WorldWideScience

Sample records for asymmetric beam splitter

  1. A variable partially polarizing beam splitter

    Science.gov (United States)

    Flórez, Jefferson; Carlson, Nathan J.; Nacke, Codey H.; Giner, Lambert; Lundeen, Jeff S.

    2018-02-01

    We present designs for variably polarizing beam splitters. These are beam splitters allowing the complete and independent control of the horizontal and vertical polarization splitting ratios. They have quantum optics and quantum information applications, such as quantum logic gates for quantum computing and non-local measurements for quantum state estimation. At the heart of each design is an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac interferometer configuration, that provides an inherent instability to air currents and vibrations. Furthermore, this design does not require any custom-made optics but only common components which can be easily found in an optics laboratory.

  2. Adiabatic/diabatic polarization beam splitter

    Energy Technology Data Exchange (ETDEWEB)

    DeRose, Christopher; Cai, Hong

    2017-09-12

    The various presented herein relate to an on-chip polarization beam splitter (PBS), which is adiabatic for the transverse magnetic (TM) mode and diabatic for the transverse electric (TE) mode. The PBS comprises a through waveguide and a cross waveguide, wherein an electromagnetic beam comprising TE mode and TM mode components is applied to an input port of the through waveguide. The PBS can be utilized to separate the TE mode component from the TM mode component, wherein the TE mode component exits the PBS via an output port of the through waveguide, and the TM mode component exits the PBS via an output port of the cross waveguide. The PBS has a structure that is tolerant to manufacturing variations and exhibits high polarization extinction ratios over a wide bandwidth.

  3. A white beam neutron spin splitter

    Energy Technology Data Exchange (ETDEWEB)

    Krist, T. [Hahn Meitner Institute, Berlin (Germany); Klose, F.; Felcher, G.P. [Argonne National Lab., IL (United States)

    1997-07-23

    The polarization of a narrow, highly collimated polychromatic neutron beam is tested by a neutron spin splitter that permits the simultaneous measurement of both spin states. The device consists of a Si-Co{sub 0.11} Fe{sub 0.89} supermirror, which totally reflects one spin state up to a momentum transfer q=0.04 {angstrom}{sup -1}, whilst transmits neutrons of the opposite spin state. The supermirror is sandwitched between two thick silicon wafers and is magnetically saturated by a magnetic field of 400 Oe parallel to its surface. The neutron beam enters through the edge of one of the two silicon wavers, its spin components are split by the supermirror and exit from the opposite edges of the two silicon wafers and are recorded at different channels of a position-sensitive detector. The device is shown to have excellent efficiency over a broad range of wavelengths.

  4. Inverse design engineering of all-silicon polarization beam splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Sigmund, Ole

    2016-01-01

    Utilizing the inverse design engineering method of topology optimization, we have realized high-performing all-silicon ultra-compact polarization beam splitters. We show that the device footprint of the polarization beam splitter can be as compact as similar to 2 µm2 while performing experimentally...... with a polarization splitting loss lower than similar to 0.82 dB and an extinction ratio larger than similar to 15 dB in the C-band. We investigate the device performance as a function of the device length and find a lower length above which the performance only increases incrementally. Imposing a minimum feature...

  5. Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides

    International Nuclear Information System (INIS)

    Yu Tianbao; Zhou Haifeng; Yang Jianyi; Jiang Xiaoqing; Wang Minghua; Gong Zhao

    2008-01-01

    Ultracompact 1 x N (N > 2) beam splitters based on coupling of multiple photonic crystal waveguides (PCWs) are numerically demonstrated. The operation of the devices is on the basis of the self-imaging phenomenon. Variation of the effective index of modified rods induces the transverse redistribution of the N-fold images with the same coupling length, and uniform or free splitting can be achieved. The devices with three and four output channels are discussed in details as examples. Results show that this kind of beam splitters are very short. At the operating wavelength of 1.55 μm, the splitting length of the devices is only 35 μm even if the output channel number reaches 20. It provides a new method and a compact model to export freely the beam to N channels in PCW devices and can find practical applications in future photonic integrated circuits

  6. Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Yu Tianbao; Zhou Haifeng; Yang Jianyi; Jiang Xiaoqing; Wang Minghua [Department of Information Science and Electronic Engineering, Zhejiang University, 310027 Hangzhou (China); Gong Zhao [Zhejiang University City College, 310027 Hangzhou (China)

    2008-05-07

    Ultracompact 1 x N (N > 2) beam splitters based on coupling of multiple photonic crystal waveguides (PCWs) are numerically demonstrated. The operation of the devices is on the basis of the self-imaging phenomenon. Variation of the effective index of modified rods induces the transverse redistribution of the N-fold images with the same coupling length, and uniform or free splitting can be achieved. The devices with three and four output channels are discussed in details as examples. Results show that this kind of beam splitters are very short. At the operating wavelength of 1.55 {mu}m, the splitting length of the devices is only 35 {mu}m even if the output channel number reaches 20. It provides a new method and a compact model to export freely the beam to N channels in PCW devices and can find practical applications in future photonic integrated circuits.

  7. 3D-Printed Beam Splitter for Polar Neutral Molecules

    Science.gov (United States)

    Gordon, Sean D. S.; Osterwalder, Andreas

    2017-04-01

    We describe a macroscopic beam splitter for polar neutral molecules. A complex electrode structure is required for the beam splitter which would be very difficult to produce with traditional manufacturing methods. Instead, we make use of a nascent manufacturing technique: 3D printing of a plastic piece, followed by electroplating. This fabrication method opens a plethora of avenues for research, since 3D printing imposes practically no limitations on possible shapes, and the plating produces chemically robust, conductive construction elements with an almost free choice of surface material. It has the added advantage of dramatically reduced production cost and time. Our beam splitter is an electrostatic hexapole guide that smoothly transforms into two bent quadrupoles. We demonstrate the correct functioning of this device by separating a supersonic molecular beam of ND3 into two correlated fractions. It is shown that this device can be used to implement experiments with differential detection wherein one of the fractions serves as a probe and the other as a reference. Reverse operation would allow the merging of two beams of polar neutral molecules.

  8. Finite mass beam splitter in high power interferometers

    International Nuclear Information System (INIS)

    Harms, Jan; Schnabel, Roman; Danzmann, Karsten

    2004-01-01

    The beam splitter in high-power interferometers is subject to significant radiation-pressure fluctuations. As a consequence, the phase relations which appear in the beam splitter coupling equations oscillate and phase modulation fields are generated which add to the reflected fields. In this paper, the transfer function of the various input fields impinging on the beam splitter from all four ports onto the output field is presented including radiation-pressure effects. We apply the general solution of the coupling equations to evaluate the input-output relations of the dual-recycled laser-interferometer topology of the gravitational-wave detector GEO 600 and the power-recycling, signal-extraction topology of advanced LIGO. We show that the input-output relation exhibits a bright-port dark-port coupling. This mechanism is responsible for bright port contributions to the noise density of the output field and technical laser noise is expected to decrease the interferometer's sensitivity at low frequencies. It is shown quantitatively that the issue of technical laser noise is unimportant in this context if the interferometer contains arm cavities

  9. Security of quantum key distribution using two-mode squeezed states against optimal beam splitter attack

    International Nuclear Information System (INIS)

    He Guangqiang; Zhu Siwei; Guo Hongbin; Zeng Guihua

    2008-01-01

    For the beam splitter attack strategy against quantum key distribution using two-mode squeezed states, the analytical expression of the optimal beam splitter parameter is provided in this paper by applying the Shannon information theory. The theoretical secret information rate after error correction and privacy amplification is given in terms of the squeezed parameter and channel parameters. The results show that the two-mode squeezed state quantum key distribution is secure against an optimal beam splitter attack

  10. X-ray-ultraviolet beam splitters for the Michelson interferometer

    International Nuclear Information System (INIS)

    Delmotte, Franck; Ravet, Marie-Francoise; Bridou, Francoise; Varniere, Francoise; Zeitoun, Philippe; Hubert, Sebastien; Vanbostal, Laurent; Soullie, Gerard

    2002-01-01

    With the aim of realizing a Michelson interferometer working at 13.9 nm, we have developed a symmetrical beam splitter with multilayers deposited on the front and back sides of a silicon nitride membrane. On the basis of the experimental optical properties of the membrane, simulations have been performed to define the multilayer structure that provides the highest reflectivity-transmission product. Optimized Mo-Si multilayers have been successfully deposited on both sides of the membrane by use of the ion-beam sputtering technique, with a thickness-period reproducibility of 0.1 nm. Measurements by means of synchrotron radiation at 13.9 nm and at an angle of 45 deg. provide a reflectivity of 14.2% and a transmission of 15.2% for a 60% s-polarized light, close to the simulated values. Such a beam splitter has been used for x-ray laser Michelson interferometry at 13.9 nm. The first interferogram is discussed

  11. X-ray-ultraviolet beam splitters for the Michelson interferometer.

    Science.gov (United States)

    Delmotte, Franck; Ravet, Marie-Françoise; Bridou, Françoise; Varnière, Françoise; Zeitoun, Philippe; Hubert, Sébastien; Vanbostal, Laurent; Soullie, Gérard

    2002-10-01

    With the aim of realizing a Michelson interferometer working at 13.9 nm, we have developed a symmetrical beam splitter with multilayers deposited on the front and back sides of a silicon nitride membrane. On the basis of the experimental optical properties of the membrane, simulations have been performed to define the multilayer structure that provides the highest reflectivity-transmission product. Optimized Mo-Si multilayers have been successfully deposited on both sides of t he membrane by use of the ion-beam sputtering technique, with a thickness-period reproducibility of 0.1 nm. Measurements by means of synchrotron radiation at 13.9 nm and at an angle of 45 degrees provide a reflectivity of 14.2% and a transmission of 15.2% for a 60% s-polarized light, close to the simulated values. Such a beam splitter has been used for x-ray laser Michelson interferometry at 13.9 nm. The first interferogram is discussed.

  12. Beam filter and splitter based on surface plasmon propagation in ...

    Indian Academy of Sciences (India)

    BS) constructed using metal ... devices such as filters, splitters, resonators, sensors, optical switches, and so on. Keywords. Surface ... features a high demand of optical passive components such as power splitters, vari- able attenuators and ...

  13. Monolithic beam splitter in silicon-on-insulator.

    Science.gov (United States)

    Wang, Yongjin; Cheng, Xinli; Lin, Zhilang; Gao, Fan; Zhang, Feng

    2004-10-18

    Inductively coupled plasma reactive ion etching is used to fabricate the monolithic beam splitter in silicon-on-insulator wafer. The near-field image shows that the symmetric 1x2 T-branch works well. The rms roughness of the corner mirror surfaces is measured by atomic force microscope, and the sidewall surface roughness of rib waveguide is evaluated by the corner mirror rms roughness. The scattering losses from the rough sidewall surfaces and the rough mirror surfaces are evaluated to be 0.5 dB/cm and 0.2 dB/mirror, respectively. And the fiber-waveguide insertion loss is measured approximately 5.0 dB.

  14. Trapezoidal diffraction grating beam splitters in single crystal diamond

    Science.gov (United States)

    Kiss, Marcell; Graziosi, Teodoro; Quack, Niels

    2018-02-01

    Single Crystal Diamond has been recognized as a prime material for optical components in high power applications due to low absorption and high thermal conductivity. However, diamond microstructuring remains challenging. Here, we report on the fabrication and characterization of optical diffraction gratings exhibiting a symmetric trapezoidal profile etched into a single crystal diamond substrate. The optimized grating geometry diffracts the transmitted optical power into precisely defined proportions, performing as an effective beam splitter. We fabricate our gratings in commercially available single crystal CVD diamond plates (2.6mm x 2.6mm x 0.3mm). Using a sputter deposited hard mask and patterning by contact lithography, the diamond is etched in an inductively coupled oxygen plasma with zero platen power. The etch process effectively reveals the characteristic {111} diamond crystal planes, creating a precisely defined angled (54.7°) profile. SEM and AFM measurements of the fabricated gratings evidence the trapezoidal shape with a pitch of 3.82μm, depth of 170 nm and duty cycle of 35.5%. Optical characterization is performed in transmission using a 650nm laser source perpendicular to the sample. The recorded transmitted optical power as function of detector rotation angle shows a distribution of 21.1% in the 0th order and 23.6% in each +/-1st order (16.1% reflected, 16.6% in higher orders). To our knowledge, this is the first demonstration of diffraction gratings with trapezoidal profile in single crystal diamond. The fabrication process will enable beam splitter gratings of custom defined optical power distribution profiles, while antireflection coatings can increase the efficiency.

  15. Multimodal and omnidirectional beam splitters for Lamb modes in elastic plates

    Directory of Open Access Journals (Sweden)

    Yabin Jin

    2016-12-01

    Full Text Available Omnidirectional beam splitters for the simultaneous control of the three fundamental Lamb modes in an elastic plate are designed and numerically studied. Beam splitters consist in radially symmetric and inhomogeneous lenses designed to redirect the incoming energy towards a given angle. In this work, these devices are designed by means of graded phononic crystals combined with thickness variations of the plate. Numerical simulations are presented to show the performance of the designed devices.

  16. Ultracompact 1×4 TM-polarized beam splitter based on photonic crystal surface mode.

    Science.gov (United States)

    Jiang, Bin; Zhang, Yejin; Wang, Yufei; Liu, Anjin; Zheng, Wanhua

    2012-05-01

    We provide an improved surface-mode photonic crystal (PhC) T-junction waveguide, combine it with an improved PhC bandgap T-junction waveguide, and then provide an ultracompact 1×4 TM-polarized beam splitter. The energy is split equally into the four output waveguides. The maximal transmission ratio of each output waveguide branch equals 24.7%, and the corresponding total transmission ratio of the ultracompact 1×4 beam splitter equals 98.8%. The normalized frequency of maximal transmission ratio is 0.397(2πc/a), and the bandwidth of the ultracompact 1×4 TM-polarized beam splitter is 0.0106(2πc/a). To the best of our knowledge, this is the first time such a high-efficiency 1×4 beam splitter exploiting the nonradiative surface mode as a guided mode has been proposed. Although we only employed a 1×4 beam splitter, our design can easily be extended to other 1×n beam splitters.

  17. Broadband non-polarizing terahertz beam splitters with variable split ratio

    KAUST Repository

    Wei, Minggui

    2017-08-15

    Seeking effective terahertz functional devices has always aroused extensive attention. Of particular interest is the terahertz beam splitter. Here, we have proposed, designed, manufactured, and tested a broadband non-polarizing terahertz beam splitter with a variable split ratio based on an all-dielectric metasurface. The metasurface was created by patterning a dielectric surface of the N-step phase gradient and etching to a few hundred micrometers. The conversion efficiency as high as 81% under the normal incidence at 0.7 THz was achieved. Meanwhile, such a splitter works well over a broad frequency range. The split ratio of the proposed design can be continuously tuned by simply shifting the metasurface, and the angle of emergences can also be easily adjusted by choosing the step of phase gradients. The proposed design is non-polarizing, and its performance is kept under different polarizations.

  18. Asymmetric Bessel-Gauss beams.

    Science.gov (United States)

    Kotlyar, V V; Kovalev, A A; Skidanov, R V; Soifer, V A

    2014-09-01

    We propose a three-parameter family of asymmetric Bessel-Gauss (aBG) beams with integer and fractional orbital angular momentum (OAM). The aBG beams are described by the product of a Gaussian function by the nth-order Bessel function of the first kind of complex argument, having finite energy. The aBG beam's asymmetry degree depends on a real parameter c≥0: at c=0, the aBG beam is coincident with a conventional radially symmetric Bessel-Gauss (BG) beam; with increasing c, the aBG beam acquires a semicrescent shape, then becoming elongated along the y axis and shifting along the x axis for c≫1. In the initial plane, the intensity distribution of the aBG beams has a countable number of isolated optical nulls on the x axis, which result in optical vortices with unit topological charge and opposite signs on the different sides of the origin. As the aBG beam propagates, the vortex centers undergo a nonuniform rotation with the entire beam about the optical axis (c≫1), making a π/4 turn at the Rayleigh range and another π/4 turn after traveling the remaining distance. At different values of the c parameter, the optical nulls of the transverse intensity distribution change their position, thus changing the OAM that the beam carries. An isolated optical null on the optical axis generates an optical vortex with topological charge n. A vortex laser beam shaped as a rotating semicrescent has been generated using a spatial light modulator.

  19. Bipartite and tripartite entanglement of truncated harmonic oscillator coherent states via beam splitters

    Science.gov (United States)

    Daoud, M.; Jellal, A.; Choubabi, E. B.; El Kinani, E. H.

    2011-08-01

    We introduce a special class of truncated Weyl-Heisenberg algebra and discuss the corresponding Hilbertian and analytical representations. Subsequently, we study the effect of a quantum network of beam splitting on coherent states of this nonlinear class of harmonic oscillators. We particularly focus on quantum networks involving one and two beam splitters and examine the degree of bipartite as well as tripartite entanglement using the linear entropy.

  20. Bipartite and Tripartite Entanglement of Truncated Harmonic Oscillator Coherent States via Beam Splitters

    OpenAIRE

    Daoud, M.; Jellal, A.; Choubabi, E. B.; Kinani, E. H. El

    2012-01-01

    We introduce a special class of truncated Weyl-Heisenberg algebra and discuss the corresponding Hilbertian and analytical representations. Subsequently, we study the effect of a quantum network of beam splitting on coherent states of this nonlinear class of harmonic oscillators. We particularly focus on quantum networks involving one and two beam splitters and examine the degree of bipartite as well as tripartite entanglement using the linear entropy.

  1. 1x3 beam splitter based on self-imaging phenomena in air-slab photonic crystal waveguides

    DEFF Research Database (Denmark)

    Zhang, Ming; Kristensen, Martin; Malureanu, Radu

    A 1 x 3 beam splitter using multi-mode interference based on self-imaging is demonstrated theoretically and experimentally in PhCWs. The total transmission of the 1 x 3 splitter is almost equal to the corresponding length of W1 PhCW. The input power is distributed equally between the output ports...

  2. Design of a novel multi channel photonic crystal fiber polarization beam splitter

    Science.gov (United States)

    Zhao, Yunyan; Li, Shuguang; Wang, Xinyu; Wang, Guangyao; Shi, Min; Wu, Junjun

    2017-10-01

    A kind of multi channel dual-core photonic crystal fiber polarization beam splitter is designed. We analyze the effects of the lattice parameters and the thickness of gold layer on the beam splitting by the finite element method. Numerical results show that the thickness of metal layer and the size of the air holes near the fiber cores are closely linked with the nature of the polarization beam splitter. We also obtain that extinction ratio can reach -73.87 dB at 1 . 55 μm wavelength and at 1 . 41 μm, 1 . 65 μm extinction ratio can reach 30.8978 dB and 31.1741 dB, respectively. The comparison of the effect on the characteristic of the photonic crystal fiber with coating no gold is also taken into account.

  3. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal

    International Nuclear Information System (INIS)

    Chen Xi-Yao; Lin Gui-Min; Li Jun-Jun; Xu Xiao-Fu; Jiang Jun-Zhen; Qiang Ze-Xuan; Qiu Yi-Shen; Li Hui

    2012-01-01

    A polarization beam splitter based on a self-collimation Michelson interferometer (SMI) in a hole-type silicon photonic crystal is proposed and numerically demonstrated. Utilizing the polarization dependence of the transmission spectra of the SMI and polarization peak matching method, the SMI can work as a polarization beam splitter (PBS) by selecting an appropriate path length difference in the structure. Based on its novel polarization beam splitting mechanics, the polarization extinction ratios (PERs) for TM and TE modes are as high as 18.4 dB and 24.3 dB, respectively. Since its dimensions are only several operating wavelengths, the PBS may have practical applications in photonic integrated circuits. (fundamental areas of phenomenology(including applications))

  4. Polarization-dependent Character of 1x3 Beam Splitter Using Self-Imaging Phenomena in Air-Slab PhCW

    DEFF Research Database (Denmark)

    Zhang, Min; Malureanu, Radu; Kristensen, Martin

    2010-01-01

    A 1x3 beam splitter in PhCWs using multi-mode interference (MMI) based on self-imaging principle is investigated. The 1x3 splitter is polarization-dependent. The total TE-polarized transmission of the 1x3 splitter is almost equal to the corresponding length of W1 PhCW. The TE-polarized input power...

  5. Programming balanced optical beam splitters in white paint

    NARCIS (Netherlands)

    Huisman, S.R.; Huisman, T.J.; Huisman, T.J.; Goorden, S.A.; Mosk, Allard; Pinkse, Pepijn Willemszoon Harry

    2014-01-01

    Wavefront shaping allows for ultimate control of light propagation in multiple-scattering media by adaptive manipulation of incident waves. We shine two separate wavefront-shaped beams on a layer of dry white paint to create two enhanced output spots of equal intensity. We experimentally confirm by

  6. Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface

    Science.gov (United States)

    Zhang, Qing; Li, Maozhong; Liao, Tingdi; Cui, Xudong

    2018-03-01

    Under the trend of miniaturization and reduction of system complexity, conventional bulky photonic elements are expected to be replaced by new compact and ultrathin dielectric metasurface elements. In this letter, we propose an αTiO2 dielectric metasurface (DM) platform that could be exploited to design high efficiency wave-front control devices at visible wavelength. Combining with fundamental principles and full wave simulations (Lumerical FDTD 3D solver ®), we successfully realize four DM devices, such as anomalous beam deflectors, polarization insensitive metalens, wave plates and polarization beam splitters. All these devices can achieve high transmission efficiencies (larger than 80%). Among them, the anomalous refraction beam deflectors can bend light propagation to any desired directions; the polarization insensitive metalens maintains diffraction limited focus (focal spot as small as 0.67 λ); the quarter-wave and half-wave plates have broadband working wavelengths from 550 to 1000 nm; and the polarization beam splitter can split an arbitrarily polarized incident beam into two orthogonally polarized beams, the TM components is deflected to the right side, and the TE components is deflected to the left side. These devices may find applications in the areas of imaging, polarization control, spectroscopy, and on-chip optoelectronic systems etc., and our studies may richen the design of all-dielectric optical elements at visible wavelength.

  7. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter

    Science.gov (United States)

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-01

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  8. Extraordinary acoustic transmission through annuluses in air and its applications in acoustic beam splitter and concentrator

    International Nuclear Information System (INIS)

    Ge, Yong; Liu, Shu-sen; Yuan, Shou-qi; Xia, Jian-ping; Guan, Yi-jun; Sun, Hong-xiang; Zhang, Shu-yi

    2016-01-01

    We report an extraordinary acoustic transmission through two layer annuluses made of metal cylinders in air both numerically and experimentally. The effect arises from the enhancement and reconstruction of the incident source induced by different Mie-resonance modes of the annuluses. The proposed system takes advantages of the consistency in the waveform between the input and output waves, the high amplitude amplification of output waves, and the easy adjustment of structure. More interestingly, we investigate the applications of the extraordinary acoustic transmission in the acoustic beam splitter and acoustic concentrator. Our finding should have an impact on ultrasonic applications.

  9. Polarization-beam-splitter-less integrated dual-polarization coherent receiver.

    Science.gov (United States)

    Alonso-Ramos, C; Reyes-Iglesias, P J; Ortega-Moñux, A; Pérez-Galacho, D; Halir, R; Molina-Fernández, I

    2014-08-01

    Conventional dual-polarization coherent receivers require polarization beam splitters for either the signal or the local oscillator path. This severely hinders monolithic integration, since integrated polarization splitting devices often exhibit stringent fabrication tolerances. Here we propose a dual-polarization monolithically integrated coherent receiver architecture that completely avoids the use of polarization splitting elements. Polarization management is instead achieved by adequately engineering the birefringence of the interconnecting waveguides. The resultant receiver is highly tolerant to fabrication deviations and thus offers a completely new route for monolithic integration of dual-polarization receivers without any type of active tuning.

  10. Broadband non-polarizing beam splitter based on guided mode resonance effect

    International Nuclear Information System (INIS)

    Ma Jian-Yong; Xu Cheng; Qiang Ying-Huai; Zhu Ya-Bo

    2011-01-01

    A broadband non-polarizing beam splitter (NPBS) operating in the telecommunication C+L band is designed by using the guided mode resonance effect of periodic silicon-on-insulator (SOI) elements. It is shown that this double layer SOI structure can provide ∼50/50 beam ratio with the maximum divergences between reflection and transmission being less than 8% over the spectrum of 1.4 μm∼1.7 μm and 1% in the telecommunication band for both TE and TM polarizations. The physical basis of this broadband non-polarizing property is on the simultaneous excitation of the TE and TM strong modulation waveguide modes near the designed spectrum band. Meanwhile, the electric field distributions for both TE and TM polarizations verify the resonant origin of spectrum in the periodic SOI structure. Furthermore, it is demonstrated with our calculations that the beam splitter proposed here is tolerant to the deviations of incident angle and structure parameters, which make it very easy to be fabricated with current IC technology. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. Two-dimensional higher-diffraction-order optical beam splitter based on phenanthrenequinone-doped poly(methyl methacrylate) photopolymer

    Science.gov (United States)

    Gong, Dewei; Zhou, Zhongxiang; Liu, Hongpeng; Wang, Jian; Gao, Hongyue

    2009-06-01

    A two-dimensional optical beam splitter has been realized that uses the higher diffraction orders of a refractive-index grating. Gratings were recorded experimentally with light from a semiconductor laser incident at a small angle on phenanthrenequinone-doped poly(methyl methacrylate) photopolymer. The incident signal beam, which was made up of three different wavelengths (632.8, 532.0, and 488.0 nm), was split by the grating into multiple output beams with nearly equal size and separation. Results are given for when the sample grating was placed behind, in front of, and in the focal plane of a Fourier lens. The properties of higher-order-diffraction images have been discussed. The discussion shows that a two-dimensional higher-diffraction-order optical beam splitter provides a practical method for splitting a signal beam.

  12. 1x3 beam splitter for TE polarization based on self-imaging phenomena in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Zhang, Min; Malureanu, Radu; Krüger, Asger Christian

    2010-01-01

    Based on inspiration from multi-mode interference self-imaging and theoretical FDTD simulations, a 1x3 beam splitter was designed, fabricated and characterized. Measurements show that for TE-polarized incident light the power is distributed equally between the output ports within 1dB in the range...

  13. Asymmetric acoustic transmission in graded beam

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Li, E-mail: lj94172350@hotmail.com [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Wu, Jiu Hui, E-mail: ejhwu@mail.xjtu.edu.cn [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Guan, Dong; Lu, Kuan [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Gao, Nansha [School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Songhua, Cao [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2016-12-01

    We demonstrate the dynamic effective material parameters and vibration performance of a graded beam. The structure of the beam was composed of several unit cells with different fill factors. The dispersion relations and energy band structures of each unit cell were calculated using the finite element method (FEM). The dynamic effective material parameters in each unit cell of the graded beam were determined by the dispersion relations and energy band structures. Longitudinal wave propagation was investigated using a numerical method and FEM. The results show that the graded beam allows asymmetric acoustic transmission over a wide range of frequencies.

  14. Design of a compact polarization beam splitter based on a deformed photonic crystal directional coupler

    International Nuclear Information System (INIS)

    Ren Gang; Zheng Wanhua; Wang Ke; Du Xiaoyu; Xing Mingxin; Chen Lianghui

    2008-01-01

    In this paper a compact polarization beam splitter based on a deformed photonic crystal directional coupler is designed and simulated. The transverse-electric (TE) guided mode and transverse-magnetic (TM) guided mode are split due to different guiding mechanisms. The effect of the shape deformation of the air holes on the coupler is studied. It discovered that the coupling strength of the coupled waveguides is strongly enhanced by introducing elliptical airholes, which reduce the device length to less than 18.5μm. A finite-difference time-domain simulation is performed to evaluate the performance of the device, and the extinction ratios for both TE and TM polarized light are higher than 20 dB. (classical areas of phenomenology)

  15. Measuring polarization dependent dispersion of non-polarizing beam splitter cubes with spectrally resolved white light interferometry

    Science.gov (United States)

    Csonti, K.; Hanyecz, V.; Mészáros, G.; Kovács, A. P.

    2017-06-01

    In this work we have measured the group-delay dispersion of an empty Michelson interferometer for s- and p-polarized light beams applying two different non-polarizing beam splitter cubes. The interference pattern appearing at the output of the interferometer was resolved with two different spectrometers. It was found that the group-delay dispersion of the empty interferometer depended on the polarization directions in case of both beam splitter cubes. The results were checked by inserting a glass plate in the sample arm of the interferometer and similar difference was obtained for the two polarization directions. These results show that to reach high precision, linearly polarized white light beam should be used and the residual dispersion of the empty interferometer should be measured at both polarization directions.

  16. A Microfluidic Device with an Integrated Waveguide Beam Splitter for Velocity Measurements of Flowing Particles by Fourier Transformation

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kwok, Y.C.; Eijkel, J.C.T.

    2003-01-01

    A microfabricated capillary electrophoresis device for velocity measurements of flowing particles is presented. It consists of a 1 x 128 planar waveguide beam splitter monolithically integrated with an electrically insulated fluidic channel network for fluorescence excitation at multiple points....... Stray light rejection structures are included in order to suppress unwanted light between the detection regions. The emission pattern of particles passing the detection region was collected by a photomultiplier tube that was placed in close proximity to the channel, thereby avoiding the use of transfer...... optics. The integrated planar waveguide beam splitter was, furthermore, permanently connected to the light source by a glued-on optical fiber, to achieve a robust and alignment-free operation of the system. The velocity was measured using a Fourier transformation with a Shah function, since the response...

  17. Improving the efficiency of optical coherence tomography by using the non-ideal behaviour of a polarising beam splitter

    KAUST Repository

    Lippok, Norman

    2011-03-30

    We present a new way of improving the efficiency of optical coherence tomography by using the polarisation crosstalk of a polarizing beam splitter to direct most of the available source optical power to the sample. The use of a quarter wave plate in both the reference and the sample arms allows most of the sample power to be directed to the detector while adjusting the reference arm to ensure noise optimised operation. As a result, the sensitivity of such a system can be improved by 6 dB, or alternatively the acquisition time can be improved by a factor of 4 for shot noise limited performance,compared to a traditional OCT configuration using a 50/50 beam splitter. © 2011 Optical Society of America.

  18. Amplification of Cooper pair splitting current in a graphene-based Cooper pair beam splitter geometry

    Science.gov (United States)

    Islam, SK Firoz; Saha, Arijit

    2017-09-01

    Motivated by the recent experiments [Scientific Reports 6, 23051 (2016), 10.1038/srep23051; Phys. Rev. Lett. 114, 096602 (2015), 10.1103/PhysRevLett.114.096602], we theoretically investigate Cooper pair splitting current in a graphene-based Cooper pair beam splitter geometry. By considering the graphene-based superconductor as an entangler device, instead of normal [two-dimensional (2D)] BCS superconductor, we show that the Cooper pair splitting current mediated by the crossed Andreev process is amplified compared to its normal superconductor counterpart. This amplification is attributed to the strong suppression of the local normal Andreev reflection process (arising from the Cooper pair splitting) from the graphene-based superconductor to lead via the same quantum dot, in comparison to the usual 2D superconductor. Due to the vanishing density of states at the Dirac point of undoped graphene, a doped graphene-based superconductor is considered here and it is observed that Cooper pair splitting current is very insensitive to the doping level in comparison to the usual 2D superconductor. The transport process of nonlocal spin-entangled electrons also depends on the type of pairing, i.e., whether the electron-hole pairing is onsite, intersublattice or the combination of both. The intersublattice pairing of graphene causes the maximum nonlocal Cooper pair splitting current, whereas the presence of both pairings reduces the Cooper pair splitting current.

  19. Electric field control of a Bragg diffraction optical beam splitter based on a cubic K(0.99)Li(0.01)Ta(0.63)Nb(0.37)O3 single crystal.

    Science.gov (United States)

    Gong, Dewei; Tian, Hao; Tan, Liying; Zhou, Zhongxiang

    2011-01-01

    We have realized an electric field controlled Bragg diffraction optical beam splitter based on a photorefractive Bragg diffraction grating. In our experiments, the splitter was produced by wave coupling (532.0 nm) with a potassium lithium tantalate niobate single crystal. In the process of splitting, the incident beam could be split into multioutput beams by the splitter. The influence of an externally applied electric field was studied, and the results show that the intensity of the Bragg diffraction could be controlled by the electric field. The polarization properties of the splitter are discussed.

  20. Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings.

    Science.gov (United States)

    Qiu, Huiye; Jiang, Jianfei; Yu, Ping; Yang, Jianyi; Yu, Hui; Jiang, Xiaoqing

    2017-10-01

    A novel polarization beam splitter based on an anti-symmetric sidewall Bragg grating in a multimode silicon-on-insulator strip waveguide is demonstrated. Anti-symmetric spatially periodic refractive-index perturbations are designed for strong coupling between the fundamental (TE 0 ) and the first-order transverse electric modes (TE 1 ), while not for transfer magnetic modes. An adiabatic coupler is cascaded at the input-port, so as to drop the TE 1 reflection. The Bragg grating has a compact length of ∼20  μm (55 periods). The polarization isolations of the through- and drop-ports at the wavelength of 1557 nm are 34 and 31 dB, respectively. A broad bandwidth of 64 nm and a large fabrication tolerance of 80 nm for polarization isolation over 20 dB are also achieved.

  1. Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources

    International Nuclear Information System (INIS)

    Li, Hong-Wei; Wang, Shuang; Huang, Jing-Zheng; Chen, Wei; Yin, Zhen-Qiang; Li, Fang-Yi; Zhou, Zheng; Liu, Dong; Zhang, Yang; Guo, Guang-Can; Han, Zheng-Fu; Bao, Wan-Su

    2011-01-01

    It is well known that the unconditional security of quantum-key distribution (QKD) can be guaranteed by quantum mechanics. However, practical QKD systems have some imperfections, which can be controlled by the eavesdropper to attack the secret key. With current experimental technology, a realistic beam splitter, made by fused biconical technology, has a wavelength-dependent property. Based on this fatal security loophole, we propose a wavelength-dependent attacking protocol, which can be applied to all practical QKD systems with passive state modulation. Moreover, we experimentally attack a practical polarization encoding QKD system to obtain all the secret key information at the cost of only increasing the quantum bit error rate from 1.3 to 1.4%.

  2. An integrated optic adiabatic TE/TM mode splitter on silicon

    NARCIS (Netherlands)

    de Ridder, R.M.; Sander, A.F.M.; Driessen, A.; Fluitman, J.H.J.

    1993-01-01

    A compact integrated optic fundamental TE/TM mode splitter, based on the mode-sorting characteristics of an asymmetrical adiabatic Y junction of optical waveguides exhibiting shape birefringence, operating at 1550 nm, has been designed using the discrete sine method (DSM) and the beam propagation

  3. The beam-beam limit in asymmetric colliders: Optimization of the B-factory parameter base

    International Nuclear Information System (INIS)

    Tennyson, J.L.

    1990-01-01

    This paper presents a general theory of the beam-beam limit in symmetric and asymmetric lepton ring colliders. It shows how the beam-beam limit in these accelerators affects the maximum attainable luminosity and presents a specific algorithm for parameter base optimization. It is shown that the special problems inherent in asymmetric colliders derive not from the asymmetry, but from the fact that the two beams must be in different rings. Computer simulation experiments are used to demonstrate the various phenomena discussed in the theory

  4. Asymmetric beams and CMB statistical anisotropy

    International Nuclear Information System (INIS)

    Hanson, Duncan; Lewis, Antony; Challinor, Anthony

    2010-01-01

    Beam asymmetries result in statistically anisotropic cosmic microwave background (CMB) maps. Typically, they are studied for their effects on the CMB power spectrum, however they more closely mimic anisotropic effects such as gravitational lensing and primordial power asymmetry. We discuss tools for studying the effects of beam asymmetry on general quadratic estimators of anisotropy, analytically for full-sky observations as well as in the analysis of realistic data. We demonstrate this methodology in application to a recently detected 9σ quadrupolar modulation effect in the WMAP data, showing that beams provide a complete and sufficient explanation for the anomaly.

  5. Broadband silicon polarization beam splitter with a high extinction ratio using a triple-bent-waveguide directional coupler.

    Science.gov (United States)

    Ong, Jun Rong; Ang, Thomas Y L; Sahin, Ezgi; Pawlina, Bryan; Chen, G F R; Tan, D T H; Lim, Soon Thor; Png, Ching Eng

    2017-11-01

    We report on the design and experimental demonstration of a broadband silicon polarization beam splitter (PBS) with a high extinction ratio (ER)≥30  dB. This was achieved using triple-bent-waveguide directional coupling in a single PBS, and cascaded PBS topology. For the single PBS, the bandwidths for an ER≥30  dB are 20 nm for the quasi-TE mode, and 70 nm for the quasi-TM mode when a broadband light source (1520-1610 nm) was employed. The insertion loss (IL) varies from 0.2 to 1 dB for the quasi-TE mode and 0.2-2 dB for the quasi-TM mode. The cascaded PBS improved the bandwidth of the quasi-TE mode for an ER≥30  dB to 90 nm, with a low IL of 0.2-2 dB. To the best of our knowledge, our PBS system is one of the best broadband PBSs with an ER as high as ∼42  dB and a low IL below 1 dB around the central wavelength, and experimentally demonstrated using edge-coupling.

  6. Development of a Pump-Probe System using a Non-Coated ZnSe Beam Splitter Cube for an MIR-FEL

    CERN Document Server

    Heya, Manabu; Horiike, Hiroshi; Ishii, Katsonuri; Suzuki, Sachiko

    2004-01-01

    A pump-probe technique is essential for a proper understanding of laser interaction with tissue and material. Our pump-probe system divides the incident mid-infrared Free Electron Laser (MIR-FEL) into two beams with equal intensity, and crosses simultaneously the two incoming beams at the same position. One is for a pump beam, another is for a probe beam. Time-resolved absorption spectroscopy involving this technique gives us information on the vibrational dynamics of molecules. We have developed this system for an MIR-FEL using a non-coating ZnSe beam splitter cube. The beam splitter cube is composed of two ZnSe prisms in the shape like a trapezoid. The two pulses with equal intensity are generated due to Fresnel reflection and transmission at the boundary between two prisms, then are reflected due to total reflection at other side boundaries between each prism and air, and illuminate simultaneously the same spot. We have conducted a proof-of-concept of experiment of this system using an MIR-FEL. We showed t...

  7. Helical cone beam CT with an asymmetrical detector

    International Nuclear Information System (INIS)

    Zamyatin, Alexander A.; Taguchi, Katsuyuki; Silver, Michael D.

    2005-01-01

    If a multislice or other area detector is shifted to one side to cover a larger field of view, then the data are truncated on one side. We propose a method to restore the missing data in helical cone-beam acquisitions that uses measured data on the longer side of the asymmetric detector array. The method is based on the idea of complementary rays, which is well known in fan beam geometry; in this paper we extend this concept to the cone-beam case. Different cases of complementary data coverage and dependence on the helical pitch are considered. The proposed method is used in our prototype 16-row CT scanner with an asymmetric detector and a 700 mm field of view. For evaluation we used scanned body phantom data and computer-simulated data. To simulate asymmetric truncation, the full, symmetric datasets were truncated by dropping either 22.5% or 45% from one side of the detector. Reconstructed images from the prototype scanner with the asymmetrical detector show excellent image quality in the extended field of view. The proposed method allows flexible helical pitch selection and can be used with overscan, short-scan, and super-short-scan reconstructions

  8. Spin beam splitter based on Goos-Haenchen shifts in two-dimensional electron gas modulated by ferromagnetic and Schottky metal stripes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Mao-Wang; Huang, Xin-Hong; Zhang, Gui-Lin; Chen, Sai-Yan [College of Science, Guilin University of Technology, Guilin 541004 (China)

    2012-11-15

    We present a theoretical study on the spin-dependent Goos-Haenchen (GH) effect in a two-dimensional electron gas modulated by ferromagnetic and Schottky metal (SM) stripes. The GH shifts for spin electron beams across this device are calculated with the help of the stationary phase method. It is shown that the GH shift of spin-up beam is significantly different from that of spin-down beam, i.e., this device shows up a considerable spin polarization effect in GH shifts of electron beams. It also is shown that both magnitude and sign of spin polarization of GH shifts are closely related to the stripe width, the magnetic strength and the gated voltage under SM stripe. These interesting properties not only provide an effective method of spin injection for spintronics application, but also give rise to a tunable spin beam splitter. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Symmetrization of the beam-beam interaction in an asymmetric collider

    International Nuclear Information System (INIS)

    Chin, Y.H.

    1990-07-01

    This paper studies the idea of symmetrizing both the lattice and the beams of an asymmetric collider, and discusses why this regime should be within the parametric reach of the design in order to credibly ensure its performance. Also examined is the effectiveness of a simple compensation method using the emittance as a free parameter and that it does not work in all cases. At present, when there are no existing asymmetric colliders, it seems prudent to design an asymmetric collider so as to be similar to a symmetric one (without relying on a particular theory of the asymmetric beam-beam interaction that has not passed tests of fidelity). Nevertheless, one must allow for the maximum possible flexibility and freedom in adjusting those parameters that affect luminosity. Such a parameter flexibility will be essential in tuning the collider to the highest luminosity

  10. Acoustics of finite asymmetric exotic beams: Examples of Airy and fractional Bessel beams

    Science.gov (United States)

    Mitri, F. G.

    2017-12-01

    The purpose of this investigation is to examine the properties of finite asymmetric exotic scalar (acoustic) beams with unusual properties using the angular spectrum decomposition in plane waves. Such beams possess intrinsic uncommon characteristics that make them attractive from the standpoint of particle manipulation, handling and rotation, and possibly other applications in particle clearing and separation. Assuming a specific apodization function at the acoustic source, the angular spectrum function is calculated and used to synthesize the radiated pressure field (i.e., excluding evanescent waves that decay away from the source) in the forward direction of wave motion (i.e., away from the source). Moreover, a generalized hybrid method combining the angular spectrum approach with the multipole expansion formalism in spherical coordinates is developed, which is applicable to any finite beam of arbitrary wavefront. The improved approach allows adequate computation of the resonance scattering, radiation force, and spin torque components on an object of arbitrary shape, located on or off the axis of the incident beam in space. Considering the illustrative example of a viscous fluid sphere submerged in a non-viscous liquid and illuminated by finite asymmetric beams such as the Airy and the Bessel vortex beam with fractional order, numerical computations for the scattering, radiation force, and torque components are performed with an emphasis on the distance from the source, the arbitrary location of the particle ,and the asymmetric nature of the incident field. Moreover, beamforming calculations are presented with supplementary animations for the pressure field distribution in space, with an emphasis on the intrinsic properties of the selected beams. The numerical predictions illustrate the scattering, radiation force, and spin torque properties depending on the beam parameters and the distance separating the sphere from the source. This study provides a generalized

  11. Optimal multicopy asymmetric Gaussian cloning of coherent states

    Science.gov (United States)

    Fiurášek, Jaromír; Cerf, Nicolas J.

    2007-05-01

    We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and feedforward.

  12. Optimal multicopy asymmetric Gaussian cloning of coherent states

    International Nuclear Information System (INIS)

    Fiurasek, Jaromir; Cerf, Nicolas J.

    2007-01-01

    We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and feedforward

  13. Beam dynamics issues of high-luminosity asymmetric collider rings

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1990-01-01

    Machines for use in high-energy physics are advancing along two frontiers. First, there is the frontier of energy, currently being pressed by the Fermilab collider (p bar p), and SLC and LEP (e + e - ) and in the near future by HERA (ep), the LHC, and the SSC (pp). Second, there is the frontier of intensity, currently being pressed by a variety of low-energy machines and, at higher energies, by various linacs such as those at KEK. Fermilab, GSI, and LAMPF (p) and CEBAF (e - ). In the future there should be, along this frontier, various ''factories'' such as those for Kaons at TRIUMF, and those proposed for var-phi mesons, τ-charm particles, and B mesons. It is with the intensity frontier that these proceedings are concerned. The elementary particle motivation to study the nonconservation of PC in the B-stringB system (which topic is not covered in these Proceedings, but is treated extensively in the literature) has motivated the study of very high intensity asymmetric collider rings. It was for this purpose that a Workshop on Beam Dynamics Issues of High-Luminosity Asymmetric Collider Rings was held, in Berkeley, during February 12--16, 1990. A general introduction to the subject has been given in an article which is reprinted here as an Appendix. The nonexpert may wish to start there. The volume consists of four parts. The first part consists of Summaries; first an overall summary of the Workshop and then, second, more detailed summaries from each of the working groups. The second part consists of the Invited Talks at the workshop. The third part contains various Contributed Papers, most of which represent work that came out of the workshop. Finally, there are, in the fourth part, brief Summaries of the Various Proposed B-Factory Projects in the world

  14. Study on the output factors of asymmetrical rectangular electron beam field

    International Nuclear Information System (INIS)

    Chen Yinghai; Yang Yueqin; Ma Yuhong; Zheng Jin; Zou Lijuan

    2009-01-01

    Objective: To evaluate the variant regularity of the output factors of asymmetrical rectangular electron beam field. Methods: The output factors of three special fields with different applicators and energies were measured by ionization chamber method at different off-axis distances. Then deviations of the output factors between asymmetrical and symmetric rectangular fields were calculated. Results: The changes of output factor with different off-axis distances in asymmetrical rectangular fields were basically consistent with those in standard square fields with the same applicator. It revealed that the output factor of asymmetrical rectangular field was related with the off-axis ratio of standard square field. Applicator and field size did not show obvious influence on the output factor. Conclusions: The output factor changes of asymmetrical rectangular field are mainly correlated with the off-axis ratio of standard square field. The correction of the output factor is determined by the off-axis ratio changes in standard square field. (authors)

  15. Spatial mode cleaning in radically asymmetric strongly focused laser beams

    Science.gov (United States)

    Heins, Alan M.; Guo, Chunlei

    2013-12-01

    We demonstrate that a femtosecond laser pulse strongly focused in air can produce a highly symmetric damage pattern on glass. This damage pattern contains a series of near-perfect radial rings, with diameters much larger than the predicted focal spot diameter. These rings disappear when the experiment is conducted in vacuum, indicating atmospheric involvement. Surprisingly, the shape and size of the rings seem to be nearly independent of the shape of the generating laser beam, showing dramatic spatial mode cleaning. A "half moon" initial laser mode created by obscuring one side of the round beam produces rings of similar quality to those obtained with the unclipped beam. While spatial mode cleaning has previously been reported in filaments, this is the most dramatic demonstration of the effect that we are aware of. We argue that the effect is due primarily to ionization, in contrast to studies in longer filaments that attribute it to self-focusing.

  16. Topology Optimized Photonic Wire Splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Jensen, Jakob Søndergaard

    2006-01-01

    Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm.......Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm....

  17. Beam energy scan with asymmetric collision at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Alessi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Beebe, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brennan, J. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Butler, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Connolly, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); D Ottavio, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Drees, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gassner, D. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gu, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hao, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harvey, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hayes, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hulsart, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ingrassia, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Jamilkowski, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Laster, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mapes, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marr, G. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morris, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Naylor, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nemesure, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pinayev, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raparia, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sampson, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sandberg, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Severino, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shrey, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zeno, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhang, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhang, W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-11-15

    A beam energy scan of deuteron-gold collision, with center-of-mass energy at 19.6, 39, 62.4 and 200.7 GeV/n, was performed at the Relativistic Heavy Ion Collider in 2016 to study the threshold for quark-gluon plasma (QGP) production. The lattice, RF, stochastic cooling and other subsystems were in different configurations for the various energies. The operational challenges changed with every new energy. The operational experience at each energy, the operation performance, highlights and lessons of the beam energy scan are reviewed in this report.

  18. Sagittal x-ray beam deviation at asymmetric inclined diffractors

    Czech Academy of Sciences Publication Activity Database

    Korytár, D.; Hrdý, Jaromír; Artemiev, Nikolai; Ferrari, C.; Freund, A.

    2001-01-01

    Roč. 8, - (2001), s. 1136-1139 ISSN 0909-0495 R&D Projects: GA MŠk OK 305; GA MPO PZ-CH/22 Institutional research plan: CEZ:AV0Z1010914 Keywords : x-ray optics * Si(111) W/grooved crystals * inclined diffraction * out-of-diffraction-plane beams * sagittal focusing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.519, year: 2001

  19. Polychromatic map-making from imaging telescopes with asymmetric beams.

    Science.gov (United States)

    Quinn, Solomon; Bunn, Emory

    2018-01-01

    Data from an imaging telescope with an asymmetric antenna pattern that varies significantly with wavelength can be used to reconstruct images in multiple wavelength bands from a single set of scans. This is potentially particularly valuable for an instrument such as QUBIC, because the QUBIC antenna pattern has multiple peaks with wavelength-dependent positions. We quantify the ability of such an instrument to reconstruct polychromatic maps both analytically and numerically. When the telescope has full-sky coverage, it is convenient to transform to the spherical harmonic basis. Hence we analyze statistical properties of the signal reconstruction as a function of the coefficients of the antenna pattern. When the telescope observes only part of the sky, no such transformation can be made—hence more computation is required in this case. We compare monochromatic and polychromatic map-making to determine the number of wavelength bands that can be accurately reconstructed in a QUBIC-like instrument as a function of angular scale. This formalism can be applied to other instruments whose antenna patterns have features that vary strongly with wavelength.

  20. Measurement of M2-Curve for Asymmetric Beams by Self-Referencing Interferometer Wavefront Sensor

    Directory of Open Access Journals (Sweden)

    Yongzhao Du

    2016-11-01

    Full Text Available For asymmetric laser beams, the values of beam quality factor M x 2 and M y 2 are inconsistent if one selects a different coordinate system or measures beam quality with different experimental conditionals, even when analyzing the same beam. To overcome this non-uniqueness, a new beam quality characterization method named as M2-curve is developed. The M2-curve not only contains the beam quality factor M x 2 and M y 2 in the x-direction and y-direction, respectively; but also introduces a curve of M x α 2 versus rotation angle α of coordinate axis. Moreover, we also present a real-time measurement method to demonstrate beam propagation factor M2-curve with a modified self-referencing Mach-Zehnder interferometer based-wavefront sensor (henceforth SRI-WFS. The feasibility of the proposed method is demonstrated with the theoretical analysis and experiment in multimode beams. The experimental results showed that the proposed measurement method is simple, fast, and a single-shot measurement procedure without movable parts.

  1. Assessment of protocols in cone beam CT with symmetric and asymmetric beam using effective dose and P{sub ka}

    Energy Technology Data Exchange (ETDEWEB)

    Batista, W. O.; Linhares de O, M. V. [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho, Salvador, 40301015 Bahia (Brazil); Soares, M. R.; Maia, A. F. [Universidade Federal de Sergipe, Departamento de Fisica, Cidade Universitaria Prof. Jose Aloisio de Campos, Marechal Rondon s/n, Jardim Rosa Elze, 49-100000 Sao Cristovao, Sergipe (Brazil); Caldas, L. V. E., E-mail: wilsonottobatista@gmail.com [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    The cone beam CT is an emerging technology in dental radiology with significant differences the point of view of design technology between the various manufacturers on the world market. This study aims to evaluate and compare protocols with similar purposes in a cone beam CT scanner using TLDs and air kerma - area product (P{sub ka}) as kerma index. Measurements were performed on two protocols used to obtain the image the maxilla-mandible in equipment Gendex GXCB 500: Protocol [GX1] extended diameter and asymmetric beam (14 cm x 8.5 cm - maxilla / mandible) and protocol [GX2] symmetrical beam (8.5 cm x 8.5 cm - maxillary / mandible). Was used LiF dosimeters (TLD 100) inserted into a female anthropomorphic phantom manufactured by Radiology Support Devices. For all protocols evaluated the value of P{sub ka} using a meter Diamentor E2 and PTW system Radcal Rapidose. The results obtained for Effective Dose / P{sub ka} these measurements were separated by protocol image. Protocol [GX1]: 44.5 μSv/478 mGy cm{sup 2}; protocol [GX2]: 54.8 μSv/507 mGy cm{sup 2}. These values indicate that the relationship between the diameter of the image acquired in the protocol [GX1] and the diameter of the image in the protocol [GX2] is equal to 1.65, the Effective Dose for the first protocol has lower value at 18%. P{sub ka} values reveal very similar results between the two protocols, although, common sense leads to the interpretation that imaging protocols with field of view (Fov) of large diameters imply high values of effective dose when compared to small diameters. However, in this particular case, this is not true due to the asymmetrical beam technology. Conclude that for the cases where the scanner uses asymmetric beam to obtain images with large diameters that cover the entire face there are advantages from the point of view of reducing the exposure of patients with respect to the use of symmetrical beam and / or to Fov images with a smaller diameter. (Author)

  2. Assessment of protocols in cone beam CT with symmetric and asymmetric beam using effective dose and Pka

    International Nuclear Information System (INIS)

    Batista, W. O.; Linhares de O, M. V.; Soares, M. R.; Maia, A. F.; Caldas, L. V. E.

