WorldWideScience

Sample records for asymmetric dark matter

  1. Minimal asymmetric dark matter

    Directory of Open Access Journals (Sweden)

    Sofiane M. Boucenna

    2015-09-01

    Full Text Available In the early Universe, any particle carrying a conserved quantum number and in chemical equilibrium with the thermal bath will unavoidably inherit a particle–antiparticle asymmetry. A new particle of this type, if stable, would represent a candidate for asymmetric dark matter (DM with an asymmetry directly related to the baryon asymmetry. We study this possibility for a minimal DM sector constituted by just one (generic SU(2L multiplet χ carrying hypercharge, assuming that at temperatures above the electroweak phase transition an effective operator enforces chemical equilibrium between χ and the Higgs boson. We argue that limits from DM direct detection searches severely constrain this scenario, leaving as the only possibilities scalar or fermion multiplets with hypercharge y=1, preferentially quintuplets or larger SU(2 representations, and with a mass in the few TeV range.

  2. Asymmetric condensed dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Anthony; Diez-Tejedor, Alberto, E-mail: aguirre@scipp.ucsc.edu, E-mail: alberto.diez@fisica.ugto.mx [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States)

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  3. Comprehensive asymmetric dark matter model

    OpenAIRE

    Lonsdale, Stephen J.; Volkas, Raymond R.

    2018-01-01

    Asymmetric dark matter (ADM) is motivated by the similar cosmological mass densities measured for ordinary and dark matter. We present a comprehensive theory for ADM that addresses the mass density similarity, going beyond the usual ADM explanations of similar number densities. It features an explicit matter-antimatter asymmetry generation mechanism, has one fully worked out thermal history and suggestions for other possibilities, and meets all phenomenological, cosmological and astrophysical...

  4. Stable Bound States of Asymmetric Dark Matter

    OpenAIRE

    Wise, Mark B.; Zhang, Yue

    2014-01-01

    The simplest renormalizable effective field theories with asymmetric dark matter bound states contain two additional gauge singlet fields one being the dark matter and the other a mediator particle that the dark matter annihilates into. We examine the physics of one such model with a Dirac fermion as the dark matter and a real scalar mediator. For a range of parameters the Yukawa coupling of the dark matter to the mediator gives rise to stable asymmetric dark matter bound states. We derive pr...

  5. Asymmetric dark matter and the Sun

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Sarkar, Subir

    2010-01-01

    Cold dark matter particles with an intrinsic matter-antimatter asymmetry do not annihilate after gravitational capture by the Sun and can affect its interior structure. The rate of capture is exponentially enhanced when such particles have self-interactions of the right order to explain structure...... formation on galactic scales. A `dark baryon' of mass 5 GeV is a natural candidate and has the required relic abundance if its asymmetry is similar to that of ordinary baryons. We show that such particles can solve the `solar composition problem'. The predicted small decrease in the low energy neutrino...

  6. Asymmetric dark matter and the sun.

    Science.gov (United States)

    Frandsen, Mads T; Sarkar, Subir

    2010-07-02

    Cold dark matter particles with an intrinsic matter-antimatter asymmetry do not annihilate after gravitational capture by the Sun and can affect its interior structure. The rate of capture is exponentially enhanced when such particles have self-interactions of the right order to explain structure formation on galactic scales. A "dark baryon" of mass 5 GeV is a natural candidate and has the required relic abundance if its asymmetry is similar to that of ordinary baryons. We show that such particles can solve the "solar composition problem." The predicted small decrease in the low energy neutrino fluxes may be measurable by the Borexino and SNO+ experiments.

  7. Asymmetric Dark Matter Models and the LHC Diphoton Excess

    DEFF Research Database (Denmark)

    Frandsen, Mads T.; Shoemaker, Ian M.

    2016-01-01

    The existence of dark matter (DM) and the origin of the baryon asymmetry are persistent indications that the SM is incomplete. More recently, the ATLAS and CMS experiments have observed an excess of diphoton events with invariant mass of about 750 GeV. One interpretation of this excess is decays...... have for models of asymmetric DM that attempt to account for the similarity of the dark and visible matter abundances....

  8. Asymmetric dark matter and the hadronic spectra of hidden QCD

    Science.gov (United States)

    Lonsdale, Stephen J.; Schroor, Martine; Volkas, Raymond R.

    2017-09-01

    The idea that dark matter may be a composite state of a hidden non-Abelian gauge sector has received great attention in recent years. Frameworks such as asymmetric dark matter motivate the idea that dark matter may have similar mass to the proton, while mirror matter and G ×G grand unified theories provide rationales for additional gauge sectors which may have minimal interactions with standard model particles. In this work we explore the hadronic spectra that these dark QCD models can allow. The effects of the number of light colored particles and the value of the confinement scale on the lightest stable state, the dark matter candidate, are examined in the hyperspherical constituent quark model for baryonic and mesonic states.

  9. Charge Asymmetric Cosmic Rays as a probe of Flavor Violating Asymmetric Dark Matter

    DEFF Research Database (Denmark)

    Masina, Isabella; Sannino, Francesco

    2011-01-01

    The recently introduced cosmic sum rules combine the data from PAMELA and Fermi-LAT cosmic ray experiments in a way that permits to neatly investigate whether the experimentally observed lepton excesses violate charge symmetry. One can in a simple way determine universal properties of the unknown...... component of the cosmic rays. Here we attribute a potential charge asymmetry to the dark sector. In particular we provide models of asymmetric dark matter able to produce charge asymmetric cosmic rays. We consider spin zero, spin one and spin one-half decaying dark matter candidates. We show that lepton...... flavor violation and asymmetric dark matter are both required to have a charge asymmetry in the cosmic ray lepton excesses. Therefore, an experimental evidence of charge asymmetry in the cosmic ray lepton excesses implies that dark matter is asymmetric....

  10. Gamma ray constraints on flavor violating asymmetric dark matter

    DEFF Research Database (Denmark)

    Masina, I.; Panci, P.; Sannino, F.

    2012-01-01

    We show how cosmic gamma rays can be used to constrain models of asymmetric Dark Matter decaying into lepton pairs by violating flavor. First of all we require the models to explain the anomalies in the charged cosmic rays measured by PAMELA, Fermi and H.E.S.S.; performing combined fits we...... determine the allowed values of the Dark Matter mass and lifetime. For these models, we then determine the constraints coming from the measurement of the isotropic gamma-ray background by Fermi for a complete set of lepton flavor violating primary modes and over a range of DM masses from 100 GeV to 10 Te......V. We find that the Fermi constraints rule out the flavor violating asymmetric Dark Matter interpretation of the charged cosmic ray anomalies....

  11. Constraining Asymmetric Dark Matter through observations of compact stars

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos; Tinyakov, Peter

    2011-01-01

    We put constraints on asymmetric dark matter candidates with spin-dependent interactions based on the simple existence of white dwarfs and neutron stars in globular clusters. For a wide range of the parameters (WIMP mass and WIMP-nucleon cross section), WIMPs can be trapped in progenitors in large...... numbers and once the original star collapses to a white dwarf or a neutron star, these WIMPs might self-gravitate and eventually collapse forming a mini-black hole that eventually destroys the star. We impose constraints competitive to direct dark matter search experiments, for WIMPs with masses down...

  12. Asymmetric dark matter and baryogenesis from S U (2 )ℓ

    Science.gov (United States)

    Fornal, Bartosz; Shirman, Yuri; Tait, Tim M. P.; West, Jennifer Rittenhouse

    2017-08-01

    We propose a theory in which the Standard Model gauge symmetry is extended by a new S U (2 )ℓgroup acting nontrivially on the lepton sector which is spontaneously broken at the TeV scale. Under this S U (2 )ℓtheordinaryleptons form doublets along with new lepton partner fields. This construction naturally contains a dark matter candidate, the partner of the right-handed neutrino, stabilized by a residual global U (1 )χ symmetry. We show that one can explain baryogenesis through an asymmetric dark matter scenario, in which generation of related asymmetries in the dark matter and baryon sectors is driven by the S U (2 )ℓ instantons during a first order phase transition in the early Universe.

  13. Asymmetric dark matter models and the LHC diphoton excess

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, Mads T. [CP" 3-Origins & Danish Institute for Advanced Study DIAS,University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark); Shoemaker, Ian M. [Department of Physics, Department of Astronomy & Astrophysics,Center for Particle and Gravitational Astrophysics, The Pennsylvania State University,104 Davey Laboratory, University Park, PA 16802 (United States)

    2016-05-31

    The existence of dark matter (DM) and the origin of the baryon asymmetry are persistent indications that the SM is incomplete. More recently, the ATLAS and CMS experiments have observed an excess of diphoton events with invariant mass of about 750 GeV. One interpretation of this excess is decays of a new spin-0 particle with a sizable diphoton partial width, e.g. induced by new heavy weakly charged particles. These are also key ingredients in models cogenerating asymmetric DM and baryons via sphaleron interactions and an initial particle asymmetry. We explore what consequences the new scalar may have for models of asymmetric DM that attempt to account for the similarity of the dark and visible matter abundances.

  14. Asymmetric inelastic inert doublet dark matter from triplet scalar leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Arina, Chiara, E-mail: chiara.arina@physik.rwth-aachen.de [Institut fuer Theoretische Teilchenphysik und Kosmologie, RWTH Aachen, 52056 Aachen (Germany); Sahu, Narendra, E-mail: Narendra.Sahu@ulb.ac.be [Service de Physique Theorique, Universite Libre de Bruxelles, CP225, Bld du Triomphe, 1050 Brussels (Belgium)

    2012-01-21

    The nature of dark matter (DM) particles and the mechanism that provides their measured relic abundance are currently unknown. In this paper we investigate inert scalar and vector like fermion doublet DM candidates with a charge asymmetry in the dark sector, which is generated by the same mechanism that provides the baryon asymmetry, namely baryogenesis-via-leptogenesis induced by decays of scalar triplets. At the same time the model gives rise to neutrino masses in the ballpark of oscillation experiments via type II seesaw. We discuss possible sources of depletion of asymmetry in the DM and visible sectors and solve the relevant Boltzmann equations for quasi-equilibrium decay of triplet scalars. A Monte-Carlo-Markov-Chain analysis is performed for the whole parameter space. The survival of the asymmetry in the dark sector leads to inelastic scattering off nuclei. We then apply Bayesian statistic to infer the model parameters favoured by the current experimental data, in particular the DAMA annual modulation and XENON100 exclusion limit. The latter strongly disfavours asymmetric scalar doublet DM of mass O(TeV) as required by DM-DM-bar oscillations, while an asymmetric vector like fermion doublet DM with mass around 100 GeV is a good candidate for DAMA annual modulation yet satisfying the constraints from XENON100 data.

  15. Compact bifluid hybrid stars: hadronic matter mixed with self-interacting fermionic asymmetric dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Somnath; Basu, D.N. [HBNI, Variable Energy Cyclotron Centre, Kolkata (India); Atta, Debasis [HBNI, Variable Energy Cyclotron Centre, Kolkata (India); Government General Degree College, West Bengal (India); Imam, Kouser [HBNI, Variable Energy Cyclotron Centre, Kolkata (India); Aliah University, Department of Physics, Kolkata (India); Samanta, C. [Virginia Military Institute, Department of Physics and Astronomy, Lexington, VA (United States)

    2017-07-15

    The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter are calculated within the two-fluid formalism of stellar structure equations in general relativity. The Equation of State (EoS) of nuclear matter is obtained from the density dependent M3Y effective nucleon-nucleon interaction. We consider the dark matter particle mass of 1 GeV. The EoS of self-interacting dark matter is taken from two-body repulsive interactions of the scale of strong interactions. We explore the conditions of equal and different rotational frequencies of nuclear matter and dark matter and find that the maximum mass of differentially rotating stars with self-interacting dark matter to be ∝1.94 M {sub CircleDot} with radius ∝10.4 km. (orig.)

  16. Nuclear structure of bound states of asymmetric dark matter

    Science.gov (United States)

    Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.

    2017-11-01

    Models of asymmetric dark matter (ADM) with a sufficiently attractive and long-range force give rise to stable bound objects, analogous to nuclei in the Standard Model, called nuggets. We study the properties of these nuggets and compute their profiles and binding energies. Our approach, applicable to both elementary and composite fermionic ADM, utilizes relativistic mean field theory, and allows a more systematic computation of nugget properties, over a wider range of sizes and force mediator masses, compared to previous literature. We identify three separate regimes of nugget property behavior corresponding to (1) nonrelativistic and (2) relativistic constituents in a Coulomb-like limit, and (3) saturation in an anti-Coulomb limit when the nuggets are large compared to the force range. We provide analytical descriptions for nuggets in each regime. Through numerical calculations, we are able to confirm our analytic descriptions and also obtain smooth transitions for the nugget profiles between all three regimes. We also find that over a wide range of parameter space, the binding energy in the saturation limit is an O (1 ) fraction of the constituent's mass, significantly larger than expectations in the nonrelativistic case. In a companion paper, we apply our results to the synthesis of ADM nuggets in the early Universe.

  17. Asymmetric dark matter in extended exo-Higgs scenarios

    Science.gov (United States)

    Davoudiasl, Hooman; Giardino, Pier Paolo; Zhang, Cen

    2017-09-01

    The exo-Higgs model can accommodate a successful baryogenesis mechanism that closely mirrors electroweak baryogenesis in the Standard Model, but avoids its shortcomings. We extend the exo-Higgs model by the addition of a singlet complex scalar χ. In our model, χ can be a viable asymmetric dark matter (ADM) candidate. We predict the mass of the ADM particle to be mχ ≈ 1.3 GeV. The leptophilic couplings of χ can provide for efficient annihilation of the ADM pairs. We also discuss the LHC signals of our scenario, and in particular the production and decays of exo-leptons which would lead to "lepton pair plus missing energy" final states. Our model typically predicts potentially detectable gravitational waves originating from the assumed strong first order phase transition at a temperature of ∼ TeV. If the model is further extended to include new heavy vector-like fermions, e.g. from an ultraviolet extension, χ couplings could explain the ∼ 3.5 σ muon g - 2 anomaly.

  18. Asymmetric dark matter in extended exo-Higgs scenarios

    Directory of Open Access Journals (Sweden)

    Hooman Davoudiasl

    2017-09-01

    Full Text Available The exo-Higgs model can accommodate a successful baryogenesis mechanism that closely mirrors electroweak baryogenesis in the Standard Model, but avoids its shortcomings. We extend the exo-Higgs model by the addition of a singlet complex scalar χ. In our model, χ can be a viable asymmetric dark matter (ADM candidate. We predict the mass of the ADM particle to be mχ≈1.3 GeV. The leptophilic couplings of χ can provide for efficient annihilation of the ADM pairs. We also discuss the LHC signals of our scenario, and in particular the production and decays of exo-leptons which would lead to “lepton pair plus missing energy” final states. Our model typically predicts potentially detectable gravitational waves originating from the assumed strong first order phase transition at a temperature of ∼ TeV. If the model is further extended to include new heavy vector-like fermions, e.g. from an ultraviolet extension, χ couplings could explain the ∼3.5σ muon g−2 anomaly.

  19. Light asymmetric dark matter from new strong dynamics

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Sarkar, Subir; Schmidt-Hoberg, Kai

    2011-01-01

    A ~5 GeV `dark baryon' with a cosmic asymmetry similar to that of baryons is a natural candidate for the dark matter. We study the possibility of generating such a state through dynamical electroweak symmetry breaking, and show that it can share the relic baryon asymmetry via sphaleron interactions...

  20. Asymmetric dark matter from spontaneous cogenesis in the supersymmetric standard model

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yamaguchi, Masahide [Tokyo Institute of Technology (Japan). Dept. of Physics

    2012-01-15

    The observational relation between the density of baryon and dark matter in the Universe, {omega}{sub DM}/{omega}{sub B}{approx_equal}5, is one of the most difficult problems to solve in modern cosmology. We discuss a scenario that explains this relation by combining the asymmetric dark matter scenario and the spontaneous baryogenesis associated with the flat direction in the supersymmetric standard model. A part of baryon asymmetry is transferred to charge asymmetry D that dark matter carries, if a symmetry violating interaction that works at high temperature breaks not only B-L but also D symmetries simultaneously. In this case, the present number density of baryon and dark matter can be same order if the symmetric part of dark matter annihilates sufficiently. Moreover, the baryon number density can be enhanced as compared to that of dark matter if another B-L violating interaction is still in thermal equilibrium after the spontaneous genesis of dark matter, which accommodates a TeV scale asymmetric dark matter model. (orig.)

  1. Asymmetric dark matter: residual annihilations and self-interactions arXiv

    CERN Document Server

    Baldes, Iason; Panci, Paolo; Petraki, Kalliopi; Sala, Filippo; Taoso, Marco

    The putative discrepancies between observations of the small scale galactic structure and the predictions of collisionless cold dark matter may be resolved if dark matter possesses sizable self-interactions. The coupling of dark matter to a light force mediator can ensure sufficiently large self-interactions, reproduce the observed relic abundance via freeze-out and satisfy constraints from cluster mergers and direct detection. However, strong bounds on such scenarios still arise from indirect detection, particularly from the CMB and $\\gamma$-rays observations. As a simple way to alleviate this tension, we consider the possibility of dark matter possessing a particle-antiparticle asymmetry. First, we point out that, contrary to the common perception, significant residual annihilations occur even for highly asymmetric dark matter coupled to light force carriers. We compute the indirect detection signals and corresponding constraints from the CMB, $\\gamma$-ray, neutrino and antiproton searches. On this basis, w...

  2. Light Asymmetric Dark Matter on the Lattice: SU(2) Technicolor with Two Fundamental Flavors

    DEFF Research Database (Denmark)

    Lewis, Randy; Pica, Claudio; Sannino, Francesco

    2012-01-01

    The SU(2) gauge theory with two massless Dirac flavors constitutes the building block of several models of Technicolor. Furthermore it has also been used as a template for the construction of a natural light asymmetric, or mixed type, dark matter candidate. We use explicit lattice simulations to ...

  3. Limits on Momentum-Dependent Asymmetric Dark Matter with CRESST-II.

    Science.gov (United States)

    Angloher, G; Bento, A; Bucci, C; Canonica, L; Defay, X; Erb, A; Feilitzsch, F V; Ferreiro Iachellini, N; Gorla, P; Gütlein, A; Hauff, D; Jochum, J; Kiefer, M; Kluck, H; Kraus, H; Lanfranchi, J-C; Loebell, J; Münster, A; Pagliarone, C; Petricca, F; Potzel, W; Pröbst, F; Reindl, F; Schäffner, K; Schieck, J; Schönert, S; Seidel, W; Stodolsky, L; Strandhagen, C; Strauss, R; Tanzke, A; Trinh Thi, H H; Türkoğlu, C; Uffinger, M; Ulrich, A; Usherov, I; Wawoczny, S; Willers, M; Wüstrich, M; Zöller, A

    2016-07-08

    The usual assumption in direct dark matter searches is to consider only the spin-dependent or spin-independent scattering of dark matter particles. However, especially in models with light dark matter particles O(GeV/c^{2}), operators which carry additional powers of the momentum transfer q^{2} can become dominant. One such model based on asymmetric dark matter has been invoked to overcome discrepancies in helioseismology and an indication was found for a particle with a preferred mass of 3  GeV/c^{2} and a cross section of 10^{-37}  cm^{2}. Recent data from the CRESST-II experiment, which uses cryogenic detectors based on CaWO_{4} to search for nuclear recoils induced by dark matter particles, are used to constrain these momentum-dependent models. The low energy threshold of 307 eV for nuclear recoils of the detector used, allows us to rule out the proposed best fit value above.

  4. Consequences of DM/antiDM Oscillations for Asymmetric WIMP Dark Matter

    CERN Document Server

    Cirelli, Marco; Servant, Geraldine; Zaharijas, Gabrijela

    2012-01-01

    Assuming the existence of a primordial asymmetry in the dark sector, a scenario usually dubbed Asymmetric Dark Matter (aDM), we study the effect of oscillations between dark matter and its antiparticle on the re-equilibration of the initial asymmetry before freeze-out, which enable efficient annihilations to recouple. We calculate the evolution of the DM relic abundance and show how oscillations re-open the parameter space of aDM models, in particular in the direction of allowing large (WIMP-scale) DM masses. A typical wimp with a mass at the EW scale (\\sim 100 GeV - 1 TeV) presenting a primordial asymmetry of the same order as the baryon asymmetry naturally gets the correct relic abundance if the DM-number-violating Delta(DM) = 2 mass term is in the \\sim meV range. The re-establishment of annihilations implies that constraints from the accumulation of aDM in astrophysical bodies are evaded. On the other hand, the ordinary bounds from BBN, CMB and indirect detection signals on annihilating DM have to be consi...

  5. Oscillating asymmetric sneutrino dark matter from the maximally U(1L supersymmetric inverse seesaw

    Directory of Open Access Journals (Sweden)

    Shao-Long Chen

    2016-10-01

    Full Text Available The inverse seesaw mechanism provides an attractive approach to generate small neutrino mass, which origins from a tiny U(1L breaking. In this paper, we work in the supersymmetric version of this mechanism, where the singlet-like sneutrino could be an asymmetric dark matter (ADM candidate in the maximally U(1L symmetric limit. However, even a tiny δm, the mass splitting between sneutrino and anti-sneutrino as a result of the tiny U(1L breaking effect, could lead to fast oscillation between sneutrino and anti-sneutrino and thus spoils the ADM scenario. We study the evolution of this oscillation and find that a weak scale sneutrino, which tolerates a relatively larger δm∼10−5 eV, is strongly favored. We also investigate possible natural ways to realize that small δm in the model.

  6. Dark Matter

    Indian Academy of Sciences (India)

    matter and that it must be of some exotic type. Before we discuss the evidences for dark matter in clusters of galaxies, let us point out that it is not just spiral galaxies which are thought to contain dark matter, although the evidences from them are the strongest. Other types of galaxies, like elliptical galaxies, are often seen to ...

  7. Dark Matter

    Indian Academy of Sciences (India)

    In Part 11 of this article we learnt that there are compelling evidences from dynamics of spiral galaxies, like our own, that there must be non-luminous matter in them. In this second part we will see that even clusters of galaxies must harbour dark matter. As if this was not enough, it turns out that if our knowledge of the ...

  8. Dark Matter Particle Spectroscopy at the LHC: Generalizing M(T2) to Asymmetric Event Topologies

    Energy Technology Data Exchange (ETDEWEB)

    Konar, Partha; /Florida U.; Kong, Kyoungchul; /SLAC; Matchev, Konstantin T.; Park, Myeonghun; /Florida U.

    2012-04-03

    We consider SUSY-like missing energy events at hadron colliders and critically examine the common assumption that the missing energy is the result of two identical missing particles. In order to experimentally test this hypothesis, we generalize the subsystem M{sub T2} variable to the case of asymmetric event topologies, where the two SUSY decay chains terminate in different 'children' particles. In this more general approach, the endpoint M{sub T2(max)} of the M{sub T2} distribution now gives the mass {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}) of the parent particles as a function of two input children masses {tilde M}{sub c}{sup (a)} and {tilde M}{sub c}{sup (b)}. We propose two methods for an independent determination of the individual children masses M{sub c}{sup (a)} and M{sub c}{sup (b)}. First, in the presence of upstream transverse momentum PUTM the corresponding function {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}, P{sub UTM}) is independent of P{sub UTM} at precisely the right values of the children masses. Second, the previously discussed MT2 'kink' is now generalized to a 'ridge' on the 2-dimensional surface {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}). As we show in several examples, quite often there is a special point along that ridge which marks the true values of the children masses. Our results allow collider experiments to probe a multi-component dark matter sector directly and without any theoretical prejudice.

  9. Dark Matter

    Indian Academy of Sciences (India)

    The study of gas clouds orbiting in the outer regions of spiral galaxies has revealed that their gravitational at- traction is much larger than the stars alone can provide. Over the last twenty years, astronomers have been forced to postulate the presence of large quantities of 'dark matter' to explain their observations. They are ...

  10. Gravitational waves from the asymmetric-dark-matter generating phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Baldes, Iason

    2017-02-15

    The baryon asymmetry, together with a dark matter asymmetry, may be produced during a first order phase transition in a generative sector. We study the possibility of a gravitational wave signal in a model realising such a scenario. We identify areas of parameter space with strong phase transitions which can be probed by future, space based, gravitational wave detectors. Other signals of this scenario include collider signatures of a Z{sup '}, DM self interactions, a contribution to ΔN{sub eff} and nuclear recoils at direct detection experiments.

  11. Dark matter in galaxies

    OpenAIRE

    Zasov, A. V.; Saburova, A. S.; Khoperskov, A. V.; Khoperskov, S. A.

    2017-01-01

    Dark matter in galaxies, its abundance, and its distribution remain a subject of long-standing discussion, especially in view of the fact that neither dark matter particles nor dark matter bodies have yet been found. Experts' opinions range from a very large number of completely dark galaxies exist to nonbaryonic dark matter does not exist at all in any significant amounts. We discuss astronomical evidence for the existence of dark matter and its connection with visible matter and examine att...

  12. Mimicking Dark Matter

    OpenAIRE

    Bel, Lluís

    2017-01-01

    I show that a very simple model in the context of Newtonian physics promoted to a first approximation of general relativity can mimic Dark matter and explain most of its intriguing properties. Namely: i) Dark matter is a halo associated to ordinary matter; ii) Dark matter does not interact with ordinary matter nor with itself; iii) Its influence grows with the size of the aggregate of ordinary matter that is considered, and iv) Dark matter influences the propagation of light.

  13. Dark Matter

    Science.gov (United States)

    Lincoln, Don

    2013-01-01

    It's a dark, dark universe out there, and I don't mean because the night sky is black. After all, once you leave the shadow of the Earth and get out into space, you're surrounded by countless lights glittering everywhere you look. But for all of Sagan's billions and billions of stars and galaxies, it's a jaw-dropping fact that the ordinary kind of…

  14. Mixed dark matter from technicolor

    DEFF Research Database (Denmark)

    Belyaev, Alexander; T. Frandsen, Mads; Sannino, Francesco

    2011-01-01

    We study natural composite cold dark matter candidates which are pseudo Nambu-Goldstone bosons (pNGB) in models of dynamical electroweak symmetry breaking. Some of these can have a significant thermal relic abundance, while others must be mainly asymmetric dark matter. By considering the thermal...... abundance alone we find a lower bound of MW on the pNGB mass when the (composite) Higgs is heavier than 115 GeV. Being pNGBs, the dark matter candidates are in general light enough to be produced at the LHC....

  15. Dark matter repulsion could thwart direct detection

    Science.gov (United States)

    Davoudiasl, Hooman

    2017-11-01

    We consider a feeble repulsive interaction between ordinary matter and dark matter, with a range similar to or larger than the size of the Earth. Dark matter can thus be repelled from the Earth, leading to null results in direct detection experiments, regardless of the strength of the short-distance interactions of dark matter with atoms. Generically, such a repulsive force would not allow trapping of dark matter inside astronomical bodies. In this scenario, accelerator-based experiments may furnish the only robust signals of asymmetric dark matter models, which typically lack indirect signals from self-annihilation. Some of the variants of our hypothesis are also briefly discussed.

  16. BARYONIC DARK MATTER ?

    OpenAIRE

    Rees, M J

    1986-01-01

    In the first two of these lectures, I present the evidence for baryonic dark matter and describe possible forms that it may take. The final lecture discusses formation of baryonic dark matter, and sets the cosmological context.

  17. Dark Matter Effective Theory

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Sannino, Francesco

    2012-01-01

    We organize the effective (self)interaction terms for complex scalar dark matter candidates which are either an isosinglet, isodoublet or an isotriplet with respect to the weak interactions. The classification has been performed ordering the operators in inverse powers of the dark matter cutoff...... scale. We assume Lorentz invariance, color and charge neutrality. We also introduce potentially interesting dark matter induced flavor-changing operators. Our general framework allows for model independent investigations of dark matter properties....

  18. Impeded Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim; Liu, Jia [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Slatyer, Tracy R. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Wang, Xiao-Ping [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Xue, Wei [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2016-12-12

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  19. Nonthermal Supermassive Dark Matter

    Science.gov (United States)

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  20. Collapsed Dark Matter Structures

    Science.gov (United States)

    Buckley, Matthew R.; DiFranzo, Anthony

    2018-02-01

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  1. Collapsed Dark Matter Structures.

    Science.gov (United States)

    Buckley, Matthew R; DiFranzo, Anthony

    2018-02-02

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  2. Codecaying Dark Matter.

    Science.gov (United States)

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  3. Dark matter an introduction

    CERN Document Server

    Majumdar, Debasish

    2015-01-01

    Dark Matter: An Introduction tackles the rather recent but fast-growing subject of astroparticle physics, encompassing three main areas of fundamental physics: cosmology, particle physics, and astrophysics. Accordingly, the book discusses symmetries, conservation laws, relativity, and cosmological parameters and measurements, as well as the astrophysical behaviors of galaxies and galaxy clusters that indicate the presence of dark matter and the possible nature of dark matter distribution.

  4. Dark Matter Indirect Signatures

    OpenAIRE

    Lavalle, Julien; Salati, Pierre

    2012-01-01

    The astronomical dark matter could be made of weakly interacting and massive particles. If so, these species would be abundant inside the Milky Way, where they would continuously annihilate and produce cosmic rays. Those annihilation products are potentially detectable at the Earth, and could provide indirect clues for the presence of dark matter species within the Galaxy. We will review here the various cosmic radiations which the dark matter can produce. We will examine how they propagate t...

  5. Clumpy cold dark matter

    Science.gov (United States)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  6. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  7. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  8. Vector SIMP dark matter

    Science.gov (United States)

    Choi, Soo-Min; Hochberg, Yonit; Kuflik, Eric; Lee, Hyun Min; Mambrini, Yann; Murayama, Hitoshi; Pierre, Mathias

    2017-10-01

    Strongly Interacting Massive Particles (SIMPs) have recently been proposed as light thermal dark matter relics. Here we consider an explicit realization of the SIMP mechanism in the form of vector SIMPs arising from an SU(2) X hidden gauge theory, where the accidental custodial symmetry protects the stability of the dark matter. We propose several ways of equilibrating the dark and visible sectors in this setup. In particular, we show that a light dark Higgs portal can maintain thermal equilibrium between the two sectors, as can a massive dark vector portal with its generalized Chern-Simons couplings to the vector SIMPs, all while remaining consistent with experimental constraints.

  9. Asymptotically Safe Dark Matter

    DEFF Research Database (Denmark)

    Sannino, Francesco; Shoemaker, Ian M.

    2015-01-01

    We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....

  10. Dark Matter Day

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Wessel Valkenburg, Research Fellow at the Theory Department at CERN will explain the how and why research is carried out on dark matter. The event will be in English with simultaneous interpretation into French. Dark Matter Day falls on Hallow...

  11. Charming dark matter

    OpenAIRE

    Jubb, Thomas; Kirk, Matthew; Lenz, Alexander

    2017-01-01

    We have considered a model of Dark Minimal Flavour Violation (DMFV), in which a triplet of dark matter particles couple to right-handed up-type quarks via a heavy colour-charged scalar mediator. By studying a large spectrum of possible constraints, and assessing the entire parameter space using a Markov Chain Monte Carlo (MCMC), we can place strong restrictions on the allowed parameter space for dark matter models of this type.

  12. Enabling forbidden dark matter

    Science.gov (United States)

    Cline, James M.; Liu, Hongwan; Slatyer, Tracy R.; Xue, Wei

    2017-10-01

    The thermal relic density of dark matter is conventionally set by two-body annihilations. We point out that in many simple models, 3 →2 annihilations can play an important role in determining the relic density over a broad range of model parameters. This occurs when the two-body annihilation is kinematically forbidden, but the 3 →2 process is allowed; we call this scenario not-forbidden dark matter. We illustrate this mechanism for a vector-portal dark matter model, showing that for a dark matter mass of mχ˜MeV -10 GeV , 3 →2 processes not only lead to the observed relic density, but also imply a self-interaction cross section that can solve the cusp/core problem. This can be accomplished while remaining consistent with stringent CMB constraints on light dark matter, and can potentially be discovered at future direct detection experiments.

  13. Macro Dark Matter

    CERN Document Server

    Jacobs, David M; Lynn, Bryan W.

    2015-01-01

    Dark matter is a vital component of the current best model of our universe, $\\Lambda$CDM. There are leading candidates for what the dark matter could be (e.g. weakly-interacting massive particles, or axions), but no compelling observational or experimental evidence exists to support these particular candidates, nor any beyond-the-Standard-Model physics that might produce such candidates. This suggests that other dark matter candidates, including ones that might arise in the Standard Model, should receive increased attention. Here we consider a general class of dark matter candidates with characteristic masses and interaction cross-sections characterized in units of grams and cm$^2$, respectively -- we therefore dub these macroscopic objects as Macros. Such dark matter candidates could potentially be assembled out of Standard Model particles (quarks and leptons) in the early universe. A combination of earth-based, astrophysical, and cosmological observations constrain a portion of the Macro parameter space; ho...

  14. Searches for dark matter

    CERN Document Server

    Feinstein, Fabrice

    2000-01-01

    The fact that the mass of the visible stars could not account for the gravitational cohesion of the galaxies was the first sign of non-visible (i.e. dark) matter in the Universe. Since then, many observational evidences tell us that most of the matter is indeed dark. The nature of this dark matter is still unknown. There are good reasons to think that most of it is not composed of normal matter. These lectures will review the experimental methods, which have been developed to unravel this mystery and will compare their results with theoretical predictions.

  15. Dark matter universe.

    Science.gov (United States)

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  16. Dark matter universe

    Science.gov (United States)

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  17. Cleaning up dark matter

    CERN Multimedia

    Bignami, Giovanni Fabrizio

    2006-01-01

    "An experiment in Italy has found tantalizing but puzzling evidence for axions, one if the leading candidates for dark matter. The authors explain how a pair of spinning neutron stars should settle the issue once and for all." (3 pages)

  18. Dark matter warms up

    CERN Multimedia

    Peplow, Mark

    2006-01-01

    "Unseen mass looks to be more "tepid" than thought. Astronomers have measured the temperature of dark matter for the first time. The discovery should help particle hunters to identify exactly what this mysterious substance is made of" (1 page)

  19. Inflatable Dark Matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  20. Little composite dark matter.

    Science.gov (United States)

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-01-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T -parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T -parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling [Formula: see text], thus evading direct detection.

  1. The Dark Matter Problem

    NARCIS (Netherlands)

    Sanders, Robert H.

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters

  2. Baryonic dark matter

    CERN Document Server

    Rebolo, R

    2002-01-01

    Recent determinations of baryonic density using the angular power spectrum of the Cosmic Microwave Background are very close to the classical estimate from Big Bang Nucleosynthesis. This reinforces the case for dark baryons in the Universe and for a large component of exotic cold dark matter. Present-day baryons can be hidden in substellar objects, stellar remnants, cold gas clouds, hot diffuse ionized gas in various astrophysical environments. Direct detection searches and microlensing experiments provide estimates of the Galactic mass budget in massive compact objects concluding that the bulk of the dark matter in the halo of the Galaxy cannot be associated to MACHOs. Baryons in high redshift Lyman-alpha systems can account for the cosmic baryonic density. However, the dominant form of present-day baryons and, in particular, the nature of the halo dark matter remains a mystery.

  3. WISPy cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Cadamuro, Davide; Redondo, Javier [Max-Planck-Institut fuer Physik, Muenchen (Germany); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-01-15

    Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches - exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques - can probe large parts of this parameter space in the foreseeable future. (orig.)

  4. WISPy Cold Dark Matter

    CERN Document Server

    Arias, Paola; Goodsell, Mark; Jaeckel, Joerg; Redondo, Javier; Ringwald, Andreas

    2012-01-01

    Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches -- exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques -- can probe large parts of this parameter space in the foreseeable future.

  5. Natural minimal dark matter

    CERN Document Server

    Fabbrichesi, Marco

    2016-01-01

    We show how the Higgs boson mass is protected from the potentially large corrections due to the introduction of minimal dark matter if the new physics sector is made supersymmetric. The fermionic dark matter candidate (a 5-plet of $SU(2)_L$) is accompanied by a scalar state. The weak gauge sector is made supersymmetric and the Higgs boson is embedded in a supersymmetric multiplet. The remaining standard model states are non-supersymmetric. Non vanishing corrections to the Higgs boson mass only appear at three-loop level and the model is natural for dark matter masses up to 15 TeV--a value larger than the one required by the cosmological relic density. The construction presented stands as an example of a general approach to naturalness that solves the little hierarchy problem which arises when new physics is added beyond the standard model at an energy scale around 10 TeV.

  6. Dark matter searches

    Science.gov (United States)

    Bettini, Alessandro

    These lectures begin with a brief survey of the astrophysical and cosmological evidence for dark matter. We then consider the three principal theoretically motivated types of dark matter, sterile neutrinos, axions and SUSY WIMPs. In chapter 4 we discuss the motivations for the so-called neutrino minimal standard model, nuMSM, an extension of the SM with three sterile neutrinos with masses similar to the charged fermions. In chapter 5 we briefly recall the strong CP problem of the SM and the solution proposed by Peccei and Quinn leading to the prediction of axions and of their characteristics. We then discuss the experimental status and perspectives. In chapter 6 we assume that the reader to be acquainted with the theoretical motivations for SUSY and move directly to the direct search for dark matter and the description of the principal detector techniques: scintillators, noble fluids and bolometers. We conclude with an outlook on the future perspectives.

  7. The dark universe dark matter and dark energy

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    According to the standard cosmological model, 95% of the present mass density of the universe is dark: roughly 70% of the total in the form of dark energy and 25% in the form of dark matter. In a series of four lectures, I will begin by presenting a brief review of cosmology, and then I will review the observational evidence for dark matter and dark energy. I will discuss some of the proposals for dark matter and dark energy, and connect them to high-energy physics. I will also present an overview of an observational program to quantify the properties of dark energy.

  8. Dichromatic dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yang; Su, Meng; Zhao, Yue

    2013-02-01

    Both the robust INTEGRAL 511 keV gamma-ray line and the recent tentative hint of the 135 GeV gamma-ray line from Fermi-LAT have similar signal morphologies, and may be produced from the same dark matter annihilation. Motivated by this observation, we construct a dark matter model to explain both signals and to accommodate the two required annihilation cross sections that are different by more than six orders of magnitude. In our model, to generate the low-energy positrons for INTEGRAL, dark matter particles annihilate into a complex scalar that couples to photon via a charge-radius operator. The complex scalar contains an excited state decaying into the ground state plus an off-shell photon to generate a pair of positron and electron. Two charged particles with non-degenerate masses are necessary for generating this charge-radius operator. One charged particle is predicted to be long-lived and have a mass around 3.8 TeV to explain the dark matter thermal relic abundance from its late decay. The other charged particle is predicted to have a mass below 1 TeV given the ratio of the two signal cross sections. The 14 TeV LHC will concretely test the main parameter space of this lighter charged particle.

  9. Template Composite Dark Matter

    DEFF Research Database (Denmark)

    Drach, Vincent; Hietanen, Ari; Pica, Claudio

    2015-01-01

    We present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours. We discuss how the model can be used as a template for composite Dark Matter (DM). We estimate one particular interaction of the DM candidate with the Standard Model : the interaction through photon...

  10. Exceptional composite dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Guillermo [Universite Paris Saclay, CEA, CNRS, Institut de Physique Theorique, Gif-sur-Yvette (France); Carmona, Adrian [CERN, Theoretical Physics Department, Geneva (Switzerland); Chala, Mikael [Universitat de Valencia y IFIC, Universitat de Valencia-CSIC, Departament de Fisica Teorica, Burjassot, Valencia (Spain)

    2017-07-15

    We study the dark matter phenomenology of non-minimal composite Higgs models with SO(7) broken to the exceptional group G{sub 2}. In addition to the Higgs, three pseudo-Nambu-Goldstone bosons arise, one of which is electrically neutral. A parity symmetry is enough to ensure this resonance is stable. In fact, if the breaking of the Goldstone symmetry is driven by the fermion sector, this Z{sub 2} symmetry is automatically unbroken in the electroweak phase. In this case, the relic density, as well as the expected indirect, direct and collider signals are then uniquely determined by the value of the compositeness scale, f. Current experimental bounds allow one to account for a large fraction of the dark matter of the Universe if the dark matter particle is part of an electroweak triplet. The totality of the relic abundance can be accommodated if instead this particle is a composite singlet. In both cases, the scale f and the dark matter mass are of the order of a few TeV. (orig.)

  11. with dark matter

    Indian Academy of Sciences (India)

    2012-11-16

    Nov 16, 2012 ... to have a dramatic impact on neutrino physics, dark matter and all fermion masses and mixings. Keywords. Radiative see-saw; fermion masses; grand unification. PACS Nos 12.10.Dm; 12.60.Jv; 14.60.Pq. 1. Introduction. In SO(10) grand unified theory which contains all standard fermions of one generation.

  12. Dark matter from unification

    DEFF Research Database (Denmark)

    Kainulainen, Kimmo; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2013-01-01

    We consider a minimal extension of the Standard Model (SM), which leads to unification of the SM coupling constants, breaks electroweak symmetry dynamically by a new strongly coupled sector and leads to novel dark matter candidates. In this model, the coupling constant unification requires...... eigenstates of this sector and determine the resulting relic density. The results are constrained by available data from colliders and direct and indirect dark matter experiments. We find the model viable and outline briefly future research directions....... the existence of electroweak triplet and doublet fermions singlet under QCD and new strong dynamics underlying the Higgs sector. Among these new matter fields and a new right handed neutrino, we consider the mass and mixing patterns of the neutral states. We argue for a symmetry stabilizing the lightest mass...

  13. Radiative light dark matter

    Science.gov (United States)

    Dedes, A.; Karamitros, D.; Pilaftsis, A.

    2017-06-01

    We present a Peccei-Quinn (PQ)-symmetric two-Higgs doublet model that naturally predicts a fermionic singlet dark matter in the mass range 10 keV-1 GeV. The origin of the smallness of the mass of this light singlet fermion arises predominantly at the one-loop level, upon soft or spontaneous breakdown of the PQ symmetry via a complex scalar field in a fashion similar to the so-called Dine-Fischler-Sredniki-Zhitnitsky axion model. The mass generation of this fermionic radiative light dark matter (RLDM) requires the existence of two heavy vectorlike SU(2) isodoublets, which are not charged under the PQ symmetry. We show how the RLDM can be produced via the freeze-in mechanism, thus accounting for the missing matter in the Universe. Finally, we briefly discuss possible theoretical and phenomenological implications of the RLDM model for the strong C P problem and the CERN Large Hadron Collider (LHC).

  14. Levitating dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Kaloper, Nemanja [Department of Physics, University of California, Davis, CA 95616 (United States); Padilla, Antonio, E-mail: kaloper@physics.ucdavis.edu, E-mail: antonio.padilla@nottingham.ac.uk [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra 'antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < −1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger 'Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  15. Levitating dark matter

    Science.gov (United States)

    Kaloper, Nemanja; Padilla, Antonio

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra `antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < -1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger `Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  16. Imperfect Dark Matter

    CERN Document Server

    Mirzagholi, Leila

    2014-01-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust - Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges - Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination era. In the second ...

  17. Cosmology and Dark Matter

    CERN Document Server

    Tkachev, Igor

    2017-01-01

    This lecture course covers cosmology from the particle physicist perspective. Therefore, the emphasis will be on the evidence for the new physics in cosmological and astrophysical data together with minimal theoretical frameworks needed to understand and appreciate the evidence. I review the case for non-baryonic dark matter and describe popular models which incorporate it. In parallel, the story of dark energy will be developed, which includes accelerated expansion of the Universe today, the Universe origin in the Big Bang, and support for the Inflationary theory in CMBR data.

  18. Dark Matter Searches at LHC

    CERN Document Server

    Terashi, Koji; The ATLAS collaboration

    2017-01-01

    This talk will present dark matter searches at the LHC in the PIC2017 conference. The main emphasis is placed on the direct dark matter searches while the interpretation of searches for SUSY and invisible Higgs signals for the dark matter is also presented.

  19. An elusive vector dark matter

    Directory of Open Access Journals (Sweden)

    Chuan-Ren Chen

    2015-02-01

    Full Text Available Even though the sensitivity of direct dark matter search experiments reaches the level of about 10−45 cm2, no confident signal of dark matter has been observed. We point out that, if dark matter is a vector boson, the null result in direct dark matter search experiments may be due to the destructive effects in dark-matter–nucleon elastic scattering. We illustrate the scenario using a modified Higgs portal model that includes exotic quarks. The significant cancellation can occur for a certain mass gap between new heavy quark and dark matter. As a result, the spin-independent dark-matter–nucleon elastic scattering is so suppressed that the future direct search experiments will hardly observe the signal of dark matter.

  20. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  1. Emergent Dark Energy from Dark Matter

    OpenAIRE

    Kobayashi, Takeshi; Ferreira, Pedro G.

    2018-01-01

    We consider the cosmological dynamics of a scalar field in a potential with multiple troughs and peaks. We show that the dynamics of the scalar field will evolve from light dark matter-like behaviour (such as that of a light axion) to a combination of heavy dark matter-like and dark energy-like behaviour. We discuss the phenomenology of such a model, explaining how it might lead to a small cosmological constant, as well as how it can decouple the dark sector densities between the time of reco...

