WorldWideScience

Sample records for asv integrase proteins

  1. Biochemical characterization of novel retroviral integrase proteins.

    Directory of Open Access Journals (Sweden)

    Allison Ballandras-Colas

    Full Text Available Integrase is an essential retroviral enzyme, catalyzing the stable integration of reverse transcribed DNA into cellular DNA. Several aspects of the integration mechanism, including the length of host DNA sequence duplication flanking the integrated provirus, which can be from 4 to 6 bp, and the nucleotide preferences at the site of integration, are thought to cluster among the different retroviral genera. To date only the spumavirus prototype foamy virus integrase has provided diffractable crystals of integrase-DNA complexes, revealing unprecedented details on the molecular mechanisms of DNA integration. Here, we characterize five previously unstudied integrase proteins, including those derived from the alpharetrovirus lymphoproliferative disease virus (LPDV, betaretroviruses Jaagsiekte sheep retrovirus (JSRV, and mouse mammary tumor virus (MMTV, epsilonretrovirus walleye dermal sarcoma virus (WDSV, and gammaretrovirus reticuloendotheliosis virus strain A (Rev-A to identify potential novel structural biology candidates. Integrase expressed in bacterial cells was analyzed for solubility, stability during purification, and, once purified, 3' processing and DNA strand transfer activities in vitro. We show that while we were unable to extract or purify accountable amounts of WDSV, JRSV, or LPDV integrase, purified MMTV and Rev-A integrase each preferentially support the concerted integration of two viral DNA ends into target DNA. The sequencing of concerted Rev-A integration products indicates high fidelity cleavage of target DNA strands separated by 5 bp during integration, which contrasts with the 4 bp duplication generated by a separate gammaretrovirus, the Moloney murine leukemia virus (MLV. By comparing Rev-A in vitro integration sites to those generated by MLV in cells, we concordantly conclude that the spacing of target DNA cleavage is more evolutionarily flexible than are the target DNA base contacts made by integrase during integration

  2. Directed DNA shuffling of retrovirus and retrotransposon integrase protein domains.

    Directory of Open Access Journals (Sweden)

    Xiaojie Qi

    Full Text Available Chimeric proteins are used to study protein domain functions and to recombine protein domains for novel or optimal functions. We used a library of chimeric integrase proteins to study DNA integration specificity. The library was constructed using a directed shuffling method that we adapted from fusion PCR. This method easily and accurately shuffles multiple DNA gene sequences simultaneously at specific base-pair positions, such as protein domain boundaries. It produced all 27 properly-ordered combinations of the amino-terminal, catalytic core, and carboxyl-terminal domains of the integrase gene from human immunodeficiency virus, prototype foamy virus, and Saccharomyces cerevisiae retrotransposon Ty3. Retrotransposons can display dramatic position-specific integration specificity compared to retroviruses. The yeast retrotransposon Ty3 integrase interacts with RNA polymerase III transcription factors to target integration at the transcription initiation site. In vitro assays of the native and chimeric proteins showed that human immunodeficiency virus integrase was active with heterologous substrates, whereas prototype foamy virus and Ty3 integrases were not. This observation was consistent with a lower substrate specificity for human immunodeficiency virus integrase than for other retrovirus integrases. All eight chimeras containing the Ty3 integrase carboxyl-terminal domain, a candidate targeting domain, failed to target strand transfer in the presence of the targeting protein, suggesting that multiple domains of the Ty3 integrase cooperate in this function.

  3. Complementation between HIV integrase proteins mutated in different domains

    NARCIS (Netherlands)

    D.C. van Gent (Dik); C. Vink (Cornelis); A.A. Groeneger; R.H. Plassterk

    1993-01-01

    textabstractHIV integrase (IN) cleaves two nucleotides off the 3' end of viral DNA and integrates viral DNA into target DNA. Previously, three functional domains in the HIV IN protein have been identified: (i) the central catalytic domain, (ii) the C-terminal DNA binding domain,

  4. Nuclear import of Avian Sarcoma Virus integrase is facilitated by host cell factors

    Directory of Open Access Journals (Sweden)

    Goldstein Andrew D

    2008-08-01

    Full Text Available Abstract Background Integration of retroviral DNA into the host cell genome is an obligatory step in the virus life cycle. In previous reports we identified a sequence (amino acids 201–236 in the linker region between the catalytic core and C-terminal domains of the avian sarcoma virus (ASV integrase protein that functions as a transferable nuclear localization signal (NLS in mammalian cells. The sequence is distinct from all known NLSs but, like many, contains basic residues that are essential for activity. Results Our present studies with digitonin-permeabilized HeLa cells show that nuclear import mediated by the NLS of ASV integrase is an active, saturable, and ATP-dependent process. As expected for transport through nuclear pore complexes, import is blocked by treatment of cells with wheat germ agglutinin. We also show that import of ASV integrase requires soluble cellular factors but does not depend on binding the classical adapter Importin-α. Results from competition studies indicate that ASV integrase relies on one or more of the soluble components that mediate transport of the linker histone H1. Conclusion These results are consistent with a role for ASV integrase and cytoplasmic cellular factors in the nuclear import of its viral DNA substrate, and lay the foundation for identification of host cell components that mediate this reaction.

  5. DNA binding properties of the integrase proteins of human immunodeficiency viruses types 1 and 2

    NARCIS (Netherlands)

    D.C. van Gent (Dik); Y. Elgersma (Ype); M.W. Bolk; C. Vink (Cornelis); R.H. Plassterk

    1991-01-01

    textabstractIntegration of retroviral DNA into the host chromosome requires the integrase protein (IN). We overexpressed the IN proteins of human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-2) in E. coli and purified them. Both proteins were found to specifically cut two

  6. Mutational analysis of the integrase protein of human immunodeficiency virus type 2

    NARCIS (Netherlands)

    D.C. van Gent (Dik); A.A. Groeneger; A.A. Plassterk

    1992-01-01

    textabstractPurified integrase protein (IN) can nick linear viral DNA at a specific site near the ends and integrate nicked viral DNA into target DNA. We have made a series of 43 site-directed point mutants of human immunodeficiency virus type 2 IN and assayed purified mutant

  7. Tdd-4, a DNA transposon of Dictyostelium that encodes proteins similar to LTR retroelement integrases.

    Science.gov (United States)

    Wells, D J

    1999-06-01

    Tdd-4 is the first DNA transposon to be isolated from Dictyostelium discoideum. This element was isolated by insertion into a target plasmid. Two classes of elements were identified which include a 3.8 kb version and a 3.4 kb deleted version. Sequence analysis reveals that the 145 bp inverted terminal repeats contain the 5'-TGellipsisCA-3' conserved terminal dinucleotides found in prokaryotic transposons and integrated LTR retroelement DNA sequences. Tdd-4 open reading frames are assembled by removal of six introns. Introns 1-5 conform to the GT-AG rule, whereas intron 6 appears to be an AT-AA intron. Also, intron 6 undergoes an alternative 5' splicing reaction. The alternatively spliced region encodes 15 tandem SPXX repeats that are proposed to function as a DNA binding motif. By analogy to other transposons that encode two proteins from the same gene, the full-length Tdd-4 protein is the putative transposase and the truncated Tdd-4 protein is the putative transposition inhibitor. Protein database searches demonstrate Tdd-4 encoded proteins are unique for a DNA element by containing similarities to retroviral/retrotransposon integrases. The putative Tdd-4 transposase contains the same structural relationship as integrases by possessing an N-terminal HHCC motif, a central DDE motif and a C-terminal DNA-binding domain composed of the SPXX motif.

  8. Human immunodeficiency virus integrase protein requires a subterminal position of its viral DNA recognition sequence for efficient cleavage

    NARCIS (Netherlands)

    C. Vink (Cornelis); D.C. van Gent (Dik); Y. Elgersma (Ype); R.H. Plassterk

    1991-01-01

    textabstractRetroviral integration requires cis-acting sequences at the termini of linear double-stranded viral DNA and a product of the retroviral pol gene, the integrase protein (IN). IN is required and sufficient for generation of recessed 3' termini of the viral DNA (the first

  9. Successful therapeutic vaccination with integrase defective lentiviral vector expressing nononcogenic human papillomavirus E7 protein.

    Science.gov (United States)

    Grasso, Felicia; Negri, Donatella R M; Mochi, Stefania; Rossi, Alessandra; Cesolini, Armando; Giovannelli, Andrea; Chiantore, Maria Vincenza; Leone, Pasqualina; Giorgi, Colomba; Cara, Andrea

    2013-01-15

    Persistent infection with high risk genotypes of human papillomavirus (HPV) is the cause of cervical cancer, one of most common cancer among woman worldwide, and represents an important risk factor associated with other anogenital and oropharyngeal cancers in men and women. Here, we designed a therapeutic vaccine based on integrase defective lentiviral vector (IDLV) to deliver a mutated nononcogenic form of HPV16 E7 protein, considered as a tumor specific antigen for immunotherapy of HPV-associated cervical cancer, fused to calreticulin (CRT), a protein able to enhance major histocompatibility complex class I antigen presentation (IDLV-CRT/E7). Vaccination with IDLV-CRT/E7 induced a potent and persistent E7-specific T cell response up to 1 year after a single immunization. Importantly, a single immunization with IDLV-CRT/E7 was able to prevent growth of E7-expressing TC-1 tumor cells and to eradicate established tumors in mice. The strong therapeutic effect induced by the IDLV-based vaccine in this preclinical model suggests that this strategy may be further exploited as a safe and attractive anticancer immunotherapeutic vaccine in humans. Copyright © 2012 UICC.

  10. The Human Polycomb Group EED Protein Interacts with the Integrase of Human Immunodeficiency Virus Type 1

    Science.gov (United States)

    Violot, Sébastien; Hong, Saw See; Rakotobe, Dina; Petit, Caroline; Gay, Bernard; Moreau, Karen; Billaud, Geneviève; Priet, Stéphane; Sire, Joséphine; Schwartz, Olivier; Mouscadet, Jean-François; Boulanger, Pierre

    2003-01-01

    Human EED, a member of the superfamily of WD-40 repeat proteins and of the Polycomb group proteins, has been identified as a cellular partner of the human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein (R. Peytavi et al., J. Biol. Chem. 274:1635-1645, 1999). In the present study, EED was found to interact with HIV-1 integrase (IN) both in vitro and in vivo in yeast. In vitro, data from mutagenesis studies, pull-down assays, and phage biopanning suggested that EED-binding site(s) are located in the C-terminal domain of IN, between residues 212 and 264. In EED, two putative discrete IN-binding sites were mapped to its N-terminal moiety, at a distance from the MA-binding site, but EED-IN interaction also required the integrity of the EED last two WD repeats. EED showed an apparent positive effect on IN-mediated DNA integration reaction in vitro, in a dose-dependent manner. In situ analysis by immunoelectron microscopy (IEM) of cellular distribution of IN and EED in HIV-1-infected cells (HeLa CD4+ cells or MT4 lymphoid cells) showed that IN and EED colocalized in the nucleus and near nuclear pores, with maximum colocalization events occurring at 6 h postinfection (p.i.). Triple colocalizations of IN, EED, and MA were also observed in the nucleoplasm of infected cells at 6 h p.i., suggesting the ocurrence of multiprotein complexes involving these three proteins at early steps of the HIV-1 virus life cycle. Such IEM patterns were not observed with a noninfectious, envelope deletion mutant of HIV-1. PMID:14610174

  11. Changes in the accessibility of the HIV-1 Integrase C-terminus in the presence of cellular proteins

    Directory of Open Access Journals (Sweden)

    Zanta-Boussif Maria-Antonietta

    2010-04-01

    Full Text Available Abstract Background Following entry, uncoating, and reverse transcription, a number of cellular proteins become associated with the Human Immunodeficiency Virus type 1 (HIV-1 pre-integration complex (PIC. With the goal of obtaining reagents for the analysis of the HIV-1 PIC composition and localisation, we have constructed functional integrase (IN and matrix (MA proteins that can be biotinylated during virus production and captured using streptavidin-coated beads. Results Although the labelled C-terminus allows for the sensitive detection of virion-associated IN, it becomes inaccessible in the presence of cellular proteins. This masking is not dependent on the nature of the tag and does not occur with the tagged MA. It was not observed either with an IN mutant unable to interact with LEDGF/p75, or when LEDGF/p75 was depleted from cells. Conclusion Our observation suggests that a structural rearrangement or oligomerization of the IN protein occurs during the early steps of infection and that this process is related to the presence of LEDGF/p75.

  12. HIV-2 integrase variation in integrase inhibitor-naïve adults in Senegal, West Africa.

    Directory of Open Access Journals (Sweden)

    Geoffrey S Gottlieb

    Full Text Available Antiretroviral therapy for HIV-2 infection is hampered by intrinsic resistance to many of the drugs used to treat HIV-1. Limited studies suggest that the integrase inhibitors (INIs raltegravir and elvitegravir have potent activity against HIV-2 in culture and in infected patients. There is a paucity of data on genotypic variation in HIV-2 integrase that might confer intrinsic or transmitted INI resistance.We PCR amplified and analyzed 122 HIV-2 integrase consensus sequences from 39 HIV-2-infected, INI-naive adults in Senegal, West Africa. We assessed genetic variation and canonical mutations known to confer INI-resistance in HIV-1.No amino acid-altering mutations were detected at sites known to be pivotal for INI resistance in HIV-1 (integrase positions 143, 148 and 155. Polymorphisms at several other HIV-1 INI resistance-associated sites were detected at positions 72, 95, 125, 154, 165, 201, 203, and 263 of the HIV-2 integrase protein.Emerging genotypic and phenotypic data suggest that HIV-2 is susceptible to the new class of HIV integrase inhibitors. We hypothesize that intrinsic HIV-2 integrase variation at "secondary" HIV-1 INI-resistance sites may affect the genetic barrier to HIV-2 INI resistance. Further studies will be needed to assess INI efficacy as part of combination antiretroviral therapy in HIV-2-infected patients.

  13. HIV-2 Integrase Variation in Integrase Inhibitor-Naïve Adults in Senegal, West Africa

    Science.gov (United States)

    Gottlieb, Geoffrey S.; Smith, Robert A.; Dia Badiane, Ndeye Mery; Ba, Selly; Hawes, Stephen E.; Toure, Macoumba; Starling, Alison K.; Traore, Fatou; Sall, Fatima; Cherne, Stephen L.; Stern, Joshua; Wong, Kim G.; Lu, Paul; Kim, Moon; Raugi, Dana N.; Lam, Airin; Mullins, James I.; Kiviat, Nancy B.

    2011-01-01

    Background Antiretroviral therapy for HIV-2 infection is hampered by intrinsic resistance to many of the drugs used to treat HIV-1. Limited studies suggest that the integrase inhibitors (INIs) raltegravir and elvitegravir have potent activity against HIV-2 in culture and in infected patients. There is a paucity of data on genotypic variation in HIV-2 integrase that might confer intrinsic or transmitted INI resistance. Methods We PCR amplified and analyzed 122 HIV-2 integrase consensus sequences from 39 HIV-2–infected, INI-naive adults in Senegal, West Africa. We assessed genetic variation and canonical mutations known to confer INI-resistance in HIV-1. Results No amino acid-altering mutations were detected at sites known to be pivotal for INI resistance in HIV-1 (integrase positions 143, 148 and 155). Polymorphisms at several other HIV-1 INI resistance-associated sites were detected at positions 72, 95, 125, 154, 165, 201, 203, and 263 of the HIV-2 integrase protein. Conclusion Emerging genotypic and phenotypic data suggest that HIV-2 is susceptible to the new class of HIV integrase inhibitors. We hypothesize that intrinsic HIV-2 integrase variation at “secondary” HIV-1 INI-resistance sites may affect the genetic barrier to HIV-2 INI resistance. Further studies will be needed to assess INI efficacy as part of combination antiretroviral therapy in HIV-2–infected patients. PMID:21765953

  14. Docking and Molecular Dynamics Calculations of Some Previously Studied and newly Designed Ligands to Catalytic Core Domain of HIV-1 Integrase and an Investigation to Effects of Conformational Changes of Protein on Docking Results

    Directory of Open Access Journals (Sweden)

    Selami Ercan

    2016-10-01

    Full Text Available Nowadays, AIDS still remains as a worldwide pandemic and continues to cause many death which arise from HIV-1 virus. For nearly 35 years, drugs that target various steps of virus life cycle have been developed. HIV-1 integrase is the one of these steps which is essential for virus life cycle. Computer aided drug design is being used in many drug design studies as also used in development of the first HIV-1 integrase inhibitor Raltegravir. In this study 3 ligands which are used as HIV-1 integrase inhibitors and 4 newly designed ligands were docked to catalytic core domain of HIV-1 integrase. Each of ligands docked to three different conformations of protein. Prepared complexes (21 item were carried out by 50 ns MD simulations and results were analyzed. Finally, the binding free energies of ligands were calculated. Hereunder, it was determined that designed ligands L01 and L03 gave favorable results. The questions about the ligands which have low docking scores in a conformation of protein could give better scores in another conformation of protein and if the MD simulations carry the different oriented and different localized ligands in same position at the end of simulation were answered.

  15. HIV-1 Integrase-DNA Recognition Mechanisms

    Directory of Open Access Journals (Sweden)

    Mamuka Kvaratskhelia

    2009-11-01

    Full Text Available Integration of a reverse transcribed DNA copy of the HIV viral genome into the host chromosome is essential for virus replication. This process is catalyzed by the virally encoded protein integrase. The catalytic activities, which involve DNA cutting and joining steps, have been recapitulated in vitro using recombinant integrase and synthetic DNA substrates. Biochemical and biophysical studies of these model reactions have been pivotal in advancing our understanding of mechanistic details for how IN interacts with viral and target DNAs, and are the focus of the present review.

  16. Control of Recombination Directionality by the Listeria Phage A118 Protein Gp44 and the Coiled-Coil Motif of Its Serine Integrase.

    Science.gov (United States)

    Mandali, Sridhar; Gupta, Kushol; Dawson, Anthony R; Van Duyne, Gregory D; Johnson, Reid C

    2017-06-01

    The serine integrase of phage A118 catalyzes integrative recombination between attP on the phage and a specific attB locus on the chromosome of Listeria monocytogenes , but it is unable to promote excisive recombination between the hybrid attL and attR sites found on the integrated prophage without assistance by a recombination directionality factor (RDF). We have identified and characterized the phage-encoded RDF Gp44, which activates the A118 integrase for excision and inhibits integration. Gp44 binds to the C-terminal DNA binding domain of integrase, and we have localized the primary binding site to be within the mobile coiled-coil (CC) motif but distinct from the distal tip of the CC that is required for recombination. This interaction is sufficient to inhibit integration, but a second interaction involving the N-terminal end of Gp44 is also required to activate excision. We provide evidence that these two contacts modulate the trajectory of the CC motifs as they extend out from the integrase core in a manner dependent upon the identities of the four att sites. Our results support a model whereby Gp44 shapes the Int-bound complexes to control which att sites can synapse and recombine. IMPORTANCE Serine integrases mediate directional recombination between bacteriophage and bacterial chromosomes. These highly regulated site-specific recombination reactions are integral to the life cycle of temperate phage and, in the case of Listeria monocytogenes lysogenized by A118 family phage, are an essential virulence determinant. Serine integrases are also utilized as tools for genetic engineering and synthetic biology because of their exquisite unidirectional control of the DNA exchange reaction. Here, we identify and characterize the recombination directionality factor (RDF) that activates excision and inhibits integration reactions by the phage A118 integrase. We provide evidence that the A118 RDF binds to and modulates the trajectory of the long coiled-coil motif that

  17. Inhibition of HIV-1 Integrase gene expression by 10-23 DNAzyme

    Indian Academy of Sciences (India)

    We have designed three novel DNAzymes, DIN54, DIN116, and DIN152, against HIV-1 Integrase gene using Mfold software and evaluated them for target site cleavage activity on the in vitro transcribed mRNA. All DNAzymes were tested for its inhibition of expression of HIV Integrase protein in the transiently transfected cell ...

  18. Control of serine integrase recombination directionality by fusion with the directionality factor.

    Science.gov (United States)

    Olorunniji, Femi J; McPherson, Arlene L; Rosser, Susan J; Smith, Margaret C M; Colloms, Sean D; Stark, W Marshall

    2017-08-21

    Bacteriophage serine integrases are extensively used in biotechnology and synthetic biology for assembly and rearrangement of DNA sequences. Serine integrases promote recombination between two different DNA sites, attP and attB, to form recombinant attL and attR sites. The 'reverse' reaction requires another phage-encoded protein called the recombination directionality factor (RDF) in addition to integrase; RDF activates attL × attR recombination and inhibits attP × attB recombination. We show here that serine integrases can be fused to their cognate RDFs to create single proteins that catalyse efficient attL × attR recombination in vivo and in vitro, whereas attP × attB recombination efficiency is reduced. We provide evidence that activation of attL × attR recombination involves intra-subunit contacts between the integrase and RDF moieties of the fusion protein. Minor changes in the length and sequence of the integrase-RDF linker peptide did not affect fusion protein recombination activity. The efficiency and single-protein convenience of integrase-RDF fusion proteins make them potentially very advantageous for biotechnology/synthetic biology applications. Here, we demonstrate efficient gene cassette replacement in a synthetic metabolic pathway gene array as a proof of principle. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Integrase and integration: biochemical activities of HIV-1 integrase

    Directory of Open Access Journals (Sweden)

    Deprez Eric

    2008-12-01

    Full Text Available Abstract Integration of retroviral DNA is an obligatory step of retrovirus replication because proviral DNA is the template for productive infection. Integrase, a retroviral enzyme, catalyses integration. The process of integration can be divided into two sequential reactions. The first one, named 3'-processing, corresponds to a specific endonucleolytic reaction which prepares the viral DNA extremities to be competent for the subsequent covalent insertion, named strand transfer, into the host cell genome by a trans-esterification reaction. Recently, a novel specific activity of the full length integrase was reported, in vitro, by our group for two retroviral integrases (HIV-1 and PFV-1. This activity of internal cleavage occurs at a specific palindromic sequence mimicking the LTR-LTR junction described into the 2-LTR circles which are peculiar viral DNA forms found during viral infection. Moreover, recent studies demonstrated the existence of a weak palindromic consensus found at the integration sites. Taken together, these data underline the propensity of retroviral integrases for binding symmetrical sequences and give perspectives for targeting specific sequences used for gene therapy.

  20. Subunit-specific protein footprinting reveals significant structural rearrangements and a role for N-terminal Lys-14 of HIV-1 Integrase during viral DNA binding.

    Science.gov (United States)

    Zhao, Zhuojun; McKee, Christopher J; Kessl, Jacques J; Santos, Webster L; Daigle, Janet E; Engelman, Alan; Verdine, Gregory; Kvaratskhelia, Mamuka

    2008-02-29

    To identify functional contacts between HIV-1 integrase (IN) and its viral DNA substrate, we devised a new experimental strategy combining the following two methodologies. First, disulfide-mediated cross-linking was used to site-specifically link select core and C-terminal domain amino acids to respective positions in viral DNA. Next, surface topologies of free IN and IN-DNA complexes were compared using Lys- and Arg-selective small chemical modifiers and mass spectrometric analysis. This approach enabled us to dissect specific contacts made by different monomers within the multimeric complex. The foot-printing studies for the first time revealed the importance of a specific N-terminal domain residue, Lys-14, in viral DNA binding. In addition, a DNA-induced conformational change involving the connection between the core and C-terminal domains was observed. Site-directed mutagenesis experiments confirmed the importance of the identified contacts for recombinant IN activities and virus infection. These new findings provided major constraints, enabling us to identify the viral DNA binding channel in the active full-length IN multimer. The experimental approach described here has general application to mapping interactions within functional nucleoprotein complexes.

  1. HIV integrase inhibitory activity of Agastache rugosa.

    Science.gov (United States)

    Kim, H K; Lee, H K; Shin, C G; Huh, H

    1999-10-01

    We have been screening anti-HIV integrase compounds from Korean medicinal plants by using an in vitro assay system which is mainly composed of recombinant human immunodeficiency virus type 1 integrase and radiolabeled oligonucleotides. From the above screening, the aqueous methanolic extract of the roots of Agastache rugosa exhibited a significant activity. Bioactivity-guided chromatographic fractionation of the methanolic extract resulted in the isolation of rosmarinic acid. The structure of the compound was determined by spectroscopic data and by the comparison with the reported values. The IC50 of the rosmarinic acid was approximately 10 microg/ml against HIV integrase.

  2. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome

    NARCIS (Netherlands)

    van Bel, Nikki; van der Velden, Yme; Bonnard, Damien; Le Rouzic, Erwann; Das, Atze T.; Benarous, Richard; Berkhout, Ben

    2014-01-01

    The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to

  3. The mechanism of ϕC31 integrase directionality: experimental analysis and computational modelling.

    Science.gov (United States)

    Pokhilko, Alexandra; Zhao, Jia; Ebenhöh, Oliver; Smith, Margaret C M; Stark, W Marshall; Colloms, Sean D

    2016-09-06

    Serine integrases, DNA site-specific recombinases used by bacteriophages for integration and excision of their DNA to and from their host genomes, are increasingly being used as tools for programmed rearrangements of DNA molecules for biotechnology and synthetic biology. A useful feature of serine integrases is the simple regulation and unidirectionality of their reactions. Recombination between the phage attP and host attB sites is promoted by the serine integrase alone, giving recombinant attL and attR sites, whereas the 'reverse' reaction (between attL and attR) requires an additional protein, the recombination directionality factor (RDF). Here, we present new experimental data on the kinetics and regulation of recombination reactions mediated by ϕC31 integrase and its RDF, and use these data as the basis for a mathematical model of the reactions. The model accounts for the unidirectionality of the attP × attB and attL × attR reactions by hypothesizing the formation of structurally distinct, kinetically stable integrase-DNA product complexes, dependent on the presence or absence of RDF. The model accounts for all the available experimental data, and predicts how mutations of the proteins or alterations of reaction conditions might increase the conversion efficiency of recombination. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Yeast Interacting Proteins Database: YCL019W, YDR261W-B [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available a nucleocapsid-like protein (Gag), reverse transcriptase (RT), protease (PR), and integrase (IN); similar...a nucleocapsid-like protein (Gag), reverse transcriptase (RT), protease (PR), and integrase (IN); similar...a nucleocapsid-like protein (Gag), reverse transcriptase (RT), protease (PR), and integrase (IN); similar...a nucleocapsid-like protein (Gag), reverse transcriptase (RT), protease (PR), and integrase (IN); similar

  5. Yeast Interacting Proteins Database: YDR261W-A, YDR261W-B [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available a nucleocapsid-like protein (Gag), reverse transcriptase (RT), protease (PR), and integrase (IN); similar...a nucleocapsid-like protein (Gag), reverse transcriptase (RT), protease (PR), and integrase (IN); similar

  6. TAT-phiC31 integrase mediates DNA recombination in mammalian cells.

    Science.gov (United States)

    Zhang, Mao-xiang; Li, Zhi-hui; Fang, Yu-xiang; Zhu, Huan-zhang; Xue, Jing-lun; Chen, Jin-zhong; Jia, William

    2009-06-15

    Streptomyces phage integrase phiC31 is capable of mediating site-specific insertions in mammalian genomes. To avoid potential toxicity of long-term expression of phiC31 in host cells, we developed a method employing a cell-permeable TAT-phiC31 integrase. His6-tagged phiC31 proteins with or without an HIV TAT intercellular transducing peptide were generated and purified. Both of them retained integrase activity in vitro. However, TAT-phiC31 but not phiC31 was able to mediate a specific integration between two att sites in the genome of 293-PB [EGFP] report cell line. Transduced TAT-phiC31 was mainly localized in the cytoplasm that is similar to the localization of phiC31 when expressed through cDNA transfection. Adding a nuclear localization signal (NLS) peptide to the C-terminus of TAT-phiC31 facilitated nuclear localization of the integrase with an increased efficiency of recombination in the reporter cell line. These results demonstrated that TAT can mediate a cell membrane entry of phiC31 protein to perform a site-specific integration in mammalian cells. This is a simple and possibly safer method of site-specific recombination for gene delivery.

  7. Raltegravir: first in class HIV integrase inhibitor

    Directory of Open Access Journals (Sweden)

    Zelalem Temesgen

    2008-06-01

    Full Text Available Zelalem Temesgen1, Dawd S Siraj21Mayo Clinic, Rochester, MN, USA; 2East Carolina University Greenville, NC, USAAbstract: On October 16, 2007, the US Food and Drug Administration (FDA approved raltegravir for treatment of human immunodeficiency virus (HIV-1 infection in combination with other antiretroviral agents in treatment-experienced adult patients who have evidence of viral replication and HIV-1 strains resistant to multiple antiretroviral agents. Raltegravir is first in a novel class of antiretroviral drugs known as integrase inhibitors. It has demonstrated potent anti HIV activity in both antiretroviral treatment-naïve and experienced patients. The most common adverse events reported with raltegravir during phase 2 and 3 clinical trials were diarrhea, nausea, and headache. Laboratory abnormalities include mild elevations in liver transaminases and creatine phosphokinase.Keywords: raltegravir, HIV, antiretroviral agents, integrase inhibitors

  8. Insight into the ERVK integrase – propensity for DNA damage

    Directory of Open Access Journals (Sweden)

    Samantha Bray

    2016-12-01

    Full Text Available Retroviruses create permanently integrated proviruses that exist in the host genome. Retroviral genomes encode for functionally conserved gag, pro, pol and env regions, as well as integrase (IN, which is required for retroviral integration. IN mediates viral genome insertion through 3´ end processing of the viral DNA and the strand transfer reaction. This process requires the formation of a pre-integration complex, comprised of IN, viral DNA and cellular proteins. Viral insertion causes DNA damage, leading to the requirement of host DNA repair mechanisms. Therefore, a failure of DNA repair pathways may result in genomic instability and potentially cause host cell death. Considering the numerous human diseases associated with genomic instability, the endogenous retrovirus-K (ERVK IN should be considered as a putative contributor to DNA damage in human cells. Future research and drug discovery should focus on ERVK IN activity and its role in human conditions, such as neurological disease and cancers.

  9. HIV-1 integrase inhibitors as new components of antiviral therapy

    Energy Technology Data Exchange (ETDEWEB)

    Prikazchikova, T A; Aleksandrov, D A; Gottikh, M B [A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Sycheva, A M; Agapkina, Y Y [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2008-05-31

    Structural and functional features of HIV-1 integrase are considered and the state of the art in the quest for effective inhibitors of this enzyme is reported. The major classes of integrase inhibitors with known mechanisms of action as well as their in vitro and in vivo inhibitory activities are presented.

  10. Primary resistance to integrase strand-transfer inhibitors in Europe

    NARCIS (Netherlands)

    Casadella, M.; van Ham, P. M.; Noguera-Julian, M.; van Kessel, A.; Pou, C.; Hofstra, L. M.; Santos, J. R.; Garcia, F.; Struck, D.; Alexiev, I.; Kran, A. M. Bakken; Hoepelman, A. I.; Kostrikis, L. G.; Somogyi, S.; Liitsola, K.; Linka, M.; Nielsen, C.; Otelea, D.; Paraskevis, D.; Poljak, M.; Puchhammer-Stoeckl, E.; Stanekova, D.; Stanojevic, M.; Van Laethem, K.; Lepej, S. Zidovec; Clotet, B.; Boucher, C. A. B.; Paredes, R.; Wensing, A. M. J.; Schuurman, R

    2015-01-01

    Objectives: The objective of this study was to define the natural genotypic variation of the HIV-1 integrase gene across Europe for epidemiological surveillance of integrase strand-transfer inhibitor (InSTI) resistance. Methods: This was a multicentre, cross-sectional study within the European

  11. Identification of amino acids in HIV-2 integrase involved in site-specific hydrolysis and alcoholysis of viral DNA termini

    NARCIS (Netherlands)

    D.C. van Gent (Dik); A.A. Groeneger; R.H. Plassterk

    1993-01-01

    textabstractThe human immunodeficiency virus integrase (HIV IN) protein cleaves two nucleotides off the 3' end of viral DNA and subsequently integrates the viral DNA into target DNA. IN exposes a specific phosphodiester bond near the viral DNA end to nucleophilic attack by water or

  12. Development of a novel in vitro assay for the evaluation of integron DNA integrase activity

    Directory of Open Access Journals (Sweden)

    Fatemeh Tohidi

    2016-05-01

    Full Text Available Integrons play an important role in multidrug resistance. The integron platform codes for integrase (intI that is required for gene cassette integration through site-specific recombination. The recombination crossover occurs between the G and TT nucleotides in non-palindromic attI and palindromic attC sites. The aim of this study was to establish an efficient in vitro assay for integrase purification and activity detection. To this end, the intI gene was cloned into the pET-22b plasmid. Then, the resulting recombinant plasmid was transformed into Escherichia coli Origami™ strain. The recombinant protein expression was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE and western blot assays. The recombinant intI protein was purified by nickel–nitrilotriacetic acid (Ni–NTA affinity chromatography, and its activity was measured by a newly introduced assay. Briefly, specific primers for each side of attI and attC were used, thereby, a polymerase chain reaction would be performed, if a fused plasmid containing both attI and attC sites was created upon recombination. SDS-PAGE and western blotting confirmed the presence of a 38-kDa recombinant protein. Optimum conditions were established for the measurement of the integrase activity and a new model assay was conducted to analyse the recombination activity in vitro. Although the electrophoretic mobility shift assay is an efficient and reliable method, the newly introduced assay provided new or enhanced capability to determine the integrase activity, suggesting that there is no need for expensive and advanced equipment.

  13. Tight regulation of the intS gene of the KplE1 prophage: a new paradigm for integrase gene regulation.

    Directory of Open Access Journals (Sweden)

    Gaël Panis

    2010-10-01

    Full Text Available Temperate phages have the ability to maintain their genome in their host, a process called lysogeny. For most, passive replication of the phage genome relies on integration into the host's chromosome and becoming a prophage. Prophages remain silent in the absence of stress and replicate passively within their host genome. However, when stressful conditions occur, a prophage excises itself and resumes the viral cycle. Integration and excision of phage genomes are mediated by regulated site-specific recombination catalyzed by tyrosine and serine recombinases. In the KplE1 prophage, site-specific recombination is mediated by the IntS integrase and the TorI recombination directionality factor (RDF. We previously described a sub-family of temperate phages that is characterized by an unusual organization of the recombination module. Consequently, the attL recombination region overlaps with the integrase promoter, and the integrase and RDF genes do not share a common activated promoter upon lytic induction as in the lambda prophage. In this study, we show that the intS gene is tightly regulated by its own product as well as by the TorI RDF protein. In silico analysis revealed that overlap of the attL region with the integrase promoter is widely encountered in prophages present in prokaryotic genomes, suggesting a general occurrence of negatively autoregulated integrase genes. The prediction that these integrase genes are negatively autoregulated was biologically assessed by studying the regulation of several integrase genes from two different Escherichia coli strains. Our results suggest that the majority of tRNA-associated integrase genes in prokaryotic genomes could be autoregulated and that this might be correlated with the recombination efficiency as in KplE1. The consequences of this unprecedented regulation for excessive recombination are discussed.

  14. Peptide fibrils as monomer storage of the covalent HIV-1 integrase inhibitor.

    Science.gov (United States)

    Chandra, Koushik; Das, Priyadip; Metanis, Norman; Friedler, Assaf; Reches, Meital

    2017-02-01

    We have recently reported the covalent inhibition of HIV-1 integrase by an N-terminal succinimide-modified lens epithelium-derived growth factor (361-370) peptide. We also showed that this peptide is proteolytically stable. Here, we show that this inhibitor is stored as fibrils that serve as a stock for the inhibitory monomers. The fibrils increase the local concentration of the peptide at the target protein. When the monomers bind integrase, the equilibrium between the fibrils and their monomers shifts towards the formation of peptide monomers. The combination of fibril formation and subsequent proteolytic stability of the peptide may bring to new strategy for developing therapeutic agents. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  15. Primary resistance to integrase strand-transfer inhibitors in Europe

    DEFF Research Database (Denmark)

    Casadellà, M; van Ham, P M; Noguera-Julian, M

    2015-01-01

    SPREAD HIV resistance surveillance programme. A representative set of 300 samples was selected from 1950 naive HIV-positive subjects newly diagnosed in 2006-07. The prevalence of InSTI resistance was evaluated using quality-controlled baseline population sequencing of integrase. Signature raltegravir......OBJECTIVES: The objective of this study was to define the natural genotypic variation of the HIV-1 integrase gene across Europe for epidemiological surveillance of integrase strand-transfer inhibitor (InSTI) resistance. METHODS: This was a multicentre, cross-sectional study within the European......, elvitegravir and dolutegravir resistance mutations were defined according to the IAS-USA 2014 list. In addition, all integrase substitutions relative to HXB2 were identified, including those with a Stanford HIVdb score ≥10 to at least one InSTI. To rule out circulation of minority InSTI-resistant HIV, 65...

  16. Screening for antiviral inhibitors of the HIV integrase-LEDGF/p75 interaction using the AlphaScreen luminescent proximity assay.

    Science.gov (United States)

    Hou, Yan; McGuinness, Debra E; Prongay, Andrew J; Feld, Boris; Ingravallo, Paul; Ogert, Robert A; Lunn, Charles A; Howe, John A

    2008-06-01

    Small-molecule inhibitors of HIV integrase (HIV IN) have emerged as a promising new class of antivirals for the treatment of HIV/AIDS. The compounds currently approved or in clinical development specifically target HIV DNA integration and were identified using strand-transfer assays targeting the HIV IN/viral DNA complex. The authors have developed a second biochemical assay for identification of HIV integrase inhibitors, targeting the interaction between HIV IN and the cellular cofactor LEDGF/p75. They developed a luminescent proximity assay (AlphaScreen) designed to measure the association of the 80-amino-acid integrase binding domain of LEDGF/p75 with the 163-amino-acid catalytic core domain of HIV IN. This assay proved to be quite robust (with a Z' factor of 0.84 in screening libraries arrayed as orthogonal mixtures) and successfully identified several compounds specific for this protein-protein interaction.

  17. Crystal structure of the HIV-1 integrase core domain in complex with sucrose reveals details of an allosteric inhibitory binding site

    Energy Technology Data Exchange (ETDEWEB)

    Wielens, Jerome; Headey, Stephen J.; Jeevarajah, Dharshini; Rhodes, David I.; Deadman, John; Chalmers, David K.; Scanlon, Martin J.; Parker, Michael W. (SVIMR-A); (Avea); (Monash IPS)

    2010-04-19

    HIV integrase (IN) is an essential enzyme in HIV replication and an important target for drug design. IN has been shown to interact with a number of cellular and viral proteins during the integration process. Disruption of these important interactions could provide a mechanism for allosteric inhibition of IN. We present the highest resolution crystal structure of the IN core domain to date. We also present a crystal structure of the IN core domain in complex with sucrose which is bound at the dimer interface in a region that has previously been reported to bind integrase inhibitors.

  18. X-ray absorption spectroscopic studies of zinc in the N-terminal domain of HIV-2 integrase and model compounds

    NARCIS (Netherlands)

    Feiters, M.C.; Eijkelenboom, A.; Nolting, H.-F.; Krebs, B.; van den Ent, F.M.I.; Plasterk, R.H.A.; Kaptein, R.; Boelens, R.

    2003-01-01

    X-ray absorption spectroscopy (XAS), including extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) analysis, has been carried out at the Zn K edge of the N-terminal part of the integrase protein of the human immunodeficiency virus, type 2 (HIV-2), and of

  19. Anodic stripping voltammetry - ASV for determination of heavy metals

    Science.gov (United States)

    Barón-Jaimez, J.; Joya, M. R.; Barba-Ortega, J.

    2013-11-01

    Although voltammetric methods presented a number of difficulties in its early stages, nowadays "ASV" anodic stripping voltammetry is considered one of the most sensitive electro-analytical and suitable for trace-level determination of many metals and compounds in environmental samples, clinical and industrial [1, 2, 3]. Its sensitivity is attributed to the combination of a step of pre-concentration effective together with an electrochemical advanced measurement of accumulated analyte [4]. This paper presents an overview of the voltammetry, which includes a group of electro-analytical methods, in them the information about analyte is obtained from measurements of the current flowing in an electrochemical cell when applied a potential difference to an suitable electrode system.

  20. Preparation and certification of arsenate [As(V)] reference material, NMIJ CRM 7912-a.

    Science.gov (United States)

    Narukawa, Tomohiro; Kuroiwa, Takayoshi; Narushima, Izumi; Jimbo, Yasujiro; Suzuki, Toshihiro; Chiba, Koichi

    2010-05-01

    Arsenate [As(V)] solution reference material, National Metrology Institute of Japan (NMIJ) certified reference material (CRM) 7912-a, for speciation of arsenic species was developed and certified by NMIJ, the National Institute of Advanced Industrial Science and Technology. High-purity As(2)O(3) reagent powder was dissolved in 0.8 M HNO(3) solution and As(III) was oxidized to As(V) with HNO(3) to prepare 100 mg kg(-1) of As(V) candidate CRM solution. The solution was bottled in 400 bottles (50 mL each). The concentration of As(V) was determined by four independent analytical techniques-inductively coupled plasma mass spectrometry, inductively coupled plasma optical emission spectrometry, graphite furnace atomic absorption spectrometry, and liquid chromatography inductively coupled plasma mass spectrometry-according to As(V) calibration solutions, which were prepared from the arsenic standard of the Japan Calibration Service system and whose species was guaranteed to be As(V) by NMIJ. The uncertainties of all the measurements and preparation procedures were evaluated. The certified value of As(V) in the CRM is (99.53 +/- 1.67) mg kg(-1) (k = 2).

  1. Quaternized dimethylaminoethyl methacrylate strong base anion exchange fibers for As(V) adsorption

    Science.gov (United States)

    Kavaklı, Cengiz; Akkaş Kavaklı, Pınar; Turan, Burcu Dila; Hamurcu, Aslı; Güven, Olgun

    2014-09-01

    N,N-Dimethylaminoethyl methacrylate (DMAEMA) grafted polyethylene/polypropylene (PE/PP) nonwoven fibers (DMAEMA-g-PE/PP) was prepared by radiation-induced graft polymerization. DMAEMA graft chains on nonwoven fibers were quaternized with dimethyl sulfate solution for the preparation of strong base anion exchange fibers (QDMAEMA-g-PE/PP). Fiber structures were characterized by FTIR, XPS and SEM techniques. The effect of solution pH, contact time, initial As(V) ion concentration and coexisting ions on the As(V) adsorption capacity of the QDMAEMA-g-PE/PP fibers were investigated by performing batch adsorption experiments. The adsorption of As(V) by QDMAEMA-g-PE/PP fibers was found to be independent on solution pH in the range 4.00-10.00. Kinetic experiments show that the As(V) adsorption rate was rapid and As(V) adsorption follows pseudo second-order kinetic model. As(V) adsorption equilibrium data were analyzed using Langmuir and Freundlich adsorption isotherm model equations. Langmuir and Freundlich adsorption isotherm models fitted the experimental data well. The maximum adsorption capacity (qmax) calculated from Langmuir isotherm was found to be 83.33 mg As(V)/g polymer at pH 7.00. The adsorbent was used for three cycles without significant loss of adsorption capacity. The adsorbed As(V) ions were desorbed effectively by a 0.1 M NaOH solution.

  2. Emerging investigator series: As(v) in magnetite: incorporation and redistribution.

    Science.gov (United States)

    Huhmann, Brittany L; Neumann, Anke; Boyanov, Maxim I; Kemner, Kenneth M; Scherer, Michelle M

    2017-10-18

    Exposure to As in groundwater negatively impacts millions of people around the globe, and As mobility in groundwater is often controlled by Fe mineral dissolution and precipitation. Additionally, trace elements can be released from and incorporated into the structure of Fe oxides in the presence of dissolved Fe(ii). The potential for As to redistribute between sorbed on the magnetite surface and incorporated in the magnetite structure, however, remains unclear. In this study, we use selective chemical extraction and X-ray absorption spectroscopy (XAS) to distinguish magnetite-sorbed and incorporated As(v) and to provide evidence for As(v) incorporation during magnetite precipitation. While As in the As-magnetite coprecipitates did not redistribute between sorbed and incorporated over a 4 month period, a small, but measurable increase in incorporated As(v) of up to 13% was observed for sorbed As(v). We suggest that Fe(ii)-catalyzed recrystallization of magnetite did not significantly influence the redistribution of sorbed As(v) because the extent of Fe atom exchange was small (∼10%). In addition, the extent of As redistribution was the same in the absence and presence of added aqueous Fe(ii), suggesting that aqueous Fe(ii) had, overall, a minor effect on As redistribution for both coprecipitated and sorbed As(v). Our results suggest that coprecipitation of As(v) with magnetite and redistribution of As(v) sorbed on magnetite are potential pathways for irreversible As(v) uptake and sequestration. These pathways are likely to play a significant role in controlling As mobility in natural systems, during human-induced redox cycling of groundwater such as aquifer storage and recovery, as well as in iron oxide-based As removal systems.

  3. Lead Screening for HIV-1 Integrase (IN Inhibited by Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Tzu-Chieh Hung

    2014-01-01

    Full Text Available Human immunodeficiency virus causes the acquired immunodeficiency syndrome (AIDS and becomes a serious world-wide problem because of this disease's rapid propagation and incurability. Integrase strand transfer inhibitors (INSTIs supports HIV have rapid drug resistance for antitreatment. Screening the traditional Chinese medicine (TCM database by simulating molecular docking and molecular dynamics may select molecular compounds to inhibit INSTIs against HIV drug resistance. (S-cathinone and (1S,2S-norpseudoephedrine are selected based on structure and ligand-based drugs are designed and then get higher bioactivity predicted score from SVM than Raltegravir and other TCM compounds. The molecular dynamics are helpful in the analysis and detection of protein-ligand interactions. According to the docking poses, hydrophobic interactions and hydrogen bond variations define the main regions of important amino acids in integrase. In addition to the detection of TCM compound efficacy, we suggest (1S,2S-norpseudoephedrine is better than the others based on the analysis of interaction and the effect on the structural variation.

  4. Prophage Integrase Typing Is a Useful Indicator of Genomic Diversity in Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Anna Colavecchio

    2017-07-01

    Full Text Available Salmonella enterica is a bacterial species that is a major cause of illness in humans and food-producing animals. S. enterica exhibits considerable inter-serovar diversity, as evidenced by the large number of host adapted serovars that have been identified. The development of methods to assess genome diversity in S. enterica will help to further define the limits of diversity in this foodborne pathogen. Thus, we evaluated a PCR assay, which targets prophage integrase genes, as a rapid method to investigate S. enterica genome diversity. To evaluate the PCR prophage integrase assay, 49 isolates of S. enterica were selected, including 19 clinical isolates from clonal serovars (Enteritidis and Heidelberg that commonly cause human illness, and 30 isolates from food-associated Salmonella serovars that rarely cause human illness. The number of integrase genes identified by the PCR assay was compared to the number of integrase genes within intact prophages identified by whole genome sequencing and phage finding program PHASTER. The PCR assay identified a total of 147 prophage integrase genes within the 49 S. enterica genomes (79 integrase genes in the food-associated Salmonella isolates, 50 integrase genes in S. Enteritidis, and 18 integrase genes in S. Heidelberg. In comparison, whole genome sequencing and PHASTER identified a total of 75 prophage integrase genes within 102 intact prophages in the 49 S. enterica genomes (44 integrase genes in the food-associated Salmonella isolates, 21 integrase genes in S. Enteritidis, and 9 integrase genes in S. Heidelberg. Collectively, both the PCR assay and PHASTER identified the presence of a large diversity of prophage integrase genes in the food-associated isolates compared to the clinical isolates, thus indicating a high degree of diversity in the food-associated isolates, and confirming the clonal nature of S. Enteritidis and S. Heidelberg. Moreover, PHASTER revealed a diversity of 29 different types of

  5. HIV‑1 Integrase Strand Transfer Inhibitors with Reduced Susceptibility to Drug Resistant Mutant Integrases | Center for Cancer Research

    Science.gov (United States)

    On the cover: Mutant forms of HIV-1 IN reduce the therapeutic effectiveness of integrase strand transfer inhibitors (INSTIs). The cover figure shows the IN of prototype foamy virus complexed to a novel INSTI (gold) that retains potency against resistant mutants of HIV-1 IN. Overlain are the host and viral DNA substrates (blue and green, respectively), showing substrate mimicry by the inhibitor. Cover design by Joseph Myer

  6. Factors influencing As(V) stabilization in the mine soils amended with iron-rich materials.

    Science.gov (United States)

    Kim, Mijin; Kim, Juhee; Kim, Minhee; Kim, Yong-Seong; Nam, Seung Mo; Moon, Deok Hyun; Hyun, Seunghun

    2017-09-04

    Chemical stability of As(V) in amended mine-impacted soils was assessed according to functions of incubation period (0, 1, 2, 4, and 6 months), amendment dose (2.5 and 5%), and application timing (0 and 3rd month). Six soils contaminated with 26-209 mg kg-1 of As(V) were collected from two abandoned mine sites and were treated with two alkaline iron-rich materials (mine discharge sludge (MS) and steel-making slag (SS)). Seventeen to 23% of As(V) in soils was labile. After each designated time, As(V) stability was assessed by the labile fractions determined with sequential extraction procedures (F1-F5). Over 6 months, a reduction (26.9-70.4%) of the two labile fractions (F1 and F2) and a quantitative increase (7.4-29.9%) of As(V) in F3 were observed (r 2 = 0.956). Two recalcitrant fractions (F4 and F5) remained unchanged. Temporal change of As(V) stability in a sample was well described by the two-domain model (k fast, k slow, and Ffast). The stabilization (%) correlated well with the fast-stabilizing domain (Ffast), clay content (%), and Fe oxide content (mg kg-1), but correlated poorly with kinetic rate constants (k fast and k slow). Until the 3rd month, the 2.5%-MS amended sample resulted in lower As(V) stabilization (25-40%) compared to the 5% sample (50-60%). However, the second 2.5% MS addition on the 2.5% sample upon the lapse of the 3rd month led to a substantial reduction (up to 38%) of labile As(V) fraction in the following 4th and 6th months. As a result, an additional 15-25% of As(V) stability was obtained when splitting the amendment dose into 3-month intervals. In conclusion, the As(V) stabilization by Fe-rich amendment is time-dependent and its efficacy can be improved by optimizing the amendment dose and its timing.

  7. Closer look at As(III) and As(V) adsorption onto ferrihydrite under competitive conditions.

    Science.gov (United States)

    Qi, Pengfei; Pichler, Thomas

    2014-09-23

    Batch experiments were conducted in order to investigate the competitive interaction of arsenite (As(III)) and arsenate (As(V)) onto ferrihydrite as a function of initial pH, adsorbent dosage, concentration of coexisting ligands, and order of addition. The pH generally had a great impact on adsorption under both single ion and competitive conditions. However, the amount of As(V) in solution was the controlling factor of adsorption behavior, and As(III) more or less outcompeted As(V) across the pH scale from 4 to 10. Under competitive conditions, i.e., both species were present at the same time, As(III) and As(V) were adsorbed almost equally up to a pH of 5 at an adsorbent dosage of 0.5 g/L and up to a pH of 6 at an adsorbent dosage of 1 g/L. This was contrary to the theoretical prediction that As(V) should adsorb more strongly than As(III) at pH values below the point of zero charge (pzc) of ferrihydrite of about 7 to 8. At low pH, As(V) impedes the adsorption of As(III) but to lesser degree than As(III) impedes As(V) adsorption at a pH above 6. The effect of As(III) on the adsorption of As(V) increased with an increase in pH, and the adsorption of As(V) was almost absent at pH 9 at an adsorbent dosage of 1 g/L and at pH 8 at an adsorbent dosage of 0.5 g/L. In the range of ferrihydrite dosages from 0.2 to 1.6 g/L, As(III) was adsorbed preferentially over As(V) under the availability of less adsorbent. The order of anion addition also had significant effects on their competitive adsorption behavior: the first species was always more favored to compete for the adsorbing sites than when the two species were added to the suspensions simultaneously.

  8. HIV-1 Protease, Reverse Transcriptase, and Integrase Variation.

    Science.gov (United States)

    Rhee, Soo-Yon; Sankaran, Kris; Varghese, Vici; Winters, Mark A; Hurt, Christopher B; Eron, Joseph J; Parkin, Neil; Holmes, Susan P; Holodniy, Mark; Shafer, Robert W

    2016-07-01

    HIV-1 protease (PR), reverse transcriptase (RT), and integrase (IN) variability presents a challenge to laboratories performing genotypic resistance testing. This challenge will grow with increased sequencing of samples enriched for proviral DNA such as dried blood spots and increased use of next-generation sequencing (NGS) to detect low-abundance HIV-1 variants. We analyzed PR and RT sequences from >100,000 individuals and IN sequences from >10,000 individuals to characterize variation at each amino acid position, identify mutations indicating APOBEC-mediated G-to-A editing, and identify mutations resulting from selective drug pressure. Forty-seven percent of PR, 37% of RT, and 34% of IN positions had one or more amino acid variants with a prevalence of ≥1%. Seventy percent of PR, 60% of RT, and 60% of IN positions had one or more variants with a prevalence of ≥0.1%. Overall 201 PR, 636 RT, and 346 IN variants had a prevalence of ≥0.1%. The median intersubtype prevalence ratios were 2.9-, 2.1-, and 1.9-fold for these PR, RT, and IN variants, respectively. Only 5.0% of PR, 3.7% of RT, and 2.0% of IN variants had a median intersubtype prevalence ratio of ≥10-fold. Variants at lower prevalences were more likely to differ biochemically and to be part of an electrophoretic mixture compared to high-prevalence variants. There were 209 mutations indicative of APOBEC-mediated G-to-A editing and 326 mutations nonpolymorphic treatment selected. Identification of viruses with a high number of APOBEC-associated mutations will facilitate the quality control of dried blood spot sequencing. Identifying sequences with a high proportion of rare mutations will facilitate the quality control of NGS. Most antiretroviral drugs target three HIV-1 proteins: PR, RT, and IN. These proteins are highly variable: many different amino acids can be present at the same position in viruses from different individuals. Some of the amino acid variants cause drug resistance and occur mainly

  9. Effect of fulvic acid on adsorptive removal of Cr(VI) and As(V) from groundwater by iron oxide-based adsorbents

    KAUST Repository

    Uwamariya, V.

    2015-05-15

    Abstract Natural contamination has become a challenging problem in drinking water production due to metal contamination of groundwater throughout the world, and arsenic and chromium are well-known toxic elements. In this study, iron oxide-coated sand (IOCS) and granular ferric hydroxide (GFH) were used to study the effects of fulvic acid (FA) on the adsorptive removal of Cr(VI) and As(V) from synthetic groundwater. IOCS and GFH were characterized by SEM/EDS, and experiments were performed at different pH levels (6, 7, and 8). The surface of IOCS and GFH showed a high content of Fe and O (75 and 60 % of the atomic composition, respectively), suggesting that they can highly effectively adsorb Cr(VI) and As(V). Adsorption tests with the simultaneous presence of As(V) and FA, on the one hand, and Cr(VI) with FA, on the other hand, revealed that the role of FA on chromate and arsenate adsorption was insignificant at almost all pH values investigated with both adsorbents. A small influence as a result of FA was only observed for the removal of As(V) by IOCS at pH 6 with a decrease of 13 and 23 % when 2 and 5 mg/l were added to the synthetic water, respectively. It was also found that organic matter (OM) was leached from the IOCS during batch adsorption experiments. The use of FEEM revealed that humic-like, fulvic-like, and protein-like organic matter fractions are present on the IOCS surface. © 2015 Springer International Publishing Switzerland.

  10. Novel 3′-Processing Integrase Activity Assay by Real-Time PCR for Screening and Identification of HIV-1 Integrase Inhibitors

    National Research Council Canada - National Science Library

    Sakkhachornphop, Supachai; Thongkum, Weeraya; Tayapiwatana, Chatchai

    2015-01-01

    .... Recently, we have developed a novel real-time PCR based assay for the detection of 3[variant prime]P activity in vitro. The methodology usually involves biotinylated HIV-1 LTR, HIV-1 integrase...

  11. Alternative nucleophilic substrates for the endonuclease activities of human immunodeficiency virus type 1 integrase

    Energy Technology Data Exchange (ETDEWEB)

    Ealy, Julie B. [Department of Medicine, Penn State College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, PO Box 850, Mail Services H036, Hershey, PA 17033 (United States); Department of Chemistry, Penn State Lehigh Valley, 2809 E. Saucon Valley Road, Center Valley, PA 18034 (United States); Sudol, Malgorzata [Department of Medicine, Penn State College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, PO Box 850, Mail Services H036, Hershey, PA 17033 (United States); Krzeminski, Jacek; Amin, Shantu [Department of Pharmacology, Penn State College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033 (United States); Katzman, Michael, E-mail: mkatzman@psu.edu [Department of Medicine, Penn State College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, PO Box 850, Mail Services H036, Hershey, PA 17033 (United States); Department of Microbiology and Immunology, Penn State College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033 (United States)

    2012-11-10

    Retroviral integrase can use water or some small alcohols as the attacking nucleophile to nick DNA. To characterize the range of compounds that human immunodeficiency virus type 1 integrase can accommodate for its endonuclease activities, we tested 45 potential electron donors (having varied size and number or spacing of nucleophilic groups) as substrates during site-specific nicking at viral DNA ends and during nonspecific nicking reactions. We found that integrase used 22 of the 45 compounds to nick DNA, but not all active compounds were used for both activities. In particular, 13 compounds were used for site-specific and nonspecific nicking, 5 only for site-specific nicking, and 4 only for nonspecific nicking; 23 other compounds were not used for either activity. Thus, integrase can accommodate a large number of nucleophilic substrates but has selective requirements for its different activities, underscoring its dynamic properties and providing new information for modeling and understanding integrase.

  12. Biological responses of duckweed (Lemna minor L.) exposed to the inorganic arsenic species As(III) and As(V): effects of concentration and duration of exposure.

    Science.gov (United States)

    Duman, Fatih; Ozturk, Fatma; Aydin, Zeki

    2010-06-01

    The accumulation of arsenic (As) and physiological responses of Lemna minor L. under different concentration (0, 1, 4, 16 and 64 microM) and duration (1, 2, 4 and 6 days) of two species As, NaAsO(2) and Na(2)HAsO(4).7H(2)O, were studied in hydroponics. The accumulation of both As species depended on As concentration and exposure duration. The highest accumulation of As was found as 17408 and 8674 microg g(-1), for plants exposed to 64 microM of As(III) and As(V), respectively, after 6 days. Two-way ANOVA analyses indicated that, for plants exposed to arsenite (As(III)), exposure duration had a greater effect than concentration on As accumulation. Conversely, exposure concentration had a greater effect on As accumulation in plants exposed to arsenate (As(V)). Arsenic exposure levels, approaching 16 microM for As(III) and 64 microM for As(V), did not significantly affect EC values. Beyond these exposure concentrations, EC values increased in a manner that depended on duration. Significant effect of As(III) on lipid peroxidation was observed at 1 microM application whereas, this effect started to be significant after an exposure to 16 microM As(V). For both As(III) and As(V), photosynthetic pigment levels slightly increased for the first day with respect to the control, followed by a gradual decline at higher concentrations and durations. An increase in protein content and enzyme activity was observed at moderate exposure conditions, followed by a decrease. Significant positive correlations were determined between accumulated As and ion leakage and lipid peroxidation. Negative correlations were found between accumulated As and total chlorophyll and protein content. Our results suggested that exposure duration and concentration had a strong synergetic effect on antioxidant enzyme activity. The findings of the present study may be useful when this plant is used as a phytoremediator in arsenic-polluted water.

