifth-graders, and teach them about unity and the use of watercolor pencils as well. It was thrilling to see the excitement in her students as they made their line drawings of shells come to life. For the most part, they quickly got the hang of…