    2014-08-01

    The cone beam CT is an emerging technology in dental radiology with significant differences the point of view of design technology between the various manufacturers on the world market. This study aims to evaluate and compare protocols with similar purposes in a cone beam CT scanner using TLDs and air kerma - area product (P ka ) as kerma index. Measurements were performed on two protocols used to obtain the image the maxilla-mandible in equipment Gendex GXCB 500: Protocol [GX1] extended diameter and asymmetric beam (14 cm x 8.5 cm - maxilla / mandible) and protocol [GX2] symmetrical beam (8.5 cm x 8.5 cm - maxillary / mandible). Was used LiF dosimeters (TLD 100) inserted into a female anthropomorphic phantom manufactured by Radiology Support Devices. For all protocols evaluated the value of P ka using a meter Diamentor E2 and PTW system Radcal Rapidose. The results obtained for Effective Dose / P ka these measurements were separated by protocol image. Protocol [GX1]: 44.5 μSv/478 mGy cm 2 ; protocol [GX2]: 54.8 μSv/507 mGy cm 2 . These values indicate that the relationship between the diameter of the image acquired in the protocol [GX1] and the diameter of the image in the protocol [GX2] is equal to 1.65, the Effective Dose for the first protocol has lower value at 18%. P ka values reveal very similar results between the two protocols, although, common sense leads to the interpretation that imaging protocols with field of view (Fov) of large diameters imply high values of effective dose when compared to small diameters. However, in this particular case, this is not true due to the asymmetrical beam technology. Conclude that for the cases where the scanner uses asymmetric beam to obtain images with large diameters that cover the entire face there are advantages from the point of view of reducing the exposure of patients with respect to the use of symmetrical beam and / or to Fov images with a smaller diameter. (Author)

  3. Topology optimised wavelength dependent splitters

    DEFF Research Database (Denmark)

    Hede, K. K.; Burgos Leon, J.; Frandsen, Lars Hagedorn

    A photonic crystal wavelength dependent splitter has been constructed by utilising topology optimisation1. The splitter has been fabricated in a silicon-on-insulator material (Fig. 1). The topology optimised wavelength dependent splitter demonstrates promising 3D FDTD simulation results....... This complex photonic crystal structure is very sensitive against small fabrication variations from the expected topology optimised design. A wavelength dependent splitter is an important basic building block for high-performance nanophotonic circuits. 1J. S. Jensen and O. Sigmund, App. Phys. Lett. 84, 2022...

  4. Aperture correction with an asymmetrically trimmed gaussian weight in SPECT with a fan-beam collimator

    International Nuclear Information System (INIS)

    Kamiya, Ryo; Ogawa, Koichi

    2013-01-01

    The aim of the study is to improve the spatial resolution of single photon emission computed tomography (SPECT) images acquired with a fan-beam collimator. The aperture angle of a hole in the fan-beam collimator depends on the position of the collimator. To correct the aperture effect in an iterative image reconstruction, an asymmetrically trimmed Gaussian weight was used for a model. To confirm the validity of our method, point source phantoms and brain phantom were used in the simulation, and we applied the method to the clinical data. The results of the simulation showed that the spatial resolution of point sources improved from about 6 to 2 pixels full width at half maximum, and the corrected point sources were isotropic. The results of the simulation with the brain phantom showed that our proposed method could improve the spatial resolution of the phantom, and our method was effective for different fan-beam collimators with different focal lengths. The results of clinical data showed that the quality of the reconstructed image was improved with our proposed method. Our proposed aperture correction method with the asymmetrically trimmed Gaussian weighting function was effective in improving the spatial resolution of SPECT images acquired with the fan-beam collimator. (author)

  5. Asymmetric fan beams (AFB) for improvement of the craniocaudal dose distribution in helical tomotherapy delivery

    International Nuclear Information System (INIS)

    Gladwish, Adam; Kron, Tomas; McNiven, Andrea; Bauman, Glenn; Van Dyk, Jake

    2004-01-01

    Helical tomotherapy (HT) is a novel radiotherapy technique that utilizes intensity modulated fan beams that deliver highly conformal dose distributions in a helical beam trajectory. The most significant limitation in dose delivery with a constant fan beam thickness (FBT) is the penumbra width of the dose distribution in the craniocaudal direction, which is equivalent to the FBT. We propose to employ a half-blocked fan beam at start and stop location to reduce the penumbra width by half. By opening the jaw slowly during the helical delivery until the desired FBT is achieved it is possible to create a sharper edge in the superior and inferior direction from the target. The technique was studied using a tomotherapy beam model implemented on a commercial treatment planning system (Theraplan Plus V3.0). It was demonstrated that the dose distribution delivered using a 25 mm fan beam can be improved significantly, to reduce the dose to normal structures located superiorly and inferiorly of the target. Dosimetry for this technique is straightforward down to a FBT of 15 mm and implementation should be simple as no changes in couch movement are required compared to a standard HT delivery. We conclude that the use of asymmetric collimated fan beams for the start and stop of the helical tomotherapeutic dose delivery has the potential of significantly improving the dose distribution in helical tomotherapy

  6. On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas

    Science.gov (United States)

    Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.; Olkhovskaya, O. G.; Sasorov, P. V.; Gasilov, V. A.; Barber, S. K.; Bulanov, S. S.; Gonsalves, A. J.; Schroeder, C. B.; van Tilborg, J.; Esarey, E.; Leemans, W. P.; Levato, T.; Margarone, D.; Korn, G.; Kando, M.; Bulanov, S. V.

    2017-12-01

    A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique, is proposed. This method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus on the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. Large aspect ratio rectangular capillaries might be used to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.

  7. Comparision of Splitting Properties of Various 1x16 Splitters

    Directory of Open Access Journals (Sweden)

    Catalina Burtscher

    2017-01-01

    Full Text Available Optical Access Networks (OAN mostly use optical splitters to distribute the services from Optical Line Terminal (OLT on the provider's side to the subscribers in Optical Network Unit (ONU. Optical splitters are the key components in such access networks as for example GPON and XG-PON by ITU-T. In this paper we investigate the optical properties of 1x16 Y-branch splitter and 1x16 MMI splitters based on different widths of multimode interference section and different lengths of the output ports. These two splitters were designed, simulated and the obtained results of both were studied and compared with each other. Additionally, we show that the used standard waveguide core size (usually 6x6 µm2 to match the diameter of the single mode input/output fibers, i.e. to keep the coupling loses as low as possible supports not only propagation of the single mode but of the first mode too, leading to an asymmetric splitting ratio (increasing non-uniformity of split power over all the output waveguides. Decreasing waveguide core size, it is possible to suppress presence of the first mode and this way to reduce non-uniformity.

  8. Analytic methods to find beating transitions of asymmetric Gaussian beams in GNLS equations

    Science.gov (United States)

    Ianetz, David; Schiff, Jeremy

    2018-01-01

    In a simple model of propagation of asymmetric Gaussian beams in nonlinear waveguides, described by a reduction to ordinary differential equations of generalized nonlinear Schrödinger equations with cubic-quintic (CQ) and saturable (SAT) nonlinearities and a graded-index profile, the beam widths exhibit two different types of beating behavior, with transitions between them. We present an analytic model to explain these phenomena, which originate in a 1:1 resonance in a 2 degree-of-freedom Hamiltonian system. We show how small oscillations near a fixed point close to 1:1 resonance in such a system can be approximated using an integrable Hamiltonian and, ultimately, a single first order differential equation. In particular, the beating transitions can be located from coincidences of roots of a pair of quadratic equations, with coefficients determined (in a highly complex manner) by the internal parameters and initial conditions of the original system. The results of the analytic model agree with the numerics of the original system over large parameter ranges, and allow new predictions that can be verified directly. In the CQ case, we identify a band of beam energies for which there is only a single beating transition (as opposed to 0 or 2) as the eccentricity is increased. In the SAT case, we explain the sudden (dis)appearance of beating transitions for certain values of the other parameters as the grade-index is changed.

  9. Analytic methods to find beating transitions of asymmetric Gaussian beams in GNLS equations.

    Science.gov (United States)

    Ianetz, David; Schiff, Jeremy

    2018-01-01

    In a simple model of propagation of asymmetric Gaussian beams in nonlinear waveguides, described by a reduction to ordinary differential equations of generalized nonlinear Schrödinger equations with cubic-quintic (CQ) and saturable (SAT) nonlinearities and a graded-index profile, the beam widths exhibit two different types of beating behavior, with transitions between them. We present an analytic model to explain these phenomena, which originate in a 1:1 resonance in a 2 degree-of-freedom Hamiltonian system. We show how small oscillations near a fixed point close to 1:1 resonance in such a system can be approximated using an integrable Hamiltonian and, ultimately, a single first order differential equation. In particular, the beating transitions can be located from coincidences of roots of a pair of quadratic equations, with coefficients determined (in a highly complex manner) by the internal parameters and initial conditions of the original system. The results of the analytic model agree with the numerics of the original system over large parameter ranges, and allow new predictions that can be verified directly. In the CQ case, we identify a band of beam energies for which there is only a single beating transition (as opposed to 0 or 2) as the eccentricity is increased. In the SAT case, we explain the sudden (dis)appearance of beating transitions for certain values of the other parameters as the grade-index is changed.

  10. Asymmetric Light Curves of Black Hole Binaries and the Doppler Beaming Effect

    Directory of Open Access Journals (Sweden)

    Hee-Won Lee

    2002-03-01

    Full Text Available Black hole binary candidates are known to be composed of a black hole with 10Msolar and a K or M type companion. Because the companion is believed to fill the Roche lobe that is very aspherical, the light curves of black hole binaries are characterized by an ellipsoidal variation. It has been known that the ellipsoidal light curves exhibit asymmetric maximum brightness at the orbital phases 0.25 and 0.75, which has been attributed to star spots or the hot impact points of the accretion flow on to the accretion disk around the black hole. In this paper, it is pointed out that the special relativistic beaming effect contributes to the asymmetry of several percent often observed in the light curves. The typical orbital velocity 400 km s-1 observed in black hole binaries may induce the temperature difference Δ T/T~1/400 of the late type companion star in the observer's rest frame, because of the special relativistic Doppler beaming effect. This difference in temperature can result in several per cent of brightness sensitively dependent on the wavelength band, which is comparable to what has been observed in most black hole binary candidates. Considering the significant contribution of the special relativistic Doppler beaming effect, we conclude that the estimation of the sizes and temperatures of the star spots or the hot impact point needs serious revision.

  11. Experimental asymmetric phase-covariant quantum cloning of polarization qubits

    Science.gov (United States)

    Soubusta, Jan; Bartůšková, Lucie; Černoch, Antonín; Dušek, Miloslav; Fiurášek, Jaromír

    2008-11-01

    We report on two optical realizations of the 1→2 asymmetric phase-covariant cloning machines for polarization states of single photons. The experimental setups combine two-photon interference and tunable polarization filtering, which enables us to control the asymmetry of the cloners. The first scheme involves a special unbalanced bulk beam splitter exhibiting different splitting ratios for vertical and horizontal polarizations, respectively. The second implemented scheme consists of a balanced fiber coupler where photon bunching occurs, followed by a free-space part with polarization filters. With this latter approach we were able to demonstrate very high cloning fidelities which are above the universal cloning limit.

  12. Experimental vs. analytical modal analysis of a composite circumferentially asymmetric stiffness box beam

    Science.gov (United States)

    Latalski, Jarosław; Kowalczuk, Marcin

    2018-01-01

    This paper presents a theoretical vs. experimental modal analysis of a composite thin-walled beam featuring a circumfer-entially asymmetric stiffness (CAS) profile characteristics. The adopted lamination scheme results in the complex elastic deformation modes exhibiting mutual coupling of flapwise bending, transverse shear and torsion. The analytical model used in this study is based on the authors previous research and takes into account most classical and non-classical effects specific for thin-walled composite structures. The theoretical outcomes are compared to experimental ones obtained by two different test methods, namely an impact hammer test and a laser vibrometer test. In this second experiment the macro fibre composite (MFC) patch actuators have been used to excite the system. For comparative purposes two different transducer types providing different excitation load have been examined. The performed analytical and laboratory experiments demonstrate extremely high consistent findings irrespective of the means of excitation. Therefore, the laser-based motion analysis system combined with piezo-actuator excitation may be considered as a feasible and accurate method for static and dynamic experiments on systems exhibiting complex deformation modes. These include also highly flexible structures where the deformations can not be measured by conventional contact methods e.g. due to the influence of an accelerometer mass. The discussed laser-based motion measuring technique can also be used in future modal analysis experiments on rotating beams.

  13. Exact fan-beam image reconstruction algorithm for truncated projection data acquired from an asymmetric half-size detector

    International Nuclear Information System (INIS)

    Leng Shuai; Zhuang Tingliang; Nett, Brian E; Chen Guanghong

    2005-01-01

    In this paper, we present a new algorithm designed for a specific data truncation problem in fan-beam CT. We consider a scanning configuration in which the fan-beam projection data are acquired from an asymmetrically positioned half-sized detector. Namely, the asymmetric detector only covers one half of the scanning field of view. Thus, the acquired fan-beam projection data are truncated at every view angle. If an explicit data rebinning process is not invoked, this data acquisition configuration will reek havoc on many known fan-beam image reconstruction schemes including the standard filtered backprojection (FBP) algorithm and the super-short-scan FBP reconstruction algorithms. However, we demonstrate that a recently developed fan-beam image reconstruction algorithm which reconstructs an image via filtering a backprojection image of differentiated projection data (FBPD) survives the above fan-beam data truncation problem. Namely, we may exactly reconstruct the whole image object using the truncated data acquired in a full scan mode (2π angular range). We may also exactly reconstruct a small region of interest (ROI) using the truncated projection data acquired in a short-scan mode (less than 2π angular range). The most important characteristic of the proposed reconstruction scheme is that an explicit data rebinning process is not introduced. Numerical simulations were conducted to validate the new reconstruction algorithm

  14. Mandibular dimensions of subjects with asymmetric skeletal class III malocclusion and normal occlusion compared with cone-beam computed tomography.

    Science.gov (United States)

    Lee, HyoYeon; Bayome, Mohamed; Kim, Seong-Hun; Kim, Ki Beom; Behrents, Rolf G; Kook, Yoon-Ah

    2012-08-01

    The purpose of this study was to use cone-beam computed tomography to compare mandibular dimensions in subjects with asymmetric skeletal Class III malocclusion and those with normal occlusion. Cone-beam computed tomography scans of 38 subjects with normal occlusion and 28 patients with facial asymmetry were evaluated and digitized with Invivo software (Anatomage, San Jose, Calif). Three midsagittal and 13 right and left measurements were taken. The paired t test was used to compare the right and left sides in each group. The Mann-Whitney U test was used to compare the midsagittal variables and the differences between the 2 sides of the group with normal occlusion with those of asymmetry patients. The posterior part of the mandibular body showed significant differences between the deviated and nondeviated sides in asymmetric Class III patients. The difference of the asymmetry group was significantly greater than that of the normal occlusion group for the mediolateral ramal and the anteroposterior condylar inclinations (P = 0.007 and P = 0.019, respectively). The asymmetric skeletal Class III group showed significant differences in condylar height, ramus height, and posterior part of the mandibular body compared with the subjects with normal occlusion. These results might be useful for diagnosis and treatment planning of asymmetric Class III patients. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  15. Current Correlations in a Majorana Beam Splitter

    Science.gov (United States)

    Haim, Arbel; Berg, Erez; von Oppen, Felix; Oreg, Yuval

    We study current correlations in a T-junction composed of a grounded topological superconductor and of two normal-metal leads which are biased at a voltage V. We show that the existence of an isolated Majorana zero mode in the junction dictates a universal behavior for the cross correlation of the currents through the two normal-metal leads of the junction. The cross correlation is negative and approaches zero at high bias voltages as - 1 / V . This behavior is robust in the presence of disorder and multiple transverse channels, and persists at finite temperatures. In contrast, an accidental low-energy Andreev bound state gives rise to non-universal behavior of the cross correlation. We employ numerical transport simulations to corroborate our conclusions.

  16. Demonstration of a variable plasmonic beam splitter

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Israelsen, Niels Møller; Andersen, Ulrik Lund

    2014-01-01

    In this contribution, we excite surface plasmon polaritons propagating along a silver nano-wire by a single nitrogen-vacancy center located in a diamond nano-crystal. By using the tip of an atomic force microscope, a second nano-wire is brought into the evanescent field of the first wire such tha...

  17. Generation of energy bands in the electron beam with an asymmetric chicane-type emittance exchange beamline

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Bo-Cheng, E-mail: jiangbocheng@sinap.ac.cn; Zhao, Zhen-tang; Feng, Chao

    2014-11-11

    An asymmetric chicane-type transverse to longitudinal emittance exchange beam line is investigated and presented in this paper. This design is more feasible for existing machines due to its coaxial arrangement of the components and dispense of symmetric requirement of two doglegs compared to two-dogleg type one. By inserting quadrupoles between the dogleg and deflecting cavity, the dispersion can be amplified and hence the bending angle of the chicane is reduced with the same deflecting cavity parameters which will reduce the coherent synchrotron radiation effect.

  18. Bends and splitters in graphene nanoribbon waveguides

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Mortensen, N. Asger

    2013-01-01

    We investigate the performance of bends and splitters in graphene nanoribbon waveguides. Although the graphene waveguides are lossy themselves, we show that bends and splitters do not induce any additional loss provided that the nanoribbon width is sub-wavelength. We use transmission line theory...

  19. Limiting and Fedosov's Currents of a Strongly Magnetized Electron Beam in Asymmetric Transportation Channels

    Science.gov (United States)

    Goikhman, M. B.; Gromov, A. V.; Kovalev, N. F.; V. Palitsin, A.

    2016-12-01

    We consider the properties of thin-walled, strongly magnetized electron beams in closed evacuated transportation channels with arbitrary cross sections of the channel and the electron beam. Explicit precise formulas are obtained for the limiting and Fedosov's currents of such electron beams. The found relationships allow one to explain many observed phenomena and can serve as a basis for verification of the results of more complicated calculations.

  20. Dynamic properties of symmetric and asymmetric Beams made of Functionally Graded materials in bending

    Science.gov (United States)

    Diveyev, B.; Butyter, I.; Pelekh, Ya.

    2018-03-01

    A theory of dynamic bending of beams made of functionally graded materials is presented. The refined theoretical model takes into account the shear and normal strains and stresses. The distribution of stresses in the beams in cylindrical bending at different vibration frequencies is considered. Their damping properties in the frequency range are estimated.

  1. UV written 1x8 optical splitters

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael

    2005-01-01

    In this paper the first demonstration of 1x8 optical power splitters made by direct UV writing is presented. Design and optimization of the process as well as the performance of the fabricated components are discussed.......In this paper the first demonstration of 1x8 optical power splitters made by direct UV writing is presented. Design and optimization of the process as well as the performance of the fabricated components are discussed....

  2. Large core plastic planar optical splitter fabricated by 3D printing technology

    Science.gov (United States)

    Prajzler, Václav; Kulha, Pavel; Knietel, Marian; Enser, Herbert

    2017-10-01

    We report on the design, fabrication and optical properties of large core multimode optical polymer splitter fabricated using fill up core polymer in substrate that was made by 3D printing technology. The splitter was designed by the beam propagation method intended for assembling large core waveguide fibers with 735 μm diameter. Waveguide core layers were made of optically clear liquid adhesive, and Veroclear polymer was used as substrate and cover layers. Measurement of optical losses proved that the insertion optical loss was lower than 6.8 dB in the visible spectrum.

  3. Beam position monitoring system for the proposed asymmetric B Factory at SLAC

    International Nuclear Information System (INIS)

    Pellegrin, J.L.

    1992-10-01

    The beam position monitor system of the B Factory is drastically different from the actual PEP system. We present a description of the new configuration and list the features which have been adopted to make this system a highly reliable diagnostic tool. An electrode geometry is suggested, based on the maximum-acceptable power extracted from the beam, and the measurement resolution is estimated by assuming some practical bandwidth and the noise level. Finally, an estimate of the system precision is made by adding up what is expected to be the most significant systematic errors

  4. A mono isocentric radiotherapy technique for craniospinal irradiation using asymmetric jaws

    International Nuclear Information System (INIS)

    Isin, G; Oezyar, E.; Guerdalli, S.; Arslan, G.; Uzal, D.; Atahan, I. L.

    1995-01-01

    Dose distribution across the junction of matching of craniospinal fields (lateral cranial fields and posterior spinal field) is important as severe complications may result if the beams overlap or disease may recurs if the gapping is too conservative. Various techniques have been used to achieve an effective transverse plane match and half-beam block technique is one of these techniques. Here, we describe a mono isocentric technique for the treatment of craniospinal fields using the asymmetric jaws of our linear accelerator (Philips SL-25). Before the clinical application of this non-standard technique, basic dosimetry parameters are evaluated. Asymmetric collimator dose distributions for various asymmetric field sizes were obtained and compared with symmetric dose distributions for 6 MV x-ray. A computerized 3-D water phantom with a pair of ionization chambers (reference and field) was used for dose profiles, isodose distributions and Percentage Depth Dose (PDD) for various asymmetric field sizes and different off axis distances. The measured values of off axis ratios for the interested depths were used in MU calculations. This new mono isocentric technique provides an ideal dose distribution at match-line as there is no need to move the patient during treatment. Use of heavy secondary cerrobend blocks (beam splitters) is eliminated. This technique provides the ease of consequent daily set-up's and fulfills the requirements for a conformal radiotherapy

  5. Making Maps from Planck LFI 30GHz Data with Asymmetric Beams and Cooler Noise

    Energy Technology Data Exchange (ETDEWEB)

    The Planck CTP Working Group; Ashdown, M.A.J.; Baccigalupi, C.; Bartlett, J.G.; Borrill, J.; Cantalupo, C.; de Gasperis, G.; Gorski, K.M.; Hivon, E.; Huffenberger, K.; Keihanen, E.; Keskitalo, R.; Kisner, T.; Hurki-Suonio, H.; Lawrence, C.R.; Natoli, P.; Poutanen, T.; Prezeau, G.; Reinecke, M.; Rocha, G.; Sandri, M.; Stompor, R..; Villa, F.; Wandelt, B.; de Troia, G.

    2008-06-19

    The Planck satellite will observe the full sky at nine frequencies from 30 to 857 GHz. Temperature and polarization frequency maps made from these observations are prime deliverables of the Planck mission. The goal of this paper is to examine the effects of four realistic instrument systematics in the 30 GHz frequency maps: non-axially-symmetric beams, sample integration, sorption cooler noise, and pointing errors. They simulated one year long observations of four 30 GHz detectors. The simulated timestreams contained CMB, foreground component (both galactic and extra-galactic), instrument nolise (correlated and white), and the four instrument systematic effects. They made maps from the timelines and examined the magnitudes of the systematics effects in the maps and their angular power spectra. They also compared the maps of different mapmaking codes to see how they performed. They used five mapmaking codes (two destripers and three optimal codes). None of their mapmaking codes makes an attempt to deconvolve the beam from its output map. Therefore all our maps had similar smoothing due to beams and sample integration. This is a complicated smoothing, because every map pixel has its own effective beam. Temperature to polarization cross-coupling due to beam mismatch causes a detectable bias in the TE spectrum of the CMB map. The effects of cooler noise and pointing errors did not appear to be major concerns for the 30 GHz channel. The only essential difference found so far between mapmaking codes that affects accuracy (in terms of residual RMS) is baseline length. All optimal codes give essentially indistiguishable results. A destriper gives the same result as the optimal codes when the baseline is set short enough (Madam). For longer baselines destripers (Springtide and Madam) require less computing resources but deliver a noisier map.

  6. Coupling of flexural and longitudinal wave motion in a periodic structure with asymmetrically arranged transverse beams

    DEFF Research Database (Denmark)

    Friis, Lars; Ohlrich, Mogens

    2005-01-01

    as the distribution of motion displacements in each wave type. This is used for calculating the spatial variation of the forced harmonic responses of a semi-infinite periodic structure to point excitations by a longitudinal force and by a moment. Numerical simulations reveal the complicated wave coupling phenomena......In this paper we investigate the coupling of flexural and longitudinal wave motions in a waveguide with structural side branches attached at regular intervals. The analysis is based on periodic structure theory, and considers wave transmission in a fully tricoupled and semidefinite periodic...... assembly of beam-type elements or plane-wave transmission for normal incidence in a similar plate assembly. Receptances of a composite periodic element with offset resonant beams are derived and used for computing the frequency-dependent propagation constants of three coupled wave types as well...

  7. Analytical approach for determining beam profiles in water phantom of symmetric and asymmetric fields of wedged, blocked, and open photon beams.

    Science.gov (United States)

    Tahmasebi Birgani, Mohamad Javad; Chegeni, Nahid; Arvandi, Shole; Razmjoo Ghalaee, Sasan; Zabihzadeh, Mansoor; Khezerloo, Davood

    2013-11-04

    Nowadays, in most radiotherapy departments, the commercial treatment planning systems (TPS) used to calculate dose distributions needs to be verified; therefore, quick, easy-to-use, and low-cost dose distribution algorithms are desirable to test and verify the performance of the TPS. In this paper, we put forth an analytical method to calculate the phantom scatter contribution and depth dose on the central axis based on the equivalent square concept. Then, this method was generalized to calculate the profiles at any depth and for several field shapes - regular or irregular fields - under symmetry and asymmetry photon beam conditions. Varian 2100 C/D and Siemens Primus Plus linacs with 6 and 18 MV photon beam were used for irradiations. Percentage depth doses (PDDs) were measured for a large number of square fields for both energies and for 45° wedge, which were employed to obtain the profiles in any depth. To assess the accuracy of the calculated profiles, several profile measurements were carried out for some treatment fields. The calculated and measured profiles were compared by gamma-index calculation. All γ-index calculations were based on a 3% dose criterion and a 3 mm dose-to-agreement (DTA) acceptance criterion. The γ values were less than 1 at most points. However, the maximum γ observed was about 1.10 in the penumbra region in most fields and in the central area for the asymmetric fields. This analytical approach provides a generally quick and fairly accurate algorithm to calculate dose distribution for some treatment fields in conventional radiotherapy.

  8. Cone-beam computed tomography evaluation on the condylar displacement following sagittal split ramus osteotomy in asymmetric setback patients: Comparison between conventional approach and surgery-first approach.

    Science.gov (United States)

    Oh, Min-Hee; Hwang, Hyeon-Shik; Lee, Kyung-Min; Cho, Jin-Hyoung

    2017-09-01

    To compare the condylar displacement following sagittal split ramus osteotomy (SSRO) in asymmetric setback patients between the conventional approach and surgery-first approach and to determine whether the condylar displacement is affected by asymmetric setback in SSRO patients. This was a retrospective study. The subjects consisted of patients with facial asymmetry who underwent SSRO and had cone-beam computed tomography taken before and 1 month after surgery. They were allocated into the conventional (n = 18) and surgery-first (SF) groups (n = 20). Descriptive, independent t-tests and Pearson correlation analysis were computed. The amount of condylar displacement in x-, y-, and z-directions and Euclidean distance showed no statistically significant differences between the conventional and SF groups. Comparing the postoperative condylar position with the preoperative position, the condylar displacement occurred in posterior (P groups except on the deviated side in the conventional group. The condylar displacement occurred in a posterior (P group. However, the condylar displacement in three dimensions showed no statistically significant differences between the two groups. In the correlation analysis, the condylar displacement in both the deviated and contralateral sides showed no significant correlation with asymmetric setback in either group. The condylar displacement in three dimensions and the distance of condylar displacement in SSRO patients with facial asymmetry showed no significant difference between conventional and SF groups. Condylar displacement was not associated with asymmetric setback.

  9. Silica suspended waveguide splitter-based biosensor

    Science.gov (United States)

    Harrison, M. C.; Hawk, R. M.; Armani, A. M.

    2012-03-01

    Recently, a novel integrated optical waveguide 50/50 splitter was developed. It is fabricated using standard lithographic methods, a pair of etching steps and a laser reflow step. However, unlike other integrated waveguide splitters, the waveguide is elevated off of the silicon substrate, improving its interaction with biomolecules in solution and in a flow field. Additionally, because it is fabricated from silica, it has very low optical loss, resulting in a high signal-to-noise ratio, making it ideal for biosensing. By functionalizing the device using an epoxy-silane method using small samples and confining the protein solutions to the device, we enable highly efficient detection of CREB with only 1 μL of solution. Therefore, the waveguide coupler sensor is representative of the next generation of ultra-sensitive optical biosensors, and, when combined with microfluidic capabilities, it will be an ideal candidate for a more fully-realized lab-on-a-chip device.

  10. Large Core Planar 1 x 2 Optical Power Splitter with Acrylate and Epoxy Resin Waveguides on Polydimetylsiloxane Substrate

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2014-04-01

    Full Text Available Fabrication process of multimode 1x2 optical rectangular planar power splitter suitable for low-cost short distance optical network is presented. The splitters were designed by beam propagation method for standard input/output plastic optical fibre. Materials used for the splitter were: UV acrylate photopolymer polymer or epoxy resin for optical core waveguide layers and Y-groove substrate for the core layer was poly(methyl methacrylate or polydimetylsiloxane made by replication process on poly(methyl methacrylate pattern. The insertion losses of 1x2 splitters with acrylate waveguide layers were around 2.7 dB at 532 nm and 4.1 dB at 650 nm and those for epoxy resin waveguide layer were around 3.7 dB at 850 nm. The 1x2 splitters were tested by signal transmission being connected to the internet network by using optoelectronic switches and we achieved the maximum possible transmission data rate as provided by the computer network.

  11. Energy saving in a deep well pump with splitter blade

    Energy Technology Data Exchange (ETDEWEB)

    Goelcue, Mustafa [Department of Mechanical Education, Pamukkale University, 20017 Kinikli, Denizli (Turkey)]. E-mail: mgolcu@pamukkale.edu.tr; Pancar, Yasar [Department of Mechanical Engineering, Osman Gazi University, 26480 Eskisehir (Turkey); Sekmen, Yakup [Karabuk Vocational Collage, Zonguldak Karaelmas University, 78100 Karabuk (Turkey)

    2006-03-15

    Design parameters, like blade number, blade outlet angle and impeller outlet diameter, affect pump performance and energy consumption. Deep well pumps with splitter blades (DWPwsb) are manufactured to achieve energy saving and improve efficiency. Splitter blades are generally located at the centerline of the main blades. Blade number and blade discharge angle should be conveniently determined when splitter blades are used on the impellers. In this study, impellers having different numbers of blades (z = 5, 6, 7) with and without splitter blades (35%, 60% and 80% of the main blade length) were tested in a deep well pump. Tests have been conducted on a total of 12 impellers, and the characteristics of deep well pumps without splitter blade (DWPwosb) and DWPwsb were obtained experimentally. These results show that splitter blades cause negative effects on pump performance in impellers with blade numbers of 6 and 7. When the splitter blade is added to the impeller with the blade number of 5, the efficiency increases with flow up to 10 l/s flow rate, after which it decreases as the splitter blade length increases. The highest efficiency and the lowest energy consumption were obtained in DWPwsb with 80% of the main blade length. At the best efficiency point (b.e.p), an energy saving of 6.6% and an improvement of 1.14% in efficiency were achieved. An analysis of the additional cost of the splitter blade and the application in an agricultural area were performed.

  12. Energy saving in a deep well pump with splitter blade

    International Nuclear Information System (INIS)

    Goelcue, Mustafa; Pancar, Yasar; Sekmen, Yakup

    2006-01-01

    Design parameters, like blade number, blade outlet angle and impeller outlet diameter, affect pump performance and energy consumption. Deep well pumps with splitter blades (DWPwsb) are manufactured to achieve energy saving and improve efficiency. Splitter blades are generally located at the centerline of the main blades. Blade number and blade discharge angle should be conveniently determined when splitter blades are used on the impellers. In this study, impellers having different numbers of blades (z = 5, 6, 7) with and without splitter blades (35%, 60% and 80% of the main blade length) were tested in a deep well pump. Tests have been conducted on a total of 12 impellers, and the characteristics of deep well pumps without splitter blade (DWPwosb) and DWPwsb were obtained experimentally. These results show that splitter blades cause negative effects on pump performance in impellers with blade numbers of 6 and 7. When the splitter blade is added to the impeller with the blade number of 5, the efficiency increases with flow up to 10 l/s flow rate, after which it decreases as the splitter blade length increases. The highest efficiency and the lowest energy consumption were obtained in DWPwsb with 80% of the main blade length. At the best efficiency point (b.e.p), an energy saving of 6.6% and an improvement of 1.14% in efficiency were achieved. An analysis of the additional cost of the splitter blade and the application in an agricultural area were performed

  13. Active microring based tunable optical power splitters

    Science.gov (United States)

    Peter, Eldhose; Thomas, Arun; Dhawan, Anuj; Sarangi, Smruti R.

    2016-01-01

    In this paper we propose a set of novel tunable optical power splitters based on active microring resonators. They work by operating ring resonators in the transient zone between full resonance and off-resonance states for a specific wavelength. We can achieve different split ratios by either varying the bias voltage, or by selectively enabling a given resonator with a specific split ratio among an array of ring resonators. We take 500 ps to tune the resonator, which is at least 10× better that competing designs. Its split ratio varies from 0.4 to 1.8 for an applied voltage range of 0-5 V.

  14. Design and RF Test of Broadband Coaxial Hybrid Splitter for ITER ICRF System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. J.; Wang, S. J.; Park, B. H.; Yang, H. L.; Kwak, J. G. [National Fusion Research Institute, Daejeon (Korea, Republic of); Choi, J. J. [Kwangwoon Univ., Seoul (Korea, Republic of)

    2013-10-15

    The ICRF system of the ITER is required to couple 20 MW to the plasma in the 40∼55 MHz frequency band for RF heating and current drive operation. The corresponding matching system of ICRF antenna must be load-resilient for a wide range of antenna load variations due to mode transitions or edge localized modes. Indeed the use of hybrid splitters ensures that no reflections occur at the generator when the reflections on the adjacent lines are equal both in magnitude and in phase, in which case all reflected power will not be seen by the generators and will be returned to the dummy loads. Most 3 dB coaxial hybrid circuits installed and implemented on the ICRF system is single section coupler providing best performance at the design frequency with narrow bandwidth. The bandwidth of such a single-section 3 dB hybrid coupler is limited to less than 20% due to the quarter wavelength transmission line requirement. The amplitude balance becomes rapidly degraded away from the center frequency. We designed, fabricated and tested a high power, ultra-wideband two-section 3 dB coaxial hybrid coupler over all frequencies from 40 MHz to 55 MHz for ITER ICRF system by configuring asymmetric impedance matching. We have designed, fabricated, and tested a 3-dB wideband hybrid coupler for stable and load resilient operation of the ITER ICRF system. The wideband two section 3-dB coaxial hybrid coupler was well designed by configuring asymmetric impedance matching using HFSS. In the rf measurements, we found that wideband hybrid splitter has an amplitude imbalance of 0.1 dB over all frequencies from 40 MHz to 55 MHz. We expect that wideband hybrid splitter will be applicable to ITER ICRF matching system for load resilient operation at fusion plasmas.

  15. Collimator for the SPS extracted beam

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    This is a water cooled copper collimator (TCSA) which has exactly the shape of the cross section of the downstream magnetic beam splitter. Parts of the blown up primary proton beam pass above/below and left through this collimator. A small part of the protons is absorbed in the thin copper wedges. In this way the downstream magnetic splitter of the same cross section receives already a beam where its magnetic wedges are no longer hit by protons. The upstream, water cooled collimator, more resistant to protons, has cast a 'shadow' onto the downstream magnetic splitter, less resistant to protons. Gualtero Del Torre stands on the left.

  16. Temperature Optimization of a Naphtha Splitter Unit

    Directory of Open Access Journals (Sweden)

    NEVADO, A.

    2008-04-01

    Full Text Available A fully reliable and efficient adaptive control methodology has been long awaited in industry due to the time-varying nature of industrial plants. This paper demonstrates that this kind of adaptive solution is now available and simple to apply by presenting the first application of a methodology called Adaptive Predictive Expert (ADEX Control in a petrochemical production unit. A description of the plant and the ADEX solution is followed by a comparative analysis of the results obtained with those of the existing conventional PID control. The objectives of the application involving the naphtha splitter at the Puertollano Refinery of Repsol were to establish the viability of ADEX in this environment, increase the quality of the naphtha products by achieving closer compliance with desired specification and maximizing the economic yield. To achieve these objectives it was necessary to enhance the stability of the naphtha splitter by improving control of the principal variables and eliminating a degree of interaction between them which was causing a resonance problem in the column. The application of the ADEX system confirm its viability, demonstrated a marked increase in column stability, significant improvements in levels of control and the elimination of the resonance problems.

  17. Shock Wave Diffraction Phenomena around Slotted Splitters

    Directory of Open Access Journals (Sweden)

    Francesca Gnani

    2015-01-01

    Full Text Available In the field of aerospace engineering, the study of the characteristics of vortical flows and their unsteady phenomena finds numerous engineering applications related to improvements in the design of tip devices, enhancement of combustor performance, and control of noise generation. A large amount of work has been carried out in the analysis of the shock wave diffraction around conventional geometries such as sharp and rounded corners, but the employment of splitters with lateral variation has hardly attracted the attention of researchers. The investigation of this phenomenon around two-dimensional wedges has allowed the understanding of the basic physical principles of the flow features. On the other hand, important aspects that appear in the third dimension due to the turbulent nature of the vortices are omitted. The lack of studies that use three-dimensional geometries has motivated the current work to experimentally investigate the evolution of the shock wave diffraction around two splitters with spike-shaped structures for Mach numbers of 1.31 and 1.59. Schlieren photography was used to obtain an insight into the sequential diffraction processes that take place in different planes. Interacting among them, these phenomena generate a complicated turbulent cloud with a vortical arrangement.

  18. Two design of the S4.BEN01 magnet for the CBETA splitter/merger

    Energy Technology Data Exchange (ETDEWEB)

    Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-04-10

    The splitter/merger section of the CBETA project [1] consists of 4 beam lines as shown in Fig. 1. Two of the functions of the splitter’s/merger’s lines is to match the beam parameters at the exit of the Energy Recovery Linac (ERL) to the beam parameters at the entrance of the Fixed Field Alternating Gradient (FFAG) arc, and also place the reference particles of the beam bunches at the entrance of the FFAG arc on specified trajectories according to their energies. In this technical note we are presenting results from the 2D and 3D electromagnetic analysis of the S4.BEN01 magnet which is one of the dipole magnets of the 150 MeV line of the splitter/merger. In particular we present results from two designs of the S4.BEN01 magnet, one based on iron dominated current-excited magnet, and the other design based on Halbach-type permanent magnet. An evaluation of the two designs will be given in the section under “conclusion”.

  19. Glass-based integrated optical splitters: engineering oriented research

    Science.gov (United States)

    Hao, Yinlei; Zheng, Weiwei; Yang, Jianyi; Jiang, Xiaoqing; Wang, Minghua

    2010-10-01

    Optical splitter is one of most typical device heavily demanded in implementation of Fiber To The Home (FTTH) system. Due to its compatibility with optical fibers, low propagation loss, flexibility, and most distinguishingly, potentially costeffectiveness, glass-based integrated optical splitters made by ion-exchange technology promise to be very attractive in application of optical communication networks. Aiming at integrated optical splitters applied in optical communication network, glass ion-exchange waveguide process is developed, which includes two steps: thermal salts ion-exchange and field-assisted ion-diffusion. By this process, high performance optical splitters are fabricated in specially melted glass substrate. Main performance parameters of these splitters, including maximum insertion loss (IL), polarization dependence loss (PDL), and IL uniformity are all in accordance with corresponding specifications in generic requirements for optic branching components (GR-1209-CORE). In this paper, glass based integrated optical splitters manufacturing is demonstrated, after which, engineering-oriented research work results on glass-based optical splitter are presented.

  20. Assessment of asymmetry in a normal occlusion sample and asymmetric patients with three-dimensional cone beam computed tomography: a study for a transverse reference plane.

    Science.gov (United States)

    Park, Je Uk; Kook, Yoon-Ah; Kim, Yoonji

    2012-09-01

    To characterize symmetrical features of patients with facial asymmetry and thus to find the most reliable horizontal reference lines easily used in three-dimensional images. The hypothesis was that there is a difference in the location of bilateral landmarks of the upper skull between the normal occlusion sample and skeletal Class III patients with asymmetry. Group 1 (normal occlusion sample) was composed of 20 Korean adults with normal occlusion and no noticeable asymmetry. Groups 2 through 4 were selected from patients who were diagnosed as skeletal Class III malocclusion and grouped according to the extent of asymmetry (group 2: symmetric mandible, no maxillary cant; group 3: asymmetric mandible, no maxillary cant; group 4: asymmetric mandible, more than 4 mm maxillary cant measured at maxillary first molars). Three-dimensional cone beam computed tomography images were taken before treatment, and bilateral landmarks of the skull were located and their vertical and horizontal differences compared. No statistically significant difference was noted in the position of bilateral landmarks between groups, except for AG (P vertical dimension (P dimension (P < .0001) between groups. The mean of the difference was clearly greatest at FM. The hypothesis is rejected. All groups had a similar pattern of asymmetry in the upper third of the face. Therefore, the transverse reference line of the bilateral Z or orbitale may be used even in patients with severe asymmetry of the maxilla with reference to the clinical photos.

  1. Fabrication and optical characteristics of silicon-based two-dimensional wavelength division multiplexing splitter with photonic crystal directional waveguide couplers

    International Nuclear Information System (INIS)

    Liu, Cheng-Yang

    2011-01-01

    Photonic crystals have many potential applications because of their ability to control lightwave propagation. We report on the fabrication and optical properties of quasi-two-dimensional photonic crystals with triangular lattice of dielectric rods in air. Rod-type photonic crystal structures were fabricated in silicon by electron beam lithography and dry-etching techniques. Wavelength division multiplexing splitters were fabricated from two-dimensional photonic crystal directional waveguide couplers. Transmission spectra were measured and device operation was shown to be in agreement with theoretical calculations. The splitters can be used in visible light region. Such an approach to photonic element systems should enable new applications for designing components in photonic integrated circuits. -- Highlights: → We report the fabrication and optical properties of rod-type photonic crystal. → The splitter was fabricated by electron beam lithography and dry-etching techniques. → The splitter was composed of directional waveguide couplers. → Measured transmission spectra are in agreement with theoretical calculations. → The splitters can be used in visible light region.

  2. Design of Polymer Wavelength Splitter 1310 nm/1550 nm Based on Multimode Interferences

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2010-12-01

    Full Text Available We report about design of 1x2 1310/1550 nm optical wavelength division multiplexer based on polymer waveguides. The polymer splitter was designed by using RSoft software based on beam propagation method. Epoxy novolak resin polymer was used as core waveguides layer, silicon substrate with silica layer was used as buffer layer and polymethylmethacrylate was used as protection cover layer. The simulation shows that the output energy for the fundamental mode is 67.1 % for 1310 nm and 67.8 % for 1550 nm wavelength.

  3. Physical mechanism of beam splitting based on reflective embedded double-layer grating

    Science.gov (United States)

    Wang, Bo; Li, Hongtao; Shu, Wenhao; Li, Wenhua; Chen, Li; Lei, Liang; Zhou, Jinyun

    2016-12-01

    It is not easy to achieve high performance for conventional beam splitters, such as high efficiency, good uniformity, polarization-independence, and wide bandwidth. A reflective embedded double-layer grating is described for beam splitting. With optimized grating profiles, the novel beam splitter can diffract both TE and TM polarizations into two orders with high performance. For the easy production, the fabrication tolerance is investigated and given. Most importantly, efficiencies more than 45% can be split into two orders within the wide bandwidth of 1412-1647 nm for TE polarization. The beam splitter based on multilayer coatings is sensitive to the incident angle and wavelength. And the bandwidth needs to be improved for the beam splitter based on simple grating. The design is of benefit for the performance improvement of the beam splitter by new grating configuration compared with the conventional simple grating.

  4. Beam splitter coupled CdSe optical parametric oscillator

    International Nuclear Information System (INIS)

    Levinos, N.J.; Arnold, G.P.

    1980-01-01

    An optical parametric oscillator is disclosed in which the resonant radiation is separated from the pump and output radiation so that it can be manipulated without interfering with them. Thus, for example, very narrow band output may readily be achieved by passing the resonant radiation through a line narrowing device which does not in itself interfere with either the pump radiation or the output radiation

  5. Graphene Nanobubbles as Valley Filters and Beam Splitters

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Brandbyge, Mads

    2016-01-01

    The energy band structure of graphene has two inequivalent valleys at the K and K' points of the Brillouin zone. The possibility to manipulate this valley degree of freedom defines the field of valleytronics, the valley analogue of spintronics. A key requirement for valleytronic devices is the ab......The energy band structure of graphene has two inequivalent valleys at the K and K' points of the Brillouin zone. The possibility to manipulate this valley degree of freedom defines the field of valleytronics, the valley analogue of spintronics. A key requirement for valleytronic devices...... is the ability to break the valley degeneracy by filtering and spatially splitting valleys to generate valley polarized currents. Here, we suggest a way to obtain valley polarization using strain-induced inhomogeneous pseudomagnetic fields (PMFs) that act oppositely on the two valleys. Notably, the suggested...... to be addressed individually. In this way, graphene nanobubbles can be exploited in both valley filtering and valley splitting devices, and our simulations reveal that a number of different functionalities are possible depending on the deformation field....

  6. Beam filter and splitter based on surface plasmon propagation in ...

    Indian Academy of Sciences (India)

    1Optics and Photonic Technology Laboratory, Nanjing University of Information Science and. Technology, Nanjing 210044, China. 2School of Physics and Optoelectronic Engineering, Nanjing University of Information Science &. Technology, Nanjing 210044, China. 3School of Science, Nanjing University of Science ...

  7. Beam filter and splitter based on surface plasmon propagation in ...

    Indian Academy of Sciences (India)

    Optics and Photonic Technology Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; School of Science, Nanjing University of Science ...

  8. Protection of Passive Optical Networks by Using Ring Topology and Tunable Splitters

    Directory of Open Access Journals (Sweden)

    Pavel Lafata

    2013-01-01

    Full Text Available This article proposes an innovative method for protecting of passive optical networks (PONs, especially the central optical unit – optical line termination (OLT. PON networks are typically used in modern high-speed access networks, but there are also several specific applications, such as in business, army or science sector, which require a complex protection and backup system against failures and malfunctions. A standard tree or star topologies, which are usually used for PON networks, are significantly vulnerable mainly against the malfunctions and failures of OLT unit or feeder optical cable. The method proposed in this paper is focused on forming PON network with ring topology using passive optical splitters. The main idea is based on the possibility of placing both OLT units (primary and secondary on the opposite sides of the ring, which can potentially increase the resistance of network. This method is described in the article and scenarios and calculations using symmetric or tunable asymmetric passive optical splitters are included as well.

  9. Asymmetric collider

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Colestock, P.; Goderre, G.; Johnson, D.; Martin, P.; Holt, J.; Kaplan, D.

    1993-01-01

    The study of CP violation in beauty decay is one of the key challenges facing high energy physics. Much work has not yielded a definitive answer how this study might best be performed. However, one clear conclusion is that new accelerator facilities are needed. Proposals include experiments at asymmetric electron-positron colliders and in fixed-target and collider modes at LHC and SSC. Fixed-target and collider experiments at existing accelerators, while they might succeed in a first observation of the effect, will not be adequate to study it thoroughly. Giomataris has emphasized the potential of a new approach to the study of beauty CP violation: the asymmetric proton collider. Such a collider might be realized by the construction of a small storage ring intersecting an existing or soon-to-exist large synchrotron, or by arranging collisions between a large synchrotron and its injector. An experiment at such a collider can combine the advantages of fixed-target-like spectrometer geometry, facilitating triggering, particle identification and the instrumentation of a large acceptance, while the increased √s can provide a factor > 100 increase in beauty-production cross section compared to Tevatron or HERA fixed-target. Beams crossing at a non-zero angle can provide a small interaction region, permitting a first-level decay-vertex trigger to be implemented. To achieve large √s with a large Lorentz boost and high luminosity, the most favorable venue is the high-energy booster (HEB) at the SSC Laboratory, though the CERN SPS and Fermilab Tevatron are also worth considering

  10. Comparing identically designed grayscale (50 phase level) and binary (5 phase levels) splitters: actual versus modeled performance

    Science.gov (United States)

    Lizotte, Todd E.; Ohar, Orest P.; Tuttle, Tracie

    2006-04-01

    Performance of diffractive optics is determined by high-quality design and a suitable fabrication process that can actually realize the design. Engineers who are tasked with developing or implementing a diffractive optic solution into a product need to take into consideration the risks of using grayscale versus binary fabrication processes. In many cases, grayscale design doesn't always provide the best solution or cost benefit during product development. This fabrication dilemma arises when the engineer has to select a source for design and/or fabrication. Engineers come face to face with reality in view of the fact that diffractive optic suppliers tend to provide their services on a "best effort basis". This can be very disheartening to an engineer who is trying to implement diffractive optics. This paper will compare and contrast the design and performance of a 1 to 24 beam, two dimensional; beam splitter fabricated using a fifty (50) phase level grayscale and a five (5) phase level binary fabrication methods. Optical modeling data will be presented showing both designs and the performance expected prior to fabrication. An overview of the optical testing methods used will be discussed including the specific test equipment and metrology techniques used to verify actual optical performance and fabricated dimensional stability of each optical element. Presentation of the two versions of the splitter will include data on fabrication dimensional errors, split beam-to-beam uniformity, split beam-to-beam spatial size uniformity and splitter efficiency as compared to the original intended design performance and models. This is a continuation of work from 2005, Laser Beam Shaping VI.

  11. Magnetic Field Tuning and Quantum Interference in a Cooper Pair Splitter.

    Science.gov (United States)

    Fülöp, G; Domínguez, F; d'Hollosy, S; Baumgartner, A; Makk, P; Madsen, M H; Guzenko, V A; Nygård, J; Schönenberger, C; Levy Yeyati, A; Csonka, S

    2015-11-27

    Cooper pair splitting (CPS) is a process in which the electrons of the naturally occurring spin-singlet pairs in a superconductor are spatially separated using two quantum dots. Here, we investigate the evolution of the conductance correlations in an InAs CPS device in the presence of an external magnetic field. In our experiments the gate dependence of the signal that depends on both quantum dots continuously evolves from a slightly asymmetric Lorentzian to a strongly asymmetric Fano-type resonance with increasing field. These experiments can be understood in a simple three-site model, which shows that the nonlocal CPS leads to symmetric line shapes, while the local transport processes can exhibit an asymmetric shape due to quantum interference. These findings demonstrate that the electrons from a Cooper pair splitter can propagate coherently after their emission from the superconductor and how a magnetic field can be used to optimize the performance of a CPS device. In addition, the model calculations suggest that the estimate of the CPS efficiency in the experiments is a lower bound for the actual efficiency.

  12. The investigation of multi-channel splitters and big-bend waveguides based on 2D sunflower-typed photonic crystals

    Science.gov (United States)

    Liu, Wei; Sun, XiaoHong; Fan, QingBin; Wang, Shuai; Qi, YongLe

    2016-12-01

    Different kinds of multi-channel splitters and big-bend waveguides have been designed and investigated by using sunflower-typed photonic crystals. By comparing the transmission spectra of two kinds of 4-channels beam splitters, we find that "C" type splitter has a relative uniform splitting ratio for different channels in a certain wavelength range. Furthermore three types of waveguides with different bending degrees have been investigated. Except for a little loss in the short wavelength with the increase of the bending degrees, they have almost the same transmission spectra structures. The result can be extended to big-bend waveguides with arbitrary bending degrees. This research is valuable for developing new-typed integrated optical communication devices.

  13. Design Optimization of a Centrifugal Fan with Splitter Blades

    Science.gov (United States)

    Heo, Man-Woong; Kim, Jin-Hyuk; Kim, Kwang-Yong

    2015-05-01

    Multi-objective optimization of a centrifugal fan with additionally installed splitter blades was performed to simultaneously maximize the efficiency and pressure rise using three-dimensional Reynolds-averaged Navier-Stokes equations and hybrid multi-objective evolutionary algorithm. Two design variables defining the location of splitter, and the height ratio between inlet and outlet of impeller were selected for the optimization. In addition, the aerodynamic characteristics of the centrifugal fan were investigated with the variation of design variables in the design space. Latin hypercube sampling was used to select the training points, and response surface approximation models were constructed as surrogate models of the objective functions. With the optimization, both the efficiency and pressure rise of the centrifugal fan with splitter blades were improved considerably compared to the reference model.

  14. Improved wet splitter for micropalaeontological analysis, and assessment of uncertainty using data from splitters

    Science.gov (United States)

    Charrieau, Laurie M.; Bryngemark, Lene; Hansson, Ingemar; Filipsson, Helena L.

    2018-01-01

    Analyses of foraminiferal assemblages have often been implemented on dry samples, which are easy to split. In some cases, the wet-picking method is preferred as it allows the preservation of more foraminiferal forms and facilitates the picking of live foraminifera. However, the increased execution time needed for wet picking may cause micropalaeontologists to refrain from employing it in a routine way. Here we present an improved and cost-effective wet splitter (including a 3-D printing file) for micropalaeontological samples aimed to reduce picking time while keeping information loss to a minimum. We demonstrate small sample losses as well as statistical consistency across splits. We show that the time saved picking a subset will always be larger than the relative increase in statistical uncertainty.