  13. Adsorption of As(V) inside the pores of porous hematite in water.

    Science.gov (United States)

    Dai, Min; Xia, Ling; Song, Shaoxian; Peng, Changsheng; Lopez-Valdivieso, Alejandro

    2016-04-15

    As(V) adsorption inside the pores of porous hematite in water has been studied in this work. This study was performed on nonporous hematite and porous hematite prepared from the thermal decomposition of goethite and siderite through the measurements of adsorption isotherm, SEM-EDX, XRD and BET. The results demonstrated that the As(V) adsorption was difficult to be realized inside pores if they were too small. This observation might be due to that the pore entrances were blocked by the adsorbed ions and thus the inside surfaces became invalid for the adsorption. Only if the pore size is large enough, the effective surface area inside pores would be close to that on non-porous hematite for As(V) adsorption. In addition, it was found that siderite is better than goethite for preparing porous hematite with thermal decomposition as adsorbent for arsenic removal. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Magnetite nanoparticles coated glass wool for As(V) removal from drinking water

    Science.gov (United States)

    Kango, Sarita; Kumar, Rajesh

    2015-08-01

    Arsenic (As) removal from contaminated groundwater is a key environmental concern worldwide. In this study, glass wool was coated with magnetite nanoparticles under argon gas flow and magnetite coated glass wool have been investigated for application as an adsorbent for As(V) removal from water. The adsorbent was characterized by using Scanning Electron Microscopy (SEM) and arsenic contaminated water treated with adsorbent was analyzed by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The ICP-MS results showed that 10 g/L of adsorbent removed 99.4% of As(V) within 5 hours at pH-7 and initial arsenic concentration of 360µg/L. Adsorption kinetics data fitted well in pseudo-first-order kinetics model with high correlation coefficient (R2 = 0.995). As magnetite nanoparticles coated glass wool showed favorable adsorption behavior for As(V), it can be a promising tool for water purification.

  15. Electrodialytic separation of Cu(II) and As(V) in acidic electrolytes; Separacion electrodialitica de Cu(II) y As(V) en electrolitos acidos

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, J. P.; Ipinza, J.; Cifuentes, L.

    2007-07-01

    The separation of copper and arsenic from acidic electrolytes by electrodialysis was investigated at room temperature. the effect of current density and pH was studied in a batch cell during 3 hours. The kinetic parameters showed that Cu(II) transport rate was 0.75 mol/m''2/h and the As(V) transport rate was 0.002 mol/m''2/h. An efficient separation between Cu(II) and As(V) was achieved; Generating a concentrated solution of copper with no arsenic, which was obtained independently of the electrolyte acidity and current density used. The effect of the arsenic speciation with pH is discussed as well. (Author) 23 refs.

  16. Determination of As(III) and As(V) by Flow Injection-Hydride Generation-Atomic Absorption Spectrometry via On-line Reduction of As(V) by KI

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Hansen, Elo Harald

    1997-01-01

    A volume-based flow injection (FI) procedure is described for the determination and speciation of trace inorganic arsenic, As(III) and As(V), via hydride generation-atomic absorption spectrometry (HG-AAS) of As(III). The determination of total arsenic is obtained by on-line reduction of As(V) to As...

  17. A computational model for predicting integrase catalytic domain of retrovirus.

    Science.gov (United States)

    Wu, Sijia; Han, Jiuqiang; Zhang, Xinman; Zhong, Dexing; Liu, Ruiling

    2017-06-21

    Integrase catalytic domain (ICD) is an essential part in the retrovirus for integration reaction, which enables its newly synthesized DNA to be incorporated into the DNA of infected cells. Owing to the crucial role of ICD for the retroviral replication and the absence of an equivalent of integrase in host cells, it is comprehensible that ICD is a promising drug target for therapeutic intervention. However, annotated ICDs in UniProtKB database have still been insufficient for a good understanding of their statistical characteristics so far. Accordingly, it is of great importance to put forward a computational ICD model in this work to annotate these domains in the retroviruses. The proposed model then discovered 11,660 new putative ICDs after scanning sequences without ICD annotations. Subsequently in order to provide much confidence in ICD prediction, it was tested under different cross-validation methods, compared with other database search tools, and verified on independent datasets. Furthermore, an evolutionary analysis performed on the annotated ICDs of retroviruses revealed a tight connection between ICD and retroviral classification. All the datasets involved in this paper and the application software tool of this model can be available for free download at https://sourceforge.net/projects/icdtool/files/?source=navbar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Structural and Functional Insights into Foamy Viral Integrase

    Directory of Open Access Journals (Sweden)

    Cha-Gyun Shin

    2013-07-01

    Full Text Available Successful integration of retroviral DNA into the host chromosome is an essential step for viral replication. The process is mediated by virally encoded integrase (IN and orchestrated by 3'-end processing and the strand transfer reaction. In vitro reaction conditions, such as substrate specificity, cofactor usage, and cellular binding partners for such reactions by the three distinct domains of prototype foamy viral integrase (PFV-IN have been described well in several reports. Recent studies on the three‑dimensional structure of the interacting complexes between PFV-IN and DNA, cofactors, binding partners, or inhibitors have explored the mechanistic details of such interactions and shown its utilization as an important target to develop anti-retroviral drugs. The presence of a potent, non-transferable nuclear localization signal in the PFV C-terminal domain extends its use as a model for investigating cellular trafficking of large molecular complexes through the nuclear pore complex and also to identify novel cellular targets for such trafficking. This review focuses on recent advancements in the structural analysis and in vitro functional aspects of PFV-IN.

  19. Evaluation of the interactions of HIV-1 integrase with small ubiquitin-like modifiers and their conjugation enzyme Ubc9.

    Science.gov (United States)

    Li, Zhihui; Wu, Shuwen; Wang, Jingjing; Li, Wenjuan; Lin, Yun; Ji, Chaoneng; Xue, Jinglun; Chen, Jinzhong

    2012-11-01

    Human immunodeficiency virus type 1 (HIV-1) integrase mediates the integration of reverse-transcribed viral cDNA into the genome of the host for the stable maintenance of the viral genome and the persistence of HIV-1 infection. In this study, the relationships between HIV-1 integrase (HIV-1 IN) and three SUMO conjugation pathway proteins, as well as the effects of these associations, were investigated. The overexpression of SUMO1/SUMO2 and Ubc9 changed the intracellular localization of HIV-1 IN from a diffuse distribution to a punctate localization. SUMO1, SUMO2 and Ubc9 were shown to interact with HIV-1 IN. The SUMOylation of HIV-1 IN was verified. In addition, SUMO1, SUMO2 and Ubc9 were shown to influence the integration of both lentivirus and HIV-1. The overexpression of Ubc9 inhibited viral genome integration, and the upregulation of SUMO1 or SUMO2 enhanced the inhibitory effect of Ubc9. Knockdown of the endogenous levels of SUMO1, SUMO2 and Ubc9 increased the level of viral integration, while reverse transcription and the nuclear import of preintegration complex (PIC) were not affected. Our findings suggest that SUMO conjugation pathway proteins may act as cellular restriction factors and be detrimental to HIV-1 infection. These findings merit further investigation because of their potentially significant implications for the cellular antiviral response to HIV-1 infection.

  20. The evaluation of catechins that contain a galloyl moiety as potential HIV-1 integrase inhibitors.

    Science.gov (United States)

    Jiang, Fan; Chen, Wei; Yi, Kejia; Wu, Zhiqiang; Si, Yiling; Han, Weidong; Zhao, Yali

    2010-12-01

    Four catechins with the galloyl moiety, including catechin gallate (CG), epigallocatechin gallate (EGCG), gallocatechin gallate (GCG), and epicatechin gallate (ECG), were found to inhibit HIV-1 integrase effectively as determined by our ELISA method. In our docking study, it is proposed that when the HIV-1 integrase does not combine with virus DNA, the four catechins may bind to Tyr143 and Gln148, thus altering the flexibility of the loop (Gly140-Gly149), which could lead to an inhibition of HIV-1 integrase activity. In addition, after combining HIV-1 integrase with virus DNA, the four catechins may bind between the integrase and virus DNA, consequently, disrupt this interaction. Thus, the four catechins may reduce the activity of HIV-1 integrase by disrupting its interaction with virus DNA. The four catechins have a highly cooperative inhibitory effect (IC₅₀=0.1 μmol/L). Our study suggests that catechins with the galloyl moiety could be a novel and effective class of HIV-1 integrase inhibitors. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Serine integrase chimeras with activity in E. coli and HeLa cells

    Directory of Open Access Journals (Sweden)

    Alfonso P. Farruggio

    2014-09-01

    Full Text Available In recent years, application of serine integrases for genomic engineering has increased in popularity. The factor-independence and unidirectionality of these large serine recombinases makes them well suited for reactions such as site-directed vector integration and cassette exchange in a wide variety of organisms. In order to generate information that might be useful for altering the specificity of serine integrases and to improve their efficiency, we tested a hybridization strategy that has been successful with several small serine recombinases. We created chimeras derived from three characterized members of the serine integrase family, phiC31, phiBT1, and TG1 integrases, by joining their amino- and carboxy-terminal portions. We found that several phiBT1-phiC31 (BC and phiC31-TG1 (CT hybrid integrases are active in E. coli. BC chimeras function on native att-sites and on att-sites that are hybrids between those of the two donor enzymes, while CT chimeras only act on the latter att-sites. A BC hybrid, BC{−1}, was also active in human HeLa cells. Our work is the first to demonstrate chimeric serine integrase activity. This analysis sheds light on integrase structure and function, and establishes a potentially tractable means to probe the specificity of the thousands of putative large serine recombinases that have been revealed by bioinformatics studies.

  2. Effect of HIV-1 Subtype C integrase mutations implied using molecular modeling and docking data.

    Science.gov (United States)

    Sachithanandham, Jaiprasath; Konda Reddy, Karnati; Solomon, King; David, Shoba; Kumar Singh, Sanjeev; Vadhini Ramalingam, Veena; Alexander Pulimood, Susanne; Cherian Abraham, Ooriyapadickal; Rupali, Pricilla; Sridharan, Gopalan; Kannangai, Rajesh

    2016-01-01

    The degree of sequence variation in HIV-1 integrase genes among infected patients and their impact on clinical response to Anti retroviral therapy (ART) is of interest. Therefore, we collected plasma samples from 161 HIV-1 infected individuals for subsequent integrase gene amplification (1087 bp). Thus, 102 complete integrase gene sequences identified as HIV-1 subtype-C was assembled. This sequence data was further used for sequence analysis and multiple sequence alignment (MSA) to assess position specific frequency of mutations within pol gene among infected individuals. We also used biophysical geometric optimization technique based molecular modeling and docking (Schrodinger suite) methods to infer differential function caused by position specific sequence mutations towards improved inhibitor selection. We thus identified accessory mutations (usually reduce susceptibility) leading to the resistance of some known integrase inhibitors in 14% of sequences in this data set. The Stanford HIV-1 drug resistance database provided complementary information on integrase resistance mutations to deduce molecular basis for such observation. Modeling and docking analysis show reduced binding by mutants for known compounds. The predicted binding values further reduced for models with combination of mutations among subtype C clinical strains. Thus, the molecular basis implied for the consequence of mutations in different variants of integrase genes of HIV-1 subtype C clinical strains from South India is reported. This data finds utility in the design, modification and development of a representative yet an improved inhibitor for HIV-1 integrase.

  3. Effect of HIV-1 Subtype C integrase mutations implied using molecular modeling and docking data

    Science.gov (United States)

    Sachithanandham, Jaiprasath; Konda Reddy, Karnati; Solomon, King; David, Shoba; Kumar Singh, Sanjeev; Vadhini Ramalingam, Veena; Alexander Pulimood, Susanne; Cherian Abraham, Ooriyapadickal; Rupali, Pricilla; Sridharan, Gopalan; Kannangai, Rajesh

    2016-01-01

    The degree of sequence variation in HIV-1 integrase genes among infected patients and their impact on clinical response to Anti retroviral therapy (ART) is of interest. Therefore, we collected plasma samples from 161 HIV-1 infected individuals for subsequent integrase gene amplification (1087 bp). Thus, 102 complete integrase gene sequences identified as HIV-1 subtype-C was assembled. This sequence data was further used for sequence analysis and multiple sequence alignment (MSA) to assess position specific frequency of mutations within pol gene among infected individuals. We also used biophysical geometric optimization technique based molecular modeling and docking (Schrodinger suite) methods to infer differential function caused by position specific sequence mutations towards improved inhibitor selection. We thus identified accessory mutations (usually reduce susceptibility) leading to the resistance of some known integrase inhibitors in 14% of sequences in this data set. The Stanford HIV-1 drug resistance database provided complementary information on integrase resistance mutations to deduce molecular basis for such observation. Modeling and docking analysis show reduced binding by mutants for known compounds. The predicted binding values further reduced for models with combination of mutations among subtype C clinical strains. Thus, the molecular basis implied for the consequence of mutations in different variants of integrase genes of HIV-1 subtype C clinical strains from South India is reported. This data finds utility in the design, modification and development of a representative yet an improved inhibitor for HIV-1 integrase. PMID:28149058

  4. Oligomerization within Virions and Subcellular Localization of Human Immunodeficiency Virus Type 1 Integrase

    Science.gov (United States)

    Petit, Caroline; Schwartz, Olivier; Mammano, Fabrizio

    1999-01-01

    Previous biochemical and genetic evidence indicated that the functional form of retroviral integrase protein (IN) is a multimer. A direct demonstration of IN oligomerization during the infectious cycle was, however, missing, due to the absence of a sensitive detection method. We describe here the generation of infectious human immunodeficiency virus type 1 (HIV-1) viral clones carrying IN protein tagged with highly antigenic epitopes. In this setting, we could readily visualize IN both in producer cells and in viral particles. More interestingly, we detected IN oligomers, the formation of which was dependent on disulfide bridges and took place inside virions. Additionally, expression of a tagged HIV-1 IN in the absence of other viral components resulted in almost exclusive nuclear accumulation of the protein. Mutation of a conserved cysteine in the proposed dimer interface determined the loss of viral infectivity, associated with a reduction of IN oligomer formation and the redistribution of the mutated protein in the nucleus and cytoplasm. Epitope tagging of HIV-1 IN expressed alone or in the context of a replication-competent viral clone provides powerful tools to validate debated issues on the implication of this enzyme in different steps of the viral cycle. PMID:10233971

  5. The effect of Cl , PO4 , and SiO3 on the adsorption of As(V) and As ...

    African Journals Online (AJOL)

    DR OKE

    The adsorption performance of bauxite for the removal of As(V) and As(III) from contaminated water was investigated. The effect of initial pH, contact time, and the presence of silicate, phosphate and chloride, at concentrations typically found in the ground drinking water in India/Bangladesh, were investigated. As(V) is ...

  6. Architecture of a Full-length Retroviral Integrase Monomer and Dimer, Revealed by Small Angle X-ray Scattering and Chemical Cross-linking

    Energy Technology Data Exchange (ETDEWEB)

    Bojja, Ravi S.; Andrake, Mark D.; Weigand, Steven; Merkel, George; Yarychkivska, Olya; Henderson, Adam; Kummerling, Marissa; Skalka, Anna Marie (Fox Chase); (NWU)

    2012-02-07

    We determined the size and shape of full-length avian sarcoma virus (ASV) integrase (IN) monomers and dimers in solution using small angle x-ray scattering. The low resolution data obtained establish constraints for the relative arrangements of the three component domains in both forms. Domain organization within the small angle x-ray envelopes was determined by combining available atomic resolution data for individual domains with results from cross-linking coupled with mass spectrometry. The full-length dimer architecture so revealed is unequivocally different from that proposed from x-ray crystallographic analyses of two-domain fragments, in which interactions between the catalytic core domains play a prominent role. Core-core interactions are detected only in cross-linked IN tetramers and are required for concerted integration. The solution dimer is stabilized by C-terminal domain (CTD-CTD) interactions and by interactions of the N-terminal domain in one subunit with the core and CTD in the second subunit. These results suggest a pathway for formation of functional IN-DNA complexes that has not previously been considered and possible strategies for preventing such assembly.

  7. Clinical use of HIV integrase inhibitors: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Peter Messiaen

    Full Text Available BACKGROUND: Optimal regimen choice of antiretroviral therapy is essential to achieve long-term clinical success. Integrase inhibitors have swiftly been adopted as part of current antiretroviral regimens. The purpose of this study was to review the evidence for integrase inhibitor use in clinical settings. METHODS: MEDLINE and Web-of-Science were screened from April 2006 until November 2012, as were hand-searched scientific meeting proceedings. Multiple reviewers independently screened 1323 citations in duplicate to identify randomized controlled trials, nonrandomized controlled trials and cohort studies on integrase inhibitor use in clinical practice. Independent, duplicate data extraction and quality assessment were conducted. RESULTS: 48 unique studies were included on the use of integrase inhibitors in antiretroviral therapy-naive patients and treatment-experienced patients with either virological failure or switching to integrase inhibitors while virologically suppressed. On the selected studies with comparable outcome measures and indication (n = 16, a meta-analysis was performed based on modified intention-to-treat (mITT, on-treatment (OT and as-treated (AT virological outcome data. In therapy-naive patients, favorable odds ratios (OR for integrase inhibitor-based regimens were observed, (mITT OR 0.71, 95% CI 0.59-0.86. However, integrase inhibitors combined with protease inhibitors only did not result in a significant better virological outcome. Evidence further supported integrase inhibitor use following virological failure (mITT OR 0.27; 95% CI 0.11-0.66, but switching to integrase inhibitors from a high genetic barrier drug during successful treatment was not supported (mITT OR 1.43; 95% CI 0.89-2.31. Integrase inhibitor-based regimens result in similar immunological responses compared to other regimens. A low genetic barrier to drug-resistance development was observed for raltegravir and elvitegravir, but not for dolutegravir

  8. Effects of Mn(II) on the sorption and mobilization of As(V) in the presence of hematite.

    Science.gov (United States)

    Ren, Hai-Tao; Jia, Shao-Yi; Liu, Yong; Wu, Song-Hai; Han, Xu

    2012-05-30

    In this study, the effects of Mn(II) on the sorption and mobilization of As(V) by synthetic hematite were investigated. Our results showed that As(V) removal by hematite was evidently dependent on pH, and simultaneous addition of Mn(II) and As(V) into hematite suspension resulted in more removal of As(V) via electrostatic attraction at pH 4.0, 7.0 and 8.3. However, in Mn(II) pre-loaded system, the removal percentages of As(V) at pH 8.3 decreased by 17.0%, 20.7% and 26.7% after 24h at the aging time of 2, 12 and 36 h, respectively. The concentrations of the released As(V) after the addition of 1mM Mn(II) were 23.6, 12.9 and 7.0 μM at pH 8.5 in 2, 3 and 4 g L(-1) hematite suspension, respectively. But Ca(2+) did not show such an effect under similar experimental conditions. Abiotic oxidation of Mn(II) on hematite played an important role in As(V) mobilization. The growing thin layer of Mn(III, IV) (hydr)oxides (MnO(x)) formed on hematite would take up the sorption sites pre-occupied by As(V) and resulted in the release of the adsorbed As(V) back into solution. This study enriched our understanding on As(V) fate in the coexistence of iron oxides and Mn(II). Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  9. Reduction of adsorbed As(V) on nano-TiO2 by sulfate-reducing bacteria.

    Science.gov (United States)

    Luo, Ting; Ye, Li; Ding, Cheng; Yan, Jinlong; Jing, Chuanyong

    2017-11-15

    Reduction of surface-bound arsenate [As(V)] and subsequent release into the aqueous phase contribute to elevated As in groundwater. However, this natural process is not fully understood, especially in the presence of sulfate-reducing bacteria (SRB). Gaining mechanistic insights into solid-As(V)-SRB interactions motivated our molecular level study on the fate of nano-TiO2 bound As(V) in the presence of Desulfovibrio vulgaris DP4, a strain of SRB, using incubation and in situ ATR-FTIR experiments. The incubation results clearly revealed the reduction of As(V), either adsorbed on nano-TiO2 or dissolved, in the presence of SRB. In contrast, this As(V) reduction was not observed in abiotic control experiments where sulfide was used as the reductant. Moreover, the reduction was faster for surface-bound As(V) than for dissolved As(V), as evidenced by the appearance of As(III) at 45h and 75h, respectively. ATR-FTIR results provided direct evidence that the surface-bound As(V) was reduced to As(III) on TiO2 surfaces in the presence of SRB. In addition, the As(V) desorption from nano-TiO2 was promoted by SRB relative to abiotic sulfide, due to the competition between As(V) and bacterial phosphate groups for TiO2 surface sites. This competition was corroborated by the ATR-FTIR analysis, which showed inner-sphere surface complex formation by bacterial phosphate groups on TiO2 surfaces. The results from this study highlight the importance of indirect bacteria-mediated As(V) reduction and release in geochemical systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. ON-SITE MERCURY ANALYSIS OF SOIL AT HAZARDOUS WASTE SITES BY IMMUNOASSAY AND ASV

    Science.gov (United States)

    Two field methods for Hg, immunoassay and anodic stripping voltammetry (ASV), that can provide onsite results for quick decisions at hazardous waste sites were evaluated. Each method was applied to samples from two Superfund sites that contain high levels of Hg; Sulphur Bank Me...

  11. Cellular Cofactors of Lentiviral Integrase: From Target Validation to Drug Discovery

    Directory of Open Access Journals (Sweden)

    Oliver Taltynov

    2012-01-01

    Full Text Available To accomplish their life cycle, lentiviruses make use of host proteins, the so-called cellular cofactors. Interactions between host cell and viral proteins during early stages of lentiviral infection provide attractive new antiviral targets. The insertion of lentiviral cDNA in a host cell chromosome is a step of no return in the replication cycle, after which the host cell becomes a permanent carrier of the viral genome and a producer of lentiviral progeny. Integration is carried out by integrase (IN, an enzyme playing also an important role during nuclear import. Plenty of cellular cofactors of HIV-1 IN have been proposed. To date, the lens epithelium-derived growth factor (LEDGF/p75 is the best studied cofactor of HIV-1 IN. Moreover, small molecules that block the LEDGF/p75-IN interaction have recently been developed for the treatment of HIV infection. The nuclear import factor transportin-SR2 (TRN-SR2 has been proposed as another interactor of HIV IN-mediating nuclear import of the virus. Using both proteins as examples, we will describe approaches to be taken to identify and validate novel cofactors as new antiviral targets. Finally, we will highlight recent advances in the design and the development of small-molecule inhibitors binding to the LEDGF/p75-binding pocket in IN (LEDGINs.

  12. Anti - HIV-1 integrase activity of Thai Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Kingkan Bunluepuech

    2009-08-01

    Full Text Available For the purpose of discovering anti-HIV-1 agents from natural sources, the aqueous and EtOH extracts of eight Thaiplants including Clerodendron indicum (whole plant, Tiliacora triandra (stem, Capparis micracantha (wood, Harrissoniaperforata (wood, Ficus glomerata (wood, Diospyros decandra (wood, Dracaena loureiri (heartwood, and Tinospora crispa (stem were screened for their inhibitory activities against HIV-1 integrase (IN using the multiplate integration assay(MIA. Of the EtOH extracts, Ficus glomerata (wood was the most potent with an IC50 value of 7.8 g/ml; whereas the water extract of Harrisonia perforata (wood was the most potent aqueous extract with an IC50 value of 2.3 g/ml. The isolation of active principles against HIV-1 IN from Ficus glomerata is now actively pursued.

  13. Sketching the historical development of pyrimidones as the inhibitors of the HIV integrase

    Czech Academy of Sciences Publication Activity Database

    Patel, Rahul V.; Keum, Y.S.; Park, S.W.

    2015-01-01

    Roč. 97, JUN 5 (2015), s. 649-663 ISSN 0223-5234 Institutional support: RVO:61389030 Keywords : Pyrimidones * Anti- HIV * Integrase inhibitors Subject RIV: CE - Biochemistry Impact factor: 3.902, year: 2015

  14. HIV-1 group O integrase displays lower susceptibility to raltegravir and has a different mutational pathway for resistance than HIV-1 group M

    Directory of Open Access Journals (Sweden)

    Agnès Depatureaux

    2014-11-01

    Full Text Available Introduction: HIV-1 group O (HIV-O is a rare HIV-1 variant characterized by a high number of polymorphisms, especially in the integrase gene, e.g. positions L74I, S153A, G163Q and T206S. As HIV-O integrase enzymes have not previously been studied, our aim was to assess the impact of HIV-O integrase polymorphisms on susceptibility to integrase inhibitors and emergence of resistance associated mutations. Viruses and Methods: We cloned and purified integrase proteins from each of HIV-1 Group O clades A (HIV-O/A and B (HIV-O/B, a HIV-O divergent strain (HIV-O/Div, and HIV-1 group M (subtype B, HIV-M/B and characterized these enzymes for susceptibility to integrase strand transfer inhibitors (INSTIs in cell-free assays and in tissue culture, in the absence or presence of varying concentrations of several INSTIs. The inhibition constant (Ki and IC50 were calculated and compared for HIV-M and HIV-O integrases. Selections for resistance-related mutations were performed using cord blood mononuclear cells and increasing concentration of INSTIs. Results: HIV-O integrase and viruses were more susceptible to raltegravir (RAL in competitive inhibition assays and in tissue culture than were HIV-M enzymes and viruses, respectively. During selection, we observed different pathways of resistance depending on the drug and clade. Mutations selected in HIV-O can be classified as follows: (1 mutations described for HIV-M such as T97A, Q148R, V151A/I (RAL, T66I, E92Q, E157Q (EVG and M50I, R263K (DTG and (2 signature mutations for HIV-O (i.e. not described in HIV-M F121C (HIV-O/B for RAL, V75I (HIV-O/A for RAL and S153V (HIV-O/A for DTG. Only the HIV-O/Div selected the Q148R mutation for RAL and R263K+M50I for DTG, as previously described for HIV-M. None of the HIV-O viruses selected either N155H or Y143C. The selection of the specific S153V mutation could be explained at the nucleotide level: HIV-O at this position contains an alanine and substitution of alanine to

  15. Removal of arsenic from water using manganese (III) oxide: Adsorption of As(III) and As(V).

    Science.gov (United States)

    Babaeivelni, Kamel; Khodadoust, Amid P

    2016-01-01

    Removal of arsenic from water was evaluated with manganese (III) oxide (Mn2O3) as adsorbent. Adsorption of As(III) and As(V) onto Mn2O3 was favorable according to the Langmuir and Freundlich adsorption equilibrium equations, while chemisorption of arsenic occurred according to the Dubinin-Radushkevich equation. Adsorption parameters from the Langmuir, Freundlich, and Temkin equations showed a greater adsorption and removal of As(III) than As(V) by Mn2O3. Maximum removal of As(III) and As(V) occurred at pH 3-9 and at pH 2, respectively, while removal of As(V) in the pH range of 6-9 was 93% (pH 6) to 61% (pH 9) of the maximum removal. Zeta potential measurements for Mn2O3 in As(III) was likely converted to As(V) solutions indicated that As(III) was likely converted to As(V) on the Mn2O3 surface at pH 3-9. Overall, the effective Mn2O3 sorbent rapidly removed As(III) and As(V) from water in the pH range of 6-9 for natural waters.

  16. A structural basis for allosteric control of DNA recombination by λ integrase

    Science.gov (United States)

    Biswas, Tapan; Aihara, Hideki; Radman-Livaja, Marta; Filman, David; Landy, Arthur; Ellenberger, Tom

    2007-01-01

    Site-specific DNA recombination is important for basic cellular functions including viral integration, control of gene expression, production of genetic diversity and segregation of newly replicated chromosomes, and is used by bacteriophage λ to integrate or excise its genome into and out of the host chromosome. λ recombination is carried out by the bacteriophage-encoded integrase protein (λ -int) together with accessory DNA sites and associated bending proteins that allow regulation in response to cell physiology. Here we report the crystal structures of λ -int in higher-order complexes with substrates and regulatory DNAs representing different intermediates along the reaction pathway. The structures show how the simultaneous binding of two separate domains of λ -int to DNA facilitates synapsis and can specify the order of DNA strand cleavage and exchange. An intertwined layer of amino-terminal domains bound to accessory (arm) DNAs shapes the recombination complex in a way that suggests how arm binding shifts the reaction equilibrium in favour of recombinant products. PMID:15973401

  17. Small Molecule Inhibitors of the LEDGF Site of Human Immunodeficiency Virus Integrase Identified by Fragment Screening and Structure Based Design

    Science.gov (United States)

    Peat, Thomas S.; Rhodes, David I.; Vandegraaff, Nick; Le, Giang; Smith, Jessica A.; Clark, Lisa J.; Jones, Eric D.; Coates, Jonathan A. V.; Thienthong, Neeranat; Newman, Janet; Dolezal, Olan; Mulder, Roger; Ryan, John H.; Savage, G. Paul; Francis, Craig L.; Deadman, John J.

    2012-01-01

    A fragment-based screen against human immunodeficiency virus type 1 (HIV) integrase led to a number of compounds that bound to the lens epithelium derived growth factor (LEDGF) binding site of the integrase catalytic core domain. We determined the crystallographic structures of complexes of the HIV integrase catalytic core domain for 10 of these compounds and quantitated the binding by surface plasmon resonance. We demonstrate that the compounds inhibit the interaction of LEDGF with HIV integrase in a proximity AlphaScreen assay, an assay for the LEDGF enhancement of HIV integrase strand transfer and in a cell based assay. The compounds identified represent a potential framework for the development of a new series of HIV integrase inhibitors that do not bind to the catalytic site of the enzyme. PMID:22808106

  18. Small molecule inhibitors of the LEDGF site of human immunodeficiency virus integrase identified by fragment screening and structure based design.

    Directory of Open Access Journals (Sweden)

    Thomas S Peat

    Full Text Available A fragment-based screen against human immunodeficiency virus type 1 (HIV integrase led to a number of compounds that bound to the lens epithelium derived growth factor (LEDGF binding site of the integrase catalytic core domain. We determined the crystallographic structures of complexes of the HIV integrase catalytic core domain for 10 of these compounds and quantitated the binding by surface plasmon resonance. We demonstrate that the compounds inhibit the interaction of LEDGF with HIV integrase in a proximity AlphaScreen assay, an assay for the LEDGF enhancement of HIV integrase strand transfer and in a cell based assay. The compounds identified represent a potential framework for the development of a new series of HIV integrase inhibitors that do not bind to the catalytic site of the enzyme.

  19. Design of inhibitors of the HIV-1 integrase core domain using virtual screening.

    Science.gov (United States)

    Regon, Preetom; Gogoi, Dhrubajyoti; Rai, Ashok Kumar; Bordoloi, Manabjyoti; Bezbaruah, Rajib Lochan

    2014-01-01

    Acquired immunodeficiency syndrome (AIDS) is a disease of the human immune system caused by the human immunodeficiency virus (HIV). The integrase (IN) enzyme of HIV interacts with several cellular and viral proteins during the integration process. Thus, it represents an appropriate target for antiretroviral drugs (ARVs). We performed virtual screening of database compounds and designed analogues using Elvitegravir (EVG) as a standard compound. The 378 screened compounds were retrieved from ZINC, ChemSpider, PubChem, and ChemBank Chemical Databases based on chemical similarity and literature searches related to the structure of EVG. The Physiochemical properties, Bioactivity, Toxicity and Absorption, Distribution, Metabolism and Excretion of Molecules (ADME) of these compounds were predicted and docking Experiments were conducted using Molegro Virtual Docker software. The docking and ADME suggested very significant results in regard to EVG. The MolDock and Rerank scores were used to analyze the results. The compounds ZINC26507991 (-84.22), Analogue 9 (-68.49), ZINC20731658 (-66.79), ZINC00210363 (-43.44) showed better binding orientation with IN receptor model with respect to EVG (182.52). The ZINC26507991 has showed significant ADME result.

  20. Dolutegravir interactions with HIV-1 integrase-DNA: structural rationale for drug resistance and dissociation kinetics.

    Directory of Open Access Journals (Sweden)

    Felix DeAnda

    Full Text Available Signature HIV-1 integrase mutations associated with clinical raltegravir resistance involve 1 of 3 primary genetic pathways, Y143C/R, Q148H/K/R and N155H, the latter 2 of which confer cross-resistance to elvitegravir. In accord with clinical findings, in vitro drug resistance profiling studies with wild-type and site-directed integrase mutant viruses have shown significant fold increases in raltegravir and elvitegravir resistance for the specified viral mutants relative to wild-type HIV-1. Dolutegravir, in contrast, has demonstrated clinical efficacy in subjects failing raltegravir therapy due to integrase mutations at Y143, Q148 or N155, which is consistent with its distinct in vitro resistance profile as dolutegravir's antiviral activity against these viral mutants is equivalent to its activity against wild-type HIV-1. Kinetic studies of inhibitor dissociation from wild-type and mutant integrase-viral DNA complexes have shown that dolutegravir also has a distinct off-rate profile with dissociative half-lives substantially longer than those of raltegravir and elvitegravir, suggesting that dolutegravir's prolonged binding may be an important contributing factor to its distinct resistance profile. To provide a structural rationale for these observations, we constructed several molecular models of wild-type and clinically relevant mutant HIV-1 integrase enzymes in complex with viral DNA and dolutegravir, raltegravir or elvitegravir. Here, we discuss our structural models and the posited effects that the integrase mutations and the structural and electronic properties of the integrase inhibitors may have on the catalytic pocket and inhibitor binding and, consequently, on antiviral potency in vitro and in the clinic.

  1. Mechanisms of UV-Light Promoted Removal of As(V) by Sulfide from Strongly Acidic Wastewater.

    Science.gov (United States)

    Kong, Linghao; Peng, Xianjia; Hu, Xingyun

    2017-11-07

    Strongly acidic wastewater with a high arsenic concentration is produced by a number of industries. The removal of As(V) (H3AsO4) by sulfide from strongly acidic wastewater remains a difficult issue. This study proposed a UV-assisted method to efficiently remove As(V) by sulfide, and the involved mechanisms were systematically investigated. In the dark, the low removal efficiency of As(V) by sulfide was attributed to the slow formation and transformation of an intermediate species, i.e., monothioarsenate (H3AsO3S), in the As(V) sulfuration reaction, which were the rate-controlling steps in this process. However, UV irradiation significantly promoted the removal efficiency of As(V) not only by promoting the formation of H3AsO3S through light-induced HS• and •H radicals but also by enhancing the transformation of H3AsO3S through a charge-transfer process between S(-II) and As(V) in the H3AsO3S complex, leading to the reduction of As(V) to As(III) and the oxidation of S(-II) to S(0). The formed As(III) species immediately precipitated as As2S3 under excess S(-II). Kinetic modeling offered a quantitative explanation of the results and verified the proposed mechanisms. This study provides a theoretical foundation for the application of light-promoted As(V) sulfuration removal, which may facilitate the recycling and reuse of arsenic and acid in strongly acidic wastewater.

  2. Preparation and characterization of an organic/inorganic hybrid sorbent (PLE) to enhance selectivity for As(V).

    Science.gov (United States)

    An, Byungryul; Kim, Hakchan; Park, Chanhyuk; Lee, Sang-Hyup; Choi, Jae-Woo

    2015-05-30

    For the selective removal of arsenate (As(V)) a hybrid sorbent was prepared using a non-toxic natural organic material, chitosan, by loading a transition metal, nickel. The immobilization of nickel was achieved by coordination with a deprotonated amino group (NH2) in the chitosan polymer chain. The amount of nickel was directly correlated to the presence of the amino group and was calculated to be 62 mg/g. FTIR spectra showed a peak shift from 1656 to 1637 cm(-1) after Ni(2+) loading, indicating the complexation between the amino group and nickel, and a peak of As(V) was observed at 834 cm(-1). An increase of sulfate concentration from 100 mg/L to 200 mg/L did not significantly affect As(V) sorption, and an increase in the concentration of bicarbonate reduced the As(V) uptake by 33%. The optimal pH of the solution was determined at pH 10, which is in accordance with the fraction of HAsO4(2-) and AsO4(-3). According to a fixed column test, a break through behavior of As(V) revealed that selectivity for As(V) was over sulfate. Regeneration using 5% NaCl extended the use of sorbent to up to uses without big loss of sorption capacity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Nucleic acid amplification of HIV-1 integrase sequence subtypes CRF01_AE and B for development of HIV anti-integrase drug resistance genotyping assay

    Science.gov (United States)

    Adlar, F. R.; Bela, B.

    2017-08-01

    To anticipate the potential use of anti-integrase drugs in Indonesia for treatment of HIV-1 infection, the development of a drug resistance genotyping assay for anti-integrase is crucial in identifying the genetic drug resistance profile of Indonesian HIV-1 strains. This experiment aimed to amplify a target region in the integrase gene of Indonesian HIV-1 subtypes CRF01_AE and B that contain genetic mutations known to confer resistance to anti-integrase drug. Eleven archived plasma samples from individuals living with HIV-1 were obtained from the Virology and Cancer Pathobiology Research Center for Health Service (VCPRC FKUI-RSCM) laboratory. One of the plasma samples contained HIV-1 subtype B, and the remaining plasma samples contained subtype CRF01_AE. The target regions for all samples were amplified through RT-PCR, with an annealing temperature of 55 °C, using the primer pair AE_POL 4086F and AE_POL 5232R that were designed by VCPRC FKUI-RSCM. The results of this experiment show that 18.2% (2/11) of the samples were successfully amplified using the one-step RT-PCR. While the primer pair was effective in amplifying the target region in the integrase gene sequence for subtype B (100%; 1/1), it had a low efficacy (10%, 1/10) for subtype CRF01_AE. In conclusion, the primer pair can be used to amplify the target region in Indonesian HIV-1 strain subtypes CRF01_AE and B. However, optimization of the PCR condition and an increased number of samples would help to determine an accurate representation of the efficacy of the primer pair.

  4. HIV-1 integrase inhibitory substances from Coleus parvifolius.

    Science.gov (United States)

    Tewtrakul, Supinya; Miyashiro, Hirotsugu; Nakamura, Norio; Hattori, Masao; Kawahata, Takuya; Otake, Toru; Yoshinaga, Tomokazu; Fujiwara, Tamio; Supavita, Tanomjit; Yuenyongsawad, Supreeya; Rattanasuwon, Pranee; Dej-Adisai, Sukanya

    2003-03-01

    For the purpose of discovering anti-HIV-1 agents from natural sources, water and EtOH extracts of 50 Thai plants were screened for their inhibitory activity against HIV-1 integrase (IN), an enzyme essential for viral replication. Of these plants, an EtOH extract of Coleus parvifolius Benth. (aerial parts) showed potent activity against HIV-1 IN with an IC50 value of 9.2 microg/mL. From this extract, 11 compounds were isolated and identified as luteolin 5-O-beta-d-glucopyranoside (1), luteolin (2), luteolin 7-methyl ether (3), luteolin 5-O-beta-d-glucuronide (4), 5-O-beta-d-glucopyranosyl-luteolin 7-methyl ether (5), rosmarinic acid (6), rosmarinic acid methyl ester (7), daucosterol (8), a mixture of alpha- and beta-amyrin (9, 10) and phytol (11). Of these compounds, rosmarinic acid methyl ester (7), rosmarinic acid (6), luteolin (2) and luteolin 7-methyl ether (3) exhibited inhibitory activities against HIV-1 IN with IC50 values of 3.1, 5.0, 11.0 and 11.0 microM, respectively. Among rosmarinic acid derivatives, the HIV-1 IN inhibitory activity increased in turn for a dimer (IC50 = 5.0 microM), a trimer (IC50 = 1.4 microM), and a tetramer (IC50 = 1.0 microM). Copyright 2003 John Wiley & Sons, Ltd.

  5. Discovery of a small-molecule HIV-1 integrase inhibitor-binding site | Center for Cancer Research

    Science.gov (United States)

    The lowest energy-binding conformation of an inhibitor bound to the dimeric interface of HIV-1 integrase core domain. The yellow region represents a unique allosteric binding site identified by affinity labeling and mass spectrometry and validated through mutagenesis. This site can provide a potential platform for the rational design of inhibitors selective for disruption of integrase multimerization.

  6. A Resolvase-like Protein is required for the Site-Specific Integration of the Temperate Lactococcal Bacteriophage TP901-1

    DEFF Research Database (Denmark)

    Christiansen, Bettina; Brøndsted, Lone; Vogensen, Finn K.

    1996-01-01

    showed 38-44 % similarity to the resolvase group of site-specific integrases, while no similarity to known proteins was found in the C-terminal end. Bacteriophage TP901-1 therefore contains a unique integration system, not resembling the Int-class of site-specific integrases usually found in temperate...

  7. Quantitative prediction of integrase inhibitor resistance from genotype through consensus linear regression modeling

    Directory of Open Access Journals (Sweden)

    Van der Borght Koen

    2013-01-01

    Full Text Available Abstract Background Integrase inhibitors (INI form a new drug class in the treatment of HIV-1 patients. We developed a linear regression modeling approach to make a quantitative raltegravir (RAL resistance phenotype prediction, as Fold Change in IC50 against a wild type virus, from mutations in the integrase genotype. Methods We developed a clonal genotype-phenotype database with 991 clones from 153 clinical isolates of INI naïve and RAL treated patients, and 28 site-directed mutants. We did the development of the RAL linear regression model in two stages, employing a genetic algorithm (GA to select integrase mutations by consensus. First, we ran multiple GAs to generate first order linear regression models (GA models that were stochastically optimized to reach a goal R2 accuracy, and consisted of a fixed-length subset of integrase mutations to estimate INI resistance. Secondly, we derived a consensus linear regression model in a forward stepwise regression procedure, considering integrase mutations or mutation pairs by descending prevalence in the GA models. Results The most frequently occurring mutations in the GA models were 92Q, 97A, 143R and 155H (all 100%, 143G (90%, 148H/R (89%, 148K (88%, 151I (81%, 121Y (75%, 143C (72%, and 74M (69%. The RAL second order model contained 30 single mutations and five mutation pairs (p 2 performance of this model on the clonal training data was 0.97, and 0.78 on an unseen population genotype-phenotype dataset of 171 clinical isolates from RAL treated and INI naïve patients. Conclusions We describe a systematic approach to derive a model for predicting INI resistance from a limited amount of clonal samples. Our RAL second order model is made available as an Additional file for calculating a resistance phenotype as the sum of integrase mutations and mutation pairs.

  8. A method for producing transgenic cells using a multi-integrase system on a human artificial chromosome vector.

    Directory of Open Access Journals (Sweden)

    Shigeyuki Yamaguchi

    Full Text Available The production of cells capable of expressing gene(s of interest is important for a variety of applications in biomedicine and biotechnology, including gene therapy and animal transgenesis. The ability to insert transgenes at a precise location in the genome, using site-specific recombinases such as Cre, FLP, and ΦC31, has major benefits for the efficiency of transgenesis. Recent work on integrases from ΦC31, R4, TP901-1 and Bxb1 phages demonstrated that these recombinases catalyze site-specific recombination in mammalian cells. In the present study, we examined the activities of integrases on site-specific recombination and gene expression in mammalian cells. We designed a human artificial chromosome (HAC vector containing five recombination sites (ΦC31 attP, R4 attP, TP901-1 attP, Bxb1 attP and FRT; multi-integrase HAC vector and de novo mammalian codon-optimized integrases. The multi-integrase HAC vector has several functions, including gene integration in a precise locus and avoiding genomic position effects; therefore, it was used as a platform to investigate integrase activities. Integrases carried out site-specific recombination at frequencies ranging from 39.3-96.8%. Additionally, we observed homogenous gene expression in 77.3-87.5% of colonies obtained using the multi-integrase HAC vector. This vector is also transferable to another cell line, and is capable of accepting genes of interest in this environment. These data suggest that integrases have high DNA recombination efficiencies in mammalian cells. The multi-integrase HAC vector enables us to produce transgene-expressing cells efficiently and create platform cell lines for gene expression.

  9. Radiation induced emulsion graft polymerization of 4-vinylpyridine onto PE/PP nonwoven fabric for As(V) adsorption

    Science.gov (United States)

    Akkaş Kavaklı, Pınar; Kavaklı, Cengiz; Seko, Noriaki; Tamada, Masao; Güven, Olgun

    2016-10-01

    A novel nonwoven fabric adsorbent having 4-vinylpyridine functional groups was prepared by using radiation-induced emulsion graft polymerization method and grafting 4-vinylpyridine monomer onto a polyethylene-coated polypropylene nonwoven fabric (NWF) in aqueous emulsion solution. The grafting conditions of the 4-vinylpyridine monomer onto the NWF were optimised and 150% Dg VP-g-NWF was prepared using 30 kGy pre-irradiation dose, 5% VP monomer concentration and 0.5% (w/w) Tween 20 in aqueous emulsion. Grafted 4-vinylpyridine chains on the NWF were then quaternized for the preparation of QVP-g-NWF adsorbent. All fabric structures were characterized by using Fourier-transform infrared spectrometer, x-ray photoelectron spectrometer and scanning electron microscope. QVP-g-NWF adsorbent was used in batch adsorption experiments for As(V) ions by studying the pH, contact time, and initial As(V) ion concentration parameters. Results showed that QVP-g-NWF adsorbent has significant As(V) adsorption and experimental As(V) adsorption capacity was 98.04 mg As(V)/g polymer from 500 mg/L initial As(V) concentration at pH 7.00.

  10. ILG1 : a new integrase-like gene that is a marker of bacterial contamination by the laboratory Escherichia coli strain TOP10F'.

    Science.gov (United States)

    Tian, Wenzhi; Chua, Kevin; Strober, Warren; Chu, Charles C

    2002-07-01

    Identification of differentially expressed genes between normal and diseased states is an area of intense current medical research that can lead to the discovery of new therapeutic targets. However, isolation of differentially expressed genes by subtraction often suffers from unreported contamination of the resulting subtraction library with clones containing DNA sequences not from the original RNA samples. Subtraction using cDNA representational difference analysis (RDA) was performed on human B cells from normal or common variable immunodeficiency patients. The material remaining after the subtraction was cloned and individual clones were sequenced. The sequence of one clone with similarity to integrases (ILG1, integrase-like gene-1) was used to obtain the full length cDNA sequence and as a probe for the presence of this sequence in RNA or genomic DNA samples. After five rounds of cDNA RDA, 23.3% of the clones from the resulting subtraction library contained Escherichia coli DNA. In addition, three clones contained the sequence of a new integrase, ILG1. The full length cDNA sequence of ILG1 exhibits prokaryotic, but not eukaryotic, features. At the DNA level, ILG1 is not similar to any known gene. At the protein level, ILG1 has 58% similarity to integrases from the cryptic P4 bacteriophage family (S clade). The catalytic domain of ILG1 contains the conserved features found in site-specific recombinases. The critical residues that form the catalytic active site pocket are conserved, including the highly conserved R-H-R-Y hallmark of these recombinases. Interestingly, ILG1 was not present in the original B cell populations. By probing genomic DNA, ILG1 could only be detected in the E. coli TOP10F' strain used in our laboratory for molecular cloning, but not in any of its precursor strains, including TOP10. Furthermore, bacteria cultured from the mouth of the laboratory worker who performed cDNA RDA were also positive for ILG1. In the course of our studies using c

  11. Cancer-specific binary expression system activated in mice by bacteriophage HK022 Integrase

    DEFF Research Database (Denmark)

    Elias, Amer; Spector, Itay; Sogolovsky-Bard, Ilana

    2016-01-01

    Binary systems based on site-specific recombination have been used for tumor specific transcription targeting of suicide genes in animal models. In these binary systems a site specific recombinase or integrase that is expressed from a tumor specific promoter drives tumor specific expression of a ...

  12. Bxb1 integrase serves as a highly efficient DNA recombinase in rapid metabolite pathway assembly.

    Science.gov (United States)

    Wang, Xianwei; Tang, Biao; Ye, Yu; Mao, Yayi; Lei, Xiaolai; Zhao, Guoping; Ding, Xiaoming

    2017-01-01

    Phage-encoded serine integrases are widely used in genetic engineering. They also have the potential to serve as efficient DNA assemblers, demonstrated by the method of site-specific recombination-based tandem assembly (SSRTA) that can combine biological parts into devices, pathways, and systems. Here, four serine integrases, ϕBT1, TG1, ϕRv1, and Bxb1, were investigated to ascertain their in vitro DNA assembly activities. Bxb1 integrase displayed the highest efficiency to obtain final products. Thus, we conclude that Bxb1 integrase is an excellent choice for DNA assembly in vitro Using this enzyme and its recognition sites, BioBrick standards were designed that are compatible with the SSRTA method for module addition. A rapid and efficient procedure was developed for the assembly of a multigene metabolic pathway in one step, directly from non-cutting plasmids containing the gene fragments. This technique is easy and convenient, and would be of interest to the synthetic biology community. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Placental transfer of the HIV integrase inhibitor dolutegravir in an ex vivo human cotyledon perfusion model

    NARCIS (Netherlands)

    Schalkwijk, S.J.; Greupink, R.; Colbers, A.P.; Wouterse, A.C.; Verweij, V.G.M.; Drongelen, J. van; Teulen, M.J.A.; Oetelaar, D. van den; Burger, D.M.; Russel, F.G.

    2016-01-01

    OBJECTIVES: Data on fetal exposure to antiretroviral agents during pregnancy are important to estimate their potential for prevention of mother-to-child transmission (PMTCT) and possible toxicity. For the recently developed HIV integrase inhibitor dolutegravir, clinical data on fetal disposition are

  14. N-hydroxy-substituted 2-aryl acetamide analogs: A novel class of HIV-1 integrase inhibitors.

    Science.gov (United States)

    Debnath, Utsab; Kumar, Prachi; Agarwal, Aakanksha; Kesharwani, Ajay; Gupta, Satish K; Katti, Seturam B

    2017-10-01

    An in silico method has been used to discover N-hydroxy-substituted 2-aryl acetamide analogs as a new class of HIV-1 integrase inhibitors. Based on the molecular requirements of the binding pocket of catalytic active site, two molecules (compounds 2 and 4b) were designed as fragments. These were further synthesized and biologically evaluated. In vitro potency along with docking studies highlighted compound 4b as an active fragment which was further used to synthesize new leads as HIV-1 integrase inhibitors. Finally, six promising compounds (compounds 5b, 5c, 5e, 6-2c, 6-3b, and 6-5b) were identified by integrase inhibition assay (>50% inhibition). Based on in vitro anti-HIV-1 activity in a reporter gene-based cell assay system, compounds 5d, 6s, and 6k were found as novel HIV-1 integrase inhibitors due to its better selectivity index. Additionally, docking study revealed the importance of H-bond as well as hydrophobic interactions with Asn155, Lys156, and Lys159 which were required for their anti-HIV-1 activity. © 2017 John Wiley & Sons A/S.

  15. A Mos1 transposase in vivo assay to screen new HIV-1 integrase inhibitors.

    Science.gov (United States)

    Cancian, Mariana; Loreto, Elgion L S

    2018-01-19

    The integrase and transposase enzymes of retrovirus and transposons, respectively, share the catalytic DDE domain. In vitro assays showed that inhibitors of HIV-1 integrase generally inhibit the mariner Mos1 transposase. Using a Drosophila strain in which the mobilisation of the mariner element can be quantified by mosaic eyes, we showed that flies maintained in medium containing 210 µM to 4 mM of raltegravir, or 1 or 2 mM of dolutegravir, which are HIV-1 integrase inhibitor used in AIDS treatment, have 23-33% less somatic mobilisation in mosaic eyes when treated with raltegravir and 28-32% when treated with dolutegravir. The gene expression of the mariner transposase gene, estimated by qPCR, is similar among treated and control flies. The results suggest that in vivo assays using Drosophila can be used as a primary screening of inhibitory drugs for transposase and retroviral integrase. The advantages of this assay are that it is easy, quick, cheap and is an in vivo test, meaning that the tested substance has to have been taken in by cells and has arrived at the target site, which is not the case when in vitro assays are applied.

  16. As(III) and As(V) adsorption on nanocomposite of hydrated zirconium oxide coated carbon nanotubes.

    Science.gov (United States)

    Liu, Dengchao; Deng, Shubo; Maimaiti, Ayiguli; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang

    2018-02-01

    Novel hydrated zirconium oxide (ZrO(OH)2) coated carbon nanotubes (CNTs) were prepared via a filtration-steam hydrolysis method, and were used to remove As(III) and As(V) from drinking water. This adsorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The ZrO(OH)2 coated on the surface of CNTs was amorphous, and the coating thickness was in the range of 1-8 nm. The ZrO(OH)2/CNTs nanocomposite showed high adsorption for both As(III) and As(V) with the maximum adsorption capacities of 78.2 and 124.6 mg/g, respectively, according to the Langmuir fitting. The adsorption capacities of ZrO(OH)2/CNTs at the equilibrium concentration of 10 μg/L were 2.0 mg/g for As(III) and 7.2 mg/g for As(V) at pH 7, much higher than those of ZrO(OH)2 nanoparticles. Meanwhile, the adsorption rates of As(III) and As(V) on the ZrO(OH)2/CNTs were higher than the ZrO(OH)2 nanoparticles. The spent adsorbent can be regenerated by re-coating ZrO(OH)2 as the preparation method, and the adsorbed amounts of As(III) and As(V) on the ZrO(OH)2/CNTs changed little within six cycles. This ZrO(OH)2/CNTs nanocomposite shows a promising application potential for the removal of As(III) and As(V) from drinking water. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Effect of calcium on adsorptive removal of As(III) and As(V) by iron oxide-based adsorbents

    KAUST Repository

    Uwamariya, V.

    2014-06-25

    The effects of calcium on the equilibrium adsorption capacity of As(III) and As(V) onto iron oxide-coated sand (IOCS) and granular ferric hydroxide (GFH) were investigated through batch experiments, rapid small-scale column tests (RSSCT) and kinetics modelling. Batch experiments showed that at calcium concentrations≤20 mg/L, high As(III) and As(V) removal efficiencies by IOCS and GFH are achieved at pH 6. An increase of the calcium concentration to 40 and 80 mg/L reversed this trend, giving higher removal efficiencies at higher pH (8). The adsorption capacities of IOCS and GFH at an equilibrium arsenic concentration of 10 g/L were found to be between 2.0 and 3.1 mg/g for synthetic water without calcium and between 2.8 and 5.3 mg/g when 80 mg/L of calcium was present at the studied pH values. After 10 hours of filter run in RSSCT, approximately 1000 empty bed volumes, the ratios of C/Co for As(V) were 26% and 18% for calcium-free model water; and only 1% and 0.2% after addition of 80 mg/L of Ca for filter columns with IOCS and GFH, respectively. The adsorption of As(III) and As(V) onto GFH follows a second-order reaction, with and without addition of calcium. The adsorption of As(III) and As(V) onto IOCS follows a first-order reaction without calcium addition, and moves to the second-reaction-order kinetics when calcium is added. Based on the intraparticle diffusion model, the main controlling mechanism for As(III) adsorption is intraparticle diffusion, while surface diffusion contributes greatly to the adsorption of As(V).

  18. The mechanisms of detoxification of As(III), dimethylarsinic acid (DMA) and As(V) in the microalga Chlorella vulgaris.

    Science.gov (United States)

    Pantoja Munoz, L; Purchase, D; Jones, H; Raab, A; Urgast, D; Feldmann, J; Garelick, H

    2016-06-01

    The response of Chlorella vulgaris when challenged by As(III), As(V) and dimethylarsinic acid (DMA) was assessed through experiments on adsorption, efflux and speciation of arsenic (reduction, oxidation, methylation and chelation with glutathione/phytochelatin [GSH/PC]). Our study indicates that at high concentrations of phosphate (1.62mM of HPO4(2-)), upon exposure to As(V), cells are able to shift towards methylation of As(V) rather than PC formation. Treatment with As(V) caused a moderate decrease in intracellular pH and a strong increase in the concentration of free thiols (GSH). Passive surface adsorption was found to be negligible for living cells exposed to DMA and As(V). However, adsorption of As(III) was observed to be an active process in C. vulgaris, because it did not show saturation at any of the exposure periods. Chelation of As(III) with GS/PC and to a lesser extent hGS/hPC is a major detoxification mechanism employed by C. vulgaris cells when exposed to As(III). The increase of bound As-GS/PC complexes was found to be strongly related to an increase in concentration of As(III) in media. C. vulgaris cells did not produce any As-GS/PC complex when exposed to As(V). This may indicate that a reduction step is needed for As(V) complexation with GSH/PC. C. vulgaris cells formed DMAS(V)-GS upon exposure to DMA independent of the exposure period. As(III) triggers the formation of arsenic complexes with PC and homophytochelatins (hPC) and their compartmentalisation to vacuoles. A conceptual model was devised to explain the mechanisms involving ABCC1/2 transport. The potential of C. vulgaris to bio-remediate arsenic from water appeared to be highly selective and effective without the potential hazard of reducing As(V) to As(III), which is more toxic to humans. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. HIV-1整合酶链转移反应抑制剂的荧光筛选方法%A Fluorescent Screening Assay for HIV-1 Integrase Inhibitors Targeting Strand Transfer

    Institute of Scientific and Technical Information of China (English)

    刘斌; 刘昕; 李杉; 何红秋; 张小轶; 谭建军; 陈慰祖; 王存新

    2013-01-01

    HIV-1 integrase is an ideal target for anti-HIV-1 drug discovery. The aim of the present study was to develop a highly effective and more convenient screening assay for HIV-1 integrase inhibitors targeting strand transfer. First, the recombinant expression vector pNL-IN, which contains the HIV-1 integrase gene, was transformed into E. coli BL21 ( DE3 ) competent cells for prokaryotic expression. The recombinant integrase protein was purified by affinity chromatography. It was validated that the recombinant integrase protein was pure and active for screening assay development. Then, the biotin-labeled donor DNA and the FITC-labeled target DNA were synthesized and applied in the assay, and streptavidin-coated magnetic beads were used to capture the product DNA in the reaction system. Finally, the fluorescence signal was detected by a fluorescence microplate reader for the calculation of sample activity. Two reported integrase inhibitors, S-1360 and MK-0518 , were tested to validate the screening assay, and the results are in accordance with previous studies, which indicated that the screening assay could be used for the screening of integrase inhibitor targeting strand transfer. The screening assay for HIV-1 integrase inhibitors developed in the present study is more convenient, time-saving and cost-effective than previous screening assays.%整合酶被认为是抗HIV-1药物研究的理想靶点之一.为了建立便捷高效的整合酶链转移反应抑制剂筛选方法,首先将HIV-1整合酶原核表达载体pNL-IN转化入大肠杆菌感受态细胞BL21(DE3)进行原核表达,并用镍琼脂糖凝胶进行亲和纯化,获得了纯度和活性均较高的整合酶重组蛋白;然后设计了生物素标记的供体DNA和FITC标记的靶DNA,用链霉亲和素磁珠捕获反应体系中的DNA产物;最后用荧光分析仪检测DNA产物的荧光信号,并计算待测样品的抑制率.用已知整合酶抑制剂S-1360和MK-0518对筛选方法进行了验

  20. The effect of Cl − , PO 4 3− , and SiO 3 2− on the adsorption of As(V ...

    African Journals Online (AJOL)

    The adsorption performance of bauxite for the removal of As(V) and As(III) from contaminated water was investigated. The effect of initial pH, contact time, and the presence of silicate, phosphate and chloride, at concentrations typically found in the ground drinking water in India/Bangladesh, were investigated. As(V) is ...