  2. Direct search for dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jonghee; /Fermilab

    2009-12-01

    Dark matter is hypothetical matter which does not interact with electromagnetic radiation. The existence of dark matter is only inferred from gravitational effects of astrophysical observations to explain the missing mass component of the Universe. Weakly Interacting Massive Particles are currently the most popular candidate to explain the missing mass component. I review the current status of experimental searches of dark matter through direct detection using terrestrial detectors.

  3. Dark Matter remains obscure

    CERN Multimedia

    Fabio Capello

    2011-01-01

    It is one of the hidden secrets that literally surround the Universe. Experiments have shown no result so far because trying to capture particles that do not seem to interact with ordinary matter is no trivial exercise. The OSQAR experiment at CERN is dedicated to the search for axions, one of the candidates for Dark Matter. For its difficult challenge, OSQAR counts on one of the world’s most powerful magnets borrowed from the LHC. In a recent publication, the OSQAR collaboration was able to confirm that no axion signal appears out of the background. In other words: the quest is still on.   The OSQAR experiment installed in the SM18 hall. (Photo by F. Capello) The OSQAR “Light Shining Through a Wall” experiment was officially launched in 2007 with the aim of detecting axions, that is, particles that might be the main components of Dark Matter. OSQAR uses the powerful LHC dipole magnet to intensify the predicted photon-axion conversions in the presence of strong m...

  4. Dark Forces and Light Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Weiner, Neal [New York Univ., NY (United States); Xue, Wei [Rue University (Canada)

    2012-09-01

    We consider a simple class of models in which the dark matter, X, is coupled to a new gauge boson, phi, with a relatively low mass (m_phi \\sim 100 MeV-3 GeV). Neither the dark matter nor the new gauge boson have tree-level couplings to the Standard Model. The dark matter in this model annihilates to phi pairs, and for a coupling of g_X \\sim 0.06 (m_X/10 GeV)^1/2 yields a thermal relic abundance consistent with the cosmological density of dark matter. The phi's produced in such annihilations decay through a small degree of kinetic mixing with the photon to combinations of Standard Model leptons and mesons. For dark matter with a mass of \\sim10 GeV, the shape of the resulting gamma-ray spectrum provides a good fit to that observed from the Galactic Center, and can also provide the very hard electron spectrum required to account for the observed synchrotron emission from the Milky Way's radio filaments. For kinetic mixing near the level naively expected from loop-suppressed operators (epsilon \\sim 10^{-4}), the dark matter is predicted to scatter elastically with protons with a cross section consistent with that required to accommodate the signals reported by DAMA/LIBRA, CoGeNT and CRESST-II.

  5. DarkSide search for dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Bussino, S.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chepurnov, A.; Chidzik, S.; Cocco, A. G.; Condon, C.; D' Angelo, D.; Davini, S.; Vincenzi, M. De; Haas, E. De; Derbin, A.; Pietro, G. Di; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Franco, D.; Fomenko, K.; Forster, G.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al; Ianni, An; Joliet, C.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Klemmer, R.; Kobychev, V.; Koh, G.; Komor, M.; Korablev, D.; Korga, G.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P.; Mohayai, T.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perasso, S.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Randle, K.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvarov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Thompson, J.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.

    2013-11-22

    The DarkSide staged program utilizes a two-phase time projection chamber (TPC) with liquid argon as the target material for the scattering of dark matter particles. Efficient background reduction is achieved using low radioactivity underground argon as well as several experimental handles such as pulse shape, ratio of ionization over scintillation signal, 3D event reconstruction, and active neutron and muon vetos. The DarkSide-10 prototype detector has proven high scintillation light yield, which is a particularly important parameter as it sets the energy threshold for the pulse shape discrimination technique. The DarkSide-50 detector system, currently in commissioning phase at the Gran Sasso Underground Laboratory, will reach a sensitivity to dark matter spin-independent scattering cross section of 10-45 cm2 within 3 years of operation.

  6. Interactions between dark energy and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, Marco

    2009-03-20

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with {lambda}{sub CDM}. Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the {lambda}{sub CDM} model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter

  7. Dark matter searches with CMS

    CERN Document Server

    Jeitler, Manfred

    2016-01-01

    The existence of dark matter, indicated by astronomical observations, is one of the main proofs of physics beyond the standard model. Despite its abundance, dark matter has not been directly observed yet. This talk presents several searches for dark matter production in proton-proton collisions at 7, 8, and 13 TeV at the LHC, performed by the CMS collaboration. They are interpreted in terms of simplified models with different structures and mediators, as well as generic effective theory terms.

  8. Kaluza-Klein dark matter

    CERN Document Server

    Cheng, H C; Matchev, K T; Cheng, Hsin-Chia; Feng, Jonathan L; Matchev, Konstantin T.

    2002-01-01

    We propose that cold dark matter is made of Kaluza-Klein particles and explore avenues for its detection. The lightest Kaluza-Klein state is an excellent dark matter candidate if standard model particles propagate in extra dimensions and Kaluza-Klein parity is conserved. We consider Kaluza-Klein gauge bosons. In sharp contrast to the case of supersymmetric dark matter, these annihilate to hard positrons, neutrinos and photons with unsuppressed rates. Direct detection signals are also promising. These conclusions are generic to bosonic dark matter candidates.

  9. Dark matter search in CMS

    OpenAIRE

    Vartak, Adish

    2017-01-01

    The dark matter search program at the LHC covers a wide range of final states and targets a variety of possible interactions between dark matter and standard model particles. A summary of the dark matter searches performed at the CMS experiment, using proton-proton collision data collected at a center of energy of 13 TeV, is presented.Searches performed in various final states are described, and results interpreted in terms of several dark matter models are presented. These results are also c...

  10. Dark matter. A light move

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier [Muenchen Univ. (Germany). Arnold Sommerfeld Center; Max-Planck-Institut fuer Physik, Muenchen (Germany); Doebrich, Babette [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-11-15

    This proceedings contribution reports from the workshop Dark Matter - a light move, held at DESY in Hamburg in June 2013. Dark Matter particle candidates span a huge parameter range. In particular, well motivated candidates exist also in the sub-eV mass region, for example the axion. Whilst a plethora of searches for rather heavy Dark Matter particles exists, there are only very few experiments aimed at direct detection of sub-eV Dark Matter to this date. The aim of our workshop was to discuss if and how this could be changed in the near future.

  11. Quantum vacuum and dark matter

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2012-01-01

    Recently, the gravitational polarization of the quantum vacuum was proposed as alternative to the dark matter paradigm. In the present paper we consider four benchmark measurements: the universality of the central surface density of galaxy dark matter haloes, the cored dark matter haloes in dwarf spheroidal galaxies, the non-existence of dark disks in spiral galaxies and distribution of dark matter after collision of clusters of galaxies (the Bullet cluster is a famous example). Only some of these phenomena (but not all of them) can (in principle) be explained by the dark matter and the theories of modified gravity. However, we argue that the framework of the gravitational polarization of the quantum vacuum allows the understanding of the totality of these phenomena.

  12. Polarization of photons emitted by decaying dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bonivento, W. [Sezione INFN di Cagliari, Cagliari (Italy); Gorbunov, D. [Institute for Nuclear Research of Russian Academy of Sciences, 117312 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny (Russian Federation); Shaposhnikov, M. [Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland); Tokareva, A., E-mail: tokareva@ms2.inr.ac.ru [Institute for Nuclear Research of Russian Academy of Sciences, 117312 Moscow (Russian Federation); Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland)

    2017-02-10

    Radiatively decaying dark matter may be searched through investigating the photon spectrum of galaxies and galaxy clusters. We explore whether the properties of dark matter can be constrained through the study of a polarization state of emitted photons. Starting from the basic principles of quantum mechanics we show that the models of symmetric dark matter are indiscernible by the photon polarization. However, we find that the asymmetric dark matter consisted of Dirac fermions is a source of circularly polarized photons, calling for the experimental determination of the photon state.

  13. Polarization of photons emitted by decaying dark matter

    Directory of Open Access Journals (Sweden)

    W. Bonivento

    2017-02-01

    Full Text Available Radiatively decaying dark matter may be searched through investigating the photon spectrum of galaxies and galaxy clusters. We explore whether the properties of dark matter can be constrained through the study of a polarization state of emitted photons. Starting from the basic principles of quantum mechanics we show that the models of symmetric dark matter are indiscernible by the photon polarization. However, we find that the asymmetric dark matter consisted of Dirac fermions is a source of circularly polarized photons, calling for the experimental determination of the photon state.

  14. Superheavy dark matter

    CERN Document Server

    Riotto, Antonio

    2000-01-01

    It is usually thought that the present mass density of the Universe is dominated by a weakly interacting massive particle (WIMP), a fossil relic of the early Universe. Theoretical ideas and experimental efforts have focused mostly on production and detection of thermal relics, with mass typically in the range a few GeV to a hundred GeV. Here, we will review scenarios for production of nonthermal dark matter whose mass may be in the range 10/sup 12/ to 10/sup 19/ GeV, much larger than the mass of thermal wimpy WIMPS. We will also review recent related results in understanding the production of very heavy fermions through preheating after inflation. (19 refs).

  15. Supersymmetric Dark Matter Candidates

    CERN Document Server

    Ellis, John

    2010-01-01

    After reviewing the theoretical, phenomenological and experimental motivations for supersymmetric extensions of the Standard Model, we recall that supersymmetric relics from the Big Bang are expected in models that conserve R parity. We then discuss possible supersymmetric dark matter candidates, focusing on the lightest neutralino and the gravitino. In the latter case, the next-to-lightest supersymmetric particle is expected to be long-lived, and possible candidates include spartners of the tau lepton, top quark and neutrino. We then discuss the roles of the renormalization-group equations and electroweak symmetry breaking in delimiting the supersymmetric parameter space. We discuss in particular the constrained minimal extension of the Standard Model (CMSSM), in which the supersymmetry-breaking parameters are assumed to be universal at the grand unification scale, presenting predictions from a frequentist analysis of its parameter space. We also discuss astrophysical and cosmological constraints on gravitin...

  16. Accidental composite dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Antipin, Oleg; Redi, Michele [INFN - Sezione di Firenze,Via G. Sansone, 1, I-50019 Sesto Fiorentino (Italy); Strumia, Alessandro [Dipartimento di Fisica dell’Università di Pisa and INFN,Pisa (Italy); National Institute of Chemical Physics and Biophysics,Tallinn (Estonia); Vigiani, Elena [Dipartimento di Fisica dell’Università di Pisa and INFN,Pisa (Italy)

    2015-07-08

    We build models where Dark Matter candidates arise as composite states of a new confining gauge force, stable thanks to accidental symmetries. Restricting to renormalizable theories compatible with SU(5) unification, we find 13 models based on SU(N) gauge theories and 9 based on SO(N). We also describe other models that require non-renormalizable interactions. The two gauge groups lead to distinctive phenomenologies: SU(N) theories give complex DM, with potentially observable electric and magnetic dipole moments that lead to peculiar spin-independent cross sections; SO(N) theories give real DM, with challenging spin-dependent cross sections or inelastic scatterings. Models with Yukawa couplings also give rise to spin-independent direct detection mediated by the Higgs boson and to electric dipole moments for the electron. In some models DM has higher spin. Each model predicts a specific set of lighter composite scalars, possibly observable at colliders.

  17. Indirect searches for dark matter

    Indian Academy of Sciences (India)

    The current status of indirect searches for dark matter has been reviewed in a schematic way here. The main relevant experimental results of the recent years have been listed and the excitements and disappointments that their phenomenological interpretations in terms of almost-standard annihilating dark matter have ...

  18. Non-baryonic dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Berkes, I.

    1996-12-31

    This article discusses the nature of the dark matter and the possibility of the detection of non-baryonic dark matter in an underground experiment. Among the useful detectors the low temperature bolometers are considered in some detail. (author). 19 refs.

  19. Interacting dark matter and dark radiation

    Science.gov (United States)

    Tang, Yong

    2017-05-01

    We give a brief review on the interacting Dark Matter (iDM) scenario and its effects on cosmology and particle physics. If DM candidates can have strong self-interactions or interactions with other relativistic particles, we can refer them generally as iDM. IDM is an interesting possibility that is motivated both theoretically and observationally. The relativistic particles could belong to Standard Model (SM), such as photons and neutrinos, or be dark radiation (DR) in new physics. The resulting perturbed Boltzmann equations are concisely discussed and illustrations on matter power spectrum are given.

  20. In search of dark matter

    CERN Document Server

    Freeman, Kenneth C

    2006-01-01

    The dark matter problem is one of the most fundamental and profoundly difficult to solve problems in the history of science. Not knowing what makes up most of the known universe goes to the heart of our understanding of the Universe and our place in it. In Search of Dark Matter is the story of the emergence of the dark matter problem, from the initial erroneous ‘discovery’ of dark matter by Jan Oort to contemporary explanations for the nature of dark matter and its role in the origin and evolution of the Universe. Written for the educated non-scientist and scientist alike, it spans a variety of scientific disciplines, from observational astronomy to particle physics. Concepts that the reader will encounter along the way are at the cutting edge of scientific research. However the themes are explained in such a way that no prior understanding of science beyond a high school education is necessary.

  1. Dark energy and extended dark matter halos

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  2. The dark side of cosmology: dark matter and dark energy.

    Science.gov (United States)

    Spergel, David N

    2015-03-06

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. Copyright © 2015, American Association for the Advancement of Science.

  3. Flavoured Dark Matter Beyond MFV

    CERN Document Server

    Blanke, Monika

    2014-01-01

    We review a model of quark flavoured dark matter with new flavour violating interactions. This simplified model describes Dirac fermionic dark matter that is charged under a new U(3) flavour symmetry and couples to right-handed down quarks via a scalar mediator. The corresponding coupling matrix is assumed to be the only new source of flavour violation, which we refer to as the Dark Minimal Flavour Violation (DMFV) hypothesis. This ansatz ensures the stability of dark matter. We discuss the phenomenology of the simplest DMFV model in flavour violating observables, LHC searches, and direct dark matter detection experiments. Especially interesting is the non-trivial interplay between the constraints from the different sectors.

  4. Thermalizing Sterile Neutrino Dark Matter

    Science.gov (United States)

    Hansen, Rasmus S. L.; Vogl, Stefan

    2017-12-01

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  5. Thermalizing Sterile Neutrino Dark Matter.

    Science.gov (United States)

    Hansen, Rasmus S L; Vogl, Stefan

    2017-12-22

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  6. Phases of cannibal dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Marco [New High Energy Theory Center, Department of Physics, Rutgers University,136 Frelinghuisen Road, Piscataway, NJ 08854 (United States); Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele [Center for Cosmology and Particle Physics, Department of Physics, New York University,New York, NY 10003 (United States)

    2016-12-13

    A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector is cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.

  7. Phases of cannibal dark matter

    Science.gov (United States)

    Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele

    2016-12-01

    A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector is cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.

  8. Dirac Neutrino Dark Matter

    CERN Document Server

    Bélanger, Genevieve; Servant, Géraldine

    2008-01-01

    We investigate the possibility that dark matter is made of heavy Dirac neutrinos with mass in the range [O(1) GeV- a few TeV] and with suppressed but non-zero coupling to the Standard Model Z as well as a coupling to an additional Z' gauge boson. The first part of this paper provides a model-independent analysis for the relic density and direct detection in terms of four main parameters: the mass, the couplings to the Z, to the Z' and to the Higgs. These WIMP candidates arise naturally as Kaluza-Klein states in extra-dimensional models with extended electroweak gauge group SU(2)_L* SU(2)_R * U(1). They can be stable because of Kaluza-Klein parity or of other discrete symmetries related to baryon number for instance, or even, in the low mass and low coupling limits, just because of a phase-space-suppressed decay width. An interesting aspect of warped models is that the extra Z' typically couples only to the third generation, thus avoiding the usual experimental constraints. In the second part of the paper, we ...

  9. Constraining Dark Matter with ATLAS

    CERN Document Server

    Czodrowski, Patrick; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  10. Capturing prokaryotic dark matter genomes.

    Science.gov (United States)

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Unified Description of Dark Energy and Dark Matter

    OpenAIRE

    Petry, Walter

    2008-01-01

    Dark energy in the universe is assumed to be vacuum energy. The energy-momentum of vacuum is described by a scale-dependent cosmological constant. The equations of motion imply for the density of matter (dust) the sum of the usual matter density (luminous matter) and an additional matter density (dark matter) similar to the dark energy. The scale-dependent cosmological constant is given up to an exponent which is approximated by the experimentally decided density parameters of dark matter and...

  12. Invisible Higgs and dark matter

    National Research Council Canada - National Science Library

    Heikinheimo, Matti; Tuominen, Kimmo; Virkajärvi, Jussi

    2012-01-01

    We investigate the possibility that a massive weakly interacting fermion simultaneously provides for a dominant component of the dark matter relic density and an invisible decay width of the Higgs boson at the LHC...

  13. The Dark Matter of Biology.

    Science.gov (United States)

    Ross, Jennifer L

    2016-09-06

    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. A History of Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Gianfranco [U. Amsterdam, GRAPPA; Hooper, Dan [Fermilab

    2016-05-16

    Although dark matter is a central element of modern cosmology, the history of how it became accepted as part of the dominant paradigm is often ignored or condensed into a brief anecdotical account focused around the work of a few pioneering scientists. The aim of this review is to provide the reader with a broader historical perspective on the observational discoveries and the theoretical arguments that led the scientific community to adopt dark matter as an essential part of the standard cosmological model.

  15. Dark Matter Ignition of Type Ia Supernovae.

    Science.gov (United States)

    Bramante, Joseph

    2015-10-02

    Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10  Myr old pulsars at the center of the Milky Way.

  16. On dark matter - dark radiation interaction and cosmic reionization

    OpenAIRE

    Das, Subinoy; Mondal, Rajesh; Rentala, Vikram; Suresh, Srikanth

    2017-01-01

    An intriguing possibility for the dark sector of our universe is that the dark matter particle could interact with a dark radiation component. If the non-gravitational interactions of the dark matter and dark radiation species with Standard Model particles are highly suppressed, then astrophysics and cosmology could be our only windows into probing the dynamics of such a dark sector. It is well known that such dark sectors would lead to suppression of small scale structure, which would be con...

  17. Off-diagonal dark-matter phenomenology: Exploring enhanced complementarity relations in nonminimal dark sectors

    Science.gov (United States)

    Dienes, Keith R.; Kumar, Jason; Thomas, Brooks; Yaylali, David

    2017-12-01

    In most multicomponent dark-matter scenarios, two classes of processes generically contribute to event rates at experiments capable of probing the nature of the dark sector. The first class consists of "diagonal" processes involving only a single species of dark-matter particle—processes analogous to those which arise in single-component dark-matter scenarios. By contrast, the second class consists of "off-diagonal" processes involving dark-matter particles of different species. Such processes include inelastic scattering at direct-detection experiments, asymmetric production at colliders, dark-matter co-annihilation, and certain kinds of dark-matter decay. In typical multicomponent scenarios, the contributions from diagonal processes dominate over those from off-diagonal processes. Unfortunately, this tends to mask those features which are most sensitive to the multicomponent nature of the dark sector. In this paper, by contrast, we point out that there exist natural, multicomponent dark-sector scenarios in which the off-diagonal contributions actually dominate over the diagonal. This then gives rise to a new, enhanced picture of dark-matter complementarity. In this paper, we introduce a scenario in which this situation arises and examine the enhanced picture of dark-matter complementarity which emerges.

  18. Self-Destructing Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Yuval [Cornell U., LEPP; Harnik, Roni [Fermilab; Telem, Ofri [Cornell U., LEPP; Zhang, Yue [Northwestern U.

    2017-12-01

    We present Self-Destructing Dark Matter (SDDM), a new class of dark matter models which are detectable in large neutrino detectors. In this class of models, a component of dark matter can transition from a long-lived state to a short-lived one by scattering off of a nucleus or an electron in the Earth. The short-lived state then decays to Standard Model particles, generating a dark matter signal with a visible energy of order the dark matter mass rather than just its recoil. This leads to striking signals in large detectors with high energy thresholds. We present a few examples of models which exhibit self destruction, all inspired by bound state dynamics in the Standard Model. The models under consideration exhibit a rich phenomenology, possibly featuring events with one, two, or even three lepton pairs, each with a fixed invariant mass and a fixed energy, as well as non-trivial directional distributions. This motivates dedicated searches for dark matter in large underground detectors such as Super-K, Borexino, SNO+, and DUNE.

  19. Enlightening Students about Dark Matter

    Science.gov (United States)

    Hamilton, Kathleen; Barr, Alex; Eidelman, Dave

    2018-01-01

    Dark matter pervades the universe. While it is invisible to us, we can detect its influence on matter we can see. To illuminate this concept, we have created an interactive javascript program illustrating predictions made by six different models for dark matter distributions in galaxies. Students are able to match the predicted data with actual experimental results, drawn from several astronomy papers discussing dark matter’s impact on galactic rotation curves. Programming each new model requires integration of density equations with parameters determined by nonlinear curve-fitting using MATLAB scripts we developed. Using our javascript simulation, students can determine the most plausible dark matter models as well as the average percentage of dark matter lurking in galaxies, areas where the scientific community is still continuing to research. In that light, we strive to use the most up-to-date and accepted concepts: two of our dark matter models are the pseudo-isothermal halo and Navarro-Frenk-White, and we integrate out to each galaxy’s virial radius. Currently, our simulation includes NGC3198, NGC2403, and our own Milky Way.

  20. Cold dark matter heats up.

    Science.gov (United States)

    Pontzen, Andrew; Governato, Fabio

    2014-02-13

    A principal discovery in modern cosmology is that standard model particles comprise only 5 per cent of the mass-energy budget of the Universe. In the ΛCDM paradigm, the remaining 95 per cent consists of dark energy (Λ) and cold dark matter. ΛCDM is being challenged by its apparent inability to explain the low-density 'cores' of dark matter measured at the centre of galaxies, where centrally concentrated high-density 'cusps' were predicted. But before drawing conclusions, it is necessary to include the effect of gas and stars, historically seen as passive components of galaxies. We now understand that these can inject heat energy into the cold dark matter through a coupling based on rapid gravitational potential fluctuations, explaining the observed low central densities.

  1. Directly detecting Isospin-Violating Dark Matter

    OpenAIRE

    Kelso, Chris; Kumar, Jason; Marfatia, Danny; Sandick, Pearl

    2017-01-01

    We consider the prospects for multiple dark matter direct detection experiments to determine if the interactions of a dark matter candidate are isospin-violating. We focus on theoretically well-motivated examples of isospin-violating dark matter (IVDM), including models in which dark matter interactions with nuclei are mediated by a dark photon, a Z, or a squark. We determine that the best prospects for distinguishing IVDM from the isospin-invariant scenario arise in the cases of dark photon-...

  2. Asymmetric dense matter in holographic QCD

    Directory of Open Access Journals (Sweden)

    Shin Ik Jae

    2012-02-01

    Full Text Available We study asymmetric dense matter in holographic QCD.We construct asymmetric dense matter by considering two quark flavor branes with dierent quark masses in a D4/D6/D6 model. To calculate the symmetry energy in nuclear matter, we consider two quarks with equal masses and observe that the symmetry energy increases with the total charge showing the stiff dependence. This behavior is universal in the sense that the result is independent of parameters in the model. We also study strange (or hyperon matter with one light and one intermediate mass quarks. In addition to the vacuum properties of asymmetric matter, we calculate meson masses in asymmetric dense matter and discuss our results in the light of in-medium kaon masses.

  3. SIMPLE Dark Matter Search Results

    Energy Technology Data Exchange (ETDEWEB)

    Girard, T A.; Giuliani, F; Morlat, T; Felizardo da Costa, M; Collar, J I.; Limagne, D; Waysand, G; Puibasset, J; Miley, Harry S.; Auguste, M; Boyer, D; Cavaillou, A; Marques, J G.; Oliveira, C; Fernandes, A; Ramos, A R.; Martins, R C.

    2005-08-18

    The inability to discover baryonic matter sufficient to explain the observed dynamics of the universe has (for a number of decades) set the quest for weakly interacting massive particles (WIMPs). The search for this dark matter continues to be among the forefront efforts of experimental physics.

  4. Inflation, dark matter and dark energy in the string landscape

    OpenAIRE

    Liddle, A. R.; Ureña-López, L. A.

    2006-01-01

    We consider the conditions needed to unify the description of dark matter, dark energy and inflation in the context of the string landscape. We find that incomplete decay of the inflaton field gives the possibility that a single field is responsible for all three phenomena. By contrast, unifying dark matter and dark energy into a single field, separate from the inflaton, appears rather difficult.

  5. Studying dark matter haloes with weak lensing

    NARCIS (Netherlands)

    Velander, Malin Barbro Margareta

    2012-01-01

    Our Universe is comprised not only of normal matter but also of unknown components: dark matter and dark energy. This Thesis recounts studies of dark matter haloes, using a technique known as weak gravitational lensing, in order to learn more about the nature of these dark components. The haloes

  6. Dark matter in the universe

    CERN Document Server

    Seigar, Marc S

    2015-01-01

    The study of dark matter, in both astrophysics and particle physics, has emerged as one of the most active and exciting topics of research in recent years. This book reviews the history behind the discovery of missing mass (or unseen mass) in the universe, and ties this into the proposed extensions to the Standard Model of Particle Physics (such as Supersymmetry), which were being proposed within the same time frame. This book is written as an introduction to these problems at the forefront of astrophysics and particle physics, with the goal of conveying the physics of dark matter to beginning undergraduate majors in scientific fields. The book goes on to describe existing and upcoming experiments and techniques, which will be used to detect dark matter either directly or indirectly.

  7. The DAMIC Dark Matter Experiment

    Energy Technology Data Exchange (ETDEWEB)

    de Mello Neto, J. R.T. [Federal Univ. of Rio de Janeiro (Brazil). et al

    2015-10-07

    The DAMIC (DArk Matter In CCDs) experiment uses high-resistivity, scientific-grade CCDs to search for dark matter. The CCD’s low electronic noise allows an unprecedently low energy threshold of a few tens of eV; this characteristic makes it possible to detect silicon recoils resulting from interactions of low-mass WIMPs. In addition, the CCD’s high spatial resolution and the excellent energy response results in very effective background identification techniques. The experiment has a unique sensitivity to dark matter particles with masses below 10 GeV/c2. Previous results have motivated the construction of DAMIC100, a 100 grams silicon target detector currently being installed at SNOLAB. The mode of operation and unique imaging capabilities of the CCDs, and how they may be exploited to characterize and suppress backgrounds are discussed, as well as physics results after one year of data taking.

  8. Dark Matter in 3D

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Daniele S.M.; Hedri, Sonia El; Wacker, Jay G.

    2012-04-01

    We discuss the relevance of directional detection experiments in the post-discovery era and propose a method to extract the local dark matter phase space distribution from directional data. The first feature of this method is a parameterization of the dark matter distribution function in terms of integrals of motion, which can be analytically extended to infer properties of the global distribution if certain equilibrium conditions hold. The second feature of our method is a decomposition of the distribution function in moments of a model independent basis, with minimal reliance on the ansatz for its functional form. We illustrate our method using the Via Lactea II N-body simulation as well as an analytical model for the dark matter halo. We conclude that O(1000) events are necessary to measure deviations from the Standard Halo Model and constrain or measure the presence of anisotropies.

  9. Dark Matter searches at ATLAS

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2016-01-01

    If Dark Matter interacts weakly with the Standard Model it can be produced at the LHC. It can be identified via initial state radiation (ISR) of the incoming partons, leaving a signature in the detector of the ISR particle (jet, photon, Z or W) recoiling off of the invisible Dark Matter particles, resulting in a large momentum imbalance. Many signatures of large missing transverse momentum recoiling against jets, photons, heavy-flavor quarks, weak gauge bosons or Higgs bosons provide an interesting channel for Dark Matter searches. These LHC searches complement those from (in)direct detection experiments. Results of these searches with the ATLAS experiment, in both effective field theory and simplified models with pair WIMP production are discussed. Both 8TeV and 13TeV pp collision data has been used in these results.

  10. How dark matter came to matter

    Science.gov (United States)

    de Swart, J. G.; Bertone, G.; van Dongen, J.

    2017-03-01

    The history of the dark matter problem can be traced back to at least the 1930s, but it was not until the early 1970s that the issue of 'missing matter' was widely recognized as problematic. In the latter period, previously separate issues involving missing mass were brought together in a single anomaly. We argue that reference to a straightforward accumulation of evidence alone is inadequate to comprehend this episode. Rather, the rise of cosmological research, the accompanying renewed interest in the theory of relativity and changes in the manpower division of astronomy in the 1960s are key to understanding how dark matter came to matter. At the same time, this story may also enlighten us on the methodological dimensions of past practices of physics and cosmology.

  11. Phenomenology of ELDER dark matter

    Science.gov (United States)

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2017-08-01

    We explore the phenomenology of Elastically Decoupling Relic (ELDER) dark matter. ELDER is a thermal relic whose present density is determined primarily by the cross-section of its elastic scattering off Standard Model (SM) particles. Assuming that this scattering is mediated by a kinetically mixed dark photon, we argue that the ELDER scenario makes robust predictions for electron-recoil direct-detection experiments, as well as for dark photon searches. These predictions are independent of the details of interactions within the dark sector. Together with the closely related Strongly-Interacting Massive Particle (SIMP) scenario, the ELDER predictions provide a physically motivated, well-defined target region, which will be almost entirely accessible to the next generation of searches for sub-GeV dark matter and dark photons. We provide useful analytic approximations for various quantities of interest in the ELDER scenario, and discuss two simple renormalizable toy models which incorporate the required strong number-changing interactions among the ELDERs, as well as explicitly implement the coupling to electrons via the dark photon portal.

  12. Z-portal dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Arcadi, Giorgio [Laboratoire de Physique Théorique Université Paris-Sud, F-91405 Orsay (France); Institute for Theoretical Physics, Georg-August University Göttingen, Friedrich-Hund-Platz 1, Göttingen, D-37077 (Germany); Mambrini, Yann [Laboratoire de Physique Théorique Université Paris-Sud, F-91405 Orsay (France); Richard, Francois [Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS and Université Paris-Sud 11 Centre Scientifique d’Orsay, B. P. 34, F-91898 Orsay Cedex (France)

    2015-03-11

    We propose to generalize the extensions of the Standard Model where the Z boson serves as a mediator between the Standard Model sector and the dark sector χ. We show that, like in the Higgs portal case, the combined constraints from the recent direct searches restrict severely the nature of the coupling of the dark matter to the Z boson and set a limit m{sub χ}≳200 GeV (except in a very narrow region around the Z-pole region). Using complementarity between spin dependent, spin independent and FERMI limits, we predict the nature of this coupling, more specifically the axial/vectorial ratio that respects a thermal dark matter coupled through a Z-portal while not being excluded by the current observations. We also show that the next generation of experiments of the type LZ or XENON1T will test Z-portal scenario for dark matter mass up to 2 TeV. The condition of a thermal dark matter naturally predicts the spin-dependent scattering cross section on the neutron to be σ{sub χn}{sup SD}≃10{sup −40} cm{sup 2}, which then becomes a clear prediction of the model and a signature testable in the near future experiments.

  13. Dark Matter Searches at ATLAS

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The astrophysical evidence of dark matter provides some of the most compelling clues to the nature of physics beyond the Standard Model. From these clues, ATLAS has developed a broad and systematic search program for dark matter production in LHC collisions. These searches are now entering their prime, with the LHC now colliding protons at the increased 13 TeV centre-of-mass energy and set to deliver much larger datasets than ever before. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  14. Invisible Higgs and Dark Matter

    DEFF Research Database (Denmark)

    Heikinheimo, Matti; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2012-01-01

    We investigate the possibility that a massive weakly interacting fermion simultaneously provides for a dominant component of the dark matter relic density and an invisible decay width of the Higgs boson at the LHC. As a concrete model realizing such dynamics we consider the minimal walking...... technicolor, although our results apply more generally. Taking into account the constraints from the electroweak precision measurements and current direct searches for dark matter particles, we find that such scenario is heavily constrained, and large portions of the parameter space are excluded....

  15. Dark Matter "Collider" from Inelastic Boosted Dark Matter.

    Science.gov (United States)

    Kim, Doojin; Park, Jong-Chul; Shin, Seodong

    2017-10-20

    We propose a novel dark matter (DM) detection strategy for models with a nonminimal dark sector. The main ingredients in the underlying DM scenario are a boosted DM particle and a heavier dark sector state. The relativistic DM impinged on target material scatters off inelastically to the heavier state, which subsequently decays into DM along with lighter states including visible (standard model) particles. The expected signal event, therefore, accompanies a visible signature by the secondary cascade process associated with a recoiling of the target particle, differing from the typical neutrino signal not involving the secondary signature. We then discuss various kinematic features followed by DM detection prospects at large-volume neutrino detectors with a model framework where a dark gauge boson is the mediator between the standard model particles and DM.

  16. Did LIGO Detect Dark Matter?

    Science.gov (United States)

    Bird, Simeon; Cholis, Ilias; Muñoz, Julian B; Ali-Haïmoud, Yacine; Kamionkowski, Marc; Kovetz, Ely D; Raccanelli, Alvise; Riess, Adam G

    2016-05-20

    We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark matter. Interestingly enough, there remains a window for masses 20M_{⊙}≲M_{bh}≲100M_{⊙} where primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently close, they radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs will rapidly spiral inward due to the emission of gravitational radiation and ultimately will merge. Uncertainties in the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos on the smallest scales. Still, reasonable estimates span a range that overlaps the 2-53  Gpc^{-3} yr^{-1} rate estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH mergers are likely to be distributed spatially more like dark matter than luminous matter and have neither optical nor neutrino counterparts. They may be distinguished from mergers of BHs from more traditional astrophysical sources through the observed mass spectrum, their high ellipticities, or their stochastic gravitational wave background. Next-generation experiments will be invaluable in performing these tests.

  17. The dark side of matter

    CERN Document Server

    Cline, D

    2003-01-01

    The number of baryons (protons and neutrons) of the universe can be deduced from the relative abundances of light elements (deuterium, helium and lithium) that were generated during the very first minutes of the cosmic history. This calculation has shown that the baryonic matter represents only 5% of the total mass of the universe. As for neutrinos (hot dark matter), their very low mass restraints their contribution to only 0,3%. The spinning movement of galaxies requires the existence of huge quantity of matter that seems invisible (black matter). Astrophysicists have recently discovered that the universal expansion is accelerating and that the space geometry is euclidean, from these 2 facts they have deduced a value of the mass-energy density that implies the existence of something different from dark matter called dark energy and that is expected to represent about 70% of the mass of the universe. Physicists face the challenge of detecting black matter and black energy. The first attempt for detecting blac...

  18. Modified gravity without dark matter

    NARCIS (Netherlands)

    Sanders, Robert; Papantonopoulos, L

    2007-01-01

    On an empirical level, the most successful alternative to dark matter in bound gravitational systems is the modified Newtonian dynamics, or MOND, proposed by Milgrom. Here I discuss the attempts to formulate MOND as a modification of General Relativity. I begin with a summary of the phenomenological

  19. Dark matter signals in space

    Energy Technology Data Exchange (ETDEWEB)

    Salati, Pierre, E-mail: salati@lapp.in2p3.f [LAPTH, Universite de Savoie, CNRS, B.P.110, F-74941 Annecy-le-Vieux Cedex (France)

    2010-01-01

    The confirmation by the PAMELA collaboration of a positron excess above 10 GeV has triggered a lot of excitement in the field of particle astrophysics. This excess could be the first long waited hint of the presence of massive and weakly interacting species in the halo of the Milky Way. If so, the nature of the astronomical dark matter is about to be unveiled after more than seventy years of unsuccessful searches. This review summarizes the state of the art, a year of bubbling activity after the PAMELA announcement. The dark matter candidates which can potentially lead to a positron excess have quite special properties. They are severely constrained by radio and gamma observations unless they are tightly packed inside unprobable or bizarre dark matter clumps. These species could also be unstable with abnormally long lifetimes. Although the positron excess could be generated by annihilating and/or decaying dark matter particles, William of Ockham would warn us that a more natural explanation is to be found in pulsars for instance, and that entia non sunt multiplicanda praeter necessitatem.

  20. Composite dark matter and Higgs

    Science.gov (United States)

    Wu, Yongcheng; Ma, Teng; Zhang, Bin; Cacciapaglia, Giacomo

    2017-11-01

    We investigate the possibility that Dark Matter arises as a composite state of a fundamental confining dynamics, together with the Higgs boson. We focus on the minimal SU(4)×SU(4)/SU(4) model which has both a Dark Matter and a Higgs candidates arising as pseudo-Nambu-Goldstone bosons. At the same time, a simple underlying gauge-fermion theory can be defined providing an existence proof of, and useful constraints on, the effective field theory description. We focus on the parameter space where the Dark Matter candidate is mostly a gauge singlet. We present a complete calculation of its relic abundance and find preferred masses between 500 GeV to a few TeV. Direct Dark Matter detection already probes part of the parameter space, ruling out masses above 1 TeV, while Indirect Detection is relevant only if non-thermal production is assumed. The prospects for detection of the odd composite scalars at the LHC are also established.

  1. Dark matter in NGC 4472

    Science.gov (United States)

    Loewenstein, Michael

    1992-01-01

    An attempt is made to constrain the total mass distribution of the giant elliptical galaxy NGC 4472 by constructing simultaneous equilibrium models for the gas and stars. Emphasis is given to reconciling the value of the emission-weighted average value of kT derived from the Ginga spectrum with the amount of dark matter needed to account for velocity dispersion observations.

  2. Dark Matter searches at ATLAS

    CERN Document Server

    Schramm, S; The ATLAS collaboration

    2014-01-01

    Numerous independent astrophysical experiments have observed and measured the influence of the phenomenon named Dark Matter, but its nature is still unknown. If the assumption that Dark Matter is a particle which has a weak coupling to the Standard Model is valid, then collider searches have the ability to search for the production of this new Weakly Interacting Massive Particle (WIMP). Any Dark Matter particles produced in collisions would escape the detector without being observed. Signatures which include an initial-state radiated particle balancing a large amount of Missing Transverse Momentum, known as mono-X topologies, provide a generic means of conducting Dark Matter searches. ATLAS has conducted several mono-X searches, including recoiling jets, photons, W/Z bosons which decay hadronically, and Z bosons which decay leptonically. Searches were carried out with centre of mass energies of both 7 and 8 TeV, and with up to 20/fb of data. No evidence for physics beyond the Standard Model is observed, and t...

  3. Unified Dark Matter Scalar Field Models

    Directory of Open Access Journals (Sweden)

    Daniele Bertacca

    2010-01-01

    of a single scalar field accounts for a unified description of the Dark Matter and Dark Energy sectors, dubbed Unified Dark Matter (UDM models. In this framework, we consider the general Lagrangian of -essence, which allows to find solutions around which the scalar field describes the desired mixture of Dark Matter and Dark Energy. We also discuss static and spherically symmetric solutions of Einstein's equations for a scalar field with noncanonical kinetic term, in connection with galactic halo rotation curves.

  4. Sterile neutrino portal to Dark Matter II: exact dark symmetry

    Science.gov (United States)

    Escudero, Miguel; Rius, Nuria; Sanz, Verónica

    2017-06-01

    We analyze a simple extension of the standard model (SM) with a dark sector composed of a scalar and a fermion, both singlets under the SM gauge group but charged under a dark sector symmetry group. Sterile neutrinos, which are singlets under both groups, mediate the interactions between the dark sector and the SM particles, and generate masses for the active neutrinos via the seesaw mechanism. We explore the parameter space region where the observed Dark Matter relic abundance is determined by the annihilation into sterile neutrinos, both for fermion and scalar Dark Matter particles. The scalar Dark Matter case provides an interesting alternative to the usual Higgs portal scenario. We also study the constraints from direct Dark Matter searches and the prospects for indirect detection via sterile neutrino decays to leptons, which may be able to rule out Dark Matter masses below and around 100 GeV.

  5. Sterile neutrino portal to Dark Matter II: exact dark symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, Miguel; Rius, Nuria [Universidad de Valencia-CSIC, Departamento de Fisica Teorica and IFIC, C/Catedratico Jose Beltran, 2, 46980, Paterna (Spain); Sanz, Veronica [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-06-15

    We analyze a simple extension of the standard model (SM) with a dark sector composed of a scalar and a fermion, both singlets under the SM gauge group but charged under a dark sector symmetry group. Sterile neutrinos, which are singlets under both groups, mediate the interactions between the dark sector and the SM particles, and generate masses for the active neutrinos via the seesaw mechanism. We explore the parameter space region where the observed Dark Matter relic abundance is determined by the annihilation into sterile neutrinos, both for fermion and scalar Dark Matter particles. The scalar Dark Matter case provides an interesting alternative to the usual Higgs portal scenario. We also study the constraints from direct Dark Matter searches and the prospects for indirect detection via sterile neutrino decays to leptons, which may be able to rule out Dark Matter masses below and around 100 GeV. (orig.)

  6. Dark Matter in the Universe

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The question “What is the Universe made of?” is the longest outstanding problem in all of physics. Ordinary atoms only constitute 5% of the total, while the rest is of unknown composition. Already in 1933 Fritz Zwicky observed that the rapid motions of objects within clusters of galaxies were unexplained by the gravitation pull of luminous matter, and he postulated the existence of Dunkle Materie, or dark matter. A variety of dark matter candidates exist, including new fundamental particles already postulated in particle theories: axions and WIMPs (weakly interacting massive particles). Over the past 25 years, there has been a three pronged approach to WIMP detection: creating them at particle accelerators; searched for detection of astrophysical WIMPs scattering off of nuclei in underground detectors; and “indirect detection” of WIMP annihilation products (neutrinos, positrons, or photons). As yet the LHC has only placed bounds rather than finding discovery. For 13 years the DAMA experiment has proc...

  7. Forbidden Channels and SIMP Dark Matter

    OpenAIRE

    Choi Soo-Min; Kang Yoo-Jin; Lee Hyun Min

    2018-01-01

    In this review, we focus on dark matter production from thermal freeze-out with forbidden channels and SIMP processes. We show that forbidden channels can be dominant to produce dark matter depending on the dark photon and / or dark Higgs mass compared to SIMP.

  8. The relevance of Very Light Dark Matter

    OpenAIRE

    Yajnik Urjit A.

    2014-01-01

    A concordant model of Dark Matter and Dark Energy is presented. Dark Energy arises out of magnetic condensation of very light fermions of micro-eV mass charged under an unbroken gauge group U(1)X. The Dark Matter candidate is an oppositely charged fermionic species which is then shown to be naturally in the MeV to keV range.

  9. Forbidden Channels and SIMP Dark Matter

    OpenAIRE

    Choi, Soo-Min; Kang, Yoo-Jin; Lee, Hyun Min

    2017-01-01

    In this review, we focus on dark matter production from thermal freeze-out with forbidden channels and SIMP processes. We show that forbidden channels can be dominant to produce dark matter depending on the dark photon and / or dark Higgs mass compared to SIMP.

  10. Spatially inhomogeneous condensate in asymmetric nuclear matter

    NARCIS (Netherlands)

    Sedrakian, A

    We study the isospin singlet pairing in asymmetric nuclear matter with nonzero total momentum of the condensate Cooper pairs. The quasiparticle excitation spectrum is fourfold split compared to the usual BCS spectrum of the symmetric, homogeneous matter. A twofold splitting of the spectrum into

  11. New Spectral Features from Bound Dark Matter

    DEFF Research Database (Denmark)

    Catena, Riccardo; Kouvaris, Chris

    2016-01-01

    We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature we predict can provide the ultimate smoking gun for dark matter discovery for experiments...... with positive signal but unclear background. The new feature is universal, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section....

  12. Cold dark matter plus not-so-clumpy dark relics

    NARCIS (Netherlands)

    Diamanti, R.; Ando, S.; Gariazzo, S.; Mena, O.; Weniger, C.

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark

  13. Experimental Implications of Mirror Matter-Type Dark Matter

    Science.gov (United States)

    Foot, Robert

    Mirror matter-type dark matter is one dark matter candidate which is particularly well motivated from high energy physics. The theoretical motivation and experimental evidence are pedagogically reviewed, with emphasis on the implications of recent orthopositronium experiments, the DAMA/NaI dark matter search, anomalous meteorite events etc.

  14. Sterile dark matter and reionization

    Science.gov (United States)

    Kusenko, Alexander

    2007-11-01

    Sterile neutrinos with masses in the keV range can be the dark matter, and their emission from a supernova can explain the observed velocities of pulsars. The sterile neutrino decays could produce the x-ray radiation in the early universe, which could have an important effect on the formation of the first stars. X-rays could ionize gas and could catalyze the production of molecular hydrogen during the “dark ages”. The increased fraction of molecular hydrogen could facilitate the cooling and collapse of the primordial gas clouds in which the first stars are formed.

  15. Dark matter in elliptical galaxies

    Science.gov (United States)

    Carollo, C. M.; Zeeuw, P. T. DE; Marel, R. P. Van Der; Danziger, I. J.; Qian, E. E.