  15. Magnet design for the splitter/combiner regions of CBETA, the Cornell-Brookhaven Energy-Recovery-Linac Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Crittendon, J. A. [Cornell Lab. for Accelerator-Based Sciences and Education, Ithaca, NY (United States); Burke, D. C. [Cornell Lab. for Accelerator-Based Sciences and Education, Ithaca, NY (United States); Fuentes, Y. L.P. [Cornell Lab. for Accelerator-Based Sciences and Education, Ithaca, NY (United States); Mayes, C. E. [Cornell Lab. for Accelerator-Based Sciences and Education, Ithaca, NY (United States); Smolenski, K. W. [Cornell Lab. for Accelerator-Based Sciences and Education, Ithaca, NY (United States)

    2017-01-06

    The Cornell-Brookhaven Energy-Recovery-Linac Test Accelerator (CBETA) will provide a 150-MeV electron beam using four acceleration and four deceleration passes through the Cornell Main Linac Cryomodule housing six 1.3-GHz superconducting RF cavities. The return path of this 76-m-circumference accelerator will be provided by 106 fixed-field alternating-gradient (FFAG) cells which carry the four beams of 42, 78, 114 and 150 MeV. Here we describe magnet designs for the splitter and combiner regions which serve to match the on-axis linac beam to the off-axis beams in the FFAG cells, providing the path-length adjustment necessary to energy recovery for each of the four beams. The path lengths of the four beamlines in each of the splitter and combiner regions are designed to be adapted to 1-, 2-, 3-, and 4-pass staged operations. Design specifi- cations and modeling for the 24 dipole and 32 quadrupole electromagnets in each region are presented. The CBETA project will serve as the first demonstration of multi-pass energy recovery using superconducting RF cavities with FFAG cell optics for the return loop.

  16. Topology Optimised Broadband Photonic Crystal Y-Splitter

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders

    2005-01-01

    A planar photonic crystal waveguide Y-splitter that exhibits large-bandwidth low-loss 3 dB splitting for TE-polarised light has been fabricated in silicon-on-insulator material. The high performance is achieved by utilising topology optimisation to design the Y-junction and by using topology...

  17. Fiber gyroscope with a double sensitivity employing a polarization splitter.

    Science.gov (United States)

    Zhou, Kejiang; Pan, Shuming; Liu, Shujun; Hu, Keke

    2013-04-15

    An effective method for enhancing the sensitivity of interferometric fiber-optic gyroscope (IFOG) is presented. Light waves propagate twice along the same sensing coil made of polarization-maintaining fiber in different polarization states by inducing a fiber polarization splitter/combining in the IFOG. Preliminary performance data of a gyro prototype exhibits 0.006°/h bias stability.

  18. MTN magnet for the SPS extracted beam.

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    This type of dipole magnet was used in the extracted beam lines of the North Area. It shows an opening for three different proton beam lines: a primary extracted proton beam, split by an upstream magnetic beam splitter (see photo 7612017) into three separated beams passes through different parts of its aperture: right, left up, left down. These magnets were designed to be concrete-insulated for radiation resistance. F. Streun stands on the right.

  19. Towards entanglement detection in nanotube Cooper pair splitters with disorder and spin-orbit coupling

    DEFF Research Database (Denmark)

    Hels, Morten Canth

    This thesis presents results from experimental and theoretical investigations of carbon nanotube (CNT) quantum devices at cryogenic temperatures. Specifically, Cooper pair splitting (CPS) in CNT devices with beam-splitter geometries and a central superconducting electrode is investigated. Carbon...... nanotubes are attractive to use in quantum devices because of their exotic electronic and mechanical properties. One proposal involving carbon nanotubes utilizes their intrinsic spin-orbit interaction as a spin filter to demonstrate the entangled nature of splitting Cooper pairs. Such a device would have...... to have god correspondence with transport data obtained from a two-terminal CNT quantum dot device. A CNT CPS device is fabricated which allows identification of non-collinear spin-orbit magnetic fields in the two segments of the device. This is made possible because the curved nanotube exhibits low...

  20. Optical Splitters Based on Self-Imaging Effect in Multi-Mode Waveguide Made by Ion Exchange in Glass

    Directory of Open Access Journals (Sweden)

    O. Barkman

    2013-04-01

    Full Text Available Design and modeling of single mode optical multi-mode interference structures with graded refractive index is reported. Several samples of planar optical channel waveguides were obtained by Ag+, Na+ and K+, Na+ one step thermal ion exchange process in molten salt on GIL49 glass substrate and new special optical glass for ion exchange technology. Waveguide properties were measured by optical mode spectroscopy. Obtained data were used for further design and modeling of single mode channel waveguide and subsequently for the design of 1 to 3 multimode interference power splitter in order to improve simulation accuracy. Designs were developed by utilizing finite difference beam propagation method.

  1. Electron Waiting Times of a Cooper Pair Splitter

    DEFF Research Database (Denmark)

    Walldorf, Nicklas; Padurariu, Ciprian; Jauho, Antti-Pekka

    2018-01-01

    Electron waiting times are an important concept in the analysis of quantum transport in nanoscale conductors. Here we show that the statistics of electron waiting times can be used to characterize Cooper pair splitters that create spatially separated spin-entangled electrons. A short waiting time...... between electrons tunneling into different leads is associated with the fast emission of a split Cooper pair, while long waiting times are governed by the slow injection of Cooper pairs from a superconductor. Experimentally, the waiting time distributions can be measured using real-time single......-electron detectors in the regime of slow tunneling, where conventional current measurements are demanding. Our work is important for understanding the fundamental transport processes in Cooper pair splitters and the predictions may be verified using current technology....

  2. Electron Waiting Times of a Cooper Pair Splitter

    Science.gov (United States)

    Walldorf, Nicklas; Padurariu, Ciprian; Jauho, Antti-Pekka; Flindt, Christian

    2018-02-01

    Electron waiting times are an important concept in the analysis of quantum transport in nanoscale conductors. Here we show that the statistics of electron waiting times can be used to characterize Cooper pair splitters that create spatially separated spin-entangled electrons. A short waiting time between electrons tunneling into different leads is associated with the fast emission of a split Cooper pair, while long waiting times are governed by the slow injection of Cooper pairs from a superconductor. Experimentally, the waiting time distributions can be measured using real-time single-electron detectors in the regime of slow tunneling, where conventional current measurements are demanding. Our work is important for understanding the fundamental transport processes in Cooper pair splitters and the predictions may be verified using current technology.

  3. Diffractive-refractive optics: X-ray splitter

    Czech Academy of Sciences Publication Activity Database

    Hrdý, Jaromír

    2010-01-01

    Roč. 17, č. 1 (2010), s. 129-131 ISSN 0909-0495 R&D Projects: GA MPO FR-TI1/412; GA AV ČR IAA100100716 Institutional research plan: CEZ:AV0Z10100522 Keywords : x-ray splitter * diffractive-refractive optics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.335, year: 2010

  4. Positioning X-Ray Film Inside A Flow Splitter

    Science.gov (United States)

    Darter, Charles; Pierce, Darryl

    1990-01-01

    Simple and inexpensive tool ensures secure placement for radiographic inspection. Holder places film positively and securely for x-ray inspection inside sections of tube with splitter welds. V-shaped piece of film fits on arms of holder. With arms squeezed together, holder inserted in opening of neck. Arms of holder cut from 0.020-in. (0.51-mm) thick stock of unspecified material.

  5. Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber

    Science.gov (United States)

    Wu, Yue; Pei, Li; Jin, Wenxing; Jiang, Youchao; Yang, Yuguang; Shen, Ya; Jian, Shuisheng

    2017-07-01

    A highly sensitive curvature sensor based on asymmetrical twin core fiber (TCF) and multimode fiber (MMF) is proposed and experimentally demonstrated. By applying the coupled-mode theory and equivalent refractive index model, we theoretically analyze the uncoupled feature of the TCF and the relationship between peak wavelength and the curvature. Two segments of MMF used as beam splitter and combiner are embedded on the two ends of the TCF, and the extinction ratio of the comb transmission spectrum is about 15 dB. The experimental result shows that the curvature sensitivity of the sensor can be achieved as high as 103.35 nm/m-1 ranging from 0.24 m-1 to 0.6 m-1, and the strain sensitivity is up to -4.01 pm/με in the range from 0 μεto 1400 με. The simultaneous detection of the curvature and strain can be realized. The temperature sensitivity is 0.431 nm/°C in the range from 40 °C to 70 °C. This fiber sensor exhibits the advantages of low cost, easy and repeated fabrication, and high sensitivity.

  6. 76 FR 75542 - Rail Splitter Wind Farm, LLC v. Ameren Services Company Midwest Independent Transmission, System...

    Science.gov (United States)

    2011-12-02

    ... Federal Energy Regulatory Commission Rail Splitter Wind Farm, LLC v. Ameren Services Company Midwest Independent Transmission, System Operator, Inc.; Notice of Complaint Take notice that on November 23, 2011... Farm, LLC (Rail Splitter or Complainant) filed a formal complaint against Ameren Services Company...

  7. A Laue-Bragg monolithic beam splitter for efficient X-ray 2-beam imaging

    Czech Academy of Sciences Publication Activity Database

    Oberta, Peter; Mokso, R.

    2013-01-01

    Roč. 703, MAR (2013), s. 59-63 ISSN 0168-9002 R&D Projects: GA MPO FR-TI1/412 Institutional research plan: CEZ:AV0Z10100522 Keywords : X-ray imaging * Laue-Bragg diffraction * monolithic crystal * dueal energy option Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.316, year: 2013 http://www. science direct.com/ science /article/pii/S0168900212013794

  8. Influence of Splitter Blades on the Cavitation Performance of a Double Suction Centrifugal Pump

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2014-04-01

    Full Text Available In order to study the influence of splitter blades on double suction centrifugal pumps two impellers with and without splitter blades were investigated numerically and experimentally. Three-dimensional turbulence simulations with and without full cavitation model were applied to simulate the flow in the two pumps with different impellers. The simulation results agreed with the experiment results and the internal flows were analyzed. Both the numerical and experimental results show that by adding splitter blades the hydraulic performance and the cavitation performance of the pump are improved. The pump efficiency is increased especially at high flow rate condition. The pump high efficiency area is extended dramatically. At the same time since the splitter blades share some part of the blade loading, the pump critical NPSH value is decreased. Obvious pressure increase and velocity decrease at blade suction surface near leading edge were observed in the pump impeller with splitter blades. And the pump cavitation performance was improved consequently.

  9. New waveguide shape for low loss and high uniformity y-branch optical splitter

    Science.gov (United States)

    Burtscher, Catalina; Seyringer, Dana; Lucki, Michal; Kohler, Linda

    2017-02-01

    The most common application of optical Y-splitters is their use in FTTx networks. It allows several customers to share the same physical medium, bringing high-speed networking, digital television and telephone services to residences using fiber-optic cables. The task of the optical splitters in such FTTH networks is to split one optical signal in many identical signals bringing for example the same TV signal in different households. Of course, the more buildings can be served by one optical splitter the lower are the installation costs. Therefore, the special attention is paid mainly to the design of high channel optical splitters presenting the serious challenge for the professional designers. In this paper a new Y-branch shape is proposed for 1×32 Y-branch splitter ensuring better splitting properties compared to the one recommended by ITU, in terms of their performance in transmission systems using wavelength division multiplexing.

  10. 2x2 photonic crystal fiber splitter based on silica-based planar lightwave circuits.

    Science.gov (United States)

    Eom, Joo Beom; Park, Jong-Hyuk; Lee, Byeong Ha

    2009-12-01

    A 2x2 photonic crystal fiber (PCF) planar lightwave circuit (PLC) splitter, which splits optical power between two PCF channels, has been made by PCF-to-PLC connections. PCF array blocks were lithographically fabricated to have fiber V grooves and used to firmly hold PCFs and align them to the PLC splitter. The proposed splitter showed a rather flat splitting ratio over a wide wavelength range from 1250 nmto1750 nm. With the implemented splitter, we obtained a low excess loss of 1.6 dB, a low polarization-dependent loss of 0.1 dB, and a high return loss of 52 dB. The ultrabroadband operation of the proposed splitter is expected to find applications in optical performance monitoring, Ethernet passive optical networks, and biomedical optics including optical coherence tomography.

  11. Line defects on As2Se3-Chalcogenide photonic crystals for the design of all-optical power splitters and digital logic gates

    Science.gov (United States)

    Saghaei, Hamed; Zahedi, Abdulhamid; Karimzadeh, Rouhollah; Parandin, Fariborz

    2017-10-01

    In this paper, a triangular two-dimensional photonic crystal (PhC) of As2Se3-chalcogenide rods in air is presented and its photonic band diagram is calculated by plane wave method. In this structure, an optical waveguide is obtained by creating a line defect (eliminating rods) in diagonal direction of PhC. Numerical simulations based on finite difference time domain method show that when self-collimated beams undergo total internal reflection at the PhC-air interface, a total reflection of 90° occurs for the output beams. We also demonstrate that by decreasing the radius of As2Se3-chalcogenide instead of eliminating a diagonal line, a two-channel optical splitter will be designed. In this case, incoming self-collimated beams can be divided into the reflected and transmitted beams with arbitrary power ratio by adjusting the value of their radii. Based on these results, we propose a four-channel optical splitter using four line defects. The power ratio among output channels can be controlled systematically by varying the radius of rods in the line defects. We also demonstrate that by launching two optical sources with the same intensity and 90° phase difference from both perpendicular faces of the PhC, two logic OR and XOR gates will be achieved at the output channels. These optical devices have some applications in photonic integrated circuits for controlling and steering (managing) the light as desired.

  12. Asymmetric Crater

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 18 December 2003Asymmetric craters such as the one in the center of this image are fairly rare. The more typical symmetric craters are formed when meteors impact a surface over a wide range of angles. Only very low impact angles (within 15o of horizontal) result in asymmetric structures such as this one. The bilateral symmetry of the ejecta, like two wings on either side of the elliptical crater, is typical of oblique impacts. The small crater downrange from the main crater could have been caused by the impactor breaking apart before impact or possibly a 'decapitation' of the impactor as it hit with the 'head' traveling farther to form the smaller structure.Image information: VIS instrument. Latitude -8.5, Longitude 227.5 East (132.5 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Study on the Pressure Pulsation inside Runner with Splitter Blades in Ultra-High Head Turbine

    International Nuclear Information System (INIS)

    Meng, L; Zhang, S P; Zhou, L J; Wang, Z W

    2014-01-01

    Runners with splitter blades were used widely for the high efficiency and stability. In this paper, the unsteady simulation of an ultra-high head turbine at the best efficiency point, 50% and 75% discharge points were established, to analyze the pressure pulsation in the vaneless space, rotating domain and the draft tube. First of all, runners with different length splitter blades and without splitter blades were compared to learn the efficiency and the pressure distribution on the blade surface. And then the amplitude of the pressure pulsation was analysed. The peak efficiency of the runner with splitter blades is remarkably higher than that of the corresponding impeller without splitter blades. And the efficiency of the turbine is the highest when the length ratio of the splitter blades is 0.75 times the main blades. The pressure pulsation characteristics were also influenced, because the amplitudes of the pulsation induced by the RSI phenomenon were changed as a result of more blades. At last, the best design plan of the length of the splitter blades (length ratio=0.825) was obtained, which improved the pressure pulsation characteristics without significant prejudice to the efficiency

  14. A Broadband Terahertz Waveguide T-Junction Variable Power Splitter

    Science.gov (United States)

    Reichel, Kimberly S.; Mendis, Rajind; Mittleman, Daniel M.

    2016-06-01

    In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting.

  15. Highly Reliable PON Optical Splitters for Optical Access Networks in Outside Environments

    Science.gov (United States)

    Watanabe, Hiroshi; Araki, Noriyuki; Fujimoto, Hisashi

    Broadband optical access services are spreading throughout the world, and the number of fiber to the home (FTTH) subscribers is increasing rapidly. Telecom operators are constructing passive optical networks (PONs) to provide optical access services. Externally installed optical splitters for PONs are very important passive devices in optical access networks, and they must provide satisfactory performance as outdoor plant over long periods. Therefore, we calculate the failure rate of optical access networks and assign a failure rate to the optical splitters in optical access networks. The maximum cumulative failure rate of 1 × 8 optical splitters was calculated as 0.025 for an optical access fiber length of 2.1km and a 20-year operating lifetime. We examined planar lightwave circuit (PLC) type optical splitters for use as outside plant in terms of their optical characteristics and environmental reliability. We confirmed that PLC type optical splitters have sufficient optical performance for a PON splitter and sufficient reliability as outside plant in accordance with ITU-T standard values. We estimated the lifetimes of three kinds of PLC type optical splitters by using accelerated aging tests. The estimated failure rate of these splitters installed in optical access networks was below the target value for the cumulative failure rate, and we confirmed that they have sufficient reliability to maintain the quality of the network service. We developed 1 × 8 optical splitter modules with plug and socket type optical connectors and optical fiber cords for optical aerial closures designed for use as outside plant. These technologies make it easy to install optical splitters in an aerial optical closure. The optical splitter modules have sufficient optical performance levels for PONs because the insertion loss at the commercially used wavelengths of 1.31 and 1.55µm is less than the criterion established by ITU-T Recommendation G.671 for optical splitters. We performed a

  16. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon–Gallium-Nitride Slot Waveguide Structures

    Directory of Open Access Journals (Sweden)

    Dror Malka

    2016-06-01

    Full Text Available In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI coupler in a silicon (Si–gallium nitride (GaN slot waveguide structure is presented—to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM. Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530–1565 nm into four output ports with low insertion losses (0.07 dB.

  17. Emergency Department Visits for Hand and Finger Injuries Associated with the Use of Log Splitters.

    Science.gov (United States)

    Hammig, Bart; Jones, Ches

    2017-04-26

    The purpose of this study was to examine patients treated in an emergency department (ED) for injuries related to the use of log splitters. Data were obtained from the National Electronic Injury Surveillance System for the years 2011-2014. National estimates of ED visits for injuries associated with the use of log splitters were obtained, and descriptive epidemiological characteristics are presented. An estimated 37,000 ED visits for injuries related to the use of log splitters occurred during the study period. The majority of injuries occurred to the hand, with lacerations, fractures/avulsions, and amputations being the most common. The findings indicate that injuries from log splitters constitute a serious public health problem. Efforts to reduce injuries are discussed in accordance with the inherent challenges of detailing the circumstances surrounding these injuries. Copyright© by the American Society of Agricultural Engineers.

  18. Control of the flow in the annular region of a shrouded cylinder with splitter plate

    Directory of Open Access Journals (Sweden)

    Ozkan Gokturk Memduh

    2017-01-01

    Full Text Available In the present study, the flow control with a splitter plate was studied considering the annular region of a shrouded cylinder. The effect of splitter plate angle, α which was defined according to the cylinder centreline is investigated experimentally in deep water using Particle image Velocimetry (PIV technique and flow visualization by dye injection method. The range of splitter plate angle was selected within 60°≤ α ≤180° with an increment of 30°. The porosity of the shroud which is a perforated cylinder was selected as β=0.7 in order to have larger fluid entrainment through the cylinder. The results were compared with the no-plate case and showed that the splitter plate located in the annular region of shrouded cylinders is effective on reducing the turbulence levels just behind the cylinder base, as well as the near wake of the perforated shroud.

  19. Multi-directional plasmonic surface-wave splitters with full bandwidth isolation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Zhang, Baile, E-mail: blzhang@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371 (Singapore)

    2016-03-14

    We present a multidirectional plasmonic surface-wave splitter with full bandwidth isolation experimentally based on coupled defect surface modes in a surface-wave photonic crystal. In contrast to conventional plasmonic surface-wave frequency splitters with polaritonic dispersion relations that overlap at low frequencies, this multidirectional plasmonic surface-wave splitter based on coupled defect surface modes can split different frequency bands into different waveguide branches without bandwidth overlap. Transmission spectra and near-field imaging measurements have been implemented in the microwave frequencies to verify the performance of the multidirectional plasmonic surface-wave splitter. This surface wave structure can be used as a plasmonic wavelength-division multiplexer that may find potential applications in the surface-wave integrated circuits from microwave to terahertz frequencies.

  20. Improvement of centrifugal pump performance through addition of splitter blades on impeller pump

    Science.gov (United States)

    Kurniawan, Krisna Eka; Santoso, Budi; Tjahjana, Dominicus Danardono Dwi Prija

    2018-02-01

    The workable way to improve pump performance is to redesign or modify the impellers of centrifugal pump. The purpose of impeller pump modification is to improve pump efficiency, reduce cross flow, reduce secondary incidence flows, and decrease backflow areas at impeller outlets. Number blades and splitter blades in the impeller are three. The outlet blade angle is 20°, and the rotating speed of impeller is 2400 rpm. The added splitter blades variations are 0.25, 0.375, and 0.5 of the original blade length. The splitter blade placements are on the outer side of the impeller. The addition of splitter blades on the outer side of the impeller with 0.5L increases the pump head until 22% and the pump has 38.66% hydraulic efficiency. The best efficiency point of water flow rate pump (Qbep) was 3.02 × 10-3 m3/s.

  1. Control of the flow in the annular region of a shrouded cylinder with splitter plate

    Science.gov (United States)

    Ozkan, Gokturk Memduh; Durhasan, Tahir; Pinar, Engin; Yenicun, Arda; Akilli, Huseyin; Sahin, Besir

    In the present study, the flow control with a splitter plate was studied considering the annular region of a shrouded cylinder. The effect of splitter plate angle, α which was defined according to the cylinder centreline is investigated experimentally in deep water using Particle image Velocimetry (PIV) technique and flow visualization by dye injection method. The range of splitter plate angle was selected within 60°≤ α ≤180° with an increment of 30°. The porosity of the shroud which is a perforated cylinder was selected as β=0.7 in order to have larger fluid entrainment through the cylinder. The results were compared with the no-plate case and showed that the splitter plate located in the annular region of shrouded cylinders is effective on reducing the turbulence levels just behind the cylinder base, as well as the near wake of the perforated shroud.

  2. UV Written 2x8 Optical Power Splitter for FTTH Applications

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael

    2006-01-01

    Silica based integrated optical 2x8 power splitters are reported for the first time using UV-writing waveguide fabrication technology. High performance, compactness and low production costs make these components well suited for deployment in FTTH networks.......Silica based integrated optical 2x8 power splitters are reported for the first time using UV-writing waveguide fabrication technology. High performance, compactness and low production costs make these components well suited for deployment in FTTH networks....

  3. Wide-band Polarization Splitter and Rotator with Large Fabrication Tolerance and Simple Fabrication Process

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Peucheret, Christophe

    2013-01-01

    We demonstrate a polarization splitter and rotator built on the silicon-on-insulator platform. The device shows low insertion loss (0.6 dB), low polarization crosstalk (<-12 dB), wide bandwidth (~100 nm), and large fabrication tolerance (60 nm).......We demonstrate a polarization splitter and rotator built on the silicon-on-insulator platform. The device shows low insertion loss (0.6 dB), low polarization crosstalk (fabrication tolerance (60 nm)....

  4. Design and performance evaluation of 1-by-64 multimode interference power splitter for optical communications

    DEFF Research Database (Denmark)

    Rasmussen, Thomas; Rasmussen, Jesper Kiel; Povlsen, Jørn Hedegaard

    1995-01-01

    A 1-by-64 multimode interference power splitter in SiO2 has been designed for use in fiber-optics communication systems. The splitter exhibits a minimum loss of 0.5 db and a uniformity of 1.7 dB at a wavelength of 1.55 μm. The polarization sensitivity is below 0.14 dB, the reflection level below ...

  5. Asymmetric Ashes

    Science.gov (United States)

    2006-11-01

    that oscillate in certain directions. Reflection or scattering of light favours certain orientations of the electric and magnetic fields over others. This is why polarising sunglasses can filter out the glint of sunlight reflected off a pond. When light scatters through the expanding debris of a supernova, it retains information about the orientation of the scattering layers. If the supernova is spherically symmetric, all orientations will be present equally and will average out, so there will be no net polarisation. If, however, the gas shell is not round, a slight net polarisation will be imprinted on the light. This is what broad-band polarimetry can accomplish. If additional spectral information is available ('spectro-polarimetry'), one can determine whether the asymmetry is in the continuum light or in some spectral lines. In the case of the Type Ia supernovae, the astronomers found that the continuum polarisation is very small so that the overall shape of the explosion is crudely spherical. But the much larger polarization in strongly blue-shifted spectral lines evidences the presence, in the outer regions, of fast moving clumps with peculiar chemical composition. "Our study reveals that explosions of Type Ia supernovae are really three-dimensional phenomena," says Dietrich Baade. "The outer regions of the blast cloud is asymmetric, with different materials found in 'clumps', while the inner regions are smooth." "This study was possible because polarimetry could unfold its full strength thanks to the light-collecting power of the Very Large Telescope and the very precise calibration of the FORS instrument," he adds. The research team first spotted this asymmetry in 2003, as part of the same observational campaign (ESO PR 23/03 and ESO PR Photo 26/05). The new, more extensive results show that the degree of polarisation and, hence, the asphericity, correlates with the intrinsic brightness of the explosion. The brighter the supernova, the smoother, or less clumpy

  6. A compact 1×64 optical power splitter using silica-based PLC on quartz substrate

    Science.gov (United States)

    Wang, Liangliang; An, Junming; Wu, Yuanda; Wang, Yue; Zhang, Jiashun; Li, Jianguang; Wang, Hongjie; Zhang, Xiaoguang; Pan, Pan; Dai, Hongqing; Qi, Ying; Zhong, Fei; Zha, Qiang; Hu, Xiongwei; Zhao, Degang

    2014-09-01

    In this paper, a compact and low wavelength-dependence loss (WDL) 1×64 optical power splitter is fabricated using silica-based PLC technology on quartz substrate. The cascaded Y-branch structures are optimized in detail, and a compact 1×64 optical power splitter layout is obtained. The measured results show that the insertion loss (IL), the uniformity and WDL of the best results of all splitters are less than 19.2 dB, 1.0 dB and 0.5 dB, respectively, in the wavelength range from 1.26 μm to 1.65 μm, and the total product ratio of Standard grade in a whole 6 in. wafer is more than 80%. The results imply that our technology completely satisfies the need of mass manufacture.

  7. Improved jet substructure methods: Y-splitter and variants with grooming

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Mrinal [Lancaster-Manchester-Sheffield Consortium for Fundamental Physics,School of Physics & Astronomy, University of Manchester,Manchester M13 9PL (United Kingdom); Powling, Alexander [School of Physics & Astronomy, University of Manchester,Manchester M13 9PL (United Kingdom); Schunk, Lais; Soyez, Gregory [IPhT, CEA Saclay, CNRS UMR 3681,F-91191 Gif-Sur-Yvette (France)

    2016-12-16

    It has recently been demonstrated with Monte Carlo studies that combining the well-known Y-splitter and trimming techniques gives rise to important gains in the signal significance achievable for boosted electroweak boson tagging at high p{sub t}. Here we carry out analytical calculations that explain these findings from first principles of QCD both for grooming via trimming and via the modified mass-drop tagger (mMDT). We also suggest modifications to Y-splitter itself, which result in great simplifications to the analytical results both for pure Y-splitter as well as its combination with general grooming methods. The modifications also lead to further performance gains, while making the results largely independent of choice of groomer. We discuss the implications of these findings in the broader context of optimal methods for boosted object studies at hadron colliders.

  8. Effect of splitter plate on unsteady flows around a body of revolution at incidence

    Science.gov (United States)

    Degani, David

    1991-01-01

    Numerical solutions of the thin-layer approximation of the 3D Navier-Stokes equations are presented for flows around an ogive-cylinder body with and without a splitter plate. It is suggested that the presence of the splitter plate prevents the interaction between flows on either side of the symmetry plane. It is concluded that, as a result of the enforced symmetry, the antisymmetric mode of the convective instability near the apex of the body cannot be excited and, therefore, the vortices remain symmetric, staying low and parallel to the upper body surface. The antisymmetric mode of the absolute instability mechanism cannot be initiated, which suppresses the alternate shedding of vortices from the cylindrical portion of the body. High-frequency fluctuations of the shear layer are found to remain virtually unaffected by the presence of the splitter plate.

  9. Improved jet substructure methods: Y-splitter and variants with grooming

    International Nuclear Information System (INIS)

    Dasgupta, Mrinal; Powling, Alexander; Schunk, Lais; Soyez, Gregory

    2016-01-01

    It has recently been demonstrated with Monte Carlo studies that combining the well-known Y-splitter and trimming techniques gives rise to important gains in the signal significance achievable for boosted electroweak boson tagging at high p t . Here we carry out analytical calculations that explain these findings from first principles of QCD both for grooming via trimming and via the modified mass-drop tagger (mMDT). We also suggest modifications to Y-splitter itself, which result in great simplifications to the analytical results both for pure Y-splitter as well as its combination with general grooming methods. The modifications also lead to further performance gains, while making the results largely independent of choice of groomer. We discuss the implications of these findings in the broader context of optimal methods for boosted object studies at hadron colliders.

  10. Improved jet substructure methods: Y-splitter and variants with grooming

    Science.gov (United States)

    Dasgupta, Mrinal; Powling, Alexander; Schunk, Lais; Soyez, Gregory

    2016-12-01

    It has recently been demonstrated with Monte Carlo studies that combining the well-known Y-splitter and trimming techniques gives rise to important gains in the signal significance achievable for boosted electroweak boson tagging at high p t . Here we carry out analytical calculations that explain these findings from first principles of QCD both for grooming via trimming and via the modified mass-drop tagger (mMDT). We also suggest modifications to Y-splitter itself, which result in great simplifications to the analytical results both for pure Y-splitter as well as its combination with general grooming methods. The modifications also lead to further performance gains, while making the results largely independent of choice of groomer. We discuss the implications of these findings in the broader context of optimal methods for boosted object studies at hadron colliders.

  11. An asymmetric B Factory based on PEP

    International Nuclear Information System (INIS)

    Hutton, A.; Zisman, M.S.

    1990-06-01

    The study of rare and CP-violating B meson decays is well suited to a high-luminosity e + e - collider. For studying certain decay processes there are also substantial benefits associated with asymmetric beam energies, which give a moving center of mass for the B mesons. We describe a design for a 9 GeV x 3.1 GeV B Factory in the PEP tunnel that would operate initially at a luminosity of 3 x 10 33 cm -2 s -1 . Technical problems include issues related to high currents (e.g., beam instabilities, feedback systems, lifetime degradation and detector radiation power dissipation) and those related to the hetero-energetic beams (e.g., beam separation, beam-beam interaction and detector requirements). Issues requiring R ampersand D effort are identified. 8 refs., 2 figs., 2 tabs

  12. Effects of Blade Discharge Angle, Blade Number and Splitter Blade Length on Deep Well Pump Performance

    OpenAIRE

    E. Korkmaz; M. Gölcü; C. Kurbanoğlu

    2017-01-01

    Impellers with splitter blades are used for pumps and compressors in the design of turbomachines. Design parameters such as the number of blades, blade discharge angle and impeller discharge diameter impact affect pump performance and energy consumption. In this study, the effect of the number of blades (z=5, 6, and 7), blade discharge angles (β2b=25, and β2b=35) and splitter blade lengths (40, 55, 70, and 85% of the main blade length) on Deep Well Pump (DWP) performance has been studied ex...

  13. Field factors for asymmetric collimators

    International Nuclear Information System (INIS)

    Turner, J.R.; Butler, A.P.H.

    1996-01-01

    In recent years manufacturers have been supplying linear accelerators with either a single pair or a dual pair of collimators. The use of a model to relate off-axis field factors to on-axis field factors obviates the need for repeat measurements whenever the asymmetric collimators are employed. We have investigated the variation of collimator scatter Sc, with distance of the central ray x from the central axis for a variety of non square field sizes. Collimator scatter was measured by in-air measurements with a build-up cap. The Primaty-Off-Centre-Ratio (POCR) was measured in-air by scanning orthogonally across the beam with an ionization chamber. The result of the investigation is the useful prediction of off-axis field factors for a range of rectangular asymmetric fields using the simple product of the on-axis field factor and the POCR in air. The effect of asymmetry on the quality of the beam and hence the percent depth dose will be discussed. (author)

  14. Fine separation of particles via the entropic splitter

    Science.gov (United States)

    Li, Yongge; Xu, Yong; Xu, Wei; Deng, Zichen; Kurths, Jürgen

    2017-08-01

    We investigate the fine separation of particles with different sizes in an asymmetric confined channel by directing them moving to the opposite directions. Besides redesigning the geometry of the channel, we add a general rectangular wave oscillating force to enlarge the velocity differences between particles with different radii, which is important to increase the separation speed and sort particles of similar radii. The separation process is guaranteed by choosing a small period of the oscillating force and a proper partition strategy of the device length sifting particles to the left and right. The optimal set of parameters for a fixed amplitude of the oscillating force is found by the above regime. We show that by this regime the separation efficiency is significantly improved compared to the classic square wave force.

  15. Optimization of multi-grating volume holographic spectrum splitters for photovoltaic applications.

    Science.gov (United States)

    Ingersoll, G B; Leger, J R

    2016-07-10

    Recent research has shown that using multiple diverse-bandgap photovoltaic (PV) cells in conjunction with a spectrum splitting optical system can significantly improve PV power generation efficiency. Although volume Bragg gratings (VBGs) can serve as effective spectrum splitters, the inherent dispersion of a VBG can be detrimental given a broad-spectrum input. The performance of a single holographic spectrum splitter element can be improved by utilizing multiple single volume gratings, each operating in a slightly different spectral band. However, care must be taken to avoid inter-grating coupling effects that limit the ultimate performance. This work explores broadband two-grating holographic optical elements (HOEs) in multiplexed (single element) and sandwiched-grating arrangements. Particle swarm optimization is used to tailor these systems to the solar spectrum, taking into account both efficiency and dispersion. Both multiplexed and sandwiched two-grating systems exhibit performance improvements over single-grating solutions, especially when reduced dispersion is required. Under a ±2° constraint on output angular spread from wavelength dispersion, sandwiched-, multiplexed-, and single-grating systems exhibit power conversion efficiencies of 82.1%, 80.9%, and 77.5%, respectively, compared to an ideal bandpass spectrum splitter. Dispersion performance can be further improved by employing more than two VBGs in the spectrum splitter, but efficiency is compromised by additional cross-coupling effects. Multiplexed-grating systems are especially susceptible to these effects, but have the advantage of utilizing only a single HOE.

  16. Size constraints on a Majorana beam-splitter interferometer: Majorana coupling and surface-bulk scattering

    Science.gov (United States)

    Røising, Henrik Schou; Simon, Steven H.

    2018-03-01

    Topological insulator surfaces in proximity to superconductors have been proposed as a way to produce Majorana fermions in condensed matter physics. One of the simplest proposed experiments with such a system is Majorana interferometry. Here we consider two possibly conflicting constraints on the size of such an interferometer. Coupling of a Majorana mode from the edge (the arms) of the interferometer to vortices in the center of the device sets a lower bound on the size of the device. On the other hand, scattering to the usually imperfectly insulating bulk sets an upper bound. From estimates of experimental parameters, we find that typical samples may have no size window in which the Majorana interferometer can operate, implying that a new generation of more highly insulating samples must be explored.

  17. Cold atoms gyroscope: limits on the stability and the accuracy due to the atomic beam splitters

    International Nuclear Information System (INIS)

    Gauguet, A.

    2008-06-01

    This thesis present the study of a cold atoms gyroscope based on atom interferometry. The interferometer used cold cesium atoms which are manipulated with stimulated Raman transitions. The improvement of the experimental setup have allowed to reach a sensitivity similar to the best optical fiber gyroscope. Especially, we characterized the performances bring about a new Raman laser design and the atom detection system. In addition, we have studied spurious phase shifts induced by the Raman interactions and have shown they are the main limitation for the long term stability and the accuracy. (author)

  18. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    Science.gov (United States)

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  19. MUSE field splitter unit: fan-shaped separator for 24 integral field units

    Science.gov (United States)

    Laurent, Florence; Renault, Edgard; Anwand, Heiko; Boudon, Didier; Caillier, Patrick; Kosmalski, Johan; Loupias, Magali; Nicklas, Harald; Seifert, Walter; Salaun, Yves; Xu, Wenli

    2014-07-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph developed for the European Southern Observatory (ESO). It combines a 1' x 1' field of view sampled at 0.2 arcsec for its Wide Field Mode (WFM) and a 7.5"x7.5" field of view for its Narrow Field Mode (NFM). Both modes will operate with the improved spatial resolution provided by GALACSI (Ground Atmospheric Layer Adaptive Optics for Spectroscopic Imaging), that will use the VLT deformable secondary mirror and 4 Laser Guide Stars (LGS) foreseen in 2015. MUSE operates in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where it was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transferred in monolithic way onto VLT telescope where the first light was achieved. This paper describes the MUSE main optical component: the Field Splitter Unit. It splits the VLT image into 24 subfields and provides the first separation of the beam for the 24 Integral Field Units. This talk depicts its manufacturing at Winlight Optics and its alignment into MUSE instrument. The success of the MUSE

  20. Beam-beam diagnostics from closed-orbit distortion

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.; Chin, Y.H.; Eden, J. [Lawrence Berkeley Lab., CA (United States); Kozanecki, W. [DAPNIA/SPP, CEN Saclay Gif-sur-Yvette, (FR)]|[Stanford Linear Accelerator Center, Menlo Park, CA (United States); Tennyson, J.; Ziemann, V. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1992-07-01

    We study the applicability of beam-beam deflection techniques as a tuning tool for asymmetric B factories, focusing on PEP-II as an example. Assuming that the closed orbits of the two beams are separated vertically at the interaction point by a local orbit bump that is nominally closed, we calculate the residual beam orbit distortions due to the beam-beam interaction. Difference orbit measurements, performed at points conveniently distant from the interaction point (IP), provide distinct signatures that can be used to maintain the beams in collision and perform detailed optical diagnostics at the IP. A proposal to test this method experimentally at the TRISTAN ring is briefly discussed.

  1. A MEMS and agile optics-based dual-mode variable optical power splitter with no moving parts

    Science.gov (United States)

    Khwaja, Tariq S.; Suleman, Hamid; Reza, Syed Azer

    2017-06-01

    In this paper, we present a novel design of an optical power splitter. Owing to the inherent variable power split ratios that the proposed design delivers, it is ideal for use in communications, sensing and signal processing applications where variable power splitting is often quintessential. The proposed power splitter module is dual mode as it combines the use of a Micro-Electro-Mechanical Systems (MEMS) based Digital Micro-mirror Device (DMD) and an Electronically Controlled Tunable Lens (ECTL) to split the power of an input optical signal between two output ports - the designated port and the surplus port. The use of a reflective Digital Spatial Light Modulator (DSLM) such as the DMD provides a motion-free digital control of the split ratio between the two output ports. Although the digital step between two possible successive split ratios can be fairly minimal with the use of a high resolution DMD but it is a challenge to correctly ascertain the exact image pattern on the DMD to obtain any desired specific split ratio. To counter this challenge, we propose the synchronized use of a circular pattern on the DMD, which serves as a circular clear aperture with a tunable radius, and an ECTL. The radius of the circular pattern on the DMD provides a digital control of the split ratio between the two ports whereas the ECTL, depending on its controller, can provide either an analog or a digital control by altering the beam radius which is incident at the DMD circular pattern. The radius of the circular pattern on the DMD can be minimally changed by one micro-pixel thickness. Setting the radius of the circular pattern on the DMD to an appropriate value provides the closest "ball-park" split ratio whereas further tuning the ECTL aids in slightly altering from this digitally set value to obtain the exact desired split ratio in-between any two digitally-set successive split ratios that correspond to any clear aperture radius of the DMD pattern and its incremental minimal

  2. Asymmetric Shaped-Pattern Synthesis for Planar Antenna Arrays

    Directory of Open Access Journals (Sweden)

    T. M. Bruintjes

    2016-01-01

    Full Text Available A procedure to synthesize asymmetrically shaped beam patterns is developed for planar antenna arrays. As it is based on the quasi-analytical method of collapsed distributions, the main advantage of this procedure is the ability to realize a shaped (null-free region with very low ripple. Smooth and asymmetrically shaped regions can be used for Direction-of-Arrival estimation and subsequently for efficient tracking with a single output (fully analog beamformer.

  3. Local-Area Based Traffic Splitter for Improving Performance Using Subnetting

    Science.gov (United States)

    Yadav, Meenakshi; Mittal, Mohit Kumar

    2010-11-01

    This document provides an overview of LAN traffic splitter. The tool "Local-Area based Traffic splitter" is based on subnetting techniques. It is basically used for calculating subnets for sub-dividing the LAN. Subnetting an IP Network can be done for a variety of reasons, including organization, use of different physical media (such as Ethernet, FDDI, WAN, etc.), preservation of address space, and security. The most common reason is to control network traffic. There are various techniques for calculating subnets that are considered by this tool. This paper will explore the various features of this tool and will also check the effect of subnetting after implementing it on the LAN. These instructions give you basic guidelines for preparing camera-ready papers for conference proceedings.

  4. Experimental characterization of a new multicasting node architecture based on space splitters and wavelength converters

    Science.gov (United States)

    He, Hao; Su, Yikai; Hu, Peigang; Hu, Weisheng

    2005-11-01

    IPTV-based broadband services such as interactive multimedia and video conferencing are considered as promising revenue-adding services, and multicast is proven to be a good supplier to support these applications for its reduced consumption of network bandwidth. Generally there are two approaches to implement optical layer multicast. One is space-domain multicast using space-splitter which is low cost but has wavelength continuity constraint, the other is frequency-domain multicast using wavelength converter which resolves the wavelength continuity but with high costs. A new multicasting node which adopts both space-domain multicast and frequency-domain multicast is recently discussed. In this paper we present an experimental demonstration of the new multicasting node architecture based on space splitters and wavelength converters, measurements to characterize such a node are provided.

  5. Combined Effect of Surface Roughness and Wake Splitter Plate on the Aerodynamic Characteristics of a Circular Cylinder

    Science.gov (United States)

    Saisanthosh, Iyer; Arunkumar, K.; Ajithkumar, R.; Srikrishnan, A. R.

    2017-09-01

    This paper is focussed on numerical investigation of flow around a stationary circular cylinder (diameter, D) with selectively applied surface roughness (roughness strips with thickness ‘k’) in the presence of a wake splitter plate (length, L). The plate leading edge is at a distance of ‘G’ from the cylinder base. For this study, the commercial software ANSYS Fluent is used. Fluid considered is water. Study was conducted the following cases (a) plain cylinder (b) cylinder with surface roughness (without splitter plate) (c) Cylinder with splitter plate (without surface roughness) and (d) cylinder with both roughness and splitter plate employed. The study Reynolds number (based on D) is 17,000 and k/δ = 1.25 (in all cases). Results indicate that, for cylinder with splitter plate (no roughness), lift coefficient gradually drops till G/D=1.5 further to which it sharply increases. Whereas, drag coefficient and Strouhal number undergoes slight reduction till G/D=1.0 and thereafter, gradually increase. Circumferential location of strip (α) does not influence the aerodynamic parameters significantly. With roughness alone, drag is magnified by about 1.5 times and lift, by about 2.7 times that of the respective values of the smooth cylinder. With splitter plate, for roughness applied at all ‘α’ values, drag and lift undergoes substantial reduction with the lowest value attained at G/D=1.0.

  6. A High Efficiency Optical Power Splitter in a Y-Branch Photonic Crystal for DWDM Optical Communication Systems

    Science.gov (United States)

    Taleb Hesami Azar, Milad; Alipour-Banaei, Hamed; Zavvari, Mahdi

    2017-12-01

    In this paper a high efficiency optical power splitter based on two-dimensional photonic crystals is proposed. The photonic crystal cavity is assumed to be constructed by TiO2 nanorods with refractive index n=2.609. To do so, first we implement some techniques to design a 1*2 optical power splitter, which include Y-shape waveguides and various types of defects such as point and line defects. The results of numerical simulations show that at the wavelength range of DWDM systems, the proposed 1*2 power splitter has the maximum efficiency of 99.616 %. A similar method is employed to design a 1*4 splitter with high performance operation at the same wavelength range which relates to the efficiency of 99.21 % that is the highest amount between these type of power splitters. The final size of these high efficiency power splitters is 130μm2 (10μm*13μm) which make them suitable for integrated optical circuits.

  7. 300 nm bandwidth adiabatic SOI polarization splitter-rotators exploiting continuous symmetry breaking.

    Science.gov (United States)

    Socci, Luciano; Sorianello, Vito; Romagnoli, Marco

    2015-07-27

    Adiabatic polarization splitter-rotators are investigated exploiting continuous symmetry breaking thereby achieving significant device size and losses reduction in a single mask fabrication process for both SOI channel and ridge waveguides. A crosstalk lower than -25 dB is expected over 300nm bandwidth, making the device suitable for full grid CWDM and diplexer/triplexer FTTH applications at 1310, 1490 and 1550nm.

  8. Analysis of the Fuel Efficiency of a Hybrid Electric Drive with an Electric Power Splitter

    OpenAIRE

    D. Čundev

    2008-01-01

    This paper presents the results of an analysis of the fuel efficiency of a hybrid electric car drive, with an electric power splitter based on a double rotor synchronous permanent magnet generator. The results have been obtained through a precisely determined mathematical model and by simulating the characteristics of all essential values for the entire drive. This work is related to the experimental working stand for electric and hybrid car drive research, which has been developed at the Fac...

  9. On the acoustic performance of rectangular splitter silencers in the presence of mean flow

    Science.gov (United States)

    Kirby, Ray; Amott, Ken; Williams, Paul T.; Duan, Wenbo

    2014-12-01

    Dissipative splitter silencers are often used to reduce the noise emitted in ventilation and gas turbine systems. It is well known that the acoustic performance of a splitter silencer changes under the influence of the convective effects of a mean gas flow and so in this article a theoretical model is developed to include the effects of mean flow. The theoretical model is based on a hybrid finite element method which enables the inclusion of bull nose fairings and a perforated screen separating the mean gas flow from a bulk reacting porous material. Predictions are compared against experimental measurements obtained both with and without mean flow. Good agreement between prediction and measurement is generally observed in the absence of mean flow, although it is seen that for silencers with a low percentage open area the silencer insertion loss is over predicted at higher frequencies. When mean flow is present, problems with the experimental methodology are observed at relatively modest mean flow velocities, and so comparison between prediction and experiment is limited to relatively low face velocities. However, experiment and theory both show that the insertion loss reduces at low frequencies when mean flow is in the direction of sound propagation, and at high frequencies the influence of mean flow is generally much smaller. Following additional theoretical investigations it is concluded that the influence of mean flow on splitter silencer performance should be accounted for at low frequencies when silencer airway velocities are greater than about 20 m/s; however, at higher frequencies one may generally neglect the effect of mean flow, even at higher velocities. Predictions obtained using the hybrid method are also compared to a simplified point collocation approach and it is demonstrated that the computationally efficient point collocation method may be used to investigate the effects of mean flow in a splitter silencer without loss of accuracy.

  10. Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Peucheret, Christophe

    2013-01-01

    We propose and demonstrate a polarization splitter and rotator (PSR) built on a silicon-on-insulator platform. The PSR is constructed with a tapered waveguide followed by a 2×2 multimode interferometer and can be simply fabricated in a single lithography and etching step. A low insertion loss (....5  dB with minimum insertion loss of 0.6 dB) and a low polarization crosstalk (fabrication tolerance (>50  nm) are experimentally demonstrated....

  11. Asymmetrical field emitter

    Science.gov (United States)

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  12. Asymmetric collimation in breast cancer irradiation

    International Nuclear Information System (INIS)

    Isin, G.; Uzal, D.; Oezyar, E.; Arslan, G.; Akyol, F.; Atahan, I. L.

    1995-01-01

    Many methods have been devised to achieve an ideal match of the anterior supraclavicular field (SCV) caudal edge and the cephalad edges of the tangential fields. A non divergent SCV field edge is easily achieved using a half beam block. A number of methods are used to achieve a non divergent edge from the tangential beams including blocking, table angulation, collimator angulation in combination, and half beam blocking, collimator angulation. Using asymmetric collimation technique it is possible to achieve a perfect match-line at the junction of SCV and tangential fields. Via the longitudinal X-jaws, caudal edge of the SCV field and the cephalad margin of the tangential fields is defined. All three fields use one isocenter and thus a single set-up point by abutting beam-split fields at the match plane. The transverse Y jaws are used to beam-split the medial and lateral tangential fields at the chest wall level and define the lateral and medial edges of the SCV field. This technique eliminates lifting heavy half beam block, and the use of single isocenter is time-saving during set-up procedure. Computerized water phantom was utilized in dosimetric evaluations in this nonstandard technique. The match-line is clinically confirmed with verification film for each patient at first treatment. Our treatment planning system, Theraplan - Version 5B, is capable of asymmetric field planning. The 3-D treatment planning is performed at the central axis plane. Angle of tangential fields and source-skin distance at the set-up point is confirmed by 3D treatment planning

  13. Asymmetric-cut variable-incident-angle monochromator.

    Science.gov (United States)

    Smither, R K; Graber, T J; Fernandez, P B; Mills, D M

    2012-03-01

    A novel asymmetric-cut variable-incident-angle monochromator was constructed and tested in 1997 at the Advanced Photon Source of Argonne National Laboratory. The monochromator was originally designed as a high heat load monochromator capable of handling 5-10 kW beams from a wiggler source. This was accomplished by spreading the x-ray beam out on the surface an asymmetric-cut crystal and by using liquid metal cooling of the first crystal. The monochromator turned out to be a highly versatile monochromator that could perform many different types of experiments. The monochromator consisted of two 18° asymmetrically cut Si crystals that could be rotated about 3 independent axes. The first stage (Φ) rotates the crystal around an axis perpendicular to the diffraction plane. This rotation changes the angle of the incident beam with the surface of the crystal without changing the Bragg angle. The second rotation (Ψ) is perpendicular to the first and is used to control the shape of the beam footprint on the crystal. The third rotation (Θ) controls the Bragg angle. Besides the high heat load application, the use of asymmetrically cut crystals allows one to increase or decrease the acceptance angle for crystal diffraction of a monochromatic x-ray beam and allows one to increase or decrease the wavelength bandwidth of the diffraction of a continuum source like a bending-magnet beam or a normal x-ray-tube source. When the monochromator is used in the doubly expanding mode, it is possible to expand the vertical size of the double-diffracted beam by a factor of 10-15. When this was combined with a bending magnet source, it was possible to generate an 8 keV area beam, 16 mm wide by 26 mm high with a uniform intensity and parallel to 1.2 arc sec that could be applied in imaging experiments.

  14. Asymmetric reactions in continuous flow

    Directory of Open Access Journals (Sweden)

    Xiao Yin Mak

    2009-04-01

    Full Text Available An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed.

  15. How Is Nature Asymmetric?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 6. How Is Nature Asymmetric? - Discrete Symmetries in Particle Physics and their Violation ... Indian Institute of Technology, Chennai. Aligarh Muslim University. University of Rajasthan, Jaipur. Indian Institute of Science, Bangalore 560012, India.

  16. Performance Analysis of Spectral Amplitude Coding Based OCDMA System with Gain and Splitter Mismatch

    Science.gov (United States)

    Umrani, Fahim A.; Umrani, A. Waheed; Umrani, Naveed A.; Memon, Kehkashan A.; Kalwar, Imtiaz Hussain

    2013-09-01

    This paper presents the practical analysis of the optical code-division multiple-access (O-CDMA) systems based on perfect difference codes. The work carried out use SNR criterion to select the optimal value of avalanche photodiodes (APD) gain and shows how the mismatch in the splitters and gains of the APD used in the transmitters and receivers of network can degrade the BER performance of the system. The investigations also reveal that higher APD gains are not suitable for such systems even at higher powers. The system performance, with consideration of shot noise, thermal noise, bulk and surface leakage currents is also investigated.

  17. Analysis of the Fuel Efficiency of a Hybrid Electric Drive with an Electric Power Splitter

    Directory of Open Access Journals (Sweden)

    D. Čundev

    2008-01-01

    Full Text Available This paper presents the results of an analysis of the fuel efficiency of a hybrid electric car drive, with an electric power splitter based on a double rotor synchronous permanent magnet generator. The results have been obtained through a precisely determined mathematical model and by simulating the characteristics of all essential values for the entire drive. This work is related to the experimental working stand for electric and hybrid car drive research, which has been developed at the Faculty of Electrical Engineering (FEE at CTU in Prague. 