  1. Performance of Celera RUO integrase resistance assay across multiple HIV-1 subtypes.

    Science.gov (United States)

    Wallis, Carole L; Viana, Raquel V; Saravanan, Shanmugam; Silva de Jesus, Carlos; Zeh, Clement; Halvas, Elias K; Mellors, John W

    2017-03-01

    HIV-1 sequence variation is a major obstacle to developing molecular based assays for multiple subtypes. This study sought to independently assess performance characteristics of the ViroSeq™ HIV-1 Integrase RUO Genotyping Kit (Celera, US) for samples of multiple different HIV-1 subtypes. 264 samples were tested in the validation, 106 from integrase inhibitor naïve patients' sent for routine HIV-1 drug resistance testing after failing a 1st- or 2nd-line regimen, and 158 samples from an external virology quality assurance program (VQA). For the latter, 53 unique VQA samples were tested in two to five different laboratories to assess assay reproducibility. For all assays, viral RNA was extracted using the ViroSeq extraction module, reverse transcribed, and amplified in a one-step reaction. Four sequencing primers were used to span codons 1-288 of integrase. The Rega subtyping tool was used for subtype assignment. Integrase polymorphisms and mutations were determined as differences from the HXB2 sequence and by the Stanford database, respectively. Sequences obtained from the different laboratories were aligned and sequence homology determined. HIV-1 RNA in the 264 samples ranged from 3.15 to 6.74logcopies/ml. Successful amplification was obtained for 97% of samples (n=256). The 8 samples that failed to amplify were subtype D (n=3), subtype C (n=1), CRF01_AE (n=1), subtype A1 (n=2), and an unassigned subtype (n=1). Of the 256 that successfully amplified samples, 203 (79%) were successfully sequenced with bidirectional coverage. Of the 53 unsuccessful samples, 13 (5%) failed sequencing and 40 (16%) did not have full bidirectional sequence, as a result of failure of sequencing primers: Primer A (n=1); Primer B (n=18); Primer C (n=1); Primer D (n=7) or short sequences (n=16). For the 135 VQA samples (30 unique samples) that were assayed by different laboratories, homology of the sequences obtained ranged from 92.1% to 100%. However, Laboratory 2 detected more mixtures

  2. Determination of As(III and As(V in waters by chronopotentiometric stripping analysis

    Directory of Open Access Journals (Sweden)

    Švarc-Gajić Jaroslava V.

    2006-01-01

    Full Text Available Arsenic is a naturally occurring toxic and carcinogenic element. The degree of the toxicity depends on its chemical form and the concentration. Application of a sensitive, selective, simple and rapid method for detection and monitoring of different oxidation states of arsenic in waters is of great importance because main route of population exposure is through drinking water. In this work chronopotentiometric stripping analysis (CSA was used for the determination of As(III and As(V in tap, well, river and rain waters from Vojvodina (Serbia. Gold film electrode on the glassy carbon support was used as the working electrode. The experimental parameters of the technique were investigated and optimized. Detection limit of the method for the electrolysis time of 600 s was 2 μg/dm3 of As(III.

  3. Electrocatalytic oxidation of As(III) to As(V) using noble metal-polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Julio A.; Rivas, Bernabe L.; Pooley, S. Amalia; Basaez, Luis; Pereira, Eduardo [Faculty of Chemistry, University of Concepcion, Casilla 160-C, Concepcion (Chile); Pignot-Paintrand, Isabelle [Centre de Recherches sur les Macromolecules Vegetales (CERMAV-CNRS), ICMG FR-2607, affiliated with Universite Joseph Fourier Grenoble 1, BP 53, F-38041 Grenoble Cedex 9 (France); Bucher, Christophe; Royal, Guy; Saint-Aman, Eric [Universite Joseph Fourier Grenoble1, Departement de Chimie Moleculaire, UMR CNRS-5250, Institut de Chimie Moleculaire de Grenoble, FR CNRS-2607, BP 53, 38041, Grenoble Cedex 9 (France); Moutet, Jean-Claude, E-mail: Jean-Claude.Moutet@ujf-grenoble.f [Universite Joseph Fourier Grenoble1, Departement de Chimie Moleculaire, UMR CNRS-5250, Institut de Chimie Moleculaire de Grenoble, FR CNRS-2607, BP 53, 38041, Grenoble Cedex 9 (France)

    2010-07-01

    Nanocomposite materials synthesized by incorporation of Pt{sup 0} and Pd{sup 0} nanoparticles into a poly(pyrrole-alkylammonium) matrix have been characterized by transmission electron microscopy. These nanocomposites coated onto carbon electrodes present strong electrocatalytic properties towards the oxidation of arsenite to arsenate. Nanocomposite films modified electrodes have been used for As(III) analysis, with a detection limit reaching 2.4 {mu}M (0.17 ppm). The interest of these nanocomposite electrode materials deposited onto carbon felt macroelectrodes for the exhaustive electrocatalytic oxidation of As(III) to As(V) solutions was also demonstrated. The use of a water-soluble poly(quaternary ammonium) salt acting both as supporting electrolyte and as extracting agent allowed us to efficiently remove the electrocatalytically generated arsenic(V) species by liquid phase polymer-assisted retention (LPR) technique.

  4. Adsorption Characteristics of Different Adsorbents and Iron(III Salt for Removing As(V from Water

    Directory of Open Access Journals (Sweden)

    Josip Ćurko

    2016-01-01

    Full Text Available The aim of this study is to determine the adsorption performance of three types of adsorbents for removal of As(V from water: Bayoxide® E33 (granular iron(III oxide, Titansorb® (granular titanium oxide and a suspension of precipitated iron(III hydroxide. Results of As(V adsorption stoichiometry of two commercial adsorbents and precipitated iron(III hydroxide in tap and demineralized water were fitted to Freundlich and Langmuir adsorption isotherm equations, from which adsorption constants and adsorption capacity were calculated. The separation factor RL for the three adsorbents ranged from 0.04 to 0.61, indicating effective adsorption. Precipitated iron(III hydroxide had the greatest, while Titansorb had the lowest capacity to adsorb As(V. Comparison of adsorption from tap or demineralized water showed that Bayoxide and precipitated iron(III hydroxide had higher adsorption capacity in demineralized water, whereas Titansorb showed a slightly higher capacity in tap water. These results provide mechanistic insights into how commonly used adsorbents remove As(V from water.

  5. Efficient transduction of LEDGF/p75 mutant cells by complementary gain-of-function HIV-1 integrase mutant viruses

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2014-01-01

    Full Text Available Controlling the specificity of retroviral DNA integration could improve the safety of gene therapy vectors, and fusions of heterologous chromatin binding modules to the integrase (IN–binding domain from the lentiviral integration host cofactor lens epithelium–derived growth factor (LEDGF/p75 are a promising retargeting strategy. We previously proposed the utility of IN mutant lentiviral vectors that are selectively activated by complementary LEDGF/p75 variants, and our initial modifications in human immunodeficiency virus type 1 IN and LEDGF/p75 supported about 13% of wild-type vector transduction activity. Here we describe the selection and characterization of the K42E gain-of-function mutation in IN, which greatly improves the efficiency of this system. Both K42E and initial reverse-charge mutations in IN negatively affected reverse transcription and integration, yet when combined together boosted viral transduction efficiency to ∼75% of the wild-type vector in a manner dependent on a complementary LEDGF/p75 variant. Although the K42E mutation conferred functional gains to IN mutant viral reverse transcription and integration, only the integration boost depended on the engineered LEDGF/p75 mutant. We conclude that the specificity of lentiviral retargeting strategies based on heterologous LEDGF/p75 fusion proteins will benefit from our optimized system that utilizes the unique complementation properties of reverse-charge IN mutant viral and LEDGF/p75 host proteins.

  6. Biosorption of Cr(VI) and As(V) at high concentrations by organic and inorganic wastes

    Science.gov (United States)

    María Rivas Pérez, Ivana; Paradelo Núñez, Remigio; Nóvoa Muñoz, Juan Carlos; Arias Estévez, Manuel; José Fernández Sanjurjo, María; Álvarez Rodríguez, Esperanza; Núñez Delgado, Avelino

    2016-04-01

    The potential reutilization of several wastes as biosorbents for As(V) and Cr(VI) has been assessed in batch-type experiments. The materials studied were one inorganic: mussel shell, and three organic: pine bark, oak ash and hemp waste. Batch experiments were performed in order to determine the removal capacity of the wastes under conditions of high As(V) and Cr(VI) loads. For this, 3 g of each waste material were added with 30 mL NaNO3 0.01 M dissolutions containing 0, 0.5, 1.5, 3 and 6 mmol As(V) L-1 or Cr(VI) L-1, prepared from analytical grade Na2HAsO4 or K2Cr2O7. The resulting suspensions were shaken for 24 h, centrifuged and filtered. Once each batch experiment corresponding to the sorption trials ended, each individual sample was added with 30 mL of NaNO3 0.01 M to desorb As(V) or Cr(VI), shaken for 24 h, centrifuged and filtered as in the sorption trials. Oak ash showed high sorption (>76%) and low desorption (hemp waste (98%) with very low desorption (hemp waste and mussel shell, that presented very low Cr(VI) sorption (<10%). Sorption data for both elements were better described by the Freundlich than by the Langmuir model. The variable results obtained for the removal of the two anionic contaminants for a given sorbent suggest that different mechanisms govern removal from the solution in each case. In summary, oak ash would be an efficient sorbent material for As(V), but not for Cr(VI), while pine bark would be the best sorbent for Cr(VI) removal.

  7. Identification of minority resistance mutations in the HIV-1 integrase coding region using next generation sequencing

    DEFF Research Database (Denmark)

    Fonager, Jannik; Larsson, Jonas T; Hussing, Christian

    2015-01-01

    BACKGROUND: The current widely applied standard method to screen for HIV-1 genotypic resistance is based on Sanger population sequencing (Sseq), which does not allow for the identification of minority variants (MVs) below the limit of detection for the Sseq-method in patients receiving integrase...... strand-transfer inhibitors (INSTI). Next generation sequencing (NGS) has facilitated the detection of MVs at a much deeper level than Sseq. OBJECTIVES: Here, we compared Illumina MiSeq and Sseq approaches to evaluate the detection of MVs involved in resistance to the three commonly used INSTI......: raltegravir (RAL), elvitegravir (EVG) and dolutegravir (DTG). STUDY DESIGN: NGS and Sseq were used to analyze RT-PCR products of the HIV-1 integrase coding region from six patients and in serial samples from two patients. NGS sequences were assembled and analyzed using the low frequency variant detection...

  8. Molecular modeling study on the allosteric inhibition mechanism of HIV-1 integrase by LEDGF/p75 binding site inhibitors.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HIV-1 integrase (IN is essential for the integration of viral DNA into the host genome and an attractive therapeutic target for developing antiretroviral inhibitors. LEDGINs are a class of allosteric inhibitors targeting LEDGF/p75 binding site of HIV-1 IN. Yet, the detailed binding mode and allosteric inhibition mechanism of LEDGINs to HIV-1 IN is only partially understood, which hinders the structure-based design of more potent anti-HIV agents. A molecular modeling study combining molecular docking, molecular dynamics simulation, and binding free energy calculation were performed to investigate the interaction details of HIV-1 IN catalytic core domain (CCD with two recently discovered LEDGINs BI-1001 and CX14442, as well as the LEDGF/p75 protein. Simulation results demonstrated the hydrophobic domain of BI-1001 and CX14442 engages one subunit of HIV-1 IN CCD dimer through hydrophobic interactions, and the hydrophilic group forms hydrogen bonds with HIV-1 IN CCD residues from other subunit. CX14442 has a larger tert-butyl group than the methyl of BI-1001, and forms better interactions with the highly hydrophobic binding pocket of HIV-1 IN CCD dimer interface, which can explain the stronger affinity of CX14442 than BI-1001. Analysis of the binding mode of LEDGF/p75 with HIV-1 IN CCD reveals that the LEDGF/p75 integrase binding domain residues Ile365, Asp366, Phe406 and Val408 have significant contributions to the binding of the LEDGF/p75 to HIV1-IN. Remarkably, we found that binding of BI-1001 and CX14442 to HIV-1 IN CCD induced the structural rearrangements of the 140 s loop and oration displacements of the side chains of the three conserved catalytic residues Asp64, Asp116, and Glu152 located at the active site. These results we obtained will be valuable not only for understanding the allosteric inhibition mechanism of LEDGINs but also for the rational design of allosteric inhibitors of HIV-1 IN targeting LEDGF/p75 binding site.

  9. Structural Properties of HIV Integrase. Lens Epithelium-derived Growth Factor Oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, K.; Diamond, T; Hwang, Y; Bushman, F; Van Duyne, G

    2010-01-01

    Integrase (IN) is the catalytic component of the preintegration complex, a large nucleoprotein assembly critical for the integration of the retroviral genome into a host chromosome. Although partial crystal structures of human immunodeficiency virus IN alone and its complex with the integrase binding domain of the host factor PSIP1/lens epithelium-derived growth factor (LEDGF)/p75 are available, many questions remain regarding the properties and structures of LEDGF-bound IN oligomers. Using analytical ultracentrifugation, multiangle light scattering, and small angle x-ray scattering, we have established the oligomeric state, stoichiometry, and molecular shapes of IN {center_dot} LEDGF complexes in solution. Analyses of intact IN tetramers bound to two different LEDGF truncations allow for placement of the integrase binding domain by difference analysis. Modeling of the small angle x-ray scattering envelopes using existing structural data suggests domain arrangements in the IN oligomers that support and extend existing biochemical data for IN {center_dot} LEDGF complexes and lend new insights into the quaternary structure of LEDGF-bound IN tetramers. These IN oligomers may be involved in stages of the viral life cycle other than integration, including assembly, budding, and early replication.

  10. Molecular features related to HIV integrase inhibition obtained from structure- and ligand-based approaches.

    Directory of Open Access Journals (Sweden)

    Luciana L de Carvalho

    Full Text Available Among several biological targets to treat AIDS, HIV integrase is a promising enzyme that can be employed to develop new anti-HIV agents. The aim of this work is to propose a mechanistic interpretation of HIV-1 integrase inhibition and to rationalize the molecular features related to the binding affinity of studied ligands. A set of 79 HIV-1 integrase inhibitors and its relationship with biological activity are investigated employing 2D and 3D QSAR models, docking analysis and DFT studies. Analyses of docking poses and frontier molecular orbitals revealed important features on the main ligand-receptor interactions. 2D and 3D models presenting good internal consistency, predictive power and stability were obtained in all cases. Significant correlation coefficients (r(2 = 0.908 and q(2= 0.643 for 2D model; r(2= 0.904 and q(2= 0.719 for 3D model were obtained, indicating the potential of these models for untested compounds. The generated holograms and contribution maps revealed important molecular requirements to HIV-1 IN inhibition and several evidences for molecular modifications. The final models along with information resulting from molecular orbitals, 2D contribution and 3D contour maps should be useful in the design of new inhibitors with increased potency and selectivity within the chemical diversity of the data.

  11. Evaluation of the multiple-ion competition in the adsorption of As(V) onto reclaimed iron-oxide coated sands by fractional factorial design.

    Science.gov (United States)

    Hsu, Jia-Chin; Lin, Chien-Jung; Liao, Chih-Hsiang; Chen, Shyi-Tien

    2008-07-01

    This study describes the competitive effects of selected ions and natural organic matter on As(V) removal using reclaimed iron-oxide coated sands (RIOCS) in the single- and multi-ion systems. A 2(7-3) factional factorial experimental design (FFD) was employed for screening main competitive factors in this adsorption process. As a result, the inhibitive competition effects of the anions on As(V) removal in the single ion system were in the following sequence: PO(4)(3-)>SiO(3)(2-)>HCO(3)(-)>humic acid (HA)>SO(4)(2-)>Cl(-), whereas the cation Ca(2+) was observed to enhance the As(V) removal. In addition, the optimum initial pH for As(V) removal in single-ion system was 5. Based on the estimates of major effects and interactions from the FFD, PO(4)(3-), SiO(3)(2-), Ca(2+) and HA were important factors on As(V) removal in the multi-ion system. The promoters for the As(V) removal were found to be Ca(2+) and, to a lesser extent, SO(4)(2-). The competitive effects of these ions on As(V) removal were in the order of PO(4)(3-), SiO(3)(2-), HA, HCO(3)(-), and Cl(-). In the single ion system, the efficiencies of As(V) removal range from 75% to 96%, much higher than those in the multi-ion system (44%) at the initial pH 5. Clearly, there were some complex anion interactions in the multi-ion system. To promote the removal of As(V) by RIOCS, it is proposed to lower the pH in the single-ion system, while in the multi-ion system, the increase of the Ca(2+) concentration, or decreases of PO(4)(3-), SiO(3)(2-) and HA concentrations is suggested.

  12. Microbial Oxidation of As(III) to As(V) in the Aquatic Environment: Implications for As Toxicity

    Science.gov (United States)

    Xie, Q.; Kerrich, R.; Irving, E.; Liber, K.; Culp, J.

    2001-12-01

    The toxicity of many elements depends strongly on the chemical species present. A good example is As. Arsenic toxicity decreases in the order of As(III), As(V), monomethylarsenic(MMA), dimethylarsenic(DMA), arsenobetaine(AB) and arsenocholine(AC). Accordingly, knowledge of the stability and transformation of As species in natural environments has significant implications for As environmental toxicity and remediation techniques for As contaminated sites such as mines. Experiments were conducted to investigate the toxic effects of As(III) and As(V), and the inter-conversion of the two inorganic As species, under two levels of total dissolved oxygen (DO=1.5 mg/L and 6.5 mg/L). The aquatic organism used was the benthic invertebrate Chironomus tentans. As(III) and As(V) were measured simultaneously in the experimental solutions, using a high performance liquid chromatograph coupled to a hexapole ICP-MS. The latter utilises a collision cell technique that eliminates 40Ar35Cl interference on 75As, hence greatly improves the detection limit, precision and accuracy of analysis of As in natural water over conventional ICP-MS. The results show that under the experimental conditions, As(III) was gradually transformed into As(V) during a 48-hour period. The conversion of As(III) to As(V) was concentration dependent: 100% conversion occurred over 48 hours with 0.5 mg/L of As(III), whereas 80% and 0% conversion occurred for 2 mg/L and 8 mg/L, respectively. During the 48-hour period, all physical and chemical parameters of experimental solutions (e.g., pH, Eh and DO) remained constant. Furthermore, there was no difference in the transformation rate between low DO and high DO conditions. These results suggest that oxidation of As(III) to As(V) was not controlled by physical or chemical changes in the solutions, rather it was induced by bacteria. During the experiments, nutrients were continuously added into the solutions to feed the organism, resulting in a bacteria build-up. This

  13. Adeno-associated virus Rep-mediated targeting of integrase-defective retroviral vector DNA circles into human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shuohao [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Kawabe, Yoshinori; Ito, Akira [Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Kamihira, Masamichi, E-mail: kamihira@chem-eng.kyushu-u.ac.jp [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Adeno-associated virus (AAV) is capable of targeted integration in human cells. Black-Right-Pointing-Pointer Integrase-defective retroviral vector (IDRV) enables a circular DNA delivery. Black-Right-Pointing-Pointer A targeted integration system of IDRV DNA using the AAV integration mechanism. Black-Right-Pointing-Pointer Targeted IDRV integration ameliorates the safety concerns for retroviral vectors. -- Abstract: Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors, therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.

  14. Integrase-independent HIV-1 infection is augmented under conditions of DNA damage and produces a viral reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Ebina, Hirotaka, E-mail: hebina@virus.kyoto-u.ac.jp; Kanemura, Yuka; Suzuki, Yasutsugu; Urata, Kozue; Misawa, Naoko; Koyanagi, Yoshio

    2012-05-25

    HIV-1 possesses a viral protein, integrase (IN), which is necessary for its efficient integration in target cells. However, it has been reported that an IN-defective HIV strain is still capable of integration. Here, we assessed the ability of wild type (WT) HIV-1 to establish infection in the presence of IN inhibitors. We observed a low, yet clear infection of inhibitor-incubated cells infected with WT HIV which was identical to cells infected with IN-deficient HIV, D64A. Furthermore, the IN-independent integration could be enhanced by the pretreatment of cells with DNA-damaging agents suggesting that integration is mediated by a DNA repair system. Moreover, significantly faster viral replication kinetics with augmented viral DNA integration was observed after infection in irradiated cells treated with IN inhibitor compared to nonirradiated cells. Altogether, our results suggest that HIV DNA has integration potential in the presence of an IN inhibitor and may serve as a virus reservoir.

  15. The HIV-1 Integrase α4-Helix Involved in LTR-DNA Recognition Is also a Highly Antigenic Peptide Element

    Science.gov (United States)

    Azzi, Sandy; Parissi, Vincent; Maroun, Richard G.; Eid, Pierre; Mauffret, Olivier; Fermandjian, Serge

    2010-01-01

    Monoclonal antibodies (MAbas) constitute remarkable tools to analyze the relationship between the structure and the function of a protein. By immunizing a mouse with a 29mer peptide (K159) formed by residues 147 to 175 of the HIV-1 integrase (IN), we obtained a monoclonal antibody (MAba4) recognizing an epitope lying in the N-terminal portion of K159 (residues 147–166 of IN). The boundaries of the epitope were determined in ELISA assays using peptide truncation and amino acid substitutions. The epitope in K159 or as a free peptide (pep-a4) was mostly a random coil in solution, while in the CCD (catalytic core domain) crystal, the homologous segment displayed an amphipathic helix structure (α4-helix) at the protein surface. Despite this conformational difference, a strong antigenic crossreactivity was observed between pep-a4 and the protein segment, as well as K156, a stabilized analogue of pep-a4 constrained into helix by seven helicogenic mutations, most of them involving hydrophobic residues. We concluded that the epitope is freely accessible to the antibody inside the protein and that its recognition by the antibody is not influenced by the conformation of its backbone and the chemistry of amino acids submitted to helicogenic mutations. In contrast, the AA →Glu mutations of the hydrophilic residues Gln148, Lys156 and Lys159, known for their interactions with LTRs (long terminal repeats) and inhibitors (5 CITEP, for instance), significantly impaired the binding of K156 to the antibody. Moreover, we found that in competition ELISAs, the processed and unprocessed LTR oligonucleotides interfered with the binding of MAba4 to IN and K156, confirming that the IN α4-helix uses common residues to interact with the DNA target and the MAba4 antibody. This also explains why, in our standard in vitro concerted integration assays, MAba4 strongly impaired the IN enzymatic activity. PMID:21209864

  16. The HIV-1 integrase α4-helix involved in LTR-DNA recognition is also a highly antigenic peptide element.

    Directory of Open Access Journals (Sweden)

    Sandy Azzi

    Full Text Available Monoclonal antibodies (MAbas constitute remarkable tools to analyze the relationship between the structure and the function of a protein. By immunizing a mouse with a 29mer peptide (K159 formed by residues 147 to 175 of the HIV-1 integrase (IN, we obtained a monoclonal antibody (MAba4 recognizing an epitope lying in the N-terminal portion of K159 (residues 147-166 of IN. The boundaries of the epitope were determined in ELISA assays using peptide truncation and amino acid substitutions. The epitope in K159 or as a free peptide (pep-a4 was mostly a random coil in solution, while in the CCD (catalytic core domain crystal, the homologous segment displayed an amphipathic helix structure (α4-helix at the protein surface. Despite this conformational difference, a strong antigenic crossreactivity was observed between pep-a4 and the protein segment, as well as K156, a stabilized analogue of pep-a4 constrained into helix by seven helicogenic mutations, most of them involving hydrophobic residues. We concluded that the epitope is freely accessible to the antibody inside the protein and that its recognition by the antibody is not influenced by the conformation of its backbone and the chemistry of amino acids submitted to helicogenic mutations. In contrast, the AA →Glu mutations of the hydrophilic residues Gln148, Lys156 and Lys159, known for their interactions with LTRs (long terminal repeats and inhibitors (5CITEP, for instance, significantly impaired the binding of K156 to the antibody. Moreover, we found that in competition ELISAs, the processed and unprocessed LTR oligonucleotides interfered with the binding of MAba4 to IN and K156, confirming that the IN α4-helix uses common residues to interact with the DNA target and the MAba4 antibody. This also explains why, in our standard in vitro concerted integration assays, MAba4 strongly impaired the IN enzymatic activity.

  17. X-ray crystal structure of the N-terminal region of Moloney murine leukemia virus integrase and its implications for viral DNA recognition: N-Terminal Region of M-MuLV Integrase

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Rongjin [Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Aiyer, Sriram [Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Cote, Marie L. [Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, Piscataway New Jersey 08854; Xiao, Rong [Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Jiang, Mei [Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Acton, Thomas B. [Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Roth, Monica J. [Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Montelione, Gaetano T. [Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, Piscataway New Jersey 08854

    2017-02-03

    The retroviral integrase (IN) carries out the integration of a dsDNA copy of the viral genome into the host DNA, an essential step for viral replication. All IN proteins have three general domains, the N-terminal domain (NTD), the catalytic core domain, and the C-terminal domain. The NTD includes an HHCC zinc finger-like motif, which is conserved in all retroviral IN proteins. Two crystal structures of Moloney murine leukemia virus (M-MuLV) IN N-terminal region (NTR) constructs that both include an N-terminal extension domain (NED, residues 1–44) and an HHCC zinc-finger NTD (residues 45–105), in two crystal forms are reported. The structures of IN NTR constructs encoding residues 1–105 (NTR1–105) and 8–105 (NTR8–105) were determined at 2.7 and 2.15 Å resolution, respectively and belong to different space groups. While both crystal forms have similar protomer structures, NTR1–105 packs as a dimer and NTR8–105 packs as a tetramer in the asymmetric unit. The structure of the NED consists of three anti-parallel β-strands and an α-helix, similar to the NED of prototype foamy virus (PFV) IN. These three β-strands form an extended β-sheet with another β-strand in the HHCC Zn2+ binding domain, which is a unique structural feature for the M-MuLV IN. The HHCC Zn2+ binding domain structure is similar to that in HIV and PFV INs, with variations within the loop regions. Differences between the PFV and MLV IN NEDs localize at regions identified to interact with the PFV LTR and are compared with established biochemical and virological data for M-MuLV. Proteins 2017; 85:647–656.

  18. Simulink-Based Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV)

    Science.gov (United States)

    Christhilf, David m.; Bacon, Barton J.

    2006-01-01

    The Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV) is a Simulink-based approach to providing an engineering quality desktop simulation capability for finding trim solutions, extracting linear models for vehicle analysis and control law development, and generating open-loop and closed-loop time history responses for control system evaluation. It represents a useful level of maturity rather than a finished product. The layout is hierarchical and supports concurrent component development and validation, with support from the Concurrent Versions System (CVS) software management tool. Real Time Workshop (RTW) is used to generate pre-compiled code for substantial component modules, and templates permit switching seamlessly between original Simulink and code compiled for various platforms. Two previous limitations are addressed. Turn around time for incorporating tabular model components was improved through auto-generation of required Simulink diagrams based on data received in XML format. The layout was modified to exploit a Simulink "compile once, evaluate multiple times" capability for zero elapsed time for use in trimming and linearizing. Trim is achieved through a Graphical User Interface (GUI) with a narrow, script definable interface to the vehicle model which facilitates incorporating new models.

  19. Sequence-Based Predictive Models of Resistance to HIV-1 Integrase Inhibitors: An n-Grams Approach to Phenotype Assessment.

    Science.gov (United States)

    Masso, Majid

    2015-01-01

    Amino acid substitutions in HIV-1 proteins critical to the viral replication cycle have the potential to undermine successful inhibition of those targets, with some mutations leading to either reduced susceptibility to certain medications or complete drug resistance. Phenotypic tests are best suited to quantify the effects of complex mutational patterns on drug resistance; however, the relatively high cost and long turnaround time associated with phenotyping has increased the demand for in silico drug-specific models capable of accurately predicting phenotype directly from the target protein sequences. The focus of this study is on the HIV-1 integrase (IN) enzyme, which mediates integration of reversibly transcribed viral DNA into the host cell genome, and the development of predictive statistical learning models of resistance to the IN inhibitors Raltegravir (RAL) and Elvitegravir (EVG). Models were trained using datasets of IN protein sequence variants each having a known phenotype, quantified as the fold change in susceptibility to the respective inhibitor, and obtained using an experimental assay. A sequence-based approach employing n-grams relative frequencies was implemented to uniquely characterize each IN variant as a feature vector of input attributes. Models for classifying IN variants as susceptible or resistant reach cross-validation balanced accuracy rates of 89% with RAL and 85% with EVG. Additionally, regression models achieve Pearson's correlation coefficients, between experimental and predicted log-transformed phenotypic fold change values, as high as r = 0.80 with RAL and r = 0.76 with EVG. Our results suggest that as additional training data are made publicly available, the models may hold promise as supplementary tools for making treatment decisions.

  20. Behaviour of Silica and Florisil as Solid Supports in the Removal Process of As(V from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Andreea Gabor

    2015-01-01

    Full Text Available In this study two solid supports, silica and florisil, were impregnated with crown ether (dibenzo-18-crown-6 and Fe(III ions and their efficiency was compared in the adsorption process of As(V from aqueous solutions. The solid supports were impregnated with crown ether due to their ability to build complexes with positives ions. Fe(III was used because of As(V affinity for it. The impregnated solid supports were characterized by energy dispersive X-ray analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, and the specific surface area. The influence of the solid : liquid ratio on the adsorption process, kinetic studies for the pseudo-first-order and pseudo-second-order, and activation energy were studied. Thermodynamic studies as well as equilibrium studies were carried out. The obtained results showed that, from the two considered materials, impregnated silica presents a higher efficiency with a good selectivity, able to remove As(V from aqueous solutions containing trace concentrations.

  1. Comparison of Fe-Al-modified natural materials by an electrochemical method and chemical precipitation for the adsorption of F- and As(V).

    Science.gov (United States)

    Vázquez Mejía, G; Martínez-Miranda, V; Fall, C; Linares-Hernández, I; Solache-Ríos, M

    2016-01-01

    The adsorption of fluoride and arsenic ions by modified natural materials may have an impact on the removal of F- and As(V) from waters. In this work, a zeolitic material and pozzolan (commonly known as pumicite) were modified with aluminium an iron by an electrochemical method and chemical precipitation, respectively. The adsorbents were characterized by X-ray diffraction, scanning electron microscopy with energy X-ray disperse spectroscopy analysis and the point of zero charge (pHzpc). F- and As(V) adsorption properties of both materials were investigated. Adsorption kinetic data were best fitted to pseudo-second-order model and equilibrium data to the Langmuir isotherm model. The highest F- and As(V) sorption capacities were obtained for modified zeolitic (0.866 mg/g) and pozzolan (3.35 mg/g) materials, respectively, with initial F- or As(V) concentrations of 10 mg/L. It was found that the unmodified materials did not show either adsorption of F- ions or As(V), which indicated that Al and Fe in the adsorbents are responsible for the adsorption of these ions. In general, both modified materials show similar capacities for the adsorption of F- and As(V).

  2. Synthesis, characterization and adsorptive properties of carbon with iron nanoparticles and iron carbide for the removal of As(V) from water.

    Science.gov (United States)

    Gutierrez-Muñiz, O E; García-Rosales, G; Ordoñez-Regil, E; Olguin, M T; Cabral-Prieto, A

    2013-01-15

    This manuscript presents the synthesis of carbon modified with iron nanoparticles (CFe) and iron carbide (CarFe) from the pyrolyzed crown leaves of pineapple (Ananas comosus) treated with iron salts. The materials that were obtained were used for the removal of As(V) from aqueous media. The carbonaceous materials were characterized by Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Mossbauer Spectroscopy. The specific area (BET), number site density and point of zero charge (pH(pzc)) were also determined. The kinetic parameters were obtained by fitting the experimental data to the pseudo-first-order and pseudo-second-order models. Different isotherm models were applied to describe the As(V) adsorption behavior. The kinetics of As(V) sorption by CFe and CarFe was well defined for the pseudo-second-order model (R(2) = 0.9994 and 0.999, respectively). The maximum As(V) uptake was 1.8 mg g(-1) for CFe and 1.4 mg g(-1) for CarFe. The results obtained indicated that both materials are equally useful for As(V) sorption. The As(V) experimental isotherm data were described by the Freundlich model for CFe and CarFe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Sorption of As(V) from waters using chitosan and chitosan-immobilized sodium silicate prior to atomic spectrometric determination.

    Science.gov (United States)

    Boyaci, Ezel; Eroğlu, Ahmet E; Shahwan, Talal

    2010-01-15

    A natural biosorbent containing amine functional groups, chitosan, and a novel sorbent, chitosan-immobilized sodium silicate, were prepared and utilized for the selective sorption of As(V) from waters prior to its determination by atomic spectrometric techniques, namely, hydride generation atomic absorption spectrometry (HGAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Chitosan was synthesized from chitin and sodium silicate was used as the immobilization matrix due to its straightforward synthesis. Through sequential sorption studies, it was shown that chitosan-immobilized sodium silicate has exhibited a better chemical stability than the chitosan itself which demonstrates the advantage of immobilization method. Both chitosan and chitosan-immobilized sodium silicate were shown to selectively adsorb As(V), arsenate, from waters at pH 3.0 at which neither chitin nor sodium silicate displayed any sorption towards As(V). The sorption of arsenate by chitosan is supposed to have electrostatic nature since pH of 3.0 is both the point at which the amino groups in chitosan are protonated and also the predominant form of As(V) is H(2)AsO(4)(-). A pre-oxidation step is required if both As(III) and As(V) are to be determined. Desorption from the sorbents was realized with 1.0% (w/v) l-cysteine prepared in a pH 3.0 solution adjusted with HCl. Among the possible interfering species tested, only Te(IV) and Sb(III) were shown to cause a decrease in the sorption capacity especially at high interferant concentrations. High concentrations of Sb(III) also resulted in gas phase interference during hydride generation. The validity of the method was checked both via spike recovery experiments and also through the analysis of a standard reference material. Spike recovery tests were carried out with four different types of water; namely, ultra-pure, bottled drinking, tap, and sea water; and percent recovery values were found to be 114 (+/-4), 112 (+/-2), 43 (+/-4), and 0

  4. Effect of attC structure on cassette excision by integron integrases

    Directory of Open Access Journals (Sweden)

    Larouche André

    2011-02-01

    Full Text Available Abstract Background Integrons are genetic elements able to integrate and disseminate genes as cassettes by a site-specific recombination mechanism. These elements contain a gene coding for an integrase that carries out recombination by interacting with two different target sites; the attI site in cis with the integrase and the palindromic attC site of a gene cassette. Integron integrases (IntIs bind specifically to the bottom strand of attC sites. The extrahelical bases resulting from folding of attC bottom strands are important for the recognition by integrases. These enzymes are directly involved in the accumulation and formation of new cassette arrangements in the variable region of integrons. Thus, it is important to better understand interactions between IntIs and their substrates. Results We compared the ability of five IntIs to carry out excision of several cassettes flanked by different attC sites. The results showed that for most cassettes, IntI1 was the most active integrase. However, IntI2*179E and SonIntIA could easily excise cassettes containing the attCdfrA1 site located upstream, whereas IntI1 and IntI3 had only a weak excision activity for these cassettes. Analysis of the secondary structure adopted by the bottom strand of attCdfrA1 has shown that the identity of the extrahelical bases and the distance between them (A-N7-8-C differ from those of attCs contained in the cassettes most easily excisable by IntI1 (T-N6-G. We used the attCdfrA1 site upstream of the sat2 gene cassette as a template and varied the identity and spacing between the extrahelical bases in order to determine how these modifications influence the ability of IntI1, IntI2*179E, IntI3 and SonIntIA to excise cassettes. Our results show that IntI1 is more efficient in cassette excision using T-N6-G or T-N6-C attCs while IntI3 recognizes only a limited range of attCs. IntI2*179E and SonIntIA are more tolerant of changes to the identity and spacing of extrahelical

  5. 3D-QSAR and molecular modeling of HIV-1 integrase inhibitors

    Science.gov (United States)

    Makhija, Mahindra T.; Kulkarni, Vithal M.

    2002-03-01

    Three-dimensional quantitative structure-activity relationship (3D QSAR) methods were applied on a series of inhibitors of HIV-1 integrase with respect to their inhibition of 3'-processing and 3'-end joining steps in vitro.The training set consisted of 27 compounds belonging to the class of thiazolothiazepines. The predictive ability of each model was evaluated using test set I consisting of four thiazolothiazepines and test set II comprised of seven compounds belonging to an entirely different structural class of coumarins. Maximum Common Substructure (MCS) based method was used to align the molecules and this was compared with other known methods of alignment. Two methods of 3D QSAR: comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were analyzed in terms of their predictive abilities. CoMSIA produced significantly better results for all correlations. The results indicate a strong correlation between the inhibitory activity of these compounds and the steric and electrostatic fields around them. CoMSIA models with considerable internal as well as external predictive ability were obtained. A poor correlation obtained with hydrophobic field indicates that the binding of thiazolothiazepines to HIV-1 integrase is mainly enthalpic in nature. Further the most active compound of the series was docked into the active site using the crystal structure of integrase. The binding site was formed by the amino acid residues 64-67, 116, 148, 151-152, 155-156, and 159. The comparison of coefficient contour maps with the steric and electrostatic properties of the receptor shows high level of compatibility.

  6. BF integrase genes of HIV-1 circulating in Sao Paulo, Brazil, with a recurrent recombination region.

    Directory of Open Access Journals (Sweden)

    Atila Iamarino

    Full Text Available Although some studies have shown diversity in HIV integrase (IN genes, none has focused particularly on the gene evolving in epidemics in the context of recombination. The IN gene in 157 HIV-1 integrase inhibitor-naïve patients from the São Paulo State, Brazil, were sequenced tallying 128 of subtype B (23 of which were found in non-B genomes, 17 of subtype F (8 of which were found in recombinant genomes, 11 integrases were BF recombinants, and 1 from subtype C. Crucially, we found that 4 BF recombinant viruses shared a recurrent recombination breakpoint region between positions 4900 and 4924 (relative to the HXB2 that includes 2 gRNA loops, where the RT may stutter. Since these recombinants had independent phylogenetic origin, we argue that these results suggest a possible recombination hotspot not observed so far in BF CRF in particular, or in any other HIV-1 CRF in general. Additionally, 40% of the drug-naïve and 45% of the drug-treated patients had at least 1 raltegravir (RAL or elvitegravir (EVG resistance-associated amino acid change, but no major resistance mutations were found, in line with other studies. Importantly, V151I was the most common minor resistance mutation among B, F, and BF IN genes. Most codon sites of the IN genes had higher rates of synonymous substitutions (dS indicative of a strong negative selection. Nevertheless, several codon sites mainly in the subtype B were found under positive selection. Consequently, we observed a higher genetic diversity in the B portions of the mosaics, possibly due to the more recent introduction of subtype F on top of an ongoing subtype B epidemics and a fast spread of subtype F alleles among the B population.

  7. Ferrocenyl chalcone difluoridoborates inhibit HIV-1 integrase and display low activity towards cancer and endothelial cells.

    Science.gov (United States)

    Monserrat, Jean-Philippe; Al-Safi, Rasha I; Tiwari, Keshri Nath; Quentin, Lionel; Chabot, Guy G; Vessières, Anne; Jaouen, Gérard; Neamati, Nouri; Hillard, Elizabeth A

    2011-10-15

    We report here the discovery of a potent series of HIV-1 integrase (IN) inhibitors based on the ferrocenyl chalcone difluoridoborate structure. Ten new compounds have been synthesized and were generally found to have similar inhibitory activities against the IN 3' processing and strand transfer (ST) processes. IC(50) values were found to be in the low micromolar range, and significantly lower than those found for the non-coordinated ferrocenyl chalcones and other ferrocene molecules. The ferrocenyl chalcone difluoridoborates furthermore exhibited low cytotoxicity against cancer cells and low morphological activity against epithelial cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Substrate mimicry—overcoming HIV-1 integrase resistance mutations | Center for Cancer Research

    Science.gov (United States)

    HIV integrase (IN) strand transfer inhibitors (INSTIs) are among the newest anti-AIDS drugs; however, mutant forms of IN can confer resistance. We developed noncytotoxic naphthyridine-containing INSTIs that retain low nanomolar IC50 values against HIV-1 variants harboring all of the major INSTI-resistant mutations. We found by analyzing crystal structures of inhibitors bound to the IN from the prototype foamy virus (PFV) that the most successful inhibitors show striking mimicry of the bound viral DNA prior to 3'-processing and the bound host DNA prior to strand transfer.

  9. Discovery of 2-Pyridinone Aminals: A Prodrug Strategy to Advance a Second Generation of HIV-1 Integrase Strand Transfer Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Raheem, Izzat T.; Walji, Abbas M.; Klein, Daniel; Sanders, John M.; Powell, David A.; Abeywickrema, Pravien; Barbe, Guillaume; Bennet, Amrith; Clas, Sophie−Dorothee; Dubost, David; Embrey, Mark; Grobler, Jay; Hafey, Michael J.; Hartingh, Timothy J.; Hazuda, Daria J.; Miller, Michael D.; Moore, Keith P.; Pajkovic, Natasa; Patel, Sangita; Rada, Vanessa; Rearden, Paul; Schreier, John D.; Sisko, John; Steele, Thomas G.; Truchon, Jean-François; Wai, John; Xu, Min; Coleman, Paul J.

    2015-10-22

    The search for new molecular constructs that resemble the critical two-metal binding pharmacophore required for HIV integrase strand transfer inhibition represents a vibrant area of research within drug discovery. Here we present the discovery of a new class of HIV integrase strand transfer inhibitors based on the 2-pyridinone core of MK-0536. These efforts led to the identification of two lead compounds with excellent antiviral activity and preclinical pharmacokinetic profiles to support a once-daily human dose prediction. Dose escalating PK studies in dog revealed significant issues with limited oral absorption and required an innovative prodrug strategy to enhance the high-dose plasma exposures of the parent molecules.

  10. Feline leukemia virus integrase and capsid packaging functions do not change the insertion profile of standard Moloney retroviral vectors.

    Science.gov (United States)

    Métais, J-Y; Topp, S; Doty, R T; Borate, B; Nguyen, A-D; Wolfsberg, T G; Abkowitz, J L; Dunbar, C E

    2010-06-01

    Adverse events linked to perturbations of cellular genes by vector insertion reported in gene therapy trials and animal models have prompted attempts to better understand the mechanisms directing viral vector integration. The integration profiles of vectors based on MLV, ASLV, SIV and HIV have all been shown to be non-random, and novel vectors with a safer integration pattern have been sought. Recently, we developed a producer cell line called CatPac that packages standard MoMLV vectors with feline leukemia virus (FeLV) gag, pol and env gene products. We now report the integration profile of this vector, asking if the FeLV integrase and capsid proteins could modify the MoMLV integration profile, potentially resulting in a less genotoxic pattern. We transduced rhesus macaque CD34+ hematopoietic progenitor cells with CatPac or standard MoMLV vectors, and determined their integration profile by LAM-PCR. We obtained 184 and 175 unique integration sites (ISs) respectively for CatPac and standard MoMLV vectors, and these were compared with 10 000 in silico-generated random IS. The integration profile for CatPac vector was similar to MoMLV and equally non-random, with a propensity for integration near transcription start sites and in highly dense gene regions. We found an IS for CatPac vector localized 715 nucleotides upstream of LMO-2, the gene involved in the acute lymphoblastic leukemia developed by X-SCID patients treated by gene therapy using MoMLV vectors. In conclusion, we found that replacement of MoMLV env, gag and pol gene products with FeLV did not alter the basic integration profile. Thus, there appears to be no safety advantage for this packaging system. However, considering the stability and efficacy of CatPac vectors, further development is warranted, using potentially safer vector backbones, for instance those with a SIN configuration.

  11. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase

    Energy Technology Data Exchange (ETDEWEB)

    Iri-Sofla, Farnoush Jafari [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Rahbarizadeh, Fatemeh, E-mail: rahbarif@modares.ac.ir [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ahmadvand, Davoud [Center of Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen O (Denmark); Rasaee, Mohammad J. [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2011-11-01

    The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3{zeta}/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of Fc{gamma}RII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for high and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy.

  12. Contribution of HIV minority variants to drug resistance in an integrase strand transfer inhibitor-based therapy

    Czech Academy of Sciences Publication Activity Database

    Weber, Jan; Gibson, R. M.; Meyer, A. M.; Winner, D.; Robertson, D. L.; Miller, M. D.; Quinones-Mateu, M. E.

    2013-01-01

    Roč. 18, Suppl. 1 (2013), A66-A66 ISSN 1359-6535. [International Workshop on HIV & Hepatitis Virus Drug Resistance Curative Strategies. 04.06.2013-08.06.2013, Toronto] Institutional support: RVO:61388963 Keywords : HIV minority variants * integrase inhibitor * replicative fitness Subject RIV: CE - Biochemistry

  13. Biosorption of As(III) and As(V) on the surface of TW/MnFe2O4 composite from wastewater: kinetics, mechanistic and thermodynamics

    Science.gov (United States)

    Podder, M. S.; Majumder, C. B.

    2017-10-01

    In the present study, TW/MnFe2O4 composite (MTW) was synthesized and estimated as an effective biosorbent for removing As (III) and As(V) from wastewater. Physicochemical analysis of composite was performed through SEM-EDX. 86.615 and 83.478% removal efficiency were obtained by composite dosage of 2 g/L at contact time 120 min at temperature 30 °C and pH 7.0 and 4.0 for As(III) and As(V), respectively. Kinetic results study showed that Brouers-Weron-Sotolongo and Ritchie second-order for As(III) and Brouers-Weron-Sotolongo model for As(V) were capable to describe an accurate explanation of adsorption kinetic. Applicability of mechanistic models in the current study exposed that the rate-controlling step in the biosorption of both As(III) and As(V) on the surface of composite was film diffusion rather than intraparticle diffusion. The estimated thermodynamic parameters Δ G 0, Δ H 0 and Δ S 0 revealed that the biosorption of both As(III) and As(V) on the composite was feasible, spontaneous and exothermic.

  14. Competitive adsorption of As(III), As(V), Sb(III) and Sb(V) onto ferrihydrite in multi-component systems: Implications for mobility and distribution.

    Science.gov (United States)

    Qi, Pengfei; Pichler, Thomas

    2017-05-15

    The simultaneous adsorption behavior and competitive interactions between As(III), As(V), Sb(III) and Sb(V) by ferrihydrite were evaluated in multi-component (binary, ternary, quaternary) systems. In binary systems, Sb(III) had a stronger inhibitory influence on As(III) adsorption than Sb(V) did, and As(V) had a stronger inhibitory effect on Sb(V) adsorption than As(III) did. In ternary systems, NO3-, PO43- and SO42- did not compete with the adsorption of As(III) and Sb(III). NO3- and SO42- also had no distinct effect on the adsorption of As(V) and Sb(V), while PO43- competed with As(V) and Sb(V) for surface sites. In quaternary systems, the simultaneous adsorption behavior of the four redox species was pH dependent. Sb(III) always showed the strongest adsorption affinity regardless of pH. At pH 3.5 As(III) showed the lowest affinity could be due to the presence and negative effect of Sb(III) and As(V). The Freundlich model provided a good fit for the simultaneous adsorption data under quaternary conditions. The study of competitive/simultaneous adsorption of the four possible redox species onto ferrihydrite contributed to a better understanding of their distribution, mobility and fate in the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Determination of As(III) and As(V) in soils using sequential extraction combined with flow injection hydride generation atomic fluorescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Shi Jianbo; Tang Zhiyong; Jin Zexiang; Chi Quan; He Bin; Jiang Guibin

    2003-01-27

    An analytical procedure for determination of As(III) and As(V) in soils using sequential extraction combined with flow injection (FI) hydride generation atomic fluorescence spectrometry (HG-AFS) was presented. The soils were sequentially extracted by water, 0.6 mol l{sup -1} KH{sub 2}PO{sub 4} solution, 1% (v/v) HCl solution and 1% (w/v) NaOH solution. The arsenite (As(III)) in extract was analyzed by HG-AFS in the medium of 0.1 mol l{sup -1} citric acid solution, then the total arsenic in extract was determined by HG-AFS using on-line reduction of arsenate with L-cysteine. The concentration of arsenate (As(V)) was calculated by the difference. The optimum conditions of extraction and determination were studied in detail. The detection limit (3{sigma}) for As(III) and As(V) were 0.11 and 0.07 {mu}g l{sup -1}, respectively. The relative standard deviation (R.S.D.) was 1.43% (n=11) at the 10 {mu}g l{sup -1} As level. The method was applied in the determination of As(III) and As(V) of real soils and the recoveries of As(III) and As(V) were in the range of 89.3-118 and 80.4-111%, respectively.

  16. Mode of inhibition of HIV-1 Integrase by a C-terminal domain-specific monoclonal antibody*

    Directory of Open Access Journals (Sweden)

    Merkel George

    2006-06-01

    Full Text Available Abstract Background To further our understanding of the structure and function of HIV-1 integrase (IN we developed and characterized a library of monoclonal antibodies (mAbs directed against this protein. One of these antibodies, mAb33, which is specific for the C-terminal domain, was found to inhibit HIV-1 IN processing activity in vitro; a corresponding Fv fragment was able to inhibit HIV-1 integration in vivo. Our subsequent studies, using heteronuclear nuclear magnetic resonance spectroscopy, identified six solvent accessible residues on the surface of the C-terminal domain that were immobilized upon binding of the antibody, which were proposed to comprise the epitope. Here we test this hypothesis by measuring the affinity of mAb33 to HIV-1 proteins that contain Ala substitutions in each of these positions. To gain additional insight into the mode of inhibition we also measured the DNA binding capacity and enzymatic activities of the Ala substituted proteins. Results We found that Ala substitution of any one of five of the putative epitope residues, F223, R224, Y226, I267, and I268, caused a decrease in the affinity of the mAb33 for HIV-1 IN, confirming the prediction from NMR data. Although IN derivatives with Ala substitutions in or near the mAb33 epitope exhibited decreased enzymatic activity, none of the epitope substitutions compromised DNA binding to full length HIV-1 IN, as measured by surface plasmon resonance spectroscopy. Two of these derivatives, IN (I276A and IN (I267A/I268A, exhibited both increased DNA binding affinity and uncharacteristic dissociation kinetics; these proteins also exhibited non-specific nuclease activity. Results from these investigations are discussed in the context of current models for how the C-terminal domain interacts with substrate DNA. Conclusion It is unlikely that inhibition of HIV-1 IN activity by mAb33 is caused by direct interaction with residues that are essential for substrate binding. Rather

  17. Novel 3′-Processing Integrase Activity Assay by Real-Time PCR for Screening and Identification of HIV-1 Integrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Supachai Sakkhachornphop

    2015-01-01

    Full Text Available The 3′-end processing (3′P of each viral long terminal repeat (LTR during human immunodeficiency virus type-1 (HIV-1 integration is a vital step in the HIV life cycle. Blocking the 3′P using 3′P inhibitor has recently become an attractive strategy for HIV-1 therapeutic intervention. Recently, we have developed a novel real-time PCR based assay for the detection of 3′P activity in vitro. The methodology usually involves biotinylated HIV-1 LTR, HIV-1 integrase (IN, and specific primers and probe. In this novel assay, we designed the HIV-1 LTR substrate based on a sequence with a homology to HIV-1 LTR labeled at its 3′ end with biotin on the sense strand. Two nucleotides at the 3′ end were subsequently removed by IN activity. Only two nucleotides labeled biotin were captured on an avidin-coated tube; therefore, inhibiting the binding of primers and probe results in late signals in the real-time PCR. This novel assay has successfully detected both the 3′P activity of HIV-1 IN and the anti-IN activity by Raltegravir and sodium azide agent. This real-time PCR assay has been shown to be effective and inexpensive for a high-throughput screening of novel IN inhibitors.

  18. Selected arsenic species: As(III), As(V) and dimethylarsenic acid (DMAA) in Xerocomus badius fruiting bodies.

    Science.gov (United States)

    Niedzielski, P; Mleczek, M; Magdziak, Z; Siwulski, M; Kozak, L

    2013-12-15

    The aim of the study was to determine the content of As(III), As(V) and DMAA (dimethylarsinic acid) in Xerocomus badius fruiting bodies collected from selected Polish forests from areas subjected to very low or high anthropopressure and some commercially available samples obtained from the Polish Sanitary Inspectorate. The arsenic species determination was provided by two independent HPLC-HG-AAS hyphenated systems. The results show high levels (up to 27.1, 40.5 and 88.3 mg kg(-1) for As(III), As(V) and DMAA, respectively) of arsenic and occurrence of different species in mushrooms collected from areas subjected to high anthropopressure and two commercially available samples. For mushroom samples collected from areas not subjected to high anthropopressure and two commercially available samples the arsenic species level was below 0.5 mg kg(-1) for each arsenic form. Therefore, the accumulation of arsenic by mushrooms may lead to high (toxic for humans) arsenic concentrations, and arsenic species levels should be monitored in mushroom foodstuffs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Adsorption of As(V), Cd(II) and Pb(II), in Multicomponent Aqueous Systems using Activated Carbons.

    Science.gov (United States)

    Pirilä, M; Cruz, G J F; Ainassaari, K; Gomez, M M; Matějová, L; Keiski, R L

    2017-09-01

      This paper studies the use of two activated carbon samples made of cocoa pod husk (CPH-AC) and one commercial activated carbon sample in the adsorption of As(V), Cd(II) and Pb(II) from multicomponent synthetic solutions and from the Puyango-Tumbes River water, a river located in northwest Peru. The characterization of the activated carbon samples was conducted. The CPH-AC samples exhibited a specific surface area (SBET) between 709 and 1117 m2/g and a pH point of zero charge (pHPZC) between 4.4 ± 0.2 and 5 ± 0.2, while the commercial material gave an SBET value of 775 m2/g and a pHPZC value of 7.6 ± 0.1. All the evaluated samples displayed the capacity to adsorb As(V), Cd(II) and Pb(II) from both aqueous systems. The adsorption efficiency for Pb was outstanding reaching the value of 89%. A pseudo-second order kinetic model was satisfactorily applied for most of the activated carbon samples.

  20. The optimization of As(V) removal over mesoporous alumina by using response surface methodology and adsorption mechanism.

    Science.gov (United States)

    Han, Caiyun; Pu, Hongping; Li, Hongying; Deng, Lian; Huang, Si; He, Sufang; Luo, Yongming

    2013-06-15

    The Box-Behnken Design of the response surface methodology was employed to optimize four most important adsorption parameters (initial arsenic concentration, pH, adsorption temperature and time) and to investigate the interactive effects of these variables on arsenic(V) adsorption capacity of mesoporous alumina (MA). According to analysis of variance (ANOVA) and response surface analyses, the experiment data were excellent fitted to the quadratic model, and the interactive influence of initial concentration and pH on As(V) adsorption capacity was highly significant. The predicted maximum adsorption capacity was about 39.06 mg/g, and the corresponding optimal parameters of adsorption process were listed as below: time 720 min, temperature 52.8 °C, initial pH 3.9 and initial concentration 130 mg/L. Based on the results of arsenate species definition, FT-IR and pH change, As(V) adsorption mechanisms were proposed as follows: (1) at pH 2.0, H₃AsO₄ and H₂AsO₄(-) were adsorbed via hydrogen bond and electrostatic interaction, respectively; (2) at pH 6.6, arsenic species (H₂AsO₄(-) and HAsO₄(2-)) were removed via adsorption and ion exchange, (3) at pH 10.0, HAsO₄(2-) was adsorbed by MA via ion exchange together with adsorption, while AsO₄(3-) was removed by ion exchange. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Individual and combined effects of water quality and empty bed contact time on As(V) removal by a fixed-bed iron oxide adsorber: implication for silicate precoating.

    Science.gov (United States)

    Kanematsu, Masakazu; Young, Thomas M; Fukushi, Keisuke; Green, Peter G; Darby, Jeannie L

    2012-10-15

    The individual and combined effects of changes in water quality (i.e. pH, initial concentrations of arsenate (As(V)) and competing ions) and empty bed contact time (EBCT) on As(V) removal performance of a fixed-bed adsorber (FBA) packed with a nanostructured goethite-based granular porous adsorbent were systematically studied under environmentally relevant conditions. Rapid small scale column tests (RSSCTs) were extensively conducted at different EBCTs with synthetic waters in which pH and the concentrations of competing ions (phosphate, silicate, and vanadate) were controlled. In the absence of the competing ions, the effects of initial As(V) concentration, pH, and EBCT on As(V) breakthrough curves were successfully predicted by the homogeneous surface diffusion model (HSDM) with adsorption isotherms predicted by the extended triple layer model (ETLM). The interference effects of silicate and phosphate on As(V) removal were strongly influenced by pH, their concentrations, and EBCT. In the presence of silicate (≤21 mg/L as Si), a longer EBCT surprisingly resulted in worse As(V) removal performance. We suggest this is because silicate, which normally exists at much higher concentration and moves more quickly through the bed than As(V), occupies or blocks adsorption sites on the media and interferes with later As(V) adsorption. Here, an alternative operating scheme of a FBA for As(V) removal is proposed to mitigate the silicate preloading. Silicate showed a strong competing effect to As(V) under the tested conditions. However, as the phosphate concentration increased, its interference effect dominated that of silicate. High phosphate concentration (>100 μg/L as P), as experienced in some regions, resulted in immediate As(V) breakthrough. In contrast to the observation in the presence of silicate, longer EBCT resulted in improved As(V) removal performance in the presence of phosphate. Vanadate was found to compete with As(V) as strongly as phosphate. This study

  2. The use of artificial neural network for modelling of phycoremediation of toxic elements As(III) and As(V) from wastewater using Botryococcus braunii.

    Science.gov (United States)

    Podder, M S; Majumder, C B

    2016-02-15

    In the present study, a thorough investigation has been done on the removal efficiency of both As(III) and As (V) from synthetic wastewater by phycoremediation of Botryococcus braunii algal biomass. Artificial neural networks (ANNs) are practised for predicting % phycoremediation efficiency of both As(III) and As(V) ions. The influence of several parameters for example initial pH, inoculum size, contact time and initial arsenic concentration (either As(III) or As(V)) was examined systematically. The maximum phycoremediation of As(III) and As(V) was found to be 85.22% and 88.15% at pH9.0, equilibrium time of 144h by using algal inoculum size of 10% (v/v) and initial arsenic concentration of 50mg/L. The data acquired from laboratory scale experimental set up was utilized for training a three-layer feed-forward back propagation (BP) with Levenberg-Marquardt (LM) training algorithm having 4:5:1 architecture. A comparison between the experimental data and model outputs provided a high correlation coefficient (R(2)all_ANN equal to 0.9998) and exhibited that the model was capable for predicting the phycoremediation of both As(III) and As(V) from wastewater. The network topology was optimized by changing number of neurons in hidden layers. ANNs are efficient to model and simulate highly non-liner multivariable relationships. Absolute error and Standard deviation (SD) with respect to experimental output were calculated for ANN model outputs. The comparison of phycoremediation efficiencies of both As(III) and As(V) between experimental results and ANN model outputs exhibited that ANN model can determine the behaviour of As(III) and As(V) elimination process under various circumstances. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Evidence for the horizontal transfer of an integrase gene from a fusellovirus to a pRN-like plasmid within a single strain of Sulfolobus and the implications for plasmid survival

    DEFF Research Database (Denmark)

    Peng, Xu

    2008-01-01

    seven ORFs, three of which encode an atypical RepA, a PlrA and a CopG protein. A fourth ORF exhibits a high nucleotide sequence identity to the SSV4 integrase gene, which suggests that it has been transferred to the plasmid from SSV4. A single point mutation within an otherwise identical 500 bp region...... infectivity. The virus and plasmid carry genomes of 15 135 and 6970 bp, respectively. For SSV4, 33 predicted ORFs are compactly organized with a strong preference for UGA stop codons, three-quarters of which overlap with either the Shine-Dalgarno motif or the start codon of the following gene. pXZ1 carries...... of the integrase gene occurs in the viral attachment site (attP), which corresponds to the anticodon region of the targeted tRNA gene in the host chromosome. This point mutation confers on pXZ1 the ability to integrate into the tRNA(Glu)[CUC] gene, which differs from the integration site of SSV4, t...

  4. Detection of heavy metals released at the sediment/water interface by combining Anodic Stripping Voltammetry (ASV) and Scanning Electrochemical Microscopy (SECM) measurements

    Science.gov (United States)

    Daniele, S.; Ciani, I.; Bragato, C.; Baldo, M. A.