    1995-01-01

    We present measurements of the shape of the stellar line-of-sight velocity distribution out to two effective radii along the major axes of the four elliptical galaxies NGC 2434, 2663, 3706, and 5018. The velocity dispersion profiles are flat or decline gently with radius. We compare the data to the predictions of f = f(E, L(sub z)) axisymmetric models with and without dark matter. Strong tangential anisotropy is ruled out at large radii. We conclude from our measurements that massive dark halos must be present in three of the four galaxies, while for the fourth galaxy (NGC 2663) the case is inconclusive.

  16. Recent developments in dark matter searches

    Indian Academy of Sciences (India)

    Abstract. A brief review is first given of the forms of dark matter that are hypothesized, and a summary of the basic observational evidence for dark matter is provided. Then a summary of recent results from indirect and direct detection dark matter search experiments is given. Some discussion is also done of MOND theories ...

  17. Anomalous Kolar events revisited: Dark matter?

    Indian Academy of Sciences (India)

    2014-03-06

    Mar 6, 2014 ... due to the decays of dark matter particles of mass in the range of 5–10 GeV, is pointed out. Keywords. Dark matter; Kolar ... possibility that these events may be caused by the decay of dark matter particles and make some remarks ..... [16] Particle Data Group: J Beringer et al, Phys. Rev. D 86, 010001 (2012).

  18. Particle Dark Matter (1/4)

    CERN Document Server

    CERN. Geneva

    2011-01-01

    I review the phenomenology of particle dark matter, including the process of thermal freeze-out in the early universe, and the direct and indirect detection of WIMPs. I also describe some of the most popular particle candidates for dark matter and summarize the current status of the quest to discover dark matter's particle identity.

  19. Alternative to particle dark matter

    Science.gov (United States)

    Khoury, Justin

    2015-01-01

    We propose an alternative to particle dark matter that borrows ingredients of modified Newtonian dynamics (MOND) while adding new key components. The first new feature is a dark matter fluid, in the form of a scalar field with small equation of state and sound speed. This component is critical in reproducing the success of cold dark matter for the expansion history and the growth of linear perturbations, but does not cluster significantly on nonlinear scales. Instead, the missing mass problem on nonlinear scales is addressed by a modification of the gravitational force law. The force law approximates MOND at large and intermediate accelerations, and therefore reproduces the empirical success of MOND at fitting galactic rotation curves. At ultralow accelerations, the force law reverts to an inverse-square law, albeit with a larger Newton's constant. This latter regime is important in galaxy clusters and is consistent with their observed isothermal profiles, provided the characteristic acceleration scale of MOND is mildly varying with scale or mass, such that it is 12 times higher in clusters than in galaxies. We present an explicit relativistic theory in terms of two scalar fields. The first scalar field is governed by a Dirac-Born-Infeld action and behaves as a dark matter fluid on large scales. The second scalar field also has single-derivative interactions and mediates a fifth force that modifies gravity on nonlinear scales. Both scalars are coupled to matter via an effective metric that depends locally on the fields. The form of this effective metric implies the equality of the two scalar gravitational potentials, which ensures that lensing and dynamical mass estimates agree. Further work is needed in order to make both the acceleration scale of MOND and the fraction at which gravity reverts to an inverse-square law explicitly dynamical quantities, varying with scale or mass.

  20. Dark Matter Annihilation at the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Timothy Ryan [Univ. of California, Santa Cruz, CA (United States)

    2013-06-01

    Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately ve times as much dark matter as baryonic matter. However, e orts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the rst multiwavelength analysis of the GC, with suitable e ective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing e orts which have successfully detected an excess in -ray emission from the region immediately surrounding the GC, which is di cult to describe in terms of standard di use emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I discuss the

  1. Dark matter searches using superheated liquids

    OpenAIRE

    Manuel Bou-Cabo; Miguel Ardid; Ivan Felis

    2016-01-01

    Direct detection of dark matter is one of the most important topics in modern physics. It is estimated that 22% of universe matter is composed by dark matter in front of 0.4% of ordinary matter like stars, galaxies planets and all kind of known astrophysical objects. Several kinds of experiments are nowadays involved in detection of one of the more accepted particle candidates to be dark matter: WIMPs (Weakly Interacting Massive Particles). These detectors, using several kin...

  2. Dark matter in axion landscape

    Energy Technology Data Exchange (ETDEWEB)

    Daido, Ryuji, E-mail: daido@tuhep.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Kobayashi, Takeshi, E-mail: takeshi.kobayashi@sissa.it [SISSA, Via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste, Via Bonomea 265, 34136 Trieste (Italy); Takahashi, Fuminobu, E-mail: fumi@tuhep.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Kavli IPMU, TODIAS, University of Tokyo, Kashiwa 277-8583 (Japan)

    2017-02-10

    If there are a plethora of axions in nature, they may have a complicated potential and create an axion landscape. We study a possibility that one of the axions is so light that it is cosmologically stable, explaining the observed dark matter density. In particular we focus on a case in which two (or more) shift-symmetry breaking terms conspire to make the axion sufficiently light at the potential minimum. In this case the axion has a flat-bottomed potential. In contrast to the case in which a single cosine term dominates the potential, the axion abundance as well as its isocurvature perturbations are significantly suppressed. This allows an axion with a rather large mass to serve as dark matter without fine-tuning of the initial misalignment, and further makes higher-scale inflation to be consistent with the scenario.

  3. Oscillating spin-2 dark matter

    Science.gov (United States)

    Marzola, Luca; Raidal, Martti; Urban, Federico R.

    2018-01-01

    The negative outcomes of laboratory searches, juxtaposed with cosmological observations, may indicate that dark matter has a gravitational origin. We show that coherent oscillations of a massive spin-2 field emerging from bimetric theory can easily account for the observed dark matter abundance. The framework, based on the only known consistent extension of general relativity to interacting spin-2 fields, is testable in precision measurements of the electric charge variation by means of atomic clocks, molecular systems, dedicated resonant mass detectors, as well as gravity interferometers and axionlike-particle experiments. These searches, therefore, provide a new window into the phenomenology of gravity which complements the results of dedicated tests of gravitation. We also present a multimetric extension of the scenario that straightforwardly implements the clockwork mechanism for gravity, explaining the apparent weakness of this force.

  4. Direct dark matter searches review

    Directory of Open Access Journals (Sweden)

    Gascon Jules

    2015-01-01

    Full Text Available Direct Dark Matter Searches are experiments looking for the energetic recoils due to the scattering of Weakly Interacting Massive Particles (WIMPs from our galactic halo on nuclei in a terrestrial target. The principles of these type of searches is described, and the status and results of the leading experiments in that field are presented, as well as their prospects in the coming years.

  5. Non-baryonic dark matter in cosmology

    Science.gov (United States)

    Del Popolo, A.

    2013-07-01

    This paper is based on lectures given at the IX Mexican School on Gravitation and Mathematical Physics. The lectures (as the paper) were a broad-band review of the current status of non-baryonic dark matter research. I start with a historical overview of the evidences of dark matter existence, then I discuss how dark matter is distributed from small scale to large scale, and I then verge the attention to dark matter nature: dark matter candidates and their detection. I finally discuss some of the limits of the ΛCDM model, with particular emphasis on the small scale problems of the paradigm.

  6. Superconducting Detectors for Superlight Dark Matter.

    Science.gov (United States)

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M

    2016-01-08

    We propose and study a new class of superconducting detectors that are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, m(X)≳1  keV. We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  7. Catalyst type of interactions between dark energy and dark matter

    OpenAIRE

    Guo, Yan-Hong; Yu, Zhong-Xi; Ren, Ji-Rong

    2017-01-01

    In this paper, we focus on three specific interactions of dark sector in the existence of baryonic matter and radiation. First, we attempt to assume baryonic matter and radiation can affect the conversion between dark energy and dark matter like the way catalyst influences the conversion rate of two materials in some reversible chemical reactions. Then we present phase space analysis for every special interaction model. Finally, for every case, we obtain a stable attractor solution that can a...

  8. Heavy spin-2 Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Babichev, Eugeny [Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-Saclay,91405 Orsay (France); UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, GReCO,98bis boulevard Arago, F-75014 Paris (France); Marzola, Luca; Raidal, Martti [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Laboratory of Theoretical Physics, Institute of Physics, University of Tartu,Ravila 14c, 50411 Tartu (Estonia); Schmidt-May, Angnis [Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Urban, Federico; Veermäe, Hardi [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Strauss, Mikael von [UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, GReCO,98bis boulevard Arago, F-75014 Paris (France)

    2016-09-12

    We provide further details on a recent proposal addressing the nature of the dark sectors in cosmology and demonstrate that all current observations related to Dark Matter can be explained by the presence of a heavy spin-2 particle. Massive spin-2 fields and their gravitational interactions are uniquely described by ghost-free bimetric theory, which is a minimal and natural extension of General Relativity. In this setup, the largeness of the physical Planck mass is naturally related to extremely weak couplings of the heavy spin-2 field to baryonic matter and therefore explains the absence of signals in experiments dedicated to Dark Matter searches. It also ensures the phenomenological viability of our model as we confirm by comparing it with cosmological and local tests of gravity. At the same time, the spin-2 field possesses standard gravitational interactions and it decays universally into all Standard Model fields but not into massless gravitons. Matching the measured DM abundance together with the requirement of stability constrains the spin-2 mass to be in the 1 to 100 TeV range.

  9. Astronomical Signatures of Dark Matter

    Directory of Open Access Journals (Sweden)

    Paul Gorenstein

    2014-01-01

    Full Text Available Several independent astronomical observations in different wavelength bands reveal the existence of much larger quantities of matter than what we would deduce from assuming a solar mass to light ratio. They are very high velocities of individual galaxies within clusters of galaxies, higher than expected rotation rates of stars in the outer regions of galaxies, 21 cm line studies indicative of increasing mass to light ratios with radius in the halos of spiral galaxies, hot gaseous X-ray emitting halos around many elliptical galaxies, and clusters of galaxies requiring a much larger component of unseen mass for the hot gas to be bound. The level of gravitational attraction needed for the spatial distribution of galaxies to evolve from the small perturbations implied by the very slightly anisotropic cosmic microwave background radiation to its current web-like configuration requires much more mass than is observed across the entire electromagnetic spectrum. Distorted shapes of galaxies and other features created by gravitational lensing in the images of many astronomical objects require an amount of dark matter consistent with other estimates. The unambiguous detection of dark matter and more recently evidence for dark energy has positioned astronomy at the frontier of fundamental physics as it was in the 17th century.

  10. Review of dark matter direct detection experiments

    Indian Academy of Sciences (India)

    Matter, as we know it, makes up less than 5% of the Universe. Various astrophysical observations have confirmed that one quarter of the Universe and most of the matter content in the Universe is made up of dark matter. The nature of dark matter is yet to be discovered and is one of the biggest questions in physics. Particle ...

  11. Fuzzy dark matter and nonstandard neutrino interactions

    OpenAIRE

    Brdar, Vedran; Kopp, Joachim; Liu, Jia; Prass, Pascal; Wang, Xiao-Ping

    2018-01-01

    We discuss novel ways in which neutrino oscillation experiments can probe dark matter. In particular, we focus on interactions between neutrinos and ultralight (“fuzzy”) dark matter particles with masses of order 10−22 eV. It has been shown previously that such dark matter candidates are phenomenologically successful and might help ameliorate the tension between predicted and observed small scale structures in the Universe. We argue that coherent forward scattering of neutrinos on fuzzy dark...

  12. Dark matter in the universe

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. (Fermi National Accelerator Lab., Batavia, IL (USA) Chicago Univ., IL (USA). Enrico Fermi Inst.)

    1990-11-01

    What is the quantity and composition of material in the Universe This is one of the most fundamental questions we can ask about the Universe, and its answer bears on a number of important issues including the formation of structure in the Universe, and the ultimate fate and the earliest history of the Universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand: Most of the material in the Universe does not give off detectable radiation, i.e., is dark;'' the dark matter associated with bright galaxies contributes somewhere between 10% and 30% of the critical density (by comparison luminous matter contributes less than 1%); baryonic matter contributes between 1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model is supported by three compelling theoretical arguments--structure formation, the temporal Copernican principle, and inflation--and by some observational data. If {Omega} is indeed unity--or even just significantly greater than 0.1--then there is a strong case for a Universe comprised of nonbaryonic matter. There are three well motivated particle dark-matter candidates: an axion of mass 10{sup {minus}6} eV to 10{sup {minus}4} eV; a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either being planned or are underway. 63 refs.

  13. Dark matter in the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. (Fermi National Accelerator Lab., Batavia, IL (USA) Chicago Univ., IL (USA). Enrico Fermi Inst.)

    1991-03-01

    What is the quantity and composition of material in the universe This is one of the most fundamental questions we can ask about the universe, and its answer bears on a number of important issues including the formation of structure in the universe, and the ultimate fate and the earliest history of the universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand: most of the material in the universe does not give off detectable radiation, i.e., is dark;'' the dark matter associated with bright galaxies contributes somewhere between 10% and 30% of the critical density (by comparison luminous matter contributes less than 1%); baryonic matter contributes between 1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model is supported by three compelling theoretical arguments -- structure formation, the temporal Copernican principle, and inflation -- and by some observational data. If {Omega} is indeed unity--or even just significantly greater than 0.1--then there is a strong case for a universe comprised of nonbaryonic matter. There are three well motivated particle dark-matter candidates: an axion of mass 10{sup {minus}6} eV to 10{sup {minus}4} eV; a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either being planned or are underway. 71 refs., 6 figs.

  14. Theoretical Comparison Between Candidates for Dark Matter

    Science.gov (United States)

    McKeough, James; Hira, Ajit; Valdez, Alexandra

    2017-01-01

    Since the generally-accepted view among astrophysicists is that the matter component of the universe is mostly dark matter, the search for dark matter particles continues unabated. The Large Underground Xenon (LUX) improvements, aided by advanced computer simulations at the U.S. Department of Energy's Lawrence Berkeley National Laboratory's (Berkeley Lab) National Energy Research Scientific Computing Center (NERSC) and Brown University's Center for Computation and Visualization (CCV), can potentially eliminate some particle models of dark matter. Generally, the proposed candidates can be put in three categories: baryonic dark matter, hot dark matter, and cold dark matter. The Lightest Supersymmetric Particle(LSP) of supersymmetric models is a dark matter candidate, and is classified as a Weakly Interacting Massive Particle (WIMP). Similar to the cosmic microwave background radiation left over from the Big Bang, there is a background of low-energy neutrinos in our Universe. According to some researchers, these may be the explanation for the dark matter. One advantage of the Neutrino Model is that they are known to exist. Dark matter made from neutrinos is termed ``hot dark matter''. We formulate a novel empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function adequately treats both void size and redshift, and describes the scale radius and the central density of voids. We started with a five-parameter model. Our research is mainly on LSP and Neutrino models.

  15. Dark matter and the equivalence principle

    Science.gov (United States)

    Frieman, Joshua A.; Gradwohl, Ben-Ami

    1993-01-01

    A survey is presented of the current understanding of dark matter invoked by astrophysical theory and cosmology. Einstein's equivalence principle asserts that local measurements cannot distinguish a system at rest in a gravitational field from one that is in uniform acceleration in empty space. Recent test-methods for the equivalence principle are presently discussed as bases for testing of dark matter scenarios involving the long-range forces between either baryonic or nonbaryonic dark matter and ordinary matter.

  16. Dark matter in the universe

    Science.gov (United States)

    Turner, Michael S.

    1991-01-01

    What is the quantity and composition of material in the Universe? This is one of the most fundamental questions we can ask about the Universe, and its answer bears on a number of important issues including the formation of structure in the Universe, and the ultimate fate and the earliest history of the Universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand. Most of the radiation in the Universe does not give off detectable radiation; it is dark. The dark matter associated with bright galaxies contributes somewhere between 10 and 30 percent of the critical density; baryonic matter contributes between 1.1 and 12 percent of the critical. The case for the spatially flat, Einstein-de Sitter model is supported by three compelling theoretical arguments - structure formation, the temporal Copernican principle, and inflation - and by some observational data. If Omega is indeed unity, or even just significantly greater than 0.1, then there is a strong case for a Universe comprised of nonbaryonic matter. There are three well motivated particle dark matter candidates: an axion of mass 10 (exp -6) eV to 10 (exp -4) eV; a neutrino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either planned or are underway.

  17. Multicomponent Dark Matter in Radiative Seesaw Models

    OpenAIRE

    Aoki, Mayumi; Kaneko, Daiki; Kubo, Jisuke

    2017-01-01

    We discuss radiative seesaw models, in which an exact $Z_2\\times Z_2'$ symmetry is imposed. Due to the exact $Z_2\\times Z_2'$ symmetry, neutrino masses are generated at a two-loop level and at least two extra stable electrically neutral particles are predicted. We consider two models: one has a multi-component dark matter system and the other one has a dark radiation in addition to a dark matter. In the multi-component dark matter system, non-standard dark matter annihilation processes exist....

  18. The Cosmology of Composite Inelastic Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Spier Moreira Alves, Daniele; Behbahani, Siavosh R.; /SLAC /Stanford U., ITP; Schuster, Philip; Wacker, Jay G.; /SLAC

    2011-08-19

    Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark matter scatters inelastically off Standard Model nuclei and can explain the DAMA/LIBRA annual modulation signal. This article describes the early Universe cosmology of a minimal implementation of a composite inelastic dark matter model where the dark matter is a meson composed of a light and a heavy quark. The synthesis of the constituent quarks into dark hadrons results in several qualitatively different configurations of the resulting dark matter composition depending on the relative mass scales in the system.

  19. Astrophysical Probes of Dark Matter Interactions

    Science.gov (United States)

    Reece, Matthew

    The majority of matter in the universe is dark matter, made up of some particle beyond those in the Standard Model of particle physics. So far we have very little information about what dark matter is and how it interacts, except through gravity. Constraints from halo shapes and the Bullet Cluster give upper bounds on the self-interaction strength of dark matter, but these bounds are very weak: roughly the same size as nuclear physics cross sections, which are very large by the standards of particle physics. Given how little we know about dark matter, it is important to search for it in as broad a context as possible. Existing direct and indirect detection analyses are typically motivated by simple particle physics models like WIMP dark matter. This research will aim to widen the scope of searches for dark matter by considering a more complete range of particle physics models, working out their implications for astrophysical data, and interpreting existing data in terms of these new models. New models of dark matter can affect searches in a variety of ways. Signals may show up in conventional indirect detection searches, e.g. in gamma rays detected by Fermi-LAT or in antiprotons detected by AMS-02. The new particle physics content of the models could be reflected in surprising spectral shapes or other features of such signals, or in gamma rays with a different profile on the sky than expected in typical models. The PI has worked, for example, on a model in which signals may arise from a dark disk, which is just one of many possibilities. Signals of new dark matter models might also arise in more subtle ways. Structure in the dark sector could influence the development of structure in the visible sector, indirectly. For instance, a dark matter disk or other dark structures could alter the orbits of stars in the galaxy and may be detectable through detailed studies of the kinematics of stellar populations. Dark accretion disks could exist around astrophysical objects

  20. Dissipative dark matter explains rotation curves

    Science.gov (United States)

    Foot, R.

    2015-06-01

    Dissipative dark matter, where dark matter particles interact with a massless (or very light) boson, is studied. Such dark matter can arise in simple hidden sector gauge models, including those featuring an unbroken U (1 )' gauge symmetry, leading to a dark photon. Previous work has shown that such models can not only explain the large scale structure and cosmic microwave background, but potentially also dark matter phenomena on small scales, such as the inferred cored structure of dark matter halos. In this picture, dark matter halos of disk galaxies not only cool via dissipative interactions but are also heated via ordinary supernovae (facilitated by an assumed photon-dark photon kinetic mixing interaction). This interaction between the dark matter halo and ordinary baryons, a very special feature of these types of models, plays a critical role in governing the physical properties of the dark matter halo. Here, we further study the implications of this type of dissipative dark matter for disk galaxies. Building on earlier work, we develop a simple formalism which aims to describe the effects of dissipative dark matter in a fairly model independent way. This formalism is then applied to generic disk galaxies. We also consider specific examples, including NGC 1560 and a sample of dwarf galaxies from the LITTLE THINGS survey. We find that dissipative dark matter, as developed here, does a fairly good job accounting for the rotation curves of the galaxies considered. Not only does dissipative dark matter explain the linear rise of the rotational velocity of dwarf galaxies at small radii, but it can also explain the observed wiggles in rotation curves which are known to be correlated with corresponding features in the disk gas distribution.

  1. Limits on Self-Interacting Dark Matter from Neutron Stars

    DEFF Research Database (Denmark)

    Kouvaris, C.

    2012-01-01

    We impose new severe constraints on the self-interactions of fermionic asymmetric dark matter based on observations of nearby old neutron stars. Weakly interacting massive particle (WIMP) self-interactions mediated by Yukawa-type interactions can lower significantly the number of WIMPs necessary...... for gravitational collapse of the WIMP population accumulated in a neutron star. Even nearby neutron stars located at regions of low dark matter density can accrete a sufficient number of WIMPs that can potentially collapse, form a mini black hole, and destroy the host star. Based on this, we derive constraints...

  2. The Quest for Dark Matter

    CERN Document Server

    Rubbia, Carlo

    2005-01-01

    Recent experiments have brought for the first time under a strong experimental basis that the total density of the Universe is Wo = 1.02 ± 0.02. We have for the first time a cosmic agreement, namely matter density WM = 0.27 ± 0.04 and dark energy density WL = 0.73 ± 0.04 add up precisely to Wo ! WM + WL. On the other hand ordinary hadronic matter (quarks and leptons) determined by the Big Bang Nucleo-synthesis (BBN) is also firmly set to WBBN = 0.044 ± 0.004. About 100 years after Einstein's birth we know experimentally the identity of less than 5% of what the Universe is made of, the remaining > 95% escaping to us completely. An enormous effort is being made at LHC in order to discover SUSY particles. SUSY is an “almost necessity” of elementary particle physics. The fact that such particles may also account for the observed non baryonic dark matter is either a big coincidence or a big hint. If such SUSY particles indeed exist, they must have been...

  3. The early Universe's imprint on dark matter

    Science.gov (United States)

    Erickcek, Adrienne L.; Waldstein, Isaac Raj

    2017-11-01

    Our ignorance of the Universe's evolution prior to the onset of Big Bang Nucleosynthesis profoundly limits our understanding of dark matter: we cannot calculate its relic abundance without knowing when the Universe became radiation dominated. Fortunately, there is another probe of the early Universe that could break this degeneracy. An effectively matter-dominated era prior to the onset of nucleosynthesis can radically enhance the population of microhalos for both thermal and nonthermal dark matter. The resulting abundance of substructure increases the dark matter annihilation rate, which opens up the possibility of using gamma-ray observations to learn about the reheating of the Universe and the origins of dark matter.

  4. Concentrated Dark Matter: Enhanced Small-scale Structure from Co-Decaying Dark Matter

    OpenAIRE

    Dror, Jeff A.; Kuflik, Eric; Melcher, Brandon; Watson, Scott

    2017-01-01

    We study the cosmological consequences of co-decaying dark matter - a recently proposed mechanism for depleting the density of dark matter through the decay of nearly degenerate particles. A generic prediction of this framework is an early dark matter dominated phase in the history of the universe, that results in the enhanced growth of dark matter perturbations on small scales. We compute the duration of the early matter dominated phase and show that the perturbations are robust against wash...

  5. Sterile neutrino dark matter production

    Science.gov (United States)

    Gorbunov, Dmitry

    2017-10-01

    Sterile neutrinos provide active neutrinos with masses and mixing, and hence is one of the well-motivated candidate for dark matter. We discuss the sterile neutrino production mechanisms operating in the early Universe and show that additional scalar coupled to sterile neutrino can significantly change the situation, making moderate sterile-neutrino mixing and small sterile neutrino masses consistent with current cosmological and astrophysical bounds. Further searches for a narrow line in galactic X-rays and even direct searches for keV-scale sterile neutrinos in particle physics experiments can probe the suggested setup.

  6. Strongly Interacting Light Dark Matter

    CERN Document Server

    Bruggisser, Sebastian; Urbano, Alfredo

    2016-01-01

    In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.

  7. Observable heavy Higgs dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Keus, Venus [Department of Physics and Helsinki Institute of Physics,Gustaf Hallstromin katu 2, FIN-00014 University of Helsinki (Finland); School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); King, Stephen F. [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Moretti, Stefano [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory,Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Sokolowska, Dorota [University of Warsaw, Faculty of Physics, Pasteura 5,02-093 Warsaw (Poland)

    2015-11-04

    Dark Matter (DM), arising from an Inert Higgs Doublet, may either be light, below the W mass, or heavy, above about 525 GeV. While the light region may soon be excluded, the heavy region is known to be very difficult to probe with either Direct Detection (DD) experiments or the Large Hadron Collider (LHC). We show that adding a second Inert Higgs Doublet helps to make the heavy DM region accessible to both DD and the LHC, by either increasing its couplings to the observed Higgs boson, or lowering its mass to 360 GeV≲m{sub DM}, or both.

  8. Dark matter searches in ATLAS

    CERN Document Server

    Diehl, Edward; The ATLAS collaboration

    2016-01-01

    Dark matter particles may be produced at the LHC in combination with other particles, typically from initial state radiation. We present results from the ATLAS experiment from searches for phenomena with jets, photons, heavy quarks, electroweak gauge bosons, or Higgs bosons recoiling against large missing transverse momentum. The measurements are interpreted using several theoretical frameworks including simplified models with pair production of Weakly Interacting Massive Particles, effective field theories, and other beyond the Standard Model scenarios. Constraints from dijet searches are compared with results from the “Mono-X” searches to provide a combined interpretation in the context of simplified models.

  9. Dark matter as a weakly coupled dark baryon

    Science.gov (United States)

    Mitridate, Andrea; Redi, Michele; Smirnov, Juri; Strumia, Alessandro

    2017-10-01

    Dark Matter might be an accidentally stable baryon of a new confining gauge interaction. We extend previous studies exploring the possibility that the DM is made of dark quarks heavier than the dark confinement scale. The resulting phenomenology contains new unusual elements: a two-stage DM cosmology (freeze-out followed by dark condensation), a large DM annihilation cross section through recombination of dark quarks (allowing to fit the positron excess). Light dark glue-balls are relatively long lived and give extra cosmological effects; DM itself can remain radioactive.

  10. Cosmological Singlet Diagnostics of Neutrinophilic Dark Matter

    OpenAIRE

    Balducci, Ottavia; Hofmann, Stefan; Kassiteridis, Alexis

    2017-01-01

    The standard model (SM) of particle physics is extended by adding a fundemantal dark sector containing a dark matter singlet, which is coupled to the visible sector via a gauge invariant Yukawa portal and a sterile neutrino bridge. The cases of weakly interacting dark matter particles and feebly interacting ones are both considered. Even after the Yukawa portal is closed, the sterile neutrino bridge keeps the communication between the dark and visible sectors open, allowing for a prolonged co...

  11. Natural Implementation of Neutralino Dark Matter

    CERN Document Server

    King, S F

    2006-01-01

    The prediction of neutralino dark matter is generally regarded as one of the successes of the Minimal Supersymmetric Standard Model (MSSM). However the successful regions of parameter space allowed by WMAP and collider constraints are quite restricted. We discuss fine-tuning with respect to both dark matter and Electroweak Symmetry Breaking (EWSB) and explore regions of MSSM parameter space with non-universal gaugino and third family scalar masses in which neutralino dark matter may be implemented naturally. In particular allowing non-universal gauginos opens up the bulk region that allows Bino annihilation via t-channel slepton exchange, leading to ``supernatural dark matter'' corresponding to no fine-tuning at all with respect to dark matter. By contrast we find that the recently proposed ``well tempered neutralino'' regions involve substantial fine-tuning of MSSM parameters in order to satisfy the dark matter constraints, although the fine tuning may be ameliorated if several annihilation channels act simu...

  12. Dark Matter Jets at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yang; /SLAC; Rajaraman, Arvind; /UC, Irvine

    2012-03-28

    We argue that dark matter particles which have strong interactions with the Standard Model particles are not excluded by current astrophysical constraints. These dark matter particles have unique signatures at colliders; instead of missing energy, the dark matter particles produce jets. We propose a new search strategy for such strongly interacting particles by looking for a signal of two trackless jets. We show that suitable cuts can plausibly allow us to find these signals at the LHC even in early data.

  13. Surrogate Models for Direct Dark Matter Detection

    OpenAIRE

    Cerdeno, D. G.; Cheek, A.; Reid, E.; Schulz, H.

    2018-01-01

    In this work we introduce RAPIDD, a surrogate model that speeds up the computation of the expected spectrum of dark matter particles in direct detection experiments. RAPIDD replaces the exact calculation of the dark matter differential rate (which in general involves up to three nested integrals) with a much faster parametrization in terms of ordinary polynomials of the dark matter mass and couplings, obtained in an initial training phase. In this article, we validate our surrogate model on t...

  14. Connecting light dark matter candidates with neutrinos

    OpenAIRE

    Lineros, Roberto A.

    2018-01-01

    Seminar at USACH on 11/Dec/2017Abstract:Dark Matter is an unseen sculptor of the Universe. Its presence affects astrophysical objects at different scales. However, its nature is still unknown. Particle dark matter candidates have been proposed explaining the relic abundance, properties, and indicating search strategies. Unfortunately, the null observational results motivate the community to study other candidates and to propose new search strategies. A possible way to observe dark matter is ...

  15. Connecting light dark matter candidates with neutrinos

    OpenAIRE

    Lineros, Roberto A.

    2018-01-01

    Seminar given at UNAB on 12/Dec/2017AbstractDark Matter is an unseen sculptor of the Universe. Its presence affects astrophysical objects at different scales. However, its nature is still unknown. Particle dark matter candidates have been proposed explaining the relic abundance, properties, and indicating search strategies. Unfortunately, the null observational results motivate the community to study other candidates and to propose new search strategies. A possible way to observe dark matter...

  16. Effective Field Theory of Majorana Dark Matter

    OpenAIRE

    Han, Huayong; WU, HONGYAN; Zheng, Sibo

    2017-01-01

    Thermal Majorana dark matter is explored from the viewpoint of effective field theory. Completely analytic result for dark matter annihilation into standard model background is derived in order to account relic density. The parameter space subject to the latest LUX, PandaX-II and Xenon-1T limits is shown in a model-independent way. For illustration, applications to singlet-doublet and neutralino dark matter are work out.

  17. Axion: Mass -- Dark Matter Abundance Relation

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The axion is a hypothetical particle which would explain why QCD is approximately T-conserving, and is also an excellent Cold Dark Matter candidate. It should be possible to make a clean theoretical prediction relating the dark matter density in axions and the axion mass (under reasonable assumptions about inflation). But the axion's early-Universe dynamics, which establish its density as dark matter, are unexpectedly rich in a way which is only starting to yield to quantitative numerical study.

  18. Dark matter as a cancer hazard

    Energy Technology Data Exchange (ETDEWEB)

    Chashchina, Olga, E-mail: chashchina.olga@gmail.com [École Polytechnique, Palaiseau (France); Silagadze, Zurab, E-mail: Z.K.Silagadze@inp.nsk.su [Budker Institute of Nuclear Physics and Novosibirsk State University, Novosibirsk 630 090 (Russian Federation)

    2016-07-10

    We comment on the paper “Dark matter collisions with the human body” by K. Freese and C. Savage (2012) [1] and describe a dark matter model for which the results of the previous paper do not quite apply. Within this mirror dark matter model, potentially hazardous objects, mirror micrometeorites, can exist and may lead to diseases triggered by multiple mutations, such as cancer, though with very low probability.

  19. Dark matter more mysterious than expected

    Science.gov (United States)

    Jałocha, Joanna

    2015-12-01

    Based on the lecture Dark Matter --- more mysterious than expected}, given by me at the Cosmology School in Kielce on 18 July 2015, I will briefly discuss in this essay the history of dark matter and why this notion is so essential for the contemporary physics. Next, I will present the point of view of the research team I work with, on the presence of nonbaryonic dark matter in the Universe and in spiral galaxies.

  20. A mechanism for dark matter depopulation

    OpenAIRE

    Kobakhidze, Archil; Schmidt, Michael A.; Talia, Matthew

    2017-01-01

    Early decoupling of thermally produced dark matter particles due to feeble interactions with the surrounding plasma typically results in their excessive abundance. In this work we propose a simple mechanism for dark matter depopulation. It relies on a specific cosmological evolution under which dark matter particles become temporarily unstable and hence decay away reducing the overall abundance. The instability phase is typically followed by an incomplete regeneration phase until the final ab...

  1. Lepton Flavor Violation Induced by Dark Matter

    OpenAIRE

    Arcadi, Giorgio; Ferreira, C. P.; Goertz, Florian; Guzzo, M. M.; Farinaldo S. Queiroz; Santos, A. C. O.

    2017-01-01

    Guided by gauge principles we discuss a predictive and falsifiable UV complete model where the Dirac fermion that accounts for the cold dark matter abundance in our universe induces the lepton flavor violation (LFV) decays $\\mu \\rightarrow e\\gamma$ and $\\mu \\rightarrow e e e$ as well as $\\mu-e$ conversion. We explore the interplay between direct dark matter detection, relic density, collider probes and lepton flavor violation to conclusively show that one may have a viable dark matter candida...

  2. Stimulated emission of dark matter axion from condensed matter excitations

    OpenAIRE

    Yokoi, Naoto; Saitoh, Eiji

    2018-01-01

    We discuss a possible principle for detecting dark matter axions in galactic halos. If axions constitute a condensate in the Milky Way, stimulated emissions of the axions from a type of excitation in condensed matter can be detectable. We provide general mechanism for the dark matter emission, and, as a concrete example, an emission of dark matter axions from magnetic vortex strings in a type II superconductor is investigated along with possible experimental signatures.

  3. Nonlocal astrophysics dark matter, dark energy and physical vacuum

    CERN Document Server

    Alexeev, Boris V

    2017-01-01

    Non-Local Astrophysics: Dark Matter, Dark Energy and Physical Vacuum highlights the most significant features of non-local theory, a highly effective tool for solving many physical problems in areas where classical local theory runs into difficulties. The book provides the fundamental science behind new non-local astrophysics, discussing non-local kinetic and generalized hydrodynamic equations, non-local parameters in several physical systems, dark matter, dark energy, black holes and gravitational waves. Devoted to the solution of astrophysical problems from the position of non-local physics Provides a solution for dark matter and dark energy Discusses cosmological aspects of the theory of non-local physics Includes a solution for the problem of the Hubble Universe expansion, and of the dependence of the orbital velocity from the center of gravity

  4. Unified dark energy-dark matter model with inverse quintessence

    Energy Technology Data Exchange (ETDEWEB)

    Ansoldi, Stefano [ICRA — International Center for Relativistic Astrophysics, INFN — Istituto Nazionale di Fisica Nucleare, and Dipartimento di Matematica e Informatica, Università degli Studi di Udine, via delle Scienze 206, I-33100 Udine (UD) (Italy); Guendelman, Eduardo I., E-mail: ansoldi@fulbrightmail.org, E-mail: guendel@bgu.ac.il [Department of Physics, Ben-Gurion University of the Negeev, Beer-Sheva 84105 (Israel)

    2013-05-01

    We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.

  5. Dipolar dark matter with massive bigravity

    Energy Technology Data Exchange (ETDEWEB)

    Blanchet, Luc [GRECO Institut d’Astrophysique de Paris - UMR 7095 du CNRS,Université Pierre & Marie Curie,98" b" i" s boulevard Arago, 75014 Paris (France); Heisenberg, Lavinia [Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, 10691 Stockholm (Sweden); Department of Physics & The Oskar Klein Centre, AlbaNova University Centre,Roslagstullsbacken 21, 10691 Stockholm (Sweden)

    2015-12-14

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.

  6. Dark Matter Coannihilation with a Lighter Species

    Science.gov (United States)

    Berlin, Asher

    2017-09-01

    We propose a new thermal freeze-out mechanism for ultraheavy dark matter. Dark matter coannihilates with a lighter unstable species that is nearby in mass, leading to an annihilation rate that is exponentially enhanced relative to standard weakly interactive massive particles. This scenario destabilizes any potential dark matter candidate. In order to remain consistent with astrophysical observations, our proposal necessitates very long-lived states, motivating striking phenomenology associated with the late decays of ultraheavy dark matter, potentially as massive as the scale of grand unified theories, MGUT˜1016 GeV .

  7. Light dark matter versus astrophysical constraints

    OpenAIRE

    Cline, James M.; Frey, Andrew R.

    2011-01-01

    Hints of direct dark matter detection coming from the DAMA, CoGeNT experiments point toward light dark matter with isospin-violating and possibly inelastic couplings. However an array of astrophysical constraints are rapidly closing the window on light dark matter. We point out that if the relic density is determined by annihilation into invisible states, these constraints can be evaded. As an example we present a model of quasi-Dirac dark matter, interacting via two U(1) gauge bosons, one of...

  8. Sterile neutrino dark matter with supersymmetry

    Science.gov (United States)

    Shakya, Bibhushan; Wells, James D.

    2017-08-01

    Sterile neutrino dark matter, a popular alternative to the WIMP paradigm, has generally been studied in non-supersymmetric setups. If the underlying theory is supersymmetric, we find that several interesting and novel dark matter features can arise. In particular, in scenarios of freeze-in production of sterile neutrino dark matter, its superpartner, the sterile sneutrino, can play a crucial role in early Universe cosmology as the dominant source of cold, warm, or hot dark matter, or of a subdominant relativistic population of sterile neutrinos that can contribute to the effective number of relativistic degrees of freedom Neff during big bang nucleosynthesis.

  9. Search for Dark Matter at ATLAS

    CERN Document Server

    Conventi, Francesco; The ATLAS collaboration

    2017-01-01

    Dark Matter composes almost 25% of our Universe, but its identity is still unknown which makes it a large challenge for current fundamental physics. A lot of approaches are used to discover the identity of Dark Matter and one of them, collider searches, are discussed in this talk. The latest results on Dark Matter search at ATLAS using 2015 and 2016 data are presented. Results from searches for new physics in the events with final states containing large missing transverse energy + X (photons, jets, boson) are shown. Higgs to invisible and dijet searches are used in sense of complementarity to constrain properties of Dark Matter.

  10. Direct Dark Matter Searches: Status and Perspectives

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    There is overwhelming indirect evidence that dark matter exists, however, the dark matter particle has not yet been directly detected in laboratory experiments. In order to be able to identify the rare dark matter interactions with the target nuclei, such instruments have to feature a very low threshold and an extremely low radioactive background. They are therefore installed in underground laboratories to reduce cosmic ray backgrounds. I will review the status of direct dark matter searches and will discuss the perspectives for the future.

  11. Dark Matter Coannihilation with a Lighter Species.

    Science.gov (United States)

    Berlin, Asher

    2017-09-22

    We propose a new thermal freeze-out mechanism for ultraheavy dark matter. Dark matter coannihilates with a lighter unstable species that is nearby in mass, leading to an annihilation rate that is exponentially enhanced relative to standard weakly interactive massive particles. This scenario destabilizes any potential dark matter candidate. In order to remain consistent with astrophysical observations, our proposal necessitates very long-lived states, motivating striking phenomenology associated with the late decays of ultraheavy dark matter, potentially as massive as the scale of grand unified theories, M_{GUT}∼10^{16}  GeV.

  12. Dark-matter dispute intensifies

    Energy Technology Data Exchange (ETDEWEB)

    Avignone, Frank T. [Department of Physics and Astronomy, University of South Carolina, Columbia, SC (United States)

    2000-04-01

    Recent results from a dark-matter experiment in Italy suggest that the elusive weakly interacting massive particle or WIMP has finally been detected - but a rival experimental collaboration in the US disagrees. The controversy surrounding evidence for the discovery of ''dark matter'' particles has heated up following two conflicting talks given at a conference at the end of February. The papers were presented at the 4th International Symposium on Sources and Detection of Dark Matter/Energy in the Universe held in Marina del Ray, California. For almost 70 years astronomers have known that dust, gas and other ordinary matter cannot account for almost 90% of the mass of many galaxies. The galaxies must contain other ''dark'' matter to explain the orbital motions of stars around their centres. Many astrophysicists, cosmologists and particle physicists have conjectured that this seemingly empty space could be populated by a dense body of massive, but very weakly interacting, particles called WIMPs. Such particles would then provide the gravitational fields needed to keep the stars moving as observed. Since the results of the first experimental efforts to detect these particles were published in 1987, literally dozens of experiments have been performed around the world. Two of the most sensitive experiments to date are the DAMA experiment at the Gran Sasso laboratory in Italy, and the CDMS experiment at Stanford University in the US. The DAMA collaboration - which includes physicists from the University of Rome Tor Vergata, the University of Rome La Sapienza and the Chinese Academy in Beijing - has been searching for WIMPs for several years using a large array of sodium-iodide detectors located 1400 m below ground. The CDMS experiment uses cryogenic detectors and is located just 10 m underground. The collaboration includes researchers from several centres in the US and Russia. Assuming that they do exist, a WIMP will occasionally

  13. Effective description of dark matter self-interactions in small dark matter haloes★

    OpenAIRE

    Kummer, Janis; Kahlhoefer, Felix; Schmidt-Hoberg, Kai

    2018-01-01

    Self-interacting dark matter may have striking astrophysical signatures, such as observable offsets between galaxies and dark matter in merging galaxy clusters. Numerical N-body simulations used to predict such observables typically treat the galaxies as collisionless test particles, a questionable assumption given that each galaxy is embedded in its own dark matter halo. To enable a more accurate treatment, we develop an effective description of small dark matter haloes taking into account t...

  14. Effective description of dark matter self-interactions in small dark matter haloes

    OpenAIRE

    Kummer, Janis; Kahlhoefer, Felix; Schmidt-Hoberg, Kai

    2017-01-01

    Self-interacting dark matter may have striking astrophysical signatures, such as observable offsets between galaxies and dark matter in merging galaxy clusters. Numerical N-body simulations used to predict such observables typically treat the galaxies as collisionless test particles, a questionable assumption given that each galaxy is embedded in its own dark matter halo. To enable a more accurate treatment we develop an effective description of small dark matter haloes taking into account th...

  15. Flavored dark matter beyond Minimal Flavor Violation

    CERN Document Server

    Agrawal, Prateek; Gemmler, Katrin

    2014-10-13

    We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a $U(3)_\\chi$ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter $\\chi$ which transforms as triplet under $U(3)_\\chi$, and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator $\\phi$ with a coupling $\\lambda$. We identify a number of "flavor-safe" scenarios for the structure of $\\lambda$ which are beyond Minimal Flavor Violation. For dark matter and collider phenomenology we focus on the well-motivated case of $b$-...

  16. Dark matter and the LHC

    CERN Document Server

    Baer, H.

    2008-01-01

    An abundance of astrophysical evidence indicates that the bulk of matter in the universe is made up of massive, electrically neutral particles that form the dark matter (DM). While the density of DM has been precisely measured, the identity of the DM particle (or particles) is a complete mystery. In fact, within the laws of physics as we know them (the Standard Model, or SM), none of the particles have the right properties to make up DM. Remarkably, many new physics extensions of the SM -- designed to address theoretical issues with the electroweak symmetry breaking sector -- require the introduction of new particles, some of which are excellent DM candidates. As the LHC era begins, there are high hopes that DM particles, along with their associated new matter states, will be produced in pp collisions. We discuss how LHC experiments, along with other DM searches, may serve to determine the identity of DM particles and elucidate the associated physics. Most of our discussion centers around theories with weak-s...

  17. Correlation between dark matter and dark radiation in string compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Allahverdi, Rouzbeh [Department of Physics and Astronomy, University of New Mexico, 1919 Lomas Blvd NE, Albuquerque, NM 87131 (United States); Cicoli, Michele [Dipartimento di Fisica ed Astronomia, Università di Bologna, Via Irnerio 46, 40126 Bologna (Italy); Dutta, Bhaskar [Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242 (United States); Sinha, Kuver, E-mail: rouzbeh@unm.edu, E-mail: mcicoli@ictp.it, E-mail: dutta@physics.tamu.edu, E-mail: kusinha@syr.edu [Department of Physics, Syracuse University, Crouse Drive, Syracuse, NY 13244 (United States)

    2014-10-01

    Reheating in string compactifications is generically driven by the decay of the lightest modulus which produces Standard Model particles, dark matter and light hidden sector degrees of freedom that behave as dark radiation. This common origin allows us to find an interesting correlation between dark matter and dark radiation. By combining present upper bounds on the effective number of neutrino species N{sub eff} with lower bounds on the reheating temperature as a function of the dark matter mass m{sub DM} from Fermi data, we obtain strong constraints on the (N{sub eff}, m{sub DM})-plane. Most of the allowed region in this plane corresponds to non-thermal scenarios with Higgsino-like dark matter. Thermal dark matter can be allowed only if N{sub eff} tends to its Standard Model value. We show that the above situation is realised in models with perturbative moduli stabilisation where the production of dark radiation is unavoidable since bulk closed string axions remain light and do not get eaten up by anomalous U(1)s.