  18. Design of Polarization-Independent Coarse Wavelength Splitters Based on Ridge-Waveguide Directional Couplers

    Directory of Open Access Journals (Sweden)

    Chee-Wei Lee

    2011-01-01

    Full Text Available We present the first unique design of a polarization-independent dual-wavelength splitter for wavelengths around 1.3 μm and 1.55 μm that is potentially of great interest to passive optical network (PON applications. The filter design is simple compared with the other architectures and is based on ridge-type lateral directional couplers that can be readily integrated with other planar waveguide devices. Two design examples, based on InP/InGaAsP and Si/SiGe waveguides, are given. This polarization-independent wavelength splitting is achieved by exploiting the polarization dependence of the waveguides to produce coupling lengths that are sensitive to polarization and wavelength. We show that, to split the wavelengths without splitting the polarizations, the coupling lengths must be sufficiently different for TE and TM and for the different wavelengths in order to give the correct required ratios between the TE and TM coupling lengths for the two wavelengths of interest. We also show that the same approach can be applied to the design of a polarization splitter. The crosstalk, optical bandwidth, and fabrication sensitivity for the wavelength filter are evaluated.

  19. Effective source mismatch uncertainty evaluation using resistive power splitter up to 18 GHz

    Directory of Open Access Journals (Sweden)

    Devi S.S.

    2015-01-01

    Full Text Available CSIR-National Physical Laboratory (NPL India is a National Metrology Institute (NMI, which disseminate traceability of the physical parameters in the country. In the field of microwave, it is one of the apex laboratories to provide traceability. In this paper, the method for precession measurement of effective source reflection coefficient using resistive power splitter and mismatch uncertainty evaluation are reported and discussed. Juroshek method is implemented in conjunction with Vector Network Analyzer (VNA for mismatch uncertainty evaluation by measuring source reflection coefficient from measured S parameters. The measurement results and their associated uncertainty are presented and discussed from 1 MHz to 18 GHz of the resistive power splitter. The complex reflection coefficient of the effective source is determined using indigenously developed automation software. The method adopted is the most convenient way of measuring effective source reflection coefficient whose values are smaller than the manufacturer specs. The mismatch uncertainty has been improved, which is beneficial during the calibration of power sensors along with power meters.

  20. Multipartite asymmetric quantum cloning

    International Nuclear Information System (INIS)

    Iblisdir, S.; Gisin, N.; Acin, A.; Cerf, N.J.; Filip, R.; Fiurasek, J.

    2005-01-01

    We investigate the optimal distribution of quantum information over multipartite systems in asymmetric settings. We introduce cloning transformations that take N identical replicas of a pure state in any dimension as input and yield a collection of clones with nonidentical fidelities. As an example, if the clones are partitioned into a set of M A clones with fidelity F A and another set of M B clones with fidelity F B , the trade-off between these fidelities is analyzed, and particular cases of optimal N→M A +M B cloning machines are exhibited. We also present an optimal 1→1+1+1 cloning machine, which is an example of a tripartite fully asymmetric cloner. Finally, it is shown how these cloning machines can be optically realized

  1. Asymmetric Evolutionary Games.

    Science.gov (United States)

    McAvoy, Alex; Hauert, Christoph

    2015-08-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.

  2. Asymmetric Evolutionary Games.

    Directory of Open Access Journals (Sweden)

    Alex McAvoy

    2015-08-01

    Full Text Available Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.

  3. Energy transparency and symmetries in the beam-beam interaction

    Directory of Open Access Journals (Sweden)

    S. Krishnagopal

    2000-02-01

    Full Text Available We have modified the beam-beam simulation code CBI to handle asymmetric beams and used it to look at energy transparency and symmetries in the beam-beam interaction. We find that even a small violation of energy transparency, or of the symmetry between the two beams, changes the character of the collective (coherent motion; in particular, period-n oscillations are no longer seen. We speculate that the one-time observation of these oscillations at LEP, and the more ubiquitous observation of the flip-flop instability in colliders around the world, may be a consequence of breaking the symmetry between the electron and positron beams. We also apply this code to the asymmetric collider PEP-II, and find that for the nominal parameters of PEP-II, in particular, the nominal tune-shift parameter of ξ_{0}=0.03, there are no collective beam-beam issues. Collective quadrupole motion sets in only at ξ_{0}=0.06 and above, consistent with earlier observations for symmetric beams.

  4. Designing Light Beam Transmittance Measuring Tool Using a Laser Pointer

    Science.gov (United States)

    Nuroso, H.; Kurniawan, W.; Marwoto, P.

    2016-08-01

    A simple instrument used for measuring light beam transmittance percentage made of window film has been developed. The instrument uses a laser pointer of 405 nm and 650 nm ±10% as a light source. Its accuracy approaches 80%. Transmittance data was found by comparing the light beam before and after passing the window film. The light intensity measuring unit was deleted by splitting the light source into two beams through a beam splitter. The light beam was changed into resistance by a NORP12 LDR sensor designed at a circuit of voltage divider rule of Khirchoff's laws. This conversion system will produce light beam intensity received by the sensor to become an equal voltage. This voltage will, then, be presented on the computer screen in the form of a real time graph via a 2.0 USB data transfer.

  5. 77 FR 38269 - Approval for Manufacturing Authority; Foreign-Trade Zone 15; Blount, Inc. (Log Splitters); Kansas...

    Science.gov (United States)

    2012-06-27

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Order No. 1833] Approval for Manufacturing Authority; Foreign-Trade Zone 15; Blount, Inc. (Log Splitters); Kansas City, MO Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as [[Page 38270

  6. Development of a Preliminary Design Method for Subsonic Splittered Blades in Highly Loaded Axial-Flow Compressors

    Directory of Open Access Journals (Sweden)

    Baojie Liu

    2017-03-01

    Full Text Available This paper presents a model for predicting the reference minimum-loss incidence and deviation angles of a blade arrangement with splitter vanes, which is probably a solution for future ultra-highly loaded axial compressor designs. The motivation of the modeling is to guide the blading design in splittered compressor design processes where the additional splitter vanes must be specially considered. The development of the model is based on a blade performance database from systematic numerical simulations. Basic correlations of the model are firstly proposed, which consider dominant blade geometry parameters related to blade loading, including camber angle and solidity. Secondly, geometric and aerodynamic corrections about orientation parameter, blade maximum thickness, inlet Mach number, and three-dimensional (3D effects are empirically incorporated into the basic correlations. Eventually, a subsonic 3D splittered rotor is designed using the correlations coupled with the corrections obtained from the validation of the model. The results indicate that the model is able to achieve a good agreement within an error band of ±1.0° for the predictions of both reference minimum-loss incidence and deviation angles, and the rotor designed using the model accomplishes the desired work input and flow deflection.

  7. Non magnetic neutron spin quantum precession using multilayer spin splitter and a phase-spin echo interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, T.; Tasaki, S.; Kawai, T.; Akiyoshi, T. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Achiwa, N.; Hino, M.; Otake, Y.; Funahashi, H.

    1996-08-01

    The authors have developed cold neutron optics and interferometry using multilayer mirrors. The advantages of the multilayer mirrors are their applicability to long wavelength neutrons and a great variety of the mirror performance. The idea of the present spin interferometry is based on nonmagnetic neutron spin quantum precession using multilayer spin splitters. The equation for polarized neutrons means that the polarized neutrons are equivalent to the coherent superposition of two parallel spin eigenstates. The structure and principle of a multilayer spin splitter are explained, and the nonmagnetic gap layer of the multilayer spin splitter gives rise to neutron spin quantum precession. The performance test of the multilayer spin splitter were made with a new spin interferometer, which is analogous optically to a spin echo system with vertical precession field. The spin interferometers were installed at Kyoto University research reactor and the JRR-3. The testing method and the results are reported. The performance tests on a new phase-spin echo interferometer are described, and its applications to the development of a high resolution spin echo system and a Jamin type cold neutron interferometer are proposed. (K.I.)

  8. Self-Nulling Beam Combiner Using No External Phase Inverter

    Science.gov (United States)

    Bloemhof, Eric E.

    2010-01-01

    A self-nulling beam combiner is proposed that completely eliminates the phase inversion subsystem from the nulling interferometer, and instead uses the intrinsic phase shifts in the beam splitters. Simplifying the flight instrument in this way will be a valuable enhancement of mission reliability. The tighter tolerances on R = T (R being reflection and T being transmission coefficients) required by the self-nulling configuration actually impose no new constraints on the architecture, as two adaptive nullers must be situated between beam splitters to correct small errors in the coatings. The new feature is exploiting the natural phase shifts in beam combiners to achieve the 180 phase inversion necessary for nulling. The advantage over prior art is that an entire subsystem, the field-flipping optics, can be eliminated. For ultimate simplicity in the flight instrument, one might fabricate coatings to very high tolerances and dispense with the adaptive nullers altogether, with all their moving parts, along with the field flipper subsystem. A single adaptive nuller upstream of the beam combiner may be required to correct beam train errors (systematic noise), but in some circumstances phase chopping reduces these errors substantially, and there may be ways to further reduce the chop residuals. Though such coatings are beyond the current state of the art, the mechanical simplicity and robustness of a flight system without field flipper or adaptive nullers would perhaps justify considerable effort on coating fabrication.

  9. Asymmetric fluorocyclizations of alkenes.

    Science.gov (United States)

    Wolstenhulme, Jamie R; Gouverneur, Véronique

    2014-12-16

    CONSPECTUS: The vicinal fluorofunctionalization of alkenes is an attractive transformation that converts feedstock olefins into valuable cyclic fluorinated molecules for application in the pharmaceutical, agrochemical, medical, and material sectors. The challenges associated with asymmetric fluorocyclizations induced by F(+) reagents are distinct from other types of halocyclizations. Processes initiated by the addition of an F(+) reagent onto an alkene do not involve the reversible formation of bridged fluoronium ions but generate acyclic β-fluorocationic intermediates. This mechanistic feature implies that fluorocyclizations are not stereospecific. A discontinuity exists between the importance of this class of fluorocyclization and the activation modes currently available to implement successful catalysis. Progress toward fluorocyclization has been achieved by investing in neutral and cationic [NF] reagent development. The body of work on asymmetric fluorination using chiral cationic [NF](+) reagents prepared by fluorine transfer from the dicationic [NF](2+) reagent Selectfluor to quinuclidines, inspired the development of asymmetric F(+)-induced fluorocyclizations catalyzed by cinchona alkaloids; for catalysis, the use of N-fluorobenzenesulfonimide, which is less reactive than Selectfluor, ensures that the achiral F(+) source remains unreactive toward the alkene. These organocatalyzed enantioselective fluorocyclizations can be applied to indoles to install the fluorine on a quaternary benzylic stereogenic carbon center and to afford fluorinated analogues of natural products featuring the hexahydropyrrolo[2,3-b]indole or the tetrahydro-2H-furo[2,3-b]indole skeleton. In an alternative approach, the poor solubility of dicationic Selectfluor bis(tetrafluoroborate) in nonpolar solvent was exploited with anionic phase transfer catalysis as the operating activation mode. Exchange of the tetrafluoroborate ions of Selectfluor with bulky lipophilic chiral anions (e

  10. Organizing for Asymmetric Collaboration

    DEFF Research Database (Denmark)

    Nielsen, Jørn Flohr; Sørensen, Henrik B.

    they meet each other. On the contrary, we assume that asymmetry is both important and normal; moreover, asymmetry should be considered to be more complex than economists indicate with their concept of asymmetric information. Thus, the aim of the paper is to explore how asymmetries related to partners...... to support better diagnosis and as a starting point for more detailed analysis, including interpersonal and processual perspectives, Furthermore, we propose how different situations need different kinds of change interventions. Although including asymmetries in interorganizational analysis does add more...

  11. Asymmetric synthesis v.4

    CERN Document Server

    Morrison, James

    1984-01-01

    Asymmetric Synthesis, Volume 4: The Chiral Carbon Pool and Chiral Sulfur, Nitrogen, Phosphorus, and Silicon Centers describes the practical methods of obtaining chiral fragments. Divided into five chapters, this book specifically examines initial chiral transmission and extension. The opening chapter describes the so-called chiral carbon pool, the readily available chiral carbon fragments used as building blocks in synthesis. This chapter also provides a list of 375 chiral building blocks, along with their commercial sources, approximate prices, and methods of synthesis. Schemes involving

  12. Spin correlation and entanglement detection in Cooper pair splitters by current measurements using magnetic detectors

    Science.gov (United States)

    Busz, Piotr; Tomaszewski, Damian; Martinek, Jan

    2017-08-01

    We analyze a model of a double quantum dot Cooper pair splitter coupled to two ferromagnetic detectors and demonstrate the possibility of determination of spin correlation by current measurements. We use perturbation theory, taking account of the exchange interaction with the detectors, which leads to complex spin dynamics in the dots. This affects the measured spin and restricts the use of ferromagnetic detectors to the nonlinear current-voltage characteristic regime at the current plateau, where the relevant spin projection is conserved, in contrast to the linear current-voltage characteristic regime, in which the spin information is distorted. Moreover, we show that for separable states the spin correlation can only be determined in a limited parameter regime, much more restricted than in the case of entangled states. We propose an entanglement test based on the Bell inequality.

  13. Proposal for high efficiently 1×4 power splitter based on photonic crystal waveguides

    Science.gov (United States)

    Wang, Hong; He, Lingjuan

    2015-05-01

    We proposed a new kind of 1×4 optical power splitter composed of one input photonic crystal (PC) waveguide (PCW) and two PC branches with a triangular lattice of air holes. By employing the coupling between a defect region and one input, four output PCWs, the input power can be efficiently split into four output ports. The total transmittance as high as 99.4% at the wavelength 1550 nm is achieved. By modifying two holes at junction area, the input power can be almost evenly split into four parts with a bandwidth larger than 80 nm. It provides a new method and a compact model to split input power into multiple output ports in PCW devices and may find practical applications in future photonic integrated circuits.

  14. Separation of common and differential mode conducted emission: Power combiner/splitters

    DEFF Research Database (Denmark)

    Andersen, Michael A. E.; Nielsen, Dennis; Thomsen, Ole Cornelius

    2012-01-01

    A conducted emission measurement contains a common and a differential mode component. Accurate separation of these two components is critical, when designing the input filter of a switch mode power supply. Many techniques exists for performing such separation. Some authors suggested the use...... of wideband transformers, while other prefer current probes. In this paper the use of commercial power splitters/combiners as noise separators are considered. The performance of the noise separators are analyzed and validated based on scattering parameters (S-parameters). Impedance and rejection ratios...... (common and differential mode) are shown. The results based on S-parameters are used to propose a complete noise separator design. This separator is verified through experimental measurements. Finally an example on how to use the separator, when measuring conducted noise is given....

  15. Investigation on steady and unsteady performance of a SCO2 centrifugal compressor with splitters

    Directory of Open Access Journals (Sweden)

    Guo Ding

    2017-01-01

    Full Text Available Supercritical carbon dioxide (SCO2 is widely concerned with its excellent physical properties. Its high density helps to achieve a compact mechanical structure, especially in all kinds of turbomachinery. In this paper, a SCO2 centrifugal compressor with splitter blades is displayed and numerically investigated. A thorough numerical analysis of the steady and unsteady performance of this SCO2 centrifugal compressor is performed in ANSYS-CFX with SST turbulence model. Streamlines, pressure and temperature under steady- and unsteady-state are compared and analyzed. Moreover, the trans-critical phenomenon at the leading edge of the rotor blade and the aerodynamic performance are covered. The results in this paper provide the foundation for the design and numerical investigation of SCO2 centrifugal compressors.

  16. Colon Cryptogenesis: Asymmetric Budding

    Science.gov (United States)

    Tan, Chin Wee; Hirokawa, Yumiko; Gardiner, Bruce S.; Smith, David W.; Burgess, Antony W.

    2013-01-01

    The process of crypt formation and the roles of Wnt and cell-cell adhesion signaling in cryptogenesis are not well described; but are important to the understanding of both normal and cancer colon crypt biology. A quantitative 3D-microscopy and image analysis technique is used to study the frequency, morphology and molecular topography associated with crypt formation. Measurements along the colon reveal the details of crypt formation and some key underlying biochemical signals regulating normal colon biology. Our measurements revealed an asymmetrical crypt budding process, contrary to the previously reported symmetrical fission of crypts. 3D immunofluorescence analyses reveals heterogeneity in the subcellular distribution of E-cadherin and β-catenin in distinct crypt populations. This heterogeneity was also found in asymmetrical budding crypts. Singular crypt formation (i.e. no multiple new crypts forming from one parent crypt) were observed in crypts isolated from the normal colon mucosa, suggestive of a singular constraint mechanism to prevent aberrant crypt production. The technique presented improves our understanding of cryptogenesis and suggests that excess colon crypt formation occurs when Wnt signaling is perturbed (e.g. by truncation of adenomatous polyposis coli, APC protein) in most colon cancers. PMID:24205248

  17. Colon cryptogenesis: asymmetric budding.

    Directory of Open Access Journals (Sweden)

    Chin Wee Tan

    Full Text Available The process of crypt formation and the roles of Wnt and cell-cell adhesion signaling in cryptogenesis are not well described; but are important to the understanding of both normal and cancer colon crypt biology. A quantitative 3D-microscopy and image analysis technique is used to study the frequency, morphology and molecular topography associated with crypt formation. Measurements along the colon reveal the details of crypt formation and some key underlying biochemical signals regulating normal colon biology. Our measurements revealed an asymmetrical crypt budding process, contrary to the previously reported symmetrical fission of crypts. 3D immunofluorescence analyses reveals heterogeneity in the subcellular distribution of E-cadherin and β-catenin in distinct crypt populations. This heterogeneity was also found in asymmetrical budding crypts. Singular crypt formation (i.e. no multiple new crypts forming from one parent crypt were observed in crypts isolated from the normal colon mucosa, suggestive of a singular constraint mechanism to prevent aberrant crypt production. The technique presented improves our understanding of cryptogenesis and suggests that excess colon crypt formation occurs when Wnt signaling is perturbed (e.g. by truncation of adenomatous polyposis coli, APC protein in most colon cancers.

  18. Asymmetric quantum cloning machines

    International Nuclear Information System (INIS)

    Cerf, N.J.

    1998-01-01

    A family of asymmetric cloning machines for quantum bits and N-dimensional quantum states is introduced. These machines produce two approximate copies of a single quantum state that emerge from two distinct channels. In particular, an asymmetric Pauli cloning machine is defined that makes two imperfect copies of a quantum bit, while the overall input-to-output operation for each copy is a Pauli channel. A no-cloning inequality is derived, characterizing the impossibility of copying imposed by quantum mechanics. If p and p ' are the probabilities of the depolarizing channels associated with the two outputs, the domain in (√p,√p ' )-space located inside a particular ellipse representing close-to-perfect cloning is forbidden. This ellipse tends to a circle when copying an N-dimensional state with N→∞, which has a simple semi-classical interpretation. The symmetric Pauli cloning machines are then used to provide an upper bound on the quantum capacity of the Pauli channel of probabilities p x , p y and p z . The capacity is proven to be vanishing if (√p x , √p y , √p z ) lies outside an ellipsoid whose pole coincides with the depolarizing channel that underlies the universal cloning machine. Finally, the tradeoff between the quality of the two copies is shown to result from a complementarity akin to Heisenberg uncertainty principle. (author)

  19. Symmetric Decomposition of Asymmetric Games.

    Science.gov (United States)

    Tuyls, Karl; Pérolat, Julien; Lanctot, Marc; Ostrovski, Georg; Savani, Rahul; Leibo, Joel Z; Ord, Toby; Graepel, Thore; Legg, Shane

    2018-01-17

    We introduce new theoretical insights into two-population asymmetric games allowing for an elegant symmetric decomposition into two single population symmetric games. Specifically, we show how an asymmetric bimatrix game (A,B) can be decomposed into its symmetric counterparts by envisioning and investigating the payoff tables (A and B) that constitute the asymmetric game, as two independent, single population, symmetric games. We reveal several surprising formal relationships between an asymmetric two-population game and its symmetric single population counterparts, which facilitate a convenient analysis of the original asymmetric game due to the dimensionality reduction of the decomposition. The main finding reveals that if (x,y) is a Nash equilibrium of an asymmetric game (A,B), this implies that y is a Nash equilibrium of the symmetric counterpart game determined by payoff table A, and x is a Nash equilibrium of the symmetric counterpart game determined by payoff table B. Also the reverse holds and combinations of Nash equilibria of the counterpart games form Nash equilibria of the asymmetric game. We illustrate how these formal relationships aid in identifying and analysing the Nash structure of asymmetric games, by examining the evolutionary dynamics of the simpler counterpart games in several canonical examples.

  20. Preparation of asymmetric porous materials

    Science.gov (United States)

    Coker, Eric N [Albuquerque, NM

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  1. Noncoaxial Bessel-Gauss beams.

    Science.gov (United States)

    Huang, Chaohong; Zheng, Yishu; Li, Hanqing

    2016-04-01

    We proposed a new family of noncoaxial Gauss-truncated Bessel beams through multiplying conventional symmetrical Bessel beams by a noncoaxial Gauss function. These beams can also be regarded as the exponential-truncated version of Bessel-Gauss beams since they can be transformed into the product of Bessel-Gauss beams and an exponential window function along a certain Cartesian axis. The closed-form solutions of the angular spectra and paraxial propagation of these beams were derived. These beams have asymmetrical intensity distributions and carry the same orbit angular momentum per photon as the corresponding Bessel-Gauss beams. While propagating along the z axis, the mth (m≠0) noncoaxial Bessel-Gauss beams rotate their intensity distributions and the mth-order vortex at the beam center has a transverse shift along the direction perpendicular to the offset axis. Depending on the product of the transverse scalar factor of the Bessel beams and the offset between the Gaussian window function and the center of the Bessel beams, the noncoaxial Bessel-Gauss beams can produce unit vortices with opposite signs in pairs during propagation.

  2. Asymmetric Higgsino dark matter.

    Science.gov (United States)

    Blum, Kfir; Efrati, Aielet; Grossman, Yuval; Nir, Yosef; Riotto, Antonio

    2012-08-03

    In the supersymmetric framework, prior to the electroweak phase transition, the existence of a baryon asymmetry implies the existence of a Higgsino asymmetry. We investigate whether the Higgsino could be a viable asymmetric dark matter candidate. We find that this is indeed possible. Thus, supersymmetry can provide the observed dark matter abundance and, furthermore, relate it with the baryon asymmetry, in which case the puzzle of why the baryonic and dark matter mass densities are similar would be explained. To accomplish this task, two conditions are required. First, the gauginos, squarks, and sleptons must all be very heavy, such that the only electroweak-scale superpartners are the Higgsinos. With this spectrum, supersymmetry does not solve the fine-tuning problem. Second, the temperature of the electroweak phase transition must be low, in the (1-10) GeV range. This condition requires an extension of the minimal supersymmetric standard model.

  3. Asymmetric black dyonic holes

    Directory of Open Access Journals (Sweden)

    I. Cabrera-Munguia

    2015-04-01

    Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.

  4. An Asymmetric B-Meson Factory at PEP

    Energy Technology Data Exchange (ETDEWEB)

    Garren, A.A.; Chattopadhyay, S.; Chin, Y.; Oddone, P.J.; Zisman, Michael S.; Donald, M.; Feldman, G.; Paterson, J.M.; Rees, J.

    1990-01-01

    A preliminary design for a B-factory has been made using asymmetric collisions between positrons in the PEP storage ring and electrons in a new, low-energy ring. The design utilizes small-aperture, permanent-magnet quadrupoles close to the interaction point (IP). Optimization of optical and beam parameters at the IP will be discussed, as well as the lattice design of the interaction region and of the rings.

  5. A compact and low-loss 1×8 optical power splitter using silica-based PLC on quartz substrate

    Science.gov (United States)

    Wang, Liangliang; An, Junming; Wu, Yuanda; Zhang, Jiashun; Wang, Yue; Li, Jianguang; Wang, Hongjie; Zhang, Xiaoguang; Pan, Pan; Zhang, Liyao; Dai, Hongqing; Liu, Ruidan; Zhong, Fei; Zha, Qiang; Hu, Xiongwei; Zhao, Degang

    2014-02-01

    In this paper, a compact, low-loss and good-uniformity 1×8 optical power splitter with new Y-branch structure is demonstrated using silica-based PLC technology on quartz substrate. Broadening waveguide and transition waveguide of the new Y-branch are optimized by using 3D BPM. The measurement results show that the insertion loss (IL) and the uniformity (UNIF) of the splitters are less than 9.5 dB and 0.35 dB, respectively, in the wavelength range from 1.26 μm to 1.65 μm, and the total product ratio of premium grade in a whole 6 in. wafer is more than 95%. The results mean that our technology completely satisfies the need of mass manufacture.

  6. Compact double-layer subwavelength binary blazed grating 1×4 splitter based on silicon-on-insulator.

    Science.gov (United States)

    Yang, Junbo; Zhou, Zhiping; Wang, Xinjun; Wu, Danhua; Yi, Huaxiang; Yang, JianKun; Zhou, Wei

    2011-03-15

    We describe a compact double-layer waveguide grating splitter that not only achieves efficient coupling between single mode fiber and a silicon-on-insulator optical waveguide but also realizes effective splitting. By appropriate choice of waveguide/grating parameters, including thicknesses, periods, height, and fill factor to optimize the mode matching, coupling efficiency is improved and the value of power difference of each output port is also significantly decreased. The maximum of power difference between four output ports is about 6.2%; however, the minimum value is only 0.6% or so. Moreover, the average power difference of four output ports is lower than 10% for TE polarization light over the 10 nm wavelength bandwidth centered at 1.54 μm. In addition, the splitter structure has the best tolerance for grating fabrication with deviations of grating depth 90 nm.

  7. Multipulse addressing of a Raman quantum memory: configurable beam splitting and efficient readout.

    Science.gov (United States)

    Reim, K F; Nunn, J; Jin, X-M; Michelberger, P S; Champion, T F M; England, D G; Lee, K C; Kolthammer, W S; Langford, N K; Walmsley, I A

    2012-06-29

    Quantum memories are vital to the scalability of photonic quantum information processing (PQIP), since the storage of photons enables repeat-until-success strategies. On the other hand, the key element of all PQIP architectures is the beam splitter, which allows us to coherently couple optical modes. Here, we show how to combine these crucial functionalities by addressing a Raman quantum memory with multiple control pulses. The result is a coherent optical storage device with an extremely large time bandwidth product, that functions as an array of dynamically configurable beam splitters, and that can be read out with arbitrarily high efficiency. Networks of such devices would allow fully scalable PQIP, with applications in quantum computation, long distance quantum communications and quantum metrology.

  8. [Biomechanic of the asymmetrical headgear].

    Science.gov (United States)

    Sander, F G

    1990-11-01

    The asymmetrical headgear is a very useful treatment device for the unilateral distalisation of molars or for the correction of an unilateral anchorage loss. 1. The dimension of the asymmetrical effect depends on the configuration of the outer bows. 2. The function of an asymmetrical face-bow can be increased or decreased by eccentric bendings. 3. According to the geometry at the outer-bows the force at the outer-bow is divided at a different percentage onto the molars. 4. While the forces increase the asymmetrical effect will decrease when the outer-bow is too flexible. 5. Attention has to be payed at each control-appointment to the distance of the longer outer-bow to the cheek. 6. The asymmetrical swivel face-bow did not produce a greater asymmetrical function than other asymmetrical headgears. The reason of this fact is, that only the geometry of the outer-bows is responsible for the unilateral distalisation. 7. The asymmetrical swivel face-bow as described above is advisable to use because eccentric bendings and less forces at the outer-bows will decrease, stop or even reverse the asymmetrical effect. 8. The side-effect of any asymmetrical face-bow is a lateral force-component. This force-component can cause a cross-bite at the molar which has to be more distalized. The molar which is not be moved by the asymmetrical face-bow will be moved buccally by this force-component. 9. The swivel face-bow according to Sander prevents the buccal movement of the molar which should not be moved. But the tendency to create a cross-bite for the molar which should be more distalized, increases. 10. The swivel face-bow according to Sander can be combined with all well-known extraoral tractions. 11. Equal forces at the outer-bows can be reached while using a cervical-pull neckstrap according to Sander. 12. The asymmetrical face-bow and the bite-jumping-appliance can be used simultaneously if the face-bow inserts directly into the attachments of the molar bands.

  9. Understanding and Mitigating Vortex-Dominated, Tip-Leakage and End-Wall Losses in a Transonic Splittered Rotor Stage

    Science.gov (United States)

    2015-04-23

    CLASSIFICATION OF: The requirement for higher power-to-weight ratios in modern jet engines leads to a reduced number of stages at increased loading...Stage - Final Report Report Title The requirement for higher power-to-weight ratios in modern jet engines leads to a reduced number of stages at...Garth Hobson, PhD, Anthony Gannon, PhD, Scott Drayton, LCDR USN. DESIGN AND TEST OF A TRANSONIC AXIAL SPLITTERED ROTOR, ASME TURBO Expo 2015. 15

  10. Active layer position optimization in asymmetric AlGaInAs/AlGaAs semiconductor laser diode structures

    Science.gov (United States)

    Abbasi, Seyed Peyman; Mahdieh, Mohammad Hossein

    2017-11-01

    In semiconductor lasers design, asymmetric structure can be used to improve laser characteristics. In this paper we proposed asymmetric AlGaInAs/AlGaAs structure for 808 nm laser diode to increase the n-cladding layer effect in beam propagation. In our proposed design, the active layer position in waveguide region was optimized for obtaining maximum optical power and minimum threshold current. The results show that the active layer position in waveguide related linearly to the asymmetric parameter. The results also show that in compare with usual structure, our proposed asymmetric structure can enhance the optical fiber coupling efficiency.

  11. Use of TCO as splitter in the optical splitting system for solar cells combination: a simulation study

    Science.gov (United States)

    Ayala-Mató, F.; Seuret-Jiménez, D.; Vigil-Galán, O.; Escobedo Alatorre, J. J.

    2017-10-01

    Transparent conducting oxides (TCOs) are evaluated as optical splitters in combined single thin film solar cells by using theoretical considerations. The optical properties of TCOs (transmittance and reflectance) are calculated using the Drude theory for free carriers. To improve the overall efficiency of the combined solar cells, the optical properties of the TCOs are studied as a function of the electron concentration and thickness, to obtain the best fit with the external quantum efficiency (EQE) of the solar cells in each case. The optimum values of the above parameters are obtained by applying a modified version of the Hooke-Jeeves method. To validate the proposal of the use of a TCO as the splitter, the short circuit current is calculated for several combined solar cell systems and the results are compared with those obtained using more sophisticated and expensive splitters, reported in the literature. The experimental results using a commercial TCO are presented, to verify the validity and feasibility of the novel concept.

  12. Defeating the Modern Asymmetric Threat

    National Research Council Canada - National Science Library

    Connor, Robert

    2002-01-01

    ...) ending a horrific 19 year-old low-intensity conflict, Over the course of nearly two decades, the LTTE came to exemplify the modern asymmetric threat as they battled the Sri Lankan Armed Forces (SLAF...

  13. Current cross-correlations in double quantum dot Cooper pair splitter

    Energy Technology Data Exchange (ETDEWEB)

    Wrzesniewski, Kacper; Trocha, Piotr; Weymann, Ireneusz [Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan (Poland)

    2016-07-01

    We investigate theoretically transport properties of a quantum dot (QD) system working as a Cooper pair splitter. The device is coupled to one superconducting and two ferromagnetic leads. Presented results are calculated using real-time diagrammatic technique in the sequential tunneling approximation with respect to the coupling to ferromagnetic leads. The transport properties are evaluated within the superconductor subgap regime taking into account Andreev reflection processes solely. We focus on the analysis of current and current cross-correlations, both in linear and nonlinear responses. Current cross-correlations give additional information about dynamics of transport processes. We identify both positive and negative signs of current cross-correlations and discuss mechanisms leading to those results. Strong negative cross-correlations are found when the occupation number of QD system becomes degenerate and near the emergence of the triplet blockade, while positive ones occur in the most range where current flows due to crossed Andreev processes. Finally, we consider ferromagnetic leads polarization and temperature influences on aforementioned features.

  14. A prototype splitter apparatus for dividing large catches of small fish

    Science.gov (United States)

    Stapanian, Martin A.; Edwards, William H.

    2012-01-01

    Due to financial and time constraints, it is often necessary in fisheries studies to divide large samples of fish and estimate total catch from the subsample. The subsampling procedure may involve potential human biases or may be difficult to perform in rough conditions. We present a prototype gravity-fed splitter apparatus for dividing large samples of small fish (30–100 mm TL). The apparatus features a tapered hopper with a sliding and removable shutter. The apparatus provides a comparatively stable platform for objectively obtaining subsamples, and it can be modified to accommodate different sizes of fish and different sample volumes. The apparatus is easy to build, inexpensive, and convenient to use in the field. To illustrate the performance of the apparatus, we divided three samples (total N = 2,000 fish) composed of four fish species. Our results indicated no significant bias in estimating either the number or proportion of each species from the subsample. Use of this apparatus or a similar apparatus can help to standardize subsampling procedures in large surveys of fish. The apparatus could be used for other applications that require dividing a large amount of material into one or more smaller subsamples.

  15. Vibration analysis of paper machine's asymmetric tube roll supported by spherical roller bearings

    Science.gov (United States)

    Heikkinen, Janne E.; Ghalamchi, Behnam; Viitala, Raine; Sopanen, Jussi; Juhanko, Jari; Mikkola, Aki; Kuosmanen, Petri

    2018-05-01

    This paper presents a simulation method that is used to study subcritical vibrations of a tube roll in a paper machine. This study employs asymmetric 3D beam elements based on the Timoshenko beam theory. An asymmetric beam model accounts for varying stiffness and mass distributions. Additionally, a detailed rolling element bearing model defines the excitations arising from the set of spherical roller bearings at both ends of the rotor. The results obtained from the simulation model are compared against the results from the measurements. The results indicate that the waviness of the bearing rolling surfaces contributes significantly to the subcritical vibrations while the asymmetric properties of the tube roll have only a fractional effect on the studied vibrations.

  16. Asymmetric Ion-Pairing Catalysis

    Science.gov (United States)

    Brak, Katrien

    2014-01-01

    Charged intermediates and reagents are ubiquitous in organic transformations. The interaction of these ionic species with chiral neutral, anionic, or cationic small molecules has emerged as a powerful strategy for catalytic, enantioselective synthesis. This review describes developments in the burgeoning field of asymmetric ion-pairing catalysis with an emphasis on the insights that have been gleaned into the structural and mechanistic features that contribute to high asymmetric induction. PMID:23192886

  17. Multicatalyst system in asymmetric catalysis

    CERN Document Server

    Zhou, Jian

    2014-01-01

    This book introduces multi-catalyst systems by describing their mechanism and advantages in asymmetric catalysis.  Helps organic chemists perform more efficient catalysis with step-by-step methods  Overviews new concepts and progress for greener and economic catalytic reactions  Covers topics of interest in asymmetric catalysis including bifunctional catalysis, cooperative catalysis, multimetallic catalysis, and novel tandem reactions   Has applications for pharmaceuticals, agrochemicals, materials, and flavour and fragrance

  18. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...... and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...

  19. Asymmetric Gepner models (revisited)

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands)] [Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.n [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands)] [Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain)] [IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2010-12-11

    We reconsider a class of heterotic string theories studied in 1989, based on tensor products of N=2 minimal models with asymmetric simple current invariants. We extend this analysis from (2,2) and (1,2) spectra to (0,2) spectra with SO(10) broken to the Standard Model. In the latter case the spectrum must contain fractionally charged particles. We find that in nearly all cases at least some of them are massless. However, we identify a large subclass where the fractional charges are at worst half-integer, and often vector-like. The number of families is very often reduced in comparison to the 1989 results, but there are no new tensor combinations yielding three families. All tensor combinations turn out to fall into two classes: those where the number of families is always divisible by three, and those where it is never divisible by three. We find an empirical rule to determine the class, which appears to extend beyond minimal N=2 tensor products. We observe that distributions of physical quantities such as the number of families, singlets and mirrors have an interesting tendency towards smaller values as the gauge groups approaches the Standard Model. We compare our results with an analogous class of free fermionic models. This displays similar features, but with less resolution. Finally we present a complete scan of the three family models based on the triply-exceptional combination (1,16{sup *},16{sup *},16{sup *}) identified originally by Gepner. We find 1220 distinct three family spectra in this case, forming 610 mirror pairs. About half of them have the gauge group SU(3)xSU(2){sub L}xSU(2){sub R}xU(1){sup 5}, the theoretical minimum, and many others are trinification models.

  20. Asymmetric spatial soliton dragging.

    Science.gov (United States)

    Blair, S; Wagner, K; McLeod, R

    1994-12-01

    A new low-latency, cascadable optical logic gate with gain, high contrast, and three-terminal input-output isolation is introduced. The interaction between two orthogonally polarized spatial solitons brought into coincidence at the boundary of a saturating nonlinear medium and propagating in different directions results in the phase-insensitive spatial dragging of a strong pump soliton by a weaker signal. As a result, the strong pump is transmitted through an aperture when the weak signal is not present, and it is dragged to the side by more than a beam width and blocked in the presence of the weak signal, thus implementing an inverter with gain. A multi-input, logically complete NOR gate also can be implemented in a cascaded system.

  1. Parasitic crossing at an asymmetric B factory, APIARY

    International Nuclear Information System (INIS)

    Chin, Y.H.

    1991-05-01

    Effects of parasitic crossings (''near miss'' collisions of two counter-rotating beams at unwanted positions near the IP) are studied in terms of computer simulations for an asymmetric B Factory, APIARY- 6.3d. Beams are separated horizontally at the first parasitic crossing points by about 7.6 times the horizontal rms size of the low energy beam (the larger in size of the two beams), σ 0x,+ . Simulations, including both the beam collision at the IP and parasitic crossings, have been performed for different separation distances, d. It is found that the ratio d/σ 0x,+ is a good scaling parameter of beam blowup behavior. The results show that beam blowup due to the parasitic crossings is diminished for d ≥ 7σ 0x,+ , in agreement with the bunch separation experiment at CESR. Thus, the nominal separation 7.6 σ 0x,+ turns out to be acceptable, but with only a small margin. Some methods to mitigate the effects of the parasitic crossings are discussed. 3 refs. , 5 figs., 2 tabs

  2. Control of supersonic axisymmetric base flows using passive splitter plates and pulsed plasma actuators

    Science.gov (United States)

    Reedy, Todd Mitchell

    An experimental investigation evaluating the effects of flow control on the near-wake downstream of a blunt-based axisymmetric body in supersonic flow has been conducted. To better understand and control the physical phenomena that govern these massively separated high-speed flows, this research examined both passive and active flow-control methodologies designed to alter the stability characteristics and structure of the near-wake. The passive control investigation consisted of inserting splitter plates into the recirculation region. The active control technique utilized energy deposition from multiple electric-arc plasma discharges placed around the base. The flow-control authority of both methodologies was evaluated with experimental diagnostics including particle image velocimetry, schlieren photography, surface flow visualization, pressure-sensitive paint, and discrete surface pressure measurements. Using a blowdown-type wind tunnel reconstructed specifically for these studies, baseline axisymmetric experiments without control were conducted for a nominal approach Mach number of 2.5. In addition to traditional base pressure measurements, mean velocity and turbulence quantities were acquired using two-component, planar particle image velocimetry. As a result, substantial insight was gained regarding the time-averaged and instantaneous near-wake flow fields. This dataset will supplement the previous benchmark point-wise laser Doppler velocimetry data of Herrin and Dutton (1994) for comparison with new computational predictive techniques. Next, experiments were conducted to study the effects of passive triangular splitter plates placed in the recirculation region behind a blunt-based axisymmetric body. By dividing the near-wake into 1/2, 1/3, and 1/4 cylindrical regions, the time-averaged base pressure distribution, time-series pressure fluctuations, and presumably the stability characteristics were altered. While the spatial base pressure distribution was

  3. Extremal asymmetric universal cloning machines

    Science.gov (United States)

    Jiang, Mingming; Yu, Sixia

    2010-05-01

    The trade-offs among various output fidelities of asymmetric universal cloning machines are investigated. First we find out all the attainable optimal output fidelities for the 1 to 3 asymmetric universal cloning machine and it turns out that there are two kinds of extremal machines which have to cooperate in order to achieve some of the optimal output fidelities. Second we construct a family of extremal cloning machines that includes the universal symmetric cloning machine as well as an asymmetric 1 to 1+N cloning machine for qudits with two different output fidelities such that the optimal trade-off between the measurement disturbance and state estimation is attained in the limit of infinite N.

  4. Does asymmetric correlation affect portfolio optimization?

    Science.gov (United States)

    Fryd, Lukas

    2017-07-01

    The classical portfolio optimization problem does not assume asymmetric behavior of relationship among asset returns. The existence of asymmetric response in correlation on the bad news could be important information in portfolio optimization. The paper applies Dynamic conditional correlation model (DCC) and his asymmetric version (ADCC) to propose asymmetric behavior of conditional correlation. We analyse asymmetric correlation among S&P index, bonds index and spot gold price before mortgage crisis in 2008. We evaluate forecast ability of the models during and after mortgage crisis and demonstrate the impact of asymmetric correlation on the reduction of portfolio variance.

  5. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  6. An intrinsically asymmetric radio galaxy: 0500+630?

    Science.gov (United States)

    Saikia, D. J.; Thomasson, P.; Jackson, N.; Salter, C. J.; Junor, W.

    1996-10-01

    As part of a search for high-luminosity radio galaxies with one-sided structures, the radio galaxy 0500+630 has been imaged with both the VLA and MERLIN and its optical spectrum determined using the Isaac Newton Telescope on La Palma. The galaxy is found to have a redshift of 0.290+/-0.004. The radio observations show the source to be highly asymmetric, with an overall structure which cannot be understood easily by ascribing it either to orientation and relativistic beaming effects or to an asymmetric distribution of gas in the central region. A comparison of this source with objects of similar luminosity suggests that it is one of the best examples yet of a source with possibly an intrinsic asymmetry in either the collimation of its jets or the supply of energy from the central engine to opposite sides.

  7. JET and COMPASS asymmetrical disruptions

    Czech Academy of Sciences Publication Activity Database

    Gerasimov, S.N.; Abreu, P.; Baruzzo, M.; Drozdov, V.; Dvornova, A.; Havlíček, Josef; Hender, T.C.; Hronová-Bilyková, Olena; Kruezi, U.; Li, X.; Markovič, Tomáš; Pánek, Radomír; Rubinacci, G.; Tsalas, M.; Ventre, S.; Villone, F.; Zakharov, L.E.

    2015-01-01

    Roč. 55, č. 11 (2015), s. 113006-113006 ISSN 0029-5515 R&D Projects: GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : tokamak * asymmetrical disruption * JET * COMPASS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.040, year: 2015

  8. DNA-based asymmetric catalysis

    NARCIS (Netherlands)

    Boersma, Arnold J.; Megens, Rik P.; Feringa, Ben L.; Roelfes, Gerard

    2010-01-01

    The unique chiral structure of DNA has been a source of inspiration for the development of a new class of bio-inspired catalysts. The novel concept of DNA-based asymmetric catalysis, which was introduced only five years ago, has been applied successfully in a variety of catalytic enantioselective

  9. Magnetized and Flat Beam Experiment at FAST

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Fermilab; Hyun, J. [Sokendai, Tsukuba; Mihalcea, D. [NIU, DeKalb; Piot, P. [NICADD, DeKalb; Sen, T. [Fermilab; Thangaraj, C. [Fermilab

    2017-05-22

    A photocathode, immersed in solenoidal magnetic field, can produce canonical-angular-momentum (CAM) dominated or “magnetized” electron beams. Such beams have an application in electron cooling of hadron beams and can also be uncoupled to yield asymmetric-emittance (“flat”) beams. In the present paper we explore the possibilities of the flat beam generation at Fermilab’s Accelerator Science and Technology (FAST) facility. We present optimization of the beam flatness and four-dimensional transverse emittance and investigate the mapping and its limitations of the produced eigen-emittances to conventional emittances using a skew-quadrupole channel. Possible application of flat beams at the FAST facility are also discussed.

  10. Scattering analysis of asymmetric metamaterial resonators by the Riemann-Hilbert approach

    DEFF Research Database (Denmark)

    Kaminski, Piotr Marek; Ziolkowski, Richard W.; Arslanagic, Samel

    2016-01-01

    This work presents an analytical treatment of an asymmetric metamaterial-based resonator excited by an electric line source, and explores its beam shaping capabilities. The resonator consists of two concentric cylindrical material layers covered with an infinitely thin conducting shell with an ap...

  11. Shape Memory Alloy Rock Splitters (SMARS) - A Non-Explosive Method for Fracturing Planetary Rocklike Materials and Minerals

    Science.gov (United States)

    Benafan, Othmane; Noebe, Ronald D.; Halsmer, Timothy J.

    2015-01-01

    A static rock splitter device based on high-force, high-temperature shape memory alloys (HTSMAs) was developed for space related applications requiring controlled geologic excavation in planetary bodies such as the Moon, Mars, and near-Earth asteroids. The device, hereafter referred to as the shape memory alloy rock splitter (SMARS), consisted of active (expanding) elements made of Ni50.3Ti29.7Hf20 (at.%) that generate extremely large forces in response to thermal input. The preshaping (training) of these elements was accomplished using isothermal, isobaric and cyclic training methods, which resulted in active components capable of generating stresses in excess of 1.5 GPa. The corresponding strains (or displacements) were also evaluated and were found to be 2 to 3 percent, essential to rock fracturing and/or splitting when placed in a borehole. SMARS performance was evaluated using a test bed consisting of a temperature controller, custom heaters and heater holders, and an enclosure for rock placement and breakage. The SMARS system was evaluated using various rock types including igneous rocks (e.g., basalt, quartz, granite) and sedimentary rocks (e.g., sandstone, limestone).

  12. Fused-fiber-based 3-dB mode insensitive power splitters for few-mode optical fiber networks

    Science.gov (United States)

    Ren, Fang; Huang, Xiaoshan; Wang, Jianping

    2017-11-01

    We propose a 3-dB mode insensitive power splitter (MIPS) capable of broadcasting and combining optical signals. It is fabricated with two identical few-mode fibers (FMFs) by a heating and pulling technique. The mode-dependent power transfer characteristic as a function of pulling length is investigated. For exploiting its application, we experimentally demonstrate both FMF-based transmissive and reflective star couplers consisting of multiple 3-dB mode insensitive power splitters, which perform broadcasting and routing signals in few-mode optical fiber networks such as mode-division multiplexing (MDM) local area networks using star topology. For experimental demonstration, optical on-off keying signals at 10 Gb/s carried on three spatial modes are successfully processed with open and clear eye diagrams. Measured bit error ratio results show reasonable power penalties. It is found that a reflective star coupler in MDM networks can reduce half of the total amount of required fibers comparing to that of a transmissive star coupler. This MIPS is more efficient, more reliable, more flexible, and more cost-effective for future expansion and application in few-mode optical fiber networks.

  13. Coherent beam-beam effects

    International Nuclear Information System (INIS)

    Chao, A.W.

    1992-01-01

    There are two physical pictures that describe the beam-beam interaction in a storage ring collider: The weak-strong and the strong-strong pictures. Both pictures play a role in determining the beam-beam behavior. This review addresses only the strong-strong picture. The corresponding beam dynamical effects are referred to as the coherent beam-beam effects. Some basic knowledge of the weak-strong picture is assumed. To be specific, two beams of opposite charges are considered. (orig.)

  14. Cyclodextrins in Asymmetric and Stereospecific Synthesis

    Directory of Open Access Journals (Sweden)

    Fliur Macaev

    2015-09-01

    Full Text Available Since their discovery, cyclodextrins have widely been used as green and easily available alternatives to promoters or catalysts of different chemical reactions in water. This review covers the research and application of cyclodextrins and their derivatives in asymmetric and stereospecific syntheses, with their division into three main groups: (1 cyclodextrins promoting asymmetric and stereospecific catalysis in water; (2 cyclodextrins’ complexes with transition metals as asymmetric and stereospecific catalysts; and (3 cyclodextrins’ non-metallic derivatives as asymmetric and stereospecific catalysts. The scope of this review is to systematize existing information on the contribution of cyclodextrins to asymmetric and stereospecific synthesis and, thus, to facilitate further development in this direction.

  15. Superresolution beams

    CSIR Research Space (South Africa)

    Ngcobo, S

    2011-11-01

    Full Text Available zones capable of introducing a phase shift of zero or p on the alternately out of phase rings of the TEMp0 beams into a unified phase and then focusing the rectified beam to generate a high resolution beam which has a Gaussian beam intensity distribution...

  16. Stable walking with asymmetric legs

    International Nuclear Information System (INIS)

    Merker, Andreas; Rummel, Juergen; Seyfarth, Andre

    2011-01-01

    Asymmetric leg function is often an undesired side-effect in artificial legged systems and may reflect functional deficits or variations in the mechanical construction. It can also be found in legged locomotion in humans and animals such as after an accident or in specific gait patterns. So far, it is not clear to what extent differences in the leg function of contralateral limbs can be tolerated during walking or running. Here, we address this issue using a bipedal spring-mass model for simulating walking with compliant legs. With the help of the model, we show that considerable differences between contralateral legs can be tolerated and may even provide advantages to the robustness of the system dynamics. A better understanding of the mechanisms and potential benefits of asymmetric leg operation may help to guide the development of artificial limbs or the design novel therapeutic concepts and rehabilitation strategies.

  17. Asymmetric information and macroeconomic dynamics

    Science.gov (United States)

    Hawkins, Raymond J.; Aoki, Masanao; Roy Frieden, B.

    2010-09-01

    We show how macroeconomic dynamics can be derived from asymmetric information. As an illustration of the utility of this approach we derive the equilibrium density, non-equilibrium densities and the equation of motion for the response to a demand shock for productivity in a simple economy. Novel consequences of this approach include a natural incorporation of time dependence into macroeconomics and a common information-theoretic basis for economics and other fields seeking to link micro-dynamics and macro-observables.

  18. Asymmetric Synthesis of Apratoxin E.

    Science.gov (United States)

    Mao, Zhuo-Ya; Si, Chang-Mei; Liu, Yi-Wen; Dong, Han-Qing; Wei, Bang-Guo; Lin, Guo-Qiang

    2016-10-21

    An efficient method for asymmetric synthesis of apratoxin E 2 is described in this report. The chiral lactone 8, recycled from the degradation of saponin glycosides, was utilized to prepare the non-peptide fragment 6. In addition to this "from nature to nature" strategy, olefin cross-metathesis (CM) was applied as an alternative approach for the formation of the double bond. Moreover, pentafluorophenyl diphenylphosphinate was found to be an efficient condensation reagent for the macrocyclization.

  19. Asymmetric Wettability Directs Leidenfrost Droplets

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, Rebecca L [ORNL; Boreyko, Jonathan B [ORNL; Briggs, Dayrl P [ORNL; Srijanto, Bernadeta R [ORNL; Retterer, Scott T [ORNL; Collier, Pat [ORNL; Lavrik, Nickolay V [ORNL

    2014-01-01

    Leidenfrost phenomena on nano- and microstructured surfaces are of great importance for increasing control over heat transfer in high power density systems utilizing boiling phenomena. They also provide an elegant means to direct droplet motion in a variety of recently emerging fluidic systems. Here, we report the fabrication and characterization of tilted nanopillar arrays (TNPAs) that exhibit directional Leidenfrost water droplets under dynamic conditions, namely on impact with Weber numbers 40 at T 325 C. The batch fabrication of the TNPAs was achieved by glancing-angle anisotropic reactive ion etching of a thermally dewet platinum mask, with mean pillar diameters of 100 nm and heights of 200-500 nm. In contrast to previously implemented macro- and microscopic Leidenfrost ratchets, our TNPAs induce no preferential directional movement of Leidenfrost droplets under conditions approaching steady-state film boiling, suggesting that the observed droplet directionality is not a result of asymmetric vapor flow. Using high-speed imaging, phase diagrams were constructed for the boiling behavior upon impact for droplets falling onto TNPAs, straight nanopillar arrays, and smooth silicon surfaces. The asymmetric impact and directional trajectory of droplets was exclusive to the TNPAs for impacts corresponding to the transition boiling regime, revealing that asymmetric wettability upon impact is the mechanism for the droplet directionality.

  20. Beam-beam and impedance

    CERN Document Server

    White, S.

    2014-07-17

    As two counter-rotating beams interact they can give rise to coherent dipole modes. Under the influence of impedance these coherent beam-beam modes can couple to higher order head-tail modes and lead to strong instabilities. A fully self-consistent approach including beam-beam and impedance was used to characterize this new coupled mode instability and study possible cures such as a transverse damper and high chromaticity.