    2003-05-01

    Hemisphere mercury microelectrodes are investigated in combine anodic stripping voltammetry (ASV) and scanning electrochemical microscopy (SECM) experiments for the detection of heavy metal ions at the solid/solution interface of a sediment sample. Relatively large anodic stripping peaks due to lead are monitored at μm distances from the solid particles, while, under the same experimental conditions, no or lower ASV peaks are found in the bulk solution. This suggests that diffusion gradients at sediment/water interface is monitored. This method, therefore, offers a new possibility for investigating on spatial differences of immobilization and remobilization processes of heavy metals at sediment/water interfaces.

  5. Genetic Innovation in Vertebrates: Gypsy Integrase Genes and Other Genes Derived from Transposable Elements

    Directory of Open Access Journals (Sweden)

    Domitille Chalopin

    2012-01-01

    Full Text Available Due to their ability to drive DNA rearrangements and to serve as a source of new coding and regulatory sequences, transposable elements (TEs are considered as powerful evolutionary agents within genomes. In this paper, we review the mechanism of molecular domestication, which corresponds to the formation of new genes derived from TE sequences. Many genes derived from retroelements and DNA transposons have been identified in mammals and other vertebrates, some of them fulfilling essential functions for the development and survival of their host organisms. We will particularly focus on the evolution and expression of Gypsy integrase (GIN genes, which have been formed from ancient event(s of molecular domestication and have evolved differentially in some vertebrate sublineages. What we describe here is probably only the tip of the evolutionary iceberg, and future genome analyses will certainly uncover new TE-derived genes and biological functions driving genetic innovation in vertebrates and other organisms.

  6. Design, Synthesis and Structure-activity Studies of Rhodanine Derivatives as HIV-1 Integrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Kavya Ramkumar

    2010-06-01

    Full Text Available Raltegravir was the first HIV-1 integrase inhibitor that gained FDA approval for use in the treatment of HIV-1 infection. Because of the emergence of IN inhibitor-resistant viral strains, there is a need to identify innovative second-generation IN inhibitors. Previously, we identified 2-thioxo-4-thiazolidinone (rhodanine-containing compounds as IN inhibitors. Herein, we report the design, synthesis and docking studies of a series of novel rhodanine derivatives as IN inhibitors. All these compounds were further tested against human apurinic/apyrimidinic endonuclease 1 (APE1 to determine their selectivity. Two compounds showed significant cytotoxicity in a panel of human cancer cell lines. Taken together, our results show that rhodanines are a promising class of compounds for developing drugs with antiviral and anticancer properties.

  7. QSAR and docking studies of coumarin derivatives as potent HIV-1 integrase inhibitors

    Directory of Open Access Journals (Sweden)

    V.K. Srivastav

    2017-02-01

    Full Text Available Human immunodeficiency virus integrase (HIV-1IN is an emerging and potential drug target for anti-HIV therapy. It is an enzyme essential for 3′ processing and integration step in the life cycle of HIV. In the present study a series of coumarin derivatives (containing 26 compounds as HIV-1IN inhibitors was subjected to quantitative structure–activity relationship (QSAR analysis. For building the regression models two different variable selection approaches namely, genetic function approximation (GFA and sequential multiple linear regression (SQ-MLR were used and compared to predict the HIV-1IN inhibition activity. Based on prediction, the best validation model for 3′ processing inhibition activity with squared correlation coefficient (r2 = 0.8965, cross validated correlation coefficient (Q2 = 0.8307 and external prediction ability pred_r2 = 0.5400 showed that Henry’s law Constant (HLC, Partition Coefficient (PC and Dipole moment-Z component (D3 were the positive contributors, whereas for integration inhibition activity, parameters r2 = 0.8904, Q2 = 0.8174 and pred_r2 = 0.7159 showed HLC, Logarithm of Partition Coefficient (LogP and Dipole moment-Y component (D2 contributed positively to the activity. The binding mode pattern of the compounds to the binding site of integrase enzyme was confirmed by docking studies. The results of the present study may be useful for designing more potent HIV-1IN inhibitors.

  8. Marine integrons containing novel integrase genes, attachment sites, attI, and associated gene cassettes in polluted sediments from Suez and Tokyo Bays.

    Science.gov (United States)

    Elsaied, Hosam; Stokes, Hatch W; Kitamura, Keiko; Kurusu, Yasurou; Kamagata, Yoichi; Maruyama, Akihiko

    2011-07-01

    In order to understand the structure and biological significance of integrons and associated gene cassettes in marine polluted sediments, metagenomic DNAs were extracted from sites at Suez and Tokyo Bays. PCR amplicons containing new integrase genes, intI, linked with novel gene cassettes, were recovered and had sizes from 1.8 to 2.5 kb. This approach uncovered, for the first time, the structure and diversity of both marine integron attachment site, attI, and the first gene cassette, the most efficiently expressed integron-associated gene cassette. The recovered 13 and 20 intI phylotypes, from Suez and Tokyo Bay samples, respectively, showed a highly divergence, suggesting a difference in integron composition between the sampling sites. Some intI phylotypes showed similarity with that from Geobacter metallireducens, belonging to Deltaproteobacteria, the dominant class in both sampling sites, as determined by 16S rRNA gene analysis. Thirty distinct families of putative attI site, as determined by the presence of an attI-like simple site, were recovered. A total of 146 and 68 gene cassettes represented Suez and Tokyo Bay unsaturated cassette pools, respectively. Gene cassettes, including a first cassette, from both sampling sites encoded two novel families of glyoxalase/bleomycin antibiotic-resistance protein. Gene cassettes from Suez Bay encoded proteins similar to haloacid dehalogenases, protein disulfide isomerases and death-on-curing and plasmid maintenance system killer proteins. First gene cassettes from Tokyo Bay encoded a xenobiotic-degrading protein, cardiolipin synthetase, esterase and WD40-like β propeller protein. Many of the first gene cassettes encoded proteins with no ascribable function but some of them were duplicated and possessed signal functional sites, suggesting efficient adaptive functions to their bacterial sources. Thus, each sampling site had a specific profile of integrons and cassette types consistent with the hypothesis that the

  9. In vivo and in vitro characterization of site-specific recombination of a novel serine integrase from the temperate phage EFC-1

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Bohyun; Kim, Inki; Nam, Ja-Ae [Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, 86 Asanbyeoungwon-gil, Songpa-gu, Seoul 138-736 (Korea, Republic of); Chang, Hyo-Ihl [College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Ha, Chang Hoon, E-mail: chhoonha@amc.seoul.kr [Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, 86 Asanbyeoungwon-gil, Songpa-gu, Seoul 138-736 (Korea, Republic of)

    2016-04-22

    EFC-1 integrase is a site-specific recombinase that belongs to the large family of serine recombinase. In previously study, we isolated the temperate phage EFC-1, and characterized its genomic sequence. Within its genome, Orf28 was predicted encode a 464 amino acid of a putative integrase gene. In this study, EFC-1 integrase was characterized in vitro and in vivo. In vitro assay was performed using purified His-tag fusion integrase. Also, to identify which serine is involved in the catalytic domain, we used site-directed mutagenesis and analyzed by a recombination assay in vitro. In vivo assay involved PCR and confocal microscopy in HEK293 cells, and determined the minimal lengths of attP and attB sites. According to our results, the EFC-1 integrase-mediated recombination was site-specific and unidirectional system in vitro and in vivo. Serine 21 of EFC-1 integrase plays a major role in the catalytic domain, and minimal sizes of attB and attP was defined 48 and 54 bp. Our finding may help develop a useful tool for gene therapy and gene delivery system. - Highlights: • EFC-1 integrase-mediated recombination was site-specific and unidirectional system. • Serine 21 of EFC-1 integrase plays a major role in the catalytic domain. • The functional minimal sizes of attB and attP was defined 48 and 54 bp.

  10. Mutations in the C-terminal domain of ALSV (Avian Leukemia and Sarcoma Viruses) integrase alter the concerted DNA integration process in vitro.

    Science.gov (United States)

    Moreau, Karen; Faure, Claudine; Violot, Sébastien; Verdier, Gérard; Ronfort, Corinne

    2003-11-01

    Integrase (IN) is the retroviral enzyme responsible for the integration of the DNA copy of the retroviral genome into the host cell DNA. The C-terminal domain of IN is involved in DNA binding and enzyme multimerization. We previously performed single amino acid substitutions in the C-terminal domain of the avian leukemia and sarcoma viruses (ALSV) IN. Here, we modelled these IN mutants and analysed their ability to mediate concerted DNA integration (in an in vitro assay) as well as to form dimers (by size exclusion chromatography and protein-protein cross-linking). Mutations of residues located at the dimer interface (V239, L240, Y246, V257 and K266) have the greatest effects on the activity of the IN. Among them: (a) the L240A mutation resulted in a decrease of integration efficiency that was concomitant with a decrease of IN dimerization; (b) the V239A, V249A and K266A mutants preferentially mediated non-concerted DNA integration rather than concerted DNA integration although they were found as dimers. Other mutations (V260E and Y246W/DeltaC25) highlight the role of the C-terminal domain in the general folding of the enzyme and, hence, on its activity. This study points to the important role of residues at the IN C-terminal domain in the folding and dimerization of the enzyme as well as in the concerted DNA integration of viral DNA ends.

  11. Successive extraction of As(V), Cu(II) and P(V) ions from water using spent coffee powder as renewable bioadsorbents

    Science.gov (United States)

    Hao, Linlin; Wang, Peng; Valiyaveettil, Suresh

    2017-02-01

    For the first time, renewable and easy accessible pre-bleached spent coffee powder coated with polyethylenimine (PEI) and ferric ions (Coffee-PEI-Fe) was used for the successive adsorption of As(V), Cu(II) and P(V) ions from spiked water samples. Fully characterized coffee-PEI-Fe was employed for batch mode experiments. Kinetic regression analysis showed that the adsorption processes of As(V) and P(V) anions follows a pseudo-second-order model, while the adsorption of Cu(II) ions fit with a pseudo-first-order model. The maximum adsorption capacities estimated by Langmuir model for As(V), Cu(II) and P(V) ions were 83.3, 200.1, and 50.2 mg/g, respectively. The simulated results revealed that the internal diffusion is the rate-determining step for the adsorptions of As(V) and Cu(II) ions, while film diffusion is the mass transfer resistance for the adsorption of P(V) ions on the surface of coffee-PEI-Fe. The successive adsorptions of adsorbates were achieved through electrostatic attraction between adsorbent surface and adsorbates. The dynamic column adsorption behavior of the adsorbent was described by Thomas model, which showed a good agreement with the experimental values (qexp). The results presented in this paper could be used for developing efficient adsorbent from renewable materials for water purification.

  12. Development, characterization and evaluation of iron-coated honeycomb briquette cinders for the removal of As(V from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Tiantian Sheng

    2014-01-01

    Full Text Available The adsorptive removal of As(V from aqueous solutions using iron-coated honeycomb briquette cinder (Fe-HBC is presented. Low cost mechanical granulation process was integrated with surface amendment technology to prepare iron-oxide modified granular adsorbent for clean water production. Detailed characterizations were performed using FTIR, XRD, EDS and SEM techniques. Operating parameters including initial As(V concentration, pH, contact time, adsorbent dose, iron leaching and the effects of competing ions on As(V removal were evaluated. Results demonstrated that high amount of arsenate (961.5 μg g−1 was adsorbed at pH 7.5 in 14 h contact time. Langmuir, Freundlich and Temkin isotherm models were used to analyze the adsorption data, whereas Langmuir model was found to best represent the data with a correlation co-efficient (R2 = 0.999. Thus, As(V sorption on Fe-HBC surface suggested monolayer adsorption and indicated surface homogeneity. Moreover, the dimensionless parameter (RL value calculated to be about 0.118 that reiterated the process is favorable and spontaneous. The influences of competing ions on As(V removal decreased in the following order:PO43−>HCO3−>F−>Cl−. The profound inhibition effects ofPO43− revealed a high affinity toward iron(oxy hydroxide. Life-cycle assessment confirmed that spent HBC is non-hazardous and can be used as a promising sorbent for arsenic removal.

  13. Interaction between Reverse Transcriptase and Integrase Is Required for Reverse Transcription during HIV-1 Replication.

    Science.gov (United States)

    Tekeste, Shewit S; Wilkinson, Thomas A; Weiner, Ethan M; Xu, Xiaowen; Miller, Jennifer T; Le Grice, Stuart F J; Clubb, Robert T; Chow, Samson A

    2015-12-01

    Human immunodeficiency virus type 1 (HIV-1) replication requires reverse transcription of its RNA genome into a double-stranded cDNA copy, which is then integrated into the host cell chromosome. The essential steps of reverse transcription and integration are catalyzed by the viral enzymes reverse transcriptase (RT) and integrase (IN), respectively. In vitro, HIV-1 RT can bind with IN, and the C-terminal domain (CTD) of IN is necessary and sufficient for this binding. To better define the RT-IN interaction, we performed nuclear magnetic resonance (NMR) spectroscopy experiments to map a binding surface on the IN CTD in the presence of RT prebound to a duplex DNA construct that mimics the primer-binding site in the HIV-1 genome. To determine the biological significance of the RT-IN interaction during viral replication, we used the NMR chemical shift mapping information as a guide to introduce single amino acid substitutions of nine different residues on the putative RT-binding surface in the IN CTD. We found that six viral clones bearing such IN substitutions (R231E, W243E, G247E, A248E, V250E, and I251E) were noninfectious. Further analyses of the replication-defective IN mutants indicated that the block in replication took place specifically during early reverse transcription. The recombinant INs purified from these mutants, though retaining enzymatic activities, had diminished ability to bind RT in a cosedimentation assay. The results indicate that the RT-IN interaction is functionally relevant during the reverse transcription step of the HIV-1 life cycle. To establish a productive infection, human immunodeficiency virus type 1 (HIV-1) needs to reverse transcribe its RNA genome to create a double-stranded DNA copy and then integrate this viral DNA genome into the chromosome of the host cell. These two essential steps are catalyzed by the HIV-1 enzymes reverse transcriptase (RT) and integrase (IN), respectively. We have shown previously that IN physically interacts

  14. Chelation Motifs Affecting Metal-dependent Viral Enzymes: N'-acylhydrazone Ligands as Dual Target Inhibitors of HIV-1 Integrase and Reverse Transcriptase Ribonuclease H Domain.

    Science.gov (United States)

    Carcelli, Mauro; Rogolino, Dominga; Gatti, Anna; Pala, Nicolino; Corona, Angela; Caredda, Alessia; Tramontano, Enzo; Pannecouque, Christophe; Naesens, Lieve; Esposito, Francesca

    2017-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection, still represent a serious global health emergency. The chronic toxicity derived from the current anti-retroviral therapy limits the prolonged use of several antiretroviral agents, continuously requiring the discovery of new antiviral agents with innovative strategies of action. In particular, the development of single molecules targeting two proteins (dual inhibitors) is one of the current main goals in drug discovery. In this contest, metal-chelating molecules have been extensively explored as potential inhibitors of viral metal-dependent enzymes, resulting in some important classes of antiviral agents. Inhibition of HIV Integrase (IN) is, in this sense, paradigmatic. HIV-1 IN and Reverse Transcriptase-associated Ribonuclease H (RNase H) active sites show structural homologies, with the presence of two Mg(II) cofactors, hence it seems possible to inhibit both enzymes by means of chelating ligands with analogous structural features. Here we present a series of N'-acylhydrazone ligands with groups able to chelate the Mg(II) hard Lewis acid ions in the active sites of both the enzymes, resulting in dual inhibitors with micromolar and even nanomolar activities. The most interesting identified N'-acylhydrazone analog, compound 18, shows dual RNase H-IN inhibition and it is also able to inhibit viral replication in cell-based antiviral assays in the low micromolar range. Computational modeling studies were also conducted to explore the binding attitudes of some model ligands within the active site of both the enzymes.

  15. Impact of hydrodynamic injection and phiC31 integrase on tumor latency in a mouse model of MYC-induced hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Lauren E Woodard

    2010-06-01

    Full Text Available Hydrodynamic injection is an effective method for DNA delivery in mouse liver and is being translated to larger animals for possible clinical use. Similarly, phiC31 integrase has proven effective in mediating long-term gene therapy in mice when delivered by hydrodynamic injection and is being considered for clinical gene therapy applications. However, chromosomal aberrations have been associated with phiC31 integrase expression in tissue culture, leading to questions about safety.To study whether hydrodynamic delivery alone, or in conjunction with delivery of phiC31 integrase for long-term transgene expression, could facilitate tumor formation, we used a transgenic mouse model in which sustained induction of the human C-MYC oncogene in the liver was followed by hydrodynamic injection. Without injection, mice had a median tumor latency of 154 days. With hydrodynamic injection of saline alone, the median tumor latency was significantly reduced, to 105 days. The median tumor latency was similar, 106 days, when a luciferase donor plasmid and backbone plasmid without integrase were administered. In contrast, when active or inactive phiC31 integrase and donor plasmid were supplied to the mouse liver, the median tumor latency was 153 days, similar to mice receiving no injection.Our data suggest that phiC31 integrase does not facilitate tumor formation in this C-MYC transgenic mouse model. However, in groups lacking phiC31 integrase, hydrodynamic injection appeared to contribute to C-MYC-induced hepatocellular carcinoma in adult mice. Although it remains to be seen to what extent these findings may be extrapolated to catheter-mediated hydrodynamic delivery in larger species, they suggest that caution should be used during translation of hydrodynamic injection to clinical applications.

  16. Porcine endogenous retrovirus-A/C: biochemical properties of its integrase and susceptibility to raltegravir.

    Science.gov (United States)

    Demange, Antonin; Yajjou-Hamalian, Halima; Gallay, Kathy; Luengo, Catherine; Beven, Véronique; Leroux, Aurélie; Confort, Marie-Pierre; Al Andary, Elsy; Gouet, Patrice; Moreau, Karen; Ronfort, Corinne; Blanchard, Yannick

    2015-10-01

    Porcine endogenous retroviruses (PERVs) are present in the genomes of pig cells. The PERV-A/C recombinant virus can infect human cells and is a major risk of zoonotic disease in the case of xenotransplantation of pig organs to humans. Raltegravir (RAL) is a viral integrase (IN) inhibitor used in highly active antiretroviral treatment. In the present study, we explored the potential use of RAL against PERV-A/C. We report (i) a three-dimensional model of the PERV-A/C intasome complexed with RAL, (ii) the sensitivity of PERV-A/C IN to RAL in vitro and (iii) the sensitivity of a PERV-A/C-IRES-GFP recombinant virus to RAL in cellulo. We demonstrated that RAL is a potent inhibitor against PERV-A/C IN and PERV-A/C replication with IC50s in the nanomolar range. To date, the use of retroviral inhibitors remains the only way to control the risk of zoonotic PERV infection during pig-to-human xenotransplantation.

  17. HIV integrase variability and genetic barrier in antiretroviral naïve and experienced patients

    Directory of Open Access Journals (Sweden)

    Comolli Giuditta

    2011-03-01

    Full Text Available Abstract Background HIV-1 integrase (IN variability in treatment naïve patients with different HIV-1 subtypes is a major issue. In fact, the effect of previous exposure to antiretrovirals other than IN inhibitors (INI on IN variability has not been satisfactorily defined. In addition, the genetic barrier for specific INI resistance mutations remains to be calculated. Methods IN variability was analyzed and compared with reverse transcriptase (RT and protease (PR variability in 41 treatment naïve and 54 RT inhibitor (RTI and protease inhibitor (PRI experienced patients from subjects infected with subtype B and non-B strains. In addition, four HIV-2 strains were analyzed in parallel. Frequency and distribution of IN mutations were compared between HAART-naïve and RTI/PI-experienced patients; the genetic barrier for 27 amino acid positions related to INI susceptibility was calculated as well. Results Primary mutations associated with resistance to INI were not detected in patients not previously treated with this class of drug. However, some secondary mutations which have been shown to contribute to INI resistance were found. Only limited differences in codon usage distribution between patient groups were found. HIV-2 strains from INI naïve patients showed the presence of both primary and secondary resistance mutations. Conclusion Exposure to antivirals other than INI does not seem to significantly influence the emergence of mutations implicated in INI resistance. HIV-2 strain might have reduced susceptibility to INI.

  18. Application of an R-group search technique into molecular design of HIV-1 integrase inhibitors

    Directory of Open Access Journals (Sweden)

    Tong Jian-Bo

    2016-01-01

    Full Text Available In this paper, a three-dimensional quantitative structure-activity relationship (3D-QSAR study for 62 HIV-1 integrase(IN inhibitors was established using Topomer CoMFA. The multiple correlation coefficient of fitting, cross validation and external validation were 0.942, 0.670 and 0.748, respectively. The results indicated that the Topomer CoMFA model obtained has both favorable estimation stability and good prediction capability. Topomer Search was used to search R group from ZINC database. As the result, a series of R groups with relatively high activity contribution was obtained. By filtering with the most potent molecule in the set, 1 Ra group and 21 Rb groups were selected. We employed the 1 Ra groups and 21 Rb groups to alternately substitute the Ra and Rb of sample 42. Finally, we designed 21 new compounds and further predicted their activities using the Topomer CoMFA model and there were 10 new compounds with higher activity than that of the template molecule. The results suggested the Topomer Search technology could be effectively used to screen and design new HIV-1 IN inhibitors and has good predictive capability to guide the design of new HIV/AIDS drugs.

  19. Determination of traces of Sb(III) using ASV in Sb-rich water samples affected by mining

    Energy Technology Data Exchange (ETDEWEB)

    Cidu, Rosa, E-mail: cidur@unica.it; Biddau, Riccardo; Dore, Elisabetta

    2015-01-07

    Highlights: • Antimony speciation affects the toxicity of this element. • A simple method for Sb(III) analyses in Sb-rich waters was developed. • Sb(III) was determined by ASV in water stabilized with tartaric and nitric acids. • Pre-concentration and/or separation of Sb(III) prior to analysis are not required. - Abstract: Chemical speciation [Sb(V) and Sb(III)] affects the mobility, bioavailability and toxicity of antimony. In oxygenated environments Sb(V) dominates whereas thermodynamically unstable Sb(III) may occur. In this study, a simple method for the determination of Sb(III) in non acidic, oxygenated water contaminated with antimony is proposed. The determination of Sb(III) was performed by anodic stripping voltammetry (ASV, 1–20 μg L{sup −1} working range), the total antimony, Sb(tot), was determined either by inductively coupled plasma mass spectrometry (ICP-MS, 1–100 μg L{sup −1} working range) or inductively coupled plasma optical emission spectrometry (ICP-OES, 100–10,000 μg L{sup −1} working range) depending on concentration. Water samples were filtered on site through 0.45 μm pore size filters. The aliquot for determination of Sb(tot) was acidified with 1% (v/v) HNO{sub 3}. Different preservatives, namely HCl, L(+) ascorbic acid or L(+) tartaric acid plus HNO{sub 3}, were used to assess the stability of Sb(III) in synthetic solutions. The method was tested on groundwater and surface water draining the abandoned mine of Su Suergiu (Sardinia, Italy), an area heavily contaminated with Sb. The waters interacting with Sb-rich mining residues were non acidic, oxygenated, and showed extreme concentrations of Sb(tot) (up to 13,000 μg L{sup −1}), with Sb(III) <10% of total antimony. The stabilization with L(+) tartaric acid plus HNO{sub 3} appears useful for the determination of Sb(III) in oxygenated, Sb-rich waters. Due to the instability of Sb(III), analyses should be carried out within 7 days upon the water collection. The main

  20. Comparison of a plant based natural surfactant with SDS for washing of As(V) from Fe rich soil.

    Science.gov (United States)

    Mukhopadhyay, Soumyadeep; Mohd, Ali Hashim; Sahu, Jaya Narayan; Yusoff, Ismail; Sen, Gupta Bhaskar

    2013-11-01

    This study explores the possible application of a biodegradable plant based surfactant, obtained from Sapindus mukorossi, for washing low levels of arsenic (As) from an iron (Fe) rich soil. Natural association of As(V) with Fe(III) makes the process difficult. Soapnut solution was compared to anionic surfactant sodium dodecyl sulfate (SDS) in down-flow and a newly introduced suction mode for soil column washing. It was observed that soapnut attained up to 86% efficiency with respect to SDS in removing As. Full factorial design of experiment revealed a very good fit of data. The suction mode generated up to 83 kPa pressure inside column whilst down-flow mode generated a much higher pressure of 214 kPa, thus making the suction mode more efficient. Micellar solubilisation was found to be responsible for As desorption from the soil and it followed 1st order kinetics. Desorption rate coefficient of suction mode was found to be in the range of 0.005 to 0.01, much higher than down-flow mode values. Analysis of the FT-IR data suggested that the soapnut solution did not interact chemically with As, offering an option for reusing the surfactant. Soapnut can be considered as a soil washing agent for removing As even from soil with high Fe content.

  1. Insights into the subsurface transport of As(V) and Se(VI) in produced water from hydraulic fracturing using soil samples from Qingshankou Formation, Songliao Basin, China.

    Science.gov (United States)

    Chen, Season S; Sun, Yuqing; Tsang, Daniel C W; Graham, Nigel J D; Ok, Yong Sik; Feng, Yujie; Li, Xiang-Dong

    2017-04-01

    Produced water is a type of wastewater generated from hydraulic fracturing, which may pose a risk to the environment and humans due to its high ionic strength and the presence of elevated concentrations of metals/metalloids that exceed maximum contamination levels. The mobilization of As(V) and Se(VI) in produced water and selected soils from Qingshankou Formation in the Songliao Basin in China were investigated using column experiments and synthetic produced water whose quality was representative of waters arising at different times after well creation. Temporal effects of produced water on metal/metalloid transport and sorption/desorption were investigated by using HYDRUS-1D transport modelling. Rapid breakthrough and long tailings of As(V) and Se(VI) transport were observed in Day 1 and Day 14 solutions, but were reduced in Day 90 solution probably due to the elevated ionic strength. The influence of produced water on the hydrogeological conditions (i.e., change between equilibrium and non-equilibrium transport) was evidenced by the change of tracer breakthrough curves before and after the leaching of produced water. This possibly resulted from the sorption of polyacrylamide (PAM (-CH2CHCONH2-)n) onto soil surfaces, through its use as a friction reducer in fracturing solutions. The sorption was found to be reversible in this study. Minimal amounts of sorbed As(V) were desorbed whereas the majority of sorbed Se(VI) was readily leached out, to an extent which varied with the composition of the produced water. These results showed that the mobilization of As(V) and Se(VI) in soil largely depended on the solution pH and ionic strength. Understanding the differences in metal/metalloid transport in produced water is important for proper risk management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Rapid activity prediction of HIV-1 integrase inhibitors: harnessing docking energetic components for empirical scoring by chemometric and artificial neural network approaches.

    Science.gov (United States)

    Thangsunan, Patcharapong; Kittiwachana, Sila; Meepowpan, Puttinan; Kungwan, Nawee; Prangkio, Panchika; Hannongbua, Supa; Suree, Nuttee

    2016-06-01

    Improving performance of scoring functions for drug docking simulations is a challenging task in the modern discovery pipeline. Among various ways to enhance the efficiency of scoring function, tuning of energetic component approach is an attractive option that provides better predictions. Herein we present the first development of rapid and simple tuning models for predicting and scoring inhibitory activity of investigated ligands docked into catalytic core domain structures of HIV-1 integrase (IN) enzyme. We developed the models using all energetic terms obtained from flexible ligand-rigid receptor dockings by AutoDock4, followed by a data analysis using either partial least squares (PLS) or self-organizing maps (SOMs). The models were established using 66 and 64 ligands of mercaptobenzenesulfonamides for the PLS-based and the SOMs-based inhibitory activity predictions, respectively. The models were then evaluated for their predictability quality using closely related test compounds, as well as five different unrelated inhibitor test sets. Weighting constants for each energy term were also optimized, thus customizing the scoring function for this specific target protein. Root-mean-square error (RMSE) values between the predicted and the experimental inhibitory activities were determined to be <1 (i.e. within a magnitude of a single log scale of actual IC50 values). Hence, we propose that, as a pre-functional assay screening step, AutoDock4 docking in combination with these subsequent rapid weighted energy tuning methods via PLS and SOMs analyses is a viable approach to predict the potential inhibitory activity and to discriminate among small drug-like molecules to target a specific protein of interest.

  3. A quantum mechanic/molecular mechanic study of the wild-type and N155S mutant HIV-1 integrase complexed with diketo acid.

    Science.gov (United States)

    Alves, Cláudio Nahum; Martí, Sergio; Castillo, Raquel; Andrés, Juan; Moliner, Vicent; Tuñón, Iñaki; Silla, Estanislao

    2008-04-01

    Integrase (IN) is one of the three human immunodeficiency virus type 1 (HIV-1) enzymes essential for effective viral replication. Recently, mutation studies have been reported that have shown that a certain degree of viral resistance to diketo acids (DKAs) appears when some amino acid residues of the IN active site are mutated. Mutations represent a fascinating experimental challenge, and we invite theoretical simulations for the disclosure of still unexplored features of enzyme reactions. The aim of this work is to understand the molecular mechanisms of HIV-1 IN drug resistance, which will be useful for designing anti-HIV inhibitors with unique resistance profiles. In this study, we use molecular dynamics simulations, within the hybrid quantum mechanics/molecular mechanics (QM/MM) approach, to determine the protein-ligand interaction energy for wild-type and N155S mutant HIV-1 IN, both complexed with a DKA. This hybrid methodology has the advantage of the inclusion of quantum effects such as ligand polarization upon binding, which can be very important when highly polarizable groups are embedded in anisotropic environments, for example in metal-containing active sites. Furthermore, an energy terms decomposition analysis was performed to determine contributions of individual residues to the enzyme-inhibitor interactions. The results reveal that there is a strong interaction between the Lys-159, Lys-156, and Asn-155 residues and Mg(2+) cation and the DKA inhibitor. Our calculations show that the binding energy is higher in wild-type than in the N155S mutant, in accordance with the experimental results. The role of the mutated residue has thus been checked as maintaining the structure of the ternary complex formed by the protein, the Mg(2+) cation, and the inhibitor. These results might be useful to design compounds with more interesting anti-HIV-1 IN activity on the basis of its three-dimensional structure.

  4. Prediction of phycoremediation of As(III) and As(V) from synthetic wastewater by Chlorella pyrenoidosa using artificial neural network

    Science.gov (United States)

    Podder, M. S.; Majumder, C. B.

    2017-03-01

    An artificial neural network (ANN) model was developed to predict the phycoremediation efficiency of Chlorella pyrenoidosa for the removal of both As(III) and As(V) from synthetic wastewater based on 49 data-sets obtained from experimental study and increased the data using CSCF technique. The data were divided into training (60%) validation (20%) and testing (20%) sets. The data collected was used for training a three-layer feed-forward back propagation (BP) learning algorithm having 4-5-1 architecture. The model used tangent sigmoid transfer function at input to hidden layer (tansing) while a linear transfer function (purelin) was used at output layer. Comparison between experimental results and model results gave a high correlation coefficient (R{allANN/2} equal to 0.99987 for both ions and exhibited that the model was able to predict the phycoremediation of As(III) and As(V) from wastewater. Experimental parameters influencing phycoremediation process like pH, inoculum size, contact time and initial arsenic concentration [either As(III) or As(V)] were investigated. A contact time of 168 h was mainly required for achieving equilibrium at pH 9.0 with an inoculum size of 10% (v/v). At optimum conditions, metal ion uptake enhanced with increasing initial metal ion concentration.

  5. Prediction of phycoremediation of As(III) and As(V) from synthetic wastewater by Chlorella pyrenoidosa using artificial neural network

    Science.gov (United States)

    Podder, M. S.; Majumder, C. B.

    2017-11-01

    An artificial neural network (ANN) model was developed to predict the phycoremediation efficiency of Chlorella pyrenoidosa for the removal of both As(III) and As(V) from synthetic wastewater based on 49 data-sets obtained from experimental study and increased the data using CSCF technique. The data were divided into training (60%) validation (20%) and testing (20%) sets. The data collected was used for training a three-layer feed-forward back propagation (BP) learning algorithm having 4-5-1 architecture. The model used tangent sigmoid transfer function at input to hidden layer ( tansing) while a linear transfer function ( purelin) was used at output layer. Comparison between experimental results and model results gave a high correlation coefficient (R allANN 2 equal to 0.99987 for both ions and exhibited that the model was able to predict the phycoremediation of As(III) and As(V) from wastewater. Experimental parameters influencing phycoremediation process like pH, inoculum size, contact time and initial arsenic concentration [either As(III) or As(V)] were investigated. A contact time of 168 h was mainly required for achieving equilibrium at pH 9.0 with an inoculum size of 10% (v/v). At optimum conditions, metal ion uptake enhanced with increasing initial metal ion concentration.

  6. Th(As(III)4As(V)4O18): a mixed-valent oxoarsenic(III)/arsenic(V) actinide compound obtained under extreme conditions.

    Science.gov (United States)

    Yu, Na; Klepov, Vladislav V; Kegler, Philip; Bosbach, Dirk; Albrecht-Schmitt, Thomas E; Alekseev, Evgeny V

    2014-08-18

    A high-temperature/high-pressure method was employed to investigate phase formation in the Th(NO3)4·5H2O-As2O3-CsNO3 system. It was observed that an excess of arsenic(III) in starting system leads to the formation of Th(As(III)4As(V)4O18), which is representative of a rare class of mixed-valent arsenic(III)/arsenic(V) compounds. This compound was studied with X-ray diffraction, energy-dispersive X-ray, and Raman spectroscopy methods. Crystallographic data show that Th(As(III)4As(V)4O18) is built from (As(III)4As(V)4O18)(4-) layers connected through Th atoms. The arsenic layers are found to be isoreticular to those in previously reported As2O3 and As3O5(OH), and the geometric differences between them are discussed. Bands in the Raman spectrum are assigned with respect to the presence of AsO3 and AsO4 groups.

  7. Impact of resistance mutations on inhibitor binding to HIV-1 integrase

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qi [Shanghai Jiao Tong Univ., Shanghai (China); Buolamwini, John K. [Univ. of Tennessee Health Science Center, Memphis, TN (United States); Smith, Jeremy C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Li, Aixiu [Logistics College of Chinese People' s Armed Police Force, Tianjin (China); Xu, Qin [Shanghai Jiao Tong Univ., Shanghai (China); Cheng, Xiaolin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Wei, Dongqing [Shanghai Jiao Tong Univ., Shanghai (China)

    2013-11-08

    Here, HIV-1 integrase (IN) is essential for HIV-1 replication, catalyzing two key reaction steps termed 3' processing and strand transfer. Therefore, IN has become an important target for antiviral drug discovery. However, mutants have emerged, such as E92Q/N155H and G140S/Q148H, which confer resistance to raltegravir (RAL), the first IN strand transfer inhibitor (INSTI) approved by the FDA, and to the recently approved elvitegravir (EVG). To gain insights into the molecular mechanisms of ligand binding and drug resistance, we performed molecular dynamics (MD) simulations of homology models of the HIV-1 IN and four relevant mutants complexed with viral DNA and RAL. The results show that the structure and dynamics of the 140s loop, comprising residues 140 to 149, are strongly influenced by the IN mutations. In the simulation of the G140S/Q148H double mutant, we observe spontaneous dissociation of RAL from the active site, followed by an intrahelical swing-back of the 3' -OH group of nucleotide A17, consistent with the experimental observation that the G140S/Q148H mutant exhibits the highest resistance to RAL compared to other IN mutants. An important hydrogen bond between residues 145 and 148 is present in the wild-type IN but not in the G140S/Q148H mutant, accounting for the structural and dynamical differences of the 140s' loop and ultimately impairing RAL binding in the double mutant. End-point free energy calculations that broadly capture the experimentally known RAL binding profiles elucidate the contributions of the 140s' loop to RAL binding free energies and suggest possible approaches to overcoming drug resistance.

  8. Efficient and specific internal cleavage of a retroviral palindromic DNA sequence by tetrameric HIV-1 integrase.

    Directory of Open Access Journals (Sweden)

    Olivier Delelis

    Full Text Available BACKGROUND: HIV-1 integrase (IN catalyses the retroviral integration process, removing two nucleotides from each long terminal repeat and inserting the processed viral DNA into the target DNA. It is widely assumed that the strand transfer step has no sequence specificity. However, recently, it has been reported by several groups that integration sites display a preference for palindromic sequences, suggesting that a symmetry in the target DNA may stabilise the tetrameric organisation of IN in the synaptic complex. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the ability of several palindrome-containing sequences to organise tetrameric IN and investigated the ability of IN to catalyse DNA cleavage at internal positions. Only one palindromic sequence was successfully cleaved by IN. Interestingly, this symmetrical sequence corresponded to the 2-LTR junction of retroviral DNA circles-a palindrome similar but not identical to the consensus sequence found at integration sites. This reaction depended strictly on the cognate retroviral sequence of IN and required a full-length wild-type IN. Furthermore, the oligomeric state of IN responsible for this cleavage differed from that involved in the 3'-processing reaction. Palindromic cleavage strictly required the tetrameric form, whereas 3'-processing was efficiently catalysed by a dimer. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that the restriction-like cleavage of palindromic sequences may be a general physiological activity of retroviral INs and that IN tetramerisation is strongly favoured by DNA symmetry, either at the target site for the concerted integration or when the DNA contains the 2-LTR junction in the case of the palindromic internal cleavage.

  9. A New Class of Multimerization Selective Inhibitors of HIV-1 Integrase

    Science.gov (United States)

    Sharma, Amit; Slaughter, Alison; Jena, Nivedita; Feng, Lei; Kessl, Jacques J.; Fadel, Hind J.; Malani, Nirav; Male, Frances; Wu, Li; Poeschla, Eric; Bushman, Frederic D.; Fuchs, James R.; Kvaratskhelia, Mamuka

    2014-01-01

    The quinoline-based allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are promising candidates for clinically useful antiviral agents. Studies using these compounds have highlighted the role of IN in both early and late stages of virus replication. However, dissecting the exact mechanism of action of the quinoline-based ALLINIs has been complicated by the multifunctional nature of these inhibitors because they both inhibit IN binding with its cofactor LEDGF/p75 and promote aberrant IN multimerization with similar potencies in vitro. Here we report design of small molecules that allowed us to probe the role of HIV-1 IN multimerization independently from IN-LEDGF/p75 interactions in infected cells. We altered the rigid quinoline moiety in ALLINIs and designed pyridine-based molecules with a rotatable single bond to allow these compounds to bridge between interacting IN subunits optimally and promote oligomerization. The most potent pyridine-based inhibitor, KF116, potently (EC50 of 0.024 µM) blocked HIV-1 replication by inducing aberrant IN multimerization in virus particles, whereas it was not effective when added to target cells. Furthermore, KF116 inhibited the HIV-1 IN variant with the A128T substitution, which confers resistance to the majority of quinoline-based ALLINIs. A genome-wide HIV-1 integration site analysis demonstrated that addition of KF116 to target or producer cells did not affect LEDGF/p75-dependent HIV-1 integration in host chromosomes, indicating that this compound is not detectably inhibiting IN-LEDGF/p75 binding. These findings delineate the significance of correctly ordered IN structure for HIV-1 particle morphogenesis and demonstrate feasibility of exploiting IN multimerization as a therapeutic target. Furthermore, pyridine-based compounds present a novel class of multimerization selective IN inhibitors as investigational probes for HIV-1 molecular biology. PMID:24874515

  10. Continuous Elution Proteoform Identification of Myelin Basic Protein by Superficially Porous Reversed-Phase Liquid Chromatography and Fourier Transform Mass Spectrometry.

    Science.gov (United States)

    Plymire, Daniel A; Wing, Casey E; Robinson, Dana E; Patrie, Steven M

    2017-11-21

    Myelin basic protein (MBP) plays an important structural and functional role in the neuronal myelin sheath. Translated MBP exhibits extreme microheterogeneity with numerous alternative splice variants (ASVs) and post-translational modifications (PTMs) reportedly tied to central nervous system maturation, myelin stability, and the pathobiology of various de- and dys-myelinating disorders. Conventional bioanalytical tools cannot efficiently examine ASV and PTM events simultaneously, which limits understanding of the role of MBP microheterogeneity in human physiology and disease. To address this need, we report on a top-down proteomics pipeline that combines superficially porous reversed-phase liquid chromatography (SPLC), Fourier transform mass spectrometry (FTMS), data-independent acquisition (DIA) with nozzle-skimmer dissociation (NSD), and aligned data processing resources to rapidly characterize abundant MBP proteoforms within murine tissue. The three-tier proteoform identification and characterization workflow resolved four known MBP ASVs and hundreds of differentially modified states from a single 90 min SPLC-FTMS run on ∼0.5 μg of material. This included 323 proteoforms for the 14.1 kDa ASV alone. We also identified two novel ASVs from an alternative transcriptional start site (ATSS) of the MBP gene as well as a never before characterized S-acylation event linking palmitic acid, oleic acid, and stearic acid at C78 of the 17.125 kDa ASV.

  11. Separación electrodialítica de Cu(II y As(V en electrolitos ácidos

    Directory of Open Access Journals (Sweden)

    Ibáñez, J. P.

    2007-02-01

    Full Text Available The separation of copper and arsenic from acidic electrolytes by electrodialysis was investigated at room temperature. The effect of current density and pH was studied in a batch cell during 3 hours. The kinetic parameters showed that Cu(II transport rate was 0.75 mol/m2/h and the As(V transport rate was 0.002 mol/m2/h. An efficient separation between Cu(II and As(V was achieved; generating a concentrated solution of copper with no arsenic, which was obtained independently of the electrolyte acidity and current density used. The effect of the arsenic speciation with pH is discussed as well.

    Se investigó el uso de la electrodiálisis para separar cobre y arsénico desde soluciones ácidas a temperatura ambiente. Se estudió el efecto de la densidad de corriente y grado de
    acidez del electrolito en la separación a través de experimentos en celda batch de 5 compartimientos durante 3 h. Los parámetros cinéticos indican que la velocidad de transporte de Cu(II fue de 0,75 mol/h/m2 y de As(V fue de 0,002 mol/h/m2 a una densidad de corriente de 225 A/m2. Se logró obtener una eficiente separación de Cu(II y As(V, con la generación de una solución concentrada de cobre sin presencia de arsénico, lo cual fue independiente del grado de acidez de la operación y de la densidad de corriente. El efecto de la distribución de las especies iónicas de As(V con el pH también se discute.

  12. Integrase inhibitors in late pregnancy and rapid HIV viral load reduction.

    Science.gov (United States)

    Rahangdale, Lisa; Cates, Jordan; Potter, JoNell; Badell, Martina L; Seidman, Dominika; Miller, Emilly S; Coleman, Jenell S; Lazenby, Gweneth B; Levison, Judy; Short, William R; Yawetz, Sigal; Ciaranello, Andrea; Livingston, Elizabeth; Duthely, Lunthita; Rimawi, Bassam H; Anderson, Jean R; Stringer, Elizabeth M

    2016-03-01

    Minimizing time to HIV viral suppression is critical in pregnancy. Integrase strand transfer inhibitors (INSTIs), like raltegravir, are known to rapidly suppress plasma HIV RNA in nonpregnant adults. There are limited data in pregnant women. We describe time to clinically relevant reduction in HIV RNA in pregnant women using INSTI-containing and non-INSTI-containing antiretroviral therapy (ART) options. We conducted a retrospective cohort study of pregnant HIV-infected women in the United States from 2009 through 2015. We included women who initiated ART, intensified their regimen, or switched to a new regimen due to detectable viremia (HIV RNA >40 copies/mL) at ≥20 weeks gestation. Among women with a baseline HIV RNA permitting 1-log reduction, we estimated time to 1-log RNA reduction using the Kaplan-Meier estimator comparing women starting/adding an INSTI in their regimen vs other ART. To compare groups with similar follow-up time, we also conducted a subgroup analysis limited to women with ≤14 days between baseline and follow-up RNA data. This study describes 101 HIV-infected pregnant women from 11 US clinics. In all, 75% (76/101) of women were not taking ART at baseline; 24 were taking non-INSTI containing ART, and 1 received zidovudine monotherapy. In all, 39% (39/101) of women started an INSTI-containing regimen or added an INSTI to their ART regimen. Among 90 women with a baseline HIV RNA permitting 1-log reduction, the median time to 1-log RNA reduction was 8 days (interquartile range [IQR], 7-14) in the INSTI group vs 35 days (IQR, 20-53) in the non-INSTI ART group (P pregnancy. Inclusion of an INSTI may play a role in optimal reduction of HIV RNA for HIV-infected pregnant women presenting late to care or failing initial therapy. Larger studies are urgently needed to assess the safety and effectiveness of this approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Fragment-Based Design of Ligands Targeting a Novel Site on the Integrase Enzyme of Human Immunodeficiency Virus;#8197;1

    Energy Technology Data Exchange (ETDEWEB)

    Wielens, Jerome; Headey, Stephen J.; Deadman, John J.; Rhodes, David I.; Parker, Michael W.; Chalmers, David K.; Scanlon, Martin J. (SVIMR-A); (Avea); (Monash)

    2011-08-17

    Fragment-based screening has been used to identify a novel ligand binding site on HIV-1 integrase. Crystal structures of fragments bound at this site (shown) have been used to design elaborated second-generation compounds that bind with higher affinity and good ligand efficiency.

  14. The HIV-1 integrase-LEDGF allosteric inhibitor MUT-A: resistance profile, impairment of virus maturation and infectivity but without influence on RNA packaging or virus immunoreactivity

    NARCIS (Netherlands)

    Amadori, Céline; Ubeles van der Velden, Yme; Bonnard, Damien; Orlov, Igor; van Bel, Nikki; Le Rouzic, Erwann; Miralles, Laia; Brias, Julie; Chevreuil, Francis; Spehner, Daniele; Chasset, Sophie; Ledoussal, Benoit; Mayr, Luzia; Moreau, François; García, Felipe; Gatell, José; Zamborlini, Alessia; Emiliani, Stéphane; Ruff, Marc; Klaholz, Bruno P.; Moog, Christiane; Berkhout, Ben; Plana, Montserrat; Benarous, Richard

    2017-01-01

    HIV-1 Integrase (IN) interacts with the cellular co-factor LEDGF/p75 and tethers the HIV preintegration complex to the host genome enabling integration. Recently a new class of IN inhibitors was described, the IN-LEDGF allosteric inhibitors (INLAIs). Designed to interfere with the IN-LEDGF

  15. The influence of particle size and structure on the sorption and oxidation behavior of birnessite: I. Adsorption of As(V) and oxidation of As(III)

    Science.gov (United States)

    Villalobos, Mario; Escobar-Quiroz, Ingrid N.; Salazar-Camacho, Carlos

    2014-01-01

    Sorption and oxidation reactions in the environment may affect substantially the mobility of redox-sensitive toxic trace elements and compounds. Investigating the environmental factors that influence these reactions is crucial in understanding and predicting the geochemical fate of these environmental species, as well as to design appropriate engineered remediation schemes. Arsenic is a widespread contaminant of concern, especially in its oxidized forms, and Mn oxide minerals are some of the major contributors to its oxidation. The goal of this work was to investigate the influence of particle size and structural differences of environmentally-relevant Mn(IV) birnessites on the adsorption of As(V) and on the oxidation of As(III). An acid birnessite of 39 m2/g and a δ-MnO2 of 114 m2/g were used. Both birnessites sorbed a maximum Pb(II) of 0.3 Pb/Mn, indicating a significantly larger layer cationic vacancy content for acid birnessite, and a density of reactive edge sites for both of 12 sites/nm2. As(V) forms a bidentate bridging complex on singly-coordinated surface sites at the birnessite particle edges regardless of loading, pH, birnessite type, and presence of pre-sorbed metals(II). Maximum As(V) adsorption, under repulsive electrostatic pH conditions did not yield adsorption congruency behavior between both birnessites at constant pH, presumably because the increase in internal vacancy content causes negative electrostatic repulsion towards external As(V) oxyanion binding. At pH 4.5 As(III) oxidation on birnessites was fast and quantitative at As/Mn ratios of 0.3-0.33, the reaction being largely driven by the proton concentration. At pH 6 δ-MnO2 oxidized As(III) faster and to a higher extent than acid birnessite, at equal masses; but the reverse at equal total surface areas. The oxidation driving force (independently from protons) was higher at pH 6 than at pH 4.5 because of Mn(II) product removal by sorption to interlayer vacancies, which overcomes reactive

  16. Removal of As(V) and simultaneous production of copper powder from a Cu(II)-As(V)-H{sub 2}SO{sub 4} electrolyte by using reactive electrodialysis; Eliminacion de As (V) y produccion simultanea de polvo de cobre de un electrolito de Cu(II) - As(V) - H{sub 2}SO{sub 4} mediante electrodialisis reactiva

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, J. P.

    2012-11-01

    The removal of As(V) and the simultaneous generation of powder of copper from an electrolyte made of As(V) - Cu(II) - H{sub 2}SO{sub 4} was studied by using electro dialysis at several current densities, temperatures and aeration of the electrolyte. The removal of arsenic was proportional to the current density, temperature and aeration used. The removal of arsenic reached a value of 0.14 mmol/h at 500 A/m2, 25 degree centigrade and without aeration, this value increased to 0.31 mmol/h by increasing the aeration to 6.6 l/h. The Cu(II) was recovered in a 98 % as a fine arsenic free powder of metallic copper with oxides of copper. The arsenic was removed from the electrolyte by adsorption onto the anodic slimes generated from the lead anode oxidation. (Author) 24 refs.

  17. Superparamagnetic nanomaterial Fe3O4-TiO2 for the removal of As(V) and As(III) from aqueous solutions.

    Science.gov (United States)

    Beduk, Fatma

    2016-01-01

    A magnetically separable nanomaterial Fe3O4-TiO2 was synthesized and characterized which was subsequently used for the removal of arsenic (V) from aqueous solutions. The surface morphology, magnetic properties, crystalline structure, thermal stability and Brunauer-Emmet-Teller surface area of the synthesized Fe3O4-TiO2 nanoparticles (NPs) are characterized by scanning electron microscope and high-resolution transmission electron microscope, vibrating sample magnetometry, X-ray diffractometer, thermogravimetric analysis and multi point function surface area analyzer. The saturation magnetization of Fe3O4-TiO2 NPs was determined to be 50.97 emu/g, which makes them superparamagnetic. The surface area of Fe3O4-TiO2 NPs was as much as 94.9 m(2)/g. The main factors affecting adsorption efficiency, such as solution pH, reaction time, initial As(V) concentration and adsorbent concentration are investigated. When the adsorption isotherms were analyzed by the Langmuir, Freundlich and Dubinin-Radushkevich models, equilibrium data were found to be well represented by Freundlich isotherm, and adsorption on Fe3O4-TiO2 NPs fitted well with pseudo-second-order kinetic model. The maximum adsorption capacity of As(V) on Fe3O4-TiO2 NPs, calculated by the Freundlich model was determined at 11.434 µg/g. 1.0 g/L of Fe3O4-TiO2 NPs was efficient for complete removal of 100 µg/L As(V) in 1 h. Fe3O4-TiO2 NPs was also effective for 93% removal of 100 µg/L As(III). Matrix effect was determined using As(V)-contaminated well water. Successfull results were obtained for purification of real well water containing 137.12 µg/L As(V). Results show that Fe3O4-TiO2 NPs are promising adsorbents with an advantage of magnetic separation.

  18. Evolución de pacientes adultos en ventilación mecánica en modo ASV. UCI Hospital San Rafael Tunja agosto-diciembre 2014

    OpenAIRE

    Martínez Rodríguez, Erika Brigitte; Velandia, Julio Alberto; Castro, Nubia

    2015-01-01

    Este es un estudio observacional descriptivo, longitudinal y prospectivo realizado con el fin de describir la evolución de de la mecánica ventilatoria, la gasometría y los tiempos de ventilación en los pacientes en ventilación mecánica en modo ASV en la UCI del Hospital San Rafael de Tunja durante los meses de Agosto a Diciembre de 2014 y encontrando que es un método seguro y eficiente para el manejo de la ventilación en pacientes sin mayores comorbilidades ni compromiso orgánico múltip...

  19. Contribution of the C-terminal tri-lysine regions of human immunodeficiency virus type 1 integrase for efficient reverse transcription and viral DNA nuclear import

    Directory of Open Access Journals (Sweden)

    Fowke Keith R

    2005-10-01

    Full Text Available Abstract Background In addition to mediating the integration process, HIV-1 integrase (IN has also been implicated in different steps during viral life cycle including reverse transcription and viral DNA nuclear import. Although the karyophilic property of HIV-1 IN has been well demonstrated using a variety of experimental approaches, the definition of domain(s and/or motif(s within the protein that mediate viral DNA nuclear import and its mechanism are still disputed and controversial. In this study, we performed mutagenic analyses to investigate the contribution of different regions in the C-terminal domain of HIV-1 IN to protein nuclear localization as well as their effects on virus infection. Results Our analysis showed that replacing lysine residues in two highly conserved tri-lysine regions, which are located within previously described Region C (235WKGPAKLLWKGEGAVV and sequence Q (211KELQKQITK in the C-terminal domain of HIV-1 IN, impaired protein nuclear accumulation, while mutations for RK263,4 had no significant effect. Analysis of their effects on viral infection in a VSV-G pseudotyped RT/IN trans-complemented HIV-1 single cycle replication system revealed that all three C-terminal mutant viruses (KK215,9AA, KK240,4AE and RK263,4AA exhibited more severe defect of induction of β-Gal positive cells and luciferase activity than an IN class 1 mutant D64E in HeLa-CD4-CCR5-β-Gal cells, and in dividing as well as non-dividing C8166 T cells, suggesting that some viral defects are occurring prior to viral integration. Furthermore, by analyzing viral DNA synthesis and the nucleus-associated viral DNA level, the results clearly showed that, although all three C-terminal mutants inhibited viral reverse transcription to different extents, the KK240,4AE mutant exhibited most profound effect on this step, whereas KK215,9AA significantly impaired viral DNA nuclear import. In addition, our analysis could not detect viral DNA integration in each C

  20. Study on competitive adsorption mechanism among oxyacid-type heavy metals in co-existing system: Removal of aqueous As(V), Cr(III) and As(III) using magnetic iron oxide nanoparticles (MIONPs) as adsorbents

    Science.gov (United States)

    Lin, Sen; Lian, Cheng; Xu, Meng; Zhang, Wei; Liu, Lili; Lin, Kuangfei

    2017-11-01

    The adsorption and co-adsorption of As(V), Cr(VI) and As(III) onto the magnetic iron oxide nanoparticles (MIONPs) surface were investigated comprehensively to clarify the competitive processes. The results reflected that the MIONPs had remarkable preferential adsorption to As(V) compared with Cr(VI) and As(III). And it was determined, relying on the analysis of heavy metals variations on the MIONPs surface at different co-adsorption stages using FTIR and XPS, that the inner-sphere complexation made vital contribution to the preferential adsorption for As(V), corresponding with the replacement experiments where As(V) could grab extensively active sites on the MIONPs pre-occupied by As(III) or Cr(V) uniaxially. The desorption processes displayed that the strongest affinity between the MIONPs and As(V) where As(III) and Cr(VI) were more inclined to wash out. It is wish to provide a helpful direction with this study for the wastewater treatment involving multiple oxyacid-type heavy metals using MIONPs as adsorbents.

  1. Molecular electrostatic potentials as input for the alignment of HIV-1 integrase inhibitors in 3D QSAR

    Science.gov (United States)

    Makhija, Mahindra T.; Kulkarni, Vithal M.

    2001-11-01

    Comparative molecular similarity indices analysis (CoMSIA), a three-dimensional quantitative structure activity relationship (3D QSAR) paradigm, was used to examine the correlations between the calculated physicochemical properties and the in vitro activities (3'-processing and 3'-strand transfer inhibition) of a series of human immunodeficiency virus type 1 (HIV-1) integrase inhibitors. The training set consisted of 34 molecules from five structurally diverse classes: salicylpyrazolinones, dioxepinones, coumarins, quinones, and benzoic hydrazides. The data set was aligned using extrema of molecular electrostatic potentials (MEPs). The predictive ability of the resultant model was evaluated using a test set comprised of 7 molecules belonging to a different structural class of thiazepinediones. A CoMSIA model using an MEP-based alignment showed considerable internal as well external predictive ability ( r 2 cv=0.821, r 2 pred.=0.608 for 3'-processing; and r 2 cv=0.759, r 2 pred.=0.660 for 3'-strand transfer).

  2. High-throughput real-time assay based on molecular beacons for HIV-1 integrase 3'-processing reaction

    Institute of Scientific and Technical Information of China (English)

    Hong-qiu HE; Xiao-hui MA; Bin LIU; Xiao-yi ZHANG; Wei-zu CHEN; Cun-xin WANG; Shao-hui CHENG

    2007-01-01

    Aim: To develop a high-throughput real-time assay based on molecular beacons to monitor the integrase 3'-processing reaction in vitro and apply it to inhibitor screening.Methods: The recombinant human immunodeficiency virus (HIV)-1 integrase (IN) is incubated with a 38 mer oligonucleotide substrate, a sequence identical to the U5 end of HIV-1 long terminal repeats (LTR). Based on the fluores-cence properties of molecular beacons, the substrate is designed to form a stem-loop structure labeled with a fluorophore at the 5' end and a quencher at the 3'end.IN cleaves the terminal 3'-dinucleotide containing the quencher, resulting in an increase in fluorescence which can be monitored on a spectrofluorometer. To optimize this assay, tests were performed to investigate the effects of substrates, enzyme and the metal ion concentrations on the IN activity and optimal param-eters were obtained. Moreover, 2 IN inhibitors were employed to test the perfor-mance of this assay in antiviral compound screening.Results: The fluorescent intensity of the reaction mixture varies linearly with time and is proportional to the velocity of the 3'-processing reaction. Tests were performed and the results showed that the optimal rate was obtained for a reaction mixture containing 50 mg/L recom-binant HIV-1 IN, 400 nmol/L substrate, and 10 mmol/L Mn2+. The IN 3'-processing reaction under the optimal conditions showed a more than 18-fold increase in the fluorescence intensity compared to the enzyme-free control. The IC50 values of the IN inhibitors obtained in our assay were similar to the values obtained from a radiolabeled substrate assay.Conclusion: Our results demonstrated that this is a fast, reliable, and sensitive method to monitor HIV IN 3'-processing reaction and that it can be used for inhibitor screening.

  3. The HIV-1 integrase-LEDGF allosteric inhibitor MUT-A: resistance profile, impairment of virus maturation and infectivity but without influence on RNA packaging or virus immunoreactivity.

    Science.gov (United States)

    Amadori, Céline; van der Velden, Yme Ubeles; Bonnard, Damien; Orlov, Igor; van Bel, Nikki; Le Rouzic, Erwann; Miralles, Laia; Brias, Julie; Chevreuil, Francis; Spehner, Daniele; Chasset, Sophie; Ledoussal, Benoit; Mayr, Luzia; Moreau, François; García, Felipe; Gatell, José; Zamborlini, Alessia; Emiliani, Stéphane; Ruff, Marc; Klaholz, Bruno P; Moog, Christiane; Berkhout, Ben; Plana, Montserrat; Benarous, Richard

    2017-11-09

    HIV-1 Integrase (IN) interacts with the cellular co-factor LEDGF/p75 and tethers the HIV preintegration complex to the host genome enabling integration. Recently a new class of IN inhibitors was described, the IN-LEDGF allosteric inhibitors (INLAIs). Designed to interfere with the IN-LEDGF interaction during integration, the major impact of these inhibitors was surprisingly found on virus maturation, causing a reverse transcription defect in target cells. Here we describe the MUT-A compound as a genuine INLAI with an original chemical structure based on a new type of scaffold, a thiophene ring. MUT-A has all characteristics of INLAI compounds such as inhibition of IN-LEDGF/p75 interaction, IN multimerization, dual antiretroviral (ARV) activities, normal packaging of genomic viral RNA and complete Gag protein maturation. MUT-A has more potent ARV activity compared to other INLAIs previously reported, but similar profile of resistance mutations and absence of ARV activity on SIV. HIV-1 virions produced in the presence of MUT-A were non-infectious with the formation of eccentric condensates outside of the core. In studying the immunoreactivity of these non-infectious virions, we found that inactivated HIV-1 particles were captured by anti-HIV-specific neutralizing and non-neutralizing antibodies (b12, 2G12, PGT121, 4D4, 10-1074, 10E8, VRC01) with efficiencies comparable to non-treated virus. Autologous CD4+ T lymphocyte proliferation and cytokine induction by monocyte-derived dendritic cells (MDDC) pulsed either with MUT-A-inactivated HIV or non-treated HIV were also comparable. Although strongly defective in infectivity, HIV-1 virions produced in the presence of the MUT-A INLAI have a normal protein and genomic RNA content as well as B and T cell immunoreactivities comparable to non-treated HIV-1. These inactivated viruses might form an attractive new approach in vaccine research in an attempt to study if this new type of immunogen could elicit an immune response

  4. Pseudo attP sites in favor of transgene integration and expression in cultured porcine cells identified by Streptomyces phage phiC31 integrase.