  18. The PICASSO Dark Matter Experiment

    Science.gov (United States)

    Wichoski, Ubi

    2011-12-01

    The PICASSO experiment searches for cold dark matter through the direct detection of weakly interacting massive particles (WIMPs) via their spin-dependent interactions with fluorine at SNOLAB, Sudbury—ON, Canada since 2002. The detection principle is based on the superheated droplet technique; the detectors consist of a gel matrix with millions of liquid droplets of superheated fluorocarbon (C4F10) dispersed in it. Recently, a new setup has been built and installed in the Ladder Lab area at SNOLAB. In the present phase of the experiment the Collaboration is running 4.5-litre detector modules with approximately 85 g of active mass per module. Here, we give an overview of the experiment and discuss the progress in background mitigation, in particular background discrimination in the PICASSO detectors.

  19. CP violating scalar Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cordero-Cid, A.; Hernández-Sánchez, J. [Instituto de Física and Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, C.P. 72570 Puebla (Mexico); Keus, V. [Department of Physics and Helsinki Institute of Physics, University of Helsinki, Gustaf Hallstromin katu 2, Helsinki, FIN-00014 (Finland); School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); King, S.F. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Moretti, S. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX (United Kingdom); Rojas, D. [Instituto de Física and Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, C.P. 72570 Puebla (Mexico); Sokołowska, D. [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland)

    2016-12-05

    We study an extension of the Standard Model (SM) in which two copies of the SM scalar SU(2) doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are inert, are added to the scalar sector. We allow for CP-violation in the inert sector, where the lightest inert state is protected from decaying to SM particles through the conservation of a Z{sub 2} symmetry. The lightest neutral particle from the inert sector, which has a mixed CP-charge due to CP-violation, is hence a Dark Matter (DM) candidate. We discuss the new regions of DM relic density opened up by CP-violation, and compare our results to the CP-conserving limit and the Inert Doublet Model (IDM). We constrain the parameter space of the CP-violating model using recent results from the Large Hadron Collider (LHC) and DM direct and indirect detection experiments.

  20. Singlet-Doublet Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Timothy; /SLAC /Michigan U., MCTP; Kearney, John; Pierce, Aaron; /Michigan U., MCTP; Tucker-Smith, David; /Williams Coll.

    2012-02-15

    In light of recent data from direct detection experiments and the Large Hadron Collider, we explore models of dark matter in which an SU(2){sub L} doublet is mixed with a Standard Model singlet. We impose a thermal history. If the new particles are fermions, this model is already constrained due to null results from XENON100. We comment on remaining regions of parameter space and assess prospects for future discovery. We do the same for the model where the new particles are scalars, which at present is less constrained. Much of the remaining parameter space for both models will be probed by the next generation of direct detection experiments. For the fermion model, DeepCore may also play an important role.

  1. DEAP-3600 Dark Matter Search

    Science.gov (United States)

    Kuźniak, M.; Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bonatt, J.; Boulay, M. G.; Broerman, B.; Bueno, J. F.; Butcher, A.; Cai, B.; Chen, M.; Chouinard, R.; Cleveland, B. T.; Dering, K.; DiGioseffo, J.; Duncan, F.; Flower, T.; Ford, R.; Giampa, P.; Gorel, P.; Graham, K.; Grant, D. R.; Guliyev, E.; Hallin, A. L.; Hamstra, M.; Harvey, P.; Jillings, C. J.; Lawson, I.; Li, O.; Liimatainen, P.; Majewski, P.; McDonald, A. B.; McElroy, T.; McFarlane, K.; Monroe, J.; Muir, A.; Nantais, C.; Ng, C.; Noble, A. J.; Ouellet, C.; Palladino, K.; Pasuthip, P.; Peeters, S. J. M.; Pollmann, T.; Rau, W.; Retière, F.; Seeburn, N.; Singhrao, K.; Skensved, P.; Smith, B.; Sonley, T.; Tang, J.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Ward, M.; DEAP Collaboration

    2016-04-01

    The DEAP-3600 experiment is located 2 km underground at SNOLAB, in Sudbury, Ontario. It is a single-phase detector that searches for dark matter particle interactions within a 1000-kg fiducial mass target of liquid argon. A first generation prototype detector (DEAP-1) with a 7-kg liquid argon target mass demonstrated a high level of pulse-shape discrimination (PSD) for reducing β / γ backgrounds and helped to develop low radioactivity techniques to mitigate surface-related α backgrounds. Construction of the DEAP-3600 detector is nearly complete and commissioning is starting in 2014. The target sensitivity to spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons of 10-46cm2 will allow one order of magnitude improvement in sensitivity over current searches at 100 GeV WIMP mass. This paper presents an overview and status of the DEAP-3600 project and discusses plans for a future multi-tonne experiment, DEAP-50T.

  2. The PICASSO Dark Matter Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wichoski, Ubi [Department of Physics, Laurentian University, Sudbury, ON, P3E 2C6 (Canada); Collaboration: PICASSO Collaboration

    2011-12-16

    The PICASSO experiment searches for cold dark matter through the direct detection of weakly interacting massive particles (WIMPs) via their spin-dependent interactions with fluorine at SNOLAB, Sudbury--ON, Canada since 2002. The detection principle is based on the superheated droplet technique; the detectors consist of a gel matrix with millions of liquid droplets of superheated fluorocarbon (C4F10) dispersed in it. Recently, a new setup has been built and installed in the Ladder Lab area at SNOLAB. In the present phase of the experiment the Collaboration is running 4.5-litre detector modules with approximately 85 g of active mass per module. Here, we give an overview of the experiment and discuss the progress in background mitigation, in particular background discrimination in the PICASSO detectors.

  3. Dark matter and dark energy a challenge for modern cosmology

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Matarrese, Sabino

    2011-01-01

    This book brings together reviews from leading international authorities on the developments in the study of dark matter and dark energy, as seen from both their cosmological and particle physics side. Studying the physical and astrophysical properties of the dark components of our Universe is a crucial step towards the ultimate goal of unveiling their nature. The work developed from a doctoral school sponsored by the Italian Society of General Relativity and Gravitation. The book starts with a concise introduction to the standard cosmological model, as well as with a presentation of the theory of linear perturbations around a homogeneous and isotropic background. It covers the particle physics and cosmological aspects of dark matter and (dynamical) dark energy, including a discussion of how modified theories of gravity could provide a possible candidate for dark energy. A detailed presentation is also given of the possible ways of testing the theory in terms of cosmic microwave background, galaxy redshift su...

  4. Unbound particles in dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, Peter S.; Loeb, Abraham; Wechsler, Risa H.

    2013-06-13

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches for intergalactic supernovae.

  5. Scalar-field theory of dark matter

    CERN Document Server

    Huang, Kerson; Zhao, Xiaofei

    2013-01-01

    We develop a theory of dark matter based on a previously proposed picture, in which a complex vacuum scalar field makes the universe a superfluid, with the energy density of the superfluid giving rise to dark energy, and variations from vacuum density giving rise to dark matter. We formulate a nonlinear Klein-Gordon equation to describe the superfluid, treating galaxies as external sources. We study the response of the superfluid to the galaxies, in particular, the emergence of the dark-matter galactic halo, contortions during galaxy collisions, and the creation of vortices due to galactic rotation.

  6. Intergalactic medium heating by dark matter

    NARCIS (Netherlands)

    Ripamonti, E.; Mapelli, M.; Ferrara, A.

    2006-01-01

    Abstract: We derive the evolution of the energy deposition in the intergalactic medium (IGM) by dark matter (DM) decays/annihilations for both sterile neutrinos and light dark matter (LDM) particles. At z > 200 sterile neutrinos transfer a fraction f_abs~0.5 of their rest mass energy into the IGM;

  7. Intergalactic medium heating by dark matter

    NARCIS (Netherlands)

    Ripamonti, E.; Mapelli, M.; Ferrara, A.

    2007-01-01

    We derive the evolution of the energy deposition in the intergalactic medium (IGM) by dark matter (DM) decays/annihilations for both sterile neutrinos and light dark matter (LDM) particles. At z > 200 sterile neutrinos transfer a fraction f(abs) similar to 0.5 of their rest mass energy into the IGM;

  8. Dark Matter Searches at the LHC

    CERN Document Server

    Morii, Masahiro; The ATLAS collaboration

    2016-01-01

    The Large Hadron Collider (LHC) provides a unique opportunity for detection of man-made Dark Matter particles produced in proton-proton collisions. I will review recent results of Dark Matter searches by the ATLAS and CMS experiments, and present prospects for future measurements.

  9. Dark Matter, the MCSSM and lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Joel Giedt, Anthony Thomas, Ross Young

    2009-11-01

    Recent lattice measurements have given accurate estimates of the quark condensates in the proton. We use these results to significantly improve the dark matter predictions in benchmark models within the constrained minimal supersymmetric standard model. The predicted spin-independent cross sections are at least an order of magnitude smaller than previously suggested and our results have significant consequences for dark matter searches.

  10. Can Neutron stars constrain Dark Matter?

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos; Tinyakov, Peter

    2010-01-01

    temperature that could in principle be detected. Due to their compactness, neutron stars can acrete WIMPs efficiently even if the WIMP-to-nucleon cross section obeys the current limits from direct dark matter searches, and therefore they could constrain a wide range of dark matter candidates....

  11. Update on scalar singlet dark matter

    NARCIS (Netherlands)

    Cline, J.M.; Scott, P.; Kainulainen, K.; Weniger, C.

    2013-01-01

    One of the simplest models of dark matter is where a scalar singlet field S comprises some or all of the dark matter and interacts with the standard model through an vertical bar H vertical bar S-2(2) coupling to the Higgs boson. We update the present limits on the model from LHC searches for

  12. Status of Dark Matter Searches (Rapporteur Talk)

    OpenAIRE

    Rott, Carsten

    2017-01-01

    This article reviews the status of the field of dark matter as of summer 2017, when it was discussed at 35th International Cosmic Ray Conference (ICRC 2017) in Busan, Korea. It is the write-up of a rapporteur talk on the status of dark matter searches given at the conference.

  13. Shedding Light on Dark Matter at Colliders

    CERN Document Server

    Mitsou, Vasiliki A

    2013-01-01

    Dark matter remains one of the most puzzling mysteries in Fundamental Physics of our times. Experiments at high-energy physics colliders are expected to shed light to its nature and determine its properties. This review focuses on recent searches for dark-matter signatures at the Large Hadron Collider, also discussing related prospects in future e+e- colliders.

  14. Dark matter interaction between massive standard particles

    OpenAIRE

    Renard, Fernand M

    2018-01-01

    We propose further tests of the assumption that the mass of the heavy standard particles ($Z,W,t,...$) arises from a special coupling with dark matter. We look for effects of new interactions due to dark matter exchanges between heavy particles in several $e^+e^-$ and hadronic collision processes.

  15. SIMP dark matter and its cosmic abundances

    Science.gov (United States)

    Choi, Soo-Min; Lee, Hyun Min; Seo, Min-Seok

    2018-01-01

    We give a review on the thermal average of the annihilation cross-sections for 3 → 2 and general higher-order processes. Thermal average of higher order annihilations highly depend on the velocity of dark matter, especially, for the case with resonance poles. We show such examples for scalar dark matter in gauged Z3 models.

  16. Flooded Dark Matter and S level rise

    Energy Technology Data Exchange (ETDEWEB)

    Randall, Lisa; Scholtz, Jakub [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Unwin, James [Department of Physics, University of Illinois at Chicago,Chicago, IL 60607 (United States)

    2016-03-03

    Most dark matter models set the dark matter relic density by some interaction with Standard Model particles. Such models generally assume the existence of Standard Model particles early on, with the dark matter relic density a later consequence of those interactions. Perhaps a more compelling assumption is that dark matter is not part of the Standard Model sector and a population of dark matter too is generated at the end of inflation. This democratic assumption about initial conditions does not necessarily provide a natural value for the dark matter relic density, and furthermore superficially leads to too much entropy in the dark sector relative to ordinary matter. We address the latter issue by the late decay of heavy particles produced at early times, thereby associating the dark matter relic density with the lifetime of a long-lived state. This paper investigates what it would take for this scenario to be compatible with observations in what we call Flooded Dark Matter (FDM) models and discusses several interesting consequences. One is that dark matter can be very light and furthermore, light dark matter is in some sense the most natural scenario in FDM as it is compatible with larger couplings of the decaying particle. A related consequence is that the decay of the field with the smallest coupling and hence the longest lifetime dominates the entropy and possibly the matter content of the Universe, a principle we refer to as “Maximum Baroqueness”. We also demonstrate that the dark sector should be colder than the ordinary sector, relaxing the most stringent free-streaming constraints on light dark matter candidates. We will discuss the potential implications for the core-cusp problem in a follow-up paper. The FDM framework will furthermore have interesting baryogenesis implications. One possibility is that dark matter is like the baryon asymmetry and both are simultaneously diluted by a late entropy dump. Alternatively, FDM is compatible with an elegant

  17. Direct detection constraints on dark photon dark matter

    Directory of Open Access Journals (Sweden)

    Haipeng An

    2015-07-01

    Full Text Available Dark matter detectors built primarily to probe elastic scattering of WIMPs on nuclei are also precise probes of light, weakly coupled, particles that may be absorbed by the detector material. In this paper, we derive constraints on the minimal model of dark matter comprised of long-lived vector states V (dark photons in the 0.01–100 keV mass range. The absence of an ionization signal in direct detection experiments such as XENON10 and XENON100 places a very strong constraint on the dark photon mixing angle, down to O(10−15, assuming that dark photons comprise the dominant fraction of dark matter. This sensitivity to dark photon dark matter exceeds the indirect bounds derived from stellar energy loss considerations over a significant fraction of the available mass range. We also revisit indirect constraints from V→3γ decay and show that limits from modifications to the cosmological ionization history are comparable to the updated limits from the diffuse γ-ray flux.

  18. DarkSUSY: Computing Supersymmetric Dark Matter Properties Numerically

    Energy Technology Data Exchange (ETDEWEB)

    Gondolo, P.

    2004-07-16

    The question of the nature of the dark matter in the Universe remains one of the most outstanding unsolved problems in basic science. One of the best motivated particle physics candidates is the lightest supersymmetric particle, assumed to be the lightest neutralino - a linear combination of the supersymmetric partners of the photon, the Z boson and neutral scalar Higgs particles. Here we describe DarkSUSY, a publicly-available advanced numerical package for neutralino dark matter calculations. In DarkSUSY one can compute the neutralino density in the Universe today using precision methods which include resonances, pair production thresholds and coannihilations. Masses and mixings of supersymmetric particles can be computed within DarkSUSY or with the help of external programs such as FeynHiggs, ISASUGRA and SUSPECT. Accelerator bounds can be checked to identify viable dark matter candidates. DarkSUSY also computes a large variety of astrophysical signals from neutralino dark matter, such as direct detection in low-background counting experiments and indirect detection through antiprotons, antideuterons, gamma-rays and positrons from the Galactic halo or high-energy neutrinos from the center of the Earth or of the Sun. Here we describe the physics behind the package. A detailed manual will be provided with the computer package.

  19. Connecting light dark matter candidates with neutrinos

    OpenAIRE

    Lineros, Roberto A.

    2018-01-01

    Seminar given at UTFSM on 13/Dec/2017AbstractDark Matter is an unseen sculptor of the Universe. Its presence affects astrophysical objects at different scales. However, its nature is still unknown. Particle dark matter candidates have been proposed explaining the relic abundance, properties, and indicating search strategies. Unfortunately, the null observational results motivate the community to study other candidates and to propose new search strategies. A possible way to observe dark matte...

  20. Tiny galaxies help unravel dark matter mystery

    CERN Document Server

    O'Hanlon, Larry

    2007-01-01

    "The 70-year effort to unravel the mysteries of dark matter just got a big boost from some very puny galaxies. In the pas few years, a score of dwarf galaxies have been discovered hanging about the fringes of the Milky way. Now new measurements of the few stars int hese dwarfs reveal them to be dark mater distilleries, with upwards of 1'000 times more dark than normal matter." (3 pages)

  1. Bouncing Cosmologies with Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Yi-Fu Cai

    2016-12-01

    Full Text Available We review matter bounce scenarios where the matter content is dark matter and dark energy. These cosmologies predict a nearly scale-invariant power spectrum with a slightly red tilt for scalar perturbations and a small tensor-to-scalar ratio. Importantly, these models predict a positive running of the scalar index, contrary to the predictions of the simplest inflationary and ekpyrotic models, and hence, could potentially be falsified by future observations. We also review how bouncing cosmological space-times can arise in theories where either the Einstein equations are modified or where matter fields that violate the null energy condition are included.

  2. An introduction to particle dark matter

    CERN Document Server

    Profumo, Stefano

    2017-01-01

    What is the dark matter that fills the Universe and binds together galaxies? How was it produced? What are its interactions and particle properties?The paradigm of dark matter is one of the key developments at the interface of cosmology and elementary particle physics. It is also one of the foundations of the standard cosmological model. This book presents the state of the art in building and testing particle models for dark matter. Each chapter gives an analysis of questions, research directions, and methods within the field. More than 200 problems are included to challenge and stimulate the reader's knowledge and provide guidance in the practical implementation of the numerous 'tools of the trade' presented. Appendices summarize the basics of cosmology and particle physics needed for any quantitative understanding of particle models for dark matter.This interdisciplinary textbook is essential reading for anyone interested in the microscopic nature of dark matter as it manifests itself in particle physics ex...

  3. Gravity-mediated (or Composite) Dark Matter

    CERN Document Server

    Lee, Hyun Min; Sanz, Veronica

    2014-01-01

    Dark matter could have an electroweak origin, yet communicate with the visible sector exclusively through gravitational interactions. In a set-up addressing the hierarchy problem, we propose a new dark matter scenario where gravitational mediators, arising from the compactification of extra-dimensions, are responsible for dark matter interactions and its relic abundance in the Universe. We write an explicit example of this mechanism in warped extra-dimensions and work out its constraints. We also develop a dual picture of the model, based on a four-dimensional scenario with partial compositeness. We show that Gravity-mediated Dark Matter is equivalent to a mechanism of generating viable dark matter scenarios in a strongly-coupled, near-conformal theory, such as in composite Higgs models.

  4. Dark matter and the habitability of planets

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; Steffen, Jason H., E-mail: dhooper@fnal.gov, E-mail: jsteffen@fnal.gov [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2012-07-01

    In many models, dark matter particles can elastically scatter with nuclei in planets, causing those particles to become gravitationally bound. While the energy expected to be released through the subsequent annihilations of dark matter particles in the interior of the Earth is negligibly small (a few megawatts in the most optimistic models), larger planets that reside in regions with higher densities of slow moving dark matter could plausibly capture and annihilate dark matter at a rate high enough to maintain liquid water on their surfaces, even in the absence of additional energy from starlight or other sources. On these rare planets, it may be dark matter rather than light from a host star that makes it possible for life to emerge, evolve, and survive.

  5. arXiv Enabling Forbidden Dark Matter

    CERN Document Server

    Cline, James; Slatyer, Tracy; Xue, Wei

    2017-10-20

    The thermal relic density of dark matter is conventionally set by two-body annihilations. We point out that in many simple models, 3→2 annihilations can play an important role in determining the relic density over a broad range of model parameters. This occurs when the two-body annihilation is kinematically forbidden, but the 3→2 process is allowed; we call this scenario not-forbidden dark matter. We illustrate this mechanism for a vector-portal dark matter model, showing that for a dark matter mass of mχ∼MeV-10  GeV, 3→2 processes not only lead to the observed relic density, but also imply a self-interaction cross section that can solve the cusp/core problem. This can be accomplished while remaining consistent with stringent CMB constraints on light dark matter, and can potentially be discovered at future direct detection experiments.

  6. Scalar dark matter with type II seesaw

    Directory of Open Access Journals (Sweden)

    Arnab Dasgupta

    2014-12-01

    Full Text Available We study the possibility of generating tiny neutrino mass through a combination of type I and type II seesaw mechanism within the framework of an abelian extension of standard model. The model also provides a naturally stable dark matter candidate in terms of the lightest neutral component of a scalar doublet. We compute the relic abundance of such a dark matter candidate and also point out how the strength of type II seesaw term can affect the relic abundance of dark matter. Such a model which connects neutrino mass and dark matter abundance has the potential of being verified or ruled out in the ongoing neutrino, dark matter, as well as accelerator experiments.

  7. Origins and challenges of viral dark matter.

    Science.gov (United States)

    Krishnamurthy, Siddharth R; Wang, David

    2017-07-15

    The accurate classification of viral dark matter - metagenomic sequences that originate from viruses but do not align to any reference virus sequences - is one of the major obstacles in comprehensively defining the virome. Depending on the sample, viral dark matter can make up from anywhere between 40 and 90% of sequences. This review focuses on the specific nature of dark matter as it relates to viral sequences. We identify three factors that contribute to the existence of viral dark matter: the divergence and length of virus sequences, the limitations of alignment based classification, and limited representation of viruses in reference sequence databases. We then discuss current methods that have been developed to at least partially circumvent these limitations and thereby reduce the extent of viral dark matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Cosmological simulations of multicomponent cold dark matter.

    Science.gov (United States)

    Medvedev, Mikhail V

    2014-08-15

    The nature of dark matter is unknown. A number of dark matter candidates are quantum flavor-mixed particles but this property has never been accounted for in cosmology. Here we explore this possibility from the first principles via extensive N-body cosmological simulations and demonstrate that the two-component dark matter model agrees with observational data at all scales. Substantial reduction of substructure and flattening of density profiles in the centers of dark matter halos found in simulations can simultaneously resolve several outstanding puzzles of modern cosmology. The model shares the "why now?" fine-tuning caveat pertinent to all self-interacting models. Predictions for direct and indirect detection dark matter experiments are made.

  9. Dark stars

    DEFF Research Database (Denmark)

    Maselli, Andrea; Pnigouras, Pantelis; Nielsen, Niklas Grønlund

    2017-01-01

    Theoretical models of self-interacting dark matter represent a promising answer to a series of open problems within the so-called collisionless cold dark matter paradigm. In case of asymmetric dark matter, self-interactions might facilitate gravitational collapse and potentially lead to the forma......Theoretical models of self-interacting dark matter represent a promising answer to a series of open problems within the so-called collisionless cold dark matter paradigm. In case of asymmetric dark matter, self-interactions might facilitate gravitational collapse and potentially lead...

  10. Ratcheting Up The Search for Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Samuel Dylan [Univ. of Michigan, Ann Arbor, MI (United States)

    2014-01-01

    The last several years have included remarkable advances in two of the primary areas of fundamental particle physics: the search for dark matter and the discovery of the Higgs boson. This dissertation will highlight some contributions made on the forefront of these exciting fields. Although the circumstantial evidence supporting the dark matter hypothesis is now almost undeniably significant, indisputable direct proof is still lacking. As the direct searches for dark matter continue, we can maximize our prospects of discovery by using theoretical techniques complementary to the observational searches to rule out additional, otherwise accessible parameter space. In this dissertation, I report bounds on a wide range of dark matter theories. The models considered here cover the spectrum from the canonical case of self-conjugate dark matter with weak-scale interactions, to electrically charged dark matter, to non-annihilating, non-fermionic dark matter. These bounds are obtained from considerations of astrophysical and cosmological data, including, respectively: diffuse gamma ray photon observations; structure formation considerations, along with an explication of the novel local dark matter structure due to galactic astrophysics; and the existence of old pulsars in dark-matter-rich environments. I also consider the prospects for a model of neutrino dark matter which has been motivated by a wide set of seemingly contradictory experimental results. In addition, I include a study that provides the tools to begin solving the speculative ``inverse'' problem of extracting dark matter properties solely from hypothetical nuclear energy spectra, which we may face if dark matter is discovered with multiple direct detection experiments. In contrast to the null searches for dark matter, we have the example of the recent discovery of the Higgs boson. The Higgs boson is the first fundamental scalar particle ever observed, and precision measurements of the production and

  11. Dark Matter Freeze-out During Matter Domination

    OpenAIRE

    Hamdan, Saleh; Unwin, James

    2017-01-01

    We highlight the general scenario of dark matter freeze-out whilst the energy density of the universe is dominated by a decoupled non-relativistic species. Decoupling during matter domination changes the freeze-out dynamics, since the Hubble rate is parametrically different for matter and radiation domination. Furthermore, for successful Big Bang Nucleosynthesis the state dominating the early universe energy density must decay, this dilutes (or repopulates) the dark matter. As a result, the m...

  12. Residual non-Abelian dark matter and dark radiation

    Directory of Open Access Journals (Sweden)

    P. Ko

    2017-05-01

    Full Text Available We propose a novel particle physics model in which vector dark matter (VDM and dark radiation (DR originate from the same non-Abelian dark sector. We show an illustrating example where dark SU(3 is spontaneously broken into SU(2 subgroup by the nonzero vacuum expectation value (VEV of a complex scalar in fundamental representation of SU(3. The massless gauge bosons associated with the residual unbroken SU(2 constitute DR and help to relieve the tension in Hubble constant measurements between Planck and Hubble Space Telescope. In the meantime, massive dark gauge bosons associated with the broken generators are VDM candidates. Intrinsically, this non-Abelian VDM can interact with non-Abelian DR in the cosmic background, which results in a suppressed matter power spectrum and leads to a smaller σ8 for structure formation.

  13. A balance for dark matter bound states

    Science.gov (United States)

    Nozzoli, F.

    2017-05-01

    Massive particles with self interactions of the order of 0.2 barn/GeV are intriguing Dark Matter candidates from an astrophysical point of view. Current and past experiments for direct detection of massive Dark Matter particles are focusing to relatively low cross sections with ordinary matter, however they cannot rule out very large cross sections, σ/M > 0.01 barn/GeV, due to atmosphere and material shielding. Cosmology places a strong indirect limit for the presence of large interactions among Dark Matter and baryons in the Universe, however such a limit cannot rule out the existence of a small sub-dominant component of Dark Matter with non negligible interactions with ordinary matter in our galactic halo. Here, the possibility of the existence of bound states with ordinary matter, for a similar Dark Matter candidate with not negligible interactions, is considered. The existence of bound states, with binding energy larger than ∼ 1 meV, would offer the possibility to test in laboratory capture cross sections of the order of a barn (or larger). The signature of the detection for a mass increasing of cryogenic samples, due to the possible particle accumulation, would allow the investigation of these Dark Matter candidates with mass up to the GUT scale. A proof of concept for a possible detection set-up and the evaluation of some noise sources are described.

  14. Planckian Interacting Massive Particles as Dark Matter

    DEFF Research Database (Denmark)

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S.

    2016-01-01

    . In this case the WIMP miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian Interacting Massive Particle......, we show that the most natural mass larger than $0.01\\,\\textrm{M}_p$ is already ruled out by the absence of tensor modes in the CMB. This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the KK graviton mode...... as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark...

  15. Higgs portal dark matter at the LHC

    Science.gov (United States)

    Westhoff, Susanne

    2017-11-01

    The hypothesis of dark matter interacting with the standard model uniquely via the Higgs portal is severely challenged by experiments. However, if dark matter is a fermion, the Higgs-portal interaction implies the presence of mediators, which can change the phenomenology significantly. This contribution discusses the impact of weakly-interacting mediators on the dark-matter relic abundance, direct detection, and collider searches. At the LHC, a typical signature of Higgs-portal fermion dark matter features soft leptons and missing energy, similarly to gaugino production in models with supersymmetry. We suggest to re-interpret existing gaugino searches in the context of Higgs-portal models and to extend future searches to the broader class of dark sectors with weakly-interacting fermions.

  16. Results from the DarkSide-50 Dark Matter Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Alden [Univ. of California, Los Angeles, CA (United States)

    2016-01-01

    While there is tremendous astrophysical and cosmological evidence for dark matter, its precise nature is one of the most significant open questions in modern physics. Weakly interacting massive particles (WIMPs) are a particularly compelling class of dark matter candidates with masses of the order 100 GeV and couplings to ordinary matter at the weak scale. Direct detection experiments are aiming to observe the low energy (<100 keV) scattering of dark matter off normal matter. With the liquid noble technology leading the way in WIMP sensitivity, no conclusive signals have been observed yet. The DarkSide experiment is looking for WIMP dark matter using a liquid argon target in a dual-phase time projection chamber located deep underground at Gran Sasso National Laboratory (LNGS) in Italy. Currently filled with argon obtained from underground sources, which is greatly reduced in radioactive 39Ar, DarkSide-50 recently made the most sensitive measurement of the 39Ar activity in underground argon and used it to set the strongest WIMP dark matter limit using liquid argon to date. This work describes the full chain of analysis used to produce the recent dark matter limit, from reconstruction of raw data to evaluation of the final exclusion curve. The DarkSide- 50 apparatus is described in detail, followed by discussion of the low level reconstruction algorithms. The algorithms are then used to arrive at three broad analysis results: The electroluminescence signals in DarkSide-50 are used to perform a precision measurement of ii longitudinal electron diffusion in liquid argon. A search is performed on the underground argon data to identify the delayed coincidence signature of 85Kr decays to the 85mRb state, a crucial ingredient in the measurement of the 39Ar activity in the underground argon. Finally, a full description of the WIMP search is given, including development of cuts, efficiencies, energy scale, and exclusion

  17. Condensation of galactic cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Visinelli, Luca [Nordita, KTH Royal Institute of Technology and Stockholm University,SE-106 91 Stockholm (Sweden)

    2016-07-07

    We consider the steady-state regime describing the density profile of a dark matter halo, if dark matter is treated as a Bose-Einstein condensate. We first solve the fluid equation for “canonical” cold dark matter, obtaining a class of density profiles which includes the Navarro-Frenk-White profile, and which diverge at the halo core. We then solve numerically the equation obtained when an additional “quantum pressure” term is included in the computation of the density profile. The solution to this latter case is finite at the halo core, possibly avoiding the “cuspy halo problem” present in some cold dark matter theories. Within the model proposed, we predict the mass of the cold dark matter particle to be of the order of M{sub χ}c{sup 2}≈10{sup −24} eV, which is of the same order of magnitude as that predicted in ultra-light scalar cold dark matter models. Finally, we derive the differential equation describing perturbations in the density and the pressure of the dark matter fluid.

  18. Condensation of galactic cold dark matter

    Science.gov (United States)

    Visinelli, Luca

    2016-07-01

    We consider the steady-state regime describing the density profile of a dark matter halo, if dark matter is treated as a Bose-Einstein condensate. We first solve the fluid equation for ``canonical'' cold dark matter, obtaining a class of density profiles which includes the Navarro-Frenk-White profile, and which diverge at the halo core. We then solve numerically the equation obtained when an additional ``quantum pressure'' term is included in the computation of the density profile. The solution to this latter case is finite at the halo core, possibly avoiding the ``cuspy halo problem'' present in some cold dark matter theories. Within the model proposed, we predict the mass of the cold dark matter particle to be of the order of Mχ c2 ≈ 10-24 eV, which is of the same order of magnitude as that predicted in ultra-light scalar cold dark matter models. Finally, we derive the differential equation describing perturbations in the density and the pressure of the dark matter fluid.

  19. Dark matter haloes: a multistream view

    Science.gov (United States)

    Ramachandra, Nesar S.; Shandarin, Sergei F.

    2017-09-01

    Mysterious dark matter constitutes about 85 per cent of all masses in the Universe. Clustering of dark matter plays a dominant role in the formation of all observed structures on scales from a fraction to a few hundreds of Mega-parsecs. Galaxies play a role of lights illuminating these structures so they can be observed. The observations in the last several decades have unveiled opulent geometry of these structures currently known as the cosmic web. Haloes are the highest concentrations of dark matter and host luminous galaxies. Currently the most accurate modelling of dark matter haloes is achieved in cosmological N-body simulations. Identifying the haloes from the distribution of particles in N-body simulations is one of the problems attracting both considerable interest and efforts. We propose a novel framework for detecting potential dark matter haloes using the field unique for dark matter-multistream field. The multistream field emerges at the non-linear stage of the growth of perturbations because the dark matter is collisionless. Counting the number of velocity streams in gravitational collapses supplements our knowledge of spatial clustering. We assume that the virialized haloes have convex boundaries. Closed and convex regions of the multistream field are hence isolated by imposing a positivity condition on all three eigenvalues of the Hessian estimated on the smoothed multistream field. In a single-scale analysis of high multistream field resolution and low softening length, the halo substructures with local multistream maxima are isolated as individual halo sites.

  20. Brief History of Ultra-light Scalar Dark Matter Models

    Directory of Open Access Journals (Sweden)

    Lee Jae-Weon

    2018-01-01

    dark matter, BEC dark matter, wave dark matter, or ultra-light axion. In this model ultra-light scalar dark matter particles with mass m = O(10-22eV condense in a single Bose-Einstein condensate state and behave collectively like a classical wave. Galactic dark matter halos can be described as a self-gravitating coherent scalar field configuration called boson stars. At the scale larger than galaxies the dark matter acts like cold dark matter, while below the scale quantum pressure from the uncertainty principle suppresses the smaller structure formation so that it can resolve the small scale crisis of the conventional cold dark matter model.

  1. Phenomenological studies of dark matter

    Science.gov (United States)

    Gomez Ramirez, Miguel Alejandro

    It is common knowledge that eighty percent of the matter in our Universe consists of a mysterious substance called "dark matter'' (DM) which has only been detected through its gravitational interactions. The "Standard Model'' (SM) of particle physics, despite its extremely impressive successes, does not have a good candidate particle to fit the DM requirements. If DM is made up of a particle which interacts weakly and it has a mass on the same scale as other SM particles, it should be detectable. In this work, two different phenomenological studies of DM are performed. The first possibility is a weakly-interacting particle being detected when a high density of particles and enough energy is present. These conditions are met by objects called "active galactic nuclei'' (AGN). AGN are the extremely violent central regions of very large galaxies, and in these regions highly-energetic "jets'' of particles are accelerated. It was thought that the possibility the jet particles interact with the surrounding DM producing photons with very distinctive characteristics. A comparison of predicted values with current data is made and it is shown that the prospects for detecting DM in this way are promising in the near future. In the second approach instead of working with complicated fully developed models, only the minimal content needed to account for DM is added to the SM. The strength of these "simplified'' models is that they encompass the interactions and parameter spaces of well-motivated models such as supersymmetry. A simplified model of fermionic DM candidate which couples exclusively to the right handed top quark via a color-charged scalar is considered (motivated by EW symmetry breaking). It is shown that this model can account for the totality of DM and the chances of detection in the near future are very good.

  2. B decay anomalies and dark matter from vectorlike confinement

    Science.gov (United States)

    Cline, James M.

    2018-01-01

    Lepton flavor universality violating B →K ℓℓ and K*ℓℓ decays tentatively observed by LHCb can be explained by leptoquark exchange. We explore a simple model for the B anomalies with a composite leptoquark from new strong dynamics at the TeV scale, a confining SU(NH C) hypercolor interaction. The new matter fields, fundamentals under SU (NH C) , are heavy vectorlike fermions Ψ , S , and an inert scalar doublet ϕ . Ψ is colored under QCD while S is neutral, and the hyperbaryon SN is an asymmetric dark matter candidate. The model is tightly constrained by meson-antimeson oscillations, lepton flavor violation, and LHC searches for resonant production of the exotic bound states. The dark matter may be detectable through its magnetic dipole moment. If mS is sufficiently small, composite leptoquarks and heavy lepton partners can be pair-produced at an observable level at LHC.

  3. Quantum Field Theory of Interacting Dark Matter/Dark Energy: Dark Monodromies

    CERN Document Server

    D'Amico, Guido; Kaloper, Nemanja

    2016-11-28

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory. Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations.

  4. Charged composite scalar dark matter

    Science.gov (United States)

    Balkin, Reuven; Ruhdorfer, Maximilian; Salvioni, Ennio; Weiler, Andreas

    2017-11-01

    We consider a composite model where both the Higgs and a complex scalar χ, which is the dark matter (DM) candidate, arise as light pseudo Nambu-Goldstone bosons (pNGBs) from a strongly coupled sector with TeV scale confinement. The global symmetry structure is SO(7)/SO(6), and the DM is charged under an exact U(1)DM ⊂ SO(6) that ensures its stability. Depending on whether the χ shift symmetry is respected or broken by the coupling of the top quark to the strong sector, the DM can be much lighter than the Higgs or have a weak-scale mass. Here we focus primarily on the latter possibility. We introduce the lowest-lying composite resonances and impose calculability of the scalar potential via generalized Weinberg sum rules. Compared to previous analyses of pNGB DM, the computation of the relic density is improved by fully accounting for the effects of the fermionic top partners. This plays a crucial role in relaxing the tension with the current DM direct detection constraints. The spectrum of resonances contains exotic top partners charged under the U(1)DM, whose LHC phenomenology is analyzed. We identify a region of parameters with f = 1.4 TeV and 200 GeV ≲ m χ ≲ 400 GeV that satisfies all existing bounds. This DM candidate will be tested by XENON1T in the near future.

  5. Very Degenerate Higgsino Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Eung Jin [Korea Institute for Advanced Study,Seoul 130-722 (Korea, Republic of); Jung, Sunghoon [SLAC National Accelerator Laboratory,Menlo Park, CA 94025 (United States); Kavli Institute for Theoretical Physics,Santa Barbara, CA 93106 (United States); Park, Jong-Chul [Department of Physics, Chungnam National University,Daejeon 34134 (Korea, Republic of)

    2017-01-03

    We present a study of the Very Degenerate Higgsino Dark Matter (DM), whose mass splitting between the lightest neutral and charged components is O(1) MeV, much smaller than radiative splitting of 355 MeV. The scenario is realized in the minimal supersymmetric standard model by small gaugino mixings. In contrast to the pure Higgsino DM with the radiative splitting only, various observable signatures with distinct features are induced. First of all, the very small mass splitting makes (a) sizable Sommerfeld enhancement and Ramsauer-Townsend (RT) suppression relevant to ∼1 TeV Higgsino DM, and (b) Sommerfeld-Ramsauer-Townsend effect saturate at lower velocities v/c≲10{sup −3}. As a result, annihilation signals can be large enough to be observed from the galactic center and/or dwarf galaxies, while the relative signal sizes can vary depending on the locations of Sommerfeld peaks and RT dips. In addition, at collider experiments, stable chargino signatures can be searched for to probe the model in the future. DM direct detection signals, however, depend on the Wino mass; even no detectable signals can be induced if the Wino is heavier than about 10 TeV.

  6. Searches for Dark Matter at the LHC

    CERN Document Server

    Sciolla, Gabriella; The ATLAS collaboration

    2016-01-01

    Dark Matter can be produced in large amounts in pp collisions at the Large Hadron Collider (LHC) assuming it interacts non-gravitationally with Standard Model particles. While Dark Matter escapes direct detection at the LHC, it leaves a distinct signature of significant missing transverse momentum. In this talk, recent results from the ATLAS and CMS detectors will be presented, based on events with large missing transverse momentum accompanied by a variety of other objects such as jets, photons, heavy-flavor quarks, weak gauge bosons, or Higgs bosons. These measurements are complementary to those obtained in direct and indirect Dark Matter detection experiments.

  7. The cosmic cocktail three parts dark matter

    CERN Document Server

    Freese, Katherine

    2014-01-01

    The ordinary atoms that make up the known universe-from our bodies and the air we breathe to the planets and stars-constitute only 5 percent of all matter and energy in the cosmos. The rest is known as dark matter and dark energy, because their precise identities are unknown. The Cosmic Cocktail is the inside story of the epic quest to solve one of the most compelling enigmas of modern science - what is the universe made of? - told by one of today's foremost pioneers in the study of dark matter. Blending cutting-edge science with her own behind-the-scenes insights as a leading researcher in the

  8. Gamma ray constraints on decaying dark matter

    DEFF Research Database (Denmark)

    Cirelli, M.; Moulin, E.; Panci, P.

    2012-01-01

    We derive new bounds on decaying dark matter from the gamma ray measurements of (i) the isotropic residual (extragalactic) background by Fermi and (ii) the Fornax galaxy cluster by H.E.S.S. We find that those from (i) are among the most stringent constraints currently available, for a large range...... of dark matter masses and a variety of decay modes, excluding half-lives up to similar to 10(26) to few 10(27) seconds. In particular, they rule out the interpretation in terms of decaying dark matter of the e(+/-) spectral features in PAMELA, Fermi and H.E.S.S., unless very conservative choices...

  9. Dark Matter searches with the ATLAS Detector

    CERN Document Server

    Ippolito, Valerio; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic Dark Matter component in the Universe is inferred from the observation of its gravitational interaction. If Dark Matter interacts weakly with the Standard Model particles it may be produced at the Large Hadron Collider (LHC), escaping detection and leaving large missing transverse momentum as its signature. New results from the Dark Matter search programme of the ATLAS experiment are presented, based on LHC proton-proton collision data collected at a center-of-mass energy of 13 TeV.

  10. Searches for Dark Matter in ATLAS

    CERN Document Server

    Alpigiani, Cristiano; The ATLAS collaboration

    2017-01-01

    Although the existence of Dark Matter (DM) is well established by many astronomical measurements, its nature still remains one of the unsolved puzzles of particles physics. The unprecedented energy reached by the Large Hadron Collider (LHC) at CERN has allowed exploration of previously unaccessible kinematic regimes in the search for new phenomena. An overview of most recent searches for dark matter with the ATLAS detector at LHC is presented and the interpretation of the results in terms of effective field theory and simplified models is discussed. The exclusion limits set by the ATLAS searches are compared to the constraints from direct dark matter detection experiments.

  11. Dark Matter Searches with the ATLAS detector

    CERN Document Server

    Elliot, Alison; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as its signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  12. Dark Matter Searches with the ATLAS Detector

    CERN Document Server

    Elliot, Alison; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature.  The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  13. Dark matter searches with the ATLAS detector

    CERN Document Server

    Whalen, Kathleen; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as its signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches using the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  14. Updated galactic radio constraints on Dark Matter

    Science.gov (United States)

    Cirelli, Marco; Taoso, Marco

    2016-07-01

    We perform a detailed analysis of the synchrotron signals produced by dark matter annihilations and decays. We consider different set-ups for the propagation of electrons and positrons, the galactic magnetic field and dark matter properties. We then confront these signals with radio and microwave maps, including Planck measurements, from a frequency of 22 MHz up to 70 GHz. We derive two sets of constraints: conservative and progressive, the latter based on a modeling of the astrophysical emission. Radio and microwave constraints are complementary to those obtained with other indirect detection methods, especially for dark matter annihilating into leptonic channels.

  15. Constraints on hadronically decaying dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Mathias [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Tran, David [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Minnesota Univ., Minneapolis, MN (United States). School of Physics and Astronomy

    2012-05-15

    We present general constraints on dark matter stability in hadronic decay channels derived from measurements of cosmic-ray antiprotons.We analyze various hadronic decay modes in a model-independent manner by examining the lowest-order decays allowed by gauge and Lorentz invariance for scalar and fermionic dark matter particles and present the corresponding lower bounds on the partial decay lifetimes in those channels. We also investigate the complementarity between hadronic and gamma-ray constraints derived from searches for monochromatic lines in the sky, which can be produced at the quantum level if the dark matter decays into quark-antiquark pairs at leading order.

  16. Dark Matter searches with the ATLAS Detector

    CERN Document Server

    Ippolito, Valerio; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  17. Updated galactic radio constraints on Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cirelli, Marco [Laboratoire de Physique Théorique et Hautes Energies (LPTHE),UMR 7589 CNRS & UPMC, 4 Place Jussieu, Paris, F-75252 (France); Taoso, Marco [Instituto de Física Teórica (IFT) UAM/CSIC,calle Nicolás Cabrera 13-15, Cantoblanco, Madrid, 28049 (Spain)

    2016-07-25

    We perform a detailed analysis of the synchrotron signals produced by dark matter annihilations and decays. We consider different set-ups for the propagation of electrons and positrons, the galactic magnetic field and dark matter properties. We then confront these signals with radio and microwave maps, including PLANCK measurements, from a frequency of 22 MHz up to 70 GHz. We derive two sets of constraints: conservative and progressive, the latter based on a modeling of the astrophysical emission. Radio and microwave constraints are complementary to those obtained with other indirect detection methods, especially for dark matter annihilating into leptonic channels.

  18. Dark Matter from new Technicolor Theories

    DEFF Research Database (Denmark)

    Bjarke Gudnason, Sven; Kouvaris, Christoforos; Sannino, Francesco

    2006-01-01

    We investigate dark matter candidates emerging in recently proposed technicolor theories. We determine the relic density of the lightest, neutral, stable technibaryon having imposed weak thermal equilibrium conditions and overall electric neutrality of the Universe. In addition we consider...... sphaleron processes that violate baryon, lepton and technibaryon number. Our analysis is performed in the case of a first order electroweak phase transition as well as a second order one. We argue that, in both cases, the new technibaryon contributes to the dark matter in the Universe. Finally we examine...... the problem of the constraints on these types of dark matter components from earth based experiments....

  19. Models of Supersymmetry for Dark Matter

    Directory of Open Access Journals (Sweden)

    Muñoz Carlos

    2017-01-01

    Full Text Available A brief review of supersymmetric models and their candidates for dark matter is carried out. The neutralino is a WIMP candidate in the MSSM where R-parity is conserved, but this model has the μ problem. There are natural solutions to this problem that necessarily introduce new structure beyond the MSSM, including new candidates for dark matter. In particular, in an extension of the NMSSM, the right-handed sneutrino can be used for this job. In R-parity violating models such as the μvSSM, the gravitino can be the dark matter, and could be detected by its decay products in gamma-ray experiments.