  1. Physics and design issues of asymmetric storage ring colliders as B-factories

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1989-08-01

    This paper concentrates on generic R ampersand D and design issues of asymmetric colliders via a specific example, namely a 9 GeV x 3 GeV collider based on PEP at SLAC. An asymmetric e + -e - collider at the Y(4s) and with sufficiently high luminosity (10 33 -10 34 cm -2 s -1 ) offers the possibility of studying mixing, rare decays, and CP violation in the B bar B meson system, as well as ''beautiful'' tau-charm physics, and has certain qualitative advantages from detection and machine design points of view. These include: the energy constraint; clean environment (∼25% B + B - , B 0 bar B 0 ); large cross section (1 nb); vertex reconstruction (from the time development of space-time separated B and bar B decays due to moving center-of-mass); reduced backgrounds; greatest sensitivity to CP violation in B → CP eigenstate; the possibility of using higher collision frequencies, up to 100 MHz, in a head-on colliding mode using magnetic separation. It is estimated that for B → ΨK s , an asymmetric collider has an advantage equivalent to a factor of five in luminosity relative to a symmetric one. There are, however, questions with regard to the physics of the asymmetric beam-beam coulomb interaction that may limit the intrinsic luminosity and the possibility of realizing the small beam pipes necessary to determine the vertices. 16 refs., 2 figs

  2. Analysis of Surface Plasmon Resonance Curves with a Novel Sigmoid-Asymmetric Fitting Algorithm

    Directory of Open Access Journals (Sweden)

    Daeho Jang

    2015-09-01

    Full Text Available The present study introduces a novel curve-fitting algorithm for surface plasmon resonance (SPR curves using a self-constructed, wedge-shaped beam type angular interrogation SPR spectroscopy technique. Previous fitting approaches such as asymmetric and polynomial equations are still unsatisfactory for analyzing full SPR curves and their use is limited to determining the resonance angle. In the present study, we developed a sigmoid-asymmetric equation that provides excellent curve-fitting for the whole SPR curve over a range of incident angles, including regions of the critical angle and resonance angle. Regardless of the bulk fluid type (i.e., water and air, the present sigmoid-asymmetric fitting exhibited nearly perfect matching with a full SPR curve, whereas the asymmetric and polynomial curve fitting methods did not. Because the present curve-fitting sigmoid-asymmetric equation can determine the critical angle as well as the resonance angle, the undesired effect caused by the bulk fluid refractive index was excluded by subtracting the critical angle from the resonance angle in real time. In conclusion, the proposed sigmoid-asymmetric curve-fitting algorithm for SPR curves is widely applicable to various SPR measurements, while excluding the effect of bulk fluids on the sensing layer.

  3. Splitter target for controlling magnetic reconnection in relativistic laser plasma interactions

    Science.gov (United States)

    Gu, Y. J.; Bulanov, S. S.; Korn, G.; Bulanov, S. V.

    2018-04-01

    The utilization of a conical target irradiated by a high power laser is proposed to study fast magnetic reconnection in relativistic plasma interactions. Such target, placed in front of the near critical density gas jet, splits the laser pulse, forming two parallel laser pulses in the 2D case and a donut shaped pulse in the 3D case. The magnetic annihilation and reconnection occur in the density downramp region of the subsequent gas jet. The magnetic field energy is converted into the particle kinetic energy. As a result, a backward accelerated electron beam is obtained as a signature of reconnection. The above mechanisms are demonstrated using particle-in-cell simulations in both 2D and 3D cases. Facilitating the synchronization of two laser beams, the proposed approach can be used in designing the corresponding experiments on studying fundamental problems of relativistic plasma physics.

  4. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    International Nuclear Information System (INIS)

    Sekiguchi, Yu; Sato, Chiaki; Takahashi, Kunio

    2015-01-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified. (paper)

  5. Synthesis method of asymmetric gold particles.

    Science.gov (United States)

    Jun, Bong-Hyun; Murata, Michael; Hahm, Eunil; Lee, Luke P

    2017-06-07

    Asymmetric particles can exhibit unique properties. However, reported synthesis methods for asymmetric particles hinder their application because these methods have a limited scale and lack the ability to afford particles of varied shapes. Herein, we report a novel synthetic method which has the potential to produce large quantities of asymmetric particles. Asymmetric rose-shaped gold particles were fabricated as a proof of concept experiment. First, silica nanoparticles (NPs) were bound to a hydrophobic micro-sized polymer containing 2-chlorotritylchloride linkers (2-CTC resin). Then, half-planar gold particles with rose-shaped and polyhedral structures were prepared on the silica particles on the 2-CTC resin. Particle size was controlled by the concentration of the gold source. The asymmetric particles were easily cleaved from the resin without aggregation. We confirmed that gold was grown on the silica NPs. This facile method for synthesizing asymmetric particles has great potential for materials science.

  6. LG tools for asymmetric wargaming

    Science.gov (United States)

    Stilman, Boris; Yakhnis, Alex; Yakhnis, Vladimir

    2002-07-01

    Asymmetric operations represent conflict where one of the sides would apply military power to influence the political and civil environment, to facilitate diplomacy, and to interrupt specified illegal activities. This is a special type of conflict where the participants do not initiate full-scale war. Instead, the sides may be engaged in a limited open conflict or one or several sides may covertly engage another side using unconventional or less conventional methods of engagement. They may include peace operations, combating terrorism, counterdrug operations, arms control, support of insurgencies or counterinsurgencies, show of force. An asymmetric conflict can be represented as several concurrent interlinked games of various kinds: military, transportation, economic, political, etc. Thus, various actions of peace violators, terrorists, drug traffickers, etc., can be expressed via moves in different interlinked games. LG tools allow us to fully capture the specificity of asymmetric conflicts employing the major LG concept of hypergame. Hypergame allows modeling concurrent interlinked processes taking place in geographically remote locations at different levels of resolution and time scale. For example, it allows us to model an antiterrorist operation taking place simultaneously in a number of countries around the globe and involving wide range of entities from individuals to combat units to governments. Additionally, LG allows us to model all sides of the conflict at their level of sophistication. Intelligent stakeholders are represented by means of LG generated intelligent strategies. TO generate those strategies, in addition to its own mathematical intelligence, the LG algorithm may incorporate the intelligence of the top-level experts in the respective problem domains. LG models the individual differences between intelligent stakeholders. The LG tools make it possible to incorporate most of the known traits of a stakeholder, i.e., real personalities involved in

  7. A laser beam quality definition based on induced temperature rise.

    Science.gov (United States)

    Miller, Harold C

    2012-12-17

    Laser beam quality metrics like M(2) can be used to describe the spot sizes and propagation behavior of a wide variety of non-ideal laser beams. However, for beams that have been diffracted by limiting apertures in the near-field, or those with unusual near-field profiles, the conventional metrics can lead to an inconsistent or incomplete description of far-field performance. This paper motivates an alternative laser beam quality definition that can be used with any beam. The approach uses a consideration of the intrinsic ability of a laser beam profile to heat a material. Comparisons are made with conventional beam quality metrics. An analysis on an asymmetric Gaussian beam is used to establish a connection with the invariant beam propagation ratio.

  8. Asymmetric effects in customer satisfaction

    DEFF Research Database (Denmark)

    Füller, Johann; Matzler, Kurt; Faullant, Rita

    2006-01-01

    The results of this study on customer satisfaction in snowboard areas show that the relationship between an attribute and overall satisfaction can indeed be asymmetric. A 30-item self-administered survey was completed by snowboarders (n=2526) in 51 areas in Austria, Germany, Switzerland and Italy....... Results show that waiting time is a dissatisfier; it has a significant impact on overall customer satisfaction in the low satisfaction condition and becomes insignificant in the high satisfaction situation. Restaurants and bars are hybrids, i.e. importance does not depend on performance. Slopes, fun...... and entertainment and employees have a slightly stronger impact when satisfaction is low....

  9. Design of a multi beam klystron cavity from its single beam parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Deepender, E-mail: dkc@ceeri.ernet.in; Joshi, L. M. [CSIR-Central Electronics Engineering Research Institute, Pilani (India); Janyani, Vijay [Department of ECE, MNIT, Jaipur (India)

    2016-03-09

    The klystron is a well-known microwave amplifier which uses kinetic energy of an electron beam for amplification of the RF signal. There are some limitations of conventional single beam klystron such as high operating voltage, low efficiency and bulky size at higher power levels, which are very effectively handled in Multi Beam Klystron (MBK) that uses multiple low purveyance electron beams for RF interaction. Each beam propagates along its individual transit path through a resonant cavity structure. Multi-Beam klystron cavity design is a critical task due to asymmetric cavity structure and can be simulated by 3D code only. The present paper shall discuss the design of multi beam RF cavities for klystrons operating at 2856 MHz (S-band) and 5 GHz (C-band) respectively. The design approach uses some scaling laws for finding the electron beam parameters of the multi beam device from their single beam counter parts. The scaled beam parameters are then used for finding the design parameters of the multi beam cavities. Design of the desired multi beam cavity can be optimized through iterative simulations in CST Microwave Studio.

  10. Ghost reflections of Gaussian beams in anamorphic optical systems with an application to Michelson interferometer.

    Science.gov (United States)

    Abd El-Maksoud, Rania H

    2016-02-20

    In this paper, a methodology is developed to model and analyze the effect of undesired (ghost) reflections of Gaussian beams that are produced by anamorphic optical systems. The superposition of these beams with the nominal beam modulates the nominal power distribution at the recording plane. This modulation may cause contrast reduction, veiling parts of the nominal image, and/or the formation of spurious interference fringes. The developed methodology is based on synthesizing the beam optical paths into nominal and ghost optical beam paths. Similar to the nominal beam, we present the concept that each ghost beam is characterized by a beam size, wavefront radius of curvature, and Gouy phase in the paraxial regime. The nominal and ghost beams are sequentially traced through the system and formulas for estimating the electric field magnitude and phase of each ghost beam at the recording plane are presented. The effective electric field is the addition of the individual nominal and ghost electric fields. Formulas for estimating Gouy phase, the shape of the interference fringes, and the central interference order are introduced. As an application, the theory of the formation of the interference fringes by Michelson interferometer is presented. This theory takes into consideration the ghost reflections that are formed by the beam splitter. To illustrate the theory and to show its wide applicability, simulation examples that include a Mangin mirror, a Michelson interferometer, and a black box optical system are provided.

  11. Beam cooling

    OpenAIRE

    Danared, H

    2006-01-01

    Beam cooling is the technique of reducing the momentum spread and increasing the phase-space density of stored particle beams. This paper gives an introduction to beam cooling and Liouville’s theorem, and then it describes the three methods of active beam cooling that have been proven to work so far, namely electron cooling, stochastic cooling, and laser cooling. Ionization cooling is also mentioned briefly.

  12. Molecular beams

    International Nuclear Information System (INIS)

    Pendelbury, J.M.; Smith, K.F.

    1987-01-01

    Studies with directed collision-free beams of particles continue to play an important role in the development of modern physics and chemistry. The deflections suffered by such beams as they pass through electric and magnetic fields or laser radiation provide some of the most direct information about the individual constituents of the beam; the scattering observed when two beams intersect yields important data about the intermolecular forces responsible for the scattering. (author)

  13. Quantum and classical correlations of intense beams of light investigated via joint photodetection

    Energy Technology Data Exchange (ETDEWEB)

    Agliati, Andrea [Quanta System S.p.A., Via IV Novembre, 116-21058, Solbiate Olona (Vatican City State, Holy See,) (Italy); Bondani, Maria [INFM/CNR, Unita di Como (Italy); Andreoni, Alessandra [Dipartimento di Fisica e Matematica, Universita degli Studi dell' Insubria, Como (Italy); Cillis, Giovanni De [Dipartimento di Fisica dell' Universita di Milano (Italy); Paris, Matteo G A [Dipartimento di Fisica dell' Universita di Milano (Italy)

    2005-12-01

    We address joint photodetection as a method for discriminating between the classical correlations of a thermal beam divided by a beam splitter and the quantum entanglement of a twin beam obtained by parametric down-conversion. We show that for intense beams of light the detection of the difference photocurrent may be used, in principle, in order to reveal entanglement, while the simple measurement of the correlation coefficient is not sufficient. We have experimentally measured the correlation coefficient and the variance of the difference photocurrent for several classical and quantum states. Results are in good agreement with theoretical predictions taking into account the extra noise in the generated fields that is due to the pump laser fluctuations.

  14. Quantum and classical correlations of intense beams of light investigated via joint photodetection

    International Nuclear Information System (INIS)

    Agliati, Andrea; Bondani, Maria; Andreoni, Alessandra; Cillis, Giovanni De; Paris, Matteo G A

    2005-01-01

    We address joint photodetection as a method for discriminating between the classical correlations of a thermal beam divided by a beam splitter and the quantum entanglement of a twin beam obtained by parametric down-conversion. We show that for intense beams of light the detection of the difference photocurrent may be used, in principle, in order to reveal entanglement, while the simple measurement of the correlation coefficient is not sufficient. We have experimentally measured the correlation coefficient and the variance of the difference photocurrent for several classical and quantum states. Results are in good agreement with theoretical predictions taking into account the extra noise in the generated fields that is due to the pump laser fluctuations

  15. Lidar Electro-Optic Beam Switch with a Liquid Crystal Variable Retarder

    Science.gov (United States)

    Baer, James

    2012-01-01

    A document discusses a liquid crystal variable retarder, an electro-optic element that changes the polarization of an optical beam in response to a low-voltage electronic signal. This device can be fabricated so that the element creates, among other states, a half-wave of retardance that can be reduced to a very small retardance. When aligned to a polarized source, this can act to rotate the polarization by 90 in one state, but generate no rotation in the other state. If the beam is then incident on a polarization beam splitter, it will efficiently switch from one path to the other when the voltage is applied. The laser beam switching system has no moving parts, improving reliability over mechanical switching. It is low cost, tolerant of high laser power density, and needs only simple drive electronics, minimizing the required system resources.

  16. Instability of asymmetric shaft system

    Science.gov (United States)

    Srinath, R.; Sarkar, Abhijit; Sekhar, A. S.

    2016-02-01

    In the present work, parametric instability of asymmetric shaft mounted on bearings is studied. Towards this end, four different models of increasing complexity are studied. The equations corresponding to these models are formulated in the inertial reference frame. These equations involve a periodically varying coefficient. This is similar to classical Mathieu equation but in a multi-degree of freedom context. As such, under suitable parameter combination these systems result in growing oscillation amplitudes or instability. For wider generalization, the equations and results are presented in a non-dimensional form. The unstable parameter regimes are found using the Floquet theory and perturbation methods. These results are also corroborated with existing results in the literature. The nature of the stability boundary and its dependence on various system parameters is discussed in elaborate detail. The stability boundary can be used to determine unstable operating speed ranges for different asymmetric shaft cross-sections. Further, material, geometry and bearing selection guidelines for ensuring stable operations can be inferred from these results.

  17. Beam diagnostics

    International Nuclear Information System (INIS)

    Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.

    1995-01-01

    The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the open-quotes Boosterclose quotes and open-quotes ATLASclose quotes linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates

  18. Worst Asymmetrical Short-Circuit Current

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Holmstrøm, O; Grastrup, L

    2010-01-01

    In a typical power plant, the production scenario and the short-circuit time were found for the worst asymmetrical short-circuit current. Then, a sensitivity analysis on the missing generator values was realized in order to minimize the uncertainty of the results. Afterward the worst asymmetrical...

  19. Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach

    Directory of Open Access Journals (Sweden)

    Pankaj Chauhan

    2012-12-01

    Full Text Available Ball-milling and pestle and mortar grinding have emerged as powerful methods for the development of environmentally benign chemical transformations. Recently, the use of these mechanochemical techniques in asymmetric organocatalysis has increased. This review highlights the progress in asymmetric organocatalytic reactions assisted by mechanochemical techniques.

  20. Asymmetric Frontal Brain Activity and Parental Rejection

    NARCIS (Netherlands)

    Huffmeijer, R.; Alink, L.R.A.; Tops, M.; Bakermans-Kranenburg, M.J.; van IJzendoorn, M.H.

    2013-01-01

    Asymmetric frontal brain activity has been widely implicated in reactions to emotional stimuli and is thought to reflect individual differences in approach-withdrawal motivation. Here, we investigate whether asymmetric frontal activity, as a measure of approach-withdrawal motivation, also predicts

  1. A case of asymmetrical arthrogryposis

    International Nuclear Information System (INIS)

    Hageman, G.; Vette, J.K.; Willemse, J.

    1983-01-01

    Following the introduction of the conception that arthrogryposis is a symptom and not a clinical entity, a case of the very rare asymmetric form of neurogenic arthrogryposis is presented. The asymmetry of congenital contractures and weakness is associated with hemihypotrophy. The value of muscular CT-scanning prior to muscle biopsy is demonstrated. Muscular CT-scanning shows the extension of adipose tissue, which has replaced damaged muscles and therby indicates the exact site for muscle biopsy. Since orthopaedic treatment in arthrogryposis can be unrewarding due to severe muscular degeneration, preoperative scanning may provide additional important information on muscular function and thus be of benefit for surgery. The advantage of muscular CT-scanning in other forms of arthrogryposis requires further determination. The differential diagnosis with Werdnig-Hoffmann disease is discussed. (author)

  2. Packing of soft asymmetric dumbbells.

    Science.gov (United States)

    Sarić, Anđela; Bozorgui, Behnaz; Cacciuto, Angelo

    2011-06-09

    We use numerical simulations to study the phase behavior of a system of purely repulsive soft dumbbells as a function of size ratio of the two components and their relative degree of deformability. We find a plethora of different phases, which includes most of the mesophases observed in self-assembly of block copolymers but also crystalline structures formed by asymmetric, hard binary mixtures. Our results detail the phenomenological behavior of these systems when softness is introduced in terms of two different classes of interparticle interactions: (a) the elastic Hertz potential, which has a finite energy cost for complete overlap of any two components, and (b) a generic power-law repulsion with tunable exponent. We discuss how simple geometric arguments can be used to account for the large structural variety observed in these systems and detail the similarities and differences in the phase behavior for the two classes of potentials under consideration.

  3. Asymmetric Digital Subscriber Line (ADSL

    Directory of Open Access Journals (Sweden)

    Slavko Šarić

    2012-10-01

    Full Text Available ADSL (Asymmetric Digital Subscriber Line is a technologythat allows transmission at 8.488 Mbps over the existingtelephone copper line (speed range depending on the distance.ADSL circuit connects the ADSL modems by twisted-pairtelephone lines creating three infonnation channels: high speedsimplex (maximum 9 Mbps, medium speed duplex channel(maximum 2 Mbps and plain old telephone service channel.ADSL technology supports up to seven synchronous channelsthat can be configured to meet the needs of the end user.One could simultaneously view four movies stored in MPEG 1fonnat on separate television sets (MPEG 1 transmitted at 1.5Mbps, hold a video-conference (transmitted at 348 kbps,download data files from a server at 128 kbps via ISDN andeven receive a telephone call.

  4. Numerical and experimental investigations on the cavitation characteristics of a high-speed centrifugal pump with a splitter-blade inducer

    Energy Technology Data Exchange (ETDEWEB)

    Guo, XiaoMei [Zhejiang University of Water Resources and Electric Power, Hangzhou (China); Zhu, Linhang [Zhejiang University, Hangzhou (China); Zhu, ZuChao; Cui, BaoLing; Li, Yi [Zhejiang Sci-Tech University, Hangzhou (China)

    2015-01-15

    A high-speed centrifugal pump with a splitter-blade inducer is investigated in this work. The flow with rotating cavitation is numerically simulated, external characteristics are subjected to experimental tests, and the internal flow is visualized. These procedures are conducted to obtain the pressure, velocity, and vapor volume fraction distribution in the inducer and the impeller of the centrifugal pump. Bubble occurrence, development, and collapse are also observed. The predicted H-Q and η-Q curves agree with the experimental results of external characteristics. The calculated vapor volume fraction also agrees with the experimental results obtained from the visualization system. The mechanism of bubble evolution and the anti-cavitation performance of the high-speed centrifugal pump with a splitter-blade inducer are clearly elucidated.

  5. The accuracy, precision and sustainability of different techniques for tablet subdivision: breaking by hand and the use of tablet splitters or a kitchen knife.

    Science.gov (United States)

    van Riet-Nales, Diana A; Doeve, Myrthe E; Nicia, Agnes E; Teerenstra, Steven; Notenboom, Kim; Hekster, Yechiel A; van den Bemt, Bart J F

    2014-05-15

    Tablets are frequently subdivided to lower the dose, to facilitate swallowing by e.g. children or older people or to save costs. Splitting devices are commonly used when hand breaking is difficult or painful. Three techniques for tablet subdivision were investigated: hand breaking, tablet splitter, kitchen knife. A best case drug (paracetamol), tablet (round, flat, uncoated, 500 mg) and operator (24-year student) were applied. Hundred tablets were subdivided by hand and by three devices of each of the following types: Fit & Healthy, Health Care Logistics, Lifetime, PillAid, PillTool, Pilomat tablet splitter; Blokker kitchen knife. The intra and inter device accuracy, precision and sustainability were investigated. The compliance to (adapted) regulatory requirements was investigated also. The accuracy and precision of hand broken tablets was 104/97% resp. 2.8/3.2% (one part per tablet considered; parts right/left side operator). The right/left accuracies of the splitting devices varied between 60 and 133%; the precisions 4.0 and 29.6%. The devices did not deteriorate over 100-fold use. Only hand broken tablets complied with all regulatory requirements. Health care professionals should realize that tablet splitting may result in inaccurate dosing. Authorities should undertake appropriate measures to assure good function of tablet splitters and, where feasible, to reduce the need for their use. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Elliptical beams.

    Science.gov (United States)

    Bandres, Miguel A; Gutiérrez-Vega, Julio C

    2008-12-08

    A very general beam solution of the paraxial wave equation in elliptic cylindrical coordinates is presented. We call such a field an elliptic beam (EB). The complex amplitude of the EB is described by either the generalized Ince functions or the Whittaker-Hill functions and is characterized by four parameters that are complex in the most general situation. The propagation through complex ABCD optical systems and the conditions for square integrability are studied in detail. Special cases of the EB are the standard, elegant, and generalized Ince-Gauss beams, Mathieu-Gauss beams, among others.

  7. Numerical analysis of solid–liquidtwo-phase turbulent flow in Francis turbine runner with splitter bladesin sandy water

    Directory of Open Access Journals (Sweden)

    Hua Hong

    2015-03-01

    Full Text Available As the key component of a hydroelectric power generation system, hydraulic turbine plays a decisive role in the overall performance of the system. There are many sandy rivers in the world, and turbines working in these rivers are seriously damaged. Therefore, the research of flow in sandy water has great theoretical significance and practical value. Based on the specific hydrological conditions of a hydropower station, the solid–liquid two-phase flow in the whole flow passage of a Francis turbine with splitter blades in sandy water was numerically studied. A geometric model of the whole flow passage of the Francis turbine was established on the basis of given design parameters. The solid–liquid two-phase turbulent flows in Francis turbine runner under three different loads were numerically analyzed by using this model. The three different loads are as follows: Condition 1: single unit with 1/4 load, Condition 2: single unit with 1/2 load, and Condition 3: single unit with full load. The distributions of pressure and sand concentration on the leading side and the suction side of the runner blades, as well as the velocity vector distribution of water and sand on the horizontal section of the runner, were obtained under different load conditions. Therefore, the damages to various flow passage components by sand can be qualitatively predicated under various conditions. To guarantee the safety and stability of the unit, the adverse conditions shall be avoided, which can provide certain reference for plant operation.

  8. Enhancement of Energy Harvesting Performance by a Coupled Bluff Splitter Body and PVEH Plate through Vortex Induced Vibration near Resonance

    Directory of Open Access Journals (Sweden)

    Wei Ken Chin

    2017-09-01

    Full Text Available Inspired by vortex induced vibration energy harvesting development as a new source of renewable energy, a T-shaped design vibration energy harvester is introduced with the aim of enhancing its performance through vortex induced vibration at near resonance conditions. The T-shaped structural model designed consists of a fixed boundary aluminum bluff splitter body coupled with a cantilever piezoelectric vibration energy harvesters (PVEH plate model which is a piezoelectric bimorph plate made of a brass plate sandwiched between 2 lead zirconate titanate (PZT plates. A 3-dimensional Fluid-Structure Interaction simulation analysis is carried out with Reynolds Stress Turbulence Model under wind speed of 7, 10, 12, 14, 16, 18, 19, 20, 22.5, and 25 m/s. The results showed that with 19 m/s wind speed, the model generates 75.758 Hz of vortex frequency near to the structural model’s natural frequency of 76.9 Hz. Resonance lock-in therefore occurred, generating a maximum displacement amplitude of 2.09 mm or a 49.76% increment relatively in vibrational amplitude. Under the effect of resonance at the PVEH plate’s fundamental natural frequency, it is able to generate the largest normalized power of 13.44 mW/cm3g2.

  9. Wien-filtered Cs + beam for SIMS: source description

    Science.gov (United States)

    Teodoro, O. M. N. D.; Catarino, M. I. S.; Moutinho, A. M. C.

    1993-06-01

    A compact cesium ion source with a Wien filter is described. This source has been developed in order to produce a pure beam of cesium ions for positive SIMS analysis. The ions are produced by a surface ionization ion emitter. The initial beam is about 99% pure and the remaining 1% is removed via the Wien filter. An asymmetric einzel lens at the end provides the focusing of the beam on the target. A short description of the source is presented as well as the measured final beam characteristics.

  10. Polymeric membrane studied using slow positron beam

    International Nuclear Information System (INIS)

    Hung, W.-S.; Lo, C.-H.; Cheng, M.-L.; Chen Hongmin; Liu Guang; Chakka, Lakshmi; Nanda, D.; Tung, K.-L.; Huang, S.-H.; Lee, Kueir-Rarn; Lai, J.-Y.; Sun Yiming; Yu Changcheng; Zhang Renwu; Jean, Y.C.

    2008-01-01

    A radioisotope slow positron beam has been built at the Chung Yuan Christian University in Taiwan for the research and development in membrane science and technology. Doppler broadening energy spectra and positron annihilation lifetime have been measured as a function of positron energy up to 30 keV in a polyamide membrane prepared by the interfacial polymerization between triethylenetetraamine (TETA) and trimesoyl chloride (TMC) on modified porous polyacrylonitrile (PAN) asymmetric membrane. The multilayer structures and free-volume depth profile for this asymmetric membrane system are obtained. Positron annihilation spectroscopy coupled with a slow beam could provide new information about size selectivity of transporting molecules and guidance for molecular designs in polymeric membranes

  11. High brightness laser source based on polarization coupling of two diode lasers with asymmetric feedback

    DEFF Research Database (Denmark)

    Thestrup, B.; Chi, M.; Sass, B.

    2003-01-01

    200 mum broad area laser diode applied with a specially designed feedback circuit. When operating at two times threshold, 50% of the freely running system output power is obtained in a single beam with an M-2 beam quality factor of 1.6+/-0.1, whereas the M-2 values of the two freely running diode......In this letter, we show that polarization coupling and asymmetric diode-laser feedback can be used to combine two diode-laser beams with low spatial coherence into a single beam with high spatial coherence. The coupled laser source is based on two similar laser systems each consisting of a 1 mumx...... lasers are 29+/-1 and 34+/-1, respectively. (C) 2003 American Institute of Physics....

  12. Superresolution beams

    CSIR Research Space (South Africa)

    Ngcobo, S

    2012-07-01

    Full Text Available positions of p zeros of intensity distributions on the Gaussian beam, resulting to a generation of TEMp0 beams where there are minimum losses. The LGBs are well-known family of exact orthogonal solutions of free-space paraxial wave equation in cylindrical...

  13. Experimental generation of tripartite polarization entangled states of bright optical beams

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Liang; Liu, Yanhong; Deng, Ruijie [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006 (China); Yan, Zhihui; Jia, Xiaojun, E-mail: jiaxj@sxu.edu.cn; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006 (China)

    2016-04-18

    The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite entangled states of light at the frequency resonant with D1 line of Rubidium atoms are transformed into the continuous variable polarization entanglement among three bright optical beams via an optical beam splitter network. The obtained entanglement is confirmed by the extended criterion for polarization entanglement of multipartite quantized optical modes.

  14. Experimental generation of tripartite polarization entangled states of bright optical beams

    Science.gov (United States)

    Wu, Liang; Yan, Zhihui; Liu, Yanhong; Deng, Ruijie; Jia, Xiaojun; Xie, Changde; Peng, Kunchi

    2016-04-01

    The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite entangled states of light at the frequency resonant with D1 line of Rubidium atoms are transformed into the continuous variable polarization entanglement among three bright optical beams via an optical beam splitter network. The obtained entanglement is confirmed by the extended criterion for polarization entanglement of multipartite quantized optical modes.

  15. Beam diagnostics

    CERN Document Server

    Raich, U

    2008-01-01

    Most beam measurements are based on the electro-magnetic interaction of fields induced by the beam with their environment. Beam current transformers as well as beam position monitors are based on this principle. The signals induced in the sensors must be amplified and shaped before they are converted into numerical values. These values are further treated numerically in order to extract meaningful machine parameter measurements. The lecture introduces the architecture of an instrument and shows where in the treatment chain digital signal analysis can be introduced. Then the use of digital signal processing is presented using tune measurements, orbit and trajectory measurements as well as beam loss detection and longitudinal phase space tomography as examples. The hardware as well as the treatment algorithms and their implementation on Digital Signal Processors (DSPs) or in Field Programmable Gate Arrays (FPGAs) are presented.

  16. Modeling of asymmetrical boost converters

    Directory of Open Access Journals (Sweden)

    Eliana Isabel Arango Zuluaga

    2014-01-01

    Full Text Available The asymmetrical interleaved dual boost (AIDB is a fifth-order DC/DC converter designed to interface photovoltaic (PV panels. The AIDB produces small current harmonics to the PV panels, reducing the power losses caused by the converter operation. Moreover, the AIDB provides a large voltage conversion ratio, which is required to step-up the PV voltage to the large dc-link voltage used in grid-connected inverters. To reject irradiance and load disturbances, the AIDB must be operated in a closed-loop and a dynamic model is required. Given that the AIDB converter operates in Discontinuous Conduction Mode (DCM, classical modeling approaches based on Continuous Conduction Mode (CCM are not valid. Moreover, classical DCM modeling techniques are not suitable for the AIDB converter. Therefore, this paper develops a novel mathematical model for the AIDB converter, which is suitable for control-pur-poses. The proposed model is based on the calculation of a diode current that is typically disregarded. Moreover, because the traditional correction to the second duty cycle reported in literature is not effective, a new equation is designed. The model accuracy is contrasted with circuital simulations in time and frequency domains, obtaining satisfactory results. Finally, the usefulness of the model in control applications is illustrated with an application example.

  17. Congenital asymmetric crying face: a case report

    Directory of Open Access Journals (Sweden)

    Semra Kara

    2011-12-01

    Full Text Available Congenital asymmetric crying face is an anomalia caused by unilateral absence or weakness of depressor anguli oris muscle The major finding of the disease is the absence or weakness in the outer and lower movement of the commissure during crying. The other expression muscles are normal and the face is symmetric at rest. The asymmetry in congenital asymmetric crying face is most evident during infancy but decreases by age. Congenital asymmetric crying face can be associated with cervicofacial, musclebone, respiratory, genitourinary and central nervous system anomalia. It is diagnosed by physical examination. This paper presents a six days old infant with Congenital asymmetric crying face and discusses the case in terms of diagnosis and disease features.

  18. Synthesis of asymmetrical multiantennary human milk oligosaccharides

    NARCIS (Netherlands)

    Prudden, Anthony R; Liu, Lin; Capicciotti, Chantelle J.; Wolfert, Margreet A; Wang, Shuo; Gao, Zhongwei; Meng, Lu; Moremen, Kelley W; Boons, Geert-Jan

    2017-01-01

    Despite mammalian glycans typically having highly complex asymmetrical multiantennary architectures, chemical and chemoenzymatic synthesis has almost exclusively focused on the preparation of simpler symmetrical structures. This deficiency hampers investigations into the biology of glycan-binding

  19. Asymmetric cryptography based on wavefront sensing.

    Science.gov (United States)

    Peng, Xiang; Wei, Hengzheng; Zhang, Peng

    2006-12-15

    A system of asymmetric cryptography based on wavefront sensing (ACWS) is proposed for the first time to our knowledge. One of the most significant features of the asymmetric cryptography is that a trapdoor one-way function is required and constructed by analogy to wavefront sensing, in which the public key may be derived from optical parameters, such as the wavelength or the focal length, while the private key may be obtained from a kind of regular point array. The ciphertext is generated by the encoded wavefront and represented with an irregular array. In such an ACWS system, the encryption key is not identical to the decryption key, which is another important feature of an asymmetric cryptographic system. The processes of asymmetric encryption and decryption are formulized mathematically and demonstrated with a set of numerical experiments.

  20. Stereogenic-Only-at-Metal Asymmetric Catalysts.

    Science.gov (United States)

    Zhang, Lilu; Meggers, Eric

    2017-09-19

    Chirality is an essential feature of asymmetric catalysts. This review summarizes asymmetric catalysts that derive their chirality exclusively from stereogenic metal centers. Reported chiral-at-metal catalysts can be divided into two classes, namely, inert metal complexes, in which the metal fulfills a purely structural role, so catalysis is mediated entirely through the ligand sphere, and reactive metal complexes. The latter are particularly appealing because structural simplicity (only achiral ligands) is combined with the prospect of particularly effective asymmetric induction (direct contact of the substrate with the chiral metal center). Challenges and solutions for the design of such reactive stereogenic-only-at-metal asymmetric catalysts are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Magnetically Modified Asymmetric Supercapacitors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is for the development of an asymmetric supercapacitor that will have improved energy density and cycle life....

  2. Asymmetric focusing study from twin input power couplers using realistic rf cavity field maps

    Science.gov (United States)

    Gulliford, Colwyn; Bazarov, Ivan; Belomestnykh, Sergey; Shemelin, Valery

    2011-03-01

    Advanced simulation codes now exist that can self-consistently solve Maxwell’s equations for the combined system of an rf cavity and a beam bunch. While these simulations are important for a complete understanding of the beam dynamics in rf cavities, they require significant time and computing power. These techniques are therefore not readily included in real time simulations useful to the beam physicist during beam operations. Thus, there exists a need for a simplified algorithm which simulates realistic cavity fields significantly faster than self-consistent codes, while still incorporating enough of the necessary physics to ensure accurate beam dynamics computation. To this end, we establish a procedure for producing realistic field maps using lossless cavity eigenmode field solvers. This algorithm incorporates all relevant cavity design and operating parameters, including beam loading from a nonrelativistic beam. The algorithm is then used to investigate the asymmetric quadrupolelike focusing produced by the input couplers of the Cornell ERL injector cavity for a variety of beam and operating parameters.

  3. Asymmetric focusing study from twin input power couplers using realistic rf cavity field maps

    Directory of Open Access Journals (Sweden)

    Colwyn Gulliford

    2011-03-01

    Full Text Available Advanced simulation codes now exist that can self-consistently solve Maxwell’s equations for the combined system of an rf cavity and a beam bunch. While these simulations are important for a complete understanding of the beam dynamics in rf cavities, they require significant time and computing power. These techniques are therefore not readily included in real time simulations useful to the beam physicist during beam operations. Thus, there exists a need for a simplified algorithm which simulates realistic cavity fields significantly faster than self-consistent codes, while still incorporating enough of the necessary physics to ensure accurate beam dynamics computation. To this end, we establish a procedure for producing realistic field maps using lossless cavity eigenmode field solvers. This algorithm incorporates all relevant cavity design and operating parameters, including beam loading from a nonrelativistic beam. The algorithm is then used to investigate the asymmetric quadrupolelike focusing produced by the input couplers of the Cornell ERL injector cavity for a variety of beam and operating parameters.

  4. Angularly symmetric splitting of a light beam upon reflection and refraction at an air-dielectric plane boundary.

    Science.gov (United States)

    Azzam, R M A

    2015-12-01

    Conditions for achieving equal and opposite angular deflections of a light beam by reflection and refraction at an air-dielectric boundary are determined. Such angularly symmetric beam splitting (ASBS) is possible only if the angle of incidence is >60° by exactly one third of the angle of refraction. This simple law, plus Snell's law, leads to several analytical results that clarify all aspects of this phenomenon. In particular, it is shown that the intensities of the two symmetrically deflected beams can be equalized by proper choice of the prism refractive index and the azimuth of incident linearly polarized light. ASBS enables a geometrically attractive layout of optical systems that employ multiple prism beam splitters.

  5. Diode laser lidar wind velocity sensor using a liquid-crystal retarder for non-mechanical beam-steering

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Iversen, Theis Faber Quist; Hu, Qi

    2014-01-01

    the lidar probe beam in two different lines-of-sight (LOS) with a 60° angular separation. Dual-LOS beam-steering isimplemented optically with no moving parts by means of a controllableliquid-crystal retarder (LCR). The LCR switches the polarization betweentwo orthogonal linear states of the lidar beam so......We extend the functionality of a low-cost CW diode lasercoherent lidar from radial wind speed (scalar) sensing to wind velocity(vector) measurements. Both speed and horizontal direction of the wind at~80 m remote distance are derived from two successive radial speedestimates by alternately steering...... it either transmits throughor reflects off a polarization splitter. The room-temperature switching timebetween the two LOS is measured to be in the order of 100μs in one switchdirection but 16 ms in the opposite transition. Radial wind speedmeasurement (at 33 Hz rate) while the lidar beam is repeatedly...

  6. Engineered Asymmetric Composite Membranes with Rectifying Properties.

    Science.gov (United States)

    Wen, Liping; Xiao, Kai; Sainath, Annadanam V Sesha; Komura, Motonori; Kong, Xiang-Yu; Xie, Ganhua; Zhang, Zhen; Tian, Ye; Iyoda, Tomokazu; Jiang, Lei

    2016-01-27

    Asymmetric composite membranes with rectifying properties are developed by grafting pH-stimulus-responsive materials onto the top layer of the composite structure, which is prepared by two novel block copolymers using a phase-separation technique. This engineered asymmetric composite membrane shows potential applications in sensors, filtration, and nanofluidic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. STUDI TEKNOLOGI ASYMMETRIC DIGITAL SUBSCRIBER LINE

    OpenAIRE

    Syarif, Syafruddin

    2008-01-01

    ADSL is one of the xDSL variants are being developed. ADSL allows high-speed data transmission with asymmetric bandwidth to support the implementation of multimedia services on broadband network using telephone cable network that already exist. Is called asymmetric because bit rate from the downstream (central to the customer) is greater than the upstream direction (customer to central) or it can be said that bit rate of downstream direction is different than the upstream dir...

  8. Studi Teknologi Asymmetric Digital Subcriber Line

    OpenAIRE

    SYAFRUDDIN SYARIF, SYAFRUDDIN SYARIF

    2008-01-01

    - ADSL is one of the xDSL variants are being developed. ADSL allows high-speed data transmission with asymmetric bandwidth to support the implementation of multimedia services on broadband network using telephone cable network that already exist. Is called asymmetric because bit rate from the downstream (central to the customer) is greater than the upstream direction (customer to central) or it can be said that bit rate of downstream direction is different than the upstream direction. Bit ...

  9. Characteristics of Braced Excavation under Asymmetrical Loads

    Directory of Open Access Journals (Sweden)

    Changjie Xu

    2013-01-01

    Full Text Available Numerous excavation practices have shown that large discrepancies exist between field monitoring data and calculated results when the conventional symmetry-plane method (with half-width is used to design the retaining structure under asymmetrical loads. To examine the characteristics of a retaining structure under asymmetrical loads, we use the finite element method (FEM to simulate the excavation process under four different groups of asymmetrical loads and create an integrated model to tackle this problem. The effects of strut stiffness and wall length are also investigated. The results of numerical analysis clearly imply that the deformation and bending moment of diaphragm walls are distinct on different sides, indicating the need for different rebar arrangements when the excavation is subjected to asymmetrical loads. This study provides a practical approach to designing excavations under asymmetrical loads. We analyze and compare the monitoring and calculation data at different excavation stages and find some general trends. Several guidelines on excavation design under asymmetrical loads are drawn.

  10. Dose distributions of asymmetric fields: comparison of the Helax-TMS with our developed 2D-program ASYMM

    International Nuclear Information System (INIS)

    Zakaria, G.A.; Schuette, W.

    2002-01-01

    The purpose of this investigation was to compare the commercial 3D-treatment planning system Helax TMS to a simple 2D program ASYMM, concerning the calculation of dose distributions for asymmetric fields. The dose calculation algorithm in Helax-TMS is based on the polyenergetic pencil beam model of Ahnesjoe. Our own developed 2D treatment planning program ASYMM, based on the Thomas and Thomas method for asymmetric open fields, has been extended to calculate the dose distributions for open and wedged fields. Using both methods, dose distributions for various asymmetric open and wedged fields of a 4-MV Linear accelerator were calculated and compared with measured data in water. The agreement of the Helax-TMS and the ASYMM with the experiment was good, whereas ASYMM showed a better accuracy for larger asymmetric angles. The explanation for this result is based on the consideration of beam hardening within the flattening filter and edges for different asymmetric settings in ASYMM algorithm. The TMS, however, owns the diverse possibilities that the 3D calculation and corresponding representation provide and holds better application opportunities in clinical routine. (orig.) [de

  11. Molecular beams

    International Nuclear Information System (INIS)

    Ramsey, N.F.

    1985-01-01

    This book is a timeless and rather complete theoretical and experimental treatment of electric and magnetic resonance molecular-beam experiments for studying the radio frequency spectra of atoms and molecules. The theory of interactions of the nucleus with atomic and molecular fields is extensively presented. Measurements of atomic and nuclear magnetic moments, electric multipole moments, and atomic fine and hyperfine structure are detailed. Useful but somewhat outdated chapters on gas kinetics, molecular beam design, and experimental techniques are also included

  12. Beam transport

    International Nuclear Information System (INIS)

    1988-01-01

    Considerable experience has now been gained with the various beam transport lines, and a number of minor changes have been made to improve the ease of operation. These include: replacement of certain little-used slits by profile monitors (harps or scanners); relocation of steering magnets, closer to diagnostic harps or profile scanners; installation of a scanner inside the isocentric neutron therapy system; and conversion of a 2-doublet quadrupole telescope (on the neutron therapy beamline) to a 2-triplet telescope. The beam-swinger project has been delayed by very late delivery of the magnet iron to the manufacturer, but is now progressing smoothly. The K=600 spectrometer magnets have now been delivered and are being assembled for field mapping. The x,y-table with its associated mapping equipment is complete, together with the driver software. One of the experimental areas has been dedicated to the production of collimated neutron beams and has been equipped with a bending magnet and beam dump, together with steel collimators fixed at 4 degrees intervals from 0 degrees to 16 degrees. Changes to the target cooling and shielding system for isotope production have led to a request for much smaller beam spot sizes on target, and preparations have been made for rearrangement of the isotope beamline to permit installation of quadrupole triplets on the three beamlines after the switching magnet. A practical system of quadrupoles for matching beam properties to the spectrometer has been designed. 6 figs

  13. Inclined asymmetric librations in exterior resonances

    Science.gov (United States)

    Voyatzis, G.; Tsiganis, K.; Antoniadou, K. I.

    2018-04-01

    Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or π , the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273-281, https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun-Neptune-TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.

  14. Asymmetric biocatalysis with microbial enzymes and cells.

    Science.gov (United States)

    Wohlgemuth, Roland

    2010-06-01

    Microbial enzymes and cells continue to be important tools and nature's privileged chiral catalysts for performing asymmetric biocatalysis from the analytical small scale to the preparative and large scale in synthesis and degradation. The application of biocatalysts for preparing molecular asymmetry has achieved high efficiency, enantioselectivity and yield and is experiencing today a worldwide renaissance. Recent developments in the discovery, development and production of stable biocatalysts, in the design of new biocatalytic processes and in the product recovery and purification processes have made biocatalytic approaches using microbial cells and enzymes attractive choices for the synthesis of chiral compounds. The methodologies of kinetic resolution and kinetic asymmetric transformation, dynamic kinetic resolution and deracemization, desymmetrization, asymmetric synthesis with or without diastereo control and multi-step asymmetric biocatalysis are finding increasing applications in research. The ever-increasing use of hydrolytic enzymes has been accompanied by new applications of oxidoreductases, transferases and lyases. Isomerases, already used in large-scale processes, and ligases, are emerging as interesting biocatalysts for new synthetic applications. The production of a wide variety of industrial products by asymmetric biocatalysis has even become the preferred method of production. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Quantum beams

    International Nuclear Information System (INIS)

    Uesaka, Mitsuru

    2003-01-01

    Present state and future prospect are described on quantum beams for medical use. Efforts for compactness of linac for advanced cancer therapy have brought about the production of machines like Accuray's CyberKnife and TOMOTHERAPY (Tomo Therapy Inc.) where the acceleration frequency of X-band (9-11 GHz) is used. For cervical vein angiography by the X-band linac, a compact hard X-ray source is developed which is based on the (reverse) Compton scattering through laser-electron collision. More intense beam and laser are necessary at present. A compact machine generating the particle beam of 10 MeV-1 GeV (laser-plasma accelerator) for cancer therapy is also developed using the recent compression technique (chirped-pulse amplification) to generate laser of >10 TW. Tokyo University is studying for the electron beam with energy of GeV order, for the laser-based synchrotron X-ray, and for imaging by the short pulse ion beam. Development of advanced compact accelerators is globally attempted. In Japan, a virtual laboratory by National Institute of Radiological Sciences (NIRS), a working group of universities and research facilities through the Ministry of Education, Culture, Sports, Science and Technology, started in 2001 for practical manufacturing of the above-mentioned machines for cancer therapy and for angiography. Virtual Factory (Inc.), a business venture, is to be stood in future. (N.I.)

  16. Multi-agent Bargaining under Asymmetric Information

    DEFF Research Database (Denmark)

    Asplund, Marcus; Genesove, David

    information aspect is due to partly unobserved individual valuations of an elevator. We tailor Hellwig (2003) to the features of the retrofitting problem and use this to predict which building characteristics should make it easier for owners to agree. Data from Copenhagen broadly support the model......It is well know that asymmetric information might lead to underprovision of public goods. To test the theoretical prediction, we study the decision to retrofit an elevator into an old apartment building, in which each owner has to agree on how the investment cost is split. The asymmetric......'s predictions. We use transaction data to estimate the market value of an elevator and conclude that for approximately 30-40 percent of the buildings without an elevator the aggregate increase in value exceeds the investment cost....

  17. Renewable resource management under asymmetric information

    DEFF Research Database (Denmark)

    Jensen, Frank; Andersen, Peder; Nielsen, Max

    2013-01-01

    Asymmetric information between fishermen and the regulator is important within fisheries. The regulator may have less information about stock sizes, prices, costs, effort, productivity and catches than fishermen. With asymmetric information, a strong analytical tool is principal-agent analysis....... In this paper, we study asymmetric information about productivity within a principal-agent framework and a tax on fishing effort is considered. It is shown that a second best optimum can be achieved if the effort tax is designed such that low-productivity agents rent is exhausted, while high-productivity agents...... receive an information rent. The information rent is equivalent to the total incentive cost. The incentive costs arise as we want to reveal the agent's type....

  18. Asymmetric synthesis II more methods and applications

    CERN Document Server

    Christmann, Mathias

    2012-01-01

    After the overwhelming success of 'Asymmetric Synthesis - The Essentials', narrating the colorful history of asymmetric synthesis, this is the second edition with latest subjects and authors. While the aim of the first edition was mainly to honor the achievements of the pioneers in asymmetric syntheses, the aim of this new edition was bringing the current developments, especially from younger colleagues, to the attention of students. The format of the book remained unchanged, i.e. short conceptual overviews by young leaders in their field including a short biography of the authors. The growing multidisciplinary research within chemistry is reflected in the selection of topics including metal catalysis, organocatalysis, physical organic chemistry, analytical chemistry, and its applications in total synthesis. The prospective reader of this book is a graduate or undergraduate student of advanced organic chemistry as well as the industrial chemist who wants to get a brief update on the current developments in th...

  19. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever

    International Nuclear Information System (INIS)

    Wu, Meng; Mao, Haiyang; Li, Zhigang; Liu, Ruiwen; Ming, Anjie; Ou, Yi; Ou, Wen

    2015-01-01

    This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequency interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes

  20. Using a short-pulse diffraction-limited laser beam to probe filamentation of a random phase plate smoothed beam.

    Science.gov (United States)

    Kline, J L; Montgomery, D S; Flippo, K A; Johnson, R P; Rose, H A; Shimada, T; Williams, E A

    2008-10-01

    A short pulse (few picoseconds) laser probe provides high temporal resolution measurements to elucidate details of fast dynamic phenomena not observable with typical longer laser pulse probes and gated diagnostics. Such a short pulse laser probe (SPLP) has been used to measure filamentation of a random phase plate (RPP) smoothed laser beam in a gas-jet plasma. The plasma index of refraction due to driven density and temperature fluctuations by the RPP beam perturbs the phase front of a SPLP propagating at a 90 degree angle with respect to the RPP interaction beam. The density and temperature fluctuations are quasistatic on the time scale of the SPLP (approximately 2 ps). The transmitted near-field intensity distribution from the SPLP provides a measure of the phase front perturbation. At low plasma densities, the transmitted intensity pattern is asymmetric with striations across the entire probe beam in the direction of the RPP smoothed beam. As the plasma density increases, the striations break up into smaller sizes along the direction of the RPP beam propagation. The breakup of the intensity pattern is consistent with self-focusing of the RPP smoothed interaction beam. Simulations of the experiment using the wave propagation code, PF3D, are in qualitative agreement demonstrating that the asymmetric striations can be attributed to the RPP driven density fluctuations. Quantification of the beam breakup measured by the transmitted SPLP could lead to a new method for measuring self-focusing of lasers in underdense plasmas.

  1. BEAM-BEAM SIMULATIONS FOR DOUBLE-GAUSSIAN BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    MONTAG, C.; MALITSKY, N.; BEN-ZVI, I.; LITVINENKO, V.

    2005-05-16

    Electron cooling together with intra-beam scattering results in a transverse distribution that can best be described by a sum of two gaussians, one for the high-density core and one for the tails of the distribution. Simulation studies are being performed to understand the beam-beam interaction of these double-gaussian beams. Here we report the effect of low-frequency random tune modulations on diffusion in double-gaussian beams and compare the effects to those in beam-beam interactions with regular gaussian beams and identical tune shift parameters.

  2. BEAM-BEAM SIMULATIONS FOR DOUBLE-GAUSSIAN BEAMS

    International Nuclear Information System (INIS)

    MONTAG, C.; MALITSKY, N.; BEN-ZVI, I.; LITVINENKO, V.

    2005-01-01

    Electron cooling together with intra-beam scattering results in a transverse distribution that can best be described by a sum of two gaussians, one for the high-density core and one for the tails of the distribution. Simulation studies are being performed to understand the beam-beam interaction of these double-gaussian beams. Here we report the effect of loW--frequency random tune modulations on diffusion in double-gaussian beams and compare the effects to those in beam-beam interactions with regular gaussian beams and identical tune shift parameters

  3. Beam-Beam Simulations for Double-Gaussian Beams

    CERN Document Server

    Montag, Christoph; Litvinenko, Vladimir N; Malitsky, Nikolay

    2005-01-01

    Electron cooling together with intra-beam scattering results in a transverse distribution that can best be described by a sum of two Gaussians, one for the high-density core and one for the tails of the distribution. Simulation studies are being performed to understand the beam-beam interaction of these double-Gaussian beams. Here we report the effect of low-frequency random tune modulations on diffusion in double-Gaussian beams and compare the effects to those in beam-beam interactions with regular Gaussian beams and identical tuneshift parameters.

  4. Homogeneous asymmetric catalysis in fragrance chemistry.

    Science.gov (United States)

    Ciappa, Alessandra; Bovo, Sara; Bertoldini, Matteo; Scrivanti, Alberto; Matteoli, Ugo

    2008-06-01

    Opposite enantiomers of a chiral fragrance may exhibit different olfactory activities making a synthesis in high enantiomeric purity commercially and scientifically interesting. Accordingly, the asymmetric synthesis of four chiral odorants, Fixolide, Phenoxanol, Citralis, and Citralis Nitrile, has been investigated with the aim to develop practically feasible processes. In the devised synthetic schemes, the key step that leads to the formation of the stereogenic center is the homogeneous asymmetric hydrogenation of a prochiral olefin. By an appropriate choice of the catalyst and the reaction conditions, Phenoxanol, Citralis, and Citralis Nitrile were obtained in high enantiomeric purity, and odor profiles of the single enantiomers were determined.

  5. Asymmetric energy B factory at KEK

    International Nuclear Information System (INIS)

    Watanabe, Yasushi

    1994-01-01

    An introductory review is given on the project of the Asymmetric Energy B factory at KEK. First, the motivation for B factory is discussed. The most interesting and important topic there is the measurement of CP violation in other than the K-system. Thus, CP violation in the B decays is reviewed rather extensively, especially on how the angles of the unitarity triangle can be measured at an asymmetric energy B factory. Then the B factory project at KEK is briefly reviewed. (author)

  6. Domain wall energy landscapes in amorphous magnetic films with asymmetric arrays of holes

    Energy Technology Data Exchange (ETDEWEB)

    Alija, A; Perez-Junquera, A; RodrIguez-RodrIguez, G; Velez, M; Alameda, J M; MartIn, J I [Depto. Fisica, Fac. Ciencias, Universidad de Oviedo - CINN, Av. Calvo Sotelo s/n, 33007 Oviedo (Spain); Marconi, V I; Kolton, A B; Parrondo, J M R [Depto. Fisica Atomica, Molecular y Nuclear, and GISC, Universidad Complutense, 28040 Madrid (Spain); Anguita, J V [Instituto de Microelectronica de Madrid, CNM-CSIC, Isaac Newton 8, PTM, Tres Cantos, 28760 Madrid (Spain)

    2009-02-21

    Arrays of asymmetric holes have been defined in amorphous Co-Si films by e-beam lithography in order to study domain wall motion across the array subject to the asymmetric pinning potential created by the holes. Experimental results on Kerr effect magnetooptical measurements and hysteresis loops are compared with micromagnetic simulations in films with arrays of triangular holes. These show that the potential asymmetry favours forward wall propagation for flat walls but, if the wall contains a kink, net backward wall propagation is preferred at low fields, in agreement with minor loop experiments. The difference between the fields needed for forward and backward flat wall propagation increases as the size of the triangular holes is reduced, becoming maximum for 1 {mu}m triangles, which is the characteristic length scale set by domain wall width.