    Science.gov (United States)

    Bi, Yanzhen; Liu, Ximei; Zhang, Long; Shao, Changwei; Ma, Zhuo; Hua, Zaidong; Zhang, Liping; Li, Li; Hua, Wenjun; Xiao, Hongwei; Wei, Qingxin; Zheng, Xinmin

    2013-09-08

    Phage PhiC31 integrase integrates attB-containing plasmid into pseudo attP site in eukaryotic genomes in a unidirectional site-specific manner and maintains robust transgene expression. Few studies, however, explore its potential in livestock. This study aims to discover the molecular basis of PhiC31 integrase-mediated site-specific recombination in pig cells. We show that PhiC31 integrase can mediate site-specific transgene integration into the genome of pig kidney PK15 cells. Intramolecular recombination in pig PK15 cell line occurred at maximum frequency of 82% with transiently transfected attB- and attP-containing plasmids. An optimal molar ratio of pCMV-Int to pEGFP-N1-attB at 5:1 was observed for maximum number of cell clones under drug selection. Four candidate pseudo attP sites were identified by TAIL-PCR from those cell clones with single-copy transgene integration. Two of them gave rise to higher integration frequency occurred at 33%. 5' and 3' junction PCR showed that transgene integration mediated by PhiC31 integrase was mono-allelic. Micro- deletion and insertion were observed by sequencing the integration border, indicating that double strand break was induced by the recombination. We then constructed rescue reporter plasmids by ABI-REC cloning of the four pseudo attP sites into pBCPB + plasmid. Transfection of these rescue plasmids and pCMV-Int resulted in expected intramolecular recombination between attB and pseudo attP sites. This proved that the endogenous pseudo attP sites were functional substrates for PhiC31 integrase-mediated site-specific recombination. Two pseudo attP sites maintained robust extracellular and intracellular EGFP expression. Alamar blue assay showed that transgene integration into these specific sites had little effect on cell proliferation. This is the first report to document the potential use of PhiC31 integrase to mediate site-specific recombination in pig cells. Our work established an ideal model to study the position

  5. Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash.

    Science.gov (United States)

    Li, Ronghua; Liang, Wen; Wang, Jim J; Gaston, Lewis A; Huang, Di; Huang, Hui; Lei, Shuang; Awasthi, Mukesh Kumar; Zhou, Baoyue; Xiao, Ran; Zhang, Zengqiang

    2018-02-08

    Enhancing the contaminant adsorption capacity is a key factor affecting utilization of carbon-based adsorbents in wastewater treatment and encouraging development of biomass thermo-disposal. In this study, a novel MgO hybrid sponge-like carbonaceous composite (HSC) derived from sugarcane leafy trash was prepared through an integrated adsorption-pyrolysis method. The resulted HSC composite was characterized and employed as adsorbent for the removal of negatively charged arsenate (As(V)), positively charged Pb(II), and the organic pollutant methylene blue (MB) from aqueous solutions in batch experiments. The effects of solution pH, contact time, initial concentration, temperature, and ionic strength on As(V), Pb(II) and MB adsorption were investigated. HSC was composed of nano-size MgO flakes and nanotube-like carbon sponge. Hybridization significantly improved As(V), Pb(II) and methylene blue (MB) adsorption when compared with the material without hybridization. The maximum As(V), Pb(II) and MB adsorption capacities obtained from Langmuir model were 157 mg/g, 103 mg/g and 297 mg/g, respectively. As(V) adsorption onto HSC was best fit by the pseudo-second-order model, and Pb(II) and MB with the intraparticle diffusion model. Increased temperature and ionic strength decreased Pb(II) and MB adsorption onto HSC more than As(V). Further FT-IR, XRD and XPS analysis demonstrated that the removal of As(V) by HSC was mainly dominated by surface deposition of MgHAsO 4 and Mg(H 2 AsO 4 ) 2 crystals on the HSC composite, while carbon π-π* transition and carbon π-electron played key roles in Pb(II) and MB adsorption. The interaction of Pb(II) with carbon matrix carboxylate was also evident. Overall, MgO hybridization improves the preparation of the nanotube-like carbon sponge composite and provides a potential agricultual residue-based adsorbent for As(V), Pb(II) and MB removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. A crystal structure of the catalytic core domain of an avian sarcoma and leukemia virus integrase suggests an alternate dimeric assembly.

    Science.gov (United States)

    Ballandras, Allison; Moreau, Karen; Robert, Xavier; Confort, Marie-Pierre; Merceron, Romain; Haser, Richard; Ronfort, Corinne; Gouet, Patrice

    2011-01-01

    Integrase (IN) is an important therapeutic target in the search for anti-Human Immunodeficiency Virus (HIV) inhibitors. This enzyme is composed of three domains and is hard to crystallize in its full form. First structural results on IN were obtained on the catalytic core domain (CCD) of the avian Rous and Sarcoma Virus strain Schmidt-Ruppin A (RSV-A) and on the CCD of HIV-1 IN. A ribonuclease-H like motif was revealed as well as a dimeric interface stabilized by two pairs of α-helices (α1/α5, α5/α1). These structural features have been validated in other structures of IN CCDs. We have determined the crystal structure of the Rous-associated virus type-1 (RAV-1) IN CCD to 1.8 Å resolution. RAV-1 IN shows a standard activity for integration and its CCD differs in sequence from that of RSV-A by a single accessible residue in position 182 (substitution A182T). Surprisingly, the CCD of RAV-1 IN associates itself with an unexpected dimeric interface characterized by three pairs of α-helices (α3/α5, α1/α1, α5/α3). A182 is not involved in this novel interface, which results from a rigid body rearrangement of the protein at its α1, α3, α5 surface. A new basic groove that is suitable for single-stranded nucleic acid binding is observed at the surface of the dimer. We have subsequently determined the structure of the mutant A182T of RAV-1 IN CCD and obtained a RSV-A IN CCD-like structure with two pairs of buried α-helices at the interface. Our results suggest that the CCD of avian INs can dimerize in more than one state. Such flexibility can further explain the multifunctionality of retroviral INs, which beside integration of dsDNA are implicated in different steps of the retroviral cycle in presence of viral ssRNA.

  7. Critical Contribution of Tyr15 in the HIV-1 Integrase (IN) in Facilitating IN Assembly and Nonenzymatic Function through the IN Precursor Form with Reverse Transcriptase.

    Science.gov (United States)

    Takahata, Tatsuro; Takeda, Eri; Tobiume, Minoru; Tokunaga, Kenzo; Yokoyama, Masaru; Huang, Yu-Lun; Hasegawa, Atsuhiko; Shioda, Tatsuo; Sato, Hironori; Kannagi, Mari; Masuda, Takao

    2017-01-01

    Nonenzymatic roles for HIV-1 integrase (IN) at steps prior to the enzymatic integration step have been reported. To obtain structural and functional insights into the nonenzymatic roles of IN, we performed genetic analyses of HIV-1 IN, focusing on a highly conserved Tyr15 in the N-terminal domain (NTD), which has previously been shown to regulate an equilibrium state between two NTD dimer conformations. Replacement of Tyr15 with alanine, histidine, or tryptophan prevented HIV-1 infection and caused severe impairment of reverse transcription without apparent defects in reverse transcriptase (RT) or in capsid disassembly kinetics after entry into cells. Cross-link analyses of recombinant IN proteins demonstrated that lethal mutations of Tyr15 severely impaired IN structure for assembly. Notably, replacement of Tyr15 with phenylalanine was tolerated for all IN functions, demonstrating that a benzene ring of the aromatic side chain is a key moiety for IN assembly and functions. Additional mutagenic analyses based on previously proposed tetramer models for IN assembly suggested a key role of Tyr15 in facilitating the hydrophobic interaction among IN subunits, together with other proximal residues within the subunit interface. A rescue experiment with a mutated HIV-1 with RT and IN deleted (ΔRT ΔIN) and IN and RT supplied in trans revealed that the nonenzymatic IN function might be exerted through the IN precursor conjugated with RT (RT-IN). Importantly, the lethal mutations of Tyr15 significantly reduced the RT-IN function and assembly. Taken together, Tyr15 seems to play a key role in facilitating the proper assembly of IN and RT on viral RNA through the RT-IN precursor form. Inhibitors of the IN enzymatic strand transfer function (INSTI) have been applied in combination antiretroviral therapies to treat HIV-1-infected patients. Recently, allosteric IN inhibitors (ALLINIs) that interact with HIV-1 IN residues, the locations of which are distinct from the catalytic

  8. A crystal structure of the catalytic core domain of an avian sarcoma and leukemia virus integrase suggests an alternate dimeric assembly.

    Directory of Open Access Journals (Sweden)

    Allison Ballandras

    Full Text Available Integrase (IN is an important therapeutic target in the search for anti-Human Immunodeficiency Virus (HIV inhibitors. This enzyme is composed of three domains and is hard to crystallize in its full form. First structural results on IN were obtained on the catalytic core domain (CCD of the avian Rous and Sarcoma Virus strain Schmidt-Ruppin A (RSV-A and on the CCD of HIV-1 IN. A ribonuclease-H like motif was revealed as well as a dimeric interface stabilized by two pairs of α-helices (α1/α5, α5/α1. These structural features have been validated in other structures of IN CCDs. We have determined the crystal structure of the Rous-associated virus type-1 (RAV-1 IN CCD to 1.8 Å resolution. RAV-1 IN shows a standard activity for integration and its CCD differs in sequence from that of RSV-A by a single accessible residue in position 182 (substitution A182T. Surprisingly, the CCD of RAV-1 IN associates itself with an unexpected dimeric interface characterized by three pairs of α-helices (α3/α5, α1/α1, α5/α3. A182 is not involved in this novel interface, which results from a rigid body rearrangement of the protein at its α1, α3, α5 surface. A new basic groove that is suitable for single-stranded nucleic acid binding is observed at the surface of the dimer. We have subsequently determined the structure of the mutant A182T of RAV-1 IN CCD and obtained a RSV-A IN CCD-like structure with two pairs of buried α-helices at the interface. Our results suggest that the CCD of avian INs can dimerize in more than one state. Such flexibility can further explain the multifunctionality of retroviral INs, which beside integration of dsDNA are implicated in different steps of the retroviral cycle in presence of viral ssRNA.

  9. Molecular dynamics simulation studies of the wild type and E92Q/N155H mutant of Elvitegravir-resistance HIV-1 integrase

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qi [Shanghai Jiao Tong Univ., Shanghai (China). State Key Lab. of Microbial Metabolism and College of Life Science and Biotechnology; Cheng, Xiaolin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Molecular Biophysics; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Biochemistry and Cellular and Molecular Biology; Wei, Dongqing [Shanghai Jiao Tong Univ., Shanghai (China). State Key Lab. of Microbial Metabolism and College of Life Science and Biotechnology; Xu, Qin [Shanghai Jiao Tong Univ., Shanghai (China). State Key Lab. of Microbial Metabolism and College of Life Science and Biotechnology

    2014-11-06

    Although Elvitegravir (EVG) is a newly developed antiretrovirals drug to treat the acquired immunodeficiency syndrome (AIDS), drug resistance has already been found in clinic, such as E92Q/N155H and Q148H/G140S. Several structural investigations have already been reported to reveal the molecular mechanism of the drug resistance. As full length crystal structure for HIV-1 integrase is still unsolved, we use in this paper the crystal structure of the full length prototype foamy virus (PFV) in complex with virus DNA and inhibitor Elvitegravir as a template to construct the wild type and E92Q/N155H mutant system of HIV-1 integrase. Molecular dynamic simulations was used to revel the binding mode and the drug resistance of the EVG ligand in E92Q/N155H. Several important interactions were discovered between the mutated residues and the residues in the active site of the E92Q/N155H double mutant pattern, and cross correlation and clustering methods were used for detailed analysis. The results from the MD simulation studies will be used to guide the experimental efforts of developing novel inhibitors against drug-resistant HIV integrase mutants.

  10. Otimização das condições de pré-redução do As(V em extratos do método BCR para quantificação de arsênio por HG-AAS Optimization of pre-reduction conditions of as(V in BCR extracts to quantify arsenic by HG-AAS

    Directory of Open Access Journals (Sweden)

    Eduardo Vinícius Vieira Varejão

    2009-08-01

    Full Text Available A determinação de As por espectrometria de absorção atômica com geração de hidretos (HG-AAS constitui um método simples, sensível, preciso e de baixo custo. Entretanto, essa técnica requer a pré-redução das espécies de As(V, o que se obtém através do uso de agentes redutores como o KI. Em extratos contendo agentes oxidantes, a pré-redução do As é comprometida, como acontece em extratos obtidos pela aplicação do método BCR (acrônimo francês para Community Bureau of Reference para a extração sequencial de As em sedimentos. O objetivo deste trabalho foi avaliar as condições de redução do As(V a As(III, de modo a permitir o uso da HG-AAS para a quantificação do arsênio em extratos obtidos a partir do método BCR. Foram avaliadas condições reacionais utilizando KI, L-cisteína e ácido ascórbico. Para cada uma das etapas de extração do método BCR, diferentes condições de pré-redução possibilitaram a detecção quantitativa do As presente. O uso do método BCR para a extração de arsênio em amostras de sedimentos contaminadas e a aplicação das condições de pré-redução do As(V selecionadas, seguida pela detecção por HG-AAS, forneceram percentagens de recuperação entre 91 e 99 %.The determination of As by hydride generation atomic absorption spectroscopy (HG-AAS is a simple, sensitive, precise and low-cost method. However, this technique requires the pre-reduction of the existing As(V species, which is obtained by the use of reducing agents such as KI. In extracts containing oxidizing agents, the pre-reduction of As is impaired, as it occurs in extracts obtained by the BCR (French acronym for Community Bureau of Reference method for the sequential extraction of As in sediments. The objective of this study was to evaluate the conditions for the reduction of As(V to As(III in a way that allows the use of HG-AAS for the quantification of arsenic in extracts obtained using the BCR method. Reaction

  11. The effect of adaptive servo ventilation (ASV) on objective and subjective outcomes in Cheyne-Stokes respiration (CSR) with central sleep apnea (CSA) in heart failure (HF): A systematic review.

    Science.gov (United States)

    Yang, Hyunju; Sawyer, Amy M

    2016-01-01

    To summarize the current evidence for adaptive servo ventilation (ASV) in Cheyne-Stokes respiration (CSR) with central sleep apnea (CSA) in heart failure (HF) and advance a research agenda and clinical considerations for ASV-treated CSR-CSA in HF. CSR-CSA in HF is associated with higher overall mortality, worse outcomes and lower quality of life (QOL) than HF without CSR-CSA. Five databases were searched using key words (n = 234). Randomized controlled trials assessed objective sleep quality, cardiac, and self-reported outcomes in adults (≥18 years) with HF (n = 10). ASV has a beneficial effect on the reduction of central sleep apnea in adult patients with CSR-CSA in HF, but it is not be superior to CPAP, bilevel PPV, or supplemental oxygen in terms of sleep quality defined by polysomnography, cardiovascular outcomes, subjective daytime sleepiness, and quality of life. ASV is not recommended for CSR-CSA in HF. It is important to continue to refer HF patients for sleep evaluation to clearly discern OSA from CSR-CSA. Symptom management research, inclusive of objective and subjective outcomes, in CSR-CSA in HF adults is needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Production of transgenic cattle highly expressing human serum albumin in milk by phiC31 integrase-mediated gene delivery.

    Science.gov (United States)

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Lan, Hui; Shao, Minghao; Yu, Yuan; Quan, Fusheng; Zhang, Yong

    2015-10-01

    Transgenic cattle expressing high levels of recombinant human serum albumin (HSA) in their milk may as an alternative source for commercial production. Our objective was to produce transgenic cattle highly expressing HSA in milk by using phiC31 integrase system and somatic cell nuclear transfer (SCNT). The mammary-specific expression plasmid pIACH(-), containing the attB recognition site for phiC31 integrase, were co-transfected with integrase expression plasmid pCMVInt into bovine fetal fibroblast cells (BFFs). PhiC31 integrase-mediated integrations in genome of BFFs were screened by nested inverse PCR. After analysis of sequence of the PCR products, 46.0% (23/50) of the both attB-genome junction sites (attL and attR) were confirmed, and four pseudo attP sites were identified. The integration rates in BF3, BF11, BF19 and BF4 sites were 4.0% (2/50), 6.0% (3/50), 16.0% (8/50) and 20.0% (10/50), respectively. BF3 is located in the bovine chromosome 3 collagen alpha-3 (VI) chain isomer 2 gene, while the other three sites are located in the non-coding region. The transgenic cell lines from BF11, BF19 and BF4 sites were used as donors for SCNT. Two calves from transgenic cells BF19 were born, one died within a few hours after birth, and another calf survived healthy. PCR and Southern blot analysis revealed integration of the transgene in the genome of cloned calves. The nested reverse PCR confirmed that the integration site in cloned calves was identical to the donor cells. The western blotting assessment indicated that recombinant HSA was expressed in the milk of transgenic cattle and the expression level was about 4-8 mg/mL. The present study demonstrated that phiC31 integrase system was an efficient and safety gene delivery tool for producing HSA transgenic cattle. The production of recombinant HSA in the milk of cattle may provide a large-scale and cost-effective resource.

  13. Function and regulation of plant major intrinsic proteins

    DEFF Research Database (Denmark)

    Popovic, Milan

    Arsenic is a metalloid that is toxic to living organisms. The use of arsenic-contaminated ground water for drinking and for irrigation in agriculture presents serious health problems for millions of people in many parts of the world. Arsenate (As(V)) and arsenite (As(III)), the two most widespread...... inorganic forms of arsenic in the environment, can be taken up by plants and thus enter the food chain. Once inside the root cells, As(V) is reduced to As(III) which is then extruded to the soil solution or bound to phytochelatins (PCs) and transported to the vacuole in an effort to accomplish...... detoxification. Plant Noduline 26-like Intrinsic Proteins (NIPs) can channel As(III) and consequently influence the detoxification process. The role of the Tonoplast Intrinsic Proteins (TIPs) in As(III) detoxification remains to be clarified, yet TIPs could have an impact on As(III) accumulation in plant cell...

  14. Lessons learned from a clinical trial: Design, rationale, and insights from The Cardiovascular Improvements with Minute Ventilation-targeted Adaptive Sero-Ventilation (ASV) Therapy in Heart Failure (CAT-HF) Study.

    Science.gov (United States)

    Fiuzat, Mona; Oldenberg, Olaf; Whellan, David J; Woehrle, Holger; Punjabi, Naresh M; Anstrom, Kevin J; Blase, Amy B; Benjafield, Adam V; Lindenfeld, JoAnn; O'Connor, Christopher M

    2016-03-01

    The CAT-HF Study was designed to evaluate the safety and efficacy of minute ventilation-targeted adaptive servo-ventilation (MV-ASV) during sleep in addition to optimized medical therapy (active therapy) versus optimized medical therapy alone (usual care) at 6 months, initiated in patients after hospitalization for acute decompensated heart failure (ADHF). This paper outlines the rationale, design and information learned at the time of study discontinuation. Sleep disordered breathing (SDB) is common in heart failure patients and is associated with worse outcomes in this patient population. Based on a belief that MV-ASV was safe in stable HF patients, CAT-HF was designed to examine whether MV-ASV improved outcomes in hospitalized HF patients During the course of CAT-HF, new results from SERVE-HF indicated that ASV therapy may be harmful in patients with left ventricular ejection fractions (LVEF)≤45% and central sleep apnea, a subgroup of patients enrolled in CAT-HF. CAT-HF was a prospective, randomized, controlled, multicenter clinical trial (NCT: 01953874) in HF patients with either reduced or preserved ejection fraction and an Apnea-Hypopnea Index ≥15 events per hour randomized to usual care or active treatment in a 1:1 ratio. 215 patients were intended to be randomized following a hospitalization for ADHF. At the time of discontinuation, 126 patients were randomized. The primary endpoint is a global rank composite endpoint of death, CV hospitalizations, and Six minute walk distance (6MWD). Secondary endpoints will include changes in functional parameters, biomarkers, quality of life (QOL), sleep, and breathing. The CAT-HF study was designed to assess the efficacy and safety of MV ASV treatment in patients after hospitalization for ADHF, but was stopped early due to safety concerns in HF patients with (LVEF)≤45% and predominant central sleep apnea. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Inhibition of HIV-1 Integrase gene expression by 10-23 DNAzyme

    Indian Academy of Sciences (India)

    2012-06-25

    Jun 25, 2012 ... infection of the incoming HIV-1 virus (Zhang et al. 1999). A single ... considerably more stable for exogenous delivery in biolog- ..... pIN-EGFP resulted in the expression of IN-GFP fusion protein as analysed by fluorescence microscopy. As a control, expression of GFP from plasmid pEGFPN3 was verified in.

  16. Substrate recognition and motion mode analyses of PFV integrase in complex with viral DNA via coarse-grained models.

    Directory of Open Access Journals (Sweden)

    Jianping Hu

    Full Text Available HIV-1 integrase (IN is an important target in the development of drugs against the AIDS virus. Drug design based on the structure of IN was markedly hampered due to the lack of three-dimensional structure information of HIV-1 IN-viral DNA complex. The prototype foamy virus (PFV IN has a highly functional and structural homology with HIV-1 IN. Recently, the X-ray crystal complex structure of PFV IN with its cognate viral DNA has been obtained. In this study, both Gaussian network model (GNM and anisotropy network model (ANM have been applied to comparatively investigate the motion modes of PFV DNA-free and DNA-bound IN. The results show that the motion mode of PFV IN has only a slight change after binding with DNA. The motion of this enzyme is in favor of association with DNA, and the binding ability is determined by its intrinsic structural topology. Molecular docking experiments were performed to gain the binding modes of a series of diketo acid (DKA inhibitors with PFV IN obtained from ANM, from which the dependability of PFV IN-DNA used in the drug screen for strand transfer (ST inhibitors was confirmed. It is also found that the functional groups of keto-enol, bis-diketo, tetrazole and azido play a key role in aiding the recognition of viral DNA, and thus finally increase the inhibition capability for the corresponding DKA inhibitor. Our study provides some theoretical information and helps to design anti-AIDS drug based on the structure of IN.

  17. HIV-1 resistance patterns to integrase inhibitors in antiretroviral-experienced patients with virological failure on raltegravir-containing regimens.

    Science.gov (United States)

    da Silva, Daniel; Van Wesenbeeck, Liesbeth; Breilh, Dominique; Reigadas, Sandrine; Anies, Guerric; Van Baelen, Kurt; Morlat, Philippe; Neau, Didier; Dupon, Michel; Wittkop, Linda; Fleury, Hervé; Masquelier, Bernard

    2010-06-01

    Our aim was to study the in vivo viral genetic pathways for resistance to raltegravir, in antiretroviral-experienced patients with virological failure (VF) on raltegravir-containing regimens. We set up a prospective study including antiretroviral-experienced patients receiving raltegravir-based regimens. Integrase (IN) genotypic resistance analysis was performed at baseline. IN was also sequenced at follow-up points in the case of VF, i.e. plasma HIV-1 RNA>400 copies/mL at month 3 and/or >50 copies/mL at month 6. For phenotyping, the IN region was recombined with an IN-deleted HXB2-based HIV-1 backbone. A titrated amount of IN recombinant viruses was used for antiviral testing against raltegravir and elvitegravir. Among 51 patients, 11 (21.6%) had VF. Four different patterns of IN mutations were observed: (i) emergence of Q148H/R with secondary mutations (n=5 patients); (ii) emergence of N155H, then replaced by a pattern including Y143C/H/R (n=3); (iii) selection of S230N (n=1); and (iv) no evidence of selection of IN mutations (n=2). The median raltegravir and elvitegravir fold changes (FCs) were 244 (154-647) and 793 (339-892), respectively, for the Q148H/R pattern, while the median raltegravir and elvitegravir FCs were 21 (6-52) and 3 (2-3), respectively, with Y143C/H/R. The median plasma raltegravir Cmin was lower in patients with selection of the N155H mutation followed by Y143C/H/R compared with patients with Q148H/R and with patients without emerging mutations or without VF. Diverse genetic profiles can be associated with VF on raltegravir-containing regimens, including the dynamics of replacement of mutational profiles. Pharmacokinetic parameters could be involved in this genetic evolution.

  18. Optimizing HIV-1 protease production in Escherichia coli as fusion protein

    OpenAIRE

    Piubelli Luciano; Volontè Federica; Pollegioni Loredano

    2011-01-01

    Abstract Background Human immunodeficiency virus (HIV) is the etiological agent in AIDS and related diseases. The aspartyl protease encoded by the 5' portion of the pol gene is responsible for proteolytic processing of the gag-pol polyprotein precursor to yield the mature capsid protein and the reverse transcriptase and integrase enzymes. The HIV protease (HIV-1Pr) is considered an attractive target for designing inhibitors which could be used to tackle AIDS and therefore it is still the obje...

  19. LCMS using a hybrid quadrupole time of flight mass spectrometer for impurity identification during process chemical development of a novel integrase inhibitor.

    Science.gov (United States)

    Novak, T J; Grinberg, N; Hartman, B; Marcinko, S; DiMichele, L; Mao, B

    2010-01-05

    LCMS incorporating a quadrupole time of flight mass spectrometer was used to identify impurities found in a chemical process development sample of a novel integrase inhibitor, raltegravir. The combination of accurate mass measurement in full scan mode followed by construction of targeted masses for further MSMS interrogation allowed for the determination of atomic composition and connectivity. The fragmentation pattern of raltegravir was used as a model compound, and the product ion spectra of an impurity was compared to both the model fragmentation pattern and the atomic composition generated in the full scan experiment to deduce a structure.

  20. Synthesis and Characterization of β-Cyclodextrin Functionalized Ionic Liquid Polymer as a Macroporous Material for the Removal of Phenols and As(V

    Directory of Open Access Journals (Sweden)

    Muggundha Raoov

    2013-12-01

    Full Text Available β-Cyclodextrin-ionic liquid polymer (CD-ILP was first synthesized by functionalized β-cyclodextrin (CD with 1-benzylimidazole (BIM to form monofunctionalized CD (βCD-BIMOTs and was further polymerized using a toluene diisocyanate (TDI linker to form insoluble CD-ILP (βCD-BIMOTs-TDI. The βCD-BIMOTs-TDI polymer was characterized using various tools and the results obtained were compared with those derived from the native β-cyclodextrin polymer (βCD-TDI. The SEM result shows that the presence of ionic liquid (IL increases the pore size, while the thermo gravimetric analysis (TGA result shows that the presence of IL increases the stability of the polymer. Meanwhile, Brunauer-Emmett-Teller (BET results show that βCD-BIMOTs-TDI polymer has 1.254 m2/g surface areas and the Barret-Joyner-Halenda (BJH pore size distribution result reveals that the polymer exhibits macropores with a pore size of 77.66 nm. Preliminary sorption experiments were carried out and the βCD-BIMOTs-TDI polymer shows enhanced sorption capacity and high removal towards phenols and As(V.

  1. Effects of Fe(III) and quality of humic substances on As(V) distribution in freshwater: Use of ultrafiltration and Kohonen neural network.

    Science.gov (United States)

    Gontijo, Erik S J; Watanabe, Cláudia H; Monteiro, Adnívia S C; da Silva, Gilmare A; Roeser, Hubert M P; Rosa, Andre H; Friese, Kurt

    2017-12-01

    Humic substances (HS) are ubiquitous organic compounds able to affect mobility and availability of arsenic (As) in aquatic systems. Although it is known that associations between HS and As occur mainly via iron (Fe)-cationic bridges, the behaviour and distribution of this metalloid in HS- and Fe-rich environments is still not fully understood. In this paper, the quality of HS from different rivers in Brazil and Germany and its influence on the behaviour of As(V) under different Fe(III) concentrations were investigated. HS were extracted from four different rivers (Cascatinha, Holtemme, Selke and Warme Bode), characterised and fractionated into different molecular weight sizes (10, 5 and 1 kDa). Complexation tests were performed using an ultrafiltration system and 1 kDa membranes. All data was analysed using the Kohonen neural network (SOM - Self organising maps). All samples, except Selke, exhibited similar results of free As (plants) as precursor material. Most of the As and Fe was distributed in the fractions of higher (>10 kDa) and lower (<1 kDa) size. HS quality is an important factor to take into account when studying the behaviour of As in HS-rich environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution

    Science.gov (United States)

    Prasad, Kumar Suranjit; Gandhi, Pooja; Selvaraj, Kaliaperumal

    2014-10-01

    The present study reports a new approach to synthesise nano iron particles using leaf extract of Mint (Mentha spicata L.) plant. The synthesised GnIPs were subjected to detailed adsorption studies for removal of arsenite and arsenate from aqueous solution of defined concentration. Iron nanoparticles synthesised using leaf extract showed UV-vis absorption peaks at 360 and 430 nm. TEM result showed the formation of polydispersed nanoparticles of size ranging from 20 to 45 nm. Nanoparticles were found to have core-shell structure. The planer reflection of selected area electron diffraction (SAED) and XRD analysis suggested that iron particles were crystalline and belonged to fcc (face centred cubic) type. Energy-dispersive X-ray analysis (EDAX) shows that Fe was an integral component of synthesised nanoparticles. The content of Fe in nanoparticles was found to be 40%, in addition to other elements like C (16%), O (19%) and Cl (23%). FT-IR study suggested that functional groups like sbnd NH, sbnd Cdbnd O, sbnd Cdbnd N and sbnd Cdbnd C were involved in particle formation. The removal efficiency of GnIP-chitosan composite for As(III) and As(V) was found to be 98.79 and 99.65%. Regeneration of adsorbent suggested that synthesised green GnIP may work as an effective tool for removal of arsenic from contaminated water.

  3. Development of elvitegravir resistance and linkage of integrase inhibitor mutations with protease and reverse transcriptase resistance mutations.

    Directory of Open Access Journals (Sweden)

    Mark A Winters

    Full Text Available Failure of antiretroviral regimens containing elvitegravir (EVG and raltegravir (RAL can result in the appearance of integrase inhibitor (INI drug-resistance mutations (DRMs. While several INI DRMs have been identified, the evolution of EVG DRMs and the linkage of these DRMs with protease inhibitor (PI and reverse transcriptase inhibitor (RTI DRMs have not been studied at the clonal level. We examined the development of INI DRMs in 10 patients failing EVG-containing regimens over time, and the linkage of INI DRMs with PI and RTI DRMs in these patients plus 6 RAL-treated patients. A one-step RT-nested PCR protocol was used to generate a 2.7 kB amplicon that included the PR, RT, and IN coding region, and standard cloning and sequencing techniques were used to determine DRMs in 1,277 clones (mean 21 clones per time point. Results showed all patients had multiple PI, NRTI, and/or NNRTI DRMs at baseline, but no primary INI DRM. EVG-treated patients developed from 2 to 6 strains with different primary INI DRMs as early as 2 weeks after initiation of treatment, predominantly as single mutations. The prevalence of these strains fluctuated and new strains, and/or strains with new combinations of INI DRMs, developed over time. Final failure samples (weeks 14 to 48 typically showed a dominant strain with multiple mutations or N155H alone. Single N155H or multiple mutations were also observed in RAL-treated patients at virologic failure. All patient strains showed evidence of INI DRM co-located with single or multiple PI and/or RTI DRMs on the same viral strand. Our study shows that EVG treatment can select for a number of distinct INI-resistant strains whose prevalence fluctuates over time. Continued appearance of new INI DRMs after initial INI failure suggests a potent, highly dynamic selection of INI resistant strains that is unaffected by co-location with PI and RTI DRMs.

  4. Eliminación de As (V y producción simultánea de polvo de cobre de un electrolito de Cu(II - As(V - H2SO4 mediante electrodiálisis reactiva

    Directory of Open Access Journals (Sweden)

    Ibáñez, J. P.

    2012-06-01

    Full Text Available The removal of As(V and the simultaneous generation of powder of copper from an electrolyte made of As(V - Cu(II - H2SO4 was studied by using electro dialysis at several current densities, temperatures and aeration of the electrolyte. The removal of arsenic was proportional to the current density, temperature and aeration used. The removal of arsenic reached a value of 0.14 mmol/h at 500 A/m2, 25 °C and without aeration, this value increased to 0.31 mmol/h by increasing the aeration to 6.6 l/h. The Cu(II was recovered in a 98 % as a fine arsenic free powder of metallic copper with oxides of copper. The arsenic was removed from the electrolyte by adsorption onto the anodic slimes generated from the lead anode oxidation.Se investigó la utilización de la electrodiálisis reactiva para eliminar arsénico y producir en forma simultánea polvo de cobre de una solución de Cu(II - As(V - H2SO4, a distintas densidades de corriente, temperatura y nivel de aireación de la solución. La eliminación de arsénico fue directamente proporcional a la densidad de corriente, aireación y temperatura. La eliminación alcanzada de As(V fue de 0,14 mmol/h a 500 A/m2, 25 °C y sin aireación, al introducir un flujo de 6,6 l/h de aire a la solución de trabajo se incrementa la eliminación a 0,31 mmol/h. El Cu(II se recupera en un 98 % en la forma de polvo de cobre metálico y óxidos de cobre libres de arsénico. El As(V es eliminado de la solución de trabajo mediante su adsorción en la borra anódica generada por la oxidación del ánodo de plomo empleado.

  5. Loss of the SV2-like protein SVOP produces no apparent deficits in laboratory mice.

    Directory of Open Access Journals (Sweden)

    Jia Yao

    Full Text Available Neurons express two families of transporter-like proteins - Synaptic Vesicle protein 2 (SV2A, B, and C and SV2-related proteins (SVOP and SVOPL. Both families share structural similarity with the Major Facilitator (MF family of transporters. SV2 is present in all neurons and endocrine cells, consistent with it playing a key role in regulated exocytosis. Like SV2, SVOP is expressed in all brain regions, with highest levels in cerebellum, hindbrain and pineal gland. Furthermore, SVOP is expressed earlier in development than SV2 and is one of the neuronal proteins whose expression declines most during aging. Although SV2 is essential for survival, it is not required for development. Because significant levels of neurotransmission remain in the absence of SV2 it has been proposed that SVOP performs a function similar to that of SV2 that mitigates the phenotype of SV2 knockout mice. To test this, we generated SVOP knockout mice and SVOP/SV2A/SV2B triple knockout mice. Mice lacking SVOP are viable, fertile and phenotypically normal. Measures of neurotransmission and behaviors dependent on the cerebellum and pineal gland revealed no measurable phenotype. SVOP/SV2A/SV2B triple knockout mice did not display a phenotype more severe than mice harboring the SV2A/SV2B gene deletions. These findings support the interpretation that SVOP performs a unique, though subtle, function that is not necessary for survival under normal conditions.

  6. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kumar Suranjit, E-mail: suranjit@gmail.com [Department of Environmental Studies, Faculty of Science, The M. S. University of Baroda, Vadodara, 390002, Gujarat (India); Gandhi, Pooja, E-mail: poojagandhi.3090@gmail.com [Department of Environmental Sciences, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), New Vallabh Vidyanagar, Anand, Gujarat, 388121 (India); Selvaraj, Kaliaperumal, E-mail: k.selvaraj@ncl.res.in [Nano and Computational Materials Lab, Catalysis Division, National Chemical Laboratory, Council of Scientific and Industrial Research, Pune, 411008 (India)

    2014-10-30

    Graphical abstract: - Highlights: • Colloidal GnIP synthesised using extract of Mint leaves were entrapped in chitosan beads. • GnIP loaded beads were employed for removal of As ions, showed excellent removal efficiency. • Iron and chitosan are cost effective materials hence can be a good adsorbent for removal of arsenic. - Abstract: The present study reports a new approach to synthesise nano iron particles using leaf extract of Mint (Mentha spicata L.) plant. The synthesised GnIPs were subjected to detailed adsorption studies for removal of arsenite and arsenate from aqueous solution of defined concentration. Iron nanoparticles synthesised using leaf extract showed UV–vis absorption peaks at 360 and 430 nm. TEM result showed the formation of polydispersed nanoparticles of size ranging from 20 to 45 nm. Nanoparticles were found to have core–shell structure. The planer reflection of selected area electron diffraction (SAED) and XRD analysis suggested that iron particles were crystalline and belonged to fcc (face centred cubic) type. Energy-dispersive X-ray analysis (EDAX) shows that Fe was an integral component of synthesised nanoparticles. The content of Fe in nanoparticles was found to be 40%, in addition to other elements like C (16%), O (19%) and Cl (23%). FT-IR study suggested that functional groups like -NH, -C=O, -C=N and -C=C were involved in particle formation. The removal efficiency of GnIP-chitosan composite for As(III) and As(V) was found to be 98.79 and 99.65%. Regeneration of adsorbent suggested that synthesised green GnIP may work as an effective tool for removal of arsenic from contaminated water.

  7. Inorganic and organic fertilizers impact the abundance and proportion of antibiotic resistance and integron-integrase genes in agricultural grassland soil.

    Science.gov (United States)

    Nõlvak, Hiie; Truu, Marika; Kanger, Kärt; Tampere, Mailiis; Espenberg, Mikk; Loit, Evelin; Raave, Henn; Truu, Jaak

    2016-08-15

    Soil fertilization with animal manure or its digestate may facilitate an important antibiotic resistance dissemination route from anthropogenic sources to the environment. This study examines the effect of mineral fertilizer (NH4NO3), cattle slurry and cattle slurry digestate amendment on the abundance and proportion dynamics of five antibiotic resistance genes (ARGs) and two classes of integron-integrase genes (intI1 and intI2) in agricultural grassland soil. Fertilization was performed thrice throughout one vegetation period. The targeted ARGs (sul1, tetA, blaCTX-M, blaOXA2 and qnrS) encode resistance to several major antibiotic classes used in veterinary medicine such as sulfonamides, tetracycline, cephalosporins, penicillin and fluoroquinolones, respectively. The non-fertilized grassland soil contained a stable background of tetA, blaCTX-M and sul1 genes. The type of applied fertilizer significantly affected ARGs and integron-integrase genes abundances and proportions in the bacterial community (pdigestate proved to be considerable sources of ARGs, especially sul1, as well as integron-integrases. Sul1, intI1 and intI2 levels in grassland soil were elevated in response to each organic fertilizer's application event, but this increase was followed by a stage of decrease, suggesting that microbes possessing these genes were predominantly entrained into soil via cattle slurry or its digestate application and had somewhat limited survival potential in a soil environment. However, the abundance of these three target genes did not decrease to a background level by the end of the study period. TetA was most abundant in mineral fertilizer treated soil and blaCTX-M in cattle slurry digestate amended soil. Despite significantly different abundances, the abundance dynamics of bacteria possessing these genes were similar (p<0.05 in all cases) in different treatments and resembled the dynamics of the whole bacterial community abundance in each soil treatment. Copyright

  8. Genome engineering and direct cloning of antibiotic gene clusters via phage ϕBT1 integrase-mediated site-specific recombination in Streptomyces.

    Science.gov (United States)

    Du, Deyao; Wang, Lu; Tian, Yuqing; Liu, Hao; Tan, Huarong; Niu, Guoqing

    2015-03-04

    Several strategies have been used to clone large DNA fragments directly from bacterial genome. Most of these approaches are based on different site-specific recombination systems consisting of a specialized recombinase and its target sites. In this study, a novel strategy based on phage ϕBT1 integrase-mediated site-specific recombination was developed, and used for simultaneous Streptomyces genome engineering and cloning of antibiotic gene clusters. This method has been proved successful for the cloning of actinorhodin gene cluster from Streptomyces coelicolor M145, napsamycin gene cluster and daptomycin gene cluster from Streptomyces roseosporus NRRL 15998 at a frequency higher than 80%. Furthermore, the system could be used to increase the titer of antibiotics as we demonstrated with actinorhodin and daptomycin, and it will be broadly applicable in many Streptomyces.

  9. Removal of bacterial cells, antibiotic resistance genes and integrase genes by on-site hospital wastewater treatment plants: surveillance of treated hospital effluent quality

    KAUST Repository

    Timraz, Kenda Hussain Hassan

    2016-12-15

    This study aims to evaluate the removal efficiency of microbial contaminants, including total cell counts, antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs, e.g. tetO, tetZ, sul1 and sul2) and integrase genes (e.g. intl1 and intl2), by wastewater treatment plants (WWTPs) operated on-site of two hospitals (i.e., SH WWTP and IH WWTP). Both SH and IH WWTPs utilize the conventional activated sludge process but differences in the removal efficiencies were observed. Over the 2 week sampling period, IH WWTP outperformed SH WWTP, and achieved an approximate 0.388 to 2.49-log log removal values (LRVs) for total cell counts compared to the 0.010 to 0.162-log removal in SH WWTP. Although ARB were present in the hospital influent, the treatment process of both hospitals effectively removed ARB from most of the effluent samples. In instances where ARB were recovered in the effluent, none of the viable isolates were identified to be opportunistic pathogenic species based on 16S rRNA gene sequencing. However, sul1 and intl1 genes remained detectable at up to 105 copies per mL or 8 x 10(-1) copies per 16S rRNA gene in the treated effluent, with an LRV of less than 1.2. When the treated effluent is discharged from hospital WWTPs into the public sewer for further treatment as per requirement in many countries, the detected amount of ARGs and integrase genes in the hospital effluent can become a potential source of horizontal gene dissemination in the municipal WWTP. Proper on-site wastewater treatment and surveillance of the effluent quality for emerging contaminants are therefore highly recommended.

  10. Integrase-Deficient Lentiviral Vector as an All-in-One Platform for Highly Efficient CRISPR/Cas9-Mediated Gene Editing

    Directory of Open Access Journals (Sweden)

    Pavel I. Ortinski

    2017-06-01

    Full Text Available The CRISPR/Cas9 systems have revolutionized the field of genome editing by providing unprecedented control over gene sequences and gene expression in many species, including humans. Lentiviral vectors (LVs are one of the primary delivery platforms for the CRISPR/Cas9 system due to their ability to accommodate large DNA payloads and sustain robust expression in a wide range of dividing and non-dividing cells. However, long-term expression of LV-delivered Cas9/guide RNA may lead to undesirable off-target effects characterized by non-specific RNA-DNA interactions and off-target DNA cleavages. Integrase-deficient lentiviral vectors (IDLVs present an attractive means for delivery of CRISPR/Cas9 components because: (1 they are capable of transducing a broad range of cells and tissues, (2 have superior packaging capacity compared to other vectors (e.g., adeno-associated viral vectors, and (3 they are expressed transiently and demonstrate very weak integration capability. In this manuscript, we aimed to establish IDLVs as a means for safe and efficient delivery of CRISPR/Cas9. To this end, we developed an all-in-one vector cassette with increased production efficacy and demonstrated that CRISPR/Cas9 delivered by the improved IDLV vectors can mediate rapid and robust gene editing in human embryonic kidney (HEK293T cells and post-mitotic brain neurons in vivo, via transient expression and with higher gene-targeting specificity than the corresponding integrase-competent vectors.

  11. Multiple cellular proteins interact with LEDGF/p75 through a conserved unstructured consensus motif.

    Science.gov (United States)

    Tesina, Petr; Čermáková, Kateřina; Hořejší, Magdalena; Procházková, Kateřina; Fábry, Milan; Sharma, Subhalakshmi; Christ, Frauke; Demeulemeester, Jonas; Debyser, Zeger; De Rijck, Jan; Veverka, Václav; Řezáčová, Pavlína

    2015-08-06

    Lens epithelium-derived growth factor (LEDGF/p75) is an epigenetic reader and attractive therapeutic target involved in HIV integration and the development of mixed lineage leukaemia (MLL1) fusion-driven leukaemia. Besides HIV integrase and the MLL1-menin complex, LEDGF/p75 interacts with various cellular proteins via its integrase binding domain (IBD). Here we present structural characterization of IBD interactions with transcriptional repressor JPO2 and domesticated transposase PogZ, and show that the PogZ interaction is nearly identical to the interaction of LEDGF/p75 with MLL1. The interaction with the IBD is maintained by an intrinsically disordered IBD-binding motif (IBM) common to all known cellular partners of LEDGF/p75. In addition, based on IBM conservation, we identify and validate IWS1 as a novel LEDGF/p75 interaction partner. Our results also reveal how HIV integrase efficiently displaces cellular binding partners from LEDGF/p75. Finally, the similar binding modes of LEDGF/p75 interaction partners represent a new challenge for the development of selective interaction inhibitors.

  12. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop.

    Science.gov (United States)

    Shamsipur, Mojtaba; Fattahi, Nazir; Assadi, Yaghoub; Sadeghi, Marzieh; Sharafi, Kiomars

    2014-12-01

    A solid phase extraction (SPE) coupled with dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) method, using diethyldithiphosphate (DDTP) as a proper chelating agent, has been developed as an ultra preconcentration technique for the determination of inorganic arsenic in water samples prior to graphite furnace atomic absorption spectrometry (GFAAS). Variables affecting the performance of both steps were thoroughly investigated. Under optimized conditions, 100mL of As(ΙΙΙ) solution was first concentrated using a solid phase sorbent. The extract was collected in 2.0 mL of acetone and 60.0 µL of 1-undecanol was added into the collecting solvent. The mixture was then injected rapidly into 5.0 mL of pure water for further DLLME-SFO. Total inorganic As(III, V) was extracted similarly after reduction of As(V) to As(III) with potassium iodide and sodium thiosulfate and As(V) concentration was calculated by difference. A mixture of Pd(NO3)2 and Mg(NO3)2 was used as a chemical modifier in GFAAS. The analytical characteristics of the method were determined. The calibration graph was linear in the rage of 10-100 ng L(-1) with detection limit of 2.5 ng L(-1). Repeatability (intra-day) and reproducibility (inter-day) of method based on seven replicate measurements of 80 ng L(-1) of As(ΙΙΙ) were 6.8% and 7.5%, respectively. The method was successfully applied to speciation of As(III), As(V) and determination of the total amount of As in water samples and in a certified reference material (NIST RSM 1643e). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Factor Analysis, AMMI Stability Value (ASV Parameter and GGE Bi-Plot Graphical Method of Quantitative and Qualitative Traits in Potato Genotypes

    Directory of Open Access Journals (Sweden)

    Davood Hassanpanah

    2016-10-01

    Full Text Available Quantitative and qualitative traits and stability of marketable tuber yield of 14 promising potato clones, along with three commercial cultivars (Agria, Marfona and Savalan as checks, were evaluated at the Ardabil Agricultural and Natural Resources Research Station during 2013 and 2014. The experiment was based on a randomized complete block design with four replications. During growing period and after harvest, traits like main stem number per plant, plant height, tuber number and weight per plant, total and marketable tuber yield, dry matter percentage, baking type, hollow heart, tuber inner ring and discoloration of raw tuber flesh after 24 hours were measured. Combined ANONA for quantitative traits showed that there were significant differences among promising clones as to total and marketable tuber yield, tuber number and weight per plant, plant height, tuber mean weight, main stem number per plant and dry matter percentage and their interactions with year in total and marketable tuber yield. The clone 9 (397078-3 with the least amount of marketable tuber yield had significant difference with clones 4 (397045-13, 1 (397031-16, 3 (397031-11, 6 (397009-8 and 12 (397067-6 in 2013 and with clone 4 (397045-13 and Agria cultivar in 2014. The clones 4(397045-13, 1 (397031-16 and 12 (397067-6 had uniform tuber, yellow to dark-yellow skin and light-yellow to yellow flesh color, tuber shape of oval round and round, shallow to mid shallow eyes, no tuber inner ring, hollow heart and tuber inner crack and mid-late maturity. They were selected for home consumption of chips, french-fries and frying. Based on the results of factor analysis, "tuber yield", "number of tuber" and "plant structural and quality "were named as first, second and third quality determining factors respectively. In this experiment, GGE Bi-plot model and AMMI Stability Value (ASV parameter, were acceptable methods for the selection of marketable tuber yield stability which found to

  14. Potential disruption of protein-protein interactions by graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Mei [Department of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou 310027 (China); Kang, Hongsuk; Luan, Binquan [Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Yang, Zaixing [Institute of Quantitative Biology and Medicine, SRMP and RAD-X, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 (China); Zhou, Ruhong, E-mail: ruhong@us.ibm.com [Department of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou 310027 (China); Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Department of Chemistry, Columbia University, New York, New York 10027 (United States)

    2016-06-14

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  15. Potential disruption of protein-protein interactions by graphene oxide

    Science.gov (United States)

    Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong

    2016-06-01

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  16. Therapy-Emergent Drug Resistance to Integrase Strand Transfer Inhibitors in HIV-1 Patients: A Subgroup Meta-Analysis of Clinical Trials.

    Directory of Open Access Journals (Sweden)

    Jiangzhou You

    Full Text Available Integrase strand transfer inhibitors (INSTIs are a novel class of anti-HIV agents that show high activity in inhibiting HIV-1 replication. Currently, licensed INSTIs include raltegravir (RAL, elvitegravir (EVG and dolutegravir (DTG; these drugs have played a critical role in AIDS therapy, serving as additional weapons in the arsenal for treating patients infected with HIV-1. To date, long-term data regarding clinical experience with INSTI use and the emergence of resistance remain scarce. However, the literature is likely now sufficiently comprehensive to warrant a meta-analysis of resistance to INSTIs.Our team implemented a manuscript retrieval protocol using Medical Subject Headings (MeSH via the Web of Science, MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials databases. We screened the literature based on inclusion and exclusion criteria and then performed a quality analysis and evaluation using RevMan software, Stata software, and the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE. We also performed a subgroup analysis. Finally, we calculated resistance rates and risk ratios (RRs for the three types of drugs.We identified 26 references via the database search. A meta-analysis of the RAL data revealed that the resistance rate was 3.9% (95% CI = 2.9%-4.9% for the selected randomized controlled trials (RCTs. However, the RAL resistance rate reached 40.9% (95% CI = 8.8%-72.9% for the selected observational studies (OBSs. The rates of resistance to RAL that were associated with HIV subtypes A, B, and C as well as with more complex subtypes were 0.1% (95% CI = -0.7%-0.9%, 2.5% (95% CI = 0.5%-4.5%, 4.6% (95% CI = 2.7%-6.6% and 2.2% (95% CI = 0.7%-3.7%, respectively. The rates of resistance to EVG and DTG were 1.2% (95% CI = 0.2%-2.2% and 0.1% (95% CI = -0.2%-0.5%, respectively. Furthermore, we found that the RRs for antiviral resistance were 0.414 (95% CI = 0.210-0.816 between DTG and RAL and 0

  17. Optimization and validation of a methodology to determine total arsenic, As(III and As(V, in water samples, through graphite furnace atomic absorption spectrometry Otimização e validação de metodologia de determinação de arsênio total, As(III e As(V, em amostras de água por espectrometria de absorção atômica com forno de grafite

    Directory of Open Access Journals (Sweden)

    Lisia Maria Gobbo Santos

    2009-03-01

    Full Text Available The Graphite furnace atomic absorption spectrometry (GF AAS was the technique chosen by the inorganic contamination laboratory (INCQ/ FIOCRUZ to be validated and applied in routine analysis for arsenic detection and quantification. The selectivity, linearity, sensibility, detection, and quantification limits besides accuracy and precision parameters were studied and optimized under Stabilized Temperature Platform Furnace (STPF conditions. The limit of detection obtained was 0.13 µg.L-1 and the limit of quantification was 1.04 µg.L-1, with an average precision, for total arsenic, less than 15% and an accuracy of 96%. To quantify the chemical species As(III and As(V, an ion-exchange resin (Dowex 1X8, Cl- form was used and the physical-chemical parameters were optimized resulting in a recuperation of 98% of As(III and of 90% of As(V. The method was applied to groundwater, mineral water, and hemodialysis purified water samples. All results obtained were lower than the maximum limit values established by the legal Brazilian regulations, in effect, 50, 10, and 5 µg.L-1 para As total, As(III e As(V, respectively. All results were statistically evaluated.A técnica de espectrometria de absorção atômica com forno de grafite (GF AAS foi a técnica escolhida pelo laboratório de contaminantes inorgânicos do Instituto Nacional de Controle de Qualidade em Saúde (INCQS/FIOCRUZ para ser validada e aplicada em análises de rotina para detecção e quantificação de arsênio. Os parâmetros de validação seletividade, linearidade, sensibilidade, limite de detecção e quantificação, exatidão e precisão foram estudados e otimizados usando as condições STPF (Stabilized Temperature Platform Furnace. Os resultados encontrados apresentaram limites de detecção 0,13 µg.L-1 e quantificação de 1,04 µg.L-1, uma precisão média para arsênio total inferior a 15% e uma exatidão de 96%. Para quantificar as espécies químicas As(III e As(V, utilizamos

  18. Human immunodeficiency virus integrase inhibitors efficiently suppress feline immunodeficiency virus replication in vitro and provide a rationale to redesign antiretroviral treatment for feline AIDS

    Directory of Open Access Journals (Sweden)

    Ciervo Alessandra

    2007-10-01

    Full Text Available Abstract Background Treatment of feline immunodeficiency virus (FIV infection has been hampered by the absence of a specific combination antiretroviral treatment (ART. Integrase strand transfer inhibitors (INSTIs are emerging as a promising new drug class for HIV-1 treatment, and we evaluated the possibility of inhibiting FIV replication using INSTIs. Methods Phylogenetic analysis of lentiviral integrase (IN sequences was carried out using the PAUP* software. A theoretical three-dimensional structure of the FIV IN catalytic core domain (CCD was obtained by homology modeling based on a crystal structure of HIV-1 IN CCD. The interaction of the transferred strand of viral DNA with the catalytic cavity of FIV IN was deduced from a crystal structure of a structurally similar transposase complexed with transposable DNA. Molecular docking simulations were conducted using a genetic algorithm (GOLD. Antiviral activity was tested in feline lymphoblastoid MBM cells acutely infected with the FIV Petaluma strain. Circular and total proviral DNA was quantified by real-time PCR. Results The calculated INSTI-binding sites were found to be nearly identical in FIV and HIV-1 IN CCDs. The close similarity of primate and feline lentivirus IN CCDs was also supported by phylogenetic analysis. In line with these bioinformatic analyses, FIV replication was efficiently inhibited in acutely infected cell cultures by three investigational INSTIs, designed for HIV-1 and belonging to different classes. Of note, the naphthyridine carboxamide INSTI, L-870,810 displayed an EC50 in the low nanomolar range. Inhibition of FIV integration in situ was shown by real-time PCR experiments that revealed accumulation of circular forms of FIV DNA within cells treated with L-870,810. Conclusion We report a drug class (other than nucleosidic reverse transcriptase inhibitors that is capable of inhibiting FIV replication in vitro. The present study helped establish L-870,810, a compound

  19. Consensus HIV-1 FSU-A integrase gene variants electroporated into mice induce polyfunctional antigen-specific CD4+ and CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Olga Krotova

    Full Text Available Our objective is to create gene immunogens targeted against drug-resistant HIV-1, focusing on HIV-1 enzymes as critical components in viral replication and drug resistance. Consensus-based gene vaccines are specifically fit for variable pathogens such as HIV-1 and have many advantages over viral genes and their expression-optimized variants. With this in mind, we designed the consensus integrase (IN of the HIV-1 clade A strain predominant in the territory of the former Soviet Union and its inactivated derivative with and without mutations conferring resistance to elvitegravir. Humanized IN gene was synthesized; and inactivated derivatives (with 64D in the active site mutated to V with and without elvitegravir-resistance mutations were generated by site-mutagenesis. Activity tests of IN variants expressed in E coli showed the consensus IN to be active, while both D64V-variants were devoid of specific activities. IN genes cloned in the DNA-immunization vector pVax1 (pVaxIN plasmids were highly expressed in human and murine cell lines (>0.7 ng/cell. Injection of BALB/c mice with pVaxIN plasmids followed by electroporation generated potent IFN-γ and IL-2 responses registered in PBMC by day 15 and in splenocytes by day 23 after immunization. Multiparametric FACS demonstrated that CD8+ and CD4+ T cells of gene-immunized mice stimulated with IN-derived peptides secreted IFN-γ, IL-2, and TNF-α. The multi-cytokine responses of CD8+ and CD4+ T-cells correlated with the loss of in vivo activity of the luciferase reporter gene co-delivered with pVaxIN plasmids. This indicated the capacity of IN-specific CD4+ and CD8+ T-cells to clear IN/reporter co-expressing cells from the injection sites. Thus, the synthetic HIV-1 clade A integrase genes acted as potent immunogens generating polyfunctional Th1-type CD4+ and CD8+ T cells. Generation of such response is highly desirable for an effective HIV-1 vaccine as it offers a possibility to attack virus

  20. Contribution of the C-terminal region within the catalytic core domain of HIV-1 integrase to yeast lethality, chromatin binding and viral replication

    Directory of Open Access Journals (Sweden)

    Belhumeur Pierre

    2008-11-01

    Full Text Available Abstract Background HIV-1 integrase (IN is a key viral enzymatic molecule required for the integration of the viral cDNA into the genome. Additionally, HIV-1 IN has been shown to play important roles in several other steps during the viral life cycle, including reverse transcription, nuclear import and chromatin targeting. Interestingly, previous studies have demonstrated that the expression of HIV-1 IN induces the lethal phenotype in some strains of Saccharomyces cerevisiae. In this study, we performed mutagenic analyses of the C-terminal region of the catalytic core domain of HIV-1 IN in order to delineate the critical amino acid(s and/or motif(s required for the induction of the lethal phenotype in the yeast strain HP16, and to further elucidate the molecular mechanism which causes this phenotype. Results Our study identified three HIV-1 IN mutants, V165A, A179P and KR186,7AA, located in the C-terminal region of the catalytic core domain of IN that do not induce the lethal phenotype in yeast. Chromatin binding assays in yeast and mammalian cells demonstrated that these IN mutants were impaired for the ability to bind chromatin. Additionally, we determined that while these IN mutants failed to interact with LEDGF/p75, they retained the ability to bind Integrase interactor 1. Furthermore, we observed that VSV-G-pseudotyped HIV-1 containing these IN mutants was unable to replicate in the C8166 T cell line and this defect was partially rescued by complementation with the catalytically inactive D64E IN mutant. Conclusion Overall, this study demonstrates that three mutations located in the C-terminal region of the catalytic core domain of HIV-1 IN inhibit the IN-induced lethal phenotype in yeast by inhibiting the binding of IN to the host chromatin. These results demonstrate that the C-terminal region of the catalytic core domain of HIV-1 IN is important for binding to host chromatin and is crucial for both viral replication and the promotion of

  1. Pharmacophore modelling and atom-based 3D-QSAR studies on N-methyl pyrimidones as HIV-1 integrase inhibitors.

    Science.gov (United States)

    Reddy, Karnati Konda; Singh, Sanjeev Kumar; Dessalew, Nigus; Tripathi, Sunil Kumar; Selvaraj, Chandrabose

    2012-06-01

    Pharmacophore modelling and atom-based 3D-QSAR studies were carried out for a series of compounds belonging to N-methyl pyrimidones as HIV-1 integrase inhibitors. Based on the ligand-based pharmacophore model, we got 5-point pharmacophore model AADDR, with two hydrogen bond acceptors (A), two hydrogen bond donors (D) and one aromatic ring (R). The generated pharmacophore-based alignment was used to derive a predictive atom-based 3D-QSAR model for the training set (r(2) = 0.92, SD = 0.16, F = 84.8, N = 40) and for test set (Q(2) = 0.71, RMSE = 0.06, Pearson R = 0.90, N = 10). From these results, AADDR pharmacophore feature was selected as best common pharmacophore hypothesis, and atom-based 3D-QSAR results also support the outcome by means of favourable and unfavourable regions of hydrophobic and electron-withdrawing groups for the most potent compound 30. These results can be useful for further design of new and potent HIV-1 IN inhibitors.