  20. Quintessence with quadratic coupling to dark matter

    CERN Document Server

    Boehmer, Christian G; Chan, Nyein; Lazkoz, Ruth; Maartens, Roy

    2009-01-01

    We introduce a new form of coupling between dark energy and dark matter that is quadratic in their energy densities. Then we investigate the background dynamics when dark energy is in the form of exponential quintessence. The three types of quadratic coupling all admit late-time accelerating critical points, but these are not scaling solutions. We also show that two types of coupling allow for a suitable matter era at early times and acceleration at late times, while the third type of coupling does not admit a suitable matter era.

  1. Hidden photons in connection to dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Sarah; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Goodsell, Mark D. [CPhT, Ecole Polytechnique, Palaiseau (France)

    2013-06-15

    Light extra U(1) gauge bosons, so called hidden photons, which reside in a hidden sector have attracted much attention since they are a well motivated feature of many scenarios beyond the Standard Model and furthermore could mediate the interaction with hidden sector dark matter.We review limits on hidden photons from past electron beam dump experiments including two new limits from such experiments at KEK and Orsay. In addition, we study the possibility of having dark matter in the hidden sector. A simple toy model and different supersymmetric realisations are shown to provide viable dark matter candidates in the hidden sector that are in agreement with recent direct detection limits.

  2. Dark Matter Searches with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Elliot Alison

    2017-01-01

    Full Text Available The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as its signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  3. New Efforts to Identify Dark Matter

    Science.gov (United States)

    Kohler, Susanna

    2016-09-01

    Could the dark matter in our universe be warm instead of cold? Recent observations have placed new constraints on the warm dark matter model.Whats the Deal with Cold/Warm/Hot Dark Matter?An example of cold dark matter: MACHOs, massive objects like black holes that are hiding in the halo of our galaxy. [Alain r]Nobody knows what dark matter is made of, but we have a few theories. The objects or particles that could make up dark matter fall into three broad categories cold, warm, and hot dark matter based on something called their free streaming length, or how far they moved due to random motions in the early universe.Neutrinos are an example of hot dark matter: very light particles with free streaming lengths much longer than the size of a typical galaxy. Cold dark matter could consist of objects like black holes or brown dwarfs, or particles like WIMPs all of which are very heavy and therefore have free streaming lengths much shorter than the size of a galaxy.Warm dark matter is whats in between: middle-mass particles with free streaming lengths roughly the size of a galaxy. There arent any known particles that fit this description, but there are theorized particles such as sterile neutrinos or gravitinos that do.Cumulative mass functions at z = 6 for different values of the warm dark matter particle mass mX. The shaded boxs on the left correspond to the observed number density of faint galaxies within different confidence levels. [Menci et al. 2016]Smoothing Out the UniverseThe widely favored model is lambda-CDM, in which cold dark matter makes up the missing matter in our universe. This model nicely explains much of what we observe, but it still has a few problems. The biggest issue with lambda-CDM is that it predicts that there should be many more small, dwarf galaxies than we observe.While this could just mean that we havent yet managed to see all the existing, faint dwarf galaxies, we should also consider alternative models the warm dark matter model chief

  4. Is Self-Interacting Dark Matter Undergoing Dark Fusion?

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Samuel D.

    2017-11-02

    We suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than v^n ~ [10^{-(2-3)}]^n, where n=1,2 depends on local dark sector chemistry. The size of the dark-sector interaction cross sections must be sigma ~ 0.1-1 barn, moderately larger than for Standard Model deuteron fusion, indicating a dark nuclear scale Lambda ~ O(100 MeV). Dark fusion firmly predicts constant sigma v below the characteristic velocities of galaxy clusters. Observations of the inner structure of galaxy groups with velocity dispersion of several hundred kilometer per second, of which a handful have been identified, could differentiate dark fusion from a dark photon model.

  5. Effective description of dark matter self-interactions in small dark matter haloes★

    Science.gov (United States)

    Kummer, Janis; Kahlhoefer, Felix; Schmidt-Hoberg, Kai

    2018-02-01

    Self-interacting dark matter may have striking astrophysical signatures, such as observable offsets between galaxies and dark matter in merging galaxy clusters. Numerical N-body simulations used to predict such observables typically treat the galaxies as collisionless test particles, a questionable assumption given that each galaxy is embedded in its own dark matter halo. To enable a more accurate treatment we develop an effective description of small dark matter haloes taking into account the two major effects due to dark matter self-scatterings: deceleration and evaporation. We point out that self-scatterings can have a sizeable impact on the trajectories of galaxies, diminishing the separation between galaxies and dark matter in merging clusters. This effect depends sensitively on the underlying particle physics, in particular the angular dependence of the self-scattering cross section, and cannot be predicted from the momentum transfer cross section alone.

  6. Dark-matter QCD-axion searches.

    Science.gov (United States)

    Rosenberg, Leslie J

    2015-10-06

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments

  7. Direct Detection of Galactic Halo Dark Matter

    National Research Council Canada - National Science Library

    B. R. Oppenheimer; N. C. Hambly; A. P. Digby; S. T. Hodgkin; D. Saumon

    2001-01-01

    .... Recent observations indirectly suggest that as much as half of this "dark matter" may be in the form of old, very cool white dwarfs, the remnants of an ancient population of stars as old as the galaxy itself...

  8. Galactic Dark Matter and Terrestrial Periodicities

    National Research Council Canada - National Science Library

    Clube, S

    1998-01-01

    .... The Earth may thus be regarded as a probe of the disc environment; and to account for the periodicity, the Galactic disc is required to have a substantial dark matter component ( approx .15 molar mass/cu pc...

  9. The Search of Axion Dark Matter

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    The axion provides a solution to the strong CP problem and is a cold dark matter candidate. I will review the limits on the axion from particle physics, stellar evolution and cosmology. The various constraints suggest that the axion mass is in the micro-eV to milli-eV range. In this range, axions contribute significantly to the energy density of the universe in the form of cold dark matter. Dark matter axions can be searched for on Earth by stimulating their conversion to microwave photons in an electromagnetic cavity permeated by a strong magnetic field. Using this technique, limits on the local halo density have been placed by the Axion Dark Matter experiment at Lawrence Livermore National Laboratory. I will give a status report on ADMX and its upgrade presently under construction. I will also discuss the results from solar axion searches (Tokyo helioscope, CAST) and laser experiments (PVLAS).

  10. Higgs Portal Inflation with Fermionic Dark Matter

    Directory of Open Access Journals (Sweden)

    Aravind Aditya

    2018-01-01

    Full Text Available We discuss the inflationary model presented in [1], involving a gauge singlet scalar field and fermionic dark matter added to the standard model. Either the Higgs or the singlet scalar could play the role of the inflaton, and slow roll is realized through its non-minimal coupling to gravity. The effective scalar potential is stabilized by the mixing between the scalars as well as the coupling with the fermionic field. Mixing of the two scalars also provides a portal to dark matter. Constraints on the model come from perturbativity and stability, collider searches and dark matter constraints and impose a constraining relationship on the masses of dark matter and scalar fields. Inflationary predictions are generically consistent with current Planck data.

  11. Higgs Portal Inflation with Fermionic Dark Matter

    Science.gov (United States)

    Aravind, Aditya; Xiao, Minglei; Yu, Jiang-Hao

    2018-01-01

    We discuss the inflationary model presented in [1], involving a gauge singlet scalar field and fermionic dark matter added to the standard model. Either the Higgs or the singlet scalar could play the role of the inflaton, and slow roll is realized through its non-minimal coupling to gravity. The effective scalar potential is stabilized by the mixing between the scalars as well as the coupling with the fermionic field. Mixing of the two scalars also provides a portal to dark matter. Constraints on the model come from perturbativity and stability, collider searches and dark matter constraints and impose a constraining relationship on the masses of dark matter and scalar fields. Inflationary predictions are generically consistent with current Planck data.

  12. Dark Matter searches with the ATLAS Detector

    CERN Document Server

    Suchek, Stanislav; The ATLAS collaboration

    2017-01-01

    Dark Matter composes almost 25% of our Universe, but its identity is still unknown which makes it a large challenge for current fundamental physics. A lot of approaches are used to discover the identity of Dark Matter and one of them, collider searches, are discussed in this talk. The latest results on Dark Matter search at ATLAS using 2015 and 2016 data are presented. Results from searches for new physics in the events with final states containing large missing transverse energy and a single photon or Higgs boson are shown. Higgs to invisible and dijet searches are used in sense of complementarity to constrain properties of Dark Matter. Results and perspectives for all these searches are presented.

  13. General Relativity eliminates Dark Energy, Dark Matter and Universal Expansion

    OpenAIRE

    Bartlett, Rodney

    2018-01-01

    This letter was rejected by International Knowledge Press because "we are unable to conclude that these findings would warrant publication in this journal." The letter is suggesting that dark energy, dark matter and universal expansion are intimately related. However, they aren't viewed as revolutions in cosmology which are essential to a complete understanding of the modern universe. They are instead viewed as properties which need to be added to the cosmos when Einstein...

  14. Dark matter and dark energy from quark bag model

    Energy Technology Data Exchange (ETDEWEB)

    Brilenkov, Maxim [Department of Theoretical Physics, Odessa National University, Dvoryanskaya st. 2, Odessa 65082 (Ukraine); Eingorn, Maxim [Physics Department, North Carolina Central University, Fayetteville st. 1801, Durham, North Carolina 27707 (United States); Jenkovszky, Laszlo [Bogolyubov Institute for Theoretical Physics, Kiev 03680 (Ukraine); Zhuk, Alexander, E-mail: maxim.brilenkov@gmail.com, E-mail: maxim.eingorn@gmail.com, E-mail: jenk@bitp.kiev.ua, E-mail: ai.zhuk2@gmail.com [Astronomical Observatory, Odessa National University, Dvoryanskaya st. 2, Odessa 65082 (Ukraine)

    2013-08-01

    We calculate the present expansion of our Universe endowed with relict colored objects — quarks and gluons — that survived hadronization either as isolated islands of quark-gluon ''nuggets'' or spread uniformly in the Universe. In the first scenario, the QNs can play the role of dark matter. In the second scenario, we demonstrate that uniform colored objects can play the role of dark energy providing the late-time accelerating expansion of the Universe.

  15. Multicomponent Dark Matter in Radiative Seesaw Models

    Directory of Open Access Journals (Sweden)

    Mayumi Aoki

    2017-11-01

    Full Text Available We discuss radiative seesaw models, in which an exact Z2×Z2′ symmetry is imposed. Due to the exact Z2×Z2′ symmetry, neutrino masses are generated at a two-loop level and at least two extra stable electrically neutral particles are predicted. We consider two models: one has a multi-component dark matter system and the other one has a dark radiation in addition to a dark matter. In the multi-component dark matter system, non-standard dark matter annihilation processes exist. We find that they play important roles in determining the relic abundance and also responsible for the monochromatic neutrino lines resulting from the dark matter annihilation process. In the model with the dark radiation, the structure of the Yukawa coupling is considerably constrained and gives an interesting relationship among cosmology, lepton flavor violating decay of the charged leptons and the decay of the inert Higgs bosons.

  16. Cold dark matter from the hidden sector

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica

    2012-02-15

    Weakly interacting slim particles (WISPs) such as hidden photons (HP) and axion-like particles (ALPs) have been proposed as cold dark matter candidates. They might be produced non-thermally via the misalignment mechanism, similarly to cold axions. In this talk we review the main processes of thermalisation of HP and we compute the parameter space that may survive as cold dark matter population until today. Our findings are quite encouraging for experimental searches in the laboratory in the near future.

  17. Structure Formation with Generalized Dark Matter

    OpenAIRE

    Hu, Wayne

    1998-01-01

    The next generation of cosmic microwave background (CMB) experiments, galaxy surveys, and high-redshift observations can potentially determine the nature of the dark matter observationally. With this in mind, we introduce a phenomenological model for a generalized dark matter (GDM) component and discuss its effect on large-scale structure and CMB anisotropies. Specifying the gravitational influence of the otherwise non-interacting GDM requires not merely a model for its equation of state but ...

  18. Decaying Dark Matter at the LHC

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    We discuss a few scenarios with decaying Dark Matter and their prospect for detection at the LHC. First we present a simple minimal scenario, where Dark Matter is produced from the decay of a heavier colored or EW charged scalar via the FIMP or SuperWIMP mechanisms, then we discuss supersymmetric scenarios with RPV and gravitino DM, in particular a scenario allowing for simultaneous generation of DM and baryogenesis at a (relatively) low scale.

  19. Top-flavoured dark matter in Dark Minimal Flavour Violation

    Science.gov (United States)

    Blanke, Monika; Kast, Simon

    2017-05-01

    We study a simplified model of top-flavoured dark matter in the framework of Dark Minimal Flavour Violation. In this setup the coupling of the dark matter flavour triplet to right-handed up-type quarks constitutes the only new source of flavour and CP violation. The parameter space of the model is restricted by LHC searches with missing energy final states, by neutral D meson mixing data, by the observed dark matter relic abundance, and by the absence of signal in direct detection experiments. We consider all of these constraints in turn, studying their implications for the allowed parameter space. Imposing the mass limits and coupling benchmarks from collider searches, we then conduct a combined analysis of all the other constraints, revealing their non-trivial interplay. Especially interesting is the combination of direct detection and relic abundance constraints, having a severe impact on the structure of the dark matter coupling matrix. We point out that future bounds from upcoming direct detection experiments, such as XENON1T, XENONnT, LUX-ZEPLIN, and DARWIN, will exclude a large part of the parameter space and push the DM mass to higher values.

  20. Fluid Mechanics Explains Cosmology, Dark Matter, Dark Energy, and Life

    CERN Document Server

    Gibson, Carl H

    2012-01-01

    Observations of the interstellar medium by the Herschel, Planck etc. infrared satellites throw doubt on standard {\\Lambda}CDMHC cosmological processes to form gravitational structures. According to the Hydro-Gravitational-Dynamics (HGD) cosmology of Gibson (1996), and the quasar microlensing observations of Schild (1996), the dark matter of galaxies consists of Proto-Globular-star-Cluster (PGC) clumps of Earth-mass primordial gas planets in metastable equilibrium since PGCs began star production at 0.3 Myr by planet mergers. Dark energy and the accelerating expansion of the universe inferred from SuperNovae Ia are systematic dimming errors produced as frozen gas dark matter planets evaporate to form stars. Collisionless cold dark matter that clumps and hierarchically clusters does not exist. Clumps of PGCs began diffusion from the Milky Way Proto-Galaxy upon freezing at 14 Myr to give the Magellanic Clouds and the faint dwarf galaxies of the 10^22 m diameter baryonic dark matter Galaxy halo. The first stars p...

  1. Astronomical Constraints on Quantum Cold Dark Matter

    Science.gov (United States)

    Spivey, Shane; Musielak, Z.; Fry, J.

    2012-01-01

    A model of quantum (`fuzzy') cold dark matter that accounts for both the halo core problem and the missing dwarf galaxies problem, which plague the usual cold dark matter paradigm, is developed. The model requires that a cold dark matter particle has a mass so small that its only allowed physical description is a quantum wave function. Each such particle in a galactic halo is bound to a gravitational potential that is created by luminous matter and by the halo itself, and the resulting wave function is described by a Schrödinger equation. To solve this equation on a galactic scale, we impose astronomical constraints that involve several density profiles used to fit data from simulations of dark matter galactic halos. The solutions to the Schrödinger equation are quantum waves which resemble the density profiles acquired from simulations, and they are used to determine the mass of the cold dark matter particle. The effects of adding certain types of baryonic matter to the halo, such as a dwarf elliptical galaxy or a supermassive black hole, are also discussed.

  2. Unified origin for baryonic visible matter and antibaryonic dark matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Morrissey, David E; Sigurdson, Kris; Tulin, Sean

    2010-11-19

    We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.

  3. Asymmetric excitation of surface plasmons by dark mode coupling

    KAUST Repository

    Zhang, X.

    2016-02-19

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  4. Model-independent approach for dark matter phenomenology ...

    Indian Academy of Sciences (India)

    Abstract. We have studied the phenomenology of dark matter at the ILC and cosmic positron experiments based on model-independent approach. We have found a strong correlation between dark matter signatures at the ILC and those in the indirect detec- tion experiments of dark matter. Once the dark matter is discovered ...

  5. Model-independent approach for dark matter phenomenology ...

    Indian Academy of Sciences (India)

    We have studied the phenomenology of dark matter at the ILC and cosmic positron experiments based on model-independent approach. We have found a strong correlation between dark matter signatures at the ILC and those in the indirect detection experiments of dark matter. Once the dark matter is discovered in the ...

  6. Pseudo-Goldstone modes in isospin-asymmetric nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, T.D. [Univ. of Washington, Seattle, WA (United States); Broniowski, W. [H. Niewodniczanski Institute of Nuclear Physics, Cracow (Poland)

    1995-01-01

    The authors analyze the chiral limit in dense isospin-asymmetric nuclear matter. It is shown that the pseudo-Goldstone modes in this system are qualitatively different from the case of isospin-symmetric matter.

  7. Pseudo-Goldstone modes in isospin-asymmetric nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, T.D. [Washington Univ., Seattle, WA (United States). Dept. of Physics; Broniowski, W. [Institute of Nuclear Physics, Cracow (Poland)

    1994-12-01

    We analyze the chiral limit in dense isoptin-asymmetric nuclear matter. It is shown that the pseudo-Goldstone modes in this system are qualitatively different from the case of isospin-symmetric matter. (author). 20 refs.

  8. Limits on self-interacting dark matter from neutron stars.

    Science.gov (United States)

    Kouvaris, Chris

    2012-05-11

    We impose new severe constraints on the self-interactions of fermionic asymmetric dark matter based on observations of nearby old neutron stars. Weakly interacting massive particle (WIMP) self-interactions mediated by Yukawa-type interactions can lower significantly the number of WIMPs necessary for gravitational collapse of the WIMP population accumulated in a neutron star. Even nearby neutron stars located at regions of low dark matter density can accrete a sufficient number of WIMPs that can potentially collapse, form a mini black hole, and destroy the host star. Based on this, we derive constraints on the WIMP self-interactions which in some cases are by several orders of magnitude stricter than the ones from the bullet cluster.

  9. Effective theory for electroweak doublet dark matter

    Science.gov (United States)

    Dedes, A.; Karamitros, D.; Spanos, V. C.

    2016-11-01

    We perform a detailed study of an effective field theory which includes the standard model particle content extended by a pair of Weyl fermionic SU(2) doublets with opposite hypercharges. A discrete symmetry guarantees that a linear combination of the doublet components is stable and can act as a candidate particle for dark matter. The dark sector fermions interact with the Higgs and gauge bosons through renormalizable d =4 operators, and nonrenormalizable d =5 operators that appear after integrating out extra degrees of freedom above the TeV scale. We study collider, cosmological and astrophysical probes for this effective theory of dark matter. We find that a weakly interacting dark matter particle with a mass nearby the electroweak scale, and thus observable at the LHC, is consistent with collider and astrophysical data only when fairly large magnetic dipole moment transition operators with the gauge bosons exist, together with moderate Yukawa interactions.

  10. The Pursuit of Dark Matter at Collider - An Overview

    OpenAIRE

    Penning, Bjoern

    2017-01-01

    Dark matter is one of the main puzzles in fundamental physics and the goal of a diverse, multi-pronged research program. Underground and astrophysical searches search for dark matter particles in the cosmos, either by interacting directly or by searching for dark matter annihilation. Particle colliders, in contrast, might produce dark matter in the laboratory and are able to probe all basic interactions. They are sensitive to low dark matter masses, provide complementary information at higher...

  11. DAMA annual modulation and mirror Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cerulli, R.; Cappella, F. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Villar, P. [Universidad de Zaragoza, Laboratorio de Fisica Nuclear y Astroparticulas, Saragossa (Spain); Laboratorio Subterraneo de Canfranc, Canfranc Estacion, Huesca (Spain); Bernabei, R.; Belli, P. [Universita di Roma ' ' Tor Vergata' ' , Dipartimento di Fisica, Rome (Italy); INFN ' ' Tor Vergata' ' , Rome (Italy); Incicchitti, A. [Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); INFN, Rome (Italy); Addazi, A.; Berezhiani, Z. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Universita di L' Aquila, Dipartimento di Scienze Fisiche e Chimiche, Coppito, AQ (Italy)

    2017-02-15

    The DAMA experiment using ultra low background NaI(Tl) crystal scintillators has measured an annual modulation effect in the keV region which satisfies all the peculiarities of an effect induced by Dark Matter particles. In this paper we analyze this annual modulation effect in terms of mirror Dark Matter, an exact duplicate of ordinary matter from parallel hidden sector, which chemical composition is dominated by mirror helium while it can also contain significant fractions of heavier elements as Carbon and Oxygen. Dark mirror atoms are considered to interact with the target nuclei in the detector via Rutherford-like scattering induced by kinetic mixing between mirror and ordinary photons, both being massless. In the present analysis we consider various possible scenarios for the mirror matter chemical composition. For all the scenarios, the relevant ranges for the kinetic mixing parameter have been obtained taking also into account various existing uncertainties in nuclear and particle physics quantities. (orig.)

  12. Working Group Report: Dark Matter Complementarity (Dark Matter in the Coming Decade: Complementary Paths to Discovery and Beyond)

    Energy Technology Data Exchange (ETDEWEB)

    Arrenberg, Sebastian; et al.,

    2013-10-31

    In this Report we discuss the four complementary searches for the identity of dark matter: direct detection experiments that look for dark matter interacting in the lab, indirect detection experiments that connect lab signals to dark matter in our own and other galaxies, collider experiments that elucidate the particle properties of dark matter, and astrophysical probes sensitive to non-gravitational interactions of dark matter. The complementarity among the different dark matter searches is discussed qualitatively and illustrated quantitatively in several theoretical scenarios. Our primary conclusion is that the diversity of possible dark matter candidates requires a balanced program based on all four of those approaches.

  13. Unified picture for Dirac neutrinos, dark matter, dark energy and matter-antimatter asymmetry

    OpenAIRE

    Gu, Pei-Hong

    2007-01-01

    We propose a unified scenario to generate the masses of Dirac neutrinos and cold dark matter at the TeV scale, understand the origin of dark energy and explain the matter-antimatter asymmetry of the universe. This model can lead to significant impact on the Higgs searches at LHC.

  14. Light dark matter versus astrophysical constraints

    Energy Technology Data Exchange (ETDEWEB)

    Cline, James M., E-mail: jcline@physics.mcgill.ca [Physics Department, McGill University, Montreal, QC, H3A2T8 (Canada); Frey, Andrew R., E-mail: a.frey@uwinnipeg.ca [Department of Physics and Winnipeg Institute for Theoretical Physics, University of Winnipeg, Winnipeg, MB, R3B2E9 (Canada)

    2012-01-05

    Hints of direct dark matter detection coming from the DAMA, CoGeNT experiments point toward light dark matter with isospin-violating and possibly inelastic couplings. However an array of astrophysical constraints are rapidly closing the window on light dark matter. We point out that if the relic density is determined by annihilation into invisible states, these constraints can be evaded. As an example we present a model of quasi-Dirac dark matter, interacting via two U(1) gauge bosons, one of which couples to baryon number and the other which kinetically mixes with the photon. Annihilation is primarily into 'dark neutrinos' that do not mix with the SM, but which could provide an extra component of dark radiation. The model could soon be tested by several experiments searching for such light gauge bosons, and we predict that both could be detected. The model also requires a fourth generation of quarks, whose existence might increase the production cross section of Higgs bosons at the Tevatron and LHC.

  15. Dark matter in the Higgs triplet model

    Science.gov (United States)

    Bahrami, Sahar; Frank, Mariana

    2015-04-01

    The inability to predict neutrino masses and the existence of dark matter are two essential shortcomings of the Standard Model. The Higgs triplet model provides an elegant resolution of neutrino masses via the seesaw mechanism. We show here that introducing vectorlike leptons in the model also provides a resolution to the problem of dark matter. We investigate constraints, including the invisible decay width of the Higgs boson and the electroweak precision variables, and impose restrictions on model parameters. We analyze the effect of the relic density constraint on the mass and Yukawa coupling of dark matter. We also calculate the cross sections for indirect and direct dark matter detection and show our model predictions for the neutrino and muon fluxes from the Sun, and the restrictions they impose on the parameter space. With the addition of vectorlike leptons, the model is completely consistent with dark matter constraints, in addition to improving electroweak precision and doubly charged mass restrictions, which are rendered consistent with present experimental data.

  16. Dark Matter searches at the LHC

    CERN Document Server

    Calfayan, P; The ATLAS collaboration

    2014-01-01

    Multiple cosmological observations indicate the existence of Dark Matter, which may be a weakly interacting massive particle (WIMP). In this case, Dark Matter could be produced in proton-proton collisions at the LHC, but would escape the detector without interacting. Final states consisting in pair-produced Dark Matter candidates would however be balanced by radiated particles from colliding partons. ATLAS and CMS experiments can therefore search for Dark Matter signal in events involving large amount of missing transverse energy in the detector. Analyses have been carried out in the context of the mono-jet, mono-photon, mono-W and mono-Z signatures, including both hadronic and leptonic W and Z decays. No evidence of physics beyond the Standard Model expectation has been observed, and the pair production of Dark Matter particles has been interpreted in the context of an effective field theory and simplified models. Limits on the suppression scale of the effective theory have been translated into bounds on the...

  17. Planckian Interacting Massive Particles as Dark Matter.

    Science.gov (United States)

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S

    2016-03-11

    The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01M_{p} is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.

  18. Hot News for Cold Dark Matter

    Science.gov (United States)

    2003-06-01

    Astronomers have used NASA's Chandra X-ray Observatory to make the most detailed probe yet of the distribution of dark matter in a massive cluster of galaxies. Their results indicate that about 80 percent of the matter in the universe consists of cold dark matter - mysterious subatomic particles left over from the dense early universe. Chandra observed a cluster of galaxies called Abell 2029 located about a billion light years from Earth. The cluster is composed of thousands of galaxies enveloped in a gigantic cloud of hot gas, and an amount of dark matter equivalent to more than a hundred trillion Suns. At the center of this cluster is an enormous, elliptically shaped galaxy that is thought to have been formed from the mergers of many smaller galaxies. The X-ray data show that the density of dark matter increases smoothly all the way into the central galaxy of the cluster. This discovery agrees with the predictions of cold dark matter models, and is contrary to other dark matter models that predict a leveling off of the amount of dark matter in the center of the cluster. "I was really surprised at how well we could measure the dark matter so deep into the core of a rich cluster," said Aaron Lewis of the University of California, Irvine, lead author of a paper describing the results in a recent issue of The Astrophysical Journal. "We still have very little idea as to the exact nature of these particles, but our results show that they must behave like cold dark matter." Cold dark matter gets its name from the assumption that the dark matter particles were moving slowly when galaxies and galaxy clusters began to form. Dark matter particles interact with each other and "normal" matter only through gravity. The astronomers' success in placing such tight constraints on the dark matter distribution was partly due to Chandra's ability to make a high resolution intensity and temperature map, and partly due to their choice of a target. The cluster and central galaxy are

  19. Probing the Dark Sector with Dark Matter Bound States.

    Science.gov (United States)

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-15

    A model of the dark sector where O(few  GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  20. Two Higgs doublet dark matter portal

    Science.gov (United States)

    Bell, Nicole F.; Busoni, Giorgio; Sanderson, Isaac W.

    2018-01-01

    We study a fermionic dark matter model in which the interaction of the dark and visible sectors is mediated by Higgs portal type couplings. Specifically, we consider the mixing of a dark sector scalar with the scalars of a Two Higgs Doublet Model extension of the Standard Model. Given that scalar exchange will result in a spin-independent dark matter-nucleon scattering cross section, such a model is potentially subject to stringent direct detection constraints. Moreover, the addition of new charged scalars introduce non-trivial flavour constraints. Nonetheless, this model allows more freedom than a standard Higgs portal scenario involving a single Higgs doublet, and much of the interesting parameter space is not well approximated by a Simplified Model with a single scalar mediator. We perform a detailed parameter scan to determine the mass and coupling parameters which satisfy direct detection, flavour, precision electroweak, stability, and perturbativity constraints, while still producing the correct relic density through thermal freezeout.

  1. Dark matter and dark forces from a supersymmetric hidden sector

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, S.; Goodsell, M.D.; Ringwald, A.

    2011-09-15

    We show that supersymmetric ''Dark Force'' models with gravity mediation are viable. To this end, we analyse a simple supersymmetric hidden sector model that interacts with the visible sector via kinetic mixing of a light Abelian gauge boson with the hypercharge. We include all induced interactions with the visible sector such as neutralino mass mixing and the Higgs portal term. We perform a detailed parameter space scan comparing the produced dark matter relic abundance and direct detection cross-sections to current experiments. (orig.)

  2. Elementary Goldstone Higgs Boson and Dark Matter

    DEFF Research Database (Denmark)

    Alanne, Tommi; Gertov, Helene; Sannino, Francesco

    2015-01-01

    We investigate a perturbative extension of the Standard Model featuring elementary pseudo-Goldstone Higgs and dark matter particles. These are two of the five Goldstone bosons parametrising the SU(4)/Sp(4) coset space. They acquire masses, and therefore become pseudo-Goldstone bosons, due...... of the theory, the quantum corrections are precisely calculable. The remaining pseudo-Goldstone boson is identified with the dark matter candidate because it is neutral with respect to the Standard Model and stable. By a direct comparison with the Large Hadron Collider experiments, the model is found...... to be phenomenologically viable. Furthermore the dark matter particle leads to the observed thermal relic density while respecting the most stringent current experimental constraints....

  3. Cold Positrons from Decaying Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Boubekeur, Lotfi [Universitate de Valencia (Spain); Dodelson, Scott [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Vives, Oscar [Universitate de Valencia (Spain)

    2012-11-01

    Many models of dark matter contain more than one new particle beyond those in the Standard Model. Often heavier particles decay into the lightest dark matter particle as the Universe evolves. Here we explore the possibilities that arise if one of the products in a (Heavy Particle) $\\rightarrow$ (Dark Matter) decay is a positron, and the lifetime is shorter than the age of the Universe. The positrons cool down by scattering off the cosmic microwave background and eventually annihilate when they fall into Galactic potential wells. The resulting 511 keV flux not only places constraints on this class of models but might even be consistent with that observed by the INTEGRAL satellite.

  4. Accretion of dark matter by stars

    CERN Document Server

    Brito, Richard; Okawa, Hirotada

    2015-01-01

    Searches for dark matter imprints are one of the most active areas of current research. We focus here on light fields with mass $m_B$, such as axions and axion-like candidates. Using perturbative techniques and full-blown nonlinear Numerical Relativity methods, we show that (i) dark matter can pile up in the center of stars, leading to configurations and geometries oscillating with frequency which is a multiple of f=$2.5 10^{14}$ $m_B c^2$/eV Hz. These configurations are stable throughout most of the parameter space, and arise out of credible mechanisms for dark-matter capture. Stars with bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories. We also show that (ii) collapse of the host star to a black hole is avoided by efficient gravitational cooling mechanisms.

  5. Superheavy dark matter through Higgs portal operators

    Science.gov (United States)

    Kolb, Edward W.; Long, Andrew J.

    2017-11-01

    The WIMPzilla hypothesis is that the dark matter is a super-weakly-interacting and superheavy particle. Conventionally, the WIMPzilla abundance is set by gravitational particle production during or at the end of inflation. In this study we allow the WIMPzilla to interact directly with Standard Model fields through the Higgs portal, and we calculate the thermal production (freeze-in) of WIMPzilla dark matter from the annihilation of Higgs boson pairs in the plasma. The two particle-physics model parameters are the WIMPzilla mass and the Higgs-WIMPzilla coupling. The two cosmological parameters are the reheating temperature and the expansion rate of the universe at the end of inflation. We delineate the regions of parameter space where either gravitational or thermal production is dominant, and within those regions we identify the parameters that predict the observed dark matter relic abundance. Allowing for thermal production opens up the parameter space, even for Planck-suppressed Higgs-WIMPzilla interactions.

  6. Small but mighty: Dark matter substructures

    Science.gov (United States)

    Cyr-Racine, Francis-Yan; Keeton, Charles; Moustakas, Leonidas

    2018-01-01

    The fundamental properties of dark matter, such as its mass, self-interaction, and coupling to other particles, can have a major impact on the evolution of cosmological density fluctuations on small length scales. Strong gravitational lenses have long been recognized as powerful tools to study the dark matter distribution on these small subgalactic scales. In this talk, we discuss how gravitationally lensed quasars and extended lensed arcs could be used to probe non minimal dark matter models. We comment on the possibilities enabled by precise astrometry, deep imaging, and time delays to extract information about mass substructures inside lens galaxies. To this end, we introduce a new lensing statistics that allows for a robust diagnostic of the presence of perturbations caused by substructures. We determine which properties of mass substructures are most readily constrained by lensing data and forecast the constraining power of current and future observations.

  7. Seeded hot dark matter models with inflation

    Science.gov (United States)

    Gratsias, John; Scherrer, Robert J.; Steigman, Gary; Villumsen, Jens V.

    1993-01-01

    We examine massive neutrino (hot dark matter) models for large-scale structure in which the density perturbations are produced by randomly distributed relic seeds and by inflation. Power spectra, streaming velocities, and the Sachs-Wolfe quadrupole fluctuation are derived for this model. We find that the pure seeded hot dark matter model without inflation produces Sachs-Wolfe fluctuations far smaller than those seen by COBE. With the addition of inflationary perturbations, fluctuations consistent with COBE can be produced. The COBE results set the normalization of the inflationary component, which determines the large-scale (about 50/h Mpc) streaming velocities. The normalization of the seed power spectrum is a free parameter, which can be adjusted to obtain the desired fluctuations on small scales. The power spectra produced are very similar to those seen in mixed hot and cold dark matter models.

  8. Accretion of dark matter by stars.

    Science.gov (United States)

    Brito, Richard; Cardoso, Vitor; Okawa, Hirotada

    2015-09-11

    Searches for dark matter imprints are one of the most active areas of current research. We focus here on light fields with mass m_{B}, such as axions and axionlike candidates. Using perturbative techniques and full-blown nonlinear numerical relativity methods, we show the following. (i) Dark matter can pile up in the center of stars, leading to configurations and geometries oscillating with a frequency that is a multiple of f=2.5×10^{14}(m_{B}c^{2}/eV)  Hz. These configurations are stable throughout most of the parameter space, and arise out of credible mechanisms for dark-matter capture. Stars with bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories. We also show that (ii) collapse of the host star to a black hole is avoided by efficient gravitational cooling mechanisms.

  9. A possible signature of annihilating dark matter

    Science.gov (United States)

    Chan, Man Ho

    2018-02-01

    In this article, we report a new signature of dark matter annihilation based on the radio continuum data of NGC 1569 galaxy detected in the past few decades. After eliminating the thermal contribution of the radio signal, an abrupt change in the spectral index is shown in the radio spectrum. Previously, this signature was interpreted as an evidence of convective outflow of cosmic ray. However, we show that the cosmic ray contribution is not enough to account for the observed radio flux. We then discover that if dark matter annihilates via the 4-e channel with the thermal relic cross-section, the electrons and positrons produced would emit a strong radio flux which can provide an excellent agreement with the observed signature. The best-fitting dark matter mass is 25 GeV.

  10. Minimal Left-Right Symmetric Dark Matter.

    Science.gov (United States)

    Heeck, Julian; Patra, Sudhanwa

    2015-09-18

    We show that left-right symmetric models can easily accommodate stable TeV-scale dark matter particles without the need for an ad hoc stabilizing symmetry. The stability of a newly introduced multiplet either arises accidentally as in the minimal dark matter framework or comes courtesy of the remaining unbroken Z_{2} subgroup of B-L. Only one new parameter is introduced: the mass of the new multiplet. As minimal examples, we study left-right fermion triplets and quintuplets and show that they can form viable two-component dark matter. This approach is, in particular, valid for SU(2)×SU(2)×U(1) models that explain the recent diboson excess at ATLAS in terms of a new charged gauge boson of mass 2 TeV.

  11. Cosmological constraints on variable warm dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Hao, E-mail: haowei@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Chen, Zu-Cheng; Liu, Jing [School of Physics, Beijing Institute of Technology, Beijing 100081 (China)

    2013-03-26

    Although ΛCDM model is very successful in many aspects, it has been seriously challenged. Recently, warm dark matter (WDM) remarkably rose as an alternative of cold dark matter (CDM). In the literature, many attempts have been made to determine the equation-of-state parameter (EoS) of WDM. However, in most of the previous works, it is usually assumed that the EoS of dark matter (DM) is constant (and usually the EoS of dark energy is also constant). Obviously, this assumption is fairly restrictive. It is more natural to assume a variable EoS for WDM (and dark energy). In the present work, we try to constrain the EoS of variable WDM with the current cosmological observations. We find that the best fits indicate WDM, while CDM is still consistent with the current observational data. However, ΛCDM is still better than WDM models from the viewpoint of goodness-of-fit. So, in order to distinguish WDM and CDM, the further observations on the small/galactic scale are required. On the other hand, in this work we also consider WDM whose EoS is constant, while the role of dark energy is played by various models. We find that the cosmological constraint on the constant EoS of WDM is fairly robust.

  12. EDITORIAL: Focus on Dark Matter and Particle Physics

    Science.gov (United States)

    Aprile, Elena; Profumo, Stefano

    2009-10-01

    The quest for the nature of dark matter has reached a historical point in time, with several different and complementary experiments on the verge of conclusively exploring large portions of the parameter space of the most theoretically compelling particle dark matter models. This focus issue on dark matter and particle physics brings together a broad selection of invited articles from the leading experimental and theoretical groups in the field. The leitmotif of the collection is the need for a multi-faceted search strategy that includes complementary experimental and theoretical techniques with the common goal of a sound understanding of the fundamental particle physical nature of dark matter. These include theoretical modelling, high-energy colliders and direct and indirect searches. We are confident that the works collected here present the state of the art of this rapidly changing field and will be of interest to both experts in the topic of dark matter as well as to those new to this exciting field. Focus on Dark Matter and Particle Physics Contents DARK MATTER AND ASTROPHYSICS Scintillator-based detectors for dark matter searches I S K Kim, H J Kim and Y D Kim Cosmology: small-scale issues Joel R Primack Big Bang nucleosynthesis and particle dark matter Karsten Jedamzik and Maxim Pospelov Particle models and the small-scale structure of dark matter Torsten Bringmann DARK MATTER AND COLLIDERS Dark matter in the MSSM R C Cotta, J S Gainer, J L Hewett and T G Rizzo The role of an e+e- linear collider in the study of cosmic dark matter M Battaglia Collider, direct and indirect detection of supersymmetric dark matter Howard Baer, Eun-Kyung Park and Xerxes Tata INDIRECT PARTICLE DARK MATTER SEARCHES:EXPERIMENTS PAMELA and indirect dark matter searches M Boezio et al An indirect search for dark matter using antideuterons: the GAPS experiment C J Hailey Perspectives for indirect dark matter search with AMS-2 using cosmic-ray electrons and positrons B Beischer, P von

  13. Brief History of Ultra-light Scalar Dark Matter Models

    Science.gov (United States)

    Lee, Jae-Weon

    2018-01-01

    This is a review on the brief history of the scalar field dark matter model also known as fuzzy dark matter, BEC dark matter, wave dark matter, or ultra-light axion. In this model ultra-light scalar dark matter particles with mass m = O(10-22)eV condense in a single Bose-Einstein condensate state and behave collectively like a classical wave. Galactic dark matter halos can be described as a self-gravitating coherent scalar field configuration called boson stars. At the scale larger than galaxies the dark matter acts like cold dark matter, while below the scale quantum pressure from the uncertainty principle suppresses the smaller structure formation so that it can resolve the small scale crisis of the conventional cold dark matter model.

  14. Imaging dark matter with the Pamela experiment

    CERN Document Server

    Boezio, M

    2001-01-01

    The search for dark matter is a fundamental issue for astroparticle physics. A satellite-borne experiment ('Pamela') is under construction and will study cosmic rays whilst executing a polar orbit at an altitude of 690 km. The experiment comprises a transition radiation detector; a magnetic spectrometer, incorporating silicon tracking and surrounded by an anti-coincidence shield; an electromagnetic imaging calorimeter and a time-of-flight trigger system. This combination of detectors is particularly apt for the study of the antiproton component of cosmic rays from 100 MeV up to a few 100 GeV and will provide important new information for dark matter searches.

  15. SUSY searches at LHC and Dark Matter

    CERN Document Server

    Barberio, E; The ATLAS collaboration

    2009-01-01

    Supersymmetric models with R-parity conservation provide an excellent can- didate for Dark Matter, the Lightest Supersymmetric Particle, which will be searched for with the ATLAS detector at the Large Hadron Collider (LHC). Based on recent simulation studies, we present the discovery potential for Su- persymmetry (SUSY) with the first few fb−1 of ATLAS data, as well as studies of the techniques used to reconstruct decays of SUSY particles at the LHC. We further discuss how such measurements can be used to constrain the underly- ing Supersymmetric model and hence to extract information about the nature of Dark Matter.

  16. WIMP Dark Matter interpretation of Higgs results

    CERN Document Server

    Wang, Renjie; The ATLAS collaboration

    2017-01-01

    The results from searching for dark matter either directly from invisible decay of Higgs bosons or in association with a Higgs boson at the LHC are presented. No significant excess is found beyond the Standard Model prediction, and upper limits are set on the production cross section times branching fraction using data collected in proton-proton collisions at center-of-mass energies of 13 TeV by the ATLAS and CMS detectors. An interpreted upper limit is presented on the allowed dark matter-nucleon scattering cross section.

  17. Universal properties of dark matter halos.

    Science.gov (United States)

    Boyarsky, A; Neronov, A; Ruchayskiy, O; Tkachev, I

    2010-05-14

    We discuss the universal relation between density and size of observed dark matter halos that was recently shown to hold on a wide range of scales, from dwarf galaxies to galaxy clusters. Predictions of cold dark matter (ΛCDM) N-body simulations are consistent with this relation. We demonstrate that this property of ΛCDM can be understood analytically in the secondary infall model. Qualitative understanding given by this model provides a new way to predict which deviations from ΛCDM or large-scale modifications of gravity can affect universal behavior and, therefore, to constrain them observationally.

  18. Massive black holes from dissipative dark matter

    Science.gov (United States)

    D'Amico, Guido; Panci, Paolo; Lupi, Alessandro; Bovino, Stefano; Silk, Joe

    2018-01-01

    We show that a subdominant component of dissipative dark matter resembling the Standard Model can form many intermediate-mass black hole seeds during the first structure formation epoch. We also observe that, in the presence of this matter sector, the black holes will grow at a much faster rate with respect to the ordinary case. These facts can explain the observed abundance of supermassive black holes feeding high-redshift quasars. The scenario will have interesting observational consequences for dark substructures and gravitational wave production.

  19. Axino Dark Matter and the CMSSM

    CERN Document Server

    Covi, Laura; Ruiz de Austri, Roberto; Small, Michael; Covi, Laura; Roszkowski, Leszek; Austri, Roberto Ruiz de; Small, Michael

    2004-01-01

    If the axino is the lightest superpartner and satisfies cosmological bounds, including a preferred range of the relic abundance of cold dark matter, then the usual stringent constraints on the parameter space of the CMSSM become greatly relaxed. The lightest superpartner of the usual CMSSM spectrum will appear to be stable in collider experiments but will not necessarily obey relic abundance constraints. It may be either neutral (lightest neutralino) or charged (typically a stau). With the axino as cold dark matter, large regions of the CMSSM, often corresponding to heavy superpartners, become allowed, depending on the axino mass and the reheating temperature.

  20. Matter and dark matter from false vacuum decay

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Schmitz, K.; Vertongen, G.

    2010-08-15

    We study tachyonic preheating associated with the spontaneous breaking of B-L, the difference of baryon and lepton number. Reheating occurs through the decays of heavy Majorana neutrinos which are produced during preheating and in decays of the Higgs particles of B-L breaking. Baryogenesis is an interplay of nonthermal and thermal leptogenesis, accompanied by thermally produced gravitino dark matter. The proposed mechanism simultaneously explains the generation of matter and dark matter, thereby relating the absolute neutrino mass scale to the gravitino mass. (orig.)

  1. Search for pseudoscalar cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    van Bibber, K.; Stoeffl, W.; LLNL Collaborators

    1992-05-29

    AH dynamical evidence points to the conclusion that the predominant form of matter in the universe is in a non-luminous form. Furthermore, large scale deviations from uniform Hubble flow, and the recent COBE reports of inhomogeneities in the cosmic microwave background strongly suggest that we live in an exactly closed universe. If this is true, then ordinary baryonic matter could only be a minority component (10% at most) of the missing mass, and that what constitutes the majority of the dark matter must involve new physics. The axion is one of very few well motivated candidates which may comprise the dark matter. Additionally it is a `cold` dark-matter candidate which is preferred by the COBE data. We propose to construct and operate an experiment to search for axions which may constitute the dark matter of our own galaxy. As proposed by Sikivie, dark-matter axions may be detected by their stimulated conversion into monochromatic microwave photons in a tunable high-Q cavity inside a strong magnetic field. Our ability to mount an experiment quickly and take data within one year is due to a confluence of three factors. The first is the availability of a compact high field superconducting magnet and a local industrial partner, Wang NMR, who can make a very thermally efficient and economical cryostat for it. The second is an ongoing joint venture with the Institute for Nuclear Research of the Russian Academy of Sciences to do R&D on metalized precision-formed ceramic microwave cavities for the axion search, and INR has commited to providing all the microwave cavity arrays for this experiment, should this proposal be approved. The third is a commitment of very substantial startup capital monies from MIT for all of the state-of-the-art ultra-low noise microwave electronics, to one of our outstanding young collaborators who is joining their faculty.