  7. Riemann-Hilbert technique scattering analysis of metamaterial-based asymmetric 2D open resonators

    Science.gov (United States)

    Kamiński, Piotr M.; Ziolkowski, Richard W.; Arslanagić, Samel

    2017-12-01

    The scattering properties of metamaterial-based asymmetric two-dimensional open resonators excited by an electric line source are investigated analytically. The resonators are, in general, composed of two infinite and concentric cylindrical layers covered with an infinitely thin, perfect conducting shell that has an infinite axial aperture. The line source is oriented parallel to the cylinder axis. An exact analytical solution of this problem is derived. It is based on the dual-series approach and its transformation to the equivalent Riemann-Hilbert problem. Asymmetric metamaterial-based configurations are found to lead simultaneously to large enhancements of the radiated power and to highly steerable Huygens-like directivity patterns; properties not attainable with the corresponding structurally symmetric resonators. The presented open resonator designs are thus interesting candidates for many scientific and engineering applications where enhanced directional near- and far-field responses, tailored with beam shaping and steering capabilities, are highly desired.

  8. Domain wall energy landscapes in amorphous magnetic films with asymmetric arrays of holes

    International Nuclear Information System (INIS)

    Alija, A; Perez-Junquera, A; RodrIguez-RodrIguez, G; Velez, M; Alameda, J M; MartIn, J I; Marconi, V I; Kolton, A B; Parrondo, J M R; Anguita, J V

    2009-01-01

    Arrays of asymmetric holes have been defined in amorphous Co-Si films by e-beam lithography in order to study domain wall motion across the array subject to the asymmetric pinning potential created by the holes. Experimental results on Kerr effect magnetooptical measurements and hysteresis loops are compared with micromagnetic simulations in films with arrays of triangular holes. These show that the potential asymmetry favours forward wall propagation for flat walls but, if the wall contains a kink, net backward wall propagation is preferred at low fields, in agreement with minor loop experiments. The difference between the fields needed for forward and backward flat wall propagation increases as the size of the triangular holes is reduced, becoming maximum for 1 μm triangles, which is the characteristic length scale set by domain wall width.

  9. Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography

    KAUST Repository

    Beesley, David J.

    2014-05-27

    Coplanar electrodes formed from asymmetric metals separated on the nanometre length scale are essential elements of nanoscale photonic and electronic devices. Existing fabrication methods typically involve electron-beam lithography - a technique that enables high fidelity patterning but suffers from significant limitations in terms of low throughput, poor scalability to large areas and restrictive choice of substrate and electrode materials. Here, we describe a versatile method for the rapid fabrication of asymmetric nanogap electrodes that exploits the ability of selected self-assembled monolayers to attach conformally to a prepatterned metal layer and thereby weaken adhesion to a subsequently deposited metal film. The method may be carried out under ambient conditions using simple equipment and a minimum of processing steps, enabling the rapid fabrication of nanogap electrodes and optoelectronic devices with aspect ratios in excess of 100,000.2014 Macmillan Publishers Limited. All rights reserved.

  10. Superpositions of Laguerre-Gaussian Beams in Strongly Nonlocal Left-handed Materials

    International Nuclear Information System (INIS)

    Zhong Weiping; Wang Liyang; Belic, Milivoj; Huang Tingwen

    2010-01-01

    We present beam solutions of the strongly nonlocal nonlinear Schroedinger equation in left-handed materials (LHMs). Different Laguerre-Gaussian (LG) necklace beams, such as symmetric and asymmetric single layer and multilayer necklace beams are created by the superposition of two single beams with different topological charges. Such superpositions are then propagated through LHMs, displaying linear diffraction. It is found that the superposition of two LG nm beams with opposite topological charges does not show rotational behavior and that there exists rotation for other topological charge combinations. Our theory predicts that the accessible solitons cannot exist in LHMs. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. Asymmetric transition disks: Vorticity or eccentricity?

    NARCIS (Netherlands)

    Ataiee, S.; Pinilla, P.; Zsom, A.; Dullemond, C.P.; Dominik, C.; Ghanbari, J.

    2013-01-01

    Context. Transition disks typically appear in resolved millimeter observations as giant dust rings surrounding their young host stars. More accurate observations with ALMA have shown several of these rings to be in fact asymmetric: they have lopsided shapes. It has been speculated that these rings

  12. MHD stability of vertically asymmetric tokamak equilibria

    International Nuclear Information System (INIS)

    Dalhed, H.E.; Grimm, R.C.; Johnson, J.L.

    1981-03-01

    The ideal MHD stability properties of a special class of vertically asymmetric tokamak equilibria are examined. The calculations confirm that no major new physical effects are introduced and the modifications can be understood by conventional arguments. The results indicate that significant departures from up-down symmetry can be tolerated before the reduction in β becomes important for reactor operation

  13. Palladium catalysed asymmetric alkylation of benzophenone Schiff ...

    Indian Academy of Sciences (India)

    Dongdaemun-Gu, Seoul 130-701, Republic of Korea. bDepartment of ..... Anionic effect of imidazolium based ionic liquids in catalytic asymmetric PT alkylationa promoted by palladium catalyst.b. Entry ... d: compared with the run involving catalyst only under similar PT conditions (entry 10, table 1) throw some light in this ...

  14. Organocatalytic asymmetric transfer hydrogenation of imines

    NARCIS (Netherlands)

    de Vries, Johannes G.; Mrsic, Natasa; Mršić, Nataša

    2011-01-01

    The asymmetric organocatalytic transfer hydrogenation of imines can be accomplished in good yields with high enantioselectivities through the use of BINOL-derived phosphoric acids as catalysts and Hantzsch esters or benzothiazoles as the hydride source. The same method can also be applied to the

  15. Asymmetric Hydrogenation of 3-Substituted Pyridinium Salts

    NARCIS (Netherlands)

    Renom-Carrasco, Marc; Gajewski, Piotr; Pignataro, Luca; de Vries, Johannes G.; Piarulli, Umberto; Gennari, Cesare; Lefort, Laurent

    2016-01-01

    The use of an equivalent amount of an organic base leads to high enantiomeric excess in the asymmetric hydrogenation of N-benzylated 3-substituted pyridinium salts into the corresponding piperidines. Indeed, in the presence of Et3N, a Rh-JosiPhos catalyst reduced a range of pyridinium salts with ee

  16. Magnetically Retrievable Catalysts for Asymmetric Synthesis

    Science.gov (United States)

    Surface modification of magnetic nanoparticles with chiral scaffolds for asymmetric catalytic applications is an elegant way of providing a special pseudo homogenous phase which could be separated using an external magnet. In this review, we summarize the use of magnetic nanopart...

  17. Modelling asymmetric growth in crowded plant communities

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2010-01-01

    -asymmetric growth part, where growth is assumed to be proportional to a power function of the size of the individual, and a term that reduces the relative growth rate as a decreasing function of the individual plant size and the competitive interactions from other plants in the neighbourhood....

  18. Mixed gas plasticization phenomena in asymmetric membranes

    NARCIS (Netherlands)

    Visser, Tymen

    2006-01-01

    This thesis describes the thorough investigation of mixed gas transport behavior of asymmetric membranes in the separation of feed streams containing plasticizing gases in order to gain more insights into the complicated behavior of plasticization. To successfully employ gas separation membranes in

  19. Asymmetrical Representation of Gender in Amharic | Leyew ...

    African Journals Online (AJOL)

    Asymmetrical Representation of Gender in Amharic. ... In gender linguistics, it is customary to observe the correlation between language and socially constructed gender roles. Language users show male and female language ... and novels written in Amharic). Key words: Language, Society, Gender, Pragmatics, Correlation ...

  20. Palladium catalysed asymmetric alkylation of benzophenone Schiff ...

    Indian Academy of Sciences (India)

    Asymmetric alkyl substitution of various benzophenone Schiff base substrates under biphasic conditions proceeded using optically active Palladium(II) complexes. The corresponding products were obtained in high yields but with moderate enantiomeric excess (ee). Addition of specific ionic liquids to the reaction medium ...

  1. The Asymmetric Predictive Effects of Investor Sentiment

    DEFF Research Database (Denmark)

    Lutz, Chandler

    that the relationship between sentiment and returns is asymmetric: during bear markets, high sentiment predicts low future returns for the cross-section of speculative stocks and the market overall while the relationship during bull markets is weak and often insignicant. Thus, the results suggest that sophisticated...

  2. The Asymmetric Effects of Investor Sentiment

    DEFF Research Database (Denmark)

    Lutz, Chandler

    2016-01-01

    are asymmetric: During peak-to-trough periods of investor sentiment (sentiment contractions), high sentiment predicts low future returns for the cross section of speculative stocks and for the market overall, whereas the relationship between sentiment and future returns is positive but relatively weak during...

  3. Motion in an Asymmetric Double Well

    OpenAIRE

    Brizard, Alain J.; Westland, Melissa C.

    2016-01-01

    The problem of the motion of a particle in an asymmetric double well is solved explicitly in terms of the Weierstrass and Jacobi elliptic functions. While the solution of the orbital motion is expressed simply in terms of the Weierstrass elliptic function, the period of oscillation is more directly expressed in terms of periods of the Jacobi elliptic functions.

  4. Spectral inequalities for the quantum asymmetric top

    Energy Technology Data Exchange (ETDEWEB)

    Bourget, Alain; McMillen, Tyler [Department of Mathematics, California State University (Fullerton), McCarthy Hall 154, Fullerton, CA 92834 (United States)], E-mail: abourget@fullerton.edu, E-mail: tmcmillen@fullerton.edu

    2009-03-06

    We consider the spectrum of the quantum asymmetric top. Unlike in the case when two or three moments of inertia are equal, when the moments of inertia are distinct all degeneracy in the spectrum of the operator is removed. We derive inequalities for the spectra based on recent results on the interlacing of Van Vleck zeros.

  5. Computing modal dispersion characteristics of radially Asymmetric ...

    African Journals Online (AJOL)

    We developed a matrix theory that applies to with non-circular/circular but concentric layers fibers. And we compute the dispersion characteristics of radially unconventional fiber, known as Asymmetric Bragg fiber. An attempt has been made to determine how the modal characteristics change as circular Bragg fiber is ...

  6. Charge asymmetric cosmic rays as a probe of flavor violating asymmetric dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Masina, Isabella [Dipartimento di Fisica, Università di Ferrara and INFN Sez. di Ferrara, Via Saragat 1, I-44100 Ferrara (Italy); Sannino, Francesco, E-mail: masina@fe.infn.it, E-mail: sannino@cp3-origins.net [CP3-Origins and DIAS, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark)

    2011-09-01

    The recently introduced cosmic sum rules combine the data from PAMELA and Fermi-LAT cosmic ray experiments in a way that permits to neatly investigate whether the experimentally observed lepton excesses violate charge symmetry. One can in a simple way determine universal properties of the unknown component of the cosmic rays. Here we attribute a potential charge asymmetry to the dark sector. In particular we provide models of asymmetric dark matter able to produce charge asymmetric cosmic rays. We consider spin zero, spin one and spin one-half decaying dark matter candidates. We show that lepton flavor violation and asymmetric dark matter are both required to have a charge asymmetry in the cosmic ray lepton excesses. Therefore, an experimental evidence of charge asymmetry in the cosmic ray lepton excesses implies that dark matter is asymmetric.

  7. Beam transport

    International Nuclear Information System (INIS)

    1988-01-01

    The beam diagnostic components for both the transfer and the high-energy beamlines perform well except for some of the scanners whose noise pick-up has become a problem, especially at low beam intensities. This noise pick-up is primarily due to deterioration of the bearings in the scanner. At some locations in the high-energy beamlines, scanners were replaced by harps as the scanners proved to be practically useless for the low-intensity beams required in the experimental areas. The slits in the low-energy beamline, which are not water-cooled, have to be repaired at regular intervals because of vacuum leaks. Overheating causes the ceramic feedthroughs to deteriorate resulting in the vacuum leaks. Water-cooled slits have been ordered to replace the existing slits which will later be used in the beamlines associated with the second injector cyclotron SPC2. The current-measurement system will be slightly modified and should then be much more reliable. 3 figs

  8. Asymmetric total synthesis of Apocynaceae hydrocarbazole alkaloids (+)-deethylibophyllidine and (+)-limaspermidine.

    Science.gov (United States)

    Du, Ji-Yuan; Zeng, Chao; Han, Xiao-Jie; Qu, Hu; Zhao, Xian-He; An, Xian-Tao; Fan, Chun-An

    2015-04-01

    An unprecedented asymmetric catalytic tandem aminolysis/aza-Michael addition reaction of spirocyclic para-dienoneimides has been designed and developed through organocatalytic enantioselective desymmetrization. A unified strategy based on this key tandem methodology has been divergently explored for the asymmetric total synthesis of two natural Apocynaceae alkaloids, (+)-deethylibophyllidine and (+)-limaspermidine. The present studies not only enrich the tandem reaction design concerning the asymmetric catalytic assembly of a chiral all-carbon quaternary stereocenter contained in the densely functionalized hydrocarbazole synthons but also manifest the potential for the application of the asymmetric catalysis based on the para-dienone chemistry in asymmetric synthesis of natural products.

  9. Characterization of ion beam induced nanostructures

    International Nuclear Information System (INIS)

    Ghatak, J.; Satpati, B.; Umananda, M.; Kabiraj, D.; Som, T.; Dev, B.N.; Akimoto, K.; Ito, K.; Emoto, T.; Satyam, P.V.

    2006-01-01

    Tailoring of nanostructures with energetic ion beams has become an active area of research leading to the fundamental understanding of ion-solid interactions at nanoscale regime and with possible applications in the near future. Rutherford backscattering spectrometry (RBS), high resolution transmission electron microscopy (HRTEM) and asymmetric X-ray Bragg-rocking curve experimental methods have been used to characterize ion-induced effects in nanostructures. The possibility of surface and sub-surface/interface alloying at nano-scale regime, ion-beam induced embedding, crater formation, sputtering yield variations for systems with isolated nanoislands, semi-continuous and continuous films of noble metals (Au, Ag) deposited on single crystalline silicon will be reviewed. MeV-ion induced changes in specified Au-nanoislands on silicon substrate are tracked as a function of ion fluence using ex situ TEM. Strain induced in the bulk silicon substrate surface due to 1.5 MeV Au 2+ and C 2+ ion beam irradiation is determined by using HRTEM and asymmetric Bragg X-ray rocking curve methods. Preliminary results on 1.5 MeV Au 2+ ion-induced effects in nanoislands of Co deposited on silicon substrate will be discussed

  10. Characterization of ion beam induced nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ghatak, J. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India); Satpati, B. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India); Umananda, M. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India); Kabiraj, D. [Nuclear Science Center, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Som, T. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India); Dev, B.N. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India); Akimoto, K. [Department of Quantum Engineering, Nagoya University, Nagoya 464-8603 (Japan); Ito, K. [Department of Quantum Engineering, Nagoya University, Nagoya 464-8603 (Japan); Emoto, T. [Toyota National College of Technology, 2-1, Toyota, Aichi 471-8525 (Japan); Satyam, P.V. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India)]. E-mail: satyam@iopb.res.in

    2006-03-15

    Tailoring of nanostructures with energetic ion beams has become an active area of research leading to the fundamental understanding of ion-solid interactions at nanoscale regime and with possible applications in the near future. Rutherford backscattering spectrometry (RBS), high resolution transmission electron microscopy (HRTEM) and asymmetric X-ray Bragg-rocking curve experimental methods have been used to characterize ion-induced effects in nanostructures. The possibility of surface and sub-surface/interface alloying at nano-scale regime, ion-beam induced embedding, crater formation, sputtering yield variations for systems with isolated nanoislands, semi-continuous and continuous films of noble metals (Au, Ag) deposited on single crystalline silicon will be reviewed. MeV-ion induced changes in specified Au-nanoislands on silicon substrate are tracked as a function of ion fluence using ex situ TEM. Strain induced in the bulk silicon substrate surface due to 1.5 MeV Au{sup 2+} and C{sup 2+} ion beam irradiation is determined by using HRTEM and asymmetric Bragg X-ray rocking curve methods. Preliminary results on 1.5 MeV Au{sup 2+} ion-induced effects in nanoislands of Co deposited on silicon substrate will be discussed.

  11. Comparison of a jet separator and an open splitter as an interface between a multi-capillary gas chromatographic column and a time-of-flight mass spectrometer

    Science.gov (United States)

    Pongpun; Mlynski; Crisp; Guilhaus

    2000-09-01

    A gas chromatographic/time-of-flight mass spectrometric (GC/TOFMS) interface is being developed for fast on-line analysis utilizing multi-capillary column technology. A variable gap-distance jet separator has been constructed and its performance compared with that of a commercially supplied post-column open splitter recommended for use between the multi-capillary column and a mass spectrometer. Both interfaces were found to be compatible with the GC/TOFMS system at high carrier gas flow-rates, facilitating high-speed and high-resolution separations. The systems were investigated and tested with a mixture of volatile organic compounds (VOCs) with molecular masses from 85 to 166: dichloromethane, toluene, m-dichlorobenzene, o-dichlorobenzene and tetrachloroethylene. The optimum tip-to-tip gap distance corresponding to the highest efficiency of the jet separator was found to be 0.030 mm for each compound at carrier gas flow-rates of 20, 40 and 60 ml min(-1) giving, in the ion source housing, ion gauge pressure readings of 1.6 x 10(-6), 5.0 x 10(-6) and 5.8 x 10(-6) mbar, respectively. The efficiency of the jet separator (10-30% yields) was significantly higher than that of the open splitter (6-9% yields). The observation that the open splitter did not provide a constant flow-rate to the ion source was not in agreement with the manufacturer's specifications. A method for measuring the gas flow-rates in all parts of the equipment is described. The correlation between yield in the jet separator and molecular mass for the heterogeneous set of compounds studied was found to be less linear than usually reported for homologous series of compounds in jet separator studies. The result suggests that the pressure conditions in the jet may be sufficient for the separation process to be partly controlled by diffusion rather than predominately by effusion. Copyright 2000 John Wiley & Sons, Ltd.

  12. Beam divergence scaling in neutral beam injectors

    International Nuclear Information System (INIS)

    Holmes, A.J.T.

    1976-01-01

    One of the main considerations in the design of neutral beam injectors is to monimize the divergence of the primary ion beam and hence maximize the beam transport and minimize the input of thermal gas. Experimental measurements of the divergence of a cylindrical ion beam are presented and these measurements are used to analyze the major components of ion beam divergence, namely: space charge expansion, gas-ion scattering, emittance and optical aberrations. The implication of these divergence components in the design of a neutral beam injector system is discussed and a method of maximizing the beam current is described for a given area of source plasma

  13. Bianisotropic metamaterials based on twisted asymmetric crosses

    International Nuclear Information System (INIS)

    Reyes-Avendaño, J A; Sampedro, M P; Juárez-Ruiz, E; Pérez-Rodríguez, F

    2014-01-01

    The effective bianisotropic response of 3D periodic metal-dielectric structures, composed of crosses with asymmetrically-cut wires, is investigated within a general homogenization theory using the Fourier formalism and the form-factor division approach. It is found that the frequency dependence of the effective permittivity for a system of periodically-repeated layers of metal crosses exhibits two strong resonances, whose separation is due to the cross asymmetry. Besides, bianisotropic metamaterials, having a base of four twisted asymmetric crosses, are proposed. The designed metamaterials possess negative refractive index at frequencies determined by the cross asymmetry, the gap between the arms of adjacent crosses lying on the same plane, and the type of Bravais lattice. (papers)

  14. Asymmetric hypsarrhythmia: clinical electroencephalographic and radiological findings.

    Science.gov (United States)

    Drury, I; Beydoun, A; Garofalo, E A; Henry, T R

    1995-01-01

    Twenty-six children (16 boys and 10 girls) with hypsarrhythmia and infantile spasms (IS) were studied at the University of Michigan EEG Laboratory in a 4-year period. Six (2 boys, 4 girls), had asymmetric hypsarrhythmia with a preponderance of both slowing and epileptiform activity over one hemisphere. All 6 had the symptomatic form of IS, 4 with dysplastic conditions, 1 with porencephaly from a cerebral infarct, and 1 with hypoxicischemic encephalopathy. Five children had focal abnormalities on either physical examination or imaging studies. Four had the highest amplitude slowing and most epileptiform activity ipsilateral to the lesion, in 1, it was contralateral. Asymmetric hypsarrhythmia constituted 23% of cases with hypsarrhythmia examined at our EEG laboratory. The significant success in surgical therapy for some children with IS indicates the importance of identifying focal hemispheric abnormalities even if they are not apparent clinically. EEG may suggest focal changes not detected clinically or radiologically.

  15. Improved DFIG Capability during Asymmetrical Grid Faults

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede

    2015-01-01

    In the wind power application, different asymmetrical types of the grid fault can be categorized after the Y/d transformer, and the positive and negative components of a single-phase fault, phase-to-phase fault, and two-phase fault can be summarized. Due to the newly introduced negative and even...... the natural component of the Doubly-Fed Induction Generator (DFIG) stator flux during the fault period, their effects on the rotor voltage can be investigated. It is concluded that the phase-to-phase fault has the worst scenario due to its highest introduction of the negative stator flux. Afterwards......, the capability of a 2 MW DFIG to ride through asymmetrical grid faults can be estimated at the existing design of the power electronics converter. Finally, a control scheme aimed to improve the DFIG capability is proposed and the simulation results validate its feasibility....

  16. Beam screens for the LHC beam pipes

    CERN Multimedia

    Patrice Loïez

    1997-01-01

    Cross-section of LHC prototype beam pipes showing the beam screens. Slits in the screens allow residual gas molecules to be pumped out and become frozen to the walls of the ultra-cold beam pipe. Beam screens like these have been designed to line the beam pipes, absorbing radiation before it can hit the magnets and warm them up, an effect that would greatly reduce the magnetic field and cause serious damage.

  17. Isospin dependent properties of asymmetric nuclear matter

    OpenAIRE

    Chowdhury, P. Roy; Basu, D. N.; Samanta, C.

    2009-01-01

    The density dependence of nuclear symmetry energy is determined from a systematic study of the isospin dependent bulk properties of asymmetric nuclear matter using the isoscalar and the isovector components of density dependent M3Y interaction. The incompressibility $K_\\infty$ for the symmetric nuclear matter, the isospin dependent part $K_{asy}$ of the isobaric incompressibility and the slope $L$ are all in excellent agreement with the constraints recently extracted from measured isotopic de...

  18. Magnetic properties of strongly asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Kutschera, M.; Wojcik, W.

    1988-01-01

    We investigate stability of neutron matter containing a small proton admixture with respect to spin fluctuations. We establish conditions under which strongly asymmetric nuclear matter could acquire a permanent magnetization. It is shown that if the protons are localized, the system becomes unstable to spin fluctuations for arbitrarily weak proton-neutron spin interactions. For non-localized protons there exists a threshold value of the spin interaction above which the system can develop a spontaneous polarization. 12 refs., 2 figs. (author)

  19. Asymmetric inheritance of cytoophidia in Schizosaccharomyces pombe

    OpenAIRE

    Zhang, Jing; Hulme, Lydia; Liu, Ji-Long

    2014-01-01

    ABSTRACT A general view is that Schizosaccharomyces pombe undergoes symmetric cell division with two daughter cells inheriting equal shares of the content from the mother cell. Here we show that CTP synthase, a metabolic enzyme responsible for the de novo synthesis of the nucleotide CTP, can form filamentous cytoophidia in the cytoplasm and nucleus of S. pombe cells. Surprisingly, we observe that both cytoplasmic and nuclear cytoophidia are asymmetrically inherited during cell division. Our t...

  20. Asymmetric flow events in a VEER 1000

    International Nuclear Information System (INIS)

    Horak, W.C.; Kennett, R.J.; Shier, W.; Guppy, J.G.

    1992-07-01

    This paper describes the simulation of asymmetric loss of flow events in Russian designed VVER-1000 reactors using the RETRAN-02 Mod4 computer code. VVER-1000 reactors have significant differences from United States pressurized water reactors including multi-level emergency response systems and plant operation at reduced power levels with one or more main circulation pumps inoperable. The results of these simulations are compared to similar analyses done by the designers for the Rovno plant

  1. Asymmetric k-Center with Minimum Coverage

    DEFF Research Database (Denmark)

    Gørtz, Inge Li

    2008-01-01

    In this paper we give approximation algorithms and inapproximability results for various asymmetric k-center with minimum coverage problems. In the k-center with minimum coverage problem, each center is required to serve a minimum number of clients. These problems have been studied by Lim et al. [A....... Lim, B. Rodrigues, F. Wang, Z. Xu, k-center problems with minimum coverage, Theoret. Comput. Sci. 332 (1–3) (2005) 1–17] in the symmetric setting....

  2. Asymmetric volatility connectedness on the forex market

    Czech Academy of Sciences Publication Activity Database

    Baruník, Jozef; Kočenda, Evžen; Vácha, Lukáš

    2017-01-01

    Roč. 77, č. 1 (2017), s. 39-56 ISSN 0261-5606 R&D Projects: GA ČR(CZ) GA16-14179S Institutional support: RVO:67985556 Keywords : volatility * connectedness * asymmetric effects Subject RIV: AH - Economics OBOR OECD: Finance Impact factor: 1.853, year: 2016 http://library.utia.cas.cz/separaty/2017/E/barunik-0478477.pdf

  3. Climate Change, Procrastination and Asymmetric Power

    OpenAIRE

    Korkut Alp Ertürk; Jason Whittle

    2015-01-01

    This paper argues that policy conclusions of the economics of climate change literature based on “integrated assessment models” (IAM) fails to take into account the intricacies of collective action. Specifically, IAMs do not account for how asymmetric power between developed and undeveloped countries changes the former's pay off matrix with respect to mitigation and adaptation strategies. Using a simple one-sided prisoner's dilemma model, the paper illustrates how developed countries' power t...

  4. Asymmetric unemployment rate dynamics in Australia

    OpenAIRE

    Gunnar Bardsen; Stan Hurn; Zoe McHugh

    2011-01-01

    The unemployment rate in Australia is modelled as an asymmetric and nonlinear function of aggregate demand, productivity, real interest rates, the replacement ratio and the real exchange rate. If changes in unemployment are big, the management of of demand, real interest rates and the replacement ratio will be good instruments to start bringing it down. The model is developed by exploiting recent developments in automated model-selection procedures.

  5. Asymmetric Aminalization via Cation-Binding Catalysis

    DEFF Research Database (Denmark)

    Park, Sang Yeon; Liu, Yidong; Oh, Joong Suk

    2018-01-01

    Asymmetric cation-binding catalysis, in principle, can generate "chiral" anionic nucleophiles, where the counter cations are coordinated within chiral environments. Nitrogen-nucleophiles are intrinsically basic, therefore, its use as nucleophiles is often challenging and limiting the scope...... of the reaction. Particularly, a formation of configurationally labile aminal centers with alkyl substituents has been a formidable challenge due to the enamine/imine equilibrium of electrophilic substrates. Herein, we report enantioselective nucleophilic addition reactions of potassium phthalimides to Boc-protected...

  6. Beam geometry selection using sequential beam addition.

    Science.gov (United States)

    Popple, Richard A; Brezovich, Ivan A; Fiveash, John B

    2014-05-01

    The selection of optimal beam geometry has been of interest since the inception of conformal radiotherapy. The authors report on sequential beam addition, a simple beam geometry selection method, for intensity modulated radiation therapy. The sequential beam addition algorithm (SBA) requires definition of an objective function (score) and a set of candidate beam geometries (pool). In the first iteration, the optimal score is determined for each beam in the pool and the beam with the best score selected. In the next iteration, the optimal score is calculated for each beam remaining in the pool combined with the beam selected in the first iteration, and the best scoring beam is selected. The process is repeated until the desired number of beams is reached. The authors selected three treatment sites, breast, lung, and brain, and determined beam arrangements for up to 11 beams from a pool comprised of 25 equiangular transverse beams. For the brain, arrangements were additionally selected from a pool of 22 noncoplanar beams. Scores were determined for geometries comprised equiangular transverse beams (EQA), as well as two tangential beams for the breast case. In all cases, SBA resulted in scores superior to EQA. The breast case had the strongest dependence on beam geometry, for which only the 7-beam EQA geometry had a score better than the two tangential beams, whereas all SBA geometries with more than two beams were superior. In the lung case, EQA and SBA scores monotonically improved with increasing number of beams; however, SBA required fewer beams to achieve scores equivalent to EQA. For the brain case, SBA with a coplanar pool was equivalent to EQA, while the noncoplanar pool resulted in slightly better scores; however, the dose-volume histograms demonstrated that the differences were not clinically significant. For situations in which beam geometry has a significant effect on the objective function, SBA can identify arrangements equivalent to equiangular

  7. Beam geometry selection using sequential beam addition

    Energy Technology Data Exchange (ETDEWEB)

    Popple, Richard A., E-mail: rpopple@uabmc.edu; Brezovich, Ivan A.; Fiveash, John B. [Department of Radiation Oncology, The University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, Alabama 35294 (United States)

    2014-05-15

    Purpose: The selection of optimal beam geometry has been of interest since the inception of conformal radiotherapy. The authors report on sequential beam addition, a simple beam geometry selection method, for intensity modulated radiation therapy. Methods: The sequential beam addition algorithm (SBA) requires definition of an objective function (score) and a set of candidate beam geometries (pool). In the first iteration, the optimal score is determined for each beam in the pool and the beam with the best score selected. In the next iteration, the optimal score is calculated for each beam remaining in the pool combined with the beam selected in the first iteration, and the best scoring beam is selected. The process is repeated until the desired number of beams is reached. The authors selected three treatment sites, breast, lung, and brain, and determined beam arrangements for up to 11 beams from a pool comprised of 25 equiangular transverse beams. For the brain, arrangements were additionally selected from a pool of 22 noncoplanar beams. Scores were determined for geometries comprised equiangular transverse beams (EQA), as well as two tangential beams for the breast case. Results: In all cases, SBA resulted in scores superior to EQA. The breast case had the strongest dependence on beam geometry, for which only the 7-beam EQA geometry had a score better than the two tangential beams, whereas all SBA geometries with more than two beams were superior. In the lung case, EQA and SBA scores monotonically improved with increasing number of beams; however, SBA required fewer beams to achieve scores equivalent to EQA. For the brain case, SBA with a coplanar pool was equivalent to EQA, while the noncoplanar pool resulted in slightly better scores; however, the dose-volume histograms demonstrated that the differences were not clinically significant. Conclusions: For situations in which beam geometry has a significant effect on the objective function, SBA can identify

  8. Asymmetric threat data mining and knowledge discovery

    Science.gov (United States)

    Gilmore, John F.; Pagels, Michael A.; Palk, Justin

    2001-03-01

    Asymmetric threats differ from the conventional force-on- force military encounters that the Defense Department has historically been trained to engage. Terrorism by its nature is now an operational activity that is neither easily detected or countered as its very existence depends on small covert attacks exploiting the element of surprise. But terrorism does have defined forms, motivations, tactics and organizational structure. Exploiting a terrorism taxonomy provides the opportunity to discover and assess knowledge of terrorist operations. This paper describes the Asymmetric Threat Terrorist Assessment, Countering, and Knowledge (ATTACK) system. ATTACK has been developed to (a) data mine open source intelligence (OSINT) information from web-based newspaper sources, video news web casts, and actual terrorist web sites, (b) evaluate this information against a terrorism taxonomy, (c) exploit country/region specific social, economic, political, and religious knowledge, and (d) discover and predict potential terrorist activities and association links. Details of the asymmetric threat structure and the ATTACK system architecture are presented with results of an actual terrorist data mining and knowledge discovery test case shown.

  9. Predicting tensorial electrophoretic effects in asymmetric colloids

    Science.gov (United States)

    Mowitz, Aaron J.; Witten, T. A.

    2017-12-01

    We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag forces on the moving body and on the countercharges near its surface. To determine the fluid's motion, we represent both the body and the countercharges using many point sources of drag known as Stokeslets. Finding the correct flow field amounts to finding the set of drag forces on the Stokeslets that is consistent with the relative velocities experienced by each Stokeslet. The method rigorously satisfies the condition that the object moves with no transfer of momentum to the fluid. We demonstrate that a sphere represented by 1999 well-separated Stokeslets on its surface produces flow and drag force like a solid sphere to 1% accuracy. We show that a uniformly charged sphere with 3998 body and countercharge Stokeslets obeys the Smoluchowski prediction [F. Morrison, J. Colloid Interface Sci. 34, 210 (1970), 10.1016/0021-9797(70)90171-2] for electrophoretic mobility when the countercharges lie close to the sphere. Spheres with dipolar and quadrupolar charge distributions rotate and translate as predicted analytically to 4% accuracy or better. We describe how the method can treat general asymmetric shapes and charge distributions. This method offers promise as a way to characterize and manipulate asymmetrically charged colloid-scale objects from biology (e.g., viruses) and technology (e.g., self-assembled clusters).

  10. Asymmetric wettability of nanostructures directs leidenfrost droplets.

    Science.gov (United States)

    Agapov, Rebecca L; Boreyko, Jonathan B; Briggs, Dayrl P; Srijanto, Bernadeta R; Retterer, Scott T; Collier, C Patrick; Lavrik, Nickolay V

    2014-01-28

    Leidenfrost phenomena on nano- and microstructured surfaces are of great importance for increasing control over heat transfer in high power density systems utilizing boiling phenomena. They also provide an elegant means to direct droplet motion in a variety of recently emerging fluidic systems. Here, we report the fabrication and characterization of tilted nanopillar arrays (TNPAs) that exhibit directional Leidenfrost water droplets under dynamic conditions, namely on impact with Weber numbers ≥40 at T ≥ 325 °C. The directionality for these droplets is opposite to the direction previously exhibited by macro- and microscale Leidenfrost ratchets where movement against the tilt of the ratchet was observed. The batch fabrication of the TNPAs was achieved by glancing-angle anisotropic reactive ion etching of a thermally dewet platinum mask, with mean pillar diameters of 100 nm and heights of 200-500 nm. In contrast to previously implemented macro- and microscopic Leidenfrost ratchets, our TNPAs induce no preferential directional movement of Leidenfrost droplets under conditions approaching steady-state film boiling, suggesting that the observed droplet directionality is not a result of the widely accepted mechanism of asymmetric vapor flow. Using high-speed imaging, phase diagrams were constructed for the boiling behavior upon impact for droplets falling onto TNPAs, straight nanopillar arrays, and smooth silicon surfaces. The asymmetric impact and directional trajectory of droplets was exclusive to the TNPAs for impacts corresponding to the transition boiling regime, linking asymmetric surface wettability to preferential directionality of dynamic Leidenfrost droplets on nanostructured surfaces.

  11. Electromagnetic dissipation during asymmetric reconnection with a moderate guide field

    Science.gov (United States)

    Genestreti, Kevin; Burch, James; Cassak, Paul; Torbert, Roy; Phan, Tai; Ergun, Robert; Giles, Barbara; Russell, Chris; Wang, Shan; Akhavan-Tafti, Mojtaba; Varsani, Ali

    2017-04-01

    We calculate the work done on the plasma by the electromagnetic (EM) field, ⃗Jṡ⃗E', and analyze the related electron currents and electric fields, focusing on a single asymmetric guide field electron diffusion region (EDR) event observed by MMS on 8 December 2015. For this event, each of the four MMS spacecraft observed dissipation of EM energy at the in-plane magnetic null point, though large-scale generation/dissipation was observed inconsistently on the magnetospheric side of the boundary. The current at the null was carried by a beam-like population of magnetosheath electrons traveling anti-parallel to the guide field, whereas the current on the Earthward side of the boundary was carried by crescent-shaped electron distributions. We also analyze the terms in Ohm's law, finding a large residual electric field throughout the EDR, inertial and pressure divergence fields at the null, and pressure divergence fields at the magnetosphere-side EDR. Our analysis of the terms in Ohm's law suggests that the EDR had significant three-dimensional structure.

  12. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  13. Vacuum system of the high energy ring of an asymmetric B-factory based on PEP

    International Nuclear Information System (INIS)

    Barletta, W.A.; Calderon, M.O.; Wong, R.; Jenkins, T.M.

    1991-01-01

    The multi-ampere currents required for high luminosity operation of an asymmetric B factory leads to extremely stressing requirements on a vacuum system suitable for maintaining long beam-gas lifetimes and acceptable background levels in the detector. We present the design for a Cu alloy vacuum chamber and its associated pumping system for the 9 GeV electron storage ring of the proposed B factory based on PEP. The excellent thermal and photo-desorption properties of Cu allows handling the high proton flux in a conventional, single chamber design with distributed ion pumps. The x-ray opacity of the Cu is sufficiently high that no additional lead shielding is necessary to protect the dipoles from the intense synchrotron radiation generated by the beam. The design allows chamber commissioning in <500 hr of operation. 5 refs., 3 figs., 2 tabs

  14. Proton beam writing of long, arbitrary structures for micro/nano photonics and fluidics applications

    International Nuclear Information System (INIS)

    Udalagama, Chammika; Teo, E.J.; Chan, S.F.; Kumar, V.S.; Bettiol, A.A.; Watt, F.

    2011-01-01

    The last decade has seen proton beam writing maturing into a versatile lithographic technique able to produce sub-100 nm, high aspect ratio structures with smooth side walls. However, many applications in the fields of photonics and fluidics require the fabrication of structures with high spatial resolution that extends over several centimetres. This cannot be achieved by purely magnetic or electrostatic beam scanning due to the large off-axis beam aberrations in high demagnification systems. As a result, this has limited us to producing long straight structures using a combination of beam and stage scanning. In this work we have: (1) developed an algorithm to include any arbitrary pattern into the writing process by using a more versatile combination of beam and stage scanning while (2) incorporating the use of the ubiquitous AutoCAD DXF (drawing exchange format) into the design process. We demonstrate the capability of this approach in fabricating structures such as Y-splitters, Mach-Zehnder modulators and microfluidic channels that are over several centimetres in length, in polymer. We also present optimisation of such parameters as scanning speed and scanning loops to improve on the surface roughness of the structures. This work opens up new possibilities of using CAD software in PBW for microphotonics and fluidics device fabrication.

  15. Beam-beam effects in the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; Alexahin, Y.; Lebedev, V.; Lebrun, P.; Moore, R.S.; Sen, T.; Tollestrup, A.; Valishev, A.; Zhang, X.L.; /Fermilab

    2005-01-01

    The Tevatron in Collider Run II (2001-present) is operating with 6 times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams have been significant sources of beam loss and lifetime limitations. We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in operations, predict the performance for planned luminosity upgrades, and discuss ways to improve it.

  16. Crystalline beams

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1989-01-01

    Ions in a storage ring are confined to a mean orbit by focusing elements. To a first approximation these may be described by a constant harmonic restoring force: F = -Kr. If the particles in the frame moving along with the beam have small random thermal energies, then they will occupy a cylindrical volume around the mean orbit and the focusing force will be balanced by that from the mutual repulsion of the particles. Inside the cylinder only residual two-particle interactions will play a significant role and some form of ordering might be expected to take place. The results of some of the first MD calculations showed a surprising result: not only were the particles arranged in the form of a tube, but they formed well-defined layers: concentric shells, with the particles in each shell arranged in a hexagonal lattice that is characteristic of two-dimensional Coulomb systems. This paper discusses the condense layer structure

  17. Self-polarization of stored (anti-)protons: Status of the Spin-Splitter experiment at IUCF

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1990-01-01

    Several years ago a selfpolarization effect for stored (anti-)protons and ions was investigated theoretically. The effect is based on the well-known Stern-Gerlach effect in gradient fields. The aim of the ongoing measurements at IUCF is to verify experimentally the various assumptions on which this effect is based. The final goal is to demonstrate this new polarization effect. The proposed effect could be a powerful tool to produce polarized stored hadron beams both in the low energy range and at SSC and LHC energies

  18. Beam scrubbing of beam pipes during the first commissioning of SuperKEKB

    Science.gov (United States)

    Suetsugu, Y.; Shibata, K.; Ishibashi, T.; Kanazawa, K.; Shirai, M.; Terui, S.; Hisamatsu, H.

    2018-02-01

    The first (Phase-1) commissioning of SuperKEKB-an electron-positron collider with asymmetric energies located at KEK, in Tsukuba, Japan-started in February 2016, after more than five years of upgrading work on KEKB, and successfully ended in June of the same year. This paper describes one major task of Phase-1 commissioning: beam scrubbing the surface of the beam pipes, to prepare them for a sufficiently long beam lifetime and low background noise in the next commissioning, when a new particle detector will be installed. The pressure rises per unit beam current (dP/dI [Pa A-1]) were continuously monitored, and the coefficient of photon-stimulated desorption (PSD), η [molecules photon-1], was evaluated in the arc sections. The value of η decreased steadily with the beam dose, as expected. For arc sections in the positron ring, where most of the beam pipes were newly fabricated, the decrease in η against the photon dose (D) was similar to that previously reported; that is: η ∝ D-0.5 ∼ 0.8. At high storage beam currents, the evolution of η was affected by gas desorption resulting from the multipacting of electrons-that is, the electron cloud effect (ECE), which is a phenomenon particular to high-intensity positron rings. For the arc sections in the electron ring, η also decreased smoothly with the photon dose D, approximately as ∝ D-0.8. Given that most of these beam pipes were reused from KEKB, the value of η was much lower than that of the positron ring, and also lower than that of the electron ring of KEKB from the early stages of D. This implies that the surface of the reused beam pipes remembered the conditions in the KEKB, which is a known memory effect. The results obtained for η are compared with those obtained in various other accelerators.

  19. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    Wangler, T.P.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  20. Asymmetric Cache Coherency: Policy Modifications to Improve Multicore Performance

    OpenAIRE

    Shield, John; Diguet, Jean-Philippe; Gogniat, Guy

    2012-01-01

    International audience; Asymmetric coherency is a new optimisation method for coherency policies to support non-uniform work- loads in multicore processors. Asymmetric coherency assists in load balancing a workload and this is applica- ble to SoC multicores where the applications are not evenly spread among the processors and customization of the coherency is possible. Asymmetric coherency is a policy change, and consequently our designs re- quire little or no additional hardware over an exis...

  1. Observation of asymmetric electromagnetic field profiles in chiral metamaterials

    Science.gov (United States)

    Hisamoto, Nobuyuki; Ueda, Tetsuya; Sawada, Kei; Tomita, Satoshi

    2018-02-01

    We experimentally observe asymmetric electromagnetic field profiles along two-dimensional chiral metamaterials. The asymmetric field profiles depending on the chirality and the operation frequency have been reproduced well by the numerical simulation. Around a chiral meta-atom, distribution of a Poynting vector is found to be shifted asymmetrically. These results are explained in terms of an analogy with the side-jump mechanism in the electronic anomalous Hall systems.

  2. Population dynamics with symmetric and asymmetric harvesting

    Directory of Open Access Journals (Sweden)

    J. Ali

    2009-10-01

    Here $\\lambda, a, b, c$ and $L$ are positive constants with $0asymmetric harvesting case. Our objective is to study the existence of positive solutions and also discuss the effects of harvesting. We will develop appropriate quadrature methods via which we will establish our results.

  3. Asymmetric Laser Radiant Cooling in Storage Rings

    CERN Document Server

    Bulyak, E V; Zimmermann, F

    2011-01-01

    Laser pulses with small spatial and temporal dimensions can interact with a fraction of the electron bunches circulating in Compton storage rings. We studied synchrotron dynamics of such bunches when laser photons scatter off from the electrons with energy higher than the synchronous energy. In this case of ‘asymmetric cooling', as shown theoretically, the stationary energy spread is much smaller than under conditions of regular scattering; the oscillations are damped faster. Coherent oscillations of large amplitude may be damped in one synchrotron period, which makes this method feasible for injection the bunches into a ring in the longitudinal phase space. The theoretical results are validated with simulations.

  4. Asymmetrical transverse structures in nonlinear interferometers

    CERN Document Server

    Romanov, O G

    2003-01-01

    The work presents a novel type of optical instability, which leads to the spontaneous formation of a stationary or pulsating asymmetrical structure in the problem of interaction between two counterpropagating waves in a ring cavity with Kerr-like nonlinearity. Linear stability analysis of interferometer transmission stationary states enabled: (1) to mark out typical bifurcations for this system: self- and cross-modulational instabilities, (2) to determine the range of parameters for which the symmetry breaking of transverse structures and complex temporal behaviour of the light field could be observed. The predictions of linear stability analysis have been verified with numerical modelling of coupled-modes equations.

  5. Transport of a high brightness proton beam through the Munich tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Moser, M., E-mail: marcus.moser@unibw.de [Universität der Bundeswehr München, Institut für Angewandte Physik und Messtechnik LRT2, Department für Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Greubel, C. [Universität der Bundeswehr München, Institut für Angewandte Physik und Messtechnik LRT2, Department für Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Carli, W. [Beschleunigerlabor MLL, 85478 Garching (Germany); Peeper, K.; Reichart, P.; Urban, B.; Vallentin, T. [Universität der Bundeswehr München, Institut für Angewandte Physik und Messtechnik LRT2, Department für Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Dollinger, G., E-mail: guenther.dollinger@unibw.de [Universität der Bundeswehr München, Institut für Angewandte Physik und Messtechnik LRT2, Department für Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany)

    2015-04-01

    Basic requirement for ion microprobes with sub-μm beam focus is a high brightness beam to fill the small phase space usually accepted by the ion microprobe with enough ion current for the desired application. We performed beam transport simulations to optimize beam brightness transported through the Munich tandem accelerator. This was done under the constraint of a maximum ion current of 10 μA that is allowed to be injected due to radiation safety regulations and beam power constrains. The main influence of the stripper foil in conjunction with intrinsic astigmatism in the beam transport on beam brightness is discussed. The calculations show possibilities for brightness enhancement by using astigmatism corrections and asymmetric filling of the phase space volume in the x- and y-direction.

  6. Biomimetic asymmetric hydrogenation: in situ regenerable Hantzsch esters for asymmetric hydrogenation of benzoxazinones.

    Science.gov (United States)

    Chen, Qing-An; Chen, Mu-Wang; Yu, Chang-Bin; Shi, Lei; Wang, Duo-Sheng; Yang, Yan; Zhou, Yong-Gui

    2011-10-19

    A catalytic amount of Hantzsch ester that could be regenerated in situ by Ru complexes under hydrogen gas has been employed in the biomimetic asymmetric hydrogenation of benzoxazinones with up to 99% ee in the presence of chiral phosphoric acid. The use of hydrogen gas as a reductant for the regeneration of Hantzsch esters makes this hydrogenation an ideal atom economic process.

  7. Imprint reduction in rotating heavy ions beam energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A., E-mail: antoineclaude.bret@uclm.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Piriz, A.R., E-mail: Roberto.Piriz@uclm.es [ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Tahir, N.A., E-mail: n.tahir@gsi.de [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω.

  8. Design and fabrication of asymmetric nanopores using pulsed PECVD

    Science.gov (United States)

    Kelkar, Sanket S.

    Manipulating matter at nanometric length scales is important for many electronic, chemical and biological applications. Structures such as nanopores demonstrate a phenomenon known as hindered transport which can be exploited in analytical applications such as DNA sequencing, ionic transistors, and molecular sieving. Precisely controlling the size, geometry and surface characteristics of the nanopores is important for realizing these applications. In this work, we employ relatively large template structures (˜ 100 nm) produced by track-etching or electron beam lithography. The pore size is then reduced to the desired level by deposition of material using pulsed plasma enhanced chemical vapor deposition (PECVD). Pulsed PECVD has been developed as a high throughput alternative to atomic layer deposition (ALD) to deliver self-limiting growth of thin films. The goal of this thesis is to extend the application of pulsed PECVD to fabricate asymmetric nanopores. In contrast to ALD, pulsed PECVD does not result in perfectly conformal deposition profiles, and predicting the final nanostructure is more complicated. A two dimensional feature scale model was developed to predict film profile evolution. The model was built in COMSOL, and is based on a diffusion reaction framework with a spatially varying Knudsen diffusion coefficient to account for the molecular transport inside the features. A scaling analysis was used to account for ALD exposure limitations that commonly occur when coating these extremely high aspect ratio features. The model was verified by cross-section microscopy of deposition profiles on patterned cylinders and trenches. The model shows that it is possible to obtain unique nanopore morphologies in pulsed PECVD that are distinct from either steady state deposition processes such as physical vapor deposition (PVD) or conventional ALD. Polymeric track etched (TE) membrane supports with a nominal size of 100 nm were employed as model template structures to

  9. Evolutionary stability in the asymmetric volunteer's dilemma.

    Directory of Open Access Journals (Sweden)

    Jun-Zhou He

    Full Text Available It is often assumed that in public goods games, contributors are either strong or weak players and each individual has an equal probability of exhibiting cooperation. It is difficult to explain why the public good is produced by strong individuals in some cooperation systems, and by weak individuals in others. Viewing the asymmetric volunteer's dilemma game as an evolutionary game, we find that whether the strong or the weak players produce the public good depends on the initial condition (i.e., phenotype or initial strategy of individuals. These different evolutionarily stable strategies (ESS associated with different initial conditions, can be interpreted as the production modes of public goods of different cooperation systems. A further analysis revealed that the strong player adopts a pure strategy but mixed strategies for the weak players to produce the public good, and that the probability of volunteering by weak players decreases with increasing group size or decreasing cost-benefit ratio. Our model shows that the defection probability of a "strong" player is greater than the "weak" players in the model of Diekmann (1993. This contradicts Selten's (1980 model that public goods can only be produced by a strong player, is not an evolutionarily stable strategy, and will therefore disappear over evolutionary time. Our public good model with ESS has thus extended previous interpretations that the public good can only be produced by strong players in an asymmetric game.

  10. An asymmetric B factory based on PEP

    International Nuclear Information System (INIS)

    1991-02-01

    In this report we describe a design for a high-luminosity Asymmetric B Factory to be built in the PEP tunnel on the SLAC site. This proposal, a collaborative effort SLAC, LBL, and LLNL, is the culmination of more than two years of effort aimed at the design and construction of an asymmetric e + e - collider capable of achieving a luminosity of L = 3 x 10 33 cm -2 s -1 . The configuration adopted utilizes two storage rings, and electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of the B Factory. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two B Factory storage rings

  11. [Asymmetric hypertrophy of the masticatory muscles].

    Science.gov (United States)

    Arzul, L; Corre, P; Khonsari, R H; Mercier, J-M; Piot, B

    2012-06-01

    Hypertrophy of the masticatory muscles most commonly affects the masseter. Less common cases of isolated or associated temporalis hypertrophy are also reported. Parafunctional habits, and more precisely bruxism, can favor the onset of the hypertrophy. This condition is generally idiopathic and can require both medical and/or surgical management. A 29-year-old patient was referred to our department for an asymmetric swelling of the masticatory muscles. Physical examination revealed a bilateral hypertrophy of the masticatory muscles, predominantly affecting the right temporalis and the left masseter. Major bruxism was assessed by premature dental wearing. The additional examinations confirmed the isolated muscle hypertrophy. Benign asymmetric hypertrophy of the masticatory muscles promoted by bruxism was diagnosed. Treatment with injections of type A botulinum toxin was conducted in association with a splint and relaxation. Its effectiveness has been observed at six months. Few cases of unilateral or bilateral temporalis hypertrophy have been reported, added to the more common isolated masseter muscles hypertrophy. The diagnosis requires to rule out secondary hypertrophies and tumors using Magnetic Resonance Imaging. The condition is thought to be favoured by parafunctional habits such as bruxism. The conservative treatment consists in reducing the volume of the masticatory muscles using intramuscular injections of type A botulinum toxin. Other potential conservative treatments are wearing splints and muscle relaxant drugs. Surgical procedures aiming to reduce the muscle volume and/or the bone volume (mandibular gonioplasty) can be proposed. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  12. Asymmetric inheritance of cytoophidia in Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2014-10-01

    Full Text Available A general view is that Schizosaccharomyces pombe undergoes symmetric cell division with two daughter cells inheriting equal shares of the content from the mother cell. Here we show that CTP synthase, a metabolic enzyme responsible for the de novo synthesis of the nucleotide CTP, can form filamentous cytoophidia in the cytoplasm and nucleus of S. pombe cells. Surprisingly, we observe that both cytoplasmic and nuclear cytoophidia are asymmetrically inherited during cell division. Our time-lapse studies suggest that cytoophidia are dynamic. Once the mother cell divides, the cytoplasmic and nuclear cytoophidia independently partition into one of the two daughter cells. Although the two daughter cells differ from one another morphologically, they possess similar chances of inheriting the cytoplasmic cytoophidium from the mother cell, suggesting that the partition of cytoophidium is a stochastic process. Our findings on asymmetric inheritance of cytoophidia in S. pombe offer an exciting opportunity to study the inheritance of metabolic enzymes in a well-studied model system.