  2. The Microbiota and Abundance of the Class 1 Integron-Integrase Gene in Tropical Sewage Treatment Plant Influent and Activated Sludge.

    Directory of Open Access Journals (Sweden)

    Magna C Paiva

    Full Text Available Bacteria are assumed to efficiently remove organic pollutants from sewage in sewage treatment plants, where antibiotic-resistance genes can move between species via mobile genetic elements known as integrons. Nevertheless, few studies have addressed bacterial diversity and class 1 integron abundance in tropical sewage. Here, we describe the extant microbiota, using V6 tag sequencing, and quantify the class 1 integron-integrase gene (intI1 in raw sewage (RS and activated sludge (AS. The analysis of 1,174,486 quality-filtered reads obtained from RS and AS samples revealed complex and distinct bacterial diversity in these samples. The RS sample, with 3,074 operational taxonomic units, exhibited the highest alpha-diversity indices. Among the 25 phyla, Proteobacteria, Bacteroidetes and Firmicutes represented 85% (AS and 92% (RS of all reads. Increased relative abundance of Micrococcales, Myxococcales, and Sphingobacteriales and reduced pathogen abundance were noted in AS. At the genus level, differences were observed for the dominant genera Simplicispira and Diaphorobacter (AS as well as for Enhydrobacter (RS. The activated sludge process decreased (55% the amount of bacteria harboring the intI1 gene in the RS sample. Altogether, our results emphasize the importance of biological treatment for diminishing pathogenic bacteria and those bearing the intI1 gene that arrive at a sewage treatment plant.

  3. The Microbiota and Abundance of the Class 1 Integron-Integrase Gene in Tropical Sewage Treatment Plant Influent and Activated Sludge

    Science.gov (United States)

    Paiva, Magna C.; Ávila, Marcelo P.; Reis, Mariana P.; Costa, Patrícia S.; Nardi, Regina M. D.; Nascimento, Andréa M. A.

    2015-01-01

    Bacteria are assumed to efficiently remove organic pollutants from sewage in sewage treatment plants, where antibiotic-resistance genes can move between species via mobile genetic elements known as integrons. Nevertheless, few studies have addressed bacterial diversity and class 1 integron abundance in tropical sewage. Here, we describe the extant microbiota, using V6 tag sequencing, and quantify the class 1 integron-integrase gene (intI1) in raw sewage (RS) and activated sludge (AS). The analysis of 1,174,486 quality-filtered reads obtained from RS and AS samples revealed complex and distinct bacterial diversity in these samples. The RS sample, with 3,074 operational taxonomic units, exhibited the highest alpha-diversity indices. Among the 25 phyla, Proteobacteria, Bacteroidetes and Firmicutes represented 85% (AS) and 92% (RS) of all reads. Increased relative abundance of Micrococcales, Myxococcales, and Sphingobacteriales and reduced pathogen abundance were noted in AS. At the genus level, differences were observed for the dominant genera Simplicispira and Diaphorobacter (AS) as well as for Enhydrobacter (RS). The activated sludge process decreased (55%) the amount of bacteria harboring the intI1 gene in the RS sample. Altogether, our results emphasize the importance of biological treatment for diminishing pathogenic bacteria and those bearing the intI1 gene that arrive at a sewage treatment plant. PMID:26115093

  4. A novel polysaccharide with antioxidant, HIV protease inhibiting and HIV integrase inhibiting activities from Fomitiporia punctata (P. karst.) murrill (Basidiomycota, hymenochaetales).

    Science.gov (United States)

    Liu, Faaang; Wang, Yinping; Zhang, Keren; Wang, Yijun; Zhou, Rong; Zeng, Yan; Han, Yajie; Ng, Tzi Bun

    2017-04-01

    A novel polysaccharide fraction (G1) was obtained from the fungus Fomitiporia punctata (P. Karst.) Murrill. G1 exhibited a molecular weight of approximately 151kDa. The FT-IR results suggested that the monosaccharide components of G1 possessed furanoid rings and there were β-glycosidic bonds between the sugar units. The1H NMR results showed that G1 was composed of arabinose, fructose, galactose and glucose in the molar ratio of 1.6:3.8:19.7:19.7, as determined by gas chromatography-mass spectrometry (GC-MS) and high performance liquid chromatography (HPLC). G1 produced significant antioxidant effects as evidenced by its potency in inhibiting erythrocyte hemolysis, and in scavenging hydroxyl radicals and superoxide radicals. The highest rates of inhibition achieved were 73.58%, 36.55% and 50.98% respectively. In addition, G1 brought about 19.6% inhibition of HIV-1 protease activity at the concentration of 50μg/mL. G1 displayed inhibitory activity toward HIV-1 integrase in the concentration range of 100-1000μg/mL. The present study indicates that G1 from Fomitiporia punctate (P. Karst.) Murrill is a novel natural antioxidant. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. 1-Hydroxypyrido[2,3-d]pyrimidin-2(1H)-ones as novel selective HIV integrase inhibitors obtained via privileged substructure-based compound libraries.

    Science.gov (United States)

    Gao, Ping; Zhang, Lingzi; Sun, Lin; Huang, Tianguang; Tan, Jing; Zhang, Jian; Zhou, Zhongxia; Zhao, Tong; Menéndez-Arias, Luis; Pannecouque, Christophe; Clercq, Erik De; Zhan, Peng; Liu, Xinyong

    2017-10-15

    A small library containing 3-hydroxyquinazoline-2,4(1H,3H)-dione and 1-hydroxypyrido[2,3-d]pyrimidin-2(1H)-one scaffolds was obtained via the copper(I)-catalyzed azidealkyne cycloaddition (CuAAC) reaction and evaluated for their anti-HIV activity in MT-4 cells. Among the synthesized compounds, several 1-hydroxypyrido[2,3-d]pyrimidin-2(1H)-one derivatives showed remarkable anti-HIV potency with EC 50 values ranging from 0.92 to 26.85µM. The most active one, IIA-2, also showed remarkable and selective potency against HIV type 1 integrase (IN). To the best of our knowledge, this is the first report showing that 1-hydroxypyrido[2,3-d]pyrimidin-2(1H)-ones are selective HIV IN inhibitors. Preliminary structure-activity relationship (SAR) studies suggested that the divalent metal ion chelators and the nature and position of substituents around the core are important for antiviral potency. Molecular modeling has been used to predict the binding site of the pyrido[2,3-d]pyrimidin-2(1H)-one core in HIV type 1 IN and suggestions are made for improvement of its inhibitory activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Novel virtual screening protocol based on the combined use of molecular modeling and electron-ion interaction potential techniques to design HIV-1 integrase inhibitors.

    Science.gov (United States)

    Tintori, Cristina; Manetti, Fabrizio; Veljkovic, Nevena; Perovic, Vladimir; Vercammen, Jo; Hayes, Sean; Massa, Silvio; Witvrouw, Myriam; Debyser, Zeger; Veljkovic, Veljko; Botta, Maurizio

    2007-01-01

    HIV-1 integrase (IN) is an essential enzyme for viral replication and represents an intriguing target for the development of new drugs. Although a large number of compounds have been reported to inhibit IN in biochemical assays, no drug active against this enzyme has been approved by the FDA so far. In this study, we report, for the first time, the use of the electron-ion interaction potential (EIIP) technique in combination with molecular modeling approaches for the identification of new IN inhibitors. An innovative virtual screening approach, based on the determination of both short- and long-range interactions between interacting molecules, was employed with the aim of identifying molecules able to inhibit the binding of IN to viral DNA. Moreover, results from a database screening on the commercial Asinex Gold Collection led to the selection of several compounds. One of them showed a significant inhibitory potency toward IN in the overall integration assay. Biological investigations also showed, in agreement with modeling studies, that these compounds prevent recognition of DNA by IN in a fluorescence fluctuation assay, probably by interacting with the DNA binding domain of IN.

  7. Studies on voltammetric determination of cadmium in samples containing native and digested proteins

    Energy Technology Data Exchange (ETDEWEB)

    Drozd, Marcin; Pietrzak, Mariusz, E-mail: mariusz@ch.pw.edu.pl; Malinowska, Elżbieta

    2014-03-01

    Highlights: • Proteins exhibit diverse impact on the DPASV cadmium signals. • Proteins subjected to HNO{sub 3} introduce less interference, than the native ones. • Optimal amount of SDS depends on the kind of protein. • Presence of thiolated coating agents of QDs do not influence the analysis. - Abstract: This work focuses on determination of cadmium ions using anodic stripping voltammetry (ASV) on thin film mercury electrode in conditions corresponding to those obtained after digestion of cadmium-based quantum dots and their conjugates. It presents the impact of selected proteins, including potential receptors and surface blocking agents on the voltammetric determination of cadmium. Experiments regarding elimination of interferences related to proteins presence using sodium dodecyl sulfate (SDS) are also shown. Effect of SDS on selected analytical parameters and simplicity of analyses carried out was investigated in the framework of current studies. The significant differences of influence among tested proteins on ASV cadmium determination, as well as the variability in SDS effectiveness as the antifouling agent were observed and explained. This work is especially important for those, who design new bioassays and biosensors with a use of quantum dots as electrochemical labels, as it shows what problems may arise from presence of native and digested proteins in tested samples.

  8. New procedure for multielemental speciation analysis of five toxic species: As(III), As(V), Cr(VI), Sb(III) and Sb(V) in drinking water samples by advanced hyphenated technique HPLC/ICP-DRC-MS.

    Science.gov (United States)

    Marcinkowska, Monika; Komorowicz, Izabela; Barałkiewicz, Danuta

    2016-05-12

    Analytical procedure dedicated for multielemental determination of toxic species: As(III), As(V), Cr(VI), Sb(III) and Sb(V) in drinking water samples using high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC/ICP-DRC-MS) technique was developed. Optimization of the detection and separation conditions was conducted. Dynamic reaction cell (DRC) with oxygen as a reaction gas was involved in the experiments. Obtained analytical signals for species separation were symmetrical, as studied by anion-exchange chromatography. Applied mobile phase consisted of 3 mM of EDTANa2 and 36 mM of ammonium nitrate. Full separation of species in the form of the following forms: H3AsO3, H2AsO4(-), SbO2(-), Sb(OH)6(-), CrO4(2-) was achieved in 15 min with use of gradient elution program. Detailed validation of analytical procedure proved the reliability of analytical measurements. The procedure was characterized by high precision in the range from 1.7% to 2.4%. Detection limits (LD) were 0.067 μg L(-1), 0.068 μg L(-1), 0.098 μg L(-1), 0.083 μg L(-1) and 0.038 μg L(-1) for As(III), As(V), Cr(VI), Sb(III) and Sb(V), respectively. Obtained recoveries confirmed the lack of interferences' influence on analytical signals as their values were in the range of 91%-110%. The applicability of the proposed procedure was tested on drinking water samples characterized by mineralization up to 650 mg L(-1). Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The BET Family of Proteins Targets Moloney Murine Leukemia Virus Integration near Transcription Start Sites

    Directory of Open Access Journals (Sweden)

    Jan De Rijck

    2013-11-01

    Full Text Available A hallmark of retroviral replication is integration of the viral genome into host cell DNA. This characteristic makes retrovirus-based vectors attractive delivery vehicles for gene therapy. However, adverse events in gene therapeutic trials, caused by activation of proto-oncogenes due to murine leukemia virus (MLV-derived vector integration, hamper their application. Here, we show that bromodomain and extraterminal (BET proteins (BRD2, BRD3, and BRD4 and MLV integrase specifically interact and colocalize within the nucleus of the cell. Inhibition of the BET proteins’ chromatin interaction via specific bromodomain inhibitors blocks MLV virus replication at the integration step. MLV integration site distribution parallels the chromatin binding profile of BET proteins, and expression of an artificial fusion protein of the BET integrase binding domain with the chromatin interaction domain of the lentiviral targeting factor LEDGF/p75 retargets MLV integration away from transcription start sites and into the body of actively transcribed genes, conforming to the HIV integration pattern. Together, these data validate BET proteins as MLV integration targeting factors.

  10. A quantitative structure–activity relationship study on HIV-1 integrase inhibitors using genetic algorithm, artificial neural networks and different statistical methods

    Directory of Open Access Journals (Sweden)

    Ghasem Ghasemi

    2016-09-01

    Full Text Available In this work, quantitative structure–activity relationship (QSAR study has been done on tricyclic phthalimide analogues acting as HIV-1 integrase inhibitors. Forty compounds were used in this study. Genetic algorithm (GA, artificial neural network (ANN and multiple linear regressions (MLR were utilized to construct the non-linear and linear QSAR models. It revealed that the GA–ANN model was much better than other models. For this purpose, ab initio geometry optimization performed at B3LYP level with a known basis set 6–31G (d. Hyperchem, ChemOffice and Gaussian 98W softwares were used for geometry optimization of the molecules and calculation of the quantum chemical descriptors. To include some of the correlation energy, the calculation was done with the density functional theory (DFT with the same basis set and Becke’s three parameter hybrid functional using the LYP correlation functional (B3LYP/6–31G (d. For the calculations in solution phase, the polarized continuum model (PCM was used and also included optimizations at gas-phase B3LYP/6–31G (d level for comparison. In the aqueous phase, the root–mean–square errors of the training set and the test set for GA–ANN model using jack–knife method, were 0.1409, 0.1804, respectively. In the gas phase, the root–mean–square errors of the training set and the test set for GA–ANN model were 0.1408, 0.3103, respectively. Also, the R2 values in the aqueous and the gas phase were obtained as 0.91, 0.82, respectively.

  11. Development of pharmacophore similarity-based quantitative activity hypothesis and its applicability domain: applied on a diverse data-set of HIV-1 integrase inhibitors.

    Science.gov (United States)

    Kumar, Sivakumar Prasanth; Jasrai, Yogesh T; Mehta, Vijay P; Pandya, Himanshu A

    2015-01-01

    Quantitative pharmacophore hypothesis combines the 3D spatial arrangement of pharmacophore features with biological activities of the ligand data-set and predicts the activities of geometrically and/or pharmacophoric similar ligands. Most pharmacophore discovery programs face difficulties in conformational flexibility, molecular alignment, pharmacophore features sampling, and feature selection to score models if the data-set constitutes diverse ligands. Towards this focus, we describe a ligand-based computational procedure to introduce flexibility in aligning the small molecules and generating a pharmacophore hypothesis without geometrical constraints to define pharmacophore space, enriched with chemical features necessary to elucidate common pharmacophore hypotheses (CPHs). Maximal common substructure (MCS)-based alignment method was adopted to guide the alignment of carbon molecules, deciphered the MCS atom connectivity to cluster molecules in bins and subsequently, calculated the pharmacophore similarity matrix with the bin-specific reference molecules. After alignment, the carbon molecules were enriched with original atoms in their respective positions and conventional pharmacophore features were perceived. Distance-based pharmacophoric descriptors were enumerated by computing the interdistance between perceived features and MCS-aligned 'centroid' position. The descriptor set and biological activities were used to develop support vector machine models to predict the activities of the external test set. Finally, fitness score was estimated based on pharmacophore similarity with its bin-specific reference molecules to recognize the best and poor alignments and, also with each reference molecule to predict outliers of the quantitative hypothesis model. We applied this procedure to a diverse data-set of 40 HIV-1 integrase inhibitors and discussed its effectiveness with the reported CPH model.

  12. HIV-1 strains belonging to large phylogenetic clusters show accelerated escape from integrase inhibitors in cell culture compared with viral isolates from singleton/small clusters.

    Science.gov (United States)

    Brenner, Bluma G; Ibanescu, Ruxandra-Ilinca; Oliveira, Maureen; Roger, Michel; Hardy, Isabelle; Routy, Jean-Pierre; Kyeyune, Fred; Quiñones-Mateu, Miguel E; Wainberg, Mark A

    2017-08-01

    Viral phylogenetics revealed two patterns of HIV-1 spread among MSM in Quebec. While most HIV-1 strains ( n  =   2011) were associated with singleton/small clusters (cluster size 1-4), 30 viral lineages formed large networks (cluster size 20-140), contributing to 42% of diagnoses between 2011 and 2015. Herein, tissue culture selections ascertained if large cluster lineages possessed higher replicative fitness than singleton/small cluster isolates, allowing for viral escape from integrase inhibitors. Primary HIV-1 isolates from large 20+ cluster ( n  =   11) or singleton/small cluster ( n  =   6) networks were passaged in vitro in escalating concentrations of dolutegravir, elvitegravir and lamivudine for 24-36 weeks. Sanger and deep sequencing assessed genotypic changes under selective drug pressure. Large cluster HIV-1 isolates selected for resistance to dolutegravir, elvitegravir and lamivudine faster than HIV-1 strains forming small clusters. With dolutegravir, large cluster HIV-1 variants acquired solitary R263K ( n  =   7), S153Y ( n  =   1) or H51Y ( n  =   1) mutations as the dominant quasi-species within 8-12 weeks as compared with small cluster lineages where R263K ( n  =   1/6), S153Y (1/6) or WT species (4/6) were observed after 24 weeks. Interestingly, dolutegravir-associated mutations compromised viral replicative fitness, precluding escalations in concentrations beyond 5-10 nM. With elvitegravir, large cluster variants more rapidly acquired first mutations (T66I, A92G, N155H or S147G) by week 8 followed by sequential accumulation of multiple mutations leading to viral escape (>10 μM) by week 24. Further studies are needed to understand virological features of large cluster viruses that may favour their transmissibility, replicative competence and potential to escape selective antiretroviral drug pressure.

  13. Hologram quantitative structure-activity relationship and comparative molecular field analysis studies within a series of tricyclic phthalimide HIV-1 integrase inhibitors.

    Science.gov (United States)

    Magalhães, Uiaran de Oliveira; Souza, Alessandra Mendonça Teles de; Albuquerque, Magaly Girão; Brito, Monique Araújo de; Bello, Murilo Lamim; Cabral, Lucio Mendes; Rodrigues, Carlos Rangel

    2013-01-01

    Acquired immunodeficiency syndrome is a public health problem worldwide caused by the Human immunodeficiency virus (HIV). Treatment with antiretroviral drugs is the best option for viral suppression, reducing morbidity and mortality. However, viral resistance in HIV-1 therapy has been reported. HIV-1 integrase (IN) is an essential enzyme for effective viral replication and an attractive target for the development of new inhibitors. In the study reported here, two- and three-dimensional quantitative structure-activity relationship (2D/3D-QSAR) studies, applying hologram quantitative structure-activity relationship (HQSAR) and comparative molecular field analysis (CoMFA) methods, respectively, were performed on a series of tricyclic phthalimide HIV-1 IN inhibitors. The best HQSAR model (q (2) = 0.802, r (2) = 0.972) was obtained using atoms, bonds, and connectivity as the fragment distinction, a fragment size of 2-5 atoms, hologram length of 61 bins, and six components. The best CoMFA model (q (2) = 0.748, r (2) = 0.974) was obtained with alignment of all atoms of the tricyclic phthalimide moiety (alignment II). The HQSAR contribution map identified that the carbonyl-hydroxy-aromatic nitrogen motif made a positive contribution to the activity of the compounds. Furthermore, CoMFA contour maps suggested that bulky groups in meta and para positions in the phenyl ring would increase the biological activity of this class. The conclusions of this work may lead to a better understanding of HIV-1 IN inhibition and contribute to the design of new and more potent derivatives.

  14. Urinary Eicosanoid Metabolites in HIV-Infected Women with Central Obesity Switching to Raltegravir: An Analysis from the Women, Integrase, and Fat Accumulation Trial

    Directory of Open Access Journals (Sweden)

    Todd Hulgan

    2014-01-01

    Full Text Available Chronic inflammation is a hallmark of HIV infection. Eicosanoids reflect inflammation, oxidant stress, and vascular health and vary by sex and metabolic parameters. Raltegravir (RAL is an HIV-1 integrase inhibitor that may have limited metabolic effects. We assessed urinary F2-isoprostanes (F2-IsoPs, prostaglandin E2 (PGE-M, prostacyclin (PGI-M, and thromboxane B2 (TxB2 in HIV-infected women switching to RAL-containing antiretroviral therapy (ART. Thirty-seven women (RAL = 17; PI/NNRTI = 20 with a median age of 43 years and BMI 32 kg/m2 completed week 24. TxB2 increased in the RAL versus PI/NNRTI arm (+0.09 versus −0.02; P=0.06. Baseline PGI-M was lower in the RAL arm (P=0.005; no other between-arm cross-sectional differences were observed. In the PI/NNRTI arm, 24-week visceral adipose tissue change correlated with PGI-M (rho=0.45; P=0.04 and TxB2 (rho=0.44; P=0.005 changes, with a trend seen for PGE-M (rho=0.41; P=0.07. In an adjusted model, age ≥ 50 years (N=8 was associated with increased PGE-M (P=0.04. In this randomized trial, a switch to RAL did not significantly affect urinary eicosanoids over 24 weeks. In women continuing PI/NNRTI, increased visceral adipose tissue correlated with increased PGI-M and PGE-M. Older age (≥50 was associated with increased PGE-M. Relationships between aging, adiposity, ART, and eicosanoids during HIV-infection require further study.

  15. Ce–Fe-modified zeolite-rich tuff to remove Ba{sup 2+}-like {sup 226}Ra{sup 2+} in presence of As(V) and F{sup −} from aqueous media as pollutants of drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Olguín, María Teresa, E-mail: teresa.olguin@inin.gob.mx [Department of Chemical & Materials Engineering, New Mexico State University, P.O. Box 30001, MSC 3805, Las Cruces, NM 88003 (United States); Departamento de Química, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandón, Delegación Miguel Hidalgo, C.P. 11801, México D.F. (Mexico); Deng, Shuguang [Department of Chemical & Materials Engineering, New Mexico State University, P.O. Box 30001, MSC 3805, Las Cruces, NM 88003 (United States)

    2016-01-25

    Graphical abstract: Ba{sup 2+}-like {sup 226}Ra{sup 2+}, As(V) and F{sup −} simultaneous removal from aqueous media by Ce–Fe-modified natural zeolites. - Highlights: • The metallic species which modified the zeolite change the textural properties. • The pH{sub pzc} is acid for ZUSCeFe and neutral for ZUSNa. • The Linear model describes the Ba{sup 2+}-like {sup 226}Ra{sup 2+} sorption by ZUSNa and ZUSCeFe. • K{sub d} is highest for Ba{sup 2+-} like {sup 226}Ra{sup 2+}-As(V)-F{sup -} solution in contact with ZUSCeFe. • The ZUSCeFe remove simultaneously Ba{sup 2+}-like {sup 226}Ra{sup 2+}, As(V) and F{sup −}. - Abstract: The sorption behavior of the Ba{sup 2+}-like {sup 226}Ra{sup 2+} in the presence of H{sub 2}AsO{sub 4}{sup −}/HAsO{sub 4}{sup 2−} and F{sup −} from aqueous media using Ce–Fe-modified zeolite-rich tuff was investigated in this work. The Na-modified zeolite-rich tuff was also considered for comparison purposes. The zeolite-rich tuff collected from Wyoming (US) was in contact with NaCl and CeCl{sub 3}–FeCl{sub 3} solutions to obtain the Na- and Ce–Fe-modified zeolite-rich tuffs (ZUSNa and ZUSCeFe). These zeolites were characterized by scanning electron microscopy and X-ray diffraction. The BET-specific surface and the points of zero charge were determined as well as the content of Na, Ce and Fe by neutron activation analysis. The textural characteristics and the point of zero charge were changed by the presence of Ce and Fe species in the zeolitic network. A linear model described the Ba{sup 2+}-like {sup 226}Ra{sup 2+} sorption isotherms and the distribution coefficients (K{sub d}) varied with respect to the metallic species present in the zeolitic material. The As(V) oxianionic chemical species and F{sup −} affected this parameter when the Ba{sup 2+}-like {sup 226}Ra{sup 2+}-As(V)-F{sup −} solutions were in contact with ZUSCeFe. The H{sub 2}AsO{sub 4}{sup −}/HAsO{sub 4}{sup 2−} and F{sup −} were adsorbed by ZUSCe

  16. Structural and Functional Annotation of Hypothetical Proteins of O139

    Directory of Open Access Journals (Sweden)

    Md. Saiful Islam

    2015-06-01

    Full Text Available In developing countries threat of cholera is a significant health concern whenever water purification and sewage disposal systems are inadequate. Vibrio cholerae is one of the responsible bacteria involved in cholera disease. The complete genome sequence of V. cholerae deciphers the presence of various genes and hypothetical proteins whose function are not yet understood. Hence analyzing and annotating the structure and function of hypothetical proteins is important for understanding the V. cholerae. V. cholerae O139 is the most common and pathogenic bacterial strain among various V. cholerae strains. In this study sequence of six hypothetical proteins of V. cholerae O139 has been annotated from NCBI. Various computational tools and databases have been used to determine domain family, protein-protein interaction, solubility of protein, ligand binding sites etc. The three dimensional structure of two proteins were modeled and their ligand binding sites were identified. We have found domains and families of only one protein. The analysis revealed that these proteins might have antibiotic resistance activity, DNA breaking-rejoining activity, integrase enzyme activity, restriction endonuclease, etc. Structural prediction of these proteins and detection of binding sites from this study would indicate a potential target aiding docking studies for therapeutic designing against cholera.

  17. HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration.

    Science.gov (United States)

    Cooper, Arik; García, Mayra; Petrovas, Constantinos; Yamamoto, Takuya; Koup, Richard A; Nabel, Gary J

    2013-06-20

    Human immunodeficiency virus-1 (HIV-1) has infected more than 60 million people and caused nearly 30 million deaths worldwide, ultimately the consequence of cytolytic infection of CD4(+) T cells. In humans and in macaque models, most of these cells contain viral DNA and are rapidly eliminated at the peak of viraemia, yet the mechanism by which HIV-1 induces helper T-cell death has not been defined. Here we show that virus-induced cell killing is triggered by viral integration. Infection by wild-type HIV-1, but not an integrase-deficient mutant, induced the death of activated primary CD4 lymphocytes. Similarly, raltegravir, a pharmacologic integrase inhibitor, abolished HIV-1-induced cell killing both in cell culture and in CD4(+) T cells from acutely infected subjects. The mechanism of killing during viral integration involved the activation of DNA-dependent protein kinase (DNA-PK), a central integrator of the DNA damage response, which caused phosphorylation of p53 and histone H2AX. Pharmacological inhibition of DNA-PK abolished cell death during HIV-1 infection in vitro, suggesting that processes which reduce DNA-PK activation in CD4 cells could facilitate the formation of latently infected cells that give rise to reservoirs in vivo. We propose that activation of DNA-PK during viral integration has a central role in CD4(+) T-cell depletion, raising the possibility that integrase inhibitors and interventions directed towards DNA-PK may improve T-cell survival and immune function in infected individuals.

  18. Brief Report: Weight Gain in Persons With HIV Switched From Efavirenz-Based to Integrase Strand Transfer Inhibitor-Based Regimens.

    Science.gov (United States)

    Norwood, Jamison; Turner, Megan; Bofill, Carmen; Rebeiro, Peter; Shepherd, Bryan; Bebawy, Sally; Hulgan, Todd; Raffanti, Stephen; Haas, David W; Sterling, Timothy R; Koethe, John R

    2017-12-15

    With the introduction of integrase strand transfer inhibitor (INSTI)-based antiretroviral therapy, persons living with HIV have a potent new treatment option. Recently, providers at our large treatment clinic noted weight gain in several patients who switched from efavirenz/tenofovir disoproxil fumarate/emtricitabine (EFV/TDF/FTC) to dolutegravir/abacavir/lamivudine (DTG/ABC/3TC). In this study, we evaluated weight change in patients with sustained virologic suppression who switched from EFV/TDF/FTC to an INSTI-containing regimen. We performed a retrospective observational cohort study among adults on EFV/TDF/FTC for at least 2 years who had virologic suppression. We assessed weight change over 18 months in patients who switched from EFV/TDF/FTC to an INSTI-containing regimen or a protease inhibitor (PI)-containing regimen versus those on EFV/TDF/FTC over the same period. In a subgroup analysis, we compared patients switched to DTG/ABC/3TC versus raltegravir- or elvitegravir-containing regimens. A total of 495 patients were included: 136 who switched from EFV/TDF/FTC to an INSTI-containing regimen and 34 switched to a PI-containing regimen. Patients switched to an INSTI-containing regimen gained an average of 2.9 kg at 18 months compared with 0.9 kg among those continued on EFV/TDF/FTC (P = 0.003), whereas those switched to a PI regimen gained 0.7 kg (P = 0.81). Among INSTI regimens, those switched to DTG/ABC/3TC gained the most weight at 18 months (5.3 kg, P = 0.001 compared with EFV/TDF/FTC). Adults living with HIV with viral suppression gained significantly more weight after switching from daily, fixed-dose EFV/TDF/FTC to an INSTI-based regimen compared with those remaining on EFV/TDF/FTC. This weight gain was greatest among patients switching to DTG/ABC/3TC.

  19. A novel integrase-containing element may interact with Laem-Singh virus (LSNV to cause slow growth in giant tiger shrimp

    Directory of Open Access Journals (Sweden)

    Sriurairatana Siriporn

    2011-05-01

    Full Text Available Abstract Background From 2001-2003 monodon slow growth syndrome (MSGS caused severe economic losses for Thai shrimp farmers who cultivated the native, giant tiger shrimp, and this led them to adopt exotic stocks of the domesticated whiteleg shrimp as the species of cultivation choice, despite the higher value of giant tiger shrimp. In 2008, newly discovered Laem-Singh virus (LSNV was proposed as a necessary but insufficient cause of MSGS, and this stimulated the search for the additional component cause(s of MSGS in the hope that discovery would lead to preventative measures that could revive cultivation of the higher value native shrimp species. Results Using a universal shotgun cloning protocol, a novel RNA, integrase-containing element (ICE was found in giant tiger shrimp from MSGS ponds (GenBank accession number FJ498866. In situ hybridization probes and RT-PCR tests revealed that ICE and Laem-Singh virus (LSNV occurred together in lymphoid organs (LO of shrimp from MSGS ponds but not in shrimp from normal ponds. Tissue homogenates of shrimp from MSGS ponds yielded a fraction that gave positive RT-PCR reactions for both ICE and LSNV and showed viral-like particles by transmission electron microscopy (TEM. Bioassays of this fraction with juvenile giant tiger shrimp resulted in retarded growth with gross signs of MSGS, and in situ hybridization assays revealed ICE and LSNV together in LO, eyes and gills. Viral-like particles similar to those seen in tissue extracts from natural infections were also seen by TEM. Conclusions ICE and LSNV were found together only in shrimp from MSGS ponds and only in shrimp showing gross signs of MSGS after injection with a preparation containing ICE and LSNV. ICE was never found in the absence of LSNV although LSNV was sometimes found in normal shrimp in the absence of ICE. The results suggest that ICE and LSNV may act together as component causes of MSGS, but this cannot be proven conclusively without single

  20. Exploring the molecular mechanism of cross-resistance to HIV-1 integrase strand transfer inhibitors by molecular dynamics simulation and residue interaction network analysis.

    Science.gov (United States)

    Xue, Weiwei; Jin, Xiaojie; Ning, Lulu; Wang, Meixia; Liu, Huanxiang; Yao, Xiaojun

    2013-01-28

    The rapid emergence of cross-resistance to the integrase strand transfer inhibitors (INSTIs) has become a serious problem in the therapy of human immunodeficiency virus type 1 (HIV-1) infection. Understanding the detailed molecular mechanism of INSTIs cross-resistance is therefore critical for the development of new effective therapy against cross-resistance. On the basis of the homology modeling constructed structure of tetrameric HIV-1 intasome, the detailed molecular mechanism of the cross-resistance mutation E138K/Q148K to three important INSTIs (Raltegravir (RAL, FDA approved in 2007), Elvitegravir (EVG, FDA approved in 2012), and Dolutegravir (DTG, phase III clinical trials)) was investigated by using molecular dynamics (MD) simulation and residue interaction network (RIN) analysis. The results from conformation analysis and binding free energy calculation can provide some useful information about the detailed binding mode and cross-resistance mechanism for the three INSTIs to HIV-1 intasome. Binding free energy decomposition analysis revealed that Pro145 residue in the 140s 1oop (Gly140 to Gly149) of the HIV-1 intasome had strong hydrophobic interactions with INSTIs and played an important role in the binding of INSTIs to HIV-1 intasome active site. A systematic comparison and analysis of the RIN proves that the communications between the residues in the resistance mutant is increased when compared with that of the wild-type HIV-1 intasome. Further analysis indicates that residue Pro145 may play an important role and is relevant to the structure rearrangement in HIV-1 intasome active site. In addition, the chelating ability of the oxygen atoms in INSTIs (e.g., RAL and EVG) to Mg(2+) in the active site of the mutated intasome was reduced due to this conformational change and is also responsible for the cross-resistance mechanism. Notably, the cross-resistance mechanism we proposed could give some important information for the future rational design of novel

  1. A novel integrase-containing element may interact with Laem-Singh virus (LSNV) to cause slow growth in giant tiger shrimp.

    Science.gov (United States)

    Panphut, Wattana; Senapin, Saengchan; Sriurairatana, Siriporn; Withyachumnarnkul, Boonsirm; Flegel, Timothy W

    2011-05-14

    From 2001-2003 monodon slow growth syndrome (MSGS) caused severe economic losses for Thai shrimp farmers who cultivated the native, giant tiger shrimp, and this led them to adopt exotic stocks of the domesticated whiteleg shrimp as the species of cultivation choice, despite the higher value of giant tiger shrimp. In 2008, newly discovered Laem-Singh virus (LSNV) was proposed as a necessary but insufficient cause of MSGS, and this stimulated the search for the additional component cause(s) of MSGS in the hope that discovery would lead to preventative measures that could revive cultivation of the higher value native shrimp species. Using a universal shotgun cloning protocol, a novel RNA, integrase-containing element (ICE) was found in giant tiger shrimp from MSGS ponds (GenBank accession number FJ498866). In situ hybridization probes and RT-PCR tests revealed that ICE and Laem-Singh virus (LSNV) occurred together in lymphoid organs (LO) of shrimp from MSGS ponds but not in shrimp from normal ponds. Tissue homogenates of shrimp from MSGS ponds yielded a fraction that gave positive RT-PCR reactions for both ICE and LSNV and showed viral-like particles by transmission electron microscopy (TEM). Bioassays of this fraction with juvenile giant tiger shrimp resulted in retarded growth with gross signs of MSGS, and in situ hybridization assays revealed ICE and LSNV together in LO, eyes and gills. Viral-like particles similar to those seen in tissue extracts from natural infections were also seen by TEM. ICE and LSNV were found together only in shrimp from MSGS ponds and only in shrimp showing gross signs of MSGS after injection with a preparation containing ICE and LSNV. ICE was never found in the absence of LSNV although LSNV was sometimes found in normal shrimp in the absence of ICE. The results suggest that ICE and LSNV may act together as component causes of MSGS, but this cannot be proven conclusively without single and combined bioassays using purified preparations of

  2. Function and regulation of plant major intrinsic proteins

    DEFF Research Database (Denmark)

    Popovic, Milan

    Arsenic is a metalloid that is toxic to living organisms. The use of arsenic-contaminated ground water for drinking and for irrigation in agriculture presents serious health problems for millions of people in many parts of the world. Arsenate (As(V)) and arsenite (As(III)), the two most widespread...... detoxification. Plant Noduline 26-like Intrinsic Proteins (NIPs) can channel As(III) and consequently influence the detoxification process. The role of the Tonoplast Intrinsic Proteins (TIPs) in As(III) detoxification remains to be clarified, yet TIPs could have an impact on As(III) accumulation in plant cell...... vacuoles. In this study using Arabidopsis, the role of TIP subfamily in arsenic transport was examined together with the role of N-terminus in regulation of AtNIP5;1, which has previously been shown to transport As(III) in a yeast expression system. The results showed that AtTIP4;1 functions...

  3. Ce-Fe-modified zeolite-rich tuff to remove Ba(2+)-like (226)Ra(2+) in presence of As(V) and F(-) from aqueous media as pollutants of drinking water.

    Science.gov (United States)

    Olguín, María Teresa; Deng, Shuguang

    2016-01-25

    The sorption behavior of the Ba(2+)-like (226)Ra(2+) in the presence of H2AsO4(-)/HAsO4(2-) and F(-) from aqueous media using Ce-Fe-modified zeolite-rich tuff was investigated in this work. The Na-modified zeolite-rich tuff was also considered for comparison purposes. The zeolite-rich tuff collected from Wyoming (US) was in contact with NaCl and CeCl3-FeCl3 solutions to obtain the Na- and Ce-Fe-modified zeolite-rich tuffs (ZUSNa and ZUSCeFe). These zeolites were characterized by scanning electron microscopy and X-ray diffraction. The BET-specific surface and the points of zero charge were determined as well as the content of Na, Ce and Fe by neutron activation analysis. The textural characteristics and the point of zero charge were changed by the presence of Ce and Fe species in the zeolitic network. A linear model described the Ba(2+)-like (226)Ra(2+) sorption isotherms and the distribution coefficients (Kd) varied with respect to the metallic species present in the zeolitic material. The As(V) oxianionic chemical species and F(-) affected this parameter when the Ba(2+)-like (226)Ra(2+)-As(V)-F(-) solutions were in contact with ZUSCeFe. The H2AsO4(-)/HAsO4(2-) and F(-) were adsorbed by ZUSCeFe in the same amount, independent of the concentration of Ba(2+)-like (226)Ra(2+) in the initial solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Marine ASV Range Surveillance System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — United States spaceports carry out the impressive task of launching and recovering spacecrafts and payloads which represent extremely unique and expensive assets....

  5. Marine ASV Range Surveillance System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — United States spaceports carry out the critical task of launching and recovering vehicles and payloads. These are extremely unique and expensive assets, and their...

  6. Eiropas Savienības uzņēmējdarbības vide start-up uzņēmumu attīstīšanai (salīdzinošā analīze ar ASV)

    OpenAIRE

    Kapenieks, Kristaps

    2014-01-01

    Maģistra darbā „Eiropas Savienības uzņēmējdarbības vide start-up uzņēmumu attīstīšanai (salīdzinošā analīze ar ASV)” tiek pētīts, kā uzņēmējdarbības vide ietekmē start-up uzņēmējdarbības aktivitāti un kur uzņēmējdarbības vide ir piemērotāka start-up uzņēmējdarbībai – Eiropas Savienībā vai ASV. Lai iegūtu atbildi uz šiem jautājumiem, maģistra darbā tiek pētīts, kas ir start-up uzņēmums un kā to ietekmē ārējā uzņēmējdarbības vide, salīdzināti vides faktoru dati par četrām Eiropas Savienības da...

  7. 1,4-Bis(5-(naphthalen-1-yl)thiophen-2-yl)naphthalene, a small molecule, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular Lens epithelium-derived growth factor.

    Science.gov (United States)

    Gu, Wan-gang; Ip, Denis Tsz-Ming; Liu, Si-jie; Chan, Joseph H; Wang, Yan; Zhang, Xuan; Zheng, Yong-tang; Wan, David Chi-Cheong

    2014-04-25

    Translocation of viral integrase (IN) into the nucleus is a critical precondition of integration during the life cycle of HIV, a causative agent of Acquired Immunodeficiency Syndromes (AIDS). As the first discovered cellular factor to interact with IN, Lens epithelium-derived growth factor (LEDGF/p75) plays an important role in the process of integration. Disruption of the LEDGF/p75-IN interaction has provided a great interest for anti-HIV agent discovery. In this work, we reported that one small molecular compound, 1,4-bis(5-(naphthalen-1-yl)thiophen-2-yl)naphthalene(Compound 15), potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution at 1 μM. The putative binding mode of Compound 15 was constructed by a molecular docking simulation to provide structural insights into the ligand-binding mechanism. Compound 15 suppressed viral replication by measuring p24 antigen production in HIV-1IIIB acute infected C8166 cells with EC50 value of 11.19 μM. Compound 15 might supply useful structural information for further anti-HIV agent discovery. Copyright © 2014. Published by Elsevier Ireland Ltd.

  8. Long-Term Expression of Human Coagulation Factor VIII in a Tolerant Mouse Model Using the phi C31 Integrase System

    NARCIS (Netherlands)

    Chavez, Christopher L.; Keravala, Annahita; Chu, Jacqueline N.; Farruggio, Alfonso P.; Cuéllar, Vanessa E.; Voorberg, Jan; Calos, Michele P.

    2012-01-01

    We generated a mouse model for hemophilia A that combines a homozygous knockout for murine factor VIII (FVIII) and a homozygous addition of a mutant human FVIII (hFVIII). The resulting mouse, having no detectable FVIII protein or activity and tolerant to hFVIII, is useful for evaluating FVIII

  9. Novel surface layer protein genes in Bacillus sphaericus associated with unusual insertion elements.

    Science.gov (United States)

    Pollmann, Katrin; Raff, Johannes; Schnorpfeil, Michaela; Radeva, Galina; Selenska-Pobell, Sonja

    2005-09-01

    The surface layer (S-layer) protein genes of the uranium mining waste pile isolate Bacillus sphaericus JG-A12 and of its relative B. sphaericus NCTC 9602 were analysed. The almost identical N-termini of the two S-layer proteins possess a unique structure, comprising three N-terminal S-layer homologous (SLH) domains. The central parts of the proteins share a high homology and are related to the S-layer proteins of B. sphaericus CCM 2177 and P-1. In contrast, the C-terminal parts of the S-layer proteins of JG-A12 and NCTC 9602 differ significantly between each other. Surprisingly, the C-terminal part of the S-layer protein of JG-A12 shares a high identity with that of the S-layer protein of B. sphaericus CCM 2177. In both JG-A12 and NCTC 9602 the chromosomal S-layer protein genes are followed by a newly identified putative insertion element comprising three ORFs, which encode a putative transposase, a putative integrase/recombinase and a putative protein containing a DNA binding helix-turn-helix motif, and the S-layer-protein-like gene copies sllA (9602) or sllB (JG-A12). Interestingly, both B. sphaericus strains studied were found to contain an additional, plasmid-located and silent S-layer protein gene with the same sequence as sllA and sllB. The primary structures of the corresponding putative proteins are almost identical in both strains. The N-terminal and central parts of these S-layer proteins share a high identity with those of the chromosomally encoded functional S-layer proteins. Their C-terminal parts, however, differ significantly. These results strongly suggest that the S-layer protein genes have evolved via horizontal transfer of genetic information followed by DNA rearrangements mediated by mobile elements.

  10. Protein Foods

    Science.gov (United States)

    ... Text Size: A A A Listen En Español Protein Foods Foods high in protein such as fish, ... for the vegetarian proteins, whether they have carbohydrate. Protein Choices Plant-Based Proteins Plant-based protein foods ...

  11. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays

    Science.gov (United States)

    Landry, Markita Patricia; Ando, Hiroki; Chen, Allen Y.; Cao, Jicong; Kottadiel, Vishal Isaac; Chio, Linda; Yang, Darwin; Dong, Juyao; Lu, Timothy K.; Strano, Michael S.

    2017-05-01

    A distinct advantage of nanosensor arrays is their ability to achieve ultralow detection limits in solution by proximity placement to an analyte. Here, we demonstrate label-free detection of individual proteins from Escherichia coli (bacteria) and Pichia pastoris (yeast) immobilized in a microfluidic chamber, measuring protein efflux from single organisms in real time. The array is fabricated using non-covalent conjugation of an aptamer-anchor polynucleotide sequence to near-infrared emissive single-walled carbon nanotubes, using a variable chemical spacer shown to optimize sensor response. Unlabelled RAP1 GTPase and HIV integrase proteins were selectively detected from various cell lines, via large near-infrared fluorescent turn-on responses. We show that the process of E. coli induction, protein synthesis and protein export is highly stochastic, yielding variability in protein secretion, with E. coli cells undergoing division under starved conditions producing 66% fewer secreted protein products than their non-dividing counterparts. We further demonstrate the detection of a unique protein product resulting from T7 bacteriophage infection of E. coli, illustrating that nanosensor arrays can enable real-time, single-cell analysis of a broad range of protein products from various cell types.

  12. Combining short- and long-range fluorescence reporters with simulations to explore the intramolecular dynamics of an intrinsically disordered protein

    Science.gov (United States)

    Zosel, Franziska; Haenni, Dominik; Soranno, Andrea; Nettels, Daniel; Schuler, Benjamin

    2017-10-01

    Intrinsically disordered proteins (IDPs) are increasingly recognized as a class of molecules that can exert essential biological functions even in the absence of a well-defined three-dimensional structure. Understanding the conformational distributions and dynamics of these highly flexible proteins is thus essential for explaining the molecular mechanisms underlying their function. Single-molecule fluorescence spectroscopy in combination with Förster resonance energy transfer (FRET) is a powerful tool for probing intramolecular distances and the rapid long-range distance dynamics in IDPs. To complement the information from FRET, we combine it with photoinduced electron transfer (PET) quenching to monitor local loop-closure kinetics at the same time and in the same molecule. Here we employed this combination to investigate the intrinsically disordered N-terminal domain of HIV-1 integrase. The results show that both long-range dynamics and loop closure kinetics on the sub-microsecond time scale can be obtained reliably from a single set of measurements by the analysis with a comprehensive model of the underlying photon statistics including both FRET and PET. A more detailed molecular interpretation of the results is enabled by direct comparison with a recent extensive atomistic molecular dynamics simulation of integrase. The simulations are in good agreement with experiment and can explain the deviation from simple models of chain dynamics by the formation of persistent local secondary structure. The results illustrate the power of a close combination of single-molecule spectroscopy and simulations for advancing our understanding of the dynamics and detailed mechanisms in unfolded and intrinsically disordered proteins.

  13. Identification of multiple integration sites for Stx-phage Phi24B in the Escherichia coli genome, description of a novel integrase and evidence for a functional anti-repressor.

    Science.gov (United States)

    Fogg, Paul C M; Gossage, Sharon M; Smith, Darren L; Saunders, Jon R; McCarthy, Alan J; Allison, Heather E

    2007-12-01

    The key virulence factor in Shiga-toxigenic Escherichia coli is the expression of Shiga toxin (Stx), which is conferred by Stx-encoding temperate lambdoid phages (Stx-phages). It had been assumed that Stx-phages would behave similarly to lambda phage. However, contrary to the lambda superinfection immunity model, it has been demonstrated that double lysogens can be produced with the Stx-phage Phi24(B). Here, the Phi24(B) integrase gene is identified, and the preferred site of integration defined. Although an E. coli int gene was identified close to the Phi24(B) integration site, it was shown not to be involved in the phage integration event. An additional six potential integration sites were identified in the E. coli genome, and three of these were confirmed experimentally. Two of the other potential sites lie within genes predicted to be essential to E. coli and are therefore unlikely to support phage integration. A Phi24(B) gene, possessing similarity to the well-characterized P22 ant gene, was identified. RT-PCR was used to demonstrate that ant is transcribed in a Phi24(B) E. coli lysogen, and expression of an anti-repressor is the likely explanation for the absence of immunity to superinfection. Demonstration of the ability of Phi24(B) to form multiple lysogens has two potentially serious impacts. First, multiple integrated prophages will drive the evolution of bacterial pathogens as novel Stx-phages emerge following intracellular mutation/recombination events. Second, multiple copies of the stx gene may lead to an increase in toxin production and consequently increased virulence.

  14. Flexibility in MuA transposase family protein structures: functional mapping with scanning mutagenesis and sequence alignment of protein homologues.

    Directory of Open Access Journals (Sweden)

    Tiina S Rasila

    Full Text Available MuA transposase protein is a member of the retroviral integrase superfamily (RISF. It catalyzes DNA cleavage and joining reactions via an initial assembly and subsequent structural transitions of a protein-DNA complex, known as the Mu transpososome, ultimately attaching transposon DNA to non-specific target DNA. The transpososome functions as a molecular DNA-modifying machine and has been used in a wide variety of molecular biology and genetics/genomics applications. To analyze structure-function relationships in MuA action, a comprehensive pentapeptide insertion mutagenesis was carried out for the protein. A total of 233 unique insertion variants were generated, and their activity was analyzed using a quantitative in vivo DNA transposition assay. The results were then correlated with the known MuA structures, and the data were evaluated with regard to the protein domain function and transpososome development. To complement the analysis with an evolutionary component, a protein sequence alignment was produced for 44 members of MuA family transposases. Altogether, the results pinpointed those regions, in which insertions can be tolerated, and those where insertions are harmful. Most insertions within the subdomains Iγ, IIα, IIβ, and IIIα completely destroyed the transposase function, yet insertions into certain loop/linker regions of these subdomains increased the protein activity. Subdomains Iα and IIIβ were largely insertion-tolerant. The comprehensive structure-function data set will be useful for designing MuA transposase variants with improved properties for biotechnology/genomics applications, and is informative with regard to the function of RISF proteins in general.

  15. Labeling of multiple HIV-1 proteins with the biarsenical-tetracysteine system.

    Directory of Open Access Journals (Sweden)

    Cândida F Pereira

    Full Text Available Due to its small size and versatility, the biarsenical-tetracysteine system is an attractive way to label viral proteins for live cell imaging. This study describes the genetic labeling of the human immunodeficiency virus type 1 (HIV-1 structural proteins (matrix, capsid and nucleocapsid, enzymes (protease, reverse transcriptase, RNAse H and integrase and envelope glycoprotein 120 with a tetracysteine tag in the context of a full-length virus. We measure the impact of these modifications on the natural virus infection and, most importantly, present the first infectious HIV-1 construct containing a fluorescently-labeled nucleocapsid protein. Furthermore, due to the high background levels normally associated with the labeling of tetracysteine-tagged proteins we have also optimized a metabolic labeling system that produces infectious virus containing the natural envelope glycoproteins and specifically labeled tetracysteine-tagged proteins that can easily be detected after virus infection of T-lymphocytes. This approach can be adapted to other viral systems for the visualization of the interplay between virus and host cell during infection.

  16. The Effect of Geometrical Isomerism of 3,5-Dicaffeoylquinic Acid on Its Binding Affinity to HIV-Integrase Enzyme: A Molecular Docking Study

    Directory of Open Access Journals (Sweden)

    Mpho M. Makola

    2016-01-01

    Full Text Available A potent plant-derived HIV-1 inhibitor, 3,5-dicaffeoylquinic acid (diCQA, has been shown to undergo isomerisation upon UV exposure where the naturally occurring 3trans,5trans-diCQA isomer gives rise to the 3cis,5trans-diCQA, 3trans,5cis-diCQA, and 3cis,5cis-diCQA isomers. In this study, inhibition of HIV-1 INT by UV-induced isomers was investigated using molecular docking methods. Here, density functional theory (DFT models were used for geometry optimization of the 3,5-diCQA isomers. The YASARA and Autodock VINA software packages were then used to determine the binding interactions between the HIV-1 INT catalytic domain and the 3,5-diCQA isomers and the Discovery Studio suite was used to visualise the interactions between the isomers and the protein. The geometrical isomers of 3,5-diCQA were all found to bind to the catalytic core domain of the INT enzyme. Moreover, the cis geometrical isomers were found to interact with the metal cofactor of HIV-1INT, a phenomenon which has been linked to antiviral potency. Furthermore, the 3trans,5cis-diCQA isomer was also found to interact with both LYS156 and LYS159 which are important residues for viral DNA integration. The differences in binding modes of these naturally coexisting isomers may allow wider synergistic activity which may be beneficial in comparison to the activities of each individual isomer.

  17. Protein-protein interactions

    DEFF Research Database (Denmark)

    Byron, Olwyn; Vestergaard, Bente

    2015-01-01

    Responsive formation of protein:protein interaction (PPI) upon diverse stimuli is a fundament of cellular function. As a consequence, PPIs are complex, adaptive entities, and exist in structurally heterogeneous interplays defined by the energetic states of the free and complexed protomers. The bi...

  18. The Different Faces of Rolling-Circle Replication and Its Multifunctional Initiator Proteins

    Directory of Open Access Journals (Sweden)

    Paweł Wawrzyniak

    2017-11-01

    Full Text Available Horizontal gene transfer (HGT contributes greatly to the plasticity and evolution of prokaryotic and eukaryotic genomes. The main carriers of foreign DNA in HGT are mobile genetic elements (MGEs that have extremely diverse genetic structures and properties. Various strategies are used for the maintenance and spread of MGEs, including (i vegetative replication, (ii transposition (and other types of recombination, and (iii conjugal transfer. In many MGEs, all of these processes are dependent on rolling-circle replication (RCR. RCR is one of the most well characterized models of DNA replication. Although many studies have focused on describing its mechanism, the role of replication initiator proteins has only recently been subject to in-depth analysis, which indicates their involvement in multiple biological process associated with RCR. In this review, we present a general overview of RCR and its impact in HGT. We focus on the molecular characteristics of RCR initiator proteins belonging to the HUH and Rep_trans protein families. Despite analogous mechanisms of action these are distinct groups of proteins with different catalytic domain structures. This is the first review describing the multifunctional character of various types of RCR initiator proteins, including the latest discoveries in the field. Recent reports provide evidence that (i proteins initiating vegetative replication (Rep or mobilization for conjugal transfer (Mob may also have integrase (Int activity, (ii some Mob proteins are capable of initiating vegetative replication (Rep activity, and (iii some Rep proteins can act like Mob proteins to mobilize plasmid DNA for conjugal transfer. These findings have significant consequences for our understanding of the role of RCR, not only in DNA metabolism but also in the biology of many MGEs.

  19. TOX4 and NOVA1 proteins are partners of the LEDGF PWWP domain and affect HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Mehdi Morchikh

    Full Text Available PWWP domains are involved in the chromatin attachment of several proteins. They bind to both DNA and proteins and their interaction with specific histone methylation marks define them as a new class of histone code readers. The lens epithelium derived growth factor (LEDGF/p75 contains an N-terminal PWWP domain necessary for its interaction with chromatin but also a C-terminal domain which interacts with several proteins, such as lentiviral integrases. These two domains confer a chromatin-tethering function to LEDGF/p75 and in the case of lentiviral integrases, this tethering participates in the efficiency and site selectivity of integration. Although proteins interacting with LEDGF/p75 C-terminal domain have been extensively studied, no data exist about partners of its PWWP domain regulating its interaction with chromatin. In this study, we report the identification by yeast-two-hybrid of thirteen potential partners of the LEDGF PWWP domain. Five of these interactions were confirmed in mammalian cells, using both a protein complementation assay and co-immunoprecipitation approaches. Three of these partners interact with full length LEDGF/p75, they are specific for PWWP domains of the HDGF family and they require PWWP amino acids essential for the interaction with chromatin. Among them, the transcription activator TOX4 and the splicing cofactor NOVA1 were selected for a more extensive study. These two proteins or their PWWP interacting regions (PIR colocalize with LEDGF/p75 in Hela cells and interact in vitro in the presence of DNA. Finally, single round VSV-G pseudotyped HIV-1 but not MLV infection is inhibited in cells overexpressing these two PIRs. The observed inhibition of infection can be attributed to a defect in the integration step. Our data suggest that a regulation of LEDGF interaction with chromatin by cellular partners of its PWWP domain could be involved in several processes linked to LEDGF tethering properties, such as lentiviral

  20. ArsR arsenic-resistance regulatory protein from Cupriavidus metallidurans CH34

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; van der Lelie, D.; Monchy, S.; Greenberg, B.; Gang, O.; Taghavi, S.

    2009-08-01

    The Cupriavidus metallidurans CH34 arsR gene, which is part of the arsRIC{sub 2}BC{sub 1}HP operon, and its putative arsenic-resistance regulatory protein were identified and characterized. The arsenic-induced transcriptome of C. metallidurans CH34 showed that the genes most upregulated in the presence of arsenate were all located within the ars operon, with none of the other numerous heavy metal resistance systems present in CH34 being induced. A transcriptional fusion between the luxCDABE operon and the arsR promoter/operator (P/O) region was used to confirm the in vivo induction of the ars operon by arsenite and arsenate. The arsR gene was cloned into expression vectors allowing for the overexpression of the ArsR protein as either his-tagged or untagged protein. The ability of the purified ArsR proteins to bind to the ars P/O region was analyzed in vitro by gel mobility shift assays. ArsR showed an affinity almost exclusively to its own ars P/O region. Dissociation of ArsR and its P/O region was metal dependent, and based on decreasing degrees of dissociation three groups of heavy metals could be distinguished: As(III), Bi(III), Co(II), Cu(II), Ni(II); Cd(II); Pb(II) and Zn(II), while no dissociation was observed in the presence of As(V).

  1. Engineering color variants of green fluorescent protein (GFP) for thermostability, pH-sensitivity, and improved folding kinetics.

    Science.gov (United States)

    Aliye, Naser; Fabbretti, Attilio; Lupidi, Giulio; Tsekoa, Tsepo; Spurio, Roberto

    2015-02-01

    A number of studies have been conducted to improve chromophore maturation, folding kinetics, thermostability, and other traits of green fluorescent protein (GFP). However, no specific work aimed at improving the thermostability of the yellow fluorescent protein (YFP) and of the pH-sensitive, yet thermostable color variants of GFP has so far been done. The protein variants reported in this study were improved through rational multiple site-directed mutagenesis of GFP (ASV) by introducing up to ten point mutations including the mutations near and at the chromophore region. Therefore, we report the development and characterization of fast folder and thermo-tolerant green variant (FF-GFP), and a fast folder thermostable yellow fluorescent protein (FFTS-YFP) endowed with remarkably improved thermostability and folding kinetics. We demonstrate that the fluorescence intensity of this yellow variant is not affected by heating at 75 °C. Moreover, we have developed a pH-unresponsive cyan variant AcS-CFP, which has potential use as part of in vivo imaging irrespective of intracellular pH. The combined improved properties make these fluorescent variants ideal tools to study protein expression and function under different pH environments, in mesophiles and thermophiles. Furthermore, coupling of the FFTS-YFP and AcS-CFP could potentially serve as an ideal tool to perform functional analysis of live cells by multicolor labeling.

  2. Total protein

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  3. HIV Integration Targeting: A Pathway Involving Transportin-3 and the Nuclear Pore Protein RanBP2

    Science.gov (United States)

    Huegel, Alyssa; Roth, Shoshannah L.; Schaller, Torsten; James, Leo C.; Towers, Greg J.; Young, John A. T.; Chanda, Sumit K.; König, Renate; Malani, Nirav; Berry, Charles C.; Bushman, Frederic D.