  2. Deformed Matter Bounce with Dark Energy Epoch

    CERN Document Server

    Odintsov, S D

    2016-01-01

    We extend the Loop Quantum Cosmology matter bounce scenario in order to include a dark energy era, which ends abruptly at a Rip singularity where the scale factor and the Hubble rate diverge. In the "deformed matter bounce scenario", the Universe is contracting from an initial non-causal matter dominated era until it reaches a minimal radius. After that it expands in a decelerating way, until at late times, where it expands in an accelerating way, thus the model is described by a dark energy era that follows the matter dominated era. Depending on the choice of the free parameters of the model, the dark energy era is quintessential like which follows the matter domination era, and eventually it crosses the phantom divide line and becomes phantom. At the end of the dark energy era, a Rip singularity exists, where the scale factor and Hubble rate diverge, however the physical system cannot reach the singularity, since the effective energy density and pressure become complex. This indicates two things, firstly th...

  3. Dark Matter and Dark Energy: Breaking the Continuum Hypothesis?

    Directory of Open Access Journals (Sweden)

    Casuso Romate E.

    2006-07-01

    Full Text Available In the present paper an attempt is made to develop a fractional integral and differential, deterministic and projective method based on the assumption of the essential discontinuity observed in real systems (note that more than 99% of the volume occupied by an atom in real space has no matter. The differential treatment assumes continuous behaviour (in the form of averaging over the recent past of the system to predict the future time evolution, such that the real history of the system is "forgotten". So it is easy to understand how problems such as unpredictability (chaos arise for many dynamical systems, as well as the great difficulty to connecting Quantum Mechanics (a probabilistic differential theory with General Relativity (a deterministic differential theory. I focus here on showing how the present theory can throw light on crucial astrophysical problems like dark matter and dark energy.

  4. Dark Matter and Dark Energy: Breaking the Continuum Hypothesis?

    Directory of Open Access Journals (Sweden)

    Casuso Romate E.

    2006-07-01

    Full Text Available In the present paper an attempt is made to develop a fractional integral and differential, deterministic and projective method based on the assumption of the essential discontinuity observed in real systems (note that more than 99 % of the volume occupied by an atom in real space has no matter. The differential treatment assumes continuous behaviour (in the form of averaging over the recent past of the system to predict the future time evolution, such that the real history of the system is “forgotten”. So it is easy to understand how problems such as unpredictability (chaos arise for many dynamical systems, as well as the great difficulty to connecting Quantum Mechanics (a probabilistic differential theory with General Relativity (a deterministic differential theory. I focus here on showing how the present theory can throw light on crucial astrophysical problems like dark matter and dark energy.

  5. Dark Energy and Dark Matter from Emergent Gravity Picture

    Science.gov (United States)

    Seok Yang, Hyun

    2018-01-01

    We suggest that dark energy and dark matter may be a cosmic uroboros of quantum gravity due to the coherent vacuum structure of spacetime. We apply the emergent gravity to a large N matrix model by considering the vacuum in the noncommutative (NC) Coulomb branch satisfying the Heisenberg algebra. We observe that UV fluctuations in the NC Coulomb branch are always paired with IR fluctuations and these UV/IR fluctuations can be extended to macroscopic scales. We show that space-like fluctuations give rise to the repulsive gravitational force while time-like fluctuations generate the attractive gravitational force. When considering the fact that the fluctuations are random in nature and we are living in the (3+1)-dimensional spacetime, the ratio of the repulsive and attractive components will end in ¾ : ¼= 75 : 25 and this ratio curiously coincides with the dark composition of our current Universe. If one includes ordinary matters which act as the attractive gravitational force, the emergent gravity may explain the dark sector of our Universe more precisely.

  6. Dark Energy and Dark Matter from Emergent Gravity Picture

    Directory of Open Access Journals (Sweden)

    Seok Yang Hyun

    2018-01-01

    Full Text Available We suggest that dark energy and dark matter may be a cosmic uroboros of quantum gravity due to the coherent vacuum structure of spacetime. We apply the emergent gravity to a large N matrix model by considering the vacuum in the noncommutative (NC Coulomb branch satisfying the Heisenberg algebra. We observe that UV fluctuations in the NC Coulomb branch are always paired with IR fluctuations and these UV/IR fluctuations can be extended to macroscopic scales. We show that space-like fluctuations give rise to the repulsive gravitational force while time-like fluctuations generate the attractive gravitational force. When considering the fact that the fluctuations are random in nature and we are living in the (3+1-dimensional spacetime, the ratio of the repulsive and attractive components will end in ¾ : ¼= 75 : 25 and this ratio curiously coincides with the dark composition of our current Universe. If one includes ordinary matters which act as the attractive gravitational force, the emergent gravity may explain the dark sector of our Universe more precisely.

  7. Why we need to see the dark matter to understand the dark energy

    OpenAIRE

    Kunz, Martin

    2007-01-01

    The cosmological concordance model contains two separate constituents which interact only gravitationally with themselves and everything else, the dark matter and the dark energy. In the standard dark energy models, the dark matter makes up some 20% of the total energy budget today, while the dark energy is responsible for about 75%. Here we show that these numbers are only robust for specific dark energy models and that in general we cannot measure the abundance of the dark constituents sepa...

  8. Brief History of Ultra-light Scalar Dark Matter Models

    OpenAIRE

    Lee Jae-Weon

    2018-01-01

    This is a review on the brief history of the scalar field dark matter model also known as fuzzy dark matter, BEC dark matter, wave dark matter, or ultra-light axion. In this model ultra-light scalar dark matter particles with mass m = O(10-22)eV condense in a single Bose-Einstein condensate state and behave collectively like a classical wave. Galactic dark matter halos can be described as a self-gravitating coherent scalar field configuration called boson stars. At the scale larger than ga...

  9. Brief History of Ultra-light Scalar Dark Matter Models

    OpenAIRE

    Lee Jae-Weon

    2018-01-01

    This is a review on the brief history of the scalar field dark matter model also known as fuzzy dark matter, BEC dark matter, wave dark matter, or ultra-light axion. In this model ultra-light scalar dark matter particles with mass $m = O(10^{-22})eV$ condense in a single Bose-Einstein condensate state and behave collectively like a classical wave. Galactic dark matter halos can be described as a self-gravitating coherent scalar field configuration called boson stars. At the scale larger than ...

  10. Brief History of Ultra-light Scalar Dark Matter Models

    OpenAIRE

    Lee, Jae-Weon

    2017-01-01

    This is an ongoing review on the brief history of the scalar field dark matter model also known as fuzzy dark matter, BEC dark matter, wave dark matter, or ultra-light axion. In this model ultra-light scalar dark matter particles with mass $m = O(10^{-22})eV$ condense in a single Bose-Einstein condensate state and behave collectively like a classical wave. Galactic dark matter halos can be described as a self-gravitating coherent scalar field configuration called boson stars. At the scale lar...

  11. Microlensing searches of dark matter

    CERN Document Server

    Roulet, Esteban

    2000-01-01

    The evolution of the observational results of microlensing towards the LMC and some of the suggested interpretations to account for them are discussed. It is emphasized that the results at present are indicative of a lensing population of white dwarfs, possibly in the spheroid (not dark halo) of the Galaxy, together with the more standard backgrounds of stellar populations in the Magellanic Clouds and in the Galaxy. This is also hinted by dynamical estimates of the spheroid mass and by recent direct searches of old white dwarfs.

  12. Darkness without dark matter and energy - generalized unimodular gravity

    Science.gov (United States)

    Barvinsky, A. O.; Kamenshchik, A. Yu.

    2017-11-01

    We suggest a Lorentz non-invariant generalization of the unimodular gravity theory, which is classically equivalent to general relativity with a locally inert (devoid of local degrees of freedom) perfect fluid having an equation of state with a constant parameter w. For the range of w near -1 this dark fluid can play the role of dark energy, while for w = 0 this dark dust admits spatial inhomogeneities and can be interpreted as dark matter. We discuss possible implications of this model in the cosmological initial conditions problem. In particular, this is the extension of known microcanonical density matrix predictions for the initial quantum state of the closed cosmology to the case of spatially open Universe, based on the imitation of the spatial curvature by the dark fluid density. We also briefly discuss quantization of this model necessarily involving the method of gauge systems with reducible constraints and the effect of this method on the treatment of recently! suggested mechanism of vacuum energy sequestering.

  13. Particle dark matter - A theorist's perspective

    Indian Academy of Sciences (India)

    ture of the dark matter (DM) in the Universe, from the point of view of particle physics, the WIMP (weakly interacting massive particle) looks particularly attrac- tive. In many 'scenarios' as well as more complete theories beyond the sM there often appear several new WIMPs and it is typically not too difficult to ensure that.

  14. Isotriplet Dark Matter on the Lattice

    DEFF Research Database (Denmark)

    Hietanen, Ari; Pica, Claudio; Sannino, Francesco

    : a] It provides a natural complex weak isotriplet of Goldstone bosons of which the neutral component can be identified with a light composite dark matter state; b] It is expected to break the global symmetry spontaneously; c] It is free from fermionic composite states made by a techniglue...

  15. Compact Stars as Dark Matter Probes

    OpenAIRE

    Bertone, Gianfranco; Fairbairn, Malcolm

    2007-01-01

    We discuss the consequences of the accretion of dark matter (DM) particles on compact stars such as white dwarfs and neutron stars. We show that in large regions of the DM parameter space, these objects are sensitive probes of the presence of DM and can be used to set constraints both on the DM density and on the physical properties of DM particles.

  16. Darkside: A Depleted Argon Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Alton, Drew; Durben, Dan; Keeter, Kara; Zehfus, Michael; Brice, Steve; Chou, Aaron; Hall, Jeter; Jostlein, Hans; Pordes, Stephen; Sonnenschein, Andrew; Brodsky, Jason [et al.

    2009-10-01

    The existence of dark matter is known from gravitational effects, but its nature remains a deep mystery. One possibility motivated by other considerations in elementary particle physics is that dark matter consists of undiscovered elementary particles. Axions and Weakly Interacting Massive Particles (WIMPs) are two possibilities. Evidence for new particles that could constitute WIMP dark matter may come from upcoming experiments at the Large Hadron Collider at CERN or from sensitive astronomical instruments that detect radiation produced by WIMP-WIMP annihilations in galaxy halos. The thermal motion of the WIMPS comprising the dark matter halo surrounding the galaxy and the earth should result in WIMP-nuclear collisions of sufficient energy to be observable by sensitive laboratory apparatus. The goal of this proposal is to develop and deploy a liquid argon detector that has high sensitivity for direct detection of WIMP collisions. Liquid argon is a promising medium for WIMP detection due to its efficient conversion of energy from WIMP induced nuclear recoils into both ionization and scintillation. In a Time Projection Chamber (TPC), scintillation and ionization can be independently detected and spatially resolved through large volumes of liquid. The relative size and time dependence of these signals permits discrimination of nuclear recoils from background events.

  17. CASTing light on dark matter particles

    CERN Multimedia

    2005-01-01

    CERN's CAST collaboration recently released first results from its search for solar axions, a candidate dark matter particle. Though they haven't found any axions yet, they have done much to narrow the hunt. The CAST experiment. Physicists think the universe is permeated with dark matter, particles that don't emit or absorb radiation and so are invisible to traditional telescopes. So far no one has found direct signs of dark matter. A different breed of telescope, however, may be able to see such particles. CERN's Axion Solar Telescope (CAST), currently the world's only working axion helioscope, is a superconducting test magnet from the Large Hadron Collider (LHC) that has been refurbished and outfitted with X-ray detectors, plus a focusing mirror system for X-rays that was recovered from the German space program. CAST stares into the sun in search of particles called axions, one of the leading candidates for dark matter. On 9 November, the CAST collaboration released the results of their first experimen...

  18. A Study of Dirac Fermionic Dark Matters

    OpenAIRE

    Chua, Chun-Khiang; Hsieh, Ron-Chou

    2013-01-01

    We study pure weak eigenstate Dirac fermionic dark matters (DM). We consider WIMP with renormalizable interaction. According to results of direct searches and the nature of DM (electrical neutral and being a pure weak eigenstate), the quantum number of DM is determined to be $I_3=Y=0$. There are only two possible cases: either DM has non-vanishing weak isospin ($I\

  19. Dark matter, neutrinos, and our solar system

    CERN Document Server

    Prakash, Nirmala

    2013-01-01

    Dark Matter, Neutrinos, and Our Solar System is a unique enterprise that should be viewed as an important contribution to our understanding of dark matter, neutrinos and the solar system. It describes these issues in terms of links, between cosmology, particle and nuclear physics, as well as between cosmology, atmospheric and terrestrial physics. It studies the constituents of dark matter (classified as hot warm and cold) first in terms of their individual structures (baryonic and non-baryonic, massive and non-massive, interacting and non-interacting) and second, in terms of facilities available to detect these structures (large and small). Neutrinos (an important component of dark matter) are treated as a separate entity. A detailed study of these elusive (sub-atomic) particles is done, from the year 1913 when they were found as byproducts of beta decay -- until the discovery in 2007 which confirmed that neutrino flavors were not more than three (as speculated by some). The last chapter of the book details t...

  20. Recent developments in dark matter searches

    Indian Academy of Sciences (India)

    /fulltext/pram/076/05/0783-0794 ... Then a summary of recent results from indirect and direct detection dark matter search experiments is given. Some discussion is also done of MOND theories along with recent analysis of galaxy surface ...

  1. Particle dark matter-A theorist's perspective

    Indian Academy of Sciences (India)

    Abstract. Dark matter (DM) is presumably made of some new, exotic particles that appear in extensions of the standard model. After giving a brief overview of some popular candidates, I discuss in more detail the most appealing case of the supersymmetric neutralino.

  2. Deformed matter bounce with dark energy epoch

    Science.gov (United States)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-09-01

    We extend the loop quantum cosmology matter bounce scenario in order to include a dark energy era, which ends abruptly at a rip singularity where the scale factor and the Hubble rate diverge. In the "deformed matter bounce scenario," the Universe is contracting from an initial noncausal matter dominated era until it reaches a minimal radius. After that it expands in a decelerating way, until at late times, where it expands in an accelerating way, and thus the model is described by a dark energy era that follows the matter dominated era. Depending on the choice of the free parameters of the model, the dark energy era is quintessential as what follows the matter domination era, and eventually it crosses the phantom divide line and becomes phantom. At the end of the dark energy era, a rip singularity exists, where the scale factor and Hubble rate diverge; however, the physical system cannot reach the singularity, since the effective energy density and pressure become complex. This indicates two things, first that the ordinary loop quantum cosmology matter bounce evolution stops, thus ending the infinite repetition of the ordinary matter bounce scenario. Second, the fact that both the pressure and the density become complex probably indicates that the description of the cosmic evolution within the theoretical context of loop quantum cosmology ceases to describe the physics of the system and possibly a more fundamental theory of quantum gravity is needed near the would be rip singularity. We describe the qualitative features of the model, and we also investigate how this cosmology could be realized by a viscous fluid in the context of loop quantum cosmology. In addition to this, we show how this deformed model can be realized by a canonical scalar field filled Universe, in the context of loop quantum cosmology. Finally, we demonstrate how the model can be generated by a vacuum F (R ) gravity.

  3. Self-interacting dark matter without direct detection constraints

    Science.gov (United States)

    Zhang, Yue

    2017-03-01

    We explore the self-interacting dark matter scenario in a simple dark sector model where the dark matter interacts through a dark photon. Splitting a Dirac fermion dark matter into two levels using a small Majorana mass can evade strong direct detection constraints on the kinetic mixing between the dark and normal photons, thus allowing the dark sector to be more visible at high intensity and/or high energy experiments. It is pointed out that such a mass splitting has a strong impact on the dark matter self-interaction strength. We derive the new parameter space of a pseudo-Dirac self-interacting dark matter. Interestingly, with increasing mass splitting, a weak scale dark matter mass window survives that could be probed by the LHC and future colliders.

  4. Constraints on dissipative unified dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Velten, Hermano [Universidade Federal do Espírito Santo, Av. Fernando Ferrari, Goiabeiras, Vitória (Brazil); Schwarz, Dominik J., E-mail: velten@physik.uni-bielefeld.de, E-mail: dschwarz@physik.uni-bielefeld.de [Fakultät für Physik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld (Germany)

    2011-09-01

    Modern cosmology suggests that the Universe contains two dark components — dark matter and dark energy — both unkown in laboratory physics and both lacking direct evidence. Alternatively, a unified dark sector, described by a single fluid, has been proposed. Dissipation is a common phenomenon in nature and it thus seems natural to consider models dominated by a viscous dark fluid. We focus on the study of bulk viscosity, as isotropy and homogeneity at large scales implies the suppression of shear viscosity, heat flow and diffusion. The generic ansatz ξ∝ρ{sup ν} for the coefficient of bulk viscosity (ρ denotes the mass/energy density), which for ν = −1/2 mimics the ΛCDM background evolution, offers excellent fits to supernova and H(z) data. We show that viscous dark fluids suffer from large contributions to the integrated Sachs-Wolfe effect (generalising a previous study by Li and Barrow) and a suppression of structure growth at small-scales (as seen from a generalized Meszaros equation). Based on recent observations, we conclude that viscous dark fluid models (with ξ∝ρ{sup ν} and neglecting baryons) are strongly challenged.

  5. Dark radiation constraints on mixed Axion/Neutralino dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyu Jung; Baer, Howard [Dept. of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Lessa, Andre, E-mail: bae@nhn.ou.edu, E-mail: baer@nhn.ou.edu, E-mail: lessa@fma.if.usp.br [Instituto de Física, Universidade de São Paulo, São Paulo - SP (Brazil)

    2013-04-01

    Recent analyses of CMB data combined with the measurement of BAO and H{sub 0} show that dark radiation — parametrized by the apparent number of additional neutrinos ΔN{sub eff} contributing to the cosmic expansion — is bounded from above by about ΔN{sub eff}∼<1.6 at 95% CL. We consider the mixed axion/neutralino cold dark matter scenario which arises in R-parity conserving supersymmetric (SUSY) models wherein the strong CP problem is solved by hadronic axions with a concommitant axion(a)/saxion(s)/axino(ã) supermultiplet. Our new results include improved calculations of thermal axion and saxion production and include effects of saxion decay to axinos and axions. We show that the above bound on ΔN{sub eff} is easily satisfied if saxions are mainly thermally produced and m{sub LSP} < m{sub ã}∼dark matter are highly constrained by combined CMB, BBN and Xe-100 constraints. In particular, supersymmetric models with a standard overabundance of neutralino dark matter are excluded for all values of the Peccei-Quinn breaking scale. Next generation WIMP direct detection experiments may be able to discover or exclude mixed axion-neutralino CDM scenarios where s → aa is the dominant saxion decay mode.

  6. Dark matter searches using superheated liquids

    Science.gov (United States)

    Manuel, Bou-Cabo; Miguel, Ardid; Ivan, Felis

    2016-07-01

    Direct detection of dark matter is one of the most important topics in modern physics. It is estimated that 22% of universe matter is composed by dark matter in front of 0.4% of ordinary matter like stars, galaxies planets and all kind of known astrophysical objects. Several kinds of experiments are nowadays involved in detection of one of the more accepted particle candidates to be dark matter: WIMPs (Weakly Interacting Massive Particles). These detectors, using several kinds of techniques: Cryogenic semiconductors, scintillation materials like I Na or noble gas chambers among others, are reporting very interesting but inconclusive results. In this paper a review of detectors that are using the superheated liquid technique in bubble chambers in order to detect WIMPs is reported. Basically, we will report about Coupp (Chicagoland observatory for underground particle physics), PICO that is composed by Coupp and Picasso researchers having the aim to build a ton experiment and also about a new detector named MOSCAB (Materia oscura a bolle) that recently published a first results of a test chamber that uses also superheated liquid technique but as a Geyser chamber.

  7. Dark matter searches using superheated liquids

    Directory of Open Access Journals (Sweden)

    Manuel Bou-Cabo

    2016-01-01

    Full Text Available Direct detection of dark matter is one of the most important topics in modern physics. It is estimated that 22% of universe matter is composed by dark matter in front of 0.4% of ordinary matter like stars, galaxies planets and all kind of known astrophysical objects. Several kinds of experiments are nowadays involved in detection of one of the more accepted particle candidates to be dark matter: WIMPs (Weakly Interacting Massive Particles. These detectors, using several kinds of techniques: Cryogenic semiconductors, scintillation materials like I Na or noble gas chambers among others, are reporting very interesting but inconclusive results. In this paper a review of detectors that are using the superheated liquid technique in bubble chambers in order to detect WIMPs is reported. Basically, we will report about Coupp (Chicagoland observatory for underground particle physics, PICO that is composed by Coupp and Picasso researchers having the aim to build a ton experiment and also about a new detector named MOSCAB (Materia oscura a bolle that recently published a first results of a test chamber that uses also superheated liquid technique but as a Geyser chamber.

  8. Constraining decaying dark matter with neutron stars

    Directory of Open Access Journals (Sweden)

    M. Ángeles Pérez-García

    2015-05-01

    Full Text Available The amount of decaying dark matter, accumulated in the central regions in neutron stars together with the energy deposition rate from decays, may set a limit on the neutron star survival rate against transitions to more compact objects provided nuclear matter is not the ultimate stable state of matter and that dark matter indeed is unstable. More generally, this limit sets constraints on the dark matter particle decay time, τχ. We find that in the range of uncertainties intrinsic to such a scenario, masses (mχ/TeV≳9×10−4 or (mχ/TeV≳5×10−2 and lifetimes τχ≲1055 s and τχ≲1053 s can be excluded in the bosonic or fermionic decay cases, respectively, in an optimistic estimate, while more conservatively, it decreases τχ by a factor ≳1020. We discuss the validity under which these results may improve with other current constraints.

  9. Dark matter superfluidity and galactic dynamics

    Directory of Open Access Journals (Sweden)

    Lasha Berezhiani

    2016-02-01

    Full Text Available We propose a unified framework that reconciles the stunning success of MOND on galactic scales with the triumph of the ΛCDM model on cosmological scales. This is achieved through the physics of superfluidity. Dark matter consists of self-interacting axion-like particles that thermalize and condense to form a superfluid in galaxies, with ∼mK critical temperature. The superfluid phonons mediate a MOND acceleration on baryonic matter. Our framework naturally distinguishes between galaxies (where MOND is successful and galaxy clusters (where MOND is not: dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures.

  10. Status of dark matter and neutrino physics

    Science.gov (United States)

    Bettini, A.

    2012-12-01

    Tremendous progress both in the quantity and in the quality of the observational cosmological data in the last fifteen years, associated with theoretical work in their understanding has lead to a "standard cosmological model". This model is phenomenological and is consistent with data within an accuracy of a few per cent. The energy-budget of the Universe shows that the matter we know is only a small fraction of the total. The largest fraction is invisible or, as it is commonly called, dark. This lecture will summarise the status of the direct experimental searches for dark matter. The phenomena of neutrino oscillation and neutrino flavour conversion in matter, not foreseen by the Standard Model, have been firmly established. The neutrino mass spectrum and their mixing angles have been partially measured. I shall review the status of the experiments presently in data-taking, construction or in project.

  11. Dark Energy, Dark Matter and Science with Constellation-X

    Science.gov (United States)

    Cardiff, Ann Hornschemeier

    2005-01-01

    Constellation-X, with more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass, will enable highthroughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This talk will review the updated Constellation-X science case, released in booklet form during summer 2005. The science areas where Constellation-X will have major impact include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants. This talk will touch upon all these areas, with particular emphasis on Constellation-X's role in the study of Dark Energy.

  12. Revisiting Black Holes as Dark Matter

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    Could dark matter be made of intermediate-mass black holes formed in the beginning of the universe? A recent study takes a renewed look at this question.Galactic LurkersThe nature of dark matter has long been questioned, but the recent discovery of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) has renewed interest in the possibility that dark matter could consist of primordial black holes in the mass range of 101000 solar masses.The relative amounts of the different constituents of the universe. Dark matter makes up roughly 27%. [ESA/Planck]According to this model, the extreme density of matter present during the universes early expansion led to the formation of a large number of intermediate-mass black holes. These black holes now hide in the halos of galaxies, constituting the mass that weve measured dynamically but remains unseen.LIGOs first gravitational-wave detection revealed the merger of two black holes that were both tens of solar masses in size. If primordial black holes are indeed a major constituent of dark matter, then LIGOs detection is consistent with what we would expect to find: occasional mergers of the intermediate-mass black holes that formed in the early universe and now lurk in galactic halos.Quasar MicrolensingTheres a catch, however. If there truly were a large number of intermediate-mass primordial black holes hiding in galactic halos, they wouldnt go completely unnoticed: we would see signs of their presence in the gravitational microlensing of background quasars. Unseen primordial black holes in a foreground galaxy could cause an image of a background quasar to briefly brighten which would provide us with clear evidence of such black holes despite our not being able to detect them directly.A depiction of quasar microlensing (click for a closer look!). The microlensing object in the foreground galaxy could be a star (as depicted), a primordial black hole, or any other compact object. [NASA

  13. Thermal Dark Matter Below a MeV

    OpenAIRE

    Berlin, Asher; Blinov, Nikita

    2018-01-01

    We consider a class of models in which thermal dark matter is lighter than a MeV. If dark matter thermalizes with the standard model below the temperature of neutrino-photon decoupling, equilibration and freeze-out cool and heat the standard model bath comparably, alleviating constraints from measurements of the effective number of neutrino species. We demonstrate this mechanism in a model consisting of fermionic dark matter coupled to a light scalar mediator. Thermal dark matter can be as li...

  14. Interplay of LHC and dark matter searches in the MSSM

    Directory of Open Access Journals (Sweden)

    Alexandre Arbey

    2015-12-01

    Full Text Available The Minimal Supersymmetric extension of the Standard Model (MSSM provides suitable candidates for cold dark matter. We discuss here the constraints from dark matter direct detection and cosmological dark matter density, as well as LHC data from Higgs, SUSY and monojet searches, and flavour physics data, in the context of the phenomenological MSSM (pMSSM with neutralino dark matter. We show that the complementarity of the different sectors is essential to probe the pMSSM parameter space.

  15. Searches for Dark Matter with in Events with Hadronic Activity

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    The astrophysical evidence of dark matter provides some of the most compelling clues to the nature of physics beyond the Standard Model. From these clues, ATLAS has developed a broad and systematic search program for dark matter production in LHC collisions. In the framework of Simplified models the searches are divided into invisible and visible channels, corresponding to dark matter searches, with a missing energy signature, and dark matter mediator searches, looking for bump in invariant mass distributions.

  16. NASA Finds Direct Proof of Dark Matter

    Science.gov (United States)

    2006-08-01

    Dark matter and normal matter have been wrenched apart by the tremendous collision of two large clusters of galaxies. The discovery, using NASA's Chandra X-ray Observatory and other telescopes, gives direct evidence for the existence of dark matter. "This is the most energetic cosmic event, besides the Big Bang, which we know about," said team member Maxim Markevitch of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. Lensing Illustration Gravitational Lensing Explanation These observations provide the strongest evidence yet that most of the matter in the universe is dark. Despite considerable evidence for dark matter, some scientists have proposed alternative theories for gravity where it is stronger on intergalactic scales than predicted by Newton and Einstein, removing the need for dark matter. However, such theories cannot explain the observed effects of this collision. "A universe that's dominated by dark stuff seems preposterous, so we wanted to test whether there were any basic flaws in our thinking," said Doug Clowe of the University of Arizona at Tucson, and leader of the study. "These results are direct proof that dark matter exists." Animation of Cluster Collision Animation of Cluster Collision In galaxy clusters, the normal matter, like the atoms that make up the stars, planets, and everything on Earth, is primarily in the form of hot gas and stars. The mass of the hot gas between the galaxies is far greater than the mass of the stars in all of the galaxies. This normal matter is bound in the cluster by the gravity of an even greater mass of dark matter. Without dark matter, which is invisible and can only be detected through its gravity, the fast-moving galaxies and the hot gas would quickly fly apart. The team was granted more than 100 hours on the Chandra telescope to observe the galaxy cluster 1E0657-56. The cluster is also known as the bullet cluster, because it contains a spectacular bullet-shaped cloud of hundred

  17. Cold dark matter: Controversies on small scales.

    Science.gov (United States)

    Weinberg, David H; Bullock, James S; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H G

    2015-10-06

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. We review the current observational and theoretical status of these "small-scale controversies." Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years.

  18. Finite Inflation, Holography, and Dark Matter Annihilation

    Science.gov (United States)

    Scacco, Andrew Joseph

    This thesis covers work on theoretical cosmology relating to inflation, de Sitter space, dark matter annihilation, and holography. A unifying feature of all these topics is that all of them occur in de Sitter space or focus on epochs of the Universe when the spacetime was close to de Sitter and that all of them have some connection to holography. Chapter 1 provides a pedagogical introduction to the fundamentals of cosmology, inflation, de Sitter space, dark matter annihilation and entanglement entropy. Chapter 2 covers the impact on the causal entropic principle of dark matter annihilation that we find to have the greatest relevance at late times in the future when the dark energy has driven the universe to be asymptotically de Sitter. In this chapter we estimate holographically preferred dark matter properties for a range of assumptions. Chapter 3 covers holographic bounds in models of finite inflation, specifically the Banks-Fischler bound and de Sitter equilibrium. The assumptions in each of these models are explored in detail and some interesting new connections are presented. Chapter 4 tests models of inflation with a fast-roll start that happen to satisfy the holographic bounds in Chapter 3 against cosmic microwave background data from Planck. We find a slight preference for a feature at the scale predicted by the Banks-Fischler bound though this preference is not found to be statistically significant. Chapter 5 contains a numerical computation of the holographic mutual information for an annular configuration of regions on a conformal field theory in de Sitter space using the AdS/CFT correspondence. This computation shows that the de Sitter space CFT entanglement entropy matches what would be expected from a Minkowski CFT and shows that the HRT conjecture works for this case.

  19. Gravity resonance spectroscopy constrains dark energy and dark matter scenarios.

    Science.gov (United States)

    Jenke, T; Cronenberg, G; Burgdörfer, J; Chizhova, L A; Geltenbort, P; Ivanov, A N; Lauer, T; Lins, T; Rotter, S; Saul, H; Schmidt, U; Abele, H

    2014-04-18

    We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14  eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β>5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ=20  μm (95% C.L.).

  20. Gravity Resonance Spectroscopy Constrains Dark Energy and Dark Matter Scenarios

    Science.gov (United States)

    Jenke, T.; Cronenberg, G.; Burgdörfer, J.; Chizhova, L. A.; Geltenbort, P.; Ivanov, A. N.; Lauer, T.; Lins, T.; Rotter, S.; Saul, H.; Schmidt, U.; Abele, H.

    2014-04-01

    We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14 eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β >5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ =20 μm (95% C.L.).

  1. Mimicking dark matter in Horndeski gravity

    CERN Document Server

    Rinaldi, Massimiliano

    2016-01-01

    Since the rediscovery of Horndeski gravity, a lot of work has been devoted to the exploration of its properties, especially in the context of dark energy. However, one sector of this theory, namely the one containing the coupling of the Einstein tensor to the kinetic term of the scalar field, shows some surprising features in the construction of black holes and neutron stars. Motivated by these new results, I explore the possibility that this sector of Horndeski gravity can mimic cold dark matter at cosmological level and also explain the flattening of galactic rotation curves. I will show that it is possible to achieve both goals with a minimal set of assumptions.

  2. Constraining properties of dark matter particles using astrophysical data

    NARCIS (Netherlands)

    Iakubovskyi, Dmytro

    2013-01-01

    A microscopic origin of dark matter phenomenon is the most plausible hypothesis to explain the mystery of dark matter. The dark matter particle hypothesis necessarily implies an extension of the Standard Model. In this thesis, we undertook a systematic model-independent program of studying the

  3. Constraints on Majorana dark matter from a fourth lepton family

    DEFF Research Database (Denmark)

    Hapola, T.; Jarvinen, M.; Kouvaris, C.

    2014-01-01

    We study the possibility of dark matter in the form of heavy neutrinos from a fourth lepton family with helicity suppressed couplings such that dark matter is produced thermally via annihilations in the early Universe. We present all possible constraints for this scenario coming from LHC...... account for the dark matter abundance....

  4. Taming astrophysical bias in direct dark matter searches

    NARCIS (Netherlands)

    Pato, M.; Strigari, L.E.; Trotta, R.; Bertone, G.

    2013-01-01

    We explore systematic biases in the identification of dark matter in future direct detection experiments and compare the reconstructed dark matter properties when assuming a self-consistent dark matter distribution function and the standard Maxwellian velocity distribution. We find that the

  5. The prolate shape of the galactic dark-matter halo

    NARCIS (Netherlands)

    Helmi, A; Spooner, NJC; Kudryavtsev,

    2005-01-01

    Knowledge of the distribution of dark-matter in our Galaxy plays a crucial role in the interpretation of dark-matter detection experiments. I will argue here that probably the best way of constraining the properties of the dark-matter halo is through astrophysical observations. These provide

  6. Neutralino dark matter stars can not exist

    Science.gov (United States)

    Dai, De-Chang; Stojkovic, Dejan

    2009-08-01

    Motivated by the recent ``Cosmos Project" observation of dark-matter concentrations with no ordinary matter in the same place, we study the question of the existence of compact objects made of pure dark matter. We assume that the dark matter is neutralino, and compare its elastic and annihilation cross sections. We find that the two cross sections are of the same order of magnitude. This result has a straightforward and important consequence that neutralinos comprising a compact object can not achieve thermal equilibrium. To substantiate our arguments, by solving Oppenheimer-Volkoff equation we constructed a model of the star made of pure neutralinos. We explicitly showed that the condition for the thermal equilibrium supported by the Fermi pressure is never fulfilled inside the star. This neutralino state can not be described by the Fermi-Dirac distribution. Thus, a stable neutralino star, which is supported by the Fermi pressure, can not exist. We also estimated that a stable star can not contain more than a few percents of neutralinos, most of the mass must be in the form of the standard model particles.

  7. Sterile neutrino, hidden dark matter and their cosmological signatures

    Science.gov (United States)

    Das, Subinoy

    2012-12-01

    Though thermal dark matter has been the central idea behind the dark matter candidates, it is highly possible that dark matter of the universe is non-thermal in origin or it might be in thermal contact with some hidden or dark sector but not with standard model. Here we explore the cosmological bounds as well as the signatures on two types of non-thermal dark matter candidates. First we discuss a hidden dark matter with almost no interaction (or very feeble) with standard model particles so that it is not in thermal contact with visible sector but we assume it is thermalized with in a hidden sector due to some interaction. While encompassing the standard cold WIMP scenario, we do not require the freeze-out process to be non-relativistic. Rather, freeze-out may also occur when dark matter particles are semi-relativistic or relativistic. Especially we focus on the warm dark matter scenario in this set up and find the constraints on the warm dark matter mass, cross-section and hidden to visible sector temperature ratio which accounts for the observed dark-matter density, satisfies the Tremaine-Gunn bound on dark-matter phase space density and has a free-streaming length consistent with cosmological constraints on the matter power spectrum. Our method can also be applied to keV sterile neutrino dark matter which is not thermalized with standard model but is thermalized with in a dark sector. The second part of this proceeding focuses on an exotic dark matter candidate which arises from the existence of eV mass sterile neutrino through a late phase transition. Due to existence of a strong scalar force the light sterile states get trapped into stable degenerate micro nuggets. We find that its signature in matter power spectra is close to a warm dark matter candidate.

  8. Dark matter constraints from stellar evolution

    Science.gov (United States)

    Ayala, A.; Domínguez, I.; Straniero, O.

    2016-01-01

    The study of dark matter constraints from its effect on star evolution has been discussed in recent years. We propose a star evolution simulation approach to determine those costraints from properties related to star evolutionary stages and propose globular cluster observables in order to check those constraints. My work in progress (my PhD project research) employs FRANEC code to simulate complete star evolution from pre-main sequence to AGB phase, and regards several DM candidates like axions or WIMPs, motivated by different unsolved physical problems. Detailed energy production or energy loss due to DM particles are included, taking into account the expected interaction between dark matter particles and stellar plasma within different models.

  9. The DArk Matter Particle Explorer mission

    Science.gov (United States)

    Chang, J.; Ambrosi, G.; An, Q.; Asfandiyarov, R.; Azzarello, P.; Bernardini, P.; Bertucci, B.; Cai, M. S.; Caragiulo, M.; Chen, D. Y.; Chen, H. F.; Chen, J. L.; Chen, W.; Cui, M. Y.; Cui, T. S.; D'Amone, A.; De Benedittis, A.; De Mitri, I.; Di Santo, M.; Dong, J. N.; Dong, T. K.; Dong, Y. F.; Dong, Z. X.; Donvito, G.; Droz, D.; Duan, K. K.; Duan, J. L.; Duranti, M.; D'Urso, D.; Fan, R. R.; Fan, Y. Z.; Fang, F.; Feng, C. Q.; Feng, L.; Fusco, P.; Gallo, V.; Gan, F. J.; Gan, W. Q.; Gao, M.; Gao, S. S.; Gargano, F.; Gong, K.; Gong, Y. Z.; Guo, J. H.; Hu, Y. M.; Huang, G. S.; Huang, Y. Y.; Ionica, M.; Jiang, D.; Jiang, W.; Jin, X.; Kong, J.; Lei, S. J.; Li, S.; Li, X.; Li, W. L.; Li, Y.; Liang, Y. F.; Liang, Y. M.; Liao, N. H.; Liu, Q. Z.; Liu, H.; Liu, J.; Liu, S. B.; Liu, Q. Z.; Liu, W. Q.; Liu, Y.; Loparco, F.; Lü, J.; Ma, M.; Ma, P. X.; Ma, S. Y.; Ma, T.; Ma, X. Q.; Ma, X. Y.; Marsella, G.; Mazziotta, M. N.; Mo, D.; Miao, T. T.; Niu, X. Y.; Pohl, M.; Peng, X. Y.; Peng, W. X.; Qiao, R.; Rao, J. N.; Salinas, M. M.; Shang, G. Z.; Shen, W. H.; Shen, Z. Q.; Shen, Z. T.; Song, J. X.; Su, H.; Su, M.; Sun, Z. Y.; Surdo, A.; Teng, X. J.; Tian, X. B.; Tykhonov, A.; Vagelli, V.; Vitillo, S.; Wang, C.; Wang, Chi; Wang, H.; Wang, H. Y.; Wang, J. Z.; Wang, L. G.; Wang, Q.; Wang, S.; Wang, X. H.; Wang, X. L.; Wang, Y. F.; Wang, Y. P.; Wang, Y. Z.; Wen, S. C.; Wang, Z. M.; Wei, D. M.; Wei, J. J.; Wei, Y. F.; Wu, D.; Wu, J.; Wu, S. S.; Wu, X.; Xi, K.; Xia, Z. Q.; Xin, Y. L.; Xu, H. T.; Xu, Z. L.; Xu, Z. Z.; Xue, G. F.; Yang, H. B.; Yang, J.; Yang, P.; Yang, Y. Q.; Yang, Z. L.; Yao, H. J.; Yu, Y. H.; Yuan, Q.; Yue, C.; Zang, J. J.; Zhang, C.; Zhang, D. L.; Zhang, F.; Zhang, J. B.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, P. F.; Zhang, S. X.; Zhang, W. Z.; Zhang, Y.; Zhang, Y. J.; Zhang, Y. Q.; Zhang, Y. L.; Zhang, Y. P.; Zhang, Z.; Zhang, Z. Y.; Zhao, H.; Zhao, H. Y.; Zhao, X. F.; Zhou, C. Y.; Zhou, Y.; Zhu, X.; Zhu, Y.; Zimmer, S.

    2017-10-01

    The DArk Matter Particle Explorer (DAMPE), one of the four scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences, is a general purpose high energy cosmic-ray and gamma-ray observatory, which was successfully launched on December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE scientific objectives include the study of galactic cosmic rays up to ∼ 10 TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the search for dark matter signatures in their spectra. In this paper we illustrate the layout of the DAMPE instrument, and discuss the results of beam tests and calibrations performed on ground. Finally we present the expected performance in space and give an overview of the mission key scientific goals.

  10. Biased galaxy formation with baryonic dark matter.

    Science.gov (United States)

    Morikawa, M.

    The author studies the possibility of baryonic dark matter associated with a galaxy/halo in the light of the biasing which segregates the luminous inner region and the dark outer region of a galaxy. He proposes a biasing mechanism based on the fact that stellar luminosity is highly sensitive to the strength of the gravitational force. He uses a nonconformal scalar field model in which the scalar field accumulates around the gravitational potential formed by the baryonic matter and yields a slight galactocentric gradient of the effective gravitational constant G. A small gradient (the value of G becomes half of the ordinary value at the distance about 100 kpc from the center of the galaxy) is sufficient to explain the smooth flat rotation curve of the spiral galaxies as well as a sharp cutoff of the luminosity profile. Several tests of this scenario are studied.

  11. Light Dark Matter in the NO$\

    Energy Technology Data Exchange (ETDEWEB)

    Hatzikoutelis, Athanasios [Tennessee U.

    2015-01-01

    The neutrino oscillations experiment NOA is the agship of Fermi National Laboratory. The neutrino source NuMI is delivering record numbers of protons-on-target surpassing the most stringent dark matter production upper limits of current models in the under-10 GeV mass range. We take advantage of the sophisticated particle identication algorithms of the experiment to interrogate the data from the 300-ton, o-axis, low-Z, Near Detector of NOvA during the rst physics runs. We search for signatures of sub-GeV or Light Dark Matter (LDM), Axion-like-particles, and Heavy or Sterile Neutrinos that may scatter or decay in the volume of the detector.

  12. The DEAP-3600 Dark Matter Search

    Science.gov (United States)

    Sonley, Thomas

    2010-11-01

    The DEAP-3600 experiment will search for dark matter particle interactions on liquid argon at SNOLAB, located 2 km underground in Sudbury, Ontario. A prototype detector (DEAP-1) with a 7-kg liquid argon target mass is currently operating underground for studies of background reduction and rejection including pulse-shape discrimination of beta/gamma events. The larger detector containing a total mass of 3600 kg of liquid argon is under construction. The target sensitivity to spin-independent scattering on nucleons of 10-46 cm^2 will allow an improvement in dark matter particle sensitivity by a factor of several hundred over current searches. The status of the experiment and construction at SNOLAB will be presented.

  13. Mapping Dark Matter in Simulated Galaxy Clusters

    Science.gov (United States)

    Bowyer, Rachel

    2018-01-01

    Galaxy clusters are the most massive bound objects in the Universe with most of their mass being dark matter. Cosmological simulations of structure formation show that clusters are embedded in a cosmic web of dark matter filaments and large scale structure. It is thought that these filaments are found preferentially close to the long axes of clusters. We extract galaxy clusters from the simulations "cosmo-OWLS" in order to study their properties directly and also to infer their properties from weak gravitational lensing signatures. We investigate various stacking procedures to enhance the signal of the filaments and large scale structure surrounding the clusters to better understand how the filaments of the cosmic web connect with galaxy clusters. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  14. Dark Matter searches with the ATLAS Detector

    CERN Document Server

    Hooberman, Benjamin Henry; The ATLAS collaboration

    2016-01-01

    The presence of a non-baryonic Dark Matter (DM) component in the Universe is inferred from the observation of its gravitational interaction. If DM interacts non-gravitationally with the Standard Model, it could be produced at the LHC, escaping the detector and leaving missing transverse momentum (MET) as a signature. Recent results from the ATLAS detector will be presented, based on events with large MET accompanied by a variety of other objects.

  15. Dark Matter Searches with the ATLAS detector

    CERN Document Server

    Wu, Mengqing; The ATLAS collaboration

    2015-01-01

    This poster will give an overview of the dark matter searches in ATLAS based on the presence of a high p_{T} object accompanied by large missing transverse momentum. LHC Run-1 results at a centre-of-mass energy of 8 TeV will be shown along with prospects for the ongoing LHC Run-2, including relevant performance studies based on the 13 TeV data.

  16. Dark matter searches with the ATLAS detector

    CERN Document Server

    Wu, Mengqing; The ATLAS collaboration

    2015-01-01

    The poster will give an overview of the dark matter searches in ATLAS based on the presence of a high $p_T$ object accompanied by large missing transverse momentum. LHC Run-1 results at a centre-of-mass energy of 8 TeV will be shown along with prospects for the ongoing LHC Run-2, including relevant performance studies based on the 13 TeV data.

  17. Dark matter searches with the ATLAS detector

    CERN Document Server

    Wu, Mengqing; The ATLAS collaboration

    2015-01-01

    An overview of the dark matter searches in ATLAS, based on the presence of a high-pT object accompanied by large missing transverse momentum, is given. Results from the Run-1 of the Large Hadron Collider at a centre-of-mass energy of 8 TeV are shown along with prospects for the ongoing Run-2, including relevant performance studies based on the 13 TeV data.