  13. Asymmetric disassembly and robustness in declining networks

    Science.gov (United States)

    Saavedra, Serguei; Reed-Tsochas, Felix; Uzzi, Brian

    2008-01-01

    Mechanisms that enable declining networks to avert structural collapse and performance degradation are not well understood. This knowledge gap reflects a shortage of data on declining networks and an emphasis on models of network growth. Analyzing >700,000 transactions between firms in the New York garment industry over 19 years, we tracked this network's decline and measured how its topology and global performance evolved. We find that favoring asymmetric (disassortative) links is key to preserving the topology and functionality of the declining network. Based on our findings, we tested a model of network decline that combines an asymmetric disassembly process for contraction with a preferential attachment process for regrowth. Our simulation results indicate that the model can explain robustness under decline even if the total population of nodes contracts by more than an order of magnitude, in line with our observations for the empirical network. These findings suggest that disassembly mechanisms are not simply assembly mechanisms in reverse and that our model is relevant to understanding the process of decline and collapse in a broad range of biological, technological, and financial networks. PMID:18936489

  14. D mesons in asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Mishra, Amruta; Mazumdar, Arindam

    2009-01-01

    We calculate the in-medium D and D meson masses in isospin-asymmetric nuclear matter in an effective chiral model. The D and D mass modifications arising from their interactions with the nucleons and the scalar mesons in the effective hadronic model are seen to be appreciable at high densities and have a strong isospin dependence. These mass modifications can open the channels of the decay of the charmonium states (Ψ ' ,χ c ,J/Ψ) to DD pairs in dense hadronic matter. The isospin asymmetry in the doublet D=(D 0 ,D + ) is seen to be particularly appreciable at high densities and should show in observables such as their production and flow in asymmetric heavy-ion collisions in the compressed baryonic matter experiments in the future facility of FAIR, GSI. The results of the present work are compared to calculations of the D(D) in-medium masses in the literature using the QCD sum rule approach, quark meson coupling model, and coupled channel approach as well as to those from studies of quarkonium dissociation using heavy-quark potentials from lattice QCD at finite temperatures

  15. Asymmetric Cell Divisions in the Epidermis

    Science.gov (United States)

    Poulson, Nicholas D.; Lechler, Terry

    2012-01-01

    Generation of three-dimensional tissue with distinct cell types is required for the development of all organs. On its own, mitotic spindle orientation allows tissues to change in length or shape. In combination with intrinsic or extrinsic cues this can also be coupled to the generation of diverse cell fates - a process known as asymmetric cell division (ACD). Understanding ACD’s has been greatly aided by studies in invertebrate model systems, where genetics and live imaging have provided the basis for much of what we know. ACD’s also drive the development and differentiation of the epidermis in mammals. While similar to the invertebrate models, the epidermis is distinct in balancing symmetric and asymmetric divisions to yield a tissue of the correct surface area and thickness. Here we review the roles of spindle orientation in driving both morphogenesis and cell fate decisions. We highlight the epidermis as a unique model system to study not only basic mechanisms of ACD, but also to study their regulation during development. PMID:22449491

  16. Asymmetric facial skin viscoelasticity during climacteric aging

    Science.gov (United States)

    Piérard, Gérald E; Hermanns-Lê, Trinh; Gaspard, Ulysse; Piérard-Franchimont, Claudine

    2014-01-01

    Background Climacteric skin aging affects certain biophysical characteristics of facial skin. The purpose of the present study was to assess the symmetric involvement of the cheeks in this stage of the aging process. Methods Skin viscoelasticity was compared on both cheeks in premenopausal and post-menopausal women with indoor occupational activities somewhat limiting the influence of chronic sun exposure. Eighty-four healthy women comprising 36 premenopausal women and 48 early post-menopausal women off hormone replacement therapy were enrolled in two groups. The tensile characteristics of both cheeks were tested and compared in each group. A computerized suction device equipped with a 2 mm diameter hollow probe was used to derive viscoelasticity parameters during a five-cycle procedure of 2 seconds each. Skin unfolding, intrinsic distensibility, biological elasticity, and creep extension were measured. Results Both biological elasticity and creep extension were asymmetric on the cheeks of the post-menopausal women. In contrast, these differences were more discrete in the premenopausal women. Conclusion Facial skin viscoelasticity appeared to be asymmetric following menopause. The possibility of asymmetry should be taken into account in future studies of the effects of hormone replacement therapy and any antiaging procedure on the face in menopausal women. PMID:24748810

  17. Asymmetric DSL Technology of Signal Transmission

    Directory of Open Access Journals (Sweden)

    Dražen Kovačević

    2005-05-01

    Full Text Available Asymmetric flow of information is the key feature of theADSL (Asymmetric Digital Subscriber Loop technology, i.e.higher data transmission rate towards the user than from theuser towards the network. Characteristic is the short messagesending by the user with a certain request to the se!Ver. These!Ver responds to the request by a significantly longer messageof various electronic forms (data, digitized speech, pictures orvideo. Therefore, this technology is most often used by smalland medium users. ADSL is currently the only commerciallyavailable DSL technology which is still experiencing the breakthroughon the seiVice market. It enables faster access to theInternet, LAN (Local Area Network, videoconferencing, VoD(Video on Demand and interactive multimedia. In order tostandardize such se/Vices, the !TU (International TelecommunicationsUnion G. 992.1 (standardized DMT-discrete multi-tone line coding technology and ANSJ (American NationalStandards Institution Tl.413-95!98 are used for ADSL. DMT(Discrete Multi Tone, as the more popular one, uses the linecoding technique, which splits a certain frequency range intoseveral sub-channels. Most of these sub-channels are used forupstream and downstream transmission of speech and data,whereas some are used as pilot signals or kept in rese/Ve. Suchmodulation technique expands the frequency spectrum, allowingthe usage ofbroadband se/Vices per one pair of wires. In thisway the sharing of speech and data se/Vice transmission is realized.

  18. On the Asymmetric Focusing of Low-Emittance Electron Bunches via Active Lensing by Using Capillary Discharges

    Science.gov (United States)

    Bulanov, Stepan; Bagdasarov, Gennadiy; Bobrova, Nadezhda; Boldarev, Alexey; Olkhovskaya, Olga; Sasorov, Pavel; Gasilov, Vladimir; Barber, Samuel; Gonsalves, Anthony; Schroeder, Carl; van Tilborg, Jeroen; Esarey, Eric; Leemans, Wim; Levato, Tadzio; Margarone, Daniele; Korn, Georg; Kando, Masaki; Bulanov, Sergei

    2017-10-01

    A novel method for asymmetric focusing of electron beams is proposed. The scheme is based on the active lensing technique, which takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside a capillary discharge are described theoretically and modeled with dissipative MHD simulations to enable analysis of capillaries of oblong rectangle cross-sections implying that large aspect ratio rectangular capillaries can be used to form flat electron bunches. The effect of the capillary cross-section on the electron beam focusing properties were studied using the analytical methods and simulation- derived magnetic field map showing the range of the capillary discharge parameters required for producing the high quality flat electron beams.

  19. Beam-smiling in bent-Laue monochromators

    International Nuclear Information System (INIS)

    Ren, B.; Dilmanian, F. A.; Wu, X. Y.; Huang, X.; Chapman, L. D.; Ivanov, I.; Zhong, Z.; Thomlinson, W. C.

    1997-01-01

    When a wide fan-shaped x-ray beam is diffracted by a bent crystal in the Laue geometry, the profile of the diffracted beam generally does not appear as a straight line, but as a line with its ends curved up or curved down. This effect, referred to as 'beam-smiling', has been a major obstacle in developing bent-Laue crystal monochromators for medical applications of synchrotron x-ray. We modeled a cylindrically bent crystal using the Finite Element Analysis (FEA) method, and we carried out experiments at the National Synchrotron Light Source and Cornell High Energy Synchrotron Source. Our studies show that, while beam-smiling exists in most of the crystal's area because of anticlastic bending effects, there is a region parallel to the bending axis of the crystal where the diffracted beam is 'smile-free'. By applying asymmetrical bending, this smile-free region can be shifted vertically away from the geometric center of the crystal, as desired. This leads to a novel method of compensating for beam-smiling. We will discuss the method of ''differential bending'' for smile removal, beam-smiling in the Cauchios and the polychromatic geometry, and the implications of the method on developing single- and double-bent Laue monochromators. The experimental results will be discussed, concentrating on specific beam-smiling observation and removal as applied to the new monochromator of the Multiple Energy Computed Tomography [MECT] project of the Medical Department, Brookhaven National Laboratory

  20. Electron beam control for barely separated beams

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, David R.; Ament, Lucas J. P.

    2017-04-18

    A method for achieving independent control of multiple beams in close proximity to one another, such as in a multi-pass accelerator where coaxial beams are at different energies, but moving on a common axis, and need to be split into spatially separated beams for efficient recirculation transport. The method for independent control includes placing a magnet arrangement in the path of the barely separated beams with the magnet arrangement including at least two multipole magnets spaced closely together and having a multipole distribution including at least one odd multipole and one even multipole. The magnetic fields are then tuned to cancel out for a first of the barely separated beams to allow independent control of the second beam with common magnets. The magnetic fields may be tuned to cancel out either the dipole component or tuned to cancel out the quadrupole component in order to independently control the separate beams.

  1. Literature in Focus Beta Beams: Neutrino Beams

    CERN Multimedia

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  2. Beam Techniques - Beam Control and Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Minty, Michiko G

    2003-04-24

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization.

  3. Evaluation of a dose distribution calcul algorithm in patients treated photons beams in radiotherapy

    International Nuclear Information System (INIS)

    Castellanos, M. E.; Barreto, G.

    2001-01-01

    The acceptance criteria proposed by J. Van Dyck et. al. is fulfilled in the case of symmetrical fields, while in the asymmetric ones a particular evaluation is required, taking in counts the possibility of a flattening filter influence of beam quality outside the central axis [es

  4. ISR beam scrapers

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    Beam scrapers seen in the direction of the beam. The two horizontal scraper foils are near the centre of the beam pipe andthe two scrapers for protection of the vacuum chamber are further outside. In the lower part of the beam pipe is the vertical halo scraping blade.

  5. Telecommunication using muon beams

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location

  6. Analysis of orthotropic beams

    Science.gov (United States)

    Jen Y. Liu; S. Cheng

    1979-01-01

    A plane-stress analysis of orthotropic or isotropic beams is presented. The loading conditions considered are: (1) a concentrated normal load arbitrarily located on the beam, and (2) a distributed normal load covering an arbitrary length of the beam. exhibit close agreement with existing experimental data from Sitka spruce beams. Other loading conditions can similarly...

  7. Telecommunication using muon beams

    Science.gov (United States)

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  8. FreeCAD visualization of realistic 3D physical optics beams within a CAD system-model

    Science.gov (United States)

    Gayer, D.; O'Sullivan, C.; Scully, S.; Burke, D.; Brossard, J.; Chapron, C.

    2016-07-01

    The facility to realise the shape and extent of optical beams within a telescope or beamcombiner can aid greatly in the design and layout of optical elements within the system. It can also greatly facilitate communication between the optical design team and other teams working on the mechanical design of an instrument. Beyond the realm where raytracing is applicable however, it becomes much more difficult to realise accurate 3D beams which incorporate diffraction effects. It then is another issue to incorporate this into a CAD model of the system. A novel method is proposed which has been used to aid with the design of an optical beam combiner for the QUBIC (Q and U Bolometric Interferometer for Cosmology) 1 experiment operating at 150 GHz and 220 GHz. The method combines calculation work in GRASP 2, a commercial physical optics modelling tool from TICRA, geometrical work in Mathematica, and post processing in MATLAB. Finally, the Python console of the open source package FreeCAD3 is exploited to realise the 3D beams in a complete CAD system-model of the QUBIC optical beam combiner. This paper details and explains the work carried out to reach the goal and presents some graphics of the outcome. 3D representations of beams from some back-to-back input horns of the QUBIC instrument are shown within the CAD model. Beams of the -3dB and -13dB contour envelope are shown as well as envelopes enclosing 80% and 95% of the power of the beam. The ability to see these beams in situ with all the other elements of the combiner such as mirrors, cold stop, beam splitter and cryostat widows etc. greatly simplified the design for these elements and facilitated communication of element dimension and location between different subgroups within the QUBIC group.

  9. Microscale Synthesis of Chiral Alcohols via Asymmetric Catalytic Transfer Hydrogenation

    Science.gov (United States)

    Peeters, Christine M.; Deliever, Rik; De Vos, Dirk

    2009-01-01

    Synthesis of pure enantiomers is a key issue in industry, especially in areas connected to life sciences. Catalytic asymmetric synthesis has emerged as a powerful and practical tool. Here we describe an experiment on racemic reduction and asymmetric reduction via a catalytic hydrogen transfer process. Acetophenone and substituted acetophenones are…

  10. LANSCE beam current limiter

    International Nuclear Information System (INIS)

    Gallegos, F.R.

    1996-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described

  11. Low-loss, efficient, wide-angle 1  ×  4 power splitter at ∼1.55  μm wavelengths for four play applications built with a monolithic photonic crystal slab.

    Science.gov (United States)

    Zhou, Jian; Tian, Huiping; Yang, Daquan; Liu, Qi; Huang, Lijun; Ji, Yuefeng

    2014-12-01

    We exhibit a low-loss, efficient, and wide-angle 1×4 power splitter based on a silicon monolithic photonic crystal slab with triangular lattice air holes. A distinctive power-splitting ratio can be obtained depending on the hole shift in the bending region and the structure adjustment at the junction area with regard to the power splitter designed. Simulation results achieved with a rigorous finite-difference time-domain technique show that the TE-polarized light is designed to ensure single-mode operation and the transmitted power is distributed almost equally, with a total transmission of 93.4% at the 1550 nm optical operation wavelength. Furthermore, we demonstrate ultralow-loss output of the optimized power splitter, with a transmittance above 22.5% (-6.48  dB) achieved in the ranges of 1524-1594 and 1610-1620 nm, which cover the entire C-band and a large portion of the L-band of optical communication.

  12. Alkaline earth metal catalysts for asymmetric reactions.

    Science.gov (United States)

    Kobayashi, Shū; Yamashita, Yasuhiro

    2011-01-18

    The group 2 alkaline earth metals calcium (Ca), strontium (Sr), and barium (Ba) are among the most common elements on Earth, abundant in both the sea and the Earth's crust. Although they are familiar in our daily lives, their application to organic synthesis has, so far, been limited. Some particularly useful properties of these elements include (i) low electronegativity, (ii) a stable oxidation state of +2, meaning that they can potentially form two covalent bonds with anions, and (iii) the ability to occupy a variety of coordination sites due to their large ionic radius. Furthermore, the alkaline earth metals, found between the group 1 and group 3 elements, show mild but significant Lewis acidity, which can be harnessed to control coordinative molecules via a Lewis acid-base interaction. Taken together, these characteristics make the metals Ca, Sr, and Ba very promising components of highly functionalized acid-base catalysts. In this Account, we describe the development of chiral alkaline earth metal catalysts for asymmetric carbon-carbon bond-forming reactions. Recently prepared chiral alkaline earth metal complexes have shown high diastereo- and enantioselectivities in fundamental and important chemical transformations. We chose chiral bisoxazoline (Box) derivatives bearing a methylene tether as a ligand for chiral modification. These molecules are very useful because they can covalently coordinate to alkaline earth metals in a bidentate fashion through deprotonation of the tether portion. It was found that chiral calcium-Box complexes could successfully promote catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions with high diastereo- and enantioselectivities. Both the calcium-Box complexes and chiral strontium-bis-sulfonamide and chiral barium-BINOLate complexes could catalyze asymmetric 1,4-addition reactions with high enantioselectivities. Furthermore, we designed a calcium-neutral coordinative ligand complex as a new type of chiral alkaline

  13. Metal-Catalyzed Asymmetric Michael Addition in Natural Product Synthesis.

    Science.gov (United States)

    Hui, Chunngai; Pu, Fan; Xu, Jing

    2017-03-23

    Asymmetric catalysis for chiral compound synthesis is a rapidly growing field in modern organic chemistry. Asymmetric catalytic processes have been indispensable for the synthesis of enantioselective materials to meet demands from various fields. Michael addition has been used extensively for the construction of C-C bonds under mild conditions. With the discovery and development of organo- and metal-catalyzed asymmetric Michael additions, the synthesis of enantioselective and/or diastereoselective Michael adducts has become possible and increasingly prevalent in the literature. In particular, metal-catalyzed asymmetric Michael addition has been employed as a key reaction in natural product synthesis for the construction of contiguous quaternary stereogenic center(s), which is still a difficult task in organic synthesis. Previously reported applications of metal-catalyzed asymmetric Michael additions in natural product synthesis are presented here and discussed in depth. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Rapid asymmetrical evolution of Saccharomyces cerevisiae wine yeasts.

    Science.gov (United States)

    Ambrona, Jesús; Vinagre, Antonia; Ramírez, Manuel

    2005-12-01

    Genetic instability causes very rapid asymmetrical loss of heterozygosity (LOH) at the cyh2 locus and loss of killer K2 phenotype in some wine yeasts under the usual laboratory propagation conditions or after long freeze-storage. The direction of this asymmetrical evolution in heterozygous cyh2(R)/CYH2(S) hybrids is determined by the mechanism of asymmetrical LOH. However, the speed of the process is affected by the differences in cell viability between the new homozygous yeasts and the original heterozygous hybrid cells. The concomitant loss of ScV-M2 virus in the LOH process may increase cell viability of cyh2(R)/cyh2(R) yeasts and so favour asymmetrical evolution. The presence of active killer K2 toxin, however, abolishes the asymmetrical evolution of the hybrid populations. This phenomenon may cause important sudden phenotype changes in industrial and pathogenic yeasts. Copyright 2005 John Wiley & Sons, Ltd.

  15. Subcopula-based measure of asymmetric association for contingency tables.

    Science.gov (United States)

    Wei, Zheng; Kim, Daeyoung

    2017-10-30

    For the analysis of a two-way contingency table, a new asymmetric association measure is developed. The proposed method uses the subcopula-based regression between the discrete variables to measure the asymmetric predictive powers of the variables of interest. Unlike the existing measures of asymmetric association, the subcopula-based measure is insensitive to the number of categories in a variable, and thus, the magnitude of the proposed measure can be interpreted as the degree of asymmetric association in the contingency table. The theoretical properties of the proposed subcopula-based asymmetric association measure are investigated. We illustrate the performance and advantages of the proposed measure using simulation studies and real data examples. Copyright © 2017 John Wiley & Sons, Ltd.

  16. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  17. Ion beam diagnosis

    International Nuclear Information System (INIS)

    Strehl, P.

    1994-04-01

    This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)

  18. Behavior of forced asymmetric oscillators at resonance

    Directory of Open Access Journals (Sweden)

    C. Fabry

    2000-12-01

    Full Text Available This article collects recent results concerning the behavior at resonance of forced oscillators driven by an asymmetric restoring force, with or without damping. This synthesis emphasizes the key role played by a function denoted by $Phi_{alpha,eta,p}$, which is, up to a sign reversal of its argument, a correlation product of the forcing term $p$ and of a function representing a free oscillation for theundamped equation. The theoretical results are accompanied by graphical representations illustrating the behavior of the damped and undamped oscillators. In particular, the damped oscillator is considered, with a forcing term whose frequency is close to the frequency of the free oscillations. For that problem, frequency-response curves are studied, both theoretically and through numerical computations, revealing a hysteresis phenomenon, when $Phi_{alpha,eta,p}$ is of constant sign.

  19. The Asymmetric Effects of Investor Sentiment

    DEFF Research Database (Denmark)

    Lutz, Chandler

    investors only act as corrective force during certain time periods. We also show that our index predicts implied volatility, media pessimism, and mutual fund flows. Overall, our findings are consistent with both the theories and anecdotal accounts of investor sentiment in the stock market.......We use the returns on lottery-like stocks to construct a novel index for investor sentiment in the stock market. This new measure is closely related to previously developed sentiment indicators, but more accurately tracks speculative episodes over the sample period. Using our index, we find...... that the relationship between sentiment and returns is asymmetric: during bear markets, high sentiment predicts low future returns for the cross-section of speculative stocks and the market overall while the relationship during bull markets is weak and often insignificant. Thus, the results suggest that sophisticated...

  20. Asymmetric pair distribution functions in catalysts

    DEFF Research Database (Denmark)

    Clausen, B. S.; Nørskov, Jens Kehlet

    2000-01-01

    it has been realized that often there is a need to use an improved EXAFS data analysis compared to the simple harmonic approach which works well for well-defined bulk structures. This is due to the fact that catalysts contain highly dispersed or disordered structures with pair distribution functions...... of asymmetric pair distribution functions for nano-sized particles and how they influence the structural parameters obtained from the standard data analysis. An alternative method, which takes into account deviations from the Gaussian pair distribution function typically used in the analysis of EXAFS spectra......, will be described. The method is based on an analysis of the pair distribution functions derived from molecular dynamics simulations of small metal particles and its reliability is demonstrated by comparing structural parameters obtained from independent X-ray diffraction experiments....

  1. Isospin dependent properties of asymmetric nuclear matter

    Science.gov (United States)

    Chowdhury, P. Roy; Basu, D. N.; Samanta, C.

    2009-07-01

    The density dependence of nuclear symmetry energy is determined from a systematic study of the isospin dependent bulk properties of asymmetric nuclear matter using the isoscalar and isovector components of the density dependent M3Y interaction. The incompressibility K∞ for the symmetric nuclear matter, the isospin dependent part Kasy of the isobaric incompressibility, and the slope L are all in excellent agreement with the constraints recently extracted from measured isotopic dependence of the giant monopole resonances in even-A Sn isotopes, from the neutron skin thickness of nuclei, and from analyses of experimental data on isospin diffusion and isotopic scaling in intermediate energy heavy-ion collisions. This work provides a fundamental basis for the understanding of nuclear matter under extreme conditions and validates the important empirical constraints obtained from recent experimental data.

  2. Do Daily Retail Gasoline Prices adjust Asymmetrically?

    International Nuclear Information System (INIS)

    Bettendorf, L.; Van der Geest, S.; Kuper, G.

    2005-04-01

    This paper analyzes adjustments in the Dutch retail gasoline prices. We estimate an error correction model on changes in the daily retail price for gasoline (taxes excluded) for the period 1996-2004 taking care of volatility clustering by estimating an EGARCH model. It turns out the volatility process is asymmetrical: an unexpected increase in the producer price has a larger effect on the variance of the producer price than an unexpected decrease. We do not find strong evidence for amount asymmetry. However, there is a faster reaction to upward changes in spot prices than to downward changes in spot prices. This implies timing or pattern asymmetry. This asymmetry starts three days after the change in the spot price and lasts for four days

  3. Mass asymmetric fission barriers for 75Br

    Science.gov (United States)

    Delis, D. N.; Blumenfeld, Y.; Bowman, D. R.; Colonna, N.; Hanold, K.; Jing, K.; Justice, M.; Meng, J. C.; Peaslee, G. F.; Wozniak, G. J.; Moretto, L. G.

    1991-11-01

    Fragments with atomic numbers covering nearly the entire range of the mass-asymmetry coordinate (4 < Z < 27) were observed from the 5.0, 6.2, 6.9, 8.0, 10.2 and 12.7 MeV/A 63Cu + 12C reactions. Energy spectra and angular distributions show the presence of projectile-like and target-like components along with an isotropic component. The isotropic component appears as a Coulomb ring in the invariant cross-section plots indicating the presence of a binary compound nucleus decay which is confirmed by the coincidence data. Excitation functions were constructed for each Z value and a nearly complete set of mass-asymmetric barriers has been extracted for 75Br. There is excellent agreement between the experimentally determined barriers and the finite-range model predictions.

  4. Baryon destruction by asymmetric dark matter

    International Nuclear Information System (INIS)

    Davoudiasl, Hooman; Morrissey, David E.; Tulin, Sean; Sigurdson, Kris

    2011-01-01

    We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause induced nucleon decay by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10 29 -10 32 yrs in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter-induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.

  5. PEP-II: An asymmetric B factory

    International Nuclear Information System (INIS)

    1993-06-01

    In this report, the authors have described an updated conceptual design for the high-luminosity Asymmetric B Factory (PEP-II) to be built in the PEP tunnel culmination of more than four years of effort aimed at the design and construction of an asymmetric e + e - collider capable of achieving a luminosity of L = 3 x 10 33 cm -2 s -1 . All aspects of the conceptual design were scrutinized in March 1991 by a DOE technical review committee chaired by Dr. L. Edward Temple. The design was deemed feasible and capable of achieving its physics goals. Furthermore, the cost estimate, schedule, and management plan for the project were fully endorsed by the committee. This updated conceptual design report captures the technical progress since the March 1991 review and reflects the lower cost estimate corresponding to the improved design. Although the PEP-II design has continued to evolve, no technical scope changes have been made that invalidate the conclusion of the DOE review. The configuration adopted utilizes two storage rings, an electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of PEP-II. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two PEP-II storage rings

  6. Beam diagnostics for low energy beams

    Directory of Open Access Journals (Sweden)

    J. Harasimowicz

    2012-12-01

    Full Text Available Low-energetic ion and antimatter beams are very attractive for a number of fundamental studies. The diagnostics of such beams, however, is a challenge due to low currents down to only a few thousands of particles per second and significant fraction of energy loss in matter at keV beam energies. A modular set of particle detectors has been developed to suit the particular beam diagnostic needs of the ultralow-energy storage ring (USR at the future facility for low-energy antiproton and ion research, accommodating very low beam intensities at energies down to 20 keV. The detectors include beam-profile monitors based on scintillating screens and secondary electron emission, sensitive Faraday cups for absolute intensity measurements, and capacitive pickups for beam position monitoring. In this paper, the design of all detectors is presented in detail and results from beam measurements are shown. The resolution limits of all detectors are described and options for further improvement summarized. Whilst initially developed for the USR, the instrumentation described in this paper is also well suited for use in other low-intensity, low-energy accelerators, storage rings, and beam lines.

  7. Revisit of combined parallel-beam/cone-beam or fan-beam/cone-beam imaging.

    Science.gov (United States)

    Zeng, Gengsheng L

    2013-10-01

    This aim of this paper is to revisit the parallel-beam/cone-beam or fan-beam/cone-beam imaging configuration, and to investigate whether this configuration has any advantages. Twenty years ago, it was suggested to simultaneously use a parallel-beam (or a fan-beam) collimator and a cone-beam collimator to acquire single photon emission computed tomography data. The motivation was that the parallel-beam (or the fan-beam) collimator can provide sufficient sampling, while the cone-beam collimator is able to provide higher photon counts. Even with higher total counts, this hybrid system does not give significant improvement (if any) in terms of image noise and artifacts reduction. If a conventional iterative maximum-likelihood expectation-maximization algorithm is used to reconstruct the image, the resultant reconstruction may be worse than the parallel-beam-only (or fan-beam-only) system. This paper uses the singular value decomposition (SVD) analysis to explain this phenomenon. The SVD results indicate that the parallel-beam-only and the fan-beam-only system outperform the combined systems. The optimal imaging system does not necessary to be the one that generates the projections with highest signal-to-noise ratio and best resolution.

  8. Demonstration and implications when 50% beam combiners can behave as 0% or 100% reflector/transmitter inside some interferometers

    Science.gov (United States)

    Roychoudhuri, ChandraSekhar

    2017-08-01

    The purpose of this paper is to embolden students to raise basic questions regarding the feasibility of "indivisible single photon interference". We do this by presenting experimental results of well-known classical Mach-Zehnder interferometer (MZI) under two different conditions of beam alignment. We routinely do such experiments in our laboratories. In the first case, we align the light beams on the beam combiner (BC) with their Poynting vectors as perfectly collinear. The 50% dielectric boundary can now transmit 100% of the energy of both the beams into either one of the two MZI output ports, depending upon the relative phase between the two beams combined on the BC from the opposite directions. The dielectric boundary layer actively re-directs the energy from one beam to the other. This is pure classical superposition effect. In the second case, we combine the two beams on the BC with a small intersecting angle. Now the BC functions as a 50% beam splitter to both the beams. One can see spatial fringes as the relative phase varies with spatial distance by placing a photo detector array after the BC. At very low intensity, the quantum properties of the photo detector will become apparent because the photo electrons are discrete and are always bound quantum mechanically to its host molecular assembly; and not because light is definitely quantized. Students can learn to distinguish the pedagogical difference between the Superposition Principle (linear sum of wave amplitudes) and the Superposition Effect (square modulus of the sum of all the wave-induced stimulations) as observable intensity variations due to interaction with materials, classical or quantum.

  9. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  10. Beam Manipulation by Metallic Nanoslit Arrays with Perpendicular Cuts inside Slits

    International Nuclear Information System (INIS)

    Hao Zhi-Qiang; Li Yu-Dong; Chen Jing; Chen Zong-Qiang; Xu Jing-Jun; Sun Qian

    2012-01-01

    Beam manipulation by metallic nanoslit arrays with perpendicular cuts inside the slits was investigated numerically. The simulated results performed by the finite element method (FEM) show that perpendicular cuts with different heights can modulate phase retardation of the transmitted light through the slits. With the proper distribution of cut height, a focused beam is achieved in our metallic nanostructure with four-time amplitude at the focus point and half focal length compared to a slit array without cuts inside. By using asymmetric distribution of height amplitude, a beam deflection around 6° can also be realized in our design

  11. Terahertz spectroscopy of shift currents resulting from asymmetric (110)-oriented GaAs/AlGaAs quantum wells

    International Nuclear Information System (INIS)

    Priyadarshi, Shekhar; Leidinger, Markus; Pierz, Klaus; Racu, Ana M.; Siegner, Uwe; Bieler, Mark; Dawson, Philip

    2009-01-01

    We report the observation and the study of an additional shift current tensor element in (110)-oriented GaAs quantum wells, which arises from an out-of-plane asymmetry of the quantum well structure. The current resulting from this tensor element is optically induced with 150 fs laser pulses and detected by measuring the simultaneously emitted terahertz radiation. This terahertz spectroscopy of shift currents is a powerful technique for symmetry investigations, which shows, for example, that our nominally symmetric (110)-oriented GaAs/AlGaAs quantum wells grown by molecular beam epitaxy are in reality asymmetric structures with different right and left interfaces.

  12. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  13. T10 Beam Studies & Beam Simulation

    CERN Document Server

    Bergmann, Michael Georges; Van Dijk, Maarten; CERN. Geneva. EN Department

    2017-01-01

    In order to test detector components before their installation in actual experiments, one uses test beams in which one can control particle typ, momentum and size to high degree. For this project the focus of a secondary beam at T10 in the East Area at CERN was analysed using an AZALEA telescope from DESY.

  14. High-Voltage, Asymmetric-Waveform Generator

    Science.gov (United States)

    Beegle, Luther W.; Duong, Tuan A.; Duong, Vu A.; Kanik, Isik

    2008-01-01

    The shapes of waveforms generated by commercially available analytical separation devices, such as some types of mass spectrometers and differential mobility spectrometers are, in general, inadequate and result in resolution degradation in output spectra. A waveform generator was designed that would be able to circumvent these shortcomings. It is capable of generating an asymmetric waveform, having a peak amplitude as large as 2 kV and frequency of several megahertz, which can be applied to a capacitive load. In the original intended application, the capacitive load would consist of the drift plates in a differential-mobility spectrometer. The main advantage to be gained by developing the proposed generator is that the shape of the waveform is made nearly optimum for various analytical devices requiring asymmetric-waveform such as differential-mobility spectrometers. In addition, this waveform generator could easily be adjusted to modify the waveform in accordance with changed operational requirements for differential-mobility spectrometers. The capacitive nature of the load is an important consideration in the design of the proposed waveform generator. For example, the design provision for shaping the output waveform is based partly on the principle that (1) the potential (V) on a capacitor is given by V=q/C, where C is the capacitance and q is the charge stored in the capacitor; and, hence (2) the rate of increase or decrease of the potential is similarly proportional to the charging or discharging current. The proposed waveform generator would comprise four functional blocks: a sine-wave generator, a buffer, a voltage shifter, and a high-voltage switch (see Figure 1). The sine-wave generator would include a pair of operational amplifiers in a feedback configuration, the parameters of which would be chosen to obtain a sinusoidal timing signal of the desired frequency. The buffer would introduce a slight delay (approximately equal to 20 ns) but would otherwise

  15. SOLAR CONSTRAINTS ON ASYMMETRIC DARK MATTER

    International Nuclear Information System (INIS)

    Lopes, Ilídio; Silk, Joseph

    2012-01-01

    The dark matter content of the universe is likely to be a mixture of matter and antimatter, perhaps comparable to the measured asymmetric mixture of baryons and antibaryons. During the early stages of the universe, the dark matter particles are produced in a process similar to baryogenesis, and dark matter freezeout depends on the dark matter asymmetry and the annihilation cross section (s-wave and p-wave annihilation channels) of particles and antiparticles. In these η-parameterized asymmetric dark matter (ηADM) models, the dark matter particles have an annihilation cross section close to the weak interaction cross section, and a value of dark matter asymmetry η close to the baryon asymmetry η B . Furthermore, we assume that dark matter scattering of baryons, namely, the spin-independent scattering cross section, is of the same order as the range of values suggested by several theoretical particle physics models used to explain the current unexplained events reported in the DAMA/LIBRA, CoGeNT, and CRESST experiments. Here, we constrain ηADM by investigating the impact of such a type of dark matter on the evolution of the Sun, namely, the flux of solar neutrinos and helioseismology. We find that dark matter particles with a mass smaller than 15 GeV, a spin-independent scattering cross section on baryons of the order of a picobarn, and an η-asymmetry with a value in the interval 10 –12 -10 –10 , would induce a change in solar neutrino fluxes in disagreement with current neutrino flux measurements. This result is also confirmed by helioseismology data. A natural consequence of this model is suppressed annihilation, thereby reducing the tension between indirect and direct dark matter detection experiments, but the model also allows a greatly enhanced annihilation cross section. All the cosmological ηADM scenarios that we discuss have a relic dark matter density Ωh 2 and baryon asymmetry η B in agreement with the current WMAP measured values, Ω DM h 2 = 0

  16. Asymmetric Branching in Biological Resource Distribution Networks

    Science.gov (United States)

    Brummer, Alexander Byers

    There is a remarkable relationship between an organism's metabolic rate (resting power consumption) and the organism's mass. It may be a universal law of nature that an organism's resting metabolic rate is proportional to its mass to the power of 3/4. This relationship, known as Kleiber's Law, appears to be valid for both plants and animals. This law is important because it implies that larger organisms are more efficient than smaller organisms, and knowledge regarding metabolic rates are essential to a multitude of other fields in ecology and biology. This includes modeling the interactions of many species across multiple trophic levels, distributions of species abundances across large spatial landscapes, and even medical diagnostics for respiratory and cardiovascular pathologies. Previous models of vascular networks that seek to identify the origin of metabolic scaling have all been based on the unrealistic assumption of perfectly symmetric branching. In this dissertation I will present a theory of asymmetric branching in self-similar vascular networks (published by Brummer et al. in [9]). The theory shows that there can exist a suite of vascular forms that result in the often observed 3/4 metabolic scaling exponent of Kleiber's Law. Furthermore, the theory makes predictions regarding major morphological features related to vascular branching patterns and their relationships to metabolic scaling. These predictions are suggestive of evolutionary convergence in vascular branching. To test these predictions, I will present an analysis of real mammalian and plant vascular data that shows: (i) broad patterns in vascular networks across entire animal kingdoms and (ii) within these patterns, plant and mammalian vascular networks can be uniquely distinguished from one another (publication in preparation by Brummer et al.). I will also present results from a computational study in support of point (i). Namely, that asymmetric branching may be the optimal strategy to

  17. BEAMS3D Neutral Beam Injection Model

    Energy Technology Data Exchange (ETDEWEB)

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  18. Successful Beam-Beam Tuneshift Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip Aaron [Univ. of California, Los Angeles, CA (United States)

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (TEL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operations with inclusion of the TEL are presented and analyzed. It is shown that the TEL provides a way to shatter the previously inescapable beam-beam limit.

  19. Beam Loss in Linacs

    CERN Document Server

    Plum, M.A.

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  20. Beam scanning system

    International Nuclear Information System (INIS)

    Enge, H.A.

    1977-01-01

    A system for deflecting a beam of particles having different momenta, preferably through a 90 0 angle, so as to cause the beam to impinge upon a moving target and to scan across the target is described. The system includes a means responsive to a beam from a suitable source for causing the beam to periodically scan in a scanning plane and further means for deflecting the periodically scanned beam through the desired angle in a deflection plane so that the deflected beam impinges on the target. Means are included in the system for reducing the momentum dispersion at the target in both the deflection and the scanning planes and for spatially focussing the beam so as to produce a desired beam diameter at the target

  1. Crossed beam experiments

    International Nuclear Information System (INIS)

    Dolder, K.T.

    1976-01-01

    Many natural phenomena can only be properly understood if one has a detailed knowledge of interactions involving atoms, molecules, ions, electrons or photons. In the laboratory these processes are often studied by preparing beams of two types of particle and observing the reactions which occur when the beams intersect. Some of the more interesting of these crossed beam experiments and their results are discussed. Proposals to extend colliding beam techniques to high energy particle physics are also outlined. (author)

  2. Knudsen torque on heated micro beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qi; Liang, Tengfei; Ye, Wenjing [Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon (Hong Kong)

    2014-12-09

    Thermally induced mechanical loading has been shown to have significant effects on micro/nano objects immersed in a gas with a non-uniform temperature field. While the majority of existing studies and related applications focus on forces, we investigate the torque, and thus the rotational motion, produced by such a mechanism. Using the asymptotic analysis in the near continuum regime, the Knudsen torque acting on an asymmetrically located uniformly heated microbeam in a cold enclosure is investigated. The existence of a non-zero net torque is demonstrated. In addition, it has been found that by manipulating the system configuration, the rotational direction of the torque can be changed. Two types of rotational motion of the microbeam have been identified: the pendulum motion of a rectangular beam, and the unidirectional rotation of a cylindrical beam. A rotational frequency of 4 rpm can be achieved for the cylindrical beam with a diameter of 3μm at Kn = 0.005. Illustrated by the simulations using the direct simulation of Monte Carlo, the Knudsen torque can be much increased in the transition regime, demonstrating the potential of Knudsen torque serving as a rotation engine for micro/nano objects.

  3. Computation in Dynamically Bounded Asymmetric Systems

    Science.gov (United States)

    Rutishauser, Ueli; Slotine, Jean-Jacques; Douglas, Rodney

    2015-01-01

    Previous explanations of computations performed by recurrent networks have focused on symmetrically connected saturating neurons and their convergence toward attractors. Here we analyze the behavior of asymmetrical connected networks of linear threshold neurons, whose positive response is unbounded. We show that, for a wide range of parameters, this asymmetry brings interesting and computationally useful dynamical properties. When driven by input, the network explores potential solutions through highly unstable ‘expansion’ dynamics. This expansion is steered and constrained by negative divergence of the dynamics, which ensures that the dimensionality of the solution space continues to reduce until an acceptable solution manifold is reached. Then the system contracts stably on this manifold towards its final solution trajectory. The unstable positive feedback and cross inhibition that underlie expansion and divergence are common motifs in molecular and neuronal networks. Therefore we propose that very simple organizational constraints that combine these motifs can lead to spontaneous computation and so to the spontaneous modification of entropy that is characteristic of living systems. PMID:25617645

  4. Unitarity Constraints on Asymmetric Freeze-In

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; /SLAC

    2011-08-15

    This paper considers unitarity and CPT constraints on asymmetric freeze-in, the use of freeze-in to store baryon number in a dark sector. In this scenario, Sakharov's out of equilibrium condition is satisfied by placing the visible and hidden sectors at different temperatures while a net visible baryon number is produced by storing negative baryon number in a dark sector. It is shown that unitarity and CPT lead to unexpected cancellations. In particular, the transfer of baryon number cancels completely at leading order. This note has shown that if two sectors are in thermal equilibrium with themselves, but not with each other, then the leading effect transferring conserved quantities between the two sectors is of order the the weak coupling connecting them to the third power. When freeze-in is used to produce a net baryon number density, the leading order effect comes from {Omicron}({lambda}{sup 3}) diagrams where the intermediate state that goes on-shell has a different visible baryon number than the final state visible baryon number. Models in which the correct baryon number is generated with freeze-in as the dominant source of abundance, typically require {lambda} {approx}> 10{sup -6} and m{sub bath} {approx}> TeV. m{sub bath} is the mass of the visible particle which communicates with the hidden sector. The lower window is potentially observable at the LHC.

  5. Asymmetric iterative blind deconvolution of multiframe images

    Science.gov (United States)

    Biggs, David S. C.; Andrews, Mark

    1998-10-01

    Imaging through a stochastically varying distorting medium, such as a turbulent atmosphere, requires multiple short-exposure frames to ensure maximum resolution of object features. Restoration methods are used to extract the common underlying object from the speckle images, and blind deconvolution techniques are required as typically there is little prior information available about either the image or individual PSFs. A method is presented for multiframe restoration based on iterative blind deconvolution, which alternates between restoring the image and PSF estimates. A maximum-likelihood approach is employed via the Richardson-Lucy (RL) method which automatically ensures positively and conservation of the total number of photons. The restoration is accelerated by applying a vector sequence is treated as a 3D volume of data and processed to produce a 3D stack of PSFs and a single 2D image of the object. The problem of convergence to an undesirable solution, such as a delta function, is addressed by weighting the number of image or PSF iterations according to how quickly each is converging, this leads to the asymmetrical nature of the algorithm. Noise artifacts are suppressed by using a dampened RL algorithm to prevent over fitting of the corrupted data. Results are presented for real single frame and simulated multiframe speckle imaging.

  6. Asymmetric sensory reweighting in human upright stance.

    Directory of Open Access Journals (Sweden)

    David Logan

    Full Text Available To investigate sensory reweighting as a fundamental property of sensor fusion during standing, we probed postural control with simultaneous rotations of the visual scene and surface of support. Nineteen subjects were presented with pseudo-random pitch rotations of visual scene and platform at the ankle to test for amplitude dependencies in the following conditions: low amplitude vision: high amplitude platform, low amplitude vision: low amplitude platform, and high amplitude vision: low amplitude platform. Gain and phase of frequency response functions (FRFs to each stimulus were computed for two body sway angles and a single weighted EMG signal recorded from seven muscles. When platform stimulus amplitude was increased while visual stimulus amplitude remained constant, gain to vision increased, providing strong evidence for inter-modal reweighting between vision and somatosensation during standing. Intra-modal reweighting of vision was also observed as gains to vision decreased as visual stimulus amplitude increased. Such intra-modal and inter-modal amplitude dependent changes in gain were also observed in muscular activity. Gains of leg segment angle and muscular activity relative to the platform, on the other hand, showed only intra-modal reweighting. That is, changing platform motion amplitude altered the responses to both visual and support surface motion whereas changing visual scene motion amplitude did not significantly affect responses to support surface motion, indicating that the sensory integration scheme between somatosensation (at the support surface and vision is asymmetric.

  7. Asymmetric Dark Matter and Dark Radiation

    International Nuclear Information System (INIS)

    Blennow, Mattias; Martinez, Enrique Fernandez; Mena, Olga; Redondo, Javier; Serra, Paolo

    2012-01-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum

  8. Climate policy, asymmetric information and firm survival

    International Nuclear Information System (INIS)

    Hagem, C.

    2001-02-01

    The purpose of this paper is to compare the effect of different domestic climate policy instruments under asymmetric information when the regulator wants to secure the survival of a specific firm. It is a well-known result from economic theory that emission taxes lead to a cost-effective distribution of abatement across polluters. However, if the regulator wants to ensure the survival of a specific firm, it may need to design policy instruments that reduce the firm's cost of complying with an emission tax regime. The climate policy instruments considered in this paper are tradable emission permits with distribution of free permits, emission taxes in combination with a fixed subsidy, and two types of voluntary agreements. It demonstrates first that if distributing free tradable permits shall have a preventing effect, the allocation of permits has to be made contingent on production. It further shows that a voluntary agreement where a specific abatement target is set by the regulator can prevent a shutdown but leads to lower welfare than the use of emission taxes in combination with a fixed subsidy. And finally it illustrates that a voluntary agreement designed as a menu of abatement contracts increases social welfare compared to an emission tax regime

  9. Network effects on coordination in asymmetric games.

    Science.gov (United States)

    Broere, Joris; Buskens, Vincent; Weesie, Jeroen; Stoof, Henk

    2017-12-05

    Network structure can have an important effect on the behavior of players in an iterated 2 × 2 game. We study the effect of network structure on global and local behavior in asymmetric coordination games using best response dynamics. We find that global behavior is highly dependent on network topology. Random (Erdös-Rényi) networks mostly converge to homogeneous behavior, but the higher the clustering in the network the more heterogeneous the behavior becomes. Behavior within the communities of the network is almost exclusively homogeneous. The findings suggest that clustering of networks facilitates self-organization of uniform behavior within clusters, but heterogeneous behavior between clusters. At the local level we find that some nodes are more important in determining the equilibrium behavior than other nodes. Degree centrality is for most networks the main predictor for the behavior and nodes with an even degree have an advantage over nodes with an uneven degree in dictating the behavior. We conclude that the behavior is difficult to predict for (Erdös-Rényi) networks and that the network imposes the behavior as a function of clustering and degree heterogeneity in other networks.

  10. Asymmetric translation between multiple representations in chemistry

    Science.gov (United States)

    Lin, Yulan I.; Son, Ji Y.; Rudd, James A., II

    2016-03-01

    Experts are more proficient in manipulating and translating between multiple representations (MRs) of a given concept than novices. Studies have shown that instruction using MR can increase student understanding of MR, and one model for MR instruction in chemistry is the chemistry triplet proposed by Johnstone. Concreteness fading theory suggests that presenting concrete representations before abstract representations can increase the effectiveness of MR instruction; however, little work has been conducted on varying the order of different representations during instruction and the role of concreteness in assessment. In this study, we investigated the application of concreteness fading to MR instruction and assessment in teaching chemistry. In two experiments, undergraduate students in either introductory psychology courses or general chemistry courses were given MR instruction on phase changes using different orders of presentation and MR assessment questions based on the representations in the chemistry triplet. Our findings indicate that the order of presentation based on levels of concreteness in MR chemistry instruction is less important than implementation of comprehensive MR assessments. Even after MR instruction, students display an asymmetric understanding of the chemical phenomenon on the MR assessments. Greater emphasis on MR assessments may be an important component in MR instruction that effectively moves novices toward more expert MR understanding.

  11. Experimental study of asymmetric heart valve prototype

    Science.gov (United States)

    Vukicevic, M.; Fortini, S.; Querzoli, G.; Cenedese, A.; Pedrizzetti, G.

    2011-11-01

    The mechanical heart valves (MHVs) are extremely important medical devices, commonly used for diseased heart valves replacement. Despite the long term of use and constant design refinement, the MHVs are very far from ideal and their performance is very diverse from that of the native ones. It has been approved that small variations in geometry of valvular leaflets influence the significant change in the intraventricular vortical flow, known as one of the most important factors for the overall functionality of the heart. We have experimentally examined the home-made heart valve prototypes, exclusively modeled for the mitral valve replacement. The performance and energetic properties of the prototypes have been compared with those in the presence of standard MHVs. The analysis was based on the testing of intraventricular fluid dynamics, usually missing criteria for the quality of the valve performance. It has been shown that the asymmetric prototype, with unequal leaflets and D-shaped orifice produces flow patterns and energetic properties close to those found in the healthy subjects. Thus, the break of symmetry in the standard bi-leaflet MHV prosthesis, at least from the fluid dynamics point of view, is worthwhile to be considered for the design of MHVs for the mitral valve replacement.

  12. Collaborative hierarchy maintains cooperation in asymmetric games.

    Science.gov (United States)

    Antonioni, Alberto; Pereda, María; Cronin, Katherine A; Tomassini, Marco; Sánchez, Angel

    2018-03-29

    The interplay of social structure and cooperative behavior is under much scrutiny lately as behavior in social contexts becomes increasingly relevant for everyday life. Earlier experimental work showed that the existence of a social hierarchy, earned through competition, was detrimental for the evolution of cooperative behaviors. Here, we study the case in which individuals are ranked in a hierarchical structure based on their performance in a collective effort by having them play a Public Goods Game. In the first treatment, participants are ranked according to group earnings while, in the second treatment, their rankings are based on individual earnings. Subsequently, participants play asymmetric Prisoner's Dilemma games where higher-ranked players gain more than lower ones. Our experiments show that there are no detrimental effects of the hierarchy formed based on group performance, yet when ranking is assigned individually we observe a decrease in cooperation. Our results show that different levels of cooperation arise from the fact that subjects are interpreting rankings as a reputation which carries information about which subjects were cooperators in the previous phase. Our results demonstrate that noting the manner in which a hierarchy is established is essential for understanding its effects on cooperation.

  13. Asymmetric evaluation promotes cooperation in network population

    Science.gov (United States)

    Shen, Chen; Li, Xiaoping; Shi, Lei; Deng, Zhenghong

    2017-05-01

    The evolution of cooperation remains a fundamental challenge in human society. Many previous studies investigated these questions via spatial reciprocity, where players obtain their payoffs by interacting with their direct neighbors. It has also been verified that environmental factors can influence the evolution of cooperation theoretically and empirically. In reality, however, individuals may have the limit knowledge about their indirect neighbors. Inspired by this fact, we consider an asymmetric fitness calculation mechanism, which only integrates the environment factors into the focal player, to explore the evolution of cooperation. Here, the environmental factor is defined as the average payoff of all individual neighbors, which is regulated by a tunable parameter u. Through numerical simulation, we find that, compared with the traditional version (u = 0), that the cooperation level can be greatly enhanced when u is positive. Interestingly, the larger the value of u, the higher the level of cooperation. Finally, to explore the generality of this finding, we have tested the results on different topologies.

  14. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  15. Beams 92: Proceedings

    International Nuclear Information System (INIS)

    Mosher, D.; Cooperstein, G.

    1993-01-01

    This report contains papers on the following topics: Ion beam papers; electron beam, bremsstrahlung, and diagnostics papers; radiating Z- pinch papers; microwave papers; electron laser papers; advanced accelerator papers; beam and pulsed power applications papers; pulsed power papers; and these papers have been indexed separately elsewhere

  16. Polarization dependent switching of asymmetric nanorings with a circular field

    Directory of Open Access Journals (Sweden)

    Nihar R. Pradhan

    2016-01-01

    Full Text Available We experimentally investigated the switching from onion to vortex states in asymmetric cobalt nanorings by an applied circular field. An in-plane field is applied along the symmetric or asymmetric axis of the ring to establish domain walls (DWs with symmetric or asymmetric polarization. A circular field is then applied to switch from the onion state to the vortex state, moving the DWs in the process. The asymmetry of the ring leads to different switching fields depending on the location of the DWs and direction of applied field. For polarization along the asymmetric axis, the field required to move the DWs to the narrow side of the ring is smaller than the field required to move the DWs to the larger side of the ring. For polarization along the symmetric axis, establishing one DW in the narrow side and one on the wide side, the field required to switch to the vortex state is an intermediate value.

  17. Asymmetric MRI Systems: Shim and RF Coil Designs

    National Research Council Canada - National Science Library

    Crozier, S

    2001-01-01

    We have recently introduced the concept of asymmetric clinical MRI systems. The potential advantages of these systems include a reduced perception of claustrophobia by patients and better physician access to the patient...

  18. Asymmetric wave transmission in a diatomic acoustic/elastic metamaterial

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bing; Tan, K. T., E-mail: ktan@uakron.edu [Department of Mechanical Engineering, The University of Akron, Akron, Ohio 44325-3903 (United States)

    2016-08-21

    Asymmetric acoustic/elastic wave transmission has recently been realized using nonlinearity, wave diffraction, or bias effects, but always at the cost of frequency distortion, direction shift, large volumes, or external energy. Based on the self-coupling of dual resonators, we propose a linear diatomic metamaterial, consisting of several small-sized unit cells, to realize large asymmetric wave transmission in low frequency domain (below 1 kHz). The asymmetric transmission mechanism is theoretically investigated, and numerically verified by both mass-spring and continuum models. This passive system does not require any frequency conversion or external energy, and the asymmetric transmission band can be theoretically predicted and mathematically controlled, which extends the design concept of unidirectional transmission devices.

  19. Asymmetric continuum extreme processes in solids and fluids

    CERN Document Server

    Teisseyre, Roman

    2014-01-01

    This book deals with a class of basic deformations in asymmetric continuum theory. It describes molecular deformations and transport velocities in fluids, strain deformations in solids as well as the molecular transport, important in fracture processes.

  20. Vertical Control and Parallel Trade under Asymmetric Information

    Directory of Open Access Journals (Sweden)

    Alessandro Avenali

    2015-05-01

    profits from the manufacturer to the wholesaler. Therefore, in R&D-intensive industries, such as pharmaceuticals, policy makers should anticipate the likely consequences of PT under asymmetric information on the long-run incentives to innovate.