    2011-01-01

    Genome-wide siRNA screens have identified host cell factors important for efficient HIV infection, among which are nuclear pore proteins such as RanBP2/Nup358 and the karyopherin Transportin-3/TNPO3. Analysis of the roles of these proteins in the HIV replication cycle suggested that correct trafficking through the pore may facilitate the subsequent integration step. Here we present data for coupling between these steps by demonstrating that depletion of Transportin-3 or RanBP2 altered the terminal step in early HIV replication, the selection of chromosomal sites for integration. We found that depletion of Transportin-3 and RanBP2 altered integration targeting for HIV. These knockdowns reduced HIV integration frequency in gene-dense regions and near gene-associated features, a pattern that differed from that reported for depletion of the HIV integrase binding cofactor Psip1/Ledgf/p75. MLV integration was not affected by the Transportin-3 knockdown. Using siRNA knockdowns and integration targeting analysis, we also implicated several additional nuclear proteins in proper target site selection. To map viral determinants of integration targeting, we analyzed a chimeric HIV derivative containing MLV gag, and found that the gag replacement phenocopied the Transportin-3 and RanBP2 knockdowns. Thus, our data support a model in which Gag-dependent engagement of the proper transport and nuclear pore machinery mediate trafficking of HIV complexes to sites of integration. PMID:21423673

  4. HIV integration targeting: a pathway involving Transportin-3 and the nuclear pore protein RanBP2.

    Directory of Open Access Journals (Sweden)

    Karen E Ocwieja

    2011-03-01

    Full Text Available Genome-wide siRNA screens have identified host cell factors important for efficient HIV infection, among which are nuclear pore proteins such as RanBP2/Nup358 and the karyopherin Transportin-3/TNPO3. Analysis of the roles of these proteins in the HIV replication cycle suggested that correct trafficking through the pore may facilitate the subsequent integration step. Here we present data for coupling between these steps by demonstrating that depletion of Transportin-3 or RanBP2 altered the terminal step in early HIV replication, the selection of chromosomal sites for integration. We found that depletion of Transportin-3 and RanBP2 altered integration targeting for HIV. These knockdowns reduced HIV integration frequency in gene-dense regions and near gene-associated features, a pattern that differed from that reported for depletion of the HIV integrase binding cofactor Psip1/Ledgf/p75. MLV integration was not affected by the Transportin-3 knockdown. Using siRNA knockdowns and integration targeting analysis, we also implicated several additional nuclear proteins in proper target site selection. To map viral determinants of integration targeting, we analyzed a chimeric HIV derivative containing MLV gag, and found that the gag replacement phenocopied the Transportin-3 and RanBP2 knockdowns. Thus, our data support a model in which Gag-dependent engagement of the proper transport and nuclear pore machinery mediate trafficking of HIV complexes to sites of integration.

  5. Protein Structure

    Science.gov (United States)

    Asmus, Elaine Garbarino

    2007-01-01

    Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the nature of the bonds maintaining a protein's shape. This activity is fun, concrete, inexpensive and…

  6. Preparation, characterization and As(V) adsorption behaviour of ...

    African Journals Online (AJOL)

    ... the data its monolayer adsorption capacity was estimated to be 44.1 mg/g. The adsorption data were best described by the pseudo-second order kinetic model. Keywords: Carbon nanotubes, ferrihydrite, arsenic, adsorption, isotherms. International Journal of Engineering, Science and Technology, Vol. 2, No. 8, 2010, pp.

  7. DNA binding of centromere protein C (CENPC is stabilized by single-stranded RNA.

    Directory of Open Access Journals (Sweden)

    Yaqing Du

    2010-02-01

    Full Text Available Centromeres are the attachment points between the genome and the cytoskeleton: centromeres bind to kinetochores, which in turn bind to spindles and move chromosomes. Paradoxically, the DNA sequence of centromeres has little or no role in perpetuating kinetochores. As such they are striking examples of genetic information being transmitted in a manner that is independent of DNA sequence (epigenetically. It has been found that RNA transcribed from centromeres remains bound within the kinetochore region, and this local population of RNA is thought to be part of the epigenetic marking system. Here we carried out a genetic and biochemical study of maize CENPC, a key inner kinetochore protein. We show that DNA binding is conferred by a localized region 122 amino acids long, and that the DNA-binding reaction is exquisitely sensitive to single-stranded RNA. Long, single-stranded nucleic acids strongly promote the binding of CENPC to DNA, and the types of RNAs that stabilize DNA binding match in size and character the RNAs present on kinetochores in vivo. Removal or replacement of the binding module with HIV integrase binding domain causes a partial delocalization of CENPC in vivo. The data suggest that centromeric RNA helps to recruit CENPC to the inner kinetochore by altering its DNA binding characteristics.

  8. In situ microliter-droplet anodic stripping voltammetry of copper stained on the gold label after galvanic replacement reaction enlargement for ultrasensitive immunoassay of proteins.

    Science.gov (United States)

    Qin, Xiaoli; Xu, Aigui; Wang, Linchun; Liu, Ling; Chao, Long; He, Fang; Tan, Yueming; Chen, Chao; Xie, Qingji

    2016-05-15

    We report a new protocol for ultrasensitive electrochemical sandwich-type immunosensing, on the basis of signal amplification by gold-label/copper-staining, galvanic replacement reactions (GRRs), and in situ microliter-droplet anodic stripping voltammetry (ASV) after an enhanced cathodic preconcentration of copper. First, a sandwich-type immuno-structure is appropriately assembled at a glassy carbon electrode. Second, copper is selectively stained on the catalytic surfaces of second antibody-conjugated Au nanoparticles through CuSO4-ascorbic acid redox reaction, and the GRRs between HAuCl4 and the stained copper are used to amplify the quantity of copper. Finally, the corresponding antigen is determined based on simultaneous chemical-dissolution/cathodic-preconcentration of copper for in-situ ASV analysis directly at the immunoelectrode. Cyclic voltammetry, electrochemical impedance spectroscopy, quartz crystal microbalance and scanning electron microscopy are used for film characterization and/or process monitoring. Under optimized conditions, ultrasensitive analyses of human immunoglobulin G (IgG) and human carbohydrate antigen 125 (CA125) are achieved. The limits of detection are 0.3 fg mL(-1) (equivalent to 7 IgG molecules in the 6 μL sample employed) for IgG (S/N=3) and 1.3 nU mL(-1) for CA125 (S/N=3), respectively, which are amongst the best reported to date for the two proteins. The theoretical feasibility of such a single-molecule-level amperometric immunoassay is also discussed based on the immunological reaction thermodynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A reduced grade of liver fibro-steatosis after raltegravir, maraviroc and fosamprenavir in an HIV/HCV co-infected patient with chronic hepatitis, cardiomyopathy, intolerance to nelfinavir and a marked increase of serum creatine phosphokinase levels probably related to integrase inhibitor use.

    Science.gov (United States)

    Degli Antoni, A; Weimer, L E; Manfredi, R; Fragola, V; Ferrari, C

    2012-12-01

    The use of new antiretroviral drugs in HIV infection is particularly important in patients with intolerance or resistance to other antiretroviral agents. Raltegravir and maraviroc represent new, important resources in salvage regimens. A reduced grade of liver fibro-steatosis after a combination of raltegravir and maraviroc (second-line) has not been studied and the mechanism by which these new drug classes induced a marked reduction of grade of liver diseases is currently unknown. In the present case report, nested in an ongoing multicentre observational study on the use of new antiretroviral inhibitors in heavy treatment-experienced HIV patients, we evaluated the correlation between a "short therapeutic regimen" raltegravir maraviroc and fosamprenavir and liver diseases. The aim of this report is to describe the use of a three-drug regimen based on two novel-class antiretroviral agents (raltegravir and maraviroc) plus the protease inhibitor fosamprenavir, in an experienced HIV-infected patient with chronic progressive hepatitis C complicated by liver fibrosis; an overwhelming increased serum creatine kinase level occurred during treatment, and is probably related to integrase inhibitor administration. At present no information is available regarding this correlation.

  10. Whey Protein

    Science.gov (United States)

    ... protein daily for 2 years does not improve bone density in postmenopausal women with osteoporosis. Weight loss. Most research suggests that taking whey protein alone, along with diet modifications, or while following an exercise plan does not seem to reduce weight for ...

  11. Protein Extractability

    African Journals Online (AJOL)

    limited to high oleic acid oil and water purification property (Katayon et al., 2006; Foid et al., 2001 and. Folkard et al., 1993), whereas it contains up to. 332.5 g of crude protein per kg of sample (Jose et al., 1999). Studies to characterize the interaction effects of pH and salts on the extraction of. PROTEIN EXTRACTABILITY ...

  12. Tau protein

    DEFF Research Database (Denmark)

    Frederiksen, Jette Lautrup Battistini; Kristensen, Kim; Bahl, Jmc

    2011-01-01

    Background: Tau protein has been proposed as biomarker of axonal damage leading to irreversible neurological impairment in MS. CSF concentrations may be useful when determining risk of progression from ON to MS. Objective: To investigate the association between tau protein concentration and 14......-3-3 protein in the cerebrospinal fluid (CSF) of patients with monosymptomatic optic neuritis (ON) versus patients with monosymptomatic onset who progressed to multiple sclerosis (MS). To evaluate results against data found in a complete literature review. Methods: A total of 66 patients with MS and/or ON from...... the Department of Neurology of Glostrup Hospital, University of Copenhagen, Denmark, were included. CSF samples were analysed for tau protein and 14-3-3 protein, and clinical and paraclinical information was obtained from medical records. Results: The study shows a significantly increased concentration of tau...

  13. Selective staining of CdS on ZnO biolabel for ultrasensitive sandwich-type amperometric immunoassay of human heart-type fatty-acid-binding protein and immunoglobulin G.

    Science.gov (United States)

    Qin, Xiaoli; Xu, Aigui; Liu, Ling; Sui, Yuyun; Li, Yunlong; Tan, Yueming; Chen, Chao; Xie, Qingji

    2017-05-15

    We report on an ultrasensitive metal-labeled amperometric immunoassay of proteins, which is based on the selective staining of nanocrystalline cadmium sulfide (CdS) on ZnO nanocrystals and in-situ microliter-droplet anodic stripping voltammetry (ASV) detection on the immunoelectrode. Briefly, antibody 1 (Ab1), bovine serum albumin (BSA), antigen and ZnO-multiwalled carbon nanotubes (MWCNTs) labeled antibody 2 (Ab2-ZnO-MWCNTs) were successively anchored on a β-cyclodextrin-graphene sheets (CD-GS) nanocomposite modified glassy carbon electrode (GCE), forming a sandwich-type immunoelectrode (Ab2-ZnO-MWCNTs/antigen/BSA/Ab1/CD-GS/GCE). CdS was selectively grown on the catalytic ZnO surfaces through chemical reaction of Cd(NO3)2 and thioacetamide (ZnO-label/CdS-staining), due to the presence of an activated cadmium hydroxide complex on ZnO surfaces that can decompose thioacetamide. A beforehand cathodic "potential control" in air and then injection of 7μL of 0.1M aqueous HNO3 on the immunoelectrode allow dissolution of the stained CdS and simultaneous cathodic preconcentration of atomic Cd onto the electrode surface, thus the following in-situ ASV detection can be used for immunoassay with enhanced sensitivity. Under optimized conditions, human immunoglobulin G (IgG) and human heart-type fatty-acid-binding protein (FABP) are analyzed by this method with ultrahigh sensitivity, excellent selectivity and small reagent-consumption, and the limits of detection (LODs, S/N=3) are 0.4fgmL(-1) for IgG and 0.3fgmL(-1) for FABP (equivalent to 73 FABP molecules in the 6μL sample employed). Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Protein-Protein Interaction Databases

    DEFF Research Database (Denmark)

    Szklarczyk, Damian; Jensen, Lars Juhl

    2015-01-01

    of research are explored. Here we present an overview of the most widely used protein-protein interaction databases and the methods they employ to gather, combine, and predict interactions. We also point out the trade-off between comprehensiveness and accuracy and the main pitfall scientists have to be aware...

  15. Dietary Proteins

    Science.gov (United States)

    ... because your body doesn't store it the way it stores fats or carbohydrates. How much you need depends on your age, sex, health, and level of physical activity. Most Americans eat enough protein in their diet.

  16. Protein Crystallization

    Science.gov (United States)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  17. Calcium-dependent protein kinase CPK31 interacts with arsenic transporter AtNIP1;1 and regulates arsenite uptake in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ruijie Ji

    Full Text Available Although arsenite [As(III] is non-essential and toxic for plants, it is effectively absorbed through various transporters into the roots. Here we identified a calcium-dependent protein kinase (CPK31 response for As(III tolerance in Arabidopsis. We identified CPK31 as an interacting protein of a nodulin 26-like intrinsic protein (NIP1;1, an aquaporin involved in As(III uptake. Similarly to the nip1;1 mutants, the loss-of-function mutants of CPK31 improved the tolerance against As(III but not As(V, and accumulated less As(III in roots than that of the wild-type plants. The promoter-β-glucuronidase and quantitative Real-Time PCR analysis revealed that CPK31 displayed overlapping expression profiles with NIP1;1 in the roots, suggesting that they might function together in roots. Indeed, the cpk31 nip1;1 double mutants exhibited stronger As(III tolerance than cpk31 mutants, but similar to nip1;1 mutants, supporting the idea that CPK31 might serve as an upstream regulator of NIP1;1. Furthermore, transient CPK31 overexpression induced by dexamethasone caused the decrease in As(III tolerance of transgenic Arabidopsis lines. These findings reveal that CPK31 is a key factor in As(III response in plants.

  18. Optimizing HIV-1 protease production in Escherichia coli as fusion protein

    Directory of Open Access Journals (Sweden)

    Piubelli Luciano

    2011-06-01

    Full Text Available Abstract Background Human immunodeficiency virus (HIV is the etiological agent in AIDS and related diseases. The aspartyl protease encoded by the 5' portion of the pol gene is responsible for proteolytic processing of the gag-pol polyprotein precursor to yield the mature capsid protein and the reverse transcriptase and integrase enzymes. The HIV protease (HIV-1Pr is considered an attractive target for designing inhibitors which could be used to tackle AIDS and therefore it is still the object of a number of investigations. Results A recombinant human immunodeficiency virus type 1 protease (HIV-1Pr was overexpressed in Escherichia coli cells as a fusion protein with bacterial periplasmic protein dithiol oxidase (DsbA or glutathione S-transferase (GST, also containing a six-histidine tag sequence. Protein expression was optimized by designing a suitable HIV-1Pr cDNA (for E. coli expression and to avoid autoproteolysis and by screening six different E. coli strains and five growth media. The best expression yields were achieved in E. coli BL21-Codon Plus(DE3-RIL host and in TB or M9 medium to which 1% (w/v glucose was added to minimize basal expression. Among the different parameters assayed, the presence of a buffer system (based on phosphate salts and a growth temperature of 37°C after adding IPTG played the main role in enhancing protease expression (up to 10 mg of chimeric DsbA:HIV-1Pr/L fermentation broth. GST:HIVPr was in part (50% produced as soluble protein while the overexpressed DsbA:HIV-1Pr chimeric protein largely accumulated in inclusion bodies as unprocessed fusion protein. A simple refolding procedure was developed on HiTrap Chelating column that yielded a refolded DsbA:HIV-1Pr with a > 80% recovery. Finally, enterokinase digestion of resolubilized DsbA:HIV-1Pr gave more than 2 mg of HIV-1Pr per liter of fermentation broth with a purity ≤ 80%, while PreScission protease cleavage of soluble GST:HIVPr yielded ~ 0.15 mg of pure HIV-1

  19. Aquaporin Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Jennifer Virginia Roche

    2017-10-01

    Full Text Available Aquaporins are tetrameric membrane-bound channels that facilitate transport of water and other small solutes across cell membranes. In eukaryotes, they are frequently regulated by gating or trafficking, allowing for the cell to control membrane permeability in a specific manner. Protein–protein interactions play crucial roles in both regulatory processes and also mediate alternative functions such as cell adhesion. In this review, we summarize recent knowledge about aquaporin protein–protein interactions; dividing the interactions into three types: (1 interactions between aquaporin tetramers; (2 interactions between aquaporin monomers within a tetramer (hetero-tetramerization; and (3 transient interactions with regulatory proteins. We particularly focus on the structural aspects of the interactions, discussing the small differences within a conserved overall fold that allow for aquaporins to be differentially regulated in an organism-, tissue- and trigger-specific manner. A deep knowledge about these differences is needed to fully understand aquaporin function and regulation in many physiological processes, and may enable design of compounds targeting specific aquaporins for treatment of human disease.

  20. Protein immobilization strategies for protein biochips

    NARCIS (Netherlands)

    Rusmini, F.; Rusmini, Federica; Zhong, Zhiyuan; Feijen, Jan

    2007-01-01

    In the past few years, protein biochips have emerged as promising proteomic and diagnostic tools for obtaining information about protein functions and interactions. Important technological innovations have been made. However, considerable development is still required, especially regarding protein

  1. Exploring the Genome and Proteome of Desulfitobacterium hafniense DCB2 for its Protein Complexes Involved in Metal Reduction and Dechlorination

    Energy Technology Data Exchange (ETDEWEB)

    Sang-Hoon, Kim; Hardzman, Christina; Davis, John k.; Hutcheson, Rachel; Broderick, Joan B.; Marsh, Terence L.; Tiedje, James M.

    2012-09-27

    Desulfitobacteria are of interest to DOE mission because of their ability to reduce many electron acceptors including Fe(III), U(VI), Cr(VI), As(V), Mn(IV), Se(VI), NO3- and well as CO2, sulfite, fumarate and humates, their ability to colonize more stressful environments because they form spores, fix nitrogen and they have the more protective Gram positive cell walls. Furthermore at least some of them reductively dechlorinate aromatic and aliphatic pollutants. Importantly, most of the metals and the organochlorine reductions are coupled to ATP production and support growth providing for the organism's natural selection at DOE's contaminant sites. This work was undertaken to gain insight into the genetic and metabolic pathways involved in dissimilatory metal reduction and reductive dechlorination, (ii) to discern the commonalities among these electron-accepting processes, (iii) to identify multi-protein complexes catalyzing these functions and (iv) to elucidate the coordination in expression of these pathways and processes.

  2. NCBI nr-aa BLAST: CBRC-SARA-01-1986 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-SARA-01-1986 ref|NP_223335.1| INTEGRASE-RECOMBINASE PROTEIN (XERCD FAMILY) [Helicobacter... pylori J99] gb|AAD06197.1| INTEGRASE-RECOMBINASE PROTEIN (XERCD FAMILY) [Helicobacter pylori J99] NP_223335.1 5.2 32% ...

  3. Interaction entropy for protein-protein binding

    Science.gov (United States)

    Sun, Zhaoxi; Yan, Yu N.; Yang, Maoyou; Zhang, John Z. H.

    2017-03-01

    Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interaction entropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interaction entropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.

  4. Learning about Proteins

    Science.gov (United States)

    ... Videos for Educators Search English Español Learning About Proteins KidsHealth / For Kids / Learning About Proteins What's in ... from the foods you eat. Different Kinds of Protein Protein from animal sources, such as meat and ...

  5. Mapping of immunogenic and protein-interacting regions at the surface of the seven-bladed β-propeller domain of the HIV-1 cellular interactor EED

    Directory of Open Access Journals (Sweden)

    Gouet Patrice

    2008-02-01

    Full Text Available Abstract Background The human EED protein, a member of the superfamily of Polycomb group proteins, is involved in multiple cellular protein complexes. Its C-terminal domain, which is common to the four EED isoforms, contains seven repeats of a canonical WD-40 motif. EED is an interactor of three HIV-1 proteins, matrix (MA, integrase (IN and Nef. An antiviral activity has been found to be associated with isoforms EED3 and EED4 at the late stage of HIV-1 replication, due to a negative effect on virus assembly and genomic RNA packaging. The aim of the present study was to determine the regions of the EED C-terminal core domain which were accessible and available to protein interactions, using three-dimensional (3D protein homology modelling with a WD-40 protein of known structure, and epitope mapping of anti-EED antibodies. Results Our data suggested that the C-terminal domain of EED was folded as a seven-bladed β-propeller protein. During the completion of our work, crystallographic data of EED became available from co-crystals of the EED C-terminal core with the N-terminal domain of its cellular partner EZH2. Our 3D-model was in good congruence with the refined structural model determined from crystallographic data, except for a unique α-helix in the fourth β-blade. More importantly, the position of flexible loops and accessible β-strands on the β-propeller was consistent with our mapping of immunogenic epitopes and sites of interaction with HIV-1 MA and IN. Certain immunoreactive regions were found to overlap with the EZH2, MA and IN binding sites, confirming their accessibility and reactivity at the surface of EED. Crystal structure of EED showed that the two discrete regions of interaction with MA and IN did not overlap with each other, nor with the EZH2 binding pocket, but were contiguous, and formed a continuous binding groove running along the lateral face of the β-propeller. Conclusion Identification of antibody-, MA-, IN- and EZH2

  6. Efficient protein alignment algorithm for protein search.

    Science.gov (United States)

    Lu, Zaixin; Zhao, Zhiyu; Fu, Bin

    2010-01-18

    Proteins show a great variety of 3D conformations, which can be used to infer their evolutionary relationship and to classify them into more general groups; therefore protein structure alignment algorithms are very helpful for protein biologists. However, an accurate alignment algorithm itself may be insufficient for effective discovering of structural relationships among tens of thousands of proteins. Due to the exponentially increasing amount of protein structural data, a fast and accurate structure alignment tool is necessary to access protein classification and protein similarity search; however, the complexity of current alignment algorithms are usually too high to make a fully alignment-based classification and search practical. We have developed an efficient protein pairwise alignment algorithm and applied it to our protein search tool, which aligns a query protein structure in the pairwise manner with all protein structures in the Protein Data Bank (PDB) to output similar protein structures. The algorithm can align hundreds of pairs of protein structures in one second. Given a protein structure, the tool efficiently discovers similar structures from tens of thousands of structures stored in the PDB always in 2 minutes in a single machine and 20 seconds in our cluster of 6 machines. The algorithm has been fully implemented and is accessible online at our webserver, which is supported by a cluster of computers. Our algorithm can work out hundreds of pairs of protein alignments in one second. Therefore, it is very suitable for protein search. Our experimental results show that it is more accurate than other well known protein search systems in finding proteins which are structurally similar at SCOP family and superfamily levels, and its speed is also competitive with those systems. In terms of the pairwise alignment performance, it is as good as some well known alignment algorithms.

  7. Small heat shock proteins, protein degradation and protein aggregation diseases

    NARCIS (Netherlands)

    Vos, Michel J.; Zijlstra, Marianne P.; Carra, Serena; Sibon, Ody C. M.; Kampinga, Harm H.

    Small heat shock proteins have been characterized in vitro as ATP-independent molecular chaperones that can prevent aggregation of un- or misfolded proteins and assist in their refolding with the help of ATP-dependent chaperone machines (e. g., the Hsp70 proteins). Comparison of the functionality of

  8. EDITORIAL: Precision proteins Precision proteins

    Science.gov (United States)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  9. Protein docking prediction using predicted protein-protein interface

    Directory of Open Access Journals (Sweden)

    Li Bin

    2012-01-01

    Full Text Available Abstract Background Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. Results We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm, is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. Conclusion We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  10. Our interests in protein-protein interactions

    Indian Academy of Sciences (India)

    protein interactions. Evolution of P-P partnerships. Evolution of P-P structures. Evolutionary dynamics of P-P interactions. Dynamics of P-P interaction network. Host-pathogen interactions. CryoEM mapping of gigantic protein assemblies.

  11. Evolution of protein-protein interactions

    Indian Academy of Sciences (India)

    Evolution of protein-protein interactions · Our interests in protein-protein interactions · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Slide 20.

  12. 24-hour urine protein

    Science.gov (United States)

    Urine protein - 24 hour; Chronic kidney disease - urine protein; Kidney failure - urine protein ... Bladder tumor Heart failure High blood pressure during pregnancy ( preeclampsia ) Kidney disease caused by diabetes, high blood pressure, autoimmune disorders, ...

  13. Protein in diet

    Science.gov (United States)

    Diet - protein ... Protein foods are broken down into parts called amino acids during digestion. The human body needs a ... to eat animal products to get all the protein you need in your diet. Amino acids are ...

  14. Protein-losing enteropathy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007338.htm Protein-losing enteropathy To use the sharing features on this page, please enable JavaScript. Protein-losing enteropathy is an abnormal loss of protein ...

  15. Nanotechnologies in protein microarrays.

    Science.gov (United States)

    Krizkova, Sona; Heger, Zbynek; Zalewska, Marta; Moulick, Amitava; Adam, Vojtech; Kizek, Rene

    2015-01-01

    Protein microarray technology became an important research tool for study and detection of proteins, protein-protein interactions and a number of other applications. The utilization of nanoparticle-based materials and nanotechnology-based techniques for immobilization allows us not only to extend the surface for biomolecule immobilization resulting in enhanced substrate binding properties, decreased background signals and enhanced reporter systems for more sensitive assays. Generally in contemporarily developed microarray systems, multiple nanotechnology-based techniques are combined. In this review, applications of nanoparticles and nanotechnologies in creating protein microarrays, proteins immobilization and detection are summarized. We anticipate that advanced nanotechnologies can be exploited to expand promising fields of proteins identification, monitoring of protein-protein or drug-protein interactions, or proteins structures.

  16. Protein sequence comparison and protein evolution

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, W.R. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Biochemistry

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  17. Protein- protein interaction detection system using fluorescent protein microdomains

    Science.gov (United States)

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  18. Comparing side chain packing in soluble proteins, protein-protein interfaces, and transmembrane proteins.

    Science.gov (United States)

    Gaines, J C; Acebes, S; Virrueta, A; Butler, M; Regan, L; O'Hern, C S

    2018-02-10

    We compare side chain prediction and packing of core and non-core regions of soluble proteins, protein-protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high-resolution crystal structures of these 3 protein classes. We show that the solvent-inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein-protein interfaces and in the membrane-exposed regions of transmembrane proteins can be predicted by the hard-sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent-inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within 30°) up to a relative solvent accessibility, rSASA≲0.3, for all 3 protein classes. Our results show that ≈40% of the interface regions in protein complexes are "core", that is, densely packed with side chain conformations that can be accurately predicted using the hard-sphere model. We propose packing fraction as a metric that can be used to distinguish real protein-protein interactions from designed, non-binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins. © 2018 Wiley Periodicals, Inc.

  19. IGSF9 Family Proteins

    DEFF Research Database (Denmark)

    Hansen, Maria; Walmod, Peter Schledermann

    2013-01-01

    The Drosophila protein Turtle and the vertebrate proteins immunoglobulin superfamily (IgSF), member 9 (IGSF9/Dasm1) and IGSF9B are members of an evolutionarily ancient protein family. A bioinformatics analysis of the protein family revealed that invertebrates contain only a single IGSF9 family gene......, whereas vertebrates contain two to four genes. In cnidarians, the gene appears to encode a secreted protein, but transmembrane isoforms of the protein have also evolved, and in many species, alternative splicing facilitates the expression of both transmembrane and secreted isoforms. In most species......, the longest isoforms of the proteins have the same general organization as the neural cell adhesion molecule family of cell adhesion molecule proteins, and like this family of proteins, IGSF9 family members are expressed in the nervous system. A review of the literature revealed that Drosophila Turtle...

  20. Peptide segments in protein-protein interfaces

    Indian Academy of Sciences (India)

    Prakash

    2006-09-06

    Sep 6, 2006 ... contact surface from the rest of the protein surface have been used to identify the interaction sites (Jones and Thornton. 1997; Neuvirth et al 2004). Protein antigenic sites (epitopes that are recognized by antibodies) could be generally confined to continuous motifs of about 8–24 amino acid residues, or may ...

  1. Surface Mediated Protein Disaggregation

    Science.gov (United States)

    Radhakrishna, Mithun; Kumar, Sanat K.

    2014-03-01

    Preventing protein aggregation is of both biological and industrial importance. Biologically these aggregates are known to cause amyloid type diseases like Alzheimer's and Parkinson's disease. Protein aggregation leads to reduced activity of the enzymes in industrial applications. Inter-protein interactions between the hydrophobic residues of the protein are known to be the major driving force for protein aggregation. In the current paper we show how surface chemistry and curvature can be tuned to mitigate these inter-protein interactions. Our results calculated in the framework of the Hydrophobic-Polar (HP) lattice model show that, inter-protein interactions can be drastically reduced by increasing the surface hydrophobicity to a critical value corresponding to the adsorption transition of the protein. At this value of surface hydrophobicity, proteins lose inter-protein contacts to gain surface contacts and thus the surface helps in reducing the inter-protein interactions. Further, we show that the adsorption of the proteins inside hydrophobic pores of optimal sizes are most efficient both in reducing inter-protein contacts and simultaneously retaining most of the native-contacts due to strong protein-surface interactions coupled with stabilization due to the confinement. Department of Energy (Grant No DE-FG02-11ER46811).

  2. Physics of protein motility and motor proteins

    Science.gov (United States)

    Kolomeisky, Anatoly B.

    2013-09-01

    Motor proteins are enzymatic molecules that transform chemical energy into mechanical motion and work. They are critically important for supporting various cellular activities and functions. In the last 15 years significant progress in understanding the functioning of motor proteins has been achieved due to revolutionary breakthroughs in single-molecule experimental techniques and strong advances in theoretical modelling. However, microscopic mechanisms of protein motility are still not well explained, and the collective efforts of many scientists are needed in order to solve these complex problems. In this special section the reader will find the latest advances on the difficult road to mapping motor proteins dynamics in various systems. Recent experimental developments have allowed researchers to monitor and to influence the activity of single motor proteins with a high spatial and temporal resolution. It has stimulated significant theoretical efforts to understand the non-equilibrium nature of protein motility phenomena. The latest results from all these advances are presented and discussed in this special section. We would like to thank the scientists from all over the world who have reported their latest research results for this special section. We are also grateful to the staff and editors of Journal of Physics: Condensed Matter for their invaluable help in handling all the administrative and refereeing activities. The field of motor proteins and protein motility is fast moving, and we hope that this collection of articles will be a useful source of information in this highly interdisciplinary area. Physics of protein motility and motor proteins contents Physics of protein motility and motor proteinsAnatoly B Kolomeisky Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116 Yuan Zhang, Mirkó Palla, Andrew Sun and Jung-Chi Liao The load dependence of the physical properties of a molecular motor

  3. ASV_SEISMICSHOT500 - Shot Points at 500 Shot Intervals for Seismic Data Collected with Autonomous Surface Vehicle (ASV) IRIS in Apalachicola Bay and St. George Sound, FL.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Office...

  4. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn

    2013-05-01

    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  5. Protein Data Bank (PDB)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Protein Data Bank (PDB) archive is the single worldwide repository of information about the 3D structures of large biological molecules, including proteins and...

  6. Urine protein electrophoresis test

    Science.gov (United States)

    Urine protein electrophoresis; UPEP; Multiple myeloma - UPEP; Waldenström macroglobulinemia - UPEP; Amyloidosis - UPEP ... special paper and apply an electric current. The proteins move and form visible bands. These reveal the ...

  7. Protein electrophoresis - serum

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003540.htm Protein electrophoresis - serum To use the sharing features on ... JavaScript. This lab test measures the types of protein in the fluid (serum) part of a blood ...

  8. Statistical Properties of Protein-Protein Interfaces

    Directory of Open Access Journals (Sweden)

    Mihaly Mezei

    2015-04-01

    Full Text Available The properties of 1172 protein complexes (downloaded from the Protein Data Bank (PDB have been studied based on the concept of circular variance as a buriedness indicator and the concept of mutual proximity as a parameter-free definition of contact. The propensities of residues to be in the protein, on the surface or form contact, as well as residue pairs to form contact were calculated. In addition, the concept of circular variance has been used to compare the ruggedness and shape of the contact surface with the overall surface.

  9. Beneficial effects of adaptive servo-ventilation therapy on albuminuria in patients with heart failure.

    Science.gov (United States)

    Tamura, Yoshikazu; Koyama, Takashi; Watanabe, Hiroyuki; Hosoya, Tomoki; Ito, Hiroshi

    2015-05-01

    Short-duration adaptive servo-ventilation (ASV) therapy can be effective for heart failure (HF) patients. Albuminuria is recognized as a prognostic marker for HF. We investigated whether short-duration and short-term ASV therapy reduced albuminuria in HF patients. Twenty-one consecutive HF patients were divided into two groups: those who tolerated ASV therapy (ASV group, n=14) and those who did not (non-ASV group, n=7). ASV therapy was administered to enrolled patients for 1 week for 2h per day (1h in the morning and 1h in the afternoon). The urinary albumin to creatinine ratio (UACR), urinary 24h norepinephrine (NE) excretion, high-sensitivity C-reactive protein (hs-CRP), and plasma brain natriuretic peptide (BNP) levels were measured before and 1 week after ASV therapy. In the ASV group, but not the non-ASV group, the UACR significantly decreased, together with a decrease in urinary NE and hs-CRP levels. There were significant correlations between the changes in UACR and hs-CRP and between the changes in urinary NE and hs-CRP. Multiple linear regression analyses indicated that ASV use was the strongest predictor of decreased UACR. Albuminuria, urinary NE, and hs-CRP levels reduced in HF patients who could receive short-duration and short-term ASV therapy. Anti-inflammatory effects of ASV therapy may partly mediate the reduction of albuminuria. Copyright © 2014 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  10. Destabilized bioluminescent proteins

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Michael S. (Knoxville, TN); Rakesh, Gupta (New Delhi, IN); Gary, Sayler S. (Blaine, TN)

    2007-07-31

    Purified nucleic acids, vectors and cells containing a gene cassette encoding at least one modified bioluminescent protein, wherein the modification includes the addition of a peptide sequence. The duration of bioluminescence emitted by the modified bioluminescent protein is shorter than the duration of bioluminescence emitted by an unmodified form of the bioluminescent protein.

  11. CSF total protein

    Science.gov (United States)

    CSF total protein is a test to determine the amount of protein in your spinal fluid, also called cerebrospinal fluid (CSF). ... The normal protein range varies from lab to lab, but is typically about 15 to 60 milligrams per deciliter (mg/dL) ...

  12. Protein - Which is Best?

    Science.gov (United States)

    Hoffman, Jay R; Falvo, Michael J

    2004-09-01

    Protein intake that exceeds the recommended daily allowance is widely accepted for both endurance and power athletes. However, considering the variety of proteins that are available much less is known concerning the benefits of consuming one protein versus another. The purpose of this paper is to identify and analyze key factors in order to make responsible recommendations to both the general and athletic populations. Evaluation of a protein is fundamental in determining its appropriateness in the human diet. Proteins that are of inferior content and digestibility are important to recognize and restrict or limit in the diet. Similarly, such knowledge will provide an ability to identify proteins that provide the greatest benefit and should be consumed. The various techniques utilized to rate protein will be discussed. Traditionally, sources of dietary protein are seen as either being of animal or vegetable origin. Animal sources provide a complete source of protein (i.e. containing all essential amino acids), whereas vegetable sources generally lack one or more of the essential amino acids. Animal sources of dietary protein, despite providing a complete protein and numerous vitamins and minerals, have some health professionals concerned about the amount of saturated fat common in these foods compared to vegetable sources. The advent of processing techniques has shifted some of this attention and ignited the sports supplement marketplace with derivative products such as whey, casein and soy. Individually, these products vary in quality and applicability to certain populations. The benefits that these particular proteins possess are discussed. In addition, the impact that elevated protein consumption has on health and safety issues (i.e. bone health, renal function) are also reviewed. Key PointsHigher protein needs are seen in athletic populations.Animal proteins is an important source of protein, however potential health concerns do exist from a diet of protein

  13. Antimicrobial proteins : from old proteins, new tricks

    OpenAIRE

    Smith, Val; Dyrynda, Elisabeth

    2015-01-01

    This review describes the main types of antimicrobial peptides (AMPs) synthesised by crustaceans, primarily those identified in shrimp, crayfish, crab and lobster. It includes an overview of their range of microbicidal activities and the current landscape of our understanding of their gene expression patterns in different body tissues. It further summarises how their expression might change following various types of immune challenges. Included in the review are proteins or protein fragments ...

  14. Protein utilization in correlation to protein intake.

    Science.gov (United States)

    Krajcovicová, M; Dibák, O

    1980-01-01

    In a 14-day experiment, weaned and adult rats were given ad libitum isocaloric diets with a mounting casein content (5, 10, 15, 25 and 40% by weight) and growth parameters of protein biological value, PER and NPR, and the utilization parameters NPU (body protein) and LPU (liver protein) were determined together with phosphoenolpyruvate carboxykinase (gluconeogenetic enzyme) and pyruvate kinase (glycolytic enzyme) activity in the animals' liver. The decrease in all the biological value parameters in weaned rats on 25% and 40% casein diets and in adult rats on 15%, 25% and 40% casein diets shows that these concentrations are too high for the organism. The decrease in PER and diminished weight and body and liver nitrogen increments in both age groups in animals with a low protein intake is evidence that 5% casein is an inadequate concentration. The optimum diet for weaned rats is thus a 15% casein diet and for adult rats a 10% casein diet, as confirmed by the linear correlation between weight increments, body and liver nitrogen and protein intake and also by gluconeogenetic enzyme activity. Under the given experimental conditions the study is a contribution to the determination of optimum physiological doses of proteins.

  15. Highly thermostable fluorescent proteins

    Science.gov (United States)

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2012-05-01

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  16. Protein Function Prediction.

    Science.gov (United States)

    Cruz, Leonardo Magalhães; Trefflich, Sheyla; Weiss, Vinícius Almir; Castro, Mauro Antônio Alves

    2017-01-01

    Protein function is a concept that can have different interpretations in different biological contexts, and the number and diversity of novel proteins identified by large-scale "omics" technologies poses increasingly new challenges. In this review we explore current strategies used to predict protein function focused on high-throughput sequence analysis, as for example, inference based on sequence similarity, sequence composition, structure, and protein-protein interaction. Various prediction strategies are discussed together with illustrative workflows highlighting the use of some benchmark tools and knowledge bases in the field.

  17. Highly thermostable fluorescent proteins

    Science.gov (United States)

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  18. Protein oxidation and peroxidation

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function....... Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides...

  19. Differential Expression and Roles of Secreted Frizzled-Related Protein 5 and the Wingless Homolog Wnt5a in Periodontitis.

    Science.gov (United States)

    Maekawa, T; Kulwattanaporn, P; Hosur, K; Domon, H; Oda, M; Terao, Y; Maeda, T; Hajishengallis, G

    2017-05-01

    The Wingless/integrase-1 (Wnt) family of protein ligands and their functional antagonists, secreted frizzled-related proteins (sFRPs), regulate various biological processes ranging from embryonic development to immunity and inflammation. Wnt5a and sFRP5 comprise a typical ligand/antagonist pair, and the former molecule was recently detected at the messenger RNA (mRNA) level in human periodontitis. The main objective of this study was to investigate the interrelationship of expression of Wnt5a and sFRP5 in human periodontitis (as compared to health) and to determine their roles in inflammation and bone loss in an animal model. We detected both Wnt5a and sFRP5 mRNA in human gingiva, with Wnt5a dominating in diseased and sFRP5 in healthy tissue. Wnt5a and sFRP5 protein colocalized in the gingival epithelium, suggesting epithelial cell expression, which was confirmed in cultured human gingival epithelial cells (HGECs). The HGEC expression of Wnt5a and sFRP5 was differentially regulated by a proinflammatory stimulus (lipopolysaccharide [LPS] from Porphyromonas gingivalis) in a manner consistent with the clinical observations (i.e., LPS upregulated Wnt5a and downregulated sFRP5). In HGECs, exogenously added Wnt5a enhanced whereas sFRP5 inhibited LPS-induced inflammation, as monitored by interleukin 8 production. Consistent with this, local treatment with sFRP5 in mice subjected to ligature-induced periodontitis inhibited inflammation and bone loss, correlating with decreased numbers of osteoclasts in bone tissue sections. As in humans, mouse periodontitis was associated with high expression of Wnt5a and low expression of sFRP5, although this profile was reversed after treatment with sFRP5. In conclusion, we demonstrated a novel reciprocal relationship between sFRP5 and Wnt5a expression in periodontal health and disease, paving the way to clinical investigation of the possibility of using the Wnt5a/sFRP5 ratio as a periodontitis biomarker. Moreover, we showed that sFRP5

  20. Pigment-protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Siegelman, H W

    1980-01-01

    The photosynthetically-active pigment protein complexes of procaryotes and eucaryotes include chlorophyll proteins, carotenochlorophyll proteins, and biliproteins. They are either integral components or attached to photosynthetic membranes. Detergents are frequently required to solubilize the pigment-protein complexes. The membrane localization and detergent solubilization strongly suggest that the pigment-protein complexes are bound to the membranes by hydrophobic interactions. Hydrophobic interactions of proteins are characterized by an increase in entropy. Their bonding energy is directly related to temperature and ionic strength. Hydrophobic-interaction chromatography, a relatively new separation procedure, can furnish an important method for the purification of pigment-protein complexes. Phycobilisome purification and properties provide an example of the need to maintain hydrophobic interactions to preserve structure and function.

  1. Protein solubility modeling

    Science.gov (United States)

    Agena, S. M.; Pusey, M. L.; Bogle, I. D.

    1999-01-01

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.

  2. Packing in protein cores

    Science.gov (United States)

    Gaines, J. C.; Clark, A. H.; Regan, L.; O'Hern, C. S.

    2017-07-01

    Proteins are biological polymers that underlie all cellular functions. The first high-resolution protein structures were determined by x-ray crystallography in the 1960s. Since then, there has been continued interest in understanding and predicting protein structure and stability. It is well-established that a large contribution to protein stability originates from the sequestration from solvent of hydrophobic residues in the protein core. How are such hydrophobic residues arranged in the core; how can one best model the packing of these residues, and are residues loosely packed with multiple allowed side chain conformations or densely packed with a single allowed side chain conformation? Here we show that to properly model the packing of residues in protein cores it is essential that amino acids are represented by appropriately calibrated atom sizes, and that hydrogen atoms are explicitly included. We show that protein cores possess a packing fraction of φ ≈ 0.56 , which is significantly less than the typically quoted value of 0.74 obtained using the extended atom representation. We also compare the results for the packing of amino acids in protein cores to results obtained for jammed packings from discrete element simulations of spheres, elongated particles, and composite particles with bumpy surfaces. We show that amino acids in protein cores pack as densely as disordered jammed packings of particles with similar values for the aspect ratio and bumpiness as found for amino acids. Knowing the structural properties of protein cores is of both fundamental and practical importance. Practically, it enables the assessment of changes in the structure and stability of proteins arising from amino acid mutations (such as those identified as a result of the massive human genome sequencing efforts) and the design of new folded, stable proteins and protein-protein interactions with tunable specificity and affinity.

  3. Expressed protein ligation for a large dimeric protein

    NARCIS (Netherlands)

    Karagöz, G.E.; Sinnige, T; Hsieh, O.; Rüdiger, S.G.D.

    2011-01-01

    Expressed protein ligation (EPL) is a protein engineering tool for post-translational ligation of protein or peptide fragments. This technique allows modification of specific parts of proteins, opening possibilities for incorporating probes for biophysical applications such as nuclear magnetic

  4. Toxic proteins in plants.

    Science.gov (United States)

    Dang, Liuyi; Van Damme, Els J M

    2015-09-01

    Plants have evolved to synthesize a variety of noxious compounds to cope with unfavorable circumstances, among which a large group of toxic proteins that play a critical role in plant defense against predators and microbes. Up to now, a wide range of harmful proteins have been discovered in different plants, including lectins, ribosome-inactivating proteins, protease inhibitors, ureases, arcelins, antimicrobial peptides and pore-forming toxins. To fulfill their role in plant defense, these proteins exhibit various degrees of toxicity towards animals, insects, bacteria or fungi. Numerous studies have been carried out to investigate the toxic effects and mode of action of these plant proteins in order to explore their possible applications. Indeed, because of their biological activities, toxic plant proteins are also considered as potentially useful tools in crop protection and in biomedical applications, such as cancer treatment. Genes encoding toxic plant proteins have been introduced into crop genomes using genetic engineering technology in order to increase the plant's resistance against pathogens and diseases. Despite the availability of ample information on toxic plant proteins, very few publications have attempted to summarize the research progress made during the last decades. This review focuses on the diversity of toxic plant proteins in view of their toxicity as well as their mode of action. Furthermore, an outlook towards the biological role(s) of these proteins and their potential applications is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. PROTEIN - WHICH IS BEST?

    Directory of Open Access Journals (Sweden)

    Michael J. Falvo

    2004-09-01

    Full Text Available Protein intake that exceeds the recommended daily allowance is widely accepted for both endurance and power athletes. However, considering the variety of proteins that are available much less is known concerning the benefits of consuming one protein versus another. The purpose of this paper is to identify and analyze key factors in order to make responsible recommendations to both the general and athletic populations. Evaluation of a protein is fundamental in determining its appropriateness in the human diet. Proteins that are of inferior content and digestibility are important to recognize and restrict or limit in the diet. Similarly, such knowledge will provide an ability to identify proteins that provide the greatest benefit and should be consumed. The various techniques utilized to rate protein will be discussed. Traditionally, sources of dietary protein are seen as either being of animal or vegetable origin. Animal sources provide a complete source of protein (i.e. containing all essential amino acids, whereas vegetable sources generally lack one or more of the essential amino acids. Animal sources of dietary protein, despite providing a complete protein and numerous vitamins and minerals, have some health professionals concerned about the amount of saturated fat common in these foods compared to vegetable sources. The advent of processing techniques has shifted some of this attention and ignited the sports supplement marketplace with derivative products such as whey, casein and soy. Individually, these products vary in quality and applicability to certain populations. The benefits that these particular proteins possess are discussed. In addition, the impact that elevated protein consumption has on health and safety issues (i.e. bone health, renal function are also reviewed

  6. Protein kinesis: The dynamics of protein trafficking and stability

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  7. Protein flexibility as a biosignal.

    Science.gov (United States)

    Zhao, Qinyi

    2010-01-01

    Dynamic properties of a protein are crucial for all protein functions, and those of signaling proteins are closely related to the biological function of living beings. The protein flexibility signal concept can be used to analyze this relationship. Protein flexibility controls the rate of protein conformational change and influences protein function. The modification of protein flexibility results in a change of protein activity. The logical nature of protein flexibility cannot be explained by applying the principles of protein three-dimensional structure theory or conformation concept. Signaling proteins show high protein flexibility. Many properties of signaling can be traced back to the dynamic natures of signaling protein. The action mechanism of volatile anesthetics and universal cellular reactions are related to flexibility in the change of signaling proteins. We conclude that protein dynamics is an enzyme-enhanced process, called dynamicase.

  8. A new activity of anti-HIV and anti-tumor protein GAP31: DNA adenosine glycosidase - Structural and modeling insight into its functions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui-Guang [Department of Biochemistry, New York University School of Medicine, New York, NY 10016 (United States); Huang, Philip L. [American Biosciences, Boston, MA 02114 (United States); Zhang, Dawei; Sun, Yongtao [Department of Biochemistry, New York University School of Medicine, New York, NY 10016 (United States); Chen, Hao-Chia [Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892 (United States); Zhang, John [Department of Chemistry, New York University, New York, NY 10003 (United States); Huang, Paul L. [Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114 (United States); Kong, Xiang-Peng, E-mail: xiangpeng.kong@med.nyu.edu [Department of Biochemistry, New York University School of Medicine, New York, NY 10016 (United States); Lee-Huang, Sylvia, E-mail: sylvia.lee-huang@med.nyu.edu [Department of Biochemistry, New York University School of Medicine, New York, NY 10016 (United States)

    2010-01-01

    We report here the high-resolution atomic structures of GAP31 crystallized in the presence of HIV-LTR DNA oligonucleotides systematically designed to examine the adenosine glycosidase activity of this anti-HIV and anti-tumor plant protein. Structural analysis and molecular modeling lead to several novel findings. First, adenine is bound at the active site in the crystal structures of GAP31 to HIV-LTR duplex DNA with 5' overhanging adenosine ends, such as the 3'-processed HIV-LTR DNA but not to DNA duplex with blunt ends. Second, the active site pocket of GAP31 is ideally suited to accommodate the 5' overhanging adenosine of the 3'-processed HIV-LTR DNA and the active site residues are positioned to perform the adenosine glycosidase activity. Third, GAP31 also removes the 5'-end adenine from single-stranded HIV-LTR DNA oligonucleotide as well as any exposed adenosine, including that of single nucleotide dAMP but not from AMP. Fourth, GAP31 does not de-purinate guanosine from di-nucleotide GT. These results suggest that GAP31 has DNA adenosine glycosidase activity against accessible adenosine. This activity is distinct from the generally known RNA N-glycosidase activity toward the 28S rRNA. It may be an alternative function that contributes to the antiviral and anti-tumor activities of GAP31. These results provide molecular insights consistent with the anti-HIV mechanisms of GAP31 in its inhibition on the integration of viral DNA into the host genome by HIV-integrase as well as irreversible topological relaxation of the supercoiled viral DNA.

  9. A New Activity of Anti-HIV and Anti-tumor Protein GAP31: DNA Adenosine Glycosidase – Structural and Modeling Insight into its Functions

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Huang, P; Zhang, D; Sun, Y; Chen, H; Zhang, J; Huang, P; Kong, X; Lee-Huang, S

    2010-01-01

    We report here the high-resolution atomic structures of GAP31 crystallized in the presence of HIV-LTR DNA oligonucleotides systematically designed to examine the adenosine glycosidase activity of this anti-HIV and anti-tumor plant protein. Structural analysis and molecular modeling lead to several novel findings. First, adenine is bound at the active site in the crystal structures of GAP31 to HIV-LTR duplex DNA with 5' overhanging adenosine ends, such as the 3'-processed HIV-LTR DNA but not to DNA duplex with blunt ends. Second, the active site pocket of GAP31 is ideally suited to accommodate the 5' overhanging adenosine of the 3'-processed HIV-LTR DNA and the active site residues are positioned to perform the adenosine glycosidase activity. Third, GAP31 also removes the 5'-end adenine from single-stranded HIV-LTR DNA oligonucleotide as well as any exposed adenosine, including that of single nucleotide dAMP but not from AMP. Fourth, GAP31 does not de-purinate guanosine from di-nucleotide GT. These results suggest that GAP31 has DNA adenosine glycosidase activity against accessible adenosine. This activity is distinct from the generally known RNA N-glycosidase activity toward the 28S rRNA. It may be an alternative function that contributes to the antiviral and anti-tumor activities of GAP31. These results provide molecular insights consistent with the anti-HIV mechanisms of GAP31 in its inhibition on the integration of viral DNA into the host genome by HIV-integrase as well as irreversible topological relaxation of the supercoiled viral DNA.

  10. Supramolecular Chemistry Targeting Proteins.

    Science.gov (United States)

    van Dun, Sam; Ottmann, Christian; Milroy, Lech-Gustav; Brunsveld, Luc

    2017-10-11

    The specific recognition of protein surface elements is a fundamental challenge in the life sciences. New developments in this field will form the basis of advanced therapeutic approaches and lead to applications such as sensors, affinity tags, immobilization techniques, and protein-based materials. Synthetic supramolecular molecules and materials are creating new opportunities for protein recognition that are orthogonal to classical small molecule and protein-based approaches. As outlined here, their unique molecular features enable the recognition of amino acids, peptides, and even whole protein surfaces, which can be applied to the modulation and assembly of proteins. We believe that structural insights into these processes are of great value for the further development of this field and have therefore focused this Perspective on contributions that provide such structural data.

  11. Computational Protein Design

    DEFF Research Database (Denmark)

    Johansson, Kristoffer Enøe

    Proteins are the major functional group of molecules in biology. The impact of protein science on medicine and chemical productions is rapidly increasing. However, the greatest potential remains to be realized. The fi eld of protein design has advanced computational modeling from a tool of support...... to a central method that enables new developments. For example, novel enzymes with functions not found in natural proteins have been de novo designed to give enough activity for experimental optimization. This thesis presents the current state-of-the-art within computational design methods together...... with a novel method based on probability theory. With the aim of assembling a complete pipeline for protein design, this work touches upon several aspects of protein design. The presented work is the computational half of a design project where the other half is dedicated to the experimental part...

  12. [Erythrocyte membrane proteins].

    Science.gov (United States)

    Delaunay, J

    1977-01-01

    Proteins are important constituents of the red blood cell plasma membrane. Several important breakthroughs have occurred in their analysis over the past few years. SDS-polyacrylamide gel electrophoresis lead to the separation of the major proteins and glycoproteins. Location of most of these proteins -- either on the external, the internal or both surfaces of the membrane -- was determined. The strenght of the binding of the protein to the membrane was established. Hydrophobicity of membrane proteins has so far hindered their purification. However, the major glycoprotein (glycophorin A) was isolated and recently sequenced. The description of several membrane-associated enzyme activities has been followed by some understanding of their specific role in the red blood cell physiology. Abnormalities of glycoproteins, Ca2+-ATPase and of membrane protein phosphorylation have been reported under various conditions: sickle cell disease, hereditary spherocytoses, progressive muscular dystrophy.

  13. Algorithms for protein design.

    Science.gov (United States)

    Gainza, Pablo; Nisonoff, Hunter M; Donald, Bruce R

    2016-08-01

    Computational structure-based protein design programs are becoming an increasingly important tool in molecular biology. These programs compute protein sequences that are predicted to fold to a target structure and perform a desired function. The success of a program's predictions largely relies on two components: first, the input biophysical model, and second, the algorithm that computes the best sequence(s) and structure(s) according to the biophysical model. Improving both the model and the algorithm in tandem is essential to improving the success rate of current programs, and here we review recent developments in algorithms for protein design, emphasizing how novel algorithms enable the use of more accurate biophysical models. We conclude with a list of algorithmic challenges in computational protein design that we believe will be especially important for the design of therapeutic proteins and protein assemblies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Mayaro virus proteins

    Directory of Open Access Journals (Sweden)

    J. M. S. Mezencio

    1993-06-01

    Full Text Available Mayaro virus was grown in BHK-21 cells and purified by centrifugation in a potassium-tartrate gradient (5-50%. The electron microscopy analyses of the purified virus showed an homogeneous population of enveloped particles with 69 ñ 2.3 nm in diameter. Three structural virus proteins were identified and designated pl, p2 and p3. Their average molecular weight were p1, 54 KDa; p2, 50 KDa and p3, 34 KDa. In Mayaro virus infected. Aedes albopictus cells and in BHK-21 infected cells we detected six viral proteins, in wich three of them are the structural virus proteins and the other three were products from processing of precursors of viral proteins, whose molecular weights are 62 KDa, 64 KDa and 110 KDa. The 34 KDa protein was the first viral protein sinthesized at 5 hours post-infection in both cell lines studied.

  15. Pressure cryocooling protein crystals

    Science.gov (United States)

    Kim, Chae Un [Ithaca, NY; Gruner, Sol M [Ithaca, NY

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  16. Protein carbonylation in plants

    DEFF Research Database (Denmark)

    Møller, Ian Max; Havelund, Jesper; Rogowska-Wrzesinska, Adelina

    2017-01-01

    This chapter provides an overview of the current knowledge on protein carbonylation in plants and its role in plant physiology. It starts with a brief outline of the turnover and production sites of reactive oxygen species (ROS) in plants and the causes of protein carbonylation. This is followed...... by a description of the methods used to study protein carbonylation in plants, which is also very brief as the methods are similar to those used in studies on animals. The chapter also focuses on protein carbonylation in plants in general and in mitochondria and in seeds in particular, as case stories where...

  17. Engineering therapeutic protein disaggregases.

    Science.gov (United States)

    Shorter, James

    2016-05-15

    Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD. © 2016 Shorter. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Modular protein domains

    National Research Council Canada - National Science Library

    Cesareni, Giovanni

    2005-01-01

    ... encodes not only sequence, but somehow explicitly specifies folding, structure, and biological function as well. How, then, can one learn to read this 'language of proteins'? One of the most powerful approaches to 'cracking the protein code' has involved sequence comparisons between and within species, a task now greatly simplified by the ever...

  19. Advances in Protein Precipitation

    NARCIS (Netherlands)

    Golubovic, M.

    2009-01-01

    Proteins are biological macromolecules, which are among the key components of all living organisms. Proteins are nowadays present in all fields of biotech industry, such as food and feed, synthetic and pharmaceutical industry. They are isolated from their natural sources or produced in different

  20. Amino acids and proteins

    NARCIS (Netherlands)

    van Goudoever, Johannes B.; Vlaardingerbroek, Hester; van den Akker, Chris H.; de Groof, Femke; van der Schoor, Sophie R. D.

    2014-01-01

    Amino acids and protein are key factors for growth. The neonatal period requires the highest intake in life to meet the demands. Those demands include amino acids for growth, but proteins and amino acids also function as signalling molecules and function as neurotransmitters. Often the nutritional

  1. Poxviral Ankyrin Proteins

    Directory of Open Access Journals (Sweden)

    Michael H. Herbert

    2015-02-01

    Full Text Available Multiple repeats of the ankyrin motif (ANK are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range.

  2. Multidomain proteins under force.

    Science.gov (United States)

    Valle-Orero, Jessica; Rivas-Pardo, Jaime Andrés; Popa, Ionel

    2017-04-28

    Advancements in single-molecule force spectroscopy techniques such as atomic force microscopy and magnetic tweezers allow investigation of how domain folding under force can play a physiological role. Combining these techniques with protein engineering and HaloTag covalent attachment, we investigate similarities and differences between four model proteins: I10 and I91-two immunoglobulin-like domains from the muscle protein titin, and two α + β fold proteins-ubiquitin and protein L. These proteins show a different mechanical response and have unique extensions under force. Remarkably, when normalized to their contour length, the size of the unfolding and refolding steps as a function of force reduces to a single master curve. This curve can be described using standard models of polymer elasticity, explaining the entropic nature of the measured steps. We further validate our measurements with a simple energy landscape model, which combines protein folding with polymer physics and accounts for the complex nature of tandem domains under force. This model can become a useful tool to help in deciphering the complexity of multidomain proteins operating under force.

  3. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    In the post-genomic era, as more and more genome sequences are becoming known and hectic efforts are underway to decode the information content in them, it is becoming increasingly evident that flexibility in proteins plays a crucial role in many of the biological functions. Many proteins have intrinsic disorder either ...

  4. Stability of Hyperthermophilic Proteins

    DEFF Research Database (Denmark)

    Stiefler-Jensen, Daniel

    in the high stability of hyperthermophilic enzymes. The thesis starts with an introduction to the field of protein and enzyme stability with special focus on the thermophilic and hyperthermophilic enzymes and proteins. After the introduction three original research manuscripts present the experimental data...

  5. Protein expression-yeast.

    Science.gov (United States)

    Nielsen, Klaus H

    2014-01-01

    Yeast is an excellent system for the expression of recombinant eukaryotic proteins. Both endogenous and heterologous proteins can be overexpressed in yeast (Phan et al., 2001; Ton and Rao, 2004). Because yeast is easy to manipulate genetically, a strain can be optimized for the expression of a specific protein. Many eukaryotic proteins contain posttranslational modifications that can be performed in yeast but not in bacterial expression systems. In comparison with mammalian cell culture expression systems, growing yeast is both faster and less expensive, and large-scale cultures can be performed using fermentation. While several different yeast expression systems exist, this chapter focuses on the budding yeast Saccharomyces cerevisiae and will briefly describe some options to consider when selecting vectors and tags to be used for protein expression. Throughout this chapter, the expression and purification of yeast eIF3 is shown as an example alongside a general scheme outline. © 2014 Elsevier Inc. All rights reserved.

  6. MicroProteins

    DEFF Research Database (Denmark)

    Eguen, Teinai Ebimienere; Straub, Daniel; Graeff, Moritz

    2015-01-01

    MicroProteins (miPs) are short, usually single-domain proteins that, in analogy to miRNAs, heterodimerize with their targets and exert a dominant-negative effect. Recent bioinformatic attempts to identify miPs have resulted in a list of potential miPs, many of which lack the defining characterist......MicroProteins (miPs) are short, usually single-domain proteins that, in analogy to miRNAs, heterodimerize with their targets and exert a dominant-negative effect. Recent bioinformatic attempts to identify miPs have resulted in a list of potential miPs, many of which lack the defining...... can extend beyond transcription factors (TFs) to encompass different non-TF proteins that require dimerization for full function....

  7. Protein disulfide engineering.

    Science.gov (United States)

    Dombkowski, Alan A; Sultana, Kazi Zakia; Craig, Douglas B

    2014-01-21

    Improving the stability of proteins is an important goal in many biomedical and industrial applications. A logical approach is to emulate stabilizing molecular interactions found in nature. Disulfide bonds are covalent interactions that provide substantial stability to many proteins and conform to well-defined geometric conformations, thus making them appealing candidates in protein engineering efforts. Disulfide engineering is the directed design of novel disulfide bonds into target proteins. This important biotechnological tool has achieved considerable success in a wide range of applications, yet the rules that govern the stabilizing effects of disulfide bonds are not fully characterized. Contrary to expectations, many designed disulfide bonds have resulted in decreased stability of the modified protein. We review progress in disulfide engineering, with an emphasis on the issue of stability and computational methods that facilitate engineering efforts. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Artificially Engineered Protein Polymers.