  18. Dark Matter in a twisted bottle

    OpenAIRE

    Arbey, Alexandre; Cacciapaglia, Giacomo; Deandrea, Aldo; Kubik, Bogna

    2012-01-01

    The real projective plane is a compact, non-orientable orbifold of Euler characteristic 1 without boundaries, which can be described as a twisted Klein bottle. We shortly review the motivations for choosing such a geometry among all possible two-dimensional orbifolds, while the main part of the study will be devoted to dark matter study and limits in Universal Extra Dimensional (UED) models based on this peculiar geometry. In the following we consider such a UED construction based on the dire...

  19. Galactic collapse of scalar field dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Alcubierre, Miguel [Max-Planck-Institut fuer Gravitationsphysik, Am Muehlenberg 1, D-14476 Golm (Germany); Guzman, F Siddhartha [Max-Planck-Institut fuer Gravitationsphysik, Am Muehlenberg 1, D-14476 Golm (Germany); Matos, Tonatiuh [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, AP 14-740, 07000 Mexico, DF (Mexico); Nunez, Dario [Centre for Gravitational Physics and Geometry, Penn State University, University Park, PA 16802 (United States); Urena-Lopez, L Arturo [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, AP 14-740, 07000 Mexico, DF (Mexico); Wiederhold, Petra [Departamento de Control Automatico, Centro de Investigacion y de Estudios Avanzados del IPN, AP 14-740, 07000 Mexico, DF (Mexico)

    2002-10-07

    We present a scenario for core galaxy formation based on the hypothesis of scalar field dark matter. We interpret galaxy formation through the collapse of a scalar field fluctuation. We find that a cosh potential for the self-interaction of the scalar field provides a reasonable scenario for the formation of a galactic core plus a remnant halo, which is in agreement with cosmological observations and phenomenological studies in galaxies.

  20. And What About the Dark Matter?

    CERN Multimedia

    2008-01-01

    What is the dark matter? I don't know; in fact, nobody knows for certain what it is. However, we do know two basic facts: we proved that it does exist, and without it the galaxies would mostly fall apart. Nevertheless, it is extremely hard to create a complete image of the past and future of the universe, when you do not know exactly how heavy it is and its current rough mass distribution.

  1. Detecting Superlight Dark Matter with Fermi-Degenerate Materials

    OpenAIRE

    Hochberg, Yonit; Pyle, Matt; Zhao, Yue; Zurek, Kathryn M.

    2015-01-01

    We examine in greater detail the recent proposal of using superconductors for detecting dark matter as light as the warm dark matter limit of O $$ \\mathcal{O} $$ (keV). Detection of suc light dark matter is possible if the entire kinetic energy of the dark matter is extracted in the scattering, and if the experiment is sensitive to O $$ \\mathcal{O} $$ (meV) energy depositions. This is the case for Fermi-degenerate materials in which the Fermi velocity exceeds the dark matter velocity dispersi...

  2. Planckian Interacting Massive Particles as Dark Matter

    CERN Document Server

    Garny, Mathias; Sloth, Martin S.

    2016-03-10

    The Standard Model could be self-consistent up to the Planck scale according to the present measurements of the Higgs mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the Standard Model through Planck suppressed higher dimensional operators. In this case the WIMP miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian Interacting Massive Particle, we show that the most natural mass larger than $0.01\\,\\textrm{M}_p$ is already ruled out by the absence of tensor modes in the CMB. This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the KK graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar...

  3. Perturbations of ultralight vector field dark matter

    CERN Document Server

    Cembranos, J A R; Jareño, S J Núñez

    2016-01-01

    We study the dynamics of cosmological perturbations in models of dark matter based on ultralight coherent vector fields. Very much as for scalar field dark matter, we find two different regimes in the evolution: for modes with $k^2\\ll {\\cal H}ma$, we have a particle-like behaviour indistinguishable from cold dark matter, whereas for modes with $k^2\\gg {\\cal H}ma$, we get a wave-like behaviour in which the sound speed is non-vanishing and of order $c_s^2\\simeq k^2/m^2a^2$. This implies that, also in these models, structure formation could be suppressed on small scales. However, unlike the scalar case, the fact that the background evolution contains a non-vanishing homogeneous vector field implies that, in general, the evolution of the three kinds of perturbations (scalar, vector and tensor) can no longer be decoupled at the linear level. More specifically, in the particle regime, the three types of perturbations are actually decoupled, whereas in the wave regime, the three vector field perturbations generate o...

  4. The search for decaying Dark Matter

    CERN Document Server

    Herder, J W den; Ruchayskiy, O.; Abazajian, K.; Frenk, C.; Hansen, S.; Jonker, P.; Kouveliotou, C.; Lesgourgues, J.; Neronov, A.; Ohashi, T.; Paerels, F.; Paltani, S.; Piro, L.; Pohl, M.; Shaposhnikov, M.; Silk, J.; Valle, J.W.F.

    2009-01-01

    We propose an X-ray mission called Xenia to search for decaying superweakly interacting Dark Matter particles (super-WIMP) with a mass in the keV range. The mission and its observation plan are capable of providing a major break through in our understanding of the nature of Dark Matter (DM). It will confirm, or reject, predictions of a number of particle physics models by increasing the sensitivity of the search for decaying DM by about two orders of magnitude through a wide-field imaging X-ray spectrometer in combination with a dedicated observation program. The proposed mission will provide unique limits on the mixing angle and mass of neutral leptons, right handed partners of neutrinos, which are important Dark Matter candidates. The existence of these particles is strongly motivated by observed neutrino flavor oscillations and the problem of baryon asymmetry of the Universe. In super-WIMP models, the details of the formation of the cosmic web are different from those of LambdaCDM. The proposed mission wil...

  5. Warm Dark Matter and Cosmic Reionization

    Science.gov (United States)

    Villanueva-Domingo, Pablo; Gnedin, Nickolay Y.; Mena, Olga

    2018-01-01

    In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3 keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn–Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in both CDM and WDM models, the full distribution of Gunn–Peterson optical depth retains the strong signature of delayed reionization in the WDM model. However, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.

  6. Missing Energy Reconstruction and Dark Matter Searches

    CERN Document Server

    Roskas, Christos

    2015-01-01

    The Missing transverse momentum (${E}_{T}^{miss}$) measurement is a powerful method of searching for particles that interact via the weak interaction. Precision measurements of ${E}_{T}^{miss}$ are critical for various studies in CMS. These can refer to Standard Model physics, e.g. W mass measurements or to beyond the Standard Model physics, e.g. searches for Dark Matter. The first part of this report discusses the reconstruction of the ${E}_{T}^{miss}$ in the W mass measurements and the calibration of the hadronic recoil created in the W bosons production. The main focus went to understand the recoil fit model in order to assign systematic uncertainties to the calibration. The second part concerns the Dark Matter searches at the LHC, studying the annihilation process of the Dark Matter in the Universe. According to this annihilation process, the new results implement additional constraints to the models that are studied at the LHC. Furthermore, the interpretations are expanded to higher mass regions ...

  7. Neutrino signature of inert doublet dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Sarah [Technische Hochschule Aachen (Germany). Inst. fuer Theoretische Physik E; Univ. Libre de Bruxelles (Belgium). Service de Physique Theorique; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-11-15

    In the framework of the Inert Doublet Model and extensions, the signature of neutrinos from dark matter annihilation in the Earth, the Sun and at the Galactic centre is presented. The model contains an extra Higgs doublet, a neutral component of which is chosen as dark matter candidate. There are three distinct mass ranges for which consistency both with WMAP abundance and direct searches can be obtained: a low (4-8 GeV), a middle (60-70 GeV) and a high (500-1500 GeV) WIMP mass range. The first case is of interest as we showed that the model can at the same time give the correct WMAP abundance and account for the positive DAMA results without contradicting other direct searches. We present how capture in the Sun can further constrain this scenario using Super-Kamiokande data. Indirect detection through neutrinos is challenging for the middle and high mass ranges. For the former, the presence of the so-called 'iron resonance' gives rise to larger neutrino fluxes for WIMP masses around 60-70 GeV since capture by the Earth is enhanced. The addition of light right-handed Majorana neutrinos to the particle content of the model further increases the signal since it opens a direct annihilation channel into mono-energetic neutrinos. Neutrinos from the Galactic centre might be detected for heavy WIMPs if the dark matter density at the Galactic centre is substantially boosted. (orig.)

  8. Supersymmetry with dark matter is still natural

    Science.gov (United States)

    van Beekveld, Melissa; Beenakker, Wim; Caron, Sascha; Peeters, Ruud; de Austri, Roberto Ruiz

    2017-08-01

    We identify the parameter regions of the phenomenological minimal supersymmetric standard model (pMSSM) with the minimal possible fine-tuning. We show that the fine-tuning of the pMSSM is not large, nor under pressure by LHC searches. Low sbottom, stop and gluino masses turn out to be less relevant for low fine-tuning than commonly assumed. We show a link between low fine-tuning and the dark matter relic density. Fine-tuning arguments point to models with a dark matter candidate yielding the correct dark matter relic density: a bino-higgsino particle with a mass of 35-155 GeV. Some of these candidates are compatible with recent hints seen in astrophysics experiments such as Fermi-LAT and AMS-02. We argue that upcoming direct search experiments, such as XENON1T, will test all of the most natural solutions in the next few years due to the sensitivity of these experiments on the spin-dependent WIMP-nucleon cross section.

  9. Direct Dark Matter search with XENON100

    Directory of Open Access Journals (Sweden)

    Orrigo S.E.A.

    2016-01-01

    Full Text Available The XENON100 experiment is the second phase of the XENON program for the direct detection of the dark matter in the universe. The XENON100 detector is a two-phase Time Projection Chamber filled with 161 kg of ultra pure liquid xenon. The results from 224.6 live days of dark matter search with XENON100 are presented. No evidence for dark matter in the form of WIMPs is found, excluding spin-independent WIMP-nucleon scattering cross sections above 2 × 10−45 cm2 for a 55 GeV/c2 WIMP at 90% confidence level (C.L.. The most stringent limit is established on the spin-dependent WIMP-neutron interaction for WIMP masses above 6 GeV/c2, with a minimum cross section of 3.5 × 10−40 cm2 (90% C.L. for a 45 GeV/c2 WIMP. The same dataset is used to search for axions and axion-like-particles. The best limits to date are set on the axion-electron coupling constant for solar axions, gAe < 7.7 × 10−12 (90% C.L., and for axion-like-particles, gAe < 1 × 10−12 (90% C.L. for masses between 5 and 10 keV/c2.

  10. Dark Matter in a twisted bottle

    Science.gov (United States)

    Arbey, Alexandre; Cacciapaglia, Giacomo; Deandrea, Aldo; Kubik, Bogna

    2013-01-01

    The real projective plane is a compact, non-orientable orbifold of Euler characteristic 1 without boundaries, which can be described as a twisted Klein bottle. We shortly review the motivations for choosing such a geometry among all possible two-dimensional orbifolds, while the main part of the study will be devoted to dark matter study and limits in Universal Extra Dimensional (UED) models based on this peculiar geometry. In the following we consider such a UED construction based on the direct product of the real projective plane with the standard four-dimensional Minkowski space-time and discuss its relevance as a model of a weakly interacting Dark Matter candidate. One important difference with other typical UED models is the origin of the symmetry leading to the stability of the dark matter particle. This symmetry in our case is a remnant of the six-dimensional Minkowski space-time symmetry partially broken by the compactification. Another important difference is the very small mass splitting between the particles of a given Kaluza-Klein tier, which gives a very important role to co-annihilation effects. Finally the role of higher Kaluza-Klein tiers is also important and is discussed together with a detailed numerical description of the influence of the resonances.

  11. Dark Matter in a twisted bottle

    CERN Document Server

    Arbey, Alexandre; Deandrea, Aldo; Kubik, Bogna

    2013-01-01

    The real projective plane is a compact, non-orientable orbifold of Euler characteristic 1 without boundaries, which can be described as a twisted Klein bottle. We shortly review the motivations for choosing such a geometry among all possible two-dimensional orbifolds, while the main part of the study will be devoted to dark matter study and limits in Universal Extra Dimensional (UED) models based on this peculiar geometry. In the following we consider such a UED construction based on the direct product of the real projective plane with the standard four-dimensional Minkowski space-time and discuss its relevance as a model of a weakly interacting Dark Matter candidate. One important difference with other typical UED models is the origin of the symmetry leading to the stability of the dark matter particle. This symmetry in our case is a remnant of the six-dimensional Minkowski space-time symmetry partially broken by the compactification. Another important difference is the very small mass splitting between the ...

  12. Geometrical aspects on the dark matter problem

    Energy Technology Data Exchange (ETDEWEB)

    Capistrano, A.J.S., E-mail: abraao.capistrano@unila.edu.br [Federal University of Latin-American Integration, 85867-970, Foz do Iguaçu-PR (Brazil); Cabral, L.A. [Federal University of Tocantins, 77804-970, Araguaína-TO (Brazil)

    2014-09-15

    In the present paper we apply Nash’s theory of perturbative geometry to the study of dark matter gravity in a higher-dimensional space–time. It is shown that the dark matter gravitational perturbations at local scale can be explained by the extrinsic curvature of the standard cosmology. In order to test our model, we use a spherically symmetric metric embedded in a five-dimensional bulk. As a result, considering a sample of 10 low surface brightness and 6 high surface brightness galaxies, we find a very good agreement with the observed rotation curves of smooth hybrid alpha-HI measurements. - Highlights: • The metric perturbation and the embedding lead naturally to a “brane-world”-like higher dimensional structure. • Nash’s theorem as a cornerstone of the formation of geometrical structures. • The dark matter gravitational perturbations at local scale can be explained by the extrinsic curvature. • A good agreement was found with the observed rotation curves of smooth hybrid alpha-HI measurements.

  13. Electrophilic dark matter with dark photon: from DAMPE to direct detection

    OpenAIRE

    Gu, Pei-Hong; He, Xiao-Gang

    2017-01-01

    The electron-position excess reported by DAMPE collaboration recently may be explained by an electrophilic dark matter. A standard model singlet fermion may play the role of such a dark matter when stablized by a dark $U(1)_X$ gauge symmetry. With such a model we construct the Yukawa couplings of the dark fermion to the usual leptons with a scalar mediator to dominate the dark matter annihilation. By appropriate choices of these Yukawa couplings, the dark matter can mostly annihilate into the...

  14. Dark matter seeding and the kinematics and rotation of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Garcia, M. Angeles, E-mail: mperezga@usal.es [Departamento de Fisica Fundamental and IUFFyM, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Silk, Joseph, E-mail: j.silk1@physics.ox.ac.uk [Institut d' Astrophysique, UPMC, 98 bis Boulevard Arago, Paris 75014 (France); Department of Physics and Astronomy, Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Beecroft Institute for Particle Astrophysics and Cosmology, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

    2012-05-01

    Self-annihilation of dark matter accreted from the galactic halo in the inner regions of neutron stars may significantly affect their kinematical properties, namely velocity kicks and rotation patterns. We find that if a stable long-lived single or multiple strangelet off-center seed forms leading to an asymmetric ejection of matter and radiation, there is a significant modification in linear and angular momentum observables of the star.

  15. Multi-Component Dark Matter: the vector and fermion case

    OpenAIRE

    Ahmed, Aqeel; Duch, Mateusz; Grzadkowski, Bohdan; Iglicki, Michal

    2017-01-01

    A generic 2-3 component dark matter setup has been discussed. Dark matter candidates have been stabilized by a discrete $Z_2 \\!\\times\\! Z_2^\\prime$ symmetry. It turns out that non-trivial and interesting implications of multi-component dark sector emerge if standard annihilation channels are suppressed. In that case semi-annihilations, conversions and decays are crucial for the evolution of the dark matter abundance and its present value. The generic observations have been illustrated within ...

  16. Distinguishing cold dark matter dwarfs from self-interacting dark matter dwarfs in baryonic simulations

    Science.gov (United States)

    Strickland, Emily; Fitts, Alex; Boylan-Kolchin, Michael

    2018-01-01

    Our collaboration has simulated several high-resolution (mbaryon = 500Mo, mdm = 2500Mo) cosmological zoom-in simulations of isolated dwarf galaxies. We simulate each galaxy in standard cold dark matter (ΛCDM) as well as a self-interacting dark matter (SIDM) (with a cross section of σ/m ~ 1 cm2/g), both with and without baryons, to identify distinguishing characteristics between the two. The simulations are run using GIZMO, a meshless-finite-mass (MFM) hydrodynamical code, and are part of the Feedback in Realistic Environments (FIRE) project. By analyzing both the global properties and inner structure of the dwarfs in varying dark matter prescriptions, we provide a side-by-side comparison of isolated, dark matter dominated galaxies at the mass scale where differences in the two models of dark matter are thought to be the most obvious. We find that the edge of classical dwarfs and ultra-faint dwarfs (UFDs) (at ~105 Mo) provides the clearest window for distinguishing between the two theories. Here our SIDM galaxies continue to display a cored inner profile unlike their CDM counterparts. The SIDM versions of each galaxy also have measurably lower stellar velocity dispersions than their CDM counterparts.

  17. Scalar field dark matter in hybrid approach

    Science.gov (United States)

    Friedrich, Pavel; Prokopec, Tomislav

    2017-10-01

    We develop a hybrid formalism suitable for modeling scalar field dark matter, in which the phase-space distribution associated with the real scalar field is modeled by statistical equal-time two-point functions and gravity is treated by two stochastic gravitational fields in the longitudinal gauge (in this work we neglect vector and tensor gravitational perturbations). Inspired by the commonly used Newtonian Vlasov-Poisson system, we firstly identify a suitable combination of equal-time two-point functions that defines the phase-space distribution associated with the scalar field and then derive both a kinetic equation that contains relativistic scalar matter corrections as well as linear gravitational scalar field equations whose sources can be expressed in terms of a momentum integral over the phase-space distribution function. Our treatment generalizes the commonly used classical scalar field formalism, in that it allows for modeling of (dynamically generated) vorticity and perturbations in anisotropic stresses of the scalar field. It also allows for a systematic inclusion of relativistic and higher-order corrections that may be used to distinguish different dark matter scenarios. We also provide initial conditions for the statistical equal-time two-point functions of the matter scalar field in terms of gravitational potentials and the scale factor.

  18. DarkSUSY 6 : An Advanced Tool to Compute Dark Matter Properties Numerically

    OpenAIRE

    Bringmann, Torsten; Edsjo, Joakim; Gondolo, Paolo; Ullio, Piero; Bergstrom, Lars

    2018-01-01

    The nature of dark matter remains one of the key science questions. Weakly Interacting Massive Particles (WIMPs) are among the best motivated particle physics candidates, allowing to explain the measured dark matter density by employing standard big-bang thermodynamics. Examples include the lightest supersymmetric particle, though many alternative particles have been suggested as a solution to the dark matter puzzle. We introduce here a radically new version of the widely used DarkSUSY packag...

  19. Direct couplings of mimetic dark matter and their cosmological effects

    OpenAIRE

    Shen, Liuyuan; Mou, Yicen; Zheng, Yunlong; Li, Mingzhe

    2017-01-01

    The original mimetic model was proposed to take the role of dark matter. In this paper we consider possible direct interactions of the mimetic dark matter with other matter in the universe, especially the standard model particles such as baryons and photons. By imposing shift symmetry, the mimetic dark matter field can only have derivative couplings. We discuss the possibilities of generating baryon number asymmetry and cosmic birefringence in the universe based on the derivative couplings of...

  20. Galactic dark matter in the phantom field

    Science.gov (United States)

    Li, Ming-Hsun; Yang, Kwei-Chou

    2012-12-01

    We investigate the possibility that the galactic dark matter exists in a scenario where the phantom field is responsible for the dark energy. We obtain the statically and spherically approximate solution for this kind of galaxy system with a supermassive black hole at its center. The solution of the metric functions is satisfied with gtt=-grr-1. Constrained by the observation of the rotational stars moving in circular orbits with nearly constant tangential speed in a spiral galaxy, the background of the phantom field which is spatially inhomogeneous has an exponential potential. To avoid the well-known quantum instability of the vacuum at high frequencies, the phantom field defined in an effective theory is valid only at low energies. Under this assumption, we further investigate the following properties. The absorption cross section of the low-energy S-wave excitations of the phantom field into the central black hole is shown to be the horizontal area of the central black hole. Because the infalling phantom particles have a total negative energy, the accretion of the phantom energy is related to the decrease of the black hole mass, which is estimated to be much less than a solar mass in the lifetime of the Universe. Using a simple model with the cold dark matter very weakly coupled to the “low-frequency” phantom particles that are generated from the background, we show that these two densities can be quasistable in the galaxy.

  1. Terrestrial effects on dark matter-electron scattering experiments

    DEFF Research Database (Denmark)

    Emken, Timon; Kouvaris, Chris; Shoemaker, Ian M.

    2017-01-01

    techniques involving detection of dark matter-electron scattering offer new sensitivity to sub-GeV dark matter. Typically however it is implicitly assumed that the dark matter is not altered as it traverses the Earth to arrive at the detector. In this paper we study in detail the effects of terrestrial...... stopping on dark photon models of dark matter, and find that they significantly reduce the sensitivity of XENON10 and DAMIC. In particular we find that XENON10 only excludes masses in the range (5-3000) MeV while DAMIC only probes (20-50) MeV. Their corresponding cross section sensitivity is reduced...

  2. The Galactic Halo in Mixed Dark Matter Cosmologies

    NARCIS (Netherlands)

    Anderhalden, D.; Diemand, J.; Bertone, G.; Macciò, A.V.; Schneider, A.

    2012-01-01

    A possible solution to the small scale problems of the cold dark matter (CDM) scenario is that the dark matter consists of two components, a cold and a warm one. We perform a set of high resolution simulations of the Milky Way halo varying the mass of the WDM particle (mWDM) and the cosmic dark

  3. The Logotropic Dark Fluid as a unification of dark matter and dark energy

    Directory of Open Access Journals (Sweden)

    Pierre-Henri Chavanis

    2016-07-01

    Full Text Available We propose a heuristic unification of dark matter and dark energy in terms of a single “dark fluid” with a logotropic equation of state P=Aln⁡(ρ/ρP, where ρ is the rest-mass density, ρP=5.16×1099gm−3 is the Planck density, and A is the logotropic temperature. The energy density ϵ is the sum of a rest-mass energy term ρc2∝a−3 mimicking dark matter and an internal energy term u(ρ=−P(ρ−A=3Aln⁡a+C mimicking dark energy (a is the scale factor. The logotropic temperature is approximately given by A≃ρΛc2/ln⁡(ρP/ρΛ≃ρΛc2/[123ln⁡(10], where ρΛ=6.72×10−24gm−3 is the cosmological density and 123 is the famous number appearing in the ratio ρP/ρΛ∼10123 between the Planck density and the cosmological density. More precisely, we obtain A=2.13×10−9gm−1s−2 that we interpret as a fundamental constant. At the cosmological scale, our model fulfills the same observational constraints as the ΛCDM model (they will differ in about 25 Gyrs when the logotropic universe becomes phantom. However, the logotropic dark fluid has a nonzero speed of sound and a nonzero Jeans length which, at the beginning of the matter era, is about λJ=40.4pc, in agreement with the minimum size of the dark matter halos observed in the universe. The existence of a nonzero Jeans length may solve the missing satellite problem. At the galactic scale, the logotropic pressure balances the gravitational attraction, providing halo cores instead of cusps. This may solve the cusp problem. The logotropic equation of state generates a universal rotation curve that agrees with the empirical Burkert profile of dark matter halos up to the halo radius. In addition, it implies that all the dark matter halos have the same surface density Σ0=ρ0rh=141M⊙/pc2 and that the mass of dwarf galaxies enclosed within a sphere of fixed radius ru=300pc has the same value M300=1.93×107M⊙, in remarkable agreement with the observations [Donato et al. [10

  4. Strongly coupled dark energy with warm dark matter vs. LCDM

    Science.gov (United States)

    Bonometto, S. A.; Mezzetti, M.; Mainini, R.

    2017-10-01

    Cosmologies including strongly Coupled (SC) Dark Energy (DE) and Warm dark matter (SCDEW) are based on a conformally invariant (CI) attractor solution modifying the early radiative expansion. Then, aside of radiation, a kinetic field Φ and a DM component account for a stationary fraction, ~ 1 %, of the total energy. Most SCDEW predictions are hardly distinguishable from LCDM, while SCDEW alleviates quite a few LCDM conceptual problems, as well as its difficulties to meet data below the average galaxy scale. The CI expansion begins at the end of inflation, when Φ (future DE) possibly plays a role in reheating, and ends at the Higgs scale. Afterwards, a number of viable options is open, allowing for the transition from the CI expansion to the present Universe. In this paper: (i) We show how the attractor is recovered when the spin degrees of freedom decreases. (ii) We perform a detailed comparison of CMB anisotropy and polarization spectra for SCDEW and LCDM, including tensor components, finding negligible discrepancies. (iii) Linear spectra exhibit a greater parameter dependence at large k's, but are still consistent with data for suitable parameter choices. (iv) We also compare previous simulation results with fresh data on galaxy concentration. Finally, (v) we outline numerical difficulties at high k. This motivates a second related paper [1], where such problems are treated in a quantitative way.

  5. Mimicking dark matter in Horndeski gravity

    Science.gov (United States)

    Rinaldi, Massimiliano

    2017-06-01

    Since the rediscovery of Horndeski gravity, a lot of work has been devoted to the exploration of its properties, especially in the context of dark energy. However, one sector of this theory, namely the one containing the coupling of the Einstein tensor to the kinetic term of the scalar field, shows some surprising features in the construction of black holes and neutron stars. Motivated by these new results, I explore the possibility that this sector of Horndeski gravity can mimic cold dark matter at cosmological level and also explain the flattening of galactic rotation curves. I will show that, in principle, it is possible to achieve both goals with at least two scalar fields and a minimal set of assumptions.

  6. Dark matter, neutron stars, and strange quark matter.

    Science.gov (United States)

    Perez-Garcia, M Angeles; Silk, Joseph; Stone, Jirina R

    2010-10-01

    We show that self-annihilating weakly interacting massive particle (WIMP) dark matter accreted onto neutron stars may provide a mechanism to seed compact objects with long-lived lumps of strange quark matter, or strangelets, for WIMP masses above a few GeV. This effect may trigger a conversion of most of the star into a strange star. We use an energy estimate for the long-lived strangelet based on the Fermi-gas model combined with the MIT bag model to set a new limit on the possible values of the WIMP mass that can be especially relevant for subdominant species of massive neutralinos.

  7. The dark matter distribution of M87 and NGC 1399

    Science.gov (United States)

    Tsai, John C.

    1993-01-01

    Recent X-ray observations of clusters of galaxies indicate that, outside the innermost about 100 kpc region, the ratio of dark matter density to baryonic matter density declines with radius. We show that this result is consistent with a cold dark matter simulation, suggesting the presence of dissipationless dark matter in the observed clusters. This is contrary to previous suggestions that dissipational baryonic dark matter is required to explain the decline in the density ratio. The simulation further shows that, in the inner 100 kpc region, the density ratio should rise with radius. We confirm this property in M87 and NGC 1399, which are close enough to allow the determination of the density ratio in the required inner region. X-ray mappings of the dark matter distribution in clusters of galaxies are therefore consistent with the presence of dissipationless dark matter.

  8. Detecting dark matter with imploding pulsars in the galactic center.

    Science.gov (United States)

    Bramante, Joseph; Linden, Tim

    2014-11-07

    The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent.

  9. Dark Energy: The Shadowy Reflection of Dark Matter?

    Directory of Open Access Journals (Sweden)

    Kostas Kleidis

    2016-03-01

    Full Text Available In this article, we review a series of recent theoretical results regarding a conventional approach to the dark energy (DE concept. This approach is distinguished among others for its simplicity and its physical relevance. By compromising General Relativity (GR and Thermodynamics at cosmological scale, we end up with a model without DE. Instead, the Universe we are proposing is filled with a perfect fluid of self-interacting dark matter (DM, the volume elements of which perform hydrodynamic flows. To the best of our knowledge, it is the first time in a cosmological framework that the energy of the cosmic fluid internal motions is also taken into account as a source of the universal gravitational field. As we demonstrate, this form of energy may compensate for the DE needed to compromise spatial flatness, while, depending on the particular type of thermodynamic processes occurring in the interior of the DM fluid (isothermal or polytropic, the Universe depicts itself as either decelerating or accelerating (respectively. In both cases, there is no disagreement between observations and the theoretical prediction of the distant supernovae (SNe Type Ia distribution. In fact, the cosmological model with matter content in the form of a thermodynamically-involved DM fluid not only interprets the observational data associated with the recent history of Universe expansion, but also confronts successfully with every major cosmological issue (such as the age and the coincidence problems. In this way, depending on the type of thermodynamic processes in it, such a model may serve either for a conventional DE cosmology or for a viable alternative one.

  10. Hidden charged dark matter and chiral dark radiation

    Science.gov (United States)

    Ko, P.; Nagata, Natsumi; Tang, Yong

    2017-10-01

    In the light of recent possible tensions in the Hubble constant H0 and the structure growth rate σ8 between the Planck and other measurements, we investigate a hidden-charged dark matter (DM) model where DM interacts with hidden chiral fermions, which are charged under the hidden SU(N) and U(1) gauge interactions. The symmetries in this model assure these fermions to be massless. The DM in this model, which is a Dirac fermion and singlet under the hidden SU(N), is also assumed to be charged under the U(1) gauge symmetry, through which it can interact with the chiral fermions. Below the confinement scale of SU(N), the hidden quark condensate spontaneously breaks the U(1) gauge symmetry such that there remains a discrete symmetry, which accounts for the stability of DM. This condensate also breaks a flavor symmetry in this model and Nambu-Goldstone bosons associated with this flavor symmetry appear below the confinement scale. The hidden U(1) gauge boson and hidden quarks/Nambu-Goldstone bosons are components of dark radiation (DR) above/below the confinement scale. These light fields increase the effective number of neutrinos by δNeff ≃ 0.59 above the confinement scale for N = 2, resolving the tension in the measurements of the Hubble constant by Planck and Hubble Space Telescope if the confinement scale is ≲1 eV. DM and DR continuously scatter with each other via the hidden U(1) gauge interaction, which suppresses the matter power spectrum and results in a smaller structure growth rate. The DM sector couples to the Standard Model sector through the exchange of a real singlet scalar mixing with the Higgs boson, which makes it possible to probe our model in DM direct detection experiments. Variants of this model are also discussed, which may offer alternative ways to investigate this scenario.

  11. Direct couplings of mimetic dark matter and their cosmological effects

    Science.gov (United States)

    Shen, Liuyuan; Mou, Yicen; Zheng, Yunlong; Li, Mingzhe

    2018-01-01

    The original mimetic model was proposed to take the role of dark matter. In this paper we consider possible direct interactions of mimetic dark matter with other matter in the universe, especially standard model particles such as baryons and photons. By imposing shift symmetry, the mimetic dark matter field can only have derivative couplings. We discuss the possibilities of generating baryon number asymmetry and cosmic birefringence in the universe based on the derivative couplings of mimetic dark matter to baryons and photons. Supported by NSFC (11422543, 11653002)

  12. Exploring the mirror matter interpretation of the DAMA experiment: Has the dark matter problem been solved?

    OpenAIRE

    Foot, R.

    2004-01-01

    The self consistency between the impressive DAMA annual modulation signal and the differential energy spectrum is an important test for dark matter candidates.Mirror matter-type dark matter passes this test while other dark matter candidates, including standard (spin-independent) WIMPs and mini-electric charged particle dark matter, do not do so well.We argue that the unique properties of mirror matter-type dark matter seem to be just those required to fully explain the data, suggesting that ...

  13. Galilean equivalence for galactic dark matter.

    Science.gov (United States)

    Kesden, Michael; Kamionkowski, Marc

    2006-09-29

    Satellite galaxies are tidally disrupted as they orbit the Milky Way. If dark matter (DM) experiences a stronger self-attraction than baryons, stars will preferentially gain rather than lose energy during tidal disruption, leading to an enhancement in the trailing compared to the leading tidal stream. The Sgr dwarf galaxy is seen to have roughly equal streams, challenging models in which DM and baryons accelerate differently by more than 10%. Future observations and a better understanding of DM distribution should allow detection of equivalence violation at the percent level.

  14. Re-ionization and decaying dark matter

    Science.gov (United States)

    Dodelson, Scott; Jubas, Jay M.

    1991-01-01

    Gunn-Peterson tests suggest that the Universe was reionized after the standard recombination epoch. A systematic treatment is presented of the ionization process by deriving the Boltzmann equations appropriate to this regime. A compact solution for the photon spectrum is found in terms of the ionization ratio. These equations are then solved numerically for the Decaying Dark Matter scenario, wherein neutrinos with mass of order 30 eV radiatively decay producing photons which ionize the intergalactic medium. It was found that the neutrino mass and lifetime are severely constrained by Gunn-Peterson tests, observations of the diffuse photon spectrum in the ultraviolet regime, and the Hubble parameter.

  15. Prospects for detecting supersymmetric dark matter in the Galactic halo

    NARCIS (Netherlands)

    Springel, V.; White, S. D. M.; Frenk, C. S.; Navarro, J. F.; Jenkins, A.; Vogelsberger, M.; Wang, J.; Ludlow, A.; Helmi, A.

    2008-01-01

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species(1). In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at

  16. Simulating Gravity: Dark Matter and Gravitational Lensing in the Classroom

    Science.gov (United States)

    Ford, Jes; Stang, Jared; Anderson, Catherine

    2015-01-01

    Dark matter makes up most of the matter in the universe but very little of a standard introductory physics curriculum. Here we present our construction and use of a spandex sheet-style gravity simulator to qualitatively demonstrate two aspects of modern physics related to dark matter. First, we describe an activity in which students explore the…

  17. Dark Energy and Matter Evolution from Lensing Tomography

    OpenAIRE

    Hu, Wayne

    2002-01-01

    Reconstructed from lensing tomography, the evolution of the dark matter density field in the well-understood linear regime can provide model-independent constraints on the growth function of structure and the evolution of the dark energy density. We examine this potential in the context that high-redshift cosmology has in the future been fixed by CMB measurements. We construct sharp tests for the existence of multiple dark matter components or a dark energy component that is not a cosmologica...

  18. Testing Lorentz invariance of dark matter

    CERN Document Server

    Blas, Diego; Sibiryakov, Sergey

    2012-01-01

    We study the possibility to constrain deviations from Lorentz invariance in dark matter (DM) with cosmological observations. Breaking of Lorentz invariance generically introduces new light gravitational degrees of freedom, which we represent through a dynamical timelike vector field. If DM does not obey Lorentz invariance, it couples to this vector field. We find that this coupling affects the inertial mass of small DM halos which no longer satisfy the equivalence principle. For large enough lumps of DM we identify a (chameleon) mechanism that restores the inertial mass to its standard value. As a consequence, the dynamics of gravitational clustering are modified. Two prominent effects are a scale dependent enhancement in the growth of large scale structure and a scale dependent bias between DM and baryon density perturbations. The comparison with the measured linear matter power spectrum in principle allows to bound the departure from Lorentz invariance of DM at the per cent level.

  19. Testing Lorentz invariance of dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego [Theory Group, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Ivanov, Mikhail M.; Sibiryakov, Sergey, E-mail: diego.blas@cern.ch, E-mail: mm.ivanov@physics.msu.ru, E-mail: sibir@inr.ac.ru [Faculty of Physics, Moscow State University, Vorobjevy Gory, 119991 Moscow (Russian Federation)

    2012-10-01

    We study the possibility to constrain deviations from Lorentz invariance in dark matter (DM) with cosmological observations. Breaking of Lorentz invariance generically introduces new light gravitational degrees of freedom, which we represent through a dynamical timelike vector field. If DM does not obey Lorentz invariance, it couples to this vector field. We find that this coupling affects the inertial mass of small DM halos which no longer satisfy the equivalence principle. For large enough lumps of DM we identify a (chameleon) mechanism that restores the inertial mass to its standard value. As a consequence, the dynamics of gravitational clustering are modified. Two prominent effects are a scale dependent enhancement in the growth of large scale structure and a scale dependent bias between DM and baryon density perturbations. The comparison with the measured linear matter power spectrum in principle allows to bound the departure from Lorentz invariance of DM at the per cent level.

  20. Probing Sub-GeV Dark Matter with Conventional Detectors

    DEFF Research Database (Denmark)

    Kouvaris, Chris; Pradler, Josef

    2017-01-01

    The direct detection of dark matter particles with mass below the GeV scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic dark matter nucleus scattering sets a principal limit on detectability. Here, we...... propose to bypass the kinematic limitations by considering the inelastic channel of photon emission from bremsstrahlung in the nuclear recoil. Our proposed method allows us to set the first limits on dark matter below 500 MeV in the plane of dark matter mass and cross section with nucleons. In situations...... where a dark-matter-electron coupling is suppressed, bremsstrahlung may constitute the only path to probe low-mass dark matter awaiting new detector technologies with lowered recoil energy thresholds....

  1. Dynamics of Stars, Dark Matter and the Universe

    DEFF Research Database (Denmark)

    Samsing, Johan Georg Mulvad

    a new model independent way of doing this which also seems promising for measuring modifications to the theory of gravity itself. On slightly smaller scales I looked into what happens when two dark matter structures merge. Numerical simulations show that a smaller fraction of the dark matter particles...... stellar systems. I further did a study on how well one can measure the 3D shape of a single dark matter structure. Dark matter structures attract a huge amount of gas during their formations which heats up and emit X-rays. I showed that one can estimate the dark matter structure shape from observation...... of these X-rays alone. This has implication for mass measurements which can be used for constraining the amount of matter and dark energy we have in our universe. On even smaller scales I did an interesting study on the interaction between stars and black holes. I especially looked into the interaction where...

  2. Multiple dark matter scenarios from ubiquitous stringy throats

    DEFF Research Database (Denmark)

    Chialva, D.; Dev, P.S.B.; Mazumdar, A.

    2013-01-01

    We discuss the possibility of having multiple Kaluza-Klein dark matter candidates which arise naturally in generic type-IIB string theory compactification scenarios. These dark matter candidates reside in various throats of the Calabi-Yau manifold. In principle, they can come with a varied range......, we find that the mass scales allowed for the Kaluza-Klein dark matter particles in various throats can vary between 0.1 eV and 10 TeV, depending upon the throat geometry. Thus, there could be simultaneously more than one kind of cold (and possibly warm and hot) dark matter components residing...... in the Universe. This multiple dark matter scenario could weaken the bound on a conventional supersymmetric dark matter candidate and could also account for extra relativistic degrees of freedom in our Universe....

  3. Computational Science-based Research on Dark Matter at KISTI

    Science.gov (United States)

    Cho, Kihyeon

    2017-06-01

    The Standard Model of particle physics was established after discovery of the Higgs boson. However, little is known about dark matter, which has mass and constitutes approximately five times the number of standard model particles in space. The cross-section of dark matter is much smaller than that of the existing Standard Model, and the range of the predicted mass is wide, from a few eV to several PeV. Therefore, massive amounts of astronomical, accelerator, and simulation data are required to study dark matter, and efficient processing of these data is vital. Computational science, which can combine experiments, theory, and simulation, is thus necessary for dark matter research. A computational science and deep learning-based dark matter research platform is suggested for enhanced coverage and sharing of data. Such an approach can efficiently add to our existing knowledge on the mystery of dark matter.

  4. Probing Sub-GeV Dark Matter with Conventional Detectors.

    Science.gov (United States)

    Kouvaris, Chris; Pradler, Josef

    2017-01-20

    The direct detection of dark matter particles with mass below the GeV scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic dark matter nucleus scattering sets a principal limit on detectability. Here, we propose to bypass the kinematic limitations by considering the inelastic channel of photon emission from bremsstrahlung in the nuclear recoil. Our proposed method allows us to set the first limits on dark matter below 500 MeV in the plane of dark matter mass and cross section with nucleons. In situations where a dark-matter-electron coupling is suppressed, bremsstrahlung may constitute the only path to probe low-mass dark matter awaiting new detector technologies with lowered recoil energy thresholds.

  5. Asymmetric radiation transfer based on linear light-matter interaction

    Science.gov (United States)

    Jia, Zi-xun; Shuai, Yong; Zhang, Jia-hui; Tan, He-ping

    2017-11-01

    In this paper, asymmetric radiation transfer based on linear light-matter interaction has been proposed. Two naturally different numerical methods, finite difference time domain (FDTD) and rigorous coupled wave analysis (RCWA), are utilized to verify that asymmetric radiation transfer can exist for linear plasmonic meta-material. The overall asymmetry has been introduced to evaluate bifacial transmission. Physics for the asymmetric optical responses have been understood via electromagnetic field distributions. Dispersion relation for surface plasmon polariton (SPP) and temporal coupled mode theory (TCMT) have been employed to verify the physics discussed in the paper. Geometric effects and the disappearing of asymmetric transmission have also been investigated. The results gained herein broaden the cognition of linear optical system, facilitate the design of novel energy harvesting device.

  6. New Views on Dark Matter from Emergent Gravity

    Science.gov (United States)

    Sun, Sichun; Zhang, Yun-Long

    2018-01-01

    We discuss a scenario that apparent dark matter comes from the induced gravity in the (3+1)- dimensional spacetime, which can be embedded into one higher dimensional flat spacetime. The stress tensor of dark energy and dark matter is identified with the Brown-York stress tensor on the hypersurface, and we find an interesting constraint relation between the dark matter and dark energy density parameter and baryonic density parameter. Our approach may show a new understanding for Verlinde's emergent gravity from higher dimensions. We also comment on some phenomenological implications, including gravitational wave solutions and MOND limit.

  7. New Views on Dark Matter from Emergent Gravity

    Directory of Open Access Journals (Sweden)

    Sun Sichun

    2018-01-01

    Full Text Available We discuss a scenario that apparent dark matter comes from the induced gravity in the (3+1- dimensional spacetime, which can be embedded into one higher dimensional flat spacetime. The stress tensor of dark energy and dark matter is identified with the Brown-York stress tensor on the hypersurface, and we find an interesting constraint relation between the dark matter and dark energy density parameter and baryonic density parameter. Our approach may show a new understanding for Verlinde’s emergent gravity from higher dimensions. We also comment on some phenomenological implications, including gravitational wave solutions and MOND limit.

  8. Evidence for dark matter interactions in cosmological precision data?

    Energy Technology Data Exchange (ETDEWEB)

    Lesgourgues, Julien [Institut für Theoretische Teilchenphysik und Kosmologie (TTK), RWTH Aachen University, Aachen, 52056 Germany (Germany); Marques-Tavares, Gustavo; Schmaltz, Martin, E-mail: Julien.Lesgourgues@physik.rwth-aachen.de, E-mail: gusmt@stanford.edu, E-mail: schmaltz@bu.edu [Physics Department, Boston University, Boston, MA, 02215 (United States)

    2016-02-01

    We study a two-parameter extension of the cosmological standard model ΛCDM in which cold dark matter interacts with a new form of dark radiation. The two parameters correspond to the energy density in the dark radiation fluid ΔN{sub fluid} and the interaction strength between dark matter and dark radiation. The interactions give rise to a very weak ''dark matter drag'' which damps the growth of matter density perturbations throughout radiation domination, allowing to reconcile the tension between predictions of large scale structure from the CMB and direct measurements of σ{sub 8}. We perform a precision fit to Planck CMB data, BAO, large scale structure, and direct measurements of the expansion rate of the universe today. Our model lowers the χ-squared relative to ΛCDM by about 12, corresponding to a preference for non-zero dark matter drag by more than 3σ. Particle physics models which naturally produce a dark matter drag of the required form include the recently proposed non-Abelian dark matter model in which the dark radiation corresponds to massless dark gluons.

  9. Low-Mass Dark Matter Search Results and Radiogenic Backgrounds for the Cryogenic Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Pepin, Mark David [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-12-01

    An ever-increasing amount of evidence suggests that approximately one quarter of the energy in the universe is composed of some non-luminous, and hitherto unknown, “dark matter”. Physicists from numerous sub-fields have been working on and trying to solve the dark matter problem for decades. The common solution is the existence of some new type of elementary particle with particular focus on weakly interacting massive particles (WIMPs). One avenue of dark matter research is to create an extremely sensitive particle detector with the goal of directly observing the interaction of WIMPs with standard matter. The Cryogenic Dark Matter Search (CDMS) project operated at the Soudan Underground Laboratory from 2003–2015, under the CDMS II and SuperCDMS Soudan experiments, with this goal of directly detecting dark matter. The next installation, SuperCDMS SNOLAB, is planned for near-future operation. The reason the dark-matter particle has not yet been observed in traditional particle physics experiments is that it must have very small cross sections, thus making such interactions extremely rare. In order to identify these rare events in the presence of a background of known particles and interactions, direct detection experiments employ various types and amounts of shielding to prevent known backgrounds from reaching the instrumented detector(s). CDMS utilized various gamma and neutron shielding to such an effect that the shielding, and other experimental components, themselves were sources of background. These radiogenic backgrounds must be understood to have confidence in any WIMP-search result. For this dissertation, radiogenic background studies and estimates were performed for various analyses covering CDMS II, SuperCDMS Soudan, and SuperCDMS SNOLAB. Lower-mass dark matter t c2 inent in the past few years. The CDMS detectors can be operated in an alternative, higher-biased, mode v to decrease their energy thresholds and correspondingly increase their sensitivity

  10. Search for dark matter in pp collisions at CMS

    CERN Document Server

    Yu, Shin-Shan

    2016-11-09

    Searches in CMS for dark matter in final states with invisible particles recoiling against jets, top, W, Z, photon, and Higgs are presented. Various topologies are explored, covering several specific dark-matter production modes. The summary in a simplified-model framework of various searches for direct dark matter production withthe CMS detector is discussed, highlighting sensitivities of the analyses under various assumptions of DM production.