  1. Subglottic cysts and asymmetrical subglottic narrowing on neck radiograph

    International Nuclear Information System (INIS)

    Holinger, L.D.; Torium, D.M.; Anandappa, E.C.

    1988-01-01

    The congenital subglottic hemangioma typically appears as an asymmetric subglottic narrowing or mass on frontal neck radiograph. Therefore, soft tissue neck radiography has been advocated as a definitive non-operative approach for diagnosing these lesions. However, we have noted similar asymmetric subglottic narrowing in patients with acquired subglottic cysts. These retention cysts occur following long-term intubation in the neonate. The mechanism probably involves subglottic fibrosis which obstructs glands with subsequent cyst formation. Acquired subglottic cysts typically appear as an asymmetric narrowing on frontal or lateral soft tissue neck radiographs. These lesions may produce airway compromise but are effectively treated by forceps or laser removal. Acquired subglottic cysts must be included in the differential diagnosis of asymmetric subglottic narrowing. The definitive diagnosis is made by direct laryngoscopy, not soft tissue neck radiograph. (orig.)

  2. Performance evaluation of HTTP/TCP on asymmetric networks

    Science.gov (United States)

    Hasegawa, Go; Murata, Masayuki; Miyahara, Hideo

    1999-08-01

    As the Internet users grow, new network technologies are emerging. Those include ADSL and CATV Internet, which essentially provide asymmetric bandwidth for uplink and downlink to the user's connection. In this paper, we investigate the behavior of HTTP/TCP protocols on such asymmetric networks, and present the analytic results of the mean throughput of TCP. The transfer time of Web documents by HTTP over TCP is also derived. In the analysis, we consider newer HTTP/TCP protocols, HTTP/1.1 and TCP Vegas, in addition to HTTP/1.0 and TCP Tahoe. We then investigate the appropriate combination of HTTP and TCP protocols on the asymmetric network. The results show that the effect of HTTP/1.1 is quite small, but TCP Vegas can improve the performance in asymmetric networks if it is appropriately modified as in our proposal.

  3. Salt supply to and significance of asymmetric salt diapirs

    DEFF Research Database (Denmark)

    Koyi, H.; Burliga, S.; Chemia, Zurab

    2012-01-01

    Salt diapirs can be asymmetric both internally and externally reflecting their evolution history. As such, this asymmetry bear a significant amount of information about the differential loading (± lateral forces) and in turn the salt supply that have shaped the diapir. In two dimensions...... southeastern overhang due to salt extrusion during Middle Cretaceous followed by its burial in Tertiary. This external asymmetry is also reflected in the internal configuration of the diapir which shows different rates of salt flow on the two halves of the structure. The asymmetric external and internal...... sediments, the diapir extruded an overhang. Using the asymmetric Klodawa Salt Structure (KSS) in central Poland as a prototype, a series of analogue models were carried out to investigate the evolution history and salt supply driven by asymmetric differential loading. During extension of the model, a daipir...

  4. Chiral Brønsted Acids for Asymmetric Organocatalysis

    Science.gov (United States)

    Kampen, Daniela; Reisinger, Corinna M.; List, Benjamin

    Chiral Brønsted acid catalysis is an emerging area of organocatalysis. Since the pioneering studies of the groups of Akiyama and Terada in 2004 on the use of chiral BINOL phosphates as powerful Brønsted acid catalysts in asymmetric Mannich-type reactions, numerous catalytic asymmetric transformations involving imine activation have been realized by means of this catalyst class, including among others Friedel-Crafts, Pictet-Spengler, Strecker, cycloaddition reactions, transfer hydrogenations, and reductive aminations. More recently, chiral BINOL phosphates found application in multicomponent and cascade reactions as for example in an asymmetric version of the Biginelli reaction. With the introduction of chiral BINOL-derived N-triflyl phosphoramides in 2006, asymmetric Brønsted acid catalysis is no longer restricted to reactive substrates. Also certain carbonyl compounds can be activated through these stronger Brønsted acid catalysts. In dealing with sensitive substrate classes, chiral dicarboxylic acids proved of particular value.

  5. Asymmetric H-D exchange reactions of fluorinated aromatic ketones

    KAUST Repository

    Zhao, Yujun

    2012-01-01

    Chiral bicyclic guanidine catalyzes the asymmetric H-D exchange reactions. Up to 30% ee was achieved. DFT calculations were employed to elucidate and explain the origin of the reaction\\'s stereoselectivity. © 2012 The Royal Society of Chemistry.

  6. Catalytic asymmetric alkylation of ketones using organometallic reagents

    NARCIS (Netherlands)

    Madduri, Ashoka V.R.; Harutyunyan, Syuzanna R.; Minnaard, Adriaan J.

    2013-01-01

    The catalytic asymmetric synthesis of tertiary alcohols by the addition of organometallic reagents to ketones is of central importance in organic chemistry. The resulting quaternary stereocentres are difficult to prepare selectively by other means despite their widespread occurrence in natural

  7. Asymmetric radiation transfer based on linear light-matter interaction

    Science.gov (United States)

    Jia, Zi-xun; Shuai, Yong; Zhang, Jia-hui; Tan, He-ping

    2017-11-01

    In this paper, asymmetric radiation transfer based on linear light-matter interaction has been proposed. Two naturally different numerical methods, finite difference time domain (FDTD) and rigorous coupled wave analysis (RCWA), are utilized to verify that asymmetric radiation transfer can exist for linear plasmonic meta-material. The overall asymmetry has been introduced to evaluate bifacial transmission. Physics for the asymmetric optical responses have been understood via electromagnetic field distributions. Dispersion relation for surface plasmon polariton (SPP) and temporal coupled mode theory (TCMT) have been employed to verify the physics discussed in the paper. Geometric effects and the disappearing of asymmetric transmission have also been investigated. The results gained herein broaden the cognition of linear optical system, facilitate the design of novel energy harvesting device.

  8. Reduction of contact stresses using involute gears with asymmetric teeth

    Directory of Open Access Journals (Sweden)

    Jarmila VOJTKOVÁ

    2015-12-01

    Full Text Available Asymmetrical involute gears have a different value of the operating pressure angle for right and left side of the gear. These teeth are suitable for one direction of rotation. Such teeth enable to change the length of the generating line. They enable to improve the value of reduced radii of curvature. Asymmetrical teeth allow reducing the values of Hertz's pressures, especially on the root of the teeth. Hertz pressures are directly related to the asymmetry.

  9. Asymmetric Effects on Escape Rates of Bistable System

    International Nuclear Information System (INIS)

    Wang Canjun; Mei Dongcheng; Dai Zucheng

    2011-01-01

    The asymmetric effects on the escape rates from the stable states x ± in the bistable system are analyzed. The results indicate that the multiplicative noise and the additive noise always enhance the particle escape from stable states x ± of bistable. However, the asymmetric parameter r enhances the particle escape from stable state x + , and holds back the particle escape from stable state x - . (general)

  10. Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

    Science.gov (United States)

    Xue, Yang; Li, Ling-Po; He, Yan-Hong; Guan, Zhi

    2012-10-01

    We reported the first enzyme-catalysed, direct, three-component asymmetric Mannich reaction using protease type XIV from Streptomyces griseus (SGP) in acetonitrile. Yields of up to 92% with enantioselectivities of up to 88% e.e. and diastereoselectivities of up to 92:8 (syn:anti) were achieved under the optimised conditions. This enzyme's catalytic promiscuity expands the application of this biocatalyst and provides a potential alternative method for asymmetric Mannich reactions.

  11. Asymmetric strand segregation: epigenetic costs of genetic fidelity?

    Directory of Open Access Journals (Sweden)

    Diane P Genereux

    2009-06-01

    Full Text Available Asymmetric strand segregation has been proposed as a mechanism to minimize effective mutation rates in epithelial tissues. Under asymmetric strand segregation, the double-stranded molecule that contains the oldest DNA strand is preferentially targeted to the somatic stem cell after each round of DNA replication. This oldest DNA strand is expected to have fewer errors than younger strands because some of the errors that arise on daughter strands during their synthesis fail to be repaired. Empirical findings suggest the possibility of asymmetric strand segregation in a subset of mammalian cell lineages, indicating that it may indeed function to increase genetic fidelity. However, the implications of asymmetric strand segregation for the fidelity of epigenetic information remain unexplored. Here, I explore the impact of strand-segregation dynamics on epigenetic fidelity using a mathematical-modelling approach that draws on the known molecular mechanisms of DNA methylation and existing rate estimates from empirical methylation data. I find that, for a wide range of starting methylation densities, asymmetric -- but not symmetric -- strand segregation leads to systematic increases in methylation levels if parent strands are subject to de novo methylation events. I found that epigenetic fidelity can be compromised when enhanced genetic fidelity is achieved through asymmetric strand segregation. Strand segregation dynamics could thus explain the increased DNA methylation densities that are observed in structured cellular populations during aging and in disease.

  12. Scaling relations for a beam-deflecting TM110 mode in an asymmetric cavity

    International Nuclear Information System (INIS)

    Takeda, H.

    1989-01-01

    A deflecting mode in an rf cavity caused by an aperture of the coupling hole from a waveguide is studied. If the coupling hole was a finite size, the rf modes in the cavity can be distorted. We consider the distorted mode as a sum of the accelerating mode, and the deflecting mode. The finite-size coupling hole can be considered as radiating dipole sources in a closed cavity. Following the prescription given by H. Bethe, the relative strength of the deflecting mode TM 110 to the accelerating TM 010 mode is calculated by decomposing the dipole source field into cavity eigenmodes. Scaling relations are obtained as a function of the coupling hole radius. 2 refs., 6 figs

  13. Analytical approach to calculate bending, longitudinal and torsional local stiffness of an asymmetric circumferential crack with contact condition

    Science.gov (United States)

    Sharafi, Mojtaba Meidan; Nikravesh, Majid Yadavar; Safarpour, Pedram

    2017-09-01

    In this paper, bending, longitudinal and torsional stiffness of an eccentric circumferential crack is investigated with taking into account contact condition on the crack surfaces based on fracture mechanics. Although several researches have analyzed stress intensity factors of symmetric circumferential crack, the stiffness of an asymmetric circumferential crack in different directions (along and perpendicular to eccentricity) regarding contact condition has not been studied by an analytical method until now. In this paper we aim to describe behavior of eccentric circumferential crack under axial loading and establish a relation between axial force and the resulting displacement vector. The twisting angle of asymmetric circumferential crack due to torsional loading is also calculated and compared to twisting angle of a symmetric crack. In order to simulate the local bending stiffness in the contact condition, nonlinear governing equations of bending stiffness associated to cracked beam section is developed by dividing it to strip elements and utilizing stiffness equations related to noncontact condition. It is validated by 3D finite element (FE) nonlinear model. Results show a significant compatibility between presented analytical and 3D FE methods. Moreover results of simulations show that without taking into account contact condition, axial, torsional and bending stiffness of symmetric and asymmetric circumferential crack are equal and radius of un-cracked area is the only influential factor.

  14. Monolithic I-Beam Crystal Monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Bagnasco, John

    2001-10-16

    Curved crystal, focusing monochromators featuring cubed-root thickness profiles typically employ side-clamped cooling to reduce thermally induced overall bend deformation of the crystal. While performance is improved, residual bend deformation is often an important limiting factor in the monochromator performance. A slightly asymmetric ``I-beam'' crystal cross section with cubed-root flange profiles has been developed to further reduce this effect. Physical motivation, finite-element modeling evaluation and performance characteristics of this design are discussed. Reduction of high mounting stress at the fixed end of the crystal required the soldering of an Invar support fixture to the crystal. Detailed descriptions of this process along with its performance characteristics are also presented.

  15. Orientation- and position-controlled alignment of asymmetric silicon microrod on a substrate with asymmetric electrodes

    Science.gov (United States)

    Shibata, Akihide; Watanabe, Keiji; Sato, Takuya; Kotaki, Hiroshi; Schuele, Paul J.; Crowder, Mark A.; Zhan, Changqing; Hartzell, John W.; Nakatani, Ryoichi

    2014-03-01

    In this paper, we demonstrate the orientation-controlled alignment of asymmetric Si microrods on a glass substrate with an asymmetric pair of electrodes. The Si microrods have the shape of a paddle with a blade and a shaft part, and the pair of electrodes consists of a narrow electrode and a wide electrode. By applying AC bias to the electrodes, the Si microrods suspended in a fluid align in such a way to settle across the electrode pair, and over 80% of the aligned Si microrods have an orientation with the blade and the shaft of the paddle on the wide and the narrow electrodes, respectively. When Si microrods have a shell of dielectric film and its thickness on the top face is thicker than that on the bottom face, 97.8% of the Si microrods are aligned with the top face facing upwards. This technique is useful for orientation-controlled alignment of nano- and microsized devices that have polarity or a distinction between the top and bottom faces.

  16. Asymmetric inhibitory treatment effects in multilingual aphasia.

    Science.gov (United States)

    Goral, Mira; Naghibolhosseini, Maryam; Conner, Peggy S

    2013-01-01

    Findings from recent psycholinguistic studies of bilingual processing support the hypothesis that both languages of a bilingual are always active and that bilinguals continually engage in processes of language selection. This view aligns with the convergence hypothesis of bilingual language representation. Furthermore, it is hypothesized that when bilinguals perform a task in one language they need to inhibit their other, nontarget language(s) and that stronger inhibition is required when the task is performed in the weaker language than in the stronger one. The study of multilingual individuals who acquire aphasia resulting from a focal brain lesion offers a unique opportunity to test the convergence hypothesis and the inhibition asymmetry. We report on a trilingual person with chronic nonfluent aphasia who at the time of testing demonstrated greater impairment in her first acquired language (Persian) than in her third, later learned language (English). She received treatment in English followed by treatment in Persian. An examination of her connected language production revealed improvement in her grammatical skills in each language following intervention in that language, but decreased grammatical accuracy in English following treatment in Persian. The increased error rate was evident in structures that are used differently in the two languages (e.g., auxiliary verbs). The results support the prediction that greater inhibition is applied to the stronger language than to the weaker language, regardless of their age of acquisition. We interpret the findings as consistent with convergence theories that posit overlapping neuronal representation and simultaneous activation of multiple languages and with proficiency-dependent asymmetric inhibition in multilinguals.

  17. Chilly dark sectors and asymmetric reheating

    International Nuclear Information System (INIS)

    Adshead, Peter; Cui, Yanou; Shelton, Jessie

    2016-01-01

    In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N eff , we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.

  18. Asymmetric Planetary Nebulae VI: the conference summary

    Science.gov (United States)

    De Marco, O.

    2014-04-01

    The Asymmetric Planetary Nebulae conference series, now in its sixth edition, aims to resolve the shaping mechanism of PN. Eighty percent of PN have non spherical shapes and during this conference the last nails in the coffin of single stars models for non spherical PN have been put. Binary theories abound but observational tests are lagging. The highlight of APN6 has been the arrival of ALMA which allowed us to measure magnetic fields on AGB stars systematically. AGB star halos, with their spiral patterns are now connected to PPN and PN halos. New models give us hope that binary parameters may be decoded from these images. In the post-AGB and pre-PN evolutionary phase the naked post-AGB stars present us with an increasingly curious puzzle as complexity is added to the phenomenologies of objects in transition between the AGB and the central star regimes. Binary central stars continue to be detected, including the first detection of longer period binaries, however a binary fraction is still at large. Hydro models of binary interactions still fail to give us results, if we make an exception for the wider types of binary interactions. More promise is shown by analytical considerations and models driven by simpler, 1D simulations such as those carried out with the code MESA. Large community efforts have given us more homogeneous datasets which will yield results for years to come. Examples are the ChanPlaN and HerPlaNe collaborations that have been working with the Chandra and Herschel space telescopes, respectively. Finally, the new kid in town is the intermediate-luminosity optical transient, a new class of events that may have contributed to forming several peculiar PN and pre-PN.

  19. Asymmetric explosion of core-collapse supernovae

    International Nuclear Information System (INIS)

    Kazeroni, Remi

    2016-01-01

    A core-collapse supernova represents the ultimate stage of the evolution of massive stars.The iron core contraction may be followed by a gigantic explosion which gives birth to a neutron star.The multidimensional dynamics of the innermost region, during the first hundreds milliseconds, plays a decisive role on the explosion success because hydrodynamical instabilities are able to break the spherical symmetry of the collapse. Large scale transverse motions generated by two instabilities, the neutrino-driven convection and the Standing Accretion Shock Instability (SASI),increase the heating efficiency up to the point of launching an asymmetric explosion and influencing the birth properties of the neutron star. In this thesis, hydrodynamical instabilities are studied using numerical simulations of simplified models. These models enable a wide exploration of the parameter space and a better physical understanding of the instabilities, generally inaccessible to realistic models.The non-linear regime of SASI is analysed to characterize the conditions under which a spiral mode prevails and to assess its ability to redistribute angular momentum radially.The influence of rotation on the shock dynamics is also addressed. For fast enough rotation rates, a corotation instability overlaps with SASI and greatly impacts the dynamics. The simulations enable to better constrain the effect of non-axisymmetric modes on the angular momentum budget of the iron core collapsing into a neutron star. SASI may under specific conditions spin up or down the pulsar born during the explosion. Finally, an idealised model of the heating region is studied to characterize the non-linear onset of convection by perturbations such as those produced by SASI or pre-collapse combustion inhomogeneities. The dimensionality issue is examined to stress the beneficial consequences of the three-dimensional dynamics on the onset of the explosion. (author) [fr

  20. Asymmetric Dimethyl Arginine in Hypothyroid Patients

    International Nuclear Information System (INIS)

    Abdel-Messeih, P.L.

    2012-01-01

    Thyroid diseases may lead to endothelial dysfunction, however, the mechanism underlying the endothelial dysfunction in thyroid disease is still not clear. Asymmetric dimethyl arginine (ADMA), a novel inhibitor of endothelial nitric oxide synthetase (eNOS), was reported to inhibit nitric oxide (NO) synthesis from L-arginine. The present study was carried out to investigate ADMA levels together with effects of dislipidemia in sub-clinical and overt hypothyroid females. There were significant increase in the levels of total cholesterol, low density lipoprotein-cholesterol (LDL-c), high density lipoprotein-cholesterol (HDL-c), thyroid stimulating hormone (TSH) and ADMA in hypothyroid females as compared to controls while the levels of NO and free T 4 were significantly decreased than controls. Sub-clinical hypothyroid females had significant high TSH, LDL-c and non-significantly high ADMA levels and total cholesterol as compared to controls while they had significant decrease in NO, HDL-c and non-significant decrease in free T 4 as compared to controls. There were significant negative correlations between NO and both ADMA (r 2 = 0.84) and free T 4 (r 2 = 0.95) in overt hypothyroid group while significant positive correlation (r 2 = 0.85) was detected between TSH and HDL-c in the same group. These results are highly suggestive that the decrease of nitric oxide secondary to accumulation of ADMA represent an important pathogenic factor together with dyslipidemia in endothelial dysfunction and increased cardiovascular risk especially in hypothyroid females

  1. Asymmetric transfer of auditory perceptual learning

    Directory of Open Access Journals (Sweden)

    Sygal eAmitay

    2012-11-01

    Full Text Available Perceptual skills can improve dramatically even with minimal practice. A major and practical benefit of learning, however, is in transferring the improvement on the trained task to untrained tasks or stimuli, yet the mechanisms underlying this process are still poorly understood. Reduction of internal noise has been proposed as a mechanism of perceptual learning, and while we have evidence that frequency discrimination (FD learning is due to a reduction of internal noise, the source of that noise was not determined. In this study, we examined whether reducing the noise associated with neural phase locking to tones can explain the observed improvement in behavioural thresholds. We compared FD training between two tone durations (15 and 100 ms that straddled the temporal integration window of auditory nerve fibers upon which computational modeling of phase locking noise was based. Training on short tones resulted in improved FD on probe tests of both the long and short tones. Training on long tones resulted in improvement only on the long tones. Simulations of FD learning, based on the computational model and on signal detection theory, were compared with the behavioral FD data. We found that improved fidelity of phase locking accurately predicted transfer of learning from short to long tones, but also predicted transfer from long to short tones. The observed lack of transfer from long to short tones suggests the involvement of a second mechanism. Training may have increased the temporal integration window which could not transfer because integration time for the short tone is limited by its duration. Current learning models assume complex relationships between neural populations that represent the trained stimuli. In contrast, we propose that training-induced enhancement of the signal-to-noise ratio offers a parsimonious explanation of learning and transfer that easily accounts for asymmetric transfer of learning.

  2. Theoretical modeling of the divergence of a flat-topped beam from a two-stage beam shaper into a conical intensity profile after propagation in free space

    Science.gov (United States)

    Haghighatzadeh, A.; Saadat, Sh.

    2014-02-01

    In this article, a two-stage beam shaping device based on a plastic fiber-bundle prism duct coupled waveguide is theoretically and experimentally described. ZEMAX software is used to simulate and investigate the divergence phenomenon on the beam shape outputted and the radiance profiles in both position and angle space. The effect of prism's geometrical structure on the beam divergence is also investigated and the optimum geometric conditions are reported. According to the theoretical results, due to an asymmetrical divergence effect the beam's cross section is increased with distance by a variable aspect ratio. The results also show that propagation in free space transformed a square beam with a flat-top intensity distribution into a rectangular beam with a conical intensity distribution. For experimental study, an imaging technique is applied to investigate the beam's output images and intensity profiles. A source light is used to illuminate the optical beam shaping elements of the reported design. Digital photographs of the beam's output for different axial distances are taken by a camera and the image data is converted into a response curve for comparison with the simulated image profiles. The obtained experimental results are strongly in agreement with the theoretical ones.

  3. Asymmetric photoredox transition-metal catalysis activated by visible light

    Science.gov (United States)

    Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric

    2014-11-01

    Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the `green' synthesis of non-racemic chiral molecules.

  4. Strong-strong beam-beam simulation on parallel computer

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji

    2004-08-02

    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders.

  5. Strong-strong beam-beam simulation on parallel computer

    International Nuclear Information System (INIS)

    Qiang, Ji

    2004-01-01

    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders

  6. Asymmetrical reinforcement and Wolbachia infection in Drosophila.

    Directory of Open Access Journals (Sweden)

    John Jaenike

    2006-10-01

    Full Text Available Reinforcement refers to the evolution of increased mating discrimination against heterospecific individuals in zones of geographic overlap and can be considered a final stage in the speciation process. One the factors that may affect reinforcement is the degree to which hybrid matings result in the permanent loss of genes from a species' gene pool. Matings between females of Drosophila subquinaria and males of D. recens result in high levels of offspring mortality, due to interspecific cytoplasmic incompatibility caused by Wolbachia infection of D. recens. Such hybrid inviability is not manifested in matings between D. recens females and D. subquinaria males. Here we ask whether the asymmetrical hybrid inviability is associated with a corresponding asymmetry in the level of reinforcement. The geographic ranges of D. recens and D. subquinaria were found to overlap across a broad belt of boreal forest in central Canada. Females of D. subquinaria from the zone of sympatry exhibit much stronger levels of discrimination against males of D. recens than do females from allopatric populations. In contrast, such reproductive character displacement is not evident in D. recens, consistent with the expected effects of unidirectional cytoplasmic incompatibility. Furthermore, there is substantial behavioral isolation within D. subquinaria, because females from populations sympatric with D. recens discriminate against allopatric conspecific males, whereas females from populations allopatric with D. recens show no discrimination against any conspecific males. Patterns of general genetic differentiation among populations are not consistent with patterns of behavioral discrimination, which suggests that the behavioral isolation within D. subquinaria results from selection against mating with Wolbachia-infected D. recens. Interspecific cytoplasmic incompatibility may contribute not only to post-mating isolation, an effect already widely recognized, but also to

  7. Laser beam shaping techniques

    Energy Technology Data Exchange (ETDEWEB)

    DICKEY,FRED M.; WEICHMAN,LOUIS S.; SHAGAM,RICHARD N.

    2000-03-16

    Industrial, military, medical, and research and development applications of lasers frequently require a beam with a specified irradiance distribution in some plane. A common requirement is a laser profile that is uniform over some cross-section. Such applications include laser/material processing, laser material interaction studies, fiber injection systems, optical data image processing, lithography, medical applications, and military applications. Laser beam shaping techniques can be divided into three areas: apertured beams, field mappers, and multi-aperture beam integrators. An uncertainty relation exists for laser beam shaping that puts constraints on system design. In this paper the authors review the basics of laser beam shaping and present applications and limitations of various techniques.

  8. Beam induced RF heating

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Bartmann, W; Baudrenghien, P; Berrig, O; Bracco, C; Bravin, E; Bregliozzi, G; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Garlasche, M; Gentini, L; Goddard, B; Grudiev, A; Henrist, B; Jones, R; Kononenko, O; Lanza, G; Lari, L; Mastoridis, T; Mertens, V; Métral, E; Mounet, N; Muller, J E; Nosych, A A; Nougaret, J L; Persichelli, S; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Salvachua, B; Sapinski, M; Schmidt, R; Shaposhnikova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wenninger, J; Wollmann, D; Zerlauth, M

    2012-01-01

    After the 2011 run, actions were put in place during the 2011/2012 winter stop to limit beam induced radio frequency (RF) heating of LHC components. However, some components could not be changed during this short stop and continued to represent a limitation throughout 2012. In addition, the stored beam intensity increased in 2012 and the temperature of certain components became critical. In this contribution, the beam induced heating limitations for 2012 and the expected beam induced heating limitations for the restart after the Long Shutdown 1 (LS1) will be compiled. The expected consequences of running with 25 ns or 50 ns bunch spacing will be detailed, as well as the consequences of running with shorter bunch length. Finally, actions on hardware or beam parameters to monitor and mitigate the impact of beam induced heating to LHC operation after LS1 will be discussed.

  9. Craft Stick Beams

    Science.gov (United States)

    Karplus, Alan K.

    1996-01-01

    The objective of this exercise is to provide a phenomenological 'hands-on' experience that shows how geometry can affect the load carrying capacity of a material used in construction, how different materials have different failure characteristics, and how construction affects the performance of a composite material. This will be accomplished by building beams of a single material and composite beams of a mixture of materials (popsicle sticks, fiberboard sheets, and tongue depressors); testing these layered beams to determine how and where they fail; and based on the failure analysis, designing a layered beam that will fail in a predicted manner. The students will learn the effects of lamination, adhesion, and geometry in layered beam construction on beam strength and failure location.

  10. Beam Extraction and Transport

    CERN Document Server

    Kalvas, T.

    2013-12-16

    This chapter gives an introduction to low-energy beam transport systems, and discusses the typically used magnetostatic elements (solenoid, dipoles and quadrupoles) and electrostatic elements (einzel lens, dipoles and quadrupoles). The ion beam emittance, beam space-charge effects and the physics of ion source extraction are introduced. Typical computer codes for analysing and designing ion optical systems are mentioned, and the trajectory tracking method most often used for extraction simulations is described in more detail.

  11. Mechanical beam isolator

    International Nuclear Information System (INIS)

    Post, R.F.; Vann, C.S.

    1996-10-01

    Back-reflections from a target, lenses, etc. can gain energy passing backwards through a laser just like the main beam gains energy passing forwards. Unless something blocks these back-reflections early in their path, they can seriously damage the laser. A Mechanical Beam Isolator is a device that blocks back-reflections early, relatively inexpensively, and without introducing aberrations to the laser beam

  12. Cyclotron radiation beam control

    International Nuclear Information System (INIS)

    Dominke, P.

    1983-01-01

    This patent application describes an apparatus for attenuating a beam of particulate radiation comprising a series of modules, each module being constituted by a sphere having a passage, a cupola covering said sphere and a base supporting said sphere, and means for causing movement of the spheres for aligning said passages with an axis of a beam line and arranging said passages out of alignment so as to attenuate the beam. (author)

  13. Chilled beam application guidebook

    CERN Document Server

    Butler, David; Gräslund, Jonas; Hogeling, Jaap; Lund Kristiansen, Erik; Reinikanen, Mika; Svensson, Gunnar

    2007-01-01

    Chilled beam systems are primarily used for cooling and ventilation in spaces, which appreciate good indoor environmental quality and individual space control. Active chilled beams are connected to the ventilation ductwork, high temperature cold water, and when desired, low temperature hot water system. Primary air supply induces room air to be recirculated through the heat exchanger of the chilled beam. In order to cool or heat the room either cold or warm water is cycled through the heat exchanger.

  14. Who needs hyperon beams

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1976-01-01

    Hyperon beams can provide new interesting information about hadron structure and their strong, electromagnetic and weak interactions. The dependence of hadron interactions on strangeness and baryon number is not understood, and data from hyperon beams can provide new clues to paradoxes which arise in the interpretation of data from conventional beams. Examples of interesting data are total and differential cross sections, magnetic moments and values of Gsub(A)/Gsub(V) for weak semileptonic decays. (author)

  15. Success Factors of Asymmetric Connections - Example of Large Slovenian Enterprises

    Directory of Open Access Journals (Sweden)

    Viktor Vračar

    2014-11-01

    Full Text Available More and more companies realize the fact that networking or partner collaborations, which are based on partner relations between companies, are essential for their long-term existence. In today’s global competitive environment each company is included at least in some different connections. Very common connections occur between large and smaller enterprises, where the so called asymmetric connections occur, which may be understood as the ability of one organisation to establish power, influence and control over the other organisation and its resources. According to numerous statements, the connections between enterprises are very frequently uneffectivenessful, with opinions on the optimal nature of asymmetric connections being quite common as well, whereby it is, as a rule, a synergic complementing of missing content for both partners. To verify the thesis, that companies achieve more competitiveness and effectiveness through connections, whereby the so called asymmetric connections are common, a structural model of the evolution of asymmetric connection has been developed, which connects the theoretically identified factors and all dependent concepts of competitiveness, efficiency and effectiveness. The empirical research also attempts to further expose the factors of asymmetric connections, which affect efficiency and effectiveness of the connected enterprises.

  16. Time-Dependent-Asymmetric-Linear-Parsimonious Ancestral State Reconstruction.

    Science.gov (United States)

    Didier, Gilles

    2017-10-01

    The time-dependent-asymmetric-linear parsimony is an ancestral state reconstruction method which extends the standard linear parsimony (a.k.a. Wagner parsimony) approach by taking into account both branch lengths and asymmetric evolutionary costs for reconstructing quantitative characters (asymmetric costs amount to assuming an evolutionary trend toward the direction with the lowest cost). A formal study of the influence of the asymmetry parameter shows that the time-dependent-asymmetric-linear parsimony infers states which are all taken among the known states, except for some degenerate cases corresponding to special values of the asymmetry parameter. This remarkable property holds in particular for the Wagner parsimony. This study leads to a polynomial algorithm which determines, and provides a compact representation of, the parametric reconstruction of a phylogenetic tree, that is for all the unknown nodes, the set of all the possible reconstructed states associated with the asymmetry parameters leading to them. The time-dependent-asymmetric-linear parsimony is finally illustrated with the parametric reconstruction of the body size of cetaceans.

  17. Instability of compensated beam-beam collisions

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Autin, B.; Chen, Pisin.

    1989-01-01

    The beam-beam disruption phenomena in linear colliders are increasingly seen as a source of serious problems for these machines. A plasma compensation scheme, in which the motion of the plasma electrons in the presence of the colliding beams provides neutralizing charge and current densities, has been proposed and studied. But natural alternative to this scheme is to consider the overlapping of nearly identical high energy e + and e/sup /minus// bunches, and the collision of two such pairs - in other words, collision of two opposing relativistic positronium plasmas. It should be noticed that while the luminosity for all collisions is increased by a factor of four in this scheme, the event rate for e + e/sup /minus// collisions is only increased by a factor of two. The other factor of two corresponds to the addition of e + e + and e/sup /minus//e/sup /minus// collisions to the interaction point. This beam compensation scheme, which has been examined through computer simulation by Balakin and Solyak in the Soviet Union, promises full neutralization of beam charges and currents. These numerical investigations have shown that plasma instabilities exist in this nominally neutral system. Although the implementation of this idea seems technically daunting, the potential benefits (beamstrahlung and disruption suppression, relaxation of final focus system constraints) are such that we should consider the physics of these collisions further. In the remainder of this paper, we theoretically analyze the issues of stability and bunch parameter tolerances in this scheme. 11 refs

  18. Dual-beam CRT

    International Nuclear Information System (INIS)

    1975-01-01

    A dual-beam cathode-ray tube having a pair of electron guns and associated deflection means disposed side-by-side on each side of a central axis is described. The electron guns are parallel and the deflection means includes beam centering plates and angled horizontal deflection plates to direct the electron beams toward the central axis, precluding the need for a large-diameter tube neck in which the entire gun structures are angled. Bowing control plates are disposed adjacent to the beam centering plates to minimize trace bowing, and an intergun shield is disposed between the horizontal deflection plates to control and correct display pattern geometry distortion

  19. GANIL beam profile detectors

    International Nuclear Information System (INIS)

    Tribouillard, C.

    1997-01-01

    In the design phase of GANIL which started in 1977, one of the priorities of the project management was equipping the beamlines with a fast and efficient system for visualizing the beam position, thus making possible adjustment of the beam transport lines optics and facilitating beam control. The implantation of some thirty detectors was foreseen in the initial design. The assembly of installed detectors (around 190) proves the advantages of these detectors for displaying all the beams extracted from GANIL: transfer and transport lines, beam extracted from SISSI, very high intensity beam, secondary ion beams from the production target of the LISE and SPEG spectrometers, different SPIRAL project lines. All of these detectors are based on standard characteristics: - standard flange diameter (DN 160) with a standard booster for all the sensors; - identical analog electronics for all the detectors, with networking; - unique display system. The new micro-channel plate non-interceptive detectors (beam profile and ion packet lengths) make possible in-line control of the beam quality and accelerator stability. (author)

  20. ALFA beam halo

    CERN Document Server

    Komarek, Tomas

    2014-01-01

    This note serves as a final report about CERN Summer Student Programme 2014 project. The beam halo is an undesired phenomenon for physics analyses on particle accelerators. It surrounds the beam core and constitutes an important part of background for signal measurements on some detectors, eg. in the forward region. In this study, the data from the ALFA detector were used, specifically from the run 191373 ($\\beta^*=90\\unit{m}$) and the run 213268 ($\\beta^*=1\\unit{km}$). Using the ROOT framework, a software for beam halo events selection was created and beam halo properties were examined. In the run 213268, excessive beam halo is suspected to be the reason for multiple beam scrapings that occurred. A kinematic reconstruction of beam halo particles is attempted in order to understand beam halo properties in the interaction point. Some further simulations are employed to find constraints for beam halo particles in order to survive in the accelerator for a longer time/many revolutions. This work represents a st...

  1. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, Andre

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GuineaPig and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam background hitting the vertex detector.

  2. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, A

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GUINEAPIG and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam back- ground hitting the vertex detector.

  3. Beam-smiling in bent-Laue monochromators

    International Nuclear Information System (INIS)

    Ren, B.; Dilmanian, F.A.; Wu, X.Y.; Huang, X.; Ivanov, I.; Thomlinson, W.C.

    1997-01-01

    When a wide fan-shaped x-ray beam is diffracted by a bent crystal in the Laue geometry, the profile of the diffracted beam generally does not appear as a straight line, but as a line with its ends curved up or curved down. This effect, referred to as ' beam-smiling', has been a major obstacle in developing bent-Laue crystal monochromators for medical applications of synchrotron x-ray. We modeled a cylindrically bent crystal using the Finite Element Analysis (FEA) method, and we carried out experiments at the National Synchrotron Light Source and Cornell High Energy Synchrotron Source. Our studies show that, while beam-smiling exists in most of the crystal close-quote s area because of anticlastic bending effects, there is a region parallel to the bending axis of the crystal where the diffracted beam is ' smile-free'. By applying asymmetrical bending, this smile-free region can be shifted vertically away from the geometric center of the crystal, as desired. This leads to a novel method of compensating for beam-smiling. We will discuss the method of ' differential bending' for smile removal, beam-smiling in the Cauchios and the polychromatic geometry, and the implications of the method on developing single- and double-bent Laue monochromators. The experimental results will be discussed, concentrating on specific beam-smiling observation and removal as applied to the new monochromator of the Multiple Energy Computed Tomography [MECT] project of the Medical Department, Brookhaven National Laboratory. copyright 1997 American Institute of Physics

  4. Correction of beam-beam effects in luminosity measurement at ILC

    CERN Document Server

    Lukic, S

    2015-01-01

    Three methods for handling beam-beam effects in luminosity measurement at ILC are tested and evaluated in this work. The first method represents an optimization of the LEPtype asymmetric selection cuts that reduce the counting biases. The second method uses the experimentally reconstructed shape of the √ s ′ spectrum to determine the Beamstrahlung component of the bias. The last, recently proposed, collision-frame method relies on the reconstruction of the collision-frame velocity to define the selection function in the collision frame both in experiment and in theory. Thus the luminosity expression is insensitive to the difference between the CM frame of the collision and the lab frame. The collision-frame method is independent of the knowledge of the beam parameters, and it allows an accurate reconstruction of the luminosity spectrum above 80% of the nominal CM energy. However, it gives no precise infromation about luminosity below 80% of the nominal CM energy. The compatibility of diverse selection cut...

  5. Effect of laser beam conditioning on fabrication of clean micro-channel on stainless steel 316L using second harmonic of Q-switched Nd:YAG laser

    Science.gov (United States)

    Singh, Sanasam Sunderlal; Baruah, Prahlad Kr; Khare, Alika; Joshi, Shrikrishna N.

    2018-02-01

    Laser micromachining of metals for fabrication of micro-channels generate ridge formation along the edges accompanied by ripples along the channel bed. The ridge formation is due to the formation of interference pattern formed by back reflections from the beam splitter and other optical components involved before focusing on the work piece. This problem can be curtailed by using a suitable aperture or Iris diaphragm so as to cut the unwanted portion of the laser beam before illuminating the sample. This paper reports an experimental investigation on minimizing this problem by conditioning the laser beam using an Iris diaphragm and using optimum process parameters. In this work, systematic experiments have been carried out using the second harmonic of a Q-switched Nd:YAG laser to fabricate micro-channels. Initial experiments revealed that formation of ridges along the sides of micro-channel can easily be minimized with the help of Iris diaphragm. Further it is noted that a clean micro-channel of depth 43.39 μm, width up to 64.49 μm and of good surface quality with average surface roughness (Ra) value of 370 nm can be machined on stainless steel (SS) 316L by employing optimum process condition: laser beam energy of 30 mJ/pulse, 11 number of laser scans and scan speed of 169.54 μm/s with an opening of 4 mm diameter of Iris diaphragm in the path of the laser beam.

  6. Best Speed Fit EDF Scheduling for Performance Asymmetric Multiprocessors

    Directory of Open Access Journals (Sweden)

    Peng Wu

    2017-01-01

    Full Text Available In order to improve the performance of a real-time system, asymmetric multiprocessors have been proposed. The benefits of improved system performance and reduced power consumption from such architectures cannot be fully exploited unless suitable task scheduling and task allocation approaches are implemented at the operating system level. Unfortunately, most of the previous research on scheduling algorithms for performance asymmetric multiprocessors is focused on task priority assignment. They simply assign the highest priority task to the fastest processor. In this paper, we propose BSF-EDF (best speed fit for earliest deadline first for performance asymmetric multiprocessor scheduling. This approach chooses a suitable processor rather than the fastest one, when allocating tasks. With this proposed BSF-EDF scheduling, we also derive an effective schedulability test.

  7. Left-Right Asymmetrical Development of the Proepicardium

    Directory of Open Access Journals (Sweden)

    Jan Schlueter

    2013-07-01

    Full Text Available The proepicardium (PE is a cluster of cells that forms on the cardiac inflow tract and gives rise to the epicardium and connective tissue and largely contributes to the coronary vasculature. In many vertebrates, the PE undergoes left-right asymmetrical development. While PE cells and marker genes can be initially found on both sides, only the right-sided PE will fully develop and ultimately deliver cells to the heart. Several signalling inputs, like FGF and BMP signals, are involved in PE induction in the lateral plate mesoderm, as well as during inflow tract formation and, also, control asymmetric PE development. These signalling events will be put into the context of embryonic left-right asymmetry determination. Finally, it will be discussed whether PE development may serve as a readout for asymmetric inflow tract morphogenesis.

  8. Asymmetric chorea as presenting symptom in Graves' disease.

    Science.gov (United States)

    Park, Jinsung; Kim, Jung-Guk; Park, Sung-Pa; Lee, Ho-Won

    2012-04-01

    Chorea is an involuntary movement disorder characterized by irregular, brief movements that flow from one body part to another in a non-stereotyped fashion. In rare instances, chorea is associated with autoimmune thyroid disease. Most of them have been related with Hashimoto's encephalopathy and few cases have been related with Graves' disease. Most reported cases have been in women with Graves' disease. We describe a 16-year-old male patient with asymmetric chorea as presenting symptom in Graves' disease. He had no family history of neurological disease. Brain imaging, laboratory findings and electroencephalogram demonstrated no abnormality except for thyroid dysfunction which was proved by thyroid function test, sonography and radioiodine uptake scan. Asymmetric chorea improved over months after anti-thyroid medications. This asymmetry could be explained by difference in increased hypersensitivity or by the difference in the number of dopamine receptors, and an asymmetrical breakdown of blood-brain barrier due to their genetic differences.

  9. Asymmetric crying facies associated with hemihypertrophy: report of one case.

    Science.gov (United States)

    Caksen, Hüseyin; Patiroğlu, Türkan; Ciftçi, Ahmet; Cikrikçi, Vedat; Ceylaner, Serdar

    2003-01-01

    An infant whose face appears symmetrical at rest yet whose mouth is pulled downward to one side when crying is said to have an "asymmetric crying facies". The cause of the facial asymmetry in this disorder is congenital absence or hypoplasia of the depressor anguli oris muscle at the corner of the mouth. Associations of this minor facial defect with major congenital anomalies have been reported, most commonly in the cardiovascular system and less frequently involving the genitourinary, musculoskeletal, cervicofacial, respiratory, and, rarely, the central nervous system. In this article, a 40-day-old boy with asymmetric crying facies associated with malformed right ear, patent foramen ovale, hemivertebrae, thoracic scoliosis, and hemihypertrophy is presented. The last anomaly has not previously been published in association with asymmetric crying facies in the literature according to our knowledge.

  10. Organocatalyzed Asymmetric Synthesis of Axially, Planar, and Helical Chiral Compounds.

    Science.gov (United States)

    Shirakawa, Seiji; Liu, Shiyao; Kaneko, Shiho

    2016-02-04

    Axially, planar, and helical chiral compounds are indispensable building blocks in modern organic synthesis. A wide variety of chiral ligands and catalysts were designed based on these chiral scaffolds, and these chiral ligands and catalysts were used for various catalytic asymmetric transformations to produce important chiral compounds in an optically enriched form. Furthermore, these chiral skeletons are found in the structure of biologically active natural products. Thus, the development of efficient enantioselective methods for the synthesis of these chiral compounds is an important task in the field of organic chemistry. In the last few years, organocatalyzed approaches, which are one of the most reliable catalytic asymmetric methods, became a hot topic. This Focus Review summarizes asymmetric organocatalytic methods for the synthesis of axially, planar, and helical chiral compounds as useful chiral building blocks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Tourist Demand Reactions: Symmetric or Asymmetric across the Business Cycle?

    Science.gov (United States)

    Bronner, Fred; de Hoog, Robert

    2017-09-01

    Economizing and spending priorities on different types of vacations are investigated during two periods: an economic downturn and returning prosperity. Two nation-wide samples of vacationers are used: one during a downturn, the other one at the start of the recovery period. Through comparing the results, conclusions can be drawn about symmetric or asymmetric tourist demand across the business cycle. The main summer holiday has an asymmetric profile: being fairly crisis-resistant during a recession and showing considerable growth during an expansion. This does not apply to short vacations and day trips, each having a symmetric profile: during a recession they experience substantial reductions and during expansion comparable growth. So when talking about tourist demand in general , one cannot say that it is symmetric or asymmetric across the business cycle: it depends on the type of vacation. Differences in tourist demand are best explained by the role of Quality-of-Life for vacationers.

  12. Gravity-induced asymmetric distribution of a plant growth hormone

    Science.gov (United States)

    Bandurski, R. S.; Schulze, A.; Momonoki, Y.

    1984-01-01

    Dolk (1936) demonstrated that gravistimulation induced an asymmetric distribution of auxin in a horizontally-placed shoot. An attempt is made to determine where and how that asymmetry arises, and to demonstrate that the endogenous auxin, indole-3-acetic acid, becomes asymmetrically distributed in the cortical cells of the Zea mays mesocotyl during 3 min of geostimulation. Further, indole-3-acetic acid derived by hydrolysis of an applied transport form of the hormone, indole-3-acetyl-myo-inositol, becomes asymmetrically distributed within 15 min of geostimulus time. From these and prior data is developed a working theory that the gravitational stimulus induces a selective leakage, or secretion, of the hormone from the vascular tissue to the cortical cells of the mesocotyl.

  13. Six transformer based asymmetrical embedded Z-source inverters

    DEFF Research Database (Denmark)

    Wei, Mo; Poh Chiang, Loh; Chi, Jin

    2013-01-01

    Embedded/Asymmetrical embedded Z-source inverters were proposed to maintain smooth input current/voltage across the dc source and within the impedance network, remain the shoot-through feature used to boost up the dc-link voltage without adding bulky filter at input side. This paper introduces a ...... a class of transformer based asymmetrical embedded Z-source inverters which keep the smooth input current and voltage while achieving enhanced voltage boost capability. The presented inverters are verified by laboratory prototypes experimentally.......Embedded/Asymmetrical embedded Z-source inverters were proposed to maintain smooth input current/voltage across the dc source and within the impedance network, remain the shoot-through feature used to boost up the dc-link voltage without adding bulky filter at input side. This paper introduces...

  14. Lower Bounds in the Asymmetric External Memory Model

    DEFF Research Database (Denmark)

    Jacob, Riko; Sitchinava, Nodari

    2017-01-01

    Motivated by the asymmetric read and write costs of emerging non-volatile memory technologies, we study lower bounds for the problems of sorting, permuting and multiplying a sparse matrix by a dense vector in the asymmetric external memory model (AEM). Given an AEM with internal (symmetric) memory...... of size M, transfers between symmetric and asymmetric memory in blocks of size B and the ratio ω between write and read costs, we show Ω(min (N, ωN/B logω M/B N/B) lower bound for the cost of permuting N input elements. This lower bound also applies to the problem of sorting N elements. This proves...

  15. Asymmetric nanoparticle may go "active" at room temperature

    Science.gov (United States)

    Sheng, Nan; Tu, YuSong; Guo, Pan; Wan, RongZheng; Wang, ZuoWei; Fang, HaiPing

    2017-04-01

    Using molecular dynamics simulations, we show that an asymmetrically shaped nanoparticle in dilute solution possesses a spontaneously curved trajectory within a finite time interval, instead of the generally expected random walk. This unexpected dynamic behavior has a similarity to that of active matters, such as swimming bacteria, cells, or even fish, but is of a different physical origin. The key to the curved trajectory lies in the non-zero resultant force originated from the imbalance of the collision forces acted by surrounding solvent molecules on the asymmetrically shaped nanoparticle during its orientation regulation. Theoretical formulae based on microscopic observations have been derived to describe this non-zero force and the resulting motion of the asymmetrically shaped nanoparticle.

  16. Demonstrating H- beam focusing using an elliptical einzel lens

    Science.gov (United States)

    Lawrie, S. R.; Faircloth, D. C.; Letchford, A. P.; Whitehead, M. O.; Wood, T.

    2017-08-01

    H- ion source research is being performed at the ISIS spallation neutron and muon facility on a dedicated Vessel for Extraction and Source Plasma Analyses (VESPA). The ion extraction and optics system presently being used on ISIS is centered on a combined-function sector dipole magnet. This traps cesium vapor escaping the ion source; mass-separates co-extracted electrons and stripped neutrals, and weak-focusses the highly asymmetric slit-shaped ion beam. Unfortunately the added drift length through the magnet under strong space-charge forces means up to 50% of the beam is collimated on the magnet. The VESPA has shown that the ISIS ion source actually produces 80 mA of beam current at standard settings, but because of magnet collimation only 55 mA is injected into the solenoid Low Energy Beam Transport (LEBT). A new purely electrostatic post-extraction system incorporating an einzel lens with an elliptical aperture is currently under test. This allows much greater flexibility of perveance and phase space matching for injection into the LEBT and Radio Frequency Quadrupole (RFQ). This paper discusses high voltage breakdown mitigation strategies and presents the first results of the novel elliptical transport system. So far, 70 mA of beam has been transported through the new system with a normalized transverse RMS emittance of 0.2 π mm mrad.

  17. Flat-beam Rf photocathode sources for linear collider applications

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.

    1991-01-01

    Laser driven rf photocathodes represent a recent advance in high-brightness electron beam sources. The authors investigate here a variation on these devices, that obtained by using a ribbon laser pulse to illuminate the cathode, yielding a flat beam (σ x much-gt σ y ) which has asymmetric emittances at the cathode proportional to the beam size each transverse dimension. The flat-beam geometry mitigates space charge forces which lead to intensity dependent transverse and longitudinal emittance growth, thus limiting the beam brightness. The fundamental limit on achievable emittance and brightness is set by the transverse momentum distribution and peak current density of the photoelectrons (photon energy and cathode material dependent effects) and appears to allow, taking into account space charge and rf effects, normalized emittances ε x -5 m-rad and ε -6 m-rad, with Q = 5 nC and σ z = 1 mm. These source emittances are adequate for superconducting linear collider applications, and could preclude the use of a damping ring for the electrons in these schemes

  18. Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin.

    Science.gov (United States)

    Ogrodnik, Mikołaj; Salmonowicz, Hanna; Brown, Rachel; Turkowska, Joanna; Średniawa, Władysław; Pattabiraman, Sundararaghavan; Amen, Triana; Abraham, Ayelet-chen; Eichler, Noam; Lyakhovetsky, Roman; Kaganovich, Daniel

    2014-06-03

    Aging is associated with the accumulation of several types of damage: in particular, damage to the proteome. Recent work points to a conserved replicative rejuvenation mechanism that works by preventing the inheritance of damaged and misfolded proteins by specific cells during division. Asymmetric inheritance of misfolded and aggregated proteins has been shown in bacteria and yeast, but relatively little evidence exists for a similar mechanism in mammalian cells. Here, we demonstrate, using long-term 4D imaging, that the vimentin intermediate filament establishes mitotic polarity in mammalian cell lines and mediates the asymmetric partitioning of damaged proteins. We show that mammalian JUNQ inclusion bodies containing soluble misfolded proteins are inherited asymmetrically, similarly to JUNQ quality-control inclusions observed in yeast. Mammalian IPOD-like inclusion bodies, meanwhile, are not always inherited by the same cell as the JUNQ. Our study suggests that the mammalian cytoskeleton and intermediate filaments provide the physical scaffold for asymmetric inheritance of dynamic quality-control JUNQ inclusions. Mammalian IPOD inclusions containing amyloidogenic proteins are not partitioned as effectively during mitosis as their counterparts in yeast. These findings provide a valuable mechanistic basis for studying the process of asymmetric inheritance in mammalian cells, including cells potentially undergoing polar divisions, such as differentiating stem cells and cancer cells.

  19. The comparison of Co-60 and 4MV photons matching dosimetry during half-beam technique

    International Nuclear Information System (INIS)

    Cakir, Aydin; Bilge, Hatice; Dadasbilge, Alpar; Kuecuecuek, Halil; Okutan, Murat; Merdan Fayda, Emre

    2005-01-01

    In this phantom study, we tried to compare matching dosimetry differences between half-blocking of Co-60 and asymmetric collimation of the 4MV photons during craniospinal irradiation. The dose distributions are compared and discussed. Firstly, some gaps with different sizes are left between cranial and spinal field borders. Secondly, the fields are overlapped in the same sizes. We irradiate the films located in water-equivalent solid phantoms with Co-60 and 4MV photon beams. This study indicates that the field placement errors in +/- 1mm are acceptable for both Co-60 and 4MV photon energies during craniospinal irradiation with half-beam block technique. Within these limits the dose variations are specified in +/- 5%. However, the setup errors that are more than 1mm are unacceptable for both asymmetric collimation of 4MV photon and half-blocking of Co-60

  20. Axisymmetric stability of vertically asymmetric tokamaks at large beta poloidal

    International Nuclear Information System (INIS)

    Yamazaki, K.; Fishman, H.; Okabayashi, M.; Todd, A.M.M.

    1981-09-01

    The stability of high-β vertically asymmetric tokamak equilibria to rigid displacements is investigated analytically. It is found that vertical stability at large beta poloidal is mainly determined by a coupling between the shape of the plasma surface and the Shafranov shift of the magnetic axis. To the lowest order, symmetric components of the plasma surface shape are found to be the critical destabilizing elements. Asymmetric components have little effect. The inclusion of higher order terms in the high β tokamak expansion leads to further destabilization. Qualitative agreement between these analytic results and numerical stability calculations using the PEST code is demonstrated