  11. Di-photon resonance and Dark Matter as heavy pions

    CERN Document Server

    Redi, Michele; Tesi, Andrea; Vigiani, Elena

    2016-01-01

    We analyse confining gauge theories where the 750 GeV di-photon resonance is a composite techni-pion that undergoes anomalous decays into SM vectors. These scenarios naturally contain accidentally stable techni-pions Dark Matter candidates. The di-photon resonance can acquire a larger width by decaying into Dark Matter through the CP-violating $\\theta$-term of the new gauge theory reproducing the cosmological Dark Matter density as thermal relic.

  12. Dark Matter Cores in the Fornax and Sculptor Dwarf Galaxies

    DEFF Research Database (Denmark)

    C. Amorisco, Nicola; Zavala Franco, Jesus; J. L. de Boer, Thomas

    2014-01-01

    We combine the detailed Star Formation Histories of the Fornax and Sculptor dwarf Spheroidals with the mass assembly history of their dark matter halo progenitors to estimate if the energy deposited by Supernova type II (SNeII) is sufficient to create a substantial dark matter core. Assuming...... the efficiency of energy injection of the SNeII into dark matter particles is \\epsilon=0.05, we find that a single early episode, z...

  13. New dissipation mechanisms from multilevel dark matter scattering

    OpenAIRE

    Das, Anirban; Dasgupta, Basudeb

    2018-01-01

    Multilevel dark matter with diagonal and off-diagonal interactions shows a rich phenomenology in its self-scattering. If the interactions are mediated by a particle that is less massive than the dark matter, the Sommerfeld effect can lead to resonant enhancement of the scattering. For mediators lighter than the level separation, dark matter particles can upscatter to excited states and deexcite by emitting these mediators. We compute these cross sections, both above and below the kinematic th...

  14. TASI Lectures on Indirect Detection of Dark Matter

    OpenAIRE

    Slatyer, Tracy R.

    2017-01-01

    These lectures, presented at TASI 2016: Anticipating the Next Discoveries in Particle Physics, provide an introduction to some key methods and tools of indirect dark matter searches. Topics covered include estimation of dark matter signals, thermal freezeout and related scenarios, potential effects of dark matter annihilation on the early universe, modeling photon signals from annihilation or decay, and a brief and qualitative introduction to diffusive propagation of cosmic rays. The second h...

  15. Searches for Dark Matter with the ATLAS detector

    CERN Document Server

    Fischer, Cora; The ATLAS collaboration

    2017-01-01

    Dark matter searches carried out with the ATLAS experiment with Run 2 data are summarised and presented. Interpretations focus on simplified models where the dark matter particles are produced via the exchange of a heavy new mediator. The results of different analyses are combined as an exclusion in the plane m_DM vs M_med. Exclusion limits are also compared with direct dark matter search experiments.

  16. Dark matter and LHC: Complementarities and limitations arXiv

    CERN Document Server

    Robbins, G.; Arbey, A.; Boudaud, M.

    It is well known that dark matter density measurements, indirect and direct detection experiments, importantly complement the LHC in setting strong constraints on new physics scenarios. Yet, dark matter searches are subject to limitations which need to be considered for realistic analyses. For illustration, we explore the parameter space of the phenomenological MSSM and discuss the interplay of the constraints from dark matter searches and the LHC, and analyse the impact of the astrophysical uncertainties in some detail.

  17. Evidence for dark matter in the inner Milky Way

    OpenAIRE

    Iocco, Fabio; Pato, Miguel; Bertone, Gianfranco

    2015-01-01

    The ubiquitous presence of dark matter in the universe is today a central tenet in modern cosmology and astrophysics. Ranging from the smallest galaxies to the observable universe, the evidence for dark matter is compelling in dwarfs, spiral galaxies, galaxy clusters as well as at cosmological scales. However, it has been historically difficult to pin down the dark matter contribution to the total mass density in the Milky Way, particularly in the innermost regions of the Galaxy and in the so...

  18. Di-photon resonance and Dark Matter as heavy pions

    Energy Technology Data Exchange (ETDEWEB)

    Redi, Michele [INFN, Sezione di Firenze,Via G. Sansone, 1, I-50019 Sesto Fiorentino (Italy); Strumia, Alessandro [Dipartimento di Fisica dell’Università di Pisa and INFN,Pisa (Italy); Theory Division, CERN,Geneva (Switzerland); Tesi, Andrea [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States); Vigiani, Elena [Dipartimento di Fisica dell’Università di Pisa and INFN,Pisa (Italy)

    2016-05-13

    We analyse confining gauge theories where the 750 GeV di-photon resonance is a composite techni-pion that undergoes anomalous decays into SM vectors. These scenarios naturally contain accidentally stable techni-pions Dark Matter candidates. The di-photon resonance can acquire a larger width by decaying into Dark Matter through the CP-violating θ-term of the new gauge theory reproducing the cosmological Dark Matter density as a thermal relic.

  19. Dark Matter Decay between Phase Transitions at the Weak Scale

    Science.gov (United States)

    Baker, Michael J.; Kopp, Joachim

    2017-08-01

    We propose a new alternative to the weakly interacting massive particle paradigm for dark matter. Rather than being determined by thermal freeze-out, the dark matter abundance in this scenario is set by dark matter decay, which is allowed for a limited amount of time just before the electroweak phase transition. More specifically, we consider fermionic singlet dark matter particles coupled weakly to a scalar mediator S3 and to auxiliary dark sector fields, charged under the standard model gauge groups. Dark matter freezes out while still relativistic, so its abundance is initially very large. As the Universe cools down, the scalar mediator develops a vacuum expectation value (VEV), which breaks the symmetry that stabilizes dark matter. This allows dark matter to mix with charged fermions and decay. During this epoch, the dark matter abundance is reduced to give the value observed today. Later, the SM Higgs field also develops a VEV, which feeds back into the S3 potential and restores the dark sector symmetry. In a concrete model we show that this "VEV flip-flop" scenario is phenomenologically successful in the most interesting regions of its parameter space. We also comment on detection prospects at the LHC and elsewhere.

  20. Dark Matter Decay between Phase Transitions at the Weak Scale.

    Science.gov (United States)

    Baker, Michael J; Kopp, Joachim

    2017-08-11

    We propose a new alternative to the weakly interacting massive particle paradigm for dark matter. Rather than being determined by thermal freeze-out, the dark matter abundance in this scenario is set by dark matter decay, which is allowed for a limited amount of time just before the electroweak phase transition. More specifically, we consider fermionic singlet dark matter particles coupled weakly to a scalar mediator S_{3} and to auxiliary dark sector fields, charged under the standard model gauge groups. Dark matter freezes out while still relativistic, so its abundance is initially very large. As the Universe cools down, the scalar mediator develops a vacuum expectation value (VEV), which breaks the symmetry that stabilizes dark matter. This allows dark matter to mix with charged fermions and decay. During this epoch, the dark matter abundance is reduced to give the value observed today. Later, the SM Higgs field also develops a VEV, which feeds back into the S_{3} potential and restores the dark sector symmetry. In a concrete model we show that this "VEV flip-flop" scenario is phenomenologically successful in the most interesting regions of its parameter space. We also comment on detection prospects at the LHC and elsewhere.

  1. Dark matter and cosmic web story

    CERN Document Server

    Einasto, Jaan

    2014-01-01

    The concepts of dark matter and the cosmic web are some of the most significant developments in cosmology in the past century. They have decisively changed the classical cosmological paradigm, which was first elaborated upon during the first half of the 20th century but ran into serious problems in the second half. Today, they are integral parts of modern cosmology, which explains everything from the Big Bang to inflation to the large scale structure of the Universe. Dark Matter and Cosmic Web Story describes the contributions that led to a paradigm shift from the Eastern point of view. It describes the problems with the classical view, the attempts to solve them, the difficulties encountered by those solutions, and the conferences where the merits of the new concepts were debated. Amidst the science, the story of scientific work in a small country occupied by the Soviet Union and the tumultuous events that led to its breakup are detailed as well. This book is accompanied by a website which contains addit...

  2. Thermal dark matter via the flavon portal

    Science.gov (United States)

    Alvarado, Carlos; Elahi, Fatemeh; Raj, Nirmal

    2017-10-01

    Dark matter (DM) is added to the Froggatt-Nielsen (FN) mechanism, and conditions for its successful freeze-out identified. Requesting the FN scale ΛFN to be the cutoff of the theory renders freeze-out scenarios surprisingly few. Fermionic DM is typically charged under U (1 )FN, with the dominant annihilation channel a C P -even flavon + C P -odd flavon. A minimal case is when the DM-flavon coupling strength is O (1 ), with several implications: (1) the DM mass is O (100 GeV - 1 TeV ) , thanks to the WIMP coincidence, (2) requiring perturbativity of couplings puts a lower and upper limit on the flavor scale, 2 TeV ≲ΛFN≲14 TeV , on account of its relation to DM mass and couplings, (3) DM is a "secluded WIMP" effectively hidden from collider and direct detection searches. Limits on the masses of dark matter and mediators from kaon mixing measurements constitute the best constraints, surpassing Xenon1T, Fermi-LAT, and the LHC. Future direct detection searches, and collider searches for missing energy plus a single jet/bottom/top, are promising avenues for discovery.

  3. Phenomenology of Dirac Neutralino Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Matthew R.; Hooper, Dan; Kumar, Jason

    2013-09-01

    In supersymmetric models with an unbroken R-symmetry (rather than only R-parity), the neutralinos are Dirac fermions rather than Majorana. In this article, we discuss the phenomenology of neutralino dark matter in such models, including the calculation of the thermal relic abundance, and constraints and prospects for direct and indirect searches. Due to the large elastic scattering cross sections with nuclei predicted in R-symmetric models, we are forced to consider a neutralino that is predominantly bino, with very little higgsino mixing. We find a large region of parameter space in which bino-like Dirac neutralinos with masses between 10 and 380 GeV can annihilate through slepton exchange to provide a thermal relic abundance in agreement with the observed cosmological density, without relying on coannihilations or resonant annihilations. The signatures for the indirect detection of Dirac neutralinos are very different than predicted in the Majorana case, with annihilations proceeding dominately to $\\tau^+ \\tau^-$, $\\mu^+ \\mu^-$ and $e^+ e^-$ final states, without the standard chirality suppression. And unlike Majorana dark matter candidates, Dirac neutralinos experience spin-independent scattering with nuclei through vector couplings (via $Z$ and squark exchange), leading to potentially large rates at direct detection experiments. These and other characteristics make Dirac neutralinos potentially interesting within the context of recent direct and indirect detection anomalies. We also discuss the case in which the introduction of a small Majorana mass term breaks the $R$-symmetry, splitting the Dirac neutralino into a pair of nearly degenerate Majorana states.

  4. Enabling electroweak baryogenesis through dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, Marek [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Department of Physics and Michigan Center for Theoretical Physics, University of Michigan,450 Church St., Ann Arbor, MI 48109 (United States); Rindler-Daller, Tanja [Department of Physics and Michigan Center for Theoretical Physics, University of Michigan,450 Church St., Ann Arbor, MI 48109 (United States); Institut für Astrophysik, Universitätssternwarte Wien, University of Vienna,Türkenschanzstr. 17, 1180 Vienna (Austria); Wells, James D. [Department of Physics and Michigan Center for Theoretical Physics, University of Michigan,450 Church St., Ann Arbor, MI 48109 (United States)

    2016-06-09

    We study the impact on electroweak baryogenesis from a swifter cosmological expansion induced by dark matter. We detail the experimental bounds that one can place on models that realize it, and we investigate the modifications of these bounds that result from a non-standard cosmological history. The modifications can be sizeable if the expansion rate of the Universe increases by several orders of magnitude. We illustrate the impact through the example of scalar field dark matter, which can alter the cosmological history enough to enable a strong-enough first-order phase transition in the Standard Model when it is supplemented by a dimension six operator directly modifying the Higgs boson potential. We show that due to the modified cosmological history, electroweak baryogenesis can be realized, while keeping deviations of the triple Higgs coupling below HL-LHC sensitivies. The required scale of new physics to effectuate a strong-enough first order phase transition can change by as much as twenty percent as the expansion rate increases by six orders of magnitude.

  5. DARWIN: towards the ultimate dark matter detector

    Science.gov (United States)

    Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Amsler, C.; Aprile, E.; Arazi, L.; Arneodo, F.; Barrow, P.; Baudis, L.; Benabderrahmane, M. L.; Berger, T.; Beskers, B.; Breskin, A.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; Diglio, S.; Drexlin, G.; Duchovni, E.; Erdal, E.; Eurin, G.; Ferella, A.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Di Gangi, P.; Di Giovanni, A.; Galloway, M.; Garbini, M.; Geis, C.; Glueck, F.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hannen, V.; Hogenbirk, E.; Howlett, J.; Hilk, D.; Hils, C.; James, A.; Kaminsky, B.; Kazama, S.; Kilminster, B.; Kish, A.; Krauss, L. M.; Landsman, H.; Lang, R. F.; Lin, Q.; Linde, F. L.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morå, K. D.; Morteau, E.; Murra, M.; Naganoma, J.; Newstead, J. L.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; de Perio, P.; Persiani, R.; Piastra, F.; Piro, M. C.; Plante, G.; Rauch, L.; Reichard, S.; Rizzo, A.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schumann, M.; Schreiner, J.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M. C.; Simgen, H.; Sissol, P.; von Sivers, M.; Thers, D.; Thurn, J.; Tiseni, A.; Trotta, R.; Tunnell, C. D.; Valerius, K.; Vargas, M. A.; Wang, H.; Wei, Y.; Weinheimer, C.; Wester, T.; Wulf, J.; Zhang, Y.; Zhu, T.; Zuber, K.

    2016-11-01

    DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions. It will search for solar axions, galactic axion-like particles and the neutrinoless double-beta decay of 136Xe, as well as measure the low-energy solar neutrino flux with DARWIN detector and discuss its physics reach, the main sources of backgrounds and the ongoing detector design and R&D efforts.

  6. Dark Matter Substructure and Dwarf Galactic Satellites

    Directory of Open Access Journals (Sweden)

    Andrey Kravtsov

    2010-01-01

    Full Text Available A decade ago cosmological simulations of increasingly higher resolution were used to demonstrate that virialized regions of Cold Dark Matter (CDM halos are filled with a multitude of dense, gravitationally bound clumps. These dark matter subhalos are central regions of halos that survived strong gravitational tidal forces and dynamical friction during the hierarchical sequence of merging and accretion via which the CDM halos form. Comparisons with observations revealed that there is a glaring discrepancy between abundance of subhalos and luminous satellites of the Milky Way and Andromeda as a function of their circular velocity or bound mass within a fixed aperture. This large discrepancy, which became known as the “substructure” or the “missing satellites” problem, begs for an explanation. In this paper, the author reviews the progress made during the last several years both in quantifying the problem and in exploring possible scenarios in which it could be accommodated and explained in the context of galaxy formation in the framework of the CDM paradigm of structure formation. In particular, he shows that the observed luminosity function, radial distribution, and the remarkable similarity of the inner density profiles of luminous satellites can be understood within hierarchical CDM framework using a simple model in which efficiency of star formation monotonically decreases with decreasing virial mass satellites had before their accretion without any actual sharp galaxy formation threshold.

  7. Galactic Halos of Fluid Dark Matter

    CERN Document Server

    Arbey, A; Salati, Pierre; Arbey, Alexandre; Lesgourgues, Julien; Salati, Pierre

    2003-01-01

    Dwarf spiral galaxies - and in particular the prototypical DDO 154 - are known to be completely dominated by an unseen component. The putative neutralinos - so far the favored explanation for the astronomical dark matter - fail to reproduce the well measured rotation curves of those systems because these species tend to form a central cusp whose presence is not supported by observation. We have considered here a self-coupled charged scalar field as an alternative to neutralinos and investigated whether a Bose condensate of that field could account for the dark matter inside DDO 154 and more generally inside dwarf spirals. The size of the condensate turns out to be precisely determined by the scalar mass m and self-coupling lambda of the field. We find actually that for m^4 / lambda = 50 - 75 eV^4, the agreement with the measurements of the circular speed of DDO 154 is impressive whereas it lessens for larger systems. The cosmological behavior of the field is also found to be consistent - yet marginally - with...

  8. Direct Detection of Ultralight Dark Matter via Astronomical Ephemeris

    OpenAIRE

    Fukuda, Hajime; Matsumoto, Shigeki; Yanagida, Tsutomu T.

    2018-01-01

    A novel idea of the direct detection to search for a ultralight dark matter based on the interaction between the dark matter and a nucleon is proposed. Solar system bodies feel the dark matter wind and it acts as a resistant force opposing their motions. The astronomical ephemeris of solar system bodies is so precise that it has a strong capability to detect a dark matter whose mass is much lighter than O(1) eV. We have estimated the resistant force based on the calculation of the elastic sca...

  9. Analysis of the theoretical bias in dark matter direct detection

    Energy Technology Data Exchange (ETDEWEB)

    Catena, Riccardo, E-mail: riccardo.catena@theorie.physik.uni-goettingen.de [Institut für Theoretische Physik, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2014-09-01

    Fitting the model ''A'' to dark matter direct detection data, when the model that underlies the data is ''B'', introduces a theoretical bias in the fit. We perform a quantitative study of the theoretical bias in dark matter direct detection, with a focus on assumptions regarding the dark matter interactions, and velocity distribution. We address this problem within the effective theory of isoscalar dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle. We analyze 24 benchmark points in the parameter space of the theory, using frequentist and Bayesian statistical methods. First, we simulate the data of future direct detection experiments assuming a momentum/velocity dependent dark matter-nucleon interaction, and an anisotropic dark matter velocity distribution. Then, we fit a constant scattering cross section, and an isotropic Maxwell-Boltzmann velocity distribution to the simulated data, thereby introducing a bias in the analysis. The best fit values of the dark matter particle mass differ from their benchmark values up to 2 standard deviations. The best fit values of the dark matter-nucleon coupling constant differ from their benchmark values up to several standard deviations. We conclude that common assumptions in dark matter direct detection are a source of potentially significant bias.

  10. Electroweak supersymmetric dark matter annihilation in DM rate at NLO

    Energy Technology Data Exchange (ETDEWEB)

    Schmiemann, Saskia; Klasen, Michael; Kovarik, Karol; Steppeler, Patrick [Institut fuer Theoretische Physik, Universitaet Muenster (Germany); Herrmann, Bjoern [LAPTh, Universite Savoie Mont Blanc, CNRS (France); Harz, Julia [CNRS, UMR 7589, LPTHE, Paris (France); Sorbonne Universites, Institut Lagrange de Paris (ILP) (France); Sorbonne Universites, UPMC Univ Paris 06, UMR 7589, LPTHE (France)

    2016-07-01

    Today there are several pieces of evidence for dark matter. One well-known experiment is the measurement of the Dark Matter relic density by the Planck satellite. The talk introduces the 'Dark Matter at next-to-leading order' (DM rate at NLO) project which provides predictions for the dark matter relic density in the MSSM including higher-order corrections. After an introduction of the project DM rate at NLO, I shortly speak about the calculation of the electroweak processes. The main focus lies on the effects of the electroweak tree-level processes on the relic density of neutralinos within selected scenarios.

  11. Detecting superlight dark matter with Fermi-degenerate materials

    Energy Technology Data Exchange (ETDEWEB)

    Hochberg, Yonit [Theory Group, Lawrence Berkeley National Laboratory,Berkeley, CA 94709 (United States); Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94709 (United States); Pyle, Matt [Physics Department, University of California,Berkeley, CA 94709 (United States); Zhao, Yue [Michigan Center for Theoretical Physics, University of Michigan,Ann Arbor, MI 48109 (United States); Zurek, Kathryn M. [Theory Group, Lawrence Berkeley National Laboratory,Berkeley, CA 94709 (United States); Berkeley Center for Theoretical Physics, University of California,Berkeley, CA 94709 (United States)

    2016-08-08

    We examine in greater detail the recent proposal of using superconductors for detecting dark matter as light as the warm dark matter limit of O(keV). Detection of such light dark matter is possible if the entire kinetic energy of the dark matter is extracted in the scattering, and if the experiment is sensitive to O(meV) energy depositions. This is the case for Fermi-degenerate materials in which the Fermi velocity exceeds the dark matter velocity dispersion in the Milky Way of ∼10{sup −3}. We focus on a concrete experimental proposal using a superconducting target with a transition edge sensor in order to detect the small energy deposits from the dark matter scatterings. Considering a wide variety of constraints, from dark matter self-interactions to the cosmic microwave background, we show that models consistent with cosmological/astrophysical and terrestrial constraints are observable with such detectors. A wider range of viable models with dark matter mass below an MeV is available if dark matter or mediator properties (such as couplings or masses) differ at BBN epoch or in stellar interiors from those in superconductors. We also show that metal targets pay a strong in-medium suppression for kinetically mixed mediators; this suppression is alleviated with insulating targets.

  12. Dark Matter Searches and Prospects at the ATLAS Experiment

    CERN Document Server

    Taylor, Wendy; The ATLAS collaboration

    2017-01-01

    Despite the recent discovery of the Higgs boson contributing to the success of the Standard Model, the large excess of dark matter in the Universe remains one of the outstanding questions in science. This excess cannot be explained by Standard Model particles. A compelling hypothesis is that dark matter comprises particles that can be produced at the LHC, called Weakly Interacting Massive Particles (WIMPs). This talk presents a number of ATLAS searches for WIMP dark matter, outlining the main theoretical benchmarks and issues in terms of complementarity with direct and indirect detection experiments, and presents the prospects for dark matter searches at future LHC runs.

  13. Parallel universe, dark matter and invisible Higgs decays

    Energy Technology Data Exchange (ETDEWEB)

    Chakdar, Shreyashi, E-mail: chakdar@okstate.edu; Ghosh, Kirtiman, E-mail: kirti.gh@gmail.com; Nandi, S., E-mail: s.nandi@okstate.edu

    2014-05-01

    The existence of the dark matter with amount about five times the ordinary matter is now well established experimentally. There are now many candidates for this dark matter. However, dark matter could be just like the ordinary matter in a parallel universe. If both universes are described by a non-abelian gauge symmetries, then there will be no kinetic mixing between the ordinary photon and the dark photon, and the dark proton, dark electron and the corresponding dark nuclei, belonging to the parallel universe, will be stable. If the strong coupling constant, (α{sub s}){sub dark} in the parallel universe is five times that of α{sub s}, then the dark proton will be about five time heavier, explaining why the dark matter is five times the ordinary matter. However, the two sectors will still interact via the Higgs boson of the two sectors. This will lead to the existence of a second light Higgs boson, just like the Standard Model Higgs boson. This gives rise to the invisible decay modes of the Higgs boson which can be tested at the LHC, and the proposed ILC.

  14. Dark-matter decay as a complementary probe of multicomponent dark sectors.

    Science.gov (United States)

    Dienes, Keith R; Kumar, Jason; Thomas, Brooks; Yaylali, David

    2015-02-06

    In single-component theories of dark matter, the 2→2 amplitudes for dark-matter production, annihilation, and scattering can be related to each other through various crossing symmetries. The detection techniques based on these processes are thus complementary. However, multicomponent theories exhibit an additional direction for dark-matter complementarity: the possibility of dark-matter decay from heavier to lighter components. We discuss how this new detection channel may be correlated with the others, and demonstrate that the enhanced complementarity which emerges can be an important ingredient in probing and constraining the parameter spaces of such models.

  15. Cold dark matter. 1: The formation of dark halos

    Science.gov (United States)

    Gelb, James M.; Bertschinger, Edmund

    1994-01-01

    We use numerical simulations of critically closed cold dark matter (CDM) models to study the effects of numerical resolution on observable quantities. We study simulations with up to 256(exp 3) particles using the particle-mesh (PM) method and with up to 144(exp 3) particles using the adaptive particle-particle-mesh (P3M) method. Comparisons of galaxy halo distributions are made among the various simulations. We also compare distributions with observations, and we explore methods for identifying halos, including a new algorithm that finds all particles within closed contours of the smoothed density field surrounding a peak. The simulated halos show more substructure than predicted by the Press-Schechter theory. We are able to rule out all omega = 1 CDM models for linear amplitude sigma(sub 8) greater than or approximately = 0.5 because the simulations produce too many massive halos compared with the observations. The simulations also produce too many low-mass halos. The distribution of halos characterized by their circular velocities for the P3M simulations is in reasonable agreement with the observations for 150 km/s less than or = V(sub circ) less than or = 350 km/s.

  16. Stringent neutrino flux constraints on antiquark nugget dark matter

    Science.gov (United States)

    Gorham, P. W.; Rotter, B. J.

    2017-05-01

    Strongly interacting matter in the form of nuggets of nuclear-density material is not currently excluded as a dark matter candidate in the ten gram to hundreds of kilogram mass range. A recent variation on quark nugget dark matter models postulates that a first-order imbalance between matter and antimatter at the quark-gluon phase transition in the early Universe could lead to most of the dark matter bound into heavy (baryon number B ˜1 025) antiquark nuggets in the current epoch, explaining both the dark matter preponderance and the matter-antimatter asymmetry. Interactions of these massive objects with normal matter in the Earth and Sun lead to annihilation and an associated neutrino flux in the ˜30 MeV range. We calculate these fluxes for antiquark nuggets of sufficient flux to account for the dark matter and find that current neutrino flux limits from Super-Kamiokande (SuperK) exclude these objects as major dark matter candidates at a high confidence level. Antiquark nuggets in the previously allowed mass range cannot account for more than ˜15 % of the dark matter flux.

  17. Linear scale bounds on dark matter--dark radiation interactions and connection with the small scale crisis of cold dark matter

    DEFF Research Database (Denmark)

    Hannestad, Steen; Archidiacono, Maria; Bohr, Sebastian

    2017-01-01

    data to put constraints on the dark radiation component and its coupling to dark matter. We find that the values of the coupling allowed by the data imply a cut-off scale of the halo mass function consistent with the one required to match the observations of satellites in the Milky Way.......One of the open questions in modern cosmology is the small scale crisis of the cold dark matter paradigm. Increasing attention has recently been devoted to self-interacting dark matter models as a possible answer. However, solving the so-called "missing satellites" problem requires in addition...... the presence of an extra relativistic particle (dubbed dark radiation) scattering with dark matter in the early universe. Here we investigate the impact of different theoretical models devising dark matter dark radiation interactions on large scale cosmological observables. We use cosmic microwave background...

  18. Massive graviton dark matter with environment dependent mass: A natural explanation of the dark matter-baryon ratio

    Science.gov (United States)

    Aoki, Katsuki; Mukohyama, Shinji

    2017-11-01

    We propose a scenario that can naturally explain the observed dark matter-baryon ratio in the context of bimetric theory with a chameleon field. We introduce two additional gravitational degrees of freedom, the massive graviton and the chameleon field, corresponding to dark matter and dark energy, respectively. The chameleon field is assumed to be nonminimally coupled to dark matter, i.e., the massive graviton, through the graviton mass terms. We find that the dark matter-baryon ratio is dynamically adjusted to the observed value due to the energy transfer by the chameleon field. As a result, the model can explain the observed dark matter-baryon ratio independently from the initial abundance of them.

  19. Universal relations with fermionic dark matter

    Science.gov (United States)

    Krut, A.; Argüelles, C. R.; Rueda, J. A.; Ruffini, R.

    2018-01-01

    We have recently introduced a new model for the distribution of dark matter (DM) in galaxies, the Ruffini-Argüelles-Rueda (RAR) model, based on a self-gravitating system of massive fermions at finite temperatures. The RAR model, for fermion masses above keV, successfully describes the DM halos in galaxies, and predicts the existence of a denser quantum core towards the center of each configuration. We demonstrate here, for the first time, that the introduction of a cutoff in the fermion phase-space distribution, necessary to account for galaxies finite size and mass, defines a new solution with a compact quantum core which represents an alternative to the central black hole (BH) scenario for SgrA*. For a fermion mass in the range 48keV ≤ mc2 ≤ 345keV, the DM halo distribution fulfills the most recent data of the Milky Way rotation curves while harbors a dense quantum core of 4×106M⊙ within the S2 star pericenter. In particular, for a fermion mass of mc2 ˜ 50keV the model is able to explain the DM halos from typical dwarf spheroidal to normal elliptical galaxies, while harboring dark and massive compact objects from ˜ 103M⊙ tp to 108M⊙ at their respective centers. The model is shown to be in good agreement with different observationally inferred universal relations, such as the ones connecting DM halos with supermassive dark central objects. Finally, the model provides a natural mechanism for the formation of supermassive BHs as heavy as few ˜ 108M⊙. We argue that larger BH masses (few ˜ 109-10M⊙) may be achieved by assuming subsequent accretion processes onto the above heavy seeds, depending on accretion efficiency and environment.

  20. Universal relations with fermionic dark matter

    Directory of Open Access Journals (Sweden)

    Krut A.

    2018-01-01

    Full Text Available We have recently introduced a new model for the distribution of dark matter (DM in galaxies, the Ruffini-Argüelles-Rueda (RAR model, based on a self-gravitating system of massive fermions at finite temperatures. The RAR model, for fermion masses above keV, successfully describes the DM halos in galaxies, and predicts the existence of a denser quantum core towards the center of each configuration. We demonstrate here, for the first time, that the introduction of a cutoff in the fermion phase-space distribution, necessary to account for galaxies finite size and mass, defines a new solution with a compact quantum core which represents an alternative to the central black hole (BH scenario for SgrA*. For a fermion mass in the range 48keV ≤ mc2 ≤ 345keV, the DM halo distribution fulfills the most recent data of the Milky Way rotation curves while harbors a dense quantum core of 4×106M⊙ within the S2 star pericenter. In particular, for a fermion mass of mc2 ∼ 50keV the model is able to explain the DM halos from typical dwarf spheroidal to normal elliptical galaxies, while harboring dark and massive compact objects from ∼ 103M⊙ tp to 108M⊙ at their respective centers. The model is shown to be in good agreement with different observationally inferred universal relations, such as the ones connecting DM halos with supermassive dark central objects. Finally, the model provides a natural mechanism for the formation of supermassive BHs as heavy as few ∼ 108M⊙. We argue that larger BH masses (few ∼ 109−10M⊙ may be achieved by assuming subsequent accretion processes onto the above heavy seeds, depending on accretion efficiency and environment.

  1. Results from the LUX dark matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Markus, E-mail: markus.horn@yale.edu [Yale University, Dept. of Physics, 217 Prospect St., New Haven CT 06511 (United States); Akerib, D.S [Case Western Reserve University, Dept. of Physics, 10900 Euclid Ave, Cleveland, OH 44106 (United States); Araújo, H.M. [Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ (United Kingdom); Bai, X. [South Dakota School of Mines and Technology, 501 East St Joseph St., Rapid City SD 57701 (United States); Bailey, A.J. [Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ (United Kingdom); Balajthy, J. [University of Maryland, Dept. of Physics, College Park, MD 20742 (United States); Bernard, E. [Yale University, Dept. of Physics, 217 Prospect St., New Haven CT 06511 (United States); Bernstein, A. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94551 (United States); Bradley, A. [Case Western Reserve University, Dept. of Physics, 10900 Euclid Ave, Cleveland, OH 44106 (United States); Byram, D. [University of South Dakota, Dept. of Physics, 414E Clark St., Vermillion, SD 57069 (United States); Cahn, S.B. [Yale University, Dept. of Physics, 217 Prospect St., New Haven CT 06511 (United States); Carmona-Benitez, M.C. [University of California Santa Barbara, Dept. of Physics, Santa Barbara, CA (United States); Chan, C.; Chapman, J.J. [Brown University, Dept. of Physics, 182 Hope St., Providence, RI 02912 (United States); Chiller, A.A.; Chiller, C. [University of South Dakota, Dept. of Physics, 414E Clark St., Vermillion, SD 57069 (United States); Currie, A. [Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ (United Kingdom); Viveiros, L. de [LIP-Coimbra, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Dobi, A. [University of Maryland, Dept. of Physics, College Park, MD 20742 (United States); and others

    2015-06-01

    The LUX (Large Underground Xenon) experiment aims at the direct detection of dark matter particles via their collisions with xenon nuclei. The 370 kg two-phase liquid xenon time projection chamber measures simultaneously the scintillation and ionization from interactions in the target. The ratio of these two signals provides very good discrimination between potential nuclear recoil and electronic recoil signals to search for WIMP-nucleon scattering. The LUX detector operates at the Sanford Underground Research Facility (Lead, South Dakota, USA) since February 2013. First results were presented in late 2013 setting the world's most stringent limits on WIMP-nucleon scattering cross-sections over a wide range of WIMP masses. A 300 day run beginning in 2014 will further improve the sensitivity and new calibration techniques will reduce systematics for the WIMP signal search.

  2. Swiss-Cheese Gravitino Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Aalok

    2014-06-15

    We present a phenomenological model which we show can be obtained as a local realization of large volume D3/D7μ-Split SUSY on a nearly special Lagrangian three-cycle embedded in the big divisor of a Swiss-Cheese Calabi-Yau [Mansi Dhuria, Aalok Misra, (arXiv:1207.2774 [hep-ph]), Nucl. Phys. B867 (2013) 636–748]. After identification of the first generation of SM leptons and quarks with fermionic super-partners of four Wilson line moduli, we discuss the identification of gravitino as a potential dark matter candidate. We also show that it is possible to obtain a 125 GeV light Higgs in our setup.

  3. Swiss-Cheese Gravitino Dark Matter

    Science.gov (United States)

    Misra, Aalok

    2014-06-01

    We present a phenomenological model which we show can be obtained as a local realization of large volume D 3 / D 7 μ-Split SUSY on a nearly special Lagrangian three-cycle embedded in the big divisor of a Swiss-Cheese Calabi-Yau [Mansi Dhuria, Aalok Misra, arxiv:arXiv:1207.2774 [hep-ph], Nucl. Phys. B867 (2013) 636-748]. After identification of the first generation of SM leptons and quarks with fermionic super-partners of four Wilson line moduli, we discuss the identification of gravitino as a potential dark matter candidate. We also show that it is possible to obtain a 125 GeV light Higgs in our setup.

  4. Stability of BEC galactic dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Guzmán, F.S.; Lora-Clavijo, F.D.; González-Avilés, J.J.; Rivera-Paleo, F.J., E-mail: guzman@ifm.umich.mx, E-mail: fadulora@ifm.umich.mx, E-mail: javiles@ifm.umich.mx, E-mail: friverap@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán (Mexico)

    2013-09-01

    In this paper we show that spherically symmetric BEC dark matter halos, with the sin r/r density profile, that accurately fit galactic rotation curves and represent a potential solution to the cusp-core problem are unstable. We do this by introducing back the density profiles into the fully time-dependent Gross-Pitaevskii-Poisson system of equations. Using numerical methods to track the evolution of the system, we found that these galactic halos lose mass at an approximate rate of half of its mass in a time scale of dozens of Myr. We consider this time scale is enough as to consider these halos are unstable and unlikely to be formed. We provide some arguments to show that this behavior is general and discuss some other drawbacks of the model that restrict its viability.

  5. Search for Dark Matter with DEAP-3600

    Science.gov (United States)

    Jillings, Chris; DEAP-3600 Collaboration Collaboration

    2017-01-01

    DEAP-3600 is a single-phase liquid argon detector, which searches for dark matter particle interactions with 1 tonne fiducial target mass (3.6 tonnes total) contained in an ultra-pure acrylic vessel viewed by 255 high quantum efficiency photomultiplier tubes. It is located 2 km underground at SNOLAB, in Sudbury, Ontario. Radioactive backgrounds are controlled through pulse-shape discrimination in case of electromagnetic backgrounds (demonstrated with a smaller 7-kg prototype DEAP-1) and with a combination of excellent radiopurity, shielding and fiducialization for neutron and alpha backgrounds. The target sensitivity to spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons is 10-46 cm2 at 100 GeV/c2. Commissioning of the DEAP-3600 detector is now complete and physics data taking is starting. This talk will present an overview and status of the project, including early results demonstrating the detector performance.

  6. WIMP Dark Matter and the First Stars

    Science.gov (United States)

    Iocco, Fabio

    2010-11-01

    If weakly interacting massive particles (WIMPs) constitute the bulk of dark matter (DM), energy from the self-annihilation of these particles can affect Population III (Pop III) star formation via two mechanisms. Before the protostar forms, energy from DM annihilations can couple to primordial gas chemistry and slightly alter the properties of the cloud-without, however, inducing dramatic changes in the final mass of the star. Later, scattering between WIMPs and baryons within the protostar can in principle congregate enough DM for annihilations, rather than nuclear reactions, to support the star against gravity. In these proceedings I briefly summarize the state of the art of the field, as well the prospects for observing such stars.

  7. Mixed axion-wino dark matter

    Directory of Open Access Journals (Sweden)

    Kyu Jung Bae

    2015-07-01

    Full Text Available A variety of supersymmetric models give rise to a split mass spectrumcharacterized by very heavy scalars but sub-TeV gauginos, usually with awino-like LSP. Such models predict a thermally-produced underabundance ofwino-like WIMP dark matter so that non-thermal DM production mechanisms arenecessary.We examine the case where theories with a wino-like LSP are augmented by aPeccei-Quinn sector including an axion-axino-saxion supermultiplet in either theSUSY KSVZ or SUSY DFSZ models and with/without saxion decays to axions/axinos.We show allowed ranges of PQ breaking scale f_a for various cases which aregenerated by solving the necessary coupled Boltzmann equations.We also present results for a model with radiatively-driven naturalnessbut with a wino-like LSP.

  8. Dark Matter and Gauged Flavor Symmetries

    CERN Document Server

    Bishara, Fady; Kamenik, Jernej F; Stamou, Emmanuel; Zupan, Jure

    2015-01-01

    We investigate the phenomenology of flavored dark matter (DM). DM stability is guaranteed by an accidental ${\\mathcal Z}_3$ symmetry, a subgroup of the standard model (SM) flavor group that is not broken by the SM Yukawa interactions. We consider an explicit realization where the quark part of the SM flavor group is fully gauged. If the dominant interactions between DM and visible sector are through flavor gauge bosons, as we show for Dirac fermion flavored DM, then the DM mass is bounded between roughly $0.5$ TeV and $5$ TeV if the DM multiplet mass is split only radiatively. In general, however, no such relation exists. We demonstrate this using scalar flavored DM where the main interaction with the SM is through the Higgs portal. For both cases we derive constraints from flavor, cosmology, direct and indirect DM detection, and collider searches.

  9. Hot leptogenesis from thermal Dark Matter

    Science.gov (United States)

    Bernal, Nicolás; Fong, Chee Sheng

    2017-10-01

    In this work, we investigate a scenario in which heavy Majorana Right-Handed Neutrinos (RHNs) are in thermal equilibrium with a dark sector with temperature higher than the Standard Model (SM) thermal bath. Specifically, we consider the scenario in which thermal Dark Matter (DM) abundance is fixed from the freeze-out of DM annihilations into RHNs. Due to the inert nature of the RHNs, we show that it is possible for the two sectors to remain thermally decoupled by having more than two generations of the RHNs. The hotter temperature implies higher abundances of DM and RHNs with the following consequences. For leptogenesis, an enhancement in efficiency up to a factor of 51.6 can be obtained, though a resonant enhancement of CP violation is still required due to an upper mass bound of about 4 TeV for the RHNs. For the DM, an enhanced annihilation cross section up to a factor of 51.6 is required to obtain the correct DM abundance. This scenario can be probed via indirect detection of DM annihilating into RHNs, which then decay into h ν, Z ν and W± lmp with an enhanced annihilation cross section above the typical thermal value.

  10. Constraining a Thin Dark Matter Disk with Gaia

    OpenAIRE

    Schutz, Katelin; Lin, Tongyan; Safdi, Benjamin R.; Wu, Chih-Liang

    2017-01-01

    If a component of the dark matter has dissipative interactions, it could collapse to form a thin dark disk in our Galaxy that is coplanar with the baryonic disk. It has been suggested that dark disks could explain a variety of observed phenomena, including periodic comet impacts. Using the first data release from the Gaia space observatory, we search for a dark disk via its effect on stellar kinematics in the Milky Way. Our new limits disfavor the presence of a thin dark matter disk, and we p...

  11. Simplified models for dark matter face their consistent completions

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Dorival; Machado, Pedro A. N.; No, Jose Miguel

    2017-03-01

    Simplified dark matter models have been recently advocated as a powerful tool to exploit the complementarity between dark matter direct detection, indirect detection and LHC experimental probes. Focusing on pseudoscalar mediators between the dark and visible sectors, we show that the simplified dark matter model phenomenology departs significantly from that of consistent ${SU(2)_{\\mathrm{L}} \\times U(1)_{\\mathrm{Y}}}$ gauge invariant completions. We discuss the key physics simplified models fail to capture, and its impact on LHC searches. Notably, we show that resonant mono-Z searches provide competitive sensitivities to standard mono-jet analyses at $13$ TeV LHC.

  12. CMB constraint on dark matter annihilation after Planck 2015

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Nakayama, Kazunori, E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 133-0033 (Japan); Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Sekiguchi, Toyokazu [Institute for Basic Science, Center for Theoretical Physics of the Universe, Daejeon 34051 (Korea, Republic of)

    2016-05-10

    We update the constraint on the dark matter annihilation cross section by using the recent measurements of the CMB anisotropy by the Planck satellite. We fully calculate the cascade of dark matter annihilation products and their effects on ionization, heating and excitation of the hydrogen, hence do not rely on any assumption on the energy fractions that cause these effects.

  13. Effective field theory of dark matter: a global analysis

    NARCIS (Netherlands)

    Liem, S.; Bertone, G.; Calore, F.; Ruiz de Austri, R.; Tait, T.M.P.; Trotta, R.; Weniger, C.

    We present global fits of an effective field theory description of real, and complex scalar dark matter candidates. We simultaneously take into account all possible dimension 6 operators consisting of dark matter bilinears and gauge invariant combinations of quark and gluon fields. We derive

  14. Detector and trigger challenge for supersymmetrical dark matter ...

    Indian Academy of Sciences (India)

    Two supersymmetrical (SUSY) dark matter scenarios are discussed to il- lustrate how challenging it is to detect and trigger these events out of standard model background events at a future international linear collider (ILC). Keywords. Detector; trigger; supersymmetry; dark matter. PACS Nos 13.66.Hk; 14.80.Ly; 11.30.

  15. Can dark matter explain the braking index of neutron stars?

    DEFF Research Database (Denmark)

    Kouvaris, C.; Perez-Garcia, M. A.

    2014-01-01

    We explore a new mechanism of slowing down the rotation of neutron stars via accretion of millicharged dark matter. We find that this mechanism yields pulsar braking indices that can be substantially smaller than the standard n similar to 3 of the magnetic dipole radiation model for millicharged...... dark matter particles that are not excluded by existing experimental constraints thus accommodating existing observations....

  16. Chasing a consistent picture for dark matter direct detection searches

    NARCIS (Netherlands)

    Arina, C.

    2012-01-01

    In this paper we assess the present status of dark matter direct searches by means of Bayesian statistics. We consider three particle physics models for spin-independent dark matter interaction with nuclei: elastic, inelastic and isospin violating scattering. We briefly present the state of the art

  17. Fundamental statistical limitations of future dark matter direct detection experiments

    NARCIS (Netherlands)

    Strege, C.; Trotta, F.; Bertone, G.; Peter, A.H.G.; Scott, P.

    2012-01-01

    We discuss irreducible statistical limitations of future ton-scale dark matter direct detection experiments. We focus in particular on the coverage of confidence intervals, which quantifies the reliability of the statistical method used to reconstruct the dark matter parameters and the bias of the

  18. Dark matter, constrained minimal supersymmetric standard model, and lattice QCD.

    Science.gov (United States)

    Giedt, Joel; Thomas, Anthony W; Young, Ross D

    2009-11-13

    Recent lattice measurements have given accurate estimates of the quark condensates in the proton. We use these results to significantly improve the dark matter predictions in benchmark models within the constrained minimal supersymmetric standard model. The predicted spin-independent cross sections are at least an order of magnitude smaller than previously suggested and our results have significant consequences for dark matter searches.

  19. Dilaton could affect abundance of dark matter particles

    CERN Multimedia

    2007-01-01

    "The amount of dark matter left over from the early universe may be less than previously believed. new research shows that the "relic abundance" of stable dark matter particles such as the neutralino may be reduced as compared to standard cosmology theories due to the effects of the "dilaton", a particle with zero spin in the gravitational sector of strings." (1 page)

  20. Quest begins to unmask dark matter - and perhaps supersymmetry

    CERN Multimedia

    2003-01-01

    "...physicists of the Cryogenic Dark Matter Search today (November 12) announced the launch of a quest that could lead to solving two mysteries that may turn out to be one and the same: the identity of the dark matter that pervades the universe, and the existence of supersymmetric particles predicted by particle physics theory" (1 page).