    Science.gov (United States)

    Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D

    2017-06-07

    Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.

  9. Sensitizing properties of proteins

    DEFF Research Database (Denmark)

    Poulsen, Lars K.; Ladics, Gregory S; McClain, Scott

    2014-01-01

    scientists from academia, government, and industry participated in the symposium. Experts provided overviews on known mechanisms by which proteins in food may cause sensitization, discussed experimental models to predict protein sensitizing potential, and explored whether such experimental techniques may......The scope of allergy risk is diverse considering the myriad ways in which protein allergenicity is affected by physiochemical characteristics of proteins. The complexity created by the matrices of foods and the variability of the human immune system add additional challenges to understanding...... Allergenicity Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, featured presentations on current methods, test systems, research trends, and unanswered questions in the field of protein sensitization. A diverse group of over 70 interdisciplinary...

  10. Sensitizing properties of proteins

    DEFF Research Database (Denmark)

    Poulsen, Lars K.; Ladics, Gregory S; McClain, Scott

    2014-01-01

    The scope of allergy risk is diverse considering the myriad ways in which protein allergenicity is affected by physiochemical characteristics of proteins. The complexity created by the matrices of foods and the variability of the human immune system add additional challenges to understanding...... the relationship between sensitization potential and allergy disease. To address these and other issues, an April 2012 international symposium was held in Prague, Czech Republic, to review and discuss the state-of-the-science of sensitizing properties of protein allergens. The symposium, organized by the Protein...... Allergenicity Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, featured presentations on current methods, test systems, research trends, and unanswered questions in the field of protein sensitization. A diverse group of over 70 interdisciplinary...

  11. [Controversies around diet proteins].

    Science.gov (United States)

    Cichosz, Grazyna; Czeczot, Hanna

    2013-12-01

    Critical theories regarding proteins of anima origin are still and still popularized, though they are ungrounded from scientific point of view. Predominance of soya proteins over the animal ones in relation to their influence on calcium metabolism, bone break risk or risk of osteoporosis morbidity has not been confirmed in any honest, reliable research experiment. Statement, that sulphur amino acids influence disadvantageously on calcium metabolism of human organism and bone status, is completely groundless, the more so as presence of sulphur amino acids in diet (animal proteins are their best source) is the condition of endogenic synthesis of glutathione, the key antioxidant of the organism, and taurine stimulating brain functioning. Deficiency of proteins in the diet produce weakness of intellectual effectiveness and immune response. There is no doubt that limitation of consumption of animal proteins of standard value is not good for health.

  12. Coarse-grain modelling of protein-protein interactions

    NARCIS (Netherlands)

    Baaden, Marc; Marrink, Siewert J.

    2013-01-01

    Here, we review recent advances towards the modelling of protein-protein interactions (PPI) at the coarse-grained (CG) level, a technique that is now widely used to understand protein affinity, aggregation and self-assembly behaviour. PPI models of soluble proteins and membrane proteins are

  13. Swaps in protein sequences.

    Science.gov (United States)

    Fliess, Amit; Motro, Benny; Unger, Ron

    2002-08-01

    An important question in protein evolution is to what extent proteins may have undergone swaps (switches of domain or fragment order) during evolution. Such events might have occurred in several forms: Swaps of short fragments, swaps of structural and functional motifs, or recombination of domains in multidomain proteins. This question is important for the theoretical understanding of the evolution of proteins, and has practical implications for using swaps as a design tool in protein engineering. In order to analyze the question systematically, we conducted a large scale survey of possible swaps and permutations among all pairs of protein from the Swissport database. A swap is defined as a specific kind of sequence mutation between two proteins in which two fragments that appear in both sequences have different relative order in the two sequences. For example, aXbYc and dYeXf are defined as a swap, where X and Y represent sequence fragments that switched their order. Identifying such swaps is difficult using standard sequence comparison packages. One of the main problems in the analysis stems from the fact that many sequences contain repeats, which may be identified as false-positive swaps. We have used two different approaches to detect pairs of proteins with swaps. The first approach is based on the predefined list of domains in Pfam. We identified all the proteins that share at least two domains and analyzed their relative order, looking for pairs in which the order of these domains was switched. We designed an algorithm to distinguish between real swaps and duplications. In the second approach, we used Blast to detect pairs of proteins that share several fragments. Then, we used an automatic procedure to select pairs that are likely to contain swaps. Those pairs were analyzed visually, using a graphical tool, to eliminate duplications. Combining these approaches, about 140 different cases of swaps in the Swissprot database were found (after eliminating

  14. Anchored design of protein-protein interfaces.

    Directory of Open Access Journals (Sweden)

    Steven M Lewis

    Full Text Available Few existing protein-protein interface design methods allow for extensive backbone rearrangements during the design process. There is also a dichotomy between redesign methods, which take advantage of the native interface, and de novo methods, which produce novel binders.Here, we propose a new method for designing novel protein reagents that combines advantages of redesign and de novo methods and allows for extensive backbone motion. This method requires a bound structure of a target and one of its natural binding partners. A key interaction in this interface, the anchor, is computationally grafted out of the partner and into a surface loop on the design scaffold. The design scaffold's surface is then redesigned with backbone flexibility to create a new binding partner for the target. Careful choice of a scaffold will bring experimentally desirable characteristics into the new complex. The use of an anchor both expedites the design process and ensures that binding proceeds against a known location on the target. The use of surface loops on the scaffold allows for flexible-backbone redesign to properly search conformational space.This protocol was implemented within the Rosetta3 software suite. To demonstrate and evaluate this protocol, we have developed a benchmarking set of structures from the PDB with loop-mediated interfaces. This protocol can recover the correct loop-mediated interface in 15 out of 16 tested structures, using only a single residue as an anchor.

  15. Antimicrobial proteins: From old proteins, new tricks.

    Science.gov (United States)

    Smith, Valerie J; Dyrynda, Elisabeth A

    2015-12-01

    This review describes the main types of antimicrobial peptides (AMPs) synthesised by crustaceans, primarily those identified in shrimp, crayfish, crab and lobster. It includes an overview of their range of microbicidal activities and the current landscape of our understanding of their gene expression patterns in different body tissues. It further summarises how their expression might change following various types of immune challenges. The review further considers proteins or protein fragments from crustaceans that have antimicrobial properties but are more usually associated with other biological functions, or are derived from such proteins. It discusses how these unconventional AMPs might be generated at, or delivered to, sites of infection and how they might contribute to crustacean host defence in vivo. It also highlights recent work that is starting to reveal the extent of multi-functionality displayed by some decapod AMPs, particularly their participation in other aspects of host protection. Examples of such activities include proteinase inhibition, phagocytosis, antiviral activity and haematopoiesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Multidomain proteins under force

    Science.gov (United States)

    Valle-Orero, Jessica; Andrés Rivas-Pardo, Jaime; Popa, Ionel

    2017-04-01

    Advancements in single-molecule force spectroscopy techniques such as atomic force microscopy and magnetic tweezers allow investigation of how domain folding under force can play a physiological role. Combining these techniques with protein engineering and HaloTag covalent attachment, we investigate similarities and differences between four model proteins: I10 and I91—two immunoglobulin-like domains from the muscle protein titin, and two α + β fold proteins—ubiquitin and protein L. These proteins show a different mechanical response and have unique extensions under force. Remarkably, when normalized to their contour length, the size of the unfolding and refolding steps as a function of force reduces to a single master curve. This curve can be described using standard models of polymer elasticity, explaining the entropic nature of the measured steps. We further validate our measurements with a simple energy landscape model, which combines protein folding with polymer physics and accounts for the complex nature of tandem domains under force. This model can become a useful tool to help in deciphering the complexity of multidomain proteins operating under force.

  17. Protein oxidation in aquatic foods

    DEFF Research Database (Denmark)

    Baron, Caroline P.

    2014-01-01

    The chapter discusses general considerations about protein oxidation and reviews the mechanisms involved in protein oxidation and consequences of protein oxidation on fish proteins. It presents two case studies, the first deals with protein and lipid oxidation in frozen rainbow trout......, and the second with oxidation in salted herring. The mechanisms responsible for initiation of protein oxidation are unclear, but it is generally accepted that free radical species initiating lipid oxidation can also initiate protein oxidation. The chapter focuses on interaction between protein and lipid...... oxidation. The protein carbonyl group measurement is the widely used method for estimating protein oxidation in foods and has been used in fish muscle. The chapter also talks about the impact of protein oxidation on protein functionality, fish muscle texture, and food nutritional value. Protein oxidation...

  18. Sound of proteins

    DEFF Research Database (Denmark)

    2007-01-01

    In my group we work with Molecular Dynamics to model several different proteins and protein systems. We submit our modelled molecules to changes in temperature, changes in solvent composition and even external pulling forces. To analyze our simulation results we have so far used visual inspection...... and statistical analysis of the resulting molecular trajectories (as everybody else!). However, recently I started assigning a particular sound frequency to each amino acid in the protein, and by setting the amplitude of each frequency according to the movement amplitude we can "hear" whenever two aminoacids...

  19. PDP: protein domain parser.

    Science.gov (United States)

    Alexandrov, Nickolai; Shindyalov, Ilya

    2003-02-12

    We have developed a program for automatic identification of domains in protein three-dimensional structures. Performance of the program was assessed by three different benchmarks: (i) by comparison with the expert-curated SCOP database of structural domains; (ii) by comparison with a collection of manual domain assignments; and (iii) by comparison with a set of 55 proteins, frequently used as a benchmark for automatic domain assignment. In all these benchmarks PDP identified domains correctly in more than 80% of proteins. http://123d.ncifcrf.gov/.

  20. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    2009-01-01

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  1. Designing microcapsules based on protein fibrils and protein - polysaccharide complexes

    NARCIS (Netherlands)

    Hua, K.N.P.

    2012-01-01

    Keywords: encapsulation, microcapsule, protein, fibril, protein-polysaccharide complex, controlled release, interfacial rheology, lysozyme, ovalbumin This thesis describes the design of encapsulation systems using mesostructures from proteins and polysaccharides. The approach was to first

  2. The successive polarographic determination of As(III) and As(V)

    NARCIS (Netherlands)

    Cosijn, A.H.M.; Molen, H.J. van deer

    1958-01-01

    A method has been described for the successive polarographic determination of As(III) and As(V)in a sulphuric acid solution. A directly recorded polarogram shows a limiting current corresponding to the As(III) concentration, another polarogram, recorded with a second sample after reduction of

  3. Control allocation of ASV based on linear programming and fuzzy logic

    Science.gov (United States)

    Chi, Pei; Chen, Zongji; Zhou, Rui

    2006-11-01

    Future Aero Space Vehicle flies through both the atmospheric and extra atmospheric fields, which implies the autonomy and adaptability to the uncertainties from the system faults and changing environments. Algorithms based on fuzzy logic and linear programming are presented, which can implement the autonomous control reconfigurations under uncertainties via the redundant actuators. The compensation branch minimizes the difference between the desired control objectives and the actual achievable control if the control power is deficient. Otherwise the optimization branch optimizes some sub-objectives by utilizing the excess control power. The fuzzy logic-based regulator tunes the weight vector of the objective functions by the expert rules to obtain the optimized allocation results under various environments with considerations of the control effectiveness. It is illustrated that the algorithms can satisfy the control performance, save the fuel and smooth the allocation output.

  4. Arsenic control in process tailings: continuous coprecipitation of As(V) with iron sulphate media

    Energy Technology Data Exchange (ETDEWEB)

    Daenzer, R.; De Klerk, R.J.; Demopoulos, G.P., E-mail: george.demopoulos@mcgill.ca [McGill Univ., Dept. of Mining and Materials Engineering, Montreal, QC (Canada)

    2010-07-01

    Arsenic constitutes a serious environmental problem for the mineral processing industries. The removal of high concentrations of arsenic in the case of uranium milling process effluents is done by adjusting the iron to arsenic molar ratio to four (MFe{sub tot}/MAs=4) and subsequently neutralizing with slaked lime in a continuous coprecipitation (CCPTN) circuit. This paper investigates the production of arsenic-bearing phases though CCPTN from simulated waste process effluents and their long term stability at accelerated conditions. In particular, special attention is given to a two stage continuous reactor set-up. Moreover, the effect of a fraction of total iron as ferrous iron and the presence of co-ions such as nickel and aluminum on the stability of the products was investigated. (author)

  5. Use of Adaptive Support Ventilation (ASV in Ventilator Associated Pneumonia (VAP - A Case Report

    Directory of Open Access Journals (Sweden)

    Bipphy Kath

    2009-01-01

    Full Text Available Prolonged ventilation leads to a higher incidence of ventilator associated pneumonia(VAP resulting in ventilator dependency, increased costs and subsequent weaning failures. Prevention and aggressive treatment of VAP alongwith patient friendly newer modes of ventilation like adaptive support ventilation go a long way in successful management of these cases.

  6. Autonomous Surface Vehicle Sidescan-sonar mosaic from Hotel Bar, Apalachicola Bay, Florida (ASV162.TIF)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal...

  7. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut

    2014-01-01

    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  8. Electron transfer in proteins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1991-01-01

    Electron migration between and within proteins is one of the most prevalent forms of biological energy conversion processes. Electron transfer reactions take place between active centers such as transition metal ions or organic cofactors over considerable distances at fast rates and with remarkable...... specificity. The electron transfer is attained through weak electronic interaction between the active sites, so that considerable research efforts are centered on resolving the factors that control the rates of long-distance electron transfer reactions in proteins. These factors include (in addition......-containing proteins. These proteins serve almost exclusively in electron transfer reactions, and as it turns out, their metal coordination sites are endowed with properties uniquely optimized for their function....

  9. Protein Colloidal Aggregation Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  10. Interactive protein manipulation

    Energy Technology Data Exchange (ETDEWEB)

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  11. Parallel Computational Protein Design.

    Science.gov (United States)

    Zhou, Yichao; Donald, Bruce R; Zeng, Jianyang

    2017-01-01

    Computational structure-based protein design (CSPD) is an important problem in computational biology, which aims to design or improve a prescribed protein function based on a protein structure template. It provides a practical tool for real-world protein engineering applications. A popular CSPD method that guarantees to find the global minimum energy solution (GMEC) is to combine both dead-end elimination (DEE) and A* tree search algorithms. However, in this framework, the A* search algorithm can run in exponential time in the worst case, which may become the computation bottleneck of large-scale computational protein design process. To address this issue, we extend and add a new module to the OSPREY program that was previously developed in the Donald lab (Gainza et al., Methods Enzymol 523:87, 2013) to implement a GPU-based massively parallel A* algorithm for improving protein design pipeline. By exploiting the modern GPU computational framework and optimizing the computation of the heuristic function for A* search, our new program, called gOSPREY, can provide up to four orders of magnitude speedups in large protein design cases with a small memory overhead comparing to the traditional A* search algorithm implementation, while still guaranteeing the optimality. In addition, gOSPREY can be configured to run in a bounded-memory mode to tackle the problems in which the conformation space is too large and the global optimal solution cannot be computed previously. Furthermore, the GPU-based A* algorithm implemented in the gOSPREY program can be combined with the state-of-the-art rotamer pruning algorithms such as iMinDEE (Gainza et al., PLoS Comput Biol 8:e1002335, 2012) and DEEPer (Hallen et al., Proteins 81:18-39, 2013) to also consider continuous backbone and side-chain flexibility.

  12. Protein Nitrogen Determination

    Science.gov (United States)

    Nielsen, S. Suzanne

    The protein content of foods can be determined by numerous methods. The Kjeldahl method and the nitrogen combustion (Dumas) method for protein analysis are based on nitrogen determination. Both methods are official for the purposes of nutrition labeling of foods. While the Kjeldahl method has been used widely for over a hundred years, the recent availability of automated instrumentation for the Dumas method in many cases is replacing use of the Kjeldahl method.

  13. Disease specific protein corona

    Science.gov (United States)

    Rahman, M.; Mahmoudi, M.

    2015-03-01

    It is now well accepted that upon their entrance into the biological environments, the surface of nanomaterials would be covered by various biomacromolecules (e.g., proteins and lipids). The absorption of these biomolecules, so called `protein corona', onto the surface of (nano)biomaterials confers them a new `biological identity'. Although the formation of protein coronas on the surface of nanoparticles has been widely investigated, there are few reports on the effect of various diseases on the biological identity of nanoparticles. As the type of diseases may tremendously changes the composition of the protein source (e.g., human plasma/serum), one can expect that amount and composition of associated proteins in the corona composition may be varied, in disease type manner. Here, we show that corona coated silica and polystyrene nanoparticles (after interaction with in the plasma of the healthy individuals) could induce unfolding of fibrinogen, which promotes release of the inflammatory cytokines. However, no considerable releases of inflammatory cytokines were observed for corona coated graphene sheets. In contrast, the obtained corona coated silica and polystyrene nanoparticles from the hypofibrinogenemia patients could not induce inflammatory cytokine release where graphene sheets do. Therefore, one can expect that disease-specific protein coronas can provide a novel approach for applying nanomedicine to personalized medicine, improving diagnosis and treatment of different diseases tailored to the specific conditions and circumstances.

  14. Fast protein folding kinetics

    Science.gov (United States)

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  15. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  16. Protein: MPA1 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA1 TLR signaling molecules RSAD2 CIG5 Radical S-adenosyl methionine domain-containing protein 2 Cytomegalo...virus-induced gene 5 protein, Viperin, Virus inhibitory protein, endoplasmic reticu

  17. Protein hydrolysates in sports nutrition

    Directory of Open Access Journals (Sweden)

    Manninen Anssi H

    2009-09-01

    Full Text Available Abstract It has been suggested that protein hydrolysates providing mainly di- and tripeptides are superior to intact (whole proteins and free amino acids in terms of skeletal muscle protein anabolism. This review provides a critical examination of protein hydrolysate studies conducted in healthy humans with special reference to sports nutrition. The effects of protein hydrolysate ingestion on blood amino acid levels, muscle protein anabolism, body composition, exercise performance and muscle glycogen resynthesis are discussed.

  18. PROTEIN SYNTHESIS GAME

    Directory of Open Access Journals (Sweden)

    J.C.Q. Carvalho

    2004-05-01

    Full Text Available The theoretical explanation of biological concepts, associated with the use of teaching games andmodels, intensify the comprehension and increase students interest, stimulating them to participateactively on the teaching-learning process. The sta of dissemination from Centro de BiotecnologiaMolecular Estrutural (CBME, in partnership with the Centro de Divulgac~ao Cientca e Cultural(CDCC, presents, in this work, a new educational resource denoted: Protein Synthesis Game. Theapproach of the game involves the cytological aspects of protein synthesis, directed to high schoolstudents. Students are presented to day-by-day facts related to the function of a given protein in thehuman body. Such task leads players to the goal of solving out a problem through synthesizing aspecied protein. The game comprises: (1 a board illustrated with the transversal section of animalcell, with its main structures and organelles and sequences of hypothetical genes; (2 cards with thedescription of steps and other structures required for protein synthesis in eukaryotic cells; (3 piecesrepresenting nucleotides, polynucleotides, ribosome, amino acids, and polypeptide chains. In order toplay the game, students take cards that sequentially permit them to acquire the necessary pieces forproduction of the protein described in each objective. Players must move the pieces on the board andsimulate the steps of protein synthesis. The dynamic of the game allows students to easily comprehendprocesses of transcription and translation. This game was presented to dierent groups of high schoolteachers and students. Their judgments have been heard and indicated points to be improved, whichhelped us with the game development. Furthermore, the opinions colleted were always favorable forthe application of this game as a teaching resource in classrooms.

  19. Bioinformatics and moonlighting proteins

    Directory of Open Access Journals (Sweden)

    Sergio eHernández

    2015-06-01

    Full Text Available Multitasking or moonlighting is the capability of some proteins to execute two or more biochemical functions. Usually, moonlighting proteins are experimentally revealed by serendipity. For this reason, it would be helpful that Bioinformatics could predict this multifunctionality, especially because of the large amounts of sequences from genome projects. In the present work, we analyse and describe several approaches that use sequences, structures, interactomics and current bioinformatics algorithms and programs to try to overcome this problem. Among these approaches are: a remote homology searches using Psi-Blast, b detection of functional motifs and domains, c analysis of data from protein-protein interaction databases (PPIs, d match the query protein sequence to 3D databases (i.e., algorithms as PISITE, e mutation correlation analysis between amino acids by algorithms as MISTIC. Programs designed to identify functional motif/domains detect mainly the canonical function but usually fail in the detection of the moonlighting one, Pfam and ProDom being the best methods. Remote homology search by Psi-Blast combined with data from interactomics databases (PPIs have the best performance. Structural information and mutation correlation analysis can help us to map the functional sites. Mutation correlation analysis can only be used in very specific situations –it requires the existence of multialigned family protein sequences - but can suggest how the evolutionary process of second function acquisition took place. The multitasking protein database MultitaskProtDB (http://wallace.uab.es/multitask/, previously published by our group, has been used as a benchmark for the all of the analyses.

  20. Direct protein-protein conjugation by genetically introducing bioorthogonal functional groups into proteins.

    Science.gov (United States)

    Kim, Sanggil; Ko, Wooseok; Sung, Bong Hyun; Kim, Sun Chang; Lee, Hyun Soo

    2016-11-15

    Proteins often function as complex structures in conjunction with other proteins. Because these complex structures are essential for sophisticated functions, developing protein-protein conjugates has gained research interest. In this study, site-specific protein-protein conjugation was performed by genetically incorporating an azide-containing amino acid into one protein and a bicyclononyne (BCN)-containing amino acid into the other. Three to four sites in each of the proteins were tested for conjugation efficiency, and three combinations showed excellent conjugation efficiency. The genetic incorporation of unnatural amino acids (UAAs) is technically simple and produces the mutant protein in high yield. In addition, the conjugation reaction can be conducted by simple mixing, and does not require additional reagents or linker molecules. Therefore, this method may prove very useful for generating protein-protein conjugates and protein complexes of biochemical significance. Copyright © 2016. Published by Elsevier Ltd.

  1. Benchtop Detection of Proteins

    Science.gov (United States)

    Scardelletti, Maximilian C.; Varaljay, Vanessa

    2007-01-01

    A process, and a benchtop-scale apparatus for implementing the process, have been developed to detect proteins associated with specific microbes in water. The process and apparatus may also be useful for detection of proteins in other, more complex liquids. There may be numerous potential applications, including monitoring lakes and streams for contamination, testing of blood and other bodily fluids in medical laboratories, and testing for microbial contamination of liquids in restaurants and industrial food-processing facilities. A sample can be prepared and analyzed by use of this process and apparatus within minutes, whereas an equivalent analysis performed by use of other processes and equipment can often take hours to days. The process begins with the conjugation of near-infrared-fluorescent dyes to antibodies that are specific to a particular protein. Initially, the research has focused on using near-infrared dyes to detect antigens or associated proteins in solution, which has proven successful vs. microbial cells, and streamlining the technique in use for surface protein detection on microbes would theoretically render similar results. However, it is noted that additional work is needed to transition protein-based techniques to microbial cell detection. Consequently, multiple such dye/antibody pairs could be prepared to enable detection of multiple selected microbial species, using a different dye for each species. When excited by near-infrared light of a suitable wavelength, each dye fluoresces at a unique longer wavelength that differs from those of the other dyes, enabling discrimination among the various species. In initial tests, the dye/antibody pairs are mixed into a solution suspected of containing the selected proteins, causing the binding of the dye/antibody pairs to such suspect proteins that may be present. The solution is then run through a microcentrifuge that includes a membrane that acts as a filter in that it retains the dye/antibody/protein

  2. Self-Assembling Protein Microarrays

    Science.gov (United States)

    Ramachandran, Niroshan; Hainsworth, Eugenie; Bhullar, Bhupinder; Eisenstein, Samuel; Rosen, Benjamin; Lau, Albert Y.; C. Walter, Johannes; LaBaer, Joshua

    2004-07-01

    Protein microarrays provide a powerful tool for the study of protein function. However, they are not widely used, in part because of the challenges in producing proteins to spot on the arrays. We generated protein microarrays by printing complementary DNAs onto glass slides and then translating target proteins with mammalian reticulocyte lysate. Epitope tags fused to the proteins allowed them to be immobilized in situ. This obviated the need to purify proteins, avoided protein stability problems during storage, and captured sufficient protein for functional studies. We used the technology to map pairwise interactions among 29 human DNA replication initiation proteins, recapitulate the regulation of Cdt1 binding to select replication proteins, and map its geminin-binding domain.

  3. Changes in protein composition and protein phosphorylation during ...

    African Journals Online (AJOL)

    Changes in protein profiles and protein phosphorylation were studied in various stages of germinating somatic and zygotic embryos. Many proteins, which were expressed in cotyledonary stage somatic embryos, were also present in the zygotic embryos obtained from mature dry seed. The intensity of 22 kDa protein was ...

  4. Electrochemical nanomoulding through proteins

    Science.gov (United States)

    Allred, Daniel B.

    The continued improvements in performance of modern electronic devices are directly related to the manufacturing of smaller, denser features on surfaces. Electrochemical fabrication has played a large role in continuing this trend due to its low cost and ease of scaleability toward ever smaller dimensions. This work introduces the concept of using proteins, essentially monodisperse complex polymers whose three-dimensional structures are fixed by their encoded amino acid sequences, as "moulds" around which nanostructures can be built by electrochemical fabrication. Bacterial cell-surface layer proteins, or "S-layer" proteins, from two organisms---Deinococcus radiodurans and Sporosarcina ureae---were used as the "moulds" for electrochemical fabrication. The proteins are easily purified as micron-sized sheets of periodic molecular complexes with 18-nm hexagonal and 13-nm square unit cell lattices, respectively. Direct imaging by transmission electron microscopy on ultrathin noble metal films without sample preparation eliminates potential artifacts to the high surface energy substrates necessary for high nucleation densities. Characterization involved imaging, electron diffraction, spectroscopy, and three-dimensional reconstruction. The S-layer protein of D. radiodurans was further subjected to an atomic force microscope based assay to determine the integrity of its structure and long-range order and was found to be useful for fabrication from around pH 3 to 12.

  5. Protein Denaturation in Foam.

    Science.gov (United States)

    Clarkson; Cui; Darton

    1999-07-15

    The aim of this study was to elucidate the mechanism by which protein molecules become denatured in foam. It was found that damage to the protein is mainly due to surface denaturation at the gas-liquid interface. A fraction of the molecules adsorbed do not refold to their native state when they desorb. The degree of denaturation was found to correlate directly with the interfacial exposure, which, for mobile or partially mobile interfaces, is increased by drainage. Experiments with two different proteins showed that, under the conditions of the tests, around 10% of BSA molecules which had adsorbed at the surface remained denatured when they desorbed. For pepsin the figure was around 75%. Oxidation, which was previously thought to be a major cause of protein damage in foam, was found to be minimal. Neither do the high shear stresses in the liquid bulk encountered during bubble bursting cause denaturation, because energy is dissipated at a much greater length scale than that of the protein molecule. Copyright 1999 Academic Press.

  6. Protein (Cyanobacteria): 654346314 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available protein Mastigocoleus testarum MLEQIELKPNWERNQVAFLDFIVNGTSLHDQFDHPQVRDLCTVFTSDQYEFDGKSSAAIHASWFLGYGETPFPDDRIPVYICSSGDFDCGTVTAYLTVNDGTIKWSEFRIERLTEELQDQPIELTSVKQCVFERNAYEKLFQPFLRKVID

  7. Protein (Cyanobacteria): 654344406 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available protein Mastigocoleus testarum MNKTWRVYLSGEIHTDWREQIEAGTKAAGLPVSFAAPVTDHASSDACGAEILGPEENEFWFDNKGAKVNAIRTSTLIKDADIVVVRFGDKYKQWNAAFDAGYAAALGKPIITLHDAELRHPLKEVDGAALAWAQEPSQVVRLLKYVIEGTL

  8. Polarizable protein packing

    KAUST Repository

    Ng, Albert H.

    2011-01-24

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol -1] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 Copyright © 2011 Wiley Periodicals, Inc.

  9. Thermodynamics of Protein Aggregation

    Science.gov (United States)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  10. Thermal hysteresis proteins.

    Science.gov (United States)

    Barrett, J

    2001-02-01

    Extreme environments present a wealth of biochemical adaptations. Thermal hysteresis proteins (THPs) have been found in vertebrates, invertebrates, plants, bacteria and fungi and are able to depress the freezing point of water (in the presence of ice crystals) in a non-colligative manner by binding to the surface of nascent ice crystals. The THPs comprise a disparate group of proteins with a variety of tertiary structures and often no common sequence similarities or structural motifs. Different THPs bind to different faces of the ice crystal, and no single mechanism has been proposed to account for THP ice binding affinity and specificity. Experimentally THPs have been used in the cryopreservation of tissues and cells and to induce cold tolerance in freeze susceptible organisms. THPs represent a remarkable example of parallel and convergent evolution with different proteins being adapted for an anti-freeze role.

  11. Accessory Proteins at ERES

    DEFF Research Database (Denmark)

    Klinkenberg, Rafael David

    proteins. Together these components co‐operate in cargo‐selection as well as forming, loading and releasing budding vesicles from specific regions on the membrane surface of the ER. Coat components furthermore convey vesicle targeting towards the Golgi. However, not much is known about the mechanisms...... that regulate the COPII assembly at the vesicle bud site. This thesis provides the first regulatory mechanism of COPII assembly in relation to ER‐membrane lipid‐signal recognition by the accessory protein p125A (Sec23IP). The aim of the project was to characterize p125A function by dissecting two main domains...... in the protein; a putative lipid‐associating domain termed the DDHD domain that is defined by the four amino acid motif that gives the domain its name; and a ubiquitously found domain termed Sterile α‐motif (SAM), which is mostly associated with oligomerization and polymerization. We first show, that the DDHD...

  12. Matricellular proteins and biomaterials.

    Science.gov (United States)

    Morris, Aaron H; Kyriakides, Themis R

    2014-07-01

    Biomaterials are essential to modern medicine as components of reconstructive implants, implantable sensors, and vehicles for localized drug delivery. Advances in biomaterials have led to progression from simply making implants that are nontoxic to making implants that are specifically designed to elicit particular functions within the host. The interaction of implants and the extracellular matrix during the foreign body response is a growing area of concern for the field of biomaterials, because it can lead to implant failure. Expression of matricellular proteins is modulated during the foreign body response and these proteins interact with biomaterials. The design of biomaterials to specifically alter the levels of matricellular proteins surrounding implants provides a new avenue for the design and fabrication of biomimetic biomaterials. Copyright © 2014 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  13. Trisulfides in Proteins

    DEFF Research Database (Denmark)

    Nielsen, Rasmus W.; Tachibana, Christine; Hansen, Niels Erik

    2011-01-01

    Trisulfides and other oligosulfides are widely distributed in the biological world. In plants, e.g., garlic, trisulfides are associated with potentially beneficial properties. However, an extra neutral sulfur atom covalently bound between the two sulfur atoms of a pair of cysteines is not a commo...... post-translational modification, and the number of proteins in which a trisulfide has been unambiguously identified is small. Nevertheless, we believe that its prevalence may be underestimated, particularly with the increasing evidence for significant pools of sulfides in living tissues...... and their possible roles in cellular metabolism. This review focuses on examples of proteins that are known to contain a trisulfide bridge, and gives an overview of the chemistry of trisulfide formation, and the methods by which it is detected in proteins....

  14. Epistasis in protein evolution

    Science.gov (United States)

    Starr, Tyler N.

    2016-01-01

    Abstract The structure, function, and evolution of proteins depend on physical and genetic interactions among amino acids. Recent studies have used new strategies to explore the prevalence, biochemical mechanisms, and evolutionary implications of these interactions—called epistasis—within proteins. Here we describe an emerging picture of pervasive epistasis in which the physical and biological effects of mutations change over the course of evolution in a lineage‐specific fashion. Epistasis can restrict the trajectories available to an evolving protein or open new paths to sequences and functions that would otherwise have been inaccessible. We describe two broad classes of epistatic interactions, which arise from different physical mechanisms and have different effects on evolutionary processes. Specific epistasis—in which one mutation influences the phenotypic effect of few other mutations—is caused by direct and indirect physical interactions between mutations, which nonadditively change the protein's physical properties, such as conformation, stability, or affinity for ligands. In contrast, nonspecific epistasis describes mutations that modify the effect of many others; these typically behave additively with respect to the physical properties of a protein but exhibit epistasis because of a nonlinear relationship between the physical properties and their biological effects, such as function or fitness. Both types of interaction are rampant, but specific epistasis has stronger effects on the rate and outcomes of evolution, because it imposes stricter constraints and modulates evolutionary potential more dramatically; it therefore makes evolution more contingent on low‐probability historical events and leaves stronger marks on the sequences, structures, and functions of protein families. PMID:26833806

  15. Protein biosynthesis in mitochondria.

    Science.gov (United States)

    Kuzmenko, A V; Levitskii, S A; Vinogradova, E N; Atkinson, G C; Hauryliuk, V; Zenkin, N; Kamenski, P A

    2013-08-01

    Translation, that is biosynthesis of polypeptides in accordance with information encoded in the genome, is one of the most important processes in the living cell, and it has been in the spotlight of international research for many years. The mechanisms of protein biosynthesis in bacteria and in the eukaryotic cytoplasm are now understood in great detail. However, significantly less is known about translation in eukaryotic mitochondria, which is characterized by a number of unusual features. In this review, we summarize current knowledge about mitochondrial translation in different organisms while paying special attention to the aspects of this process that differ from cytoplasmic protein biosynthesis.

  16. Water-transporting proteins

    DEFF Research Database (Denmark)

    Zeuthen, Thomas

    2010-01-01

    Transport through lipids and aquaporins is osmotic and entirely driven by the difference in osmotic pressure. Water transport in cotransporters and uniporters is different: Water can be cotransported, energized by coupling to the substrate flux by a mechanism closely associated with protein...... is not clear. It is associated with the substrate movements in aqueous pathways within the protein; a conventional unstirred layer mechanism can be ruled out, due to high rates of diffusion in the cytoplasm. The physiological roles of the various modes of water transport are reviewed in relation to epithelial...

  17. Cold gelation of globular proteins

    NARCIS (Netherlands)

    Alting, A.C.

    2003-01-01

    Keywords : globular proteins, whey protein, ovalbumin, cold gelation, disulfide bonds, texture, gel hardnessProtein gelation in food products is important to obtain desirable sensory and textural properties. Cold gelation is a novel method to produce protein-based gels. It is a two step process in

  18. The Formation of Protein Structure

    DEFF Research Database (Denmark)

    Bohr, Jakob; Bohr, Henrik; Brunak, Søren

    1996-01-01

    Dynamically induced curvature owing to long-range excitations along the backbones of protein molecules with non-linear elastic properties may control the folding of proteins.......Dynamically induced curvature owing to long-range excitations along the backbones of protein molecules with non-linear elastic properties may control the folding of proteins....

  19. A simple dependence between protein evolution rate and the number of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Hirsh Aaron E

    2003-05-01

    Full Text Available Abstract Background It has been shown for an evolutionarily distant genomic comparison that the number of protein-protein interactions a protein has correlates negatively with their rates of evolution. However, the generality of this observation has recently been challenged. Here we examine the problem using protein-protein interaction data from the yeast Saccharomyces cerevisiae and genome sequences from two other yeast species. Results In contrast to a previous study that used an incomplete set of protein-protein interactions, we observed a highly significant correlation between number of interactions and evolutionary distance to either Candida albicans or Schizosaccharomyces pombe. This study differs from the previous one in that it includes all known protein interactions from S. cerevisiae, and a larger set of protein evolutionary rates. In both evolutionary comparisons, a simple monotonic relationship was found across the entire range of the number of protein-protein interactions. In agreement with our earlier findings, this relationship cannot be explained by the fact that proteins with many interactions tend to be important to yeast. The generality of these correlations in other kingdoms of life unfortunately cannot be addressed at this time, due to the incompleteness of protein-protein interaction data from organisms other than S. cerevisiae. Conclusions Protein-protein interactions tend to slow the rate at which proteins evolve. This may be due to structural constraints that must be met to maintain interactions, but more work is needed to definitively establish the mechanism(s behind the correlations we have observed.

  20. Modelling of proteins in membranes

    DEFF Research Database (Denmark)

    Sperotto, Maria Maddalena; May, S.; Baumgaertner, A.

    2006-01-01

    This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly...... affected by the lipid environment. Theoretical predictions are pointed out, and compared to experimental findings, if available. Among others, the following phenomena are discussed: interactions of interfacially adsorbed peptides, pore-forming amphipathic peptides, adsorption of charged proteins onto...... oppositely charged lipid membranes, lipid-induced tilting of proteins embedded in lipid bilayers, protein-induced bilayer deformations, protein insertion and assembly, and lipid-controlled functioning of membrane proteins....

  1. Protein degradation systems in platelets.

    Science.gov (United States)

    Kraemer, B F; Weyrich, A S; Lindemann, S

    2013-11-01

    Protein synthesis and degradation are essential processes that allow cells to survive and adapt to their surrounding milieu. In nucleated cells, the degradation and/or cleavage of proteins is required to eliminate aberrant proteins. Cells also degrade proteins as a mechanism for cell signalling and complex cellular functions. Although the last decade has convincingly shown that platelets synthesise proteins, the roles of protein degradation in these anucleate cytoplasts are less clear. Here we review what is known about protein degradation in platelets placing particular emphasis on the proteasome and the cysteine protease calpain.

  2. Truly Absorbed Microbial Protein Synthesis, Rumen Bypass Protein, Endogenous Protein, and Total Metabolizable Protein from Starchy and Protein-Rich Raw Materials

    NARCIS (Netherlands)

    Parand, Ehsan; Vakili, Alireza; Mesgaran, Mohsen Danesh; Duinkerken, Van Gert; Yu, Peiqiang

    2015-01-01

    This study was carried out to measure truly absorbed microbial protein synthesis, rumen bypass protein, and endogenous protein loss, as well as total metabolizable protein, from starchy and protein-rich raw feed materials with model comparisons. Predictions by the DVE2010 system as a more

  3. Protein requirements of Penaeid shrimp.

    OpenAIRE

    Kanazawa, A

    1989-01-01

    Proteins are indispensable nutrients for growth and maintenance of live of all animals. The optimum protein levels in diets for shrimps are different among the various species. Squid meal is an effective protein source for many penaeids. The effects of dietary protein, lipid, and carbohydrate levels on the growth and survival of larvae of Penaeus japonicus were examined by feeding trials using purified diet with carrageenan as a binder. As a result, the effects of protein levels on growth and...

  4. Protein oxidation and ageing

    DEFF Research Database (Denmark)

    Linton, S; Davies, Michael Jonathan; Dean, R T

    2001-01-01

    of redox-active metal ions that could catalyse oxidant formation. As a result of this decrease in antioxidant defences, and increased rate of ROS formation, it is possible that the impact of ROS increases with age. ROS are known to oxidise biological macromolecules, with proteins an important target...

  5. Thermodynamics of meat proteins

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2012-01-01

    We describe the water activity of meat, being a mixture of proteins, salts and water, by the Free-Volume-Flory–Huggins (FVFH) theory augmented with the equation. Earlier, the FVFH theory is successfully applied to describe the thermodynamics to glucose homopolymers like starch, dextrans and

  6. Protein digestion in ruminants

    African Journals Online (AJOL)

    Animal Nutrition, Animal and Dairy Science Research Institute, Irene, 1675Republic of South Africa. Although the protein requirement of domestic ruminants may be calculated from a simple one-compartment model, this approach ignores factors such as microbial fermentation in the rumen and the non-equality of feed.

  7. Protein Sorting Prediction

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2017-01-01

    Many computational methods are available for predicting protein sorting in bacteria. When comparing them, it is important to know that they can be grouped into three fundamentally different approaches: signal-based, global-property-based and homology-based prediction. In this chapter, the strengt...

  8. Allosteric Regulation of Proteins

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 1. Allosteric Regulation of Proteins: A Historical Perspective on the Development of Concepts and Techniques. General Article Volume 22 Issue 1 January 2017 pp 37-50 ...

  9. Markers of protein oxidation

    DEFF Research Database (Denmark)

    Headlam, Henrietta A; Davies, Michael Jonathan

    2004-01-01

    Exposure of proteins to radicals in the presence of O2 gives both side-chain oxidation and backbone fragmentation. These processes can be interrelated, with initial side-chain oxidation giving rise to backbone damage via transfer reactions. We have shown previously that alkoxyl radicals formed on...

  10. Protein digestion in ruminants

    African Journals Online (AJOL)

    acids absorbed into the circulation of the animal. Ideally, therefore, the biological value of a feed protein should be determined from the amount and type of amino acid appearing in the portal circulation of the animal, and not simplythe dissappearance of amino acids from the tract. Ruminant digestion may be more easily ...

  11. Antifreeze Proteins of Bacteria

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. Antifreeze Proteins of Bacteria. M K Chattopadhyay. General Article Volume 12 Issue 12 December 2007 pp 25-30. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/012/12/0025-0030. Keywords.

  12. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    Unknown

    2005-01-03

    Jan 3, 2005 ... deposition of data and advanced search on the pattern of PDB.12. Detailed characterization of the unfolded state and consequent identification of the folding initiation sites in a given protein provide valuable insight into its folding mechanism.18 Well-formed or transient residual structures in the unfolded ...

  13. Protein Requirements during Aging

    Directory of Open Access Journals (Sweden)

    Glenda Courtney-Martin

    2016-08-01

    Full Text Available Protein recommendations for elderly, both men and women, are based on nitrogen balance studies. They are set at 0.66 and 0.8 g/kg/day as the estimated average requirement (EAR and recommended dietary allowance (RDA, respectively, similar to young adults. This recommendation is based on single linear regression of available nitrogen balance data obtained at test protein intakes close to or below zero balance. Using the indicator amino acid oxidation (IAAO method, we estimated the protein requirement in young adults and in both elderly men and women to be 0.9 and 1.2 g/kg/day as the EAR and RDA, respectively. This suggests that there is no difference in requirement on a gender basis or on a per kg body weight basis between younger and older adults. The requirement estimates however are ~40% higher than the current protein recommendations on a body weight basis. They are also 40% higher than our estimates in young men when calculated on the basis of fat free mass. Thus, current recommendations may need to be re-assessed. Potential rationale for this difference includes a decreased sensitivity to dietary amino acids and increased insulin resistance in the elderly compared with younger individuals.

  14. Protein: CAD [Trypanosomes Database

    Lifescience Database Archive (English)

    Full Text Available CAD carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotaseCAD... trifunctional proteincarbamoylphosphate synthetase 2/aspartate transcarbamylase/dihydroorotasemultifunctional protein CAD... H.sapiens 47458828 18105007 790 P27708 CAD_(gene) 2.1.3.2|3.5.2.3|6.3.5.5 114010 2p22-p21 hsa00250|hsa00240 ...

  15. Measuring protein breakdown in individual proteins in vivo

    DEFF Research Database (Denmark)

    Holm, Lars; Kjær, Michael

    2010-01-01

    be used to determine the breakdown rate of specific proteins and, therefore, do not keep up to the preceding methodological demands in physiological research. A newly developed approach to determine the fractional breakdown rate of single proteins seems promising. Its conceptual advantage......PURPOSE OF REVIEW: To outline different approaches of how protein breakdown can be quantified and to present a new approach to determine the fractional breakdown rate of individual slow turnover proteins in vivo. RECENT FINDINGS: None of the available methods for determining protein breakdown can...... is that the proteins of interest are the site of measurement. Hence, the application initially demands the proteins to be labeled with stable isotopically labeled amino acids. Subsequently, the loss of label from the proteins will be dependent on the protein breakdown rate when no labeled amino acids...

  16. Interaction between plate make and protein in protein crystallisation screening.

    Directory of Open Access Journals (Sweden)

    Gordon J King

    Full Text Available BACKGROUND: Protein crystallisation screening involves the parallel testing of large numbers of candidate conditions with the aim of identifying conditions suitable as a starting point for the production of diffraction quality crystals. Generally, condition screening is performed in 96-well plates. While previous studies have examined the effects of protein construct, protein purity, or crystallisation condition ingredients on protein crystallisation, few have examined the effect of the crystallisation plate. METHODOLOGY/PRINCIPAL FINDINGS: We performed a statistically rigorous examination of protein crystallisation, and evaluated interactions between crystallisation success and plate row/column, different plates of same make, different plate makes and different proteins. From our analysis of protein crystallisation, we found a significant interaction between plate make and the specific protein being crystallised. CONCLUSIONS/SIGNIFICANCE: Protein crystal structure determination is the principal method for determining protein structure but is limited by the need to produce crystals of the protein under study. Many important proteins are difficult to crystallize, so that identification of factors that assist crystallisation could open up the structure determination of these more challenging targets. Our findings suggest that protein crystallisation success may be improved by matching a protein with its optimal plate make.

  17. Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation.

    Science.gov (United States)

    Lee, Young-Ho; Stallcup, Michael R

    2009-04-01

    Endocrine regulation frequently culminates in altered transcription of specific genes. The signal transduction pathways, which transmit the endocrine signal from cell surface to the transcription machinery, often involve posttranslational modifications of proteins. Although phosphorylation has been by far the most widely studied protein modification, recent studies have indicated important roles for other types of modification, including protein arginine methylation. Ten different protein arginine methyltransferase (PRMT) family members have been identified in mammalian cells, and numerous substrates are being identified for these PRMTs. Whereas major attention has been focused on the methylation of histones and its role in chromatin remodeling and transcriptional regulation, there are many nonhistone substrates methylated by PRMTs. This review primarily focuses on recent progress on the roles of the nonhistone protein methylation in transcription. Protein methylation of coactivators, transcription factors, and signal transducers, among other proteins, plays important roles in transcriptional regulation. Protein methylation may affect protein-protein interaction, protein-DNA or protein-RNA interaction, protein stability, subcellular localization, or enzymatic activity. Thus, protein arginine methylation is critical for regulation of transcription and potentially for various physiological/pathological processes.

  18. HIV protein sequence hotspots for crosstalk with host hub proteins.

    Directory of Open Access Journals (Sweden)

    Mahdi Sarmady

    Full Text Available HIV proteins target host hub proteins for transient binding interactions. The presence of viral proteins in the infected cell results in out-competition of host proteins in their interaction with hub proteins, drastically affecting cell physiology. Functional genomics and interactome datasets can be used to quantify the sequence hotspots on the HIV proteome mediating interactions with host hub proteins. In this study, we used the HIV and human interactome databases to identify HIV targeted host hub proteins and their host binding partners (H2. We developed a high throughput computational procedure utilizing motif discovery algorithms on sets of protein sequences, including sequences of HIV and H2 proteins. We identified as HIV sequence hotspots those linear motifs that are highly conserved on HIV sequences and at the same time have a statistically enriched presence on the sequences of H2 proteins. The HIV protein motifs discovered in this study are expressed by subsets of H2 host proteins potentially outcompeted by HIV proteins. A large subset of these motifs is involved in cleavage, nuclear localization, phosphorylation, and transcription factor binding events. Many such motifs are clustered on an HIV sequence in the form of hotspots. The sequential positions of these hotspots are consistent with the curated literature on phenotype altering residue mutations, as well as with existing binding site data. The hotspot map produced in this study is the first global portrayal of HIV motifs involved in altering the host protein network at highly connected hub nodes.

  19. Fragments of protein A eluted during protein A affinity chromatography.

    Science.gov (United States)

    Carter-Franklin, Jayme N; Victa, Corazon; McDonald, Paul; Fahrner, Robert

    2007-09-07

    Protein A affinity chromatography is a common method for process scale purification of monoclonal antibodies. During protein A affinity chromatography, protein A ligand co-elutes with the antibody (commonly called leaching), which is a potential disadvantage since the leached protein A may need to be cleared for pharmaceutical antibodies. To determine the mechanism of protein A leaching and characterize the leached protein A, we fluorescently labeled the protein A ligand in situ on protein A affinity chromatography media. We found that intact protein A leaches when loading either purified antibody or unpurified antibody in harvested cell culture fluid (HCCF), and that additionally fragments of protein A leach when loading HCCF. The leaching of protein A fragments can be reduced by EDTA, suggesting that proteinases contribute to the generation of protein A fragments. We found that protein A fragments larger than about 6000 Da can be measured by enzyme linked immunosorbent assay, and that they can be more difficult to clear than whole protein A by cation-exchange chromatography.

  20. Exploring NMR ensembles of calcium binding proteins: Perspectives to design inhibitors of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Craescu Constantin T

    2011-05-01

    Full Text Available Abstract Background Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding. Results In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces. Conclusions NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions.

  1. Iron Oxide Nanoparticle Delivery of Peptides to the Brain: Reversal of Anxiety during Drug Withdrawal

    Science.gov (United States)

    Vinzant, Nathan; Scholl, Jamie L.; Wu, Chia-Ming; Kindle, Trevor; Koodali, Ranjit; Forster, Gina L.

    2017-01-01

    Targeting neuropeptide systems is important for future advancements in treatment of neurological and psychiatric illnesses. However, many of the peptides and their analogs do not cross the blood-brain barrier (BBB) efficiently. Nanoparticles such as iron oxide can cross the BBB, and here we describe a novel method for the conjugation of a peptide antisauvagine-30 (ASV-30) to iron oxide nanoparticles. Previous research has shown that direct infusion of ASV-30 into the brain reduces anxiety-like behavior in animal models via actions on corticotropin releasing factor type 2 (CRF2) receptors. Therefore, we tested whether iron oxide+ASV-30 complexes cross the BBB of rats and then determined whether iron oxide+ASV-30 nanoparticles are localized with CRF2-expressing neurons. Finally we tested the hypothesis that systemic infusion of iron oxide+ASV-30 can reduce anxiety-like behavior. First we describe the synthesis and demonstrate the stability of iron oxide-peptide nanoparticle complexes. Next, nanoparticles (87.7 μg/kg Fe2O3) with or without ASV-30 (200 μg/kg, ip) were injected into male rats 30 min prior to transcardial perfusion and brain fixation for immunohistochemical analysis, or before testing on the elevated plus maze (EPM) in an amphetamine withdrawal model of anxiety. Systemically administered iron oxide+ASV-30 particles were present in the brain and associated with neurons, including those that express CRF2 receptors, but did not localize with the iron storage protein ferritin. Furthermore, systemic administration of ironoxide+ASV-30 reduced amphetamine withdrawal-induced anxiety without affecting locomotion, suggesting that the anxiolytic effects of ASV-30 were preserved and the bioavailability of ASV-30 was sufficient. The findings demonstrate a novel approach to peptide delivery across the BBB and provide insight as to the neural distribution and efficacy of this nanotechnology. PMID:29163012

  2. Iron Oxide Nanoparticle Delivery of Peptides to the Brain: Reversal of Anxiety during Drug Withdrawal

    Directory of Open Access Journals (Sweden)

    Nathan Vinzant

    2017-11-01

    Full Text Available Targeting neuropeptide systems is important for future advancements in treatment of neurological and psychiatric illnesses. However, many of the peptides and their analogs do not cross the blood-brain barrier (BBB efficiently. Nanoparticles such as iron oxide can cross the BBB, and here we describe a novel method for the conjugation of a peptide antisauvagine-30 (ASV-30 to iron oxide nanoparticles. Previous research has shown that direct infusion of ASV-30 into the brain reduces anxiety-like behavior in animal models via actions on corticotropin releasing factor type 2 (CRF2 receptors. Therefore, we tested whether iron oxide+ASV-30 complexes cross the BBB of rats and then determined whether iron oxide+ASV-30 nanoparticles are localized with CRF2-expressing neurons. Finally we tested the hypothesis that systemic infusion of iron oxide+ASV-30 can reduce anxiety-like behavior. First we describe the synthesis and demonstrate the stability of iron oxide-peptide nanoparticle complexes. Next, nanoparticles (87.7 μg/kg Fe2O3 with or without ASV-30 (200 μg/kg, ip were injected into male rats 30 min prior to transcardial perfusion and brain fixation for immunohistochemical analysis, or before testing on the elevated plus maze (EPM in an amphetamine withdrawal model of anxiety. Systemically administered iron oxide+ASV-30 particles were present in the brain and associated with neurons, including those that express CRF2 receptors, but did not localize with the iron storage protein ferritin. Furthermore, systemic administration of ironoxide+ASV-30 reduced amphetamine withdrawal-induced anxiety without affecting locomotion, suggesting that the anxiolytic effects of ASV-30 were preserved and the bioavailability of ASV-30 was sufficient. The findings demonstrate a novel approach to peptide delivery across the BBB and provide insight as to the neural distribution and efficacy of this nanotechnology.

  3. Inferring protein function by domain context similarities in protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    Sun Zhirong

    2009-12-01

    Full Text Available Abstract Background Genome sequencing projects generate massive amounts of sequence data but there are still many proteins whose functions remain unknown. The availability of large scale protein-protein interaction data sets makes it possible to develop new function prediction methods based on protein-protein interaction (PPI networks. Although several existing methods combine multiple information resources, there is no study that integrates protein domain information and PPI networks to predict protein functions. Results The domain context similarity can be a useful index to predict protein function similarity. The prediction accuracy of our method in yeast is between 63%-67%, which outperforms the other methods in terms of ROC curves. Conclusion This paper presents a novel protein function prediction method that combines protein domain composition information and PPI networks. Performance evaluations show that this method outperforms existing methods.

  4. High quality protein microarray using in situ protein purification

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-08-01

    Full Text Available Abstract Background In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC. This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays. Results Two slide surfaces were examined, chelated Cu2+ slides suspended on a polyethylene glycol (PEG coating and chelated Ni2+ slides immobilized on a support without PEG coating. Using PEG-coated chelated Cu2+ slides, consistently higher purities of recombinant proteins were measured. An optimized wash buffer (PBST composed of 10 mM phosphate buffer, 2.7 mM KCl, 140 mM NaCl and 0.05% Tween 20, pH 7.4, further improved protein purity levels. Using Escherichia coli cell lysates expressing 90 recombinant Streptococcus pneumoniae proteins, 73 proteins were successfully immobilized, and 66 proteins were in situ purified with greater than 90% purity. We identified several antigens among the in situ-purified proteins via assays with anti-S. pneumoniae rabbit antibodies and a human patient antiserum, as a demonstration project of large scale microarray-based immunoproteomics profiling. The methodology is compatible with higher throughput formats of in vivo protein expression, eliminates the need for resin-based purification and circumvents

  5. Metabolism of minor isoforms of prion proteins: Cytosolic prion protein and transmembrane prion protein

    OpenAIRE

    Song, Zhiqi; Zhao, Deming; Yang, Lifeng

    2013-01-01

    Transmissible spongiform encephalopathy or prion disease is triggered by the conversion from cellular prion protein to pathogenic prion protein. Growing evidence has concentrated on prion protein configuration changes and their correlation with prion disease transmissibility and pathogenicity. In vivo and in vitro studies have shown that several cytosolic forms of prion protein with specific topological structure can destroy intracellular stability and contribute to prion protein pathogenicit...

  6. Shape complementarity and hydrogen bond preferences in protein-protein interfaces: implications for antibody modeling and protein-protein docking.

    Science.gov (United States)

    Kuroda, Daisuke; Gray, Jeffrey J

    2016-08-15

    Characterizing protein-protein interfaces and the hydrogen bonds is a first step to better understand proteins' structures and functions toward high-resolution protein design. However, there are few large-scale surveys of hydrogen bonds of interfaces. In addition, previous work of shape complementarity of protein complexes suggested that lower shape complementarity in antibody-antigen interfaces is related to their evolutionary origin. Using 6637 non-redundant protein-protein interfaces, we revealed peculiar features of various protein complex types. In contrast to previous findings, the shape complementarity of antibody-antigen interfaces resembles that of the other interface types. These results highlight the importance of hydrogen bonds during evolution of protein interfaces and rectify the prevailing belief that antibodies have lower shape complementarity. jgray@jhu.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Dairy Proteins and Energy Balance

    DEFF Research Database (Denmark)

    Bendtsen, Line Quist

    High protein diets affect energy balance beneficially through decreased hunger, enhanced satiety and increased energy expenditure. Dairy products are a major source of protein. Dairy proteins are comprised of two classes, casein (80%) and whey proteins (20%), which are both of high quality......, but casein is absorbed slowly and whey is absorbed rapidly. The present PhD study investigated the effects of total dairy proteins, whey, and casein, on energy balance and the mechanisms behind any differences in the effects of the specific proteins. The results do not support the hypothesis that dairy...... proteins, whey or casein are more beneficial than other protein sources in the regulation of energy balance, and suggest that dairy proteins, whey or casein seem to play only a minor role, if any, in the prevention and treatment of obesity....

  8. Discovering Protein-Protein Interactions Using Nucleic Acid Programmable Protein Arrays.

    Science.gov (United States)

    Tang, Yanyang; Qiu, Ji; Machner, Matthias; LaBaer, Joshua

    2017-03-03

    We have developed a protocol enabling the study of protein-protein interactions (PPIs) at the proteome level using in vitro-synthesized proteins. Assay preparation requires molecular cloning of the query gene into a vector that supports in vitro transcription/translation (IVTT) and appends a HaloTag to the query protein of interest. In parallel, protein microarrays are prepared by printing plasmids encoding glutathione S-transferase (GST)-tagged target proteins onto a carrier matrix/glass slide coated with antibody directed against GST. At the time of the experiment, the query protein and the target protein are produced separately through IVTT. The query protein is then applied to nucleic acid programmable protein arrays (NAPPA) that display thousands of freshly produced target proteins captured by anti-GST antibody. Interactions between the query and immobilized target proteins are detected through addition of a fluorophore-labeled HaloTag ligand. Our protocol allows the elucidation of PPIs in a high-throughput fashion using proteins produced in vitro, obviating the scientific challenges, high cost, and laborious work, as well as concerns about protein stability, which are usually present in protocols using conventional protein arrays. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  9. Circular dichroism spectroscopy of fluorescent proteins

    NARCIS (Netherlands)

    Visser, N.V.; Hink, M.A.; Borst, J.W.; Krogt, van der G.N.M.; Visser, A.J.W.G.

    2002-01-01

    Circular dichroism (CD) spectra have been obtained from several variants of green fluorescent protein: blue fluorescent protein (BFP), enhanced cyan fluorescent protein (CFP), enhanced green fluorescent protein (GFP), enhanced yellow fluorescent protein (YFP), all from Aequorea victoria, and the red

  10. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  11. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  12. Problems in Protein Biosynthesis

    Science.gov (United States)

    Lengyel, Peter

    1966-01-01

    Outline of the steps in protein synthesis. Nature of the genetic code. The use of synthetic oligo- and polynucleotides in deciphering the code. Structure of the code: relatedness of synonym codons. The wobble hypothesis. Chain initiation and N-formyl-methionine. Chain termination and nonsense codons. Mistakes in translation: ambiguity in vitro. Suppressor mutations resulting in ambiguity. Limitations in the universality of the code. Attempts to determine the particular codons used by a species. Mechanisms of suppression, caused by (a) abnormal aminoacyl-tRNA, (b) ribosomal malfunction. Effect of streptomycin. The problem of "reading" a nucleic acid template. Different ribosomal mutants and DNA polymerase mutants might cause different mistakes. The possibility of involvement of allosteric proteins in template reading. PMID:5338560

  13. Accessory Proteins at ERES

    DEFF Research Database (Denmark)

    Klinkenberg, Rafael David

    distribution of mSec16B. We further dissect both mSec16A and mSec16B, and show that the region in human mSec16B encompassing residues 35‐194 and the region in human mSec16A comprising residues 1096‐1190 maintain membrane binding irrespective of the removal of membrane associating proteins by salt wash...... or proteolytic digestion. However, neither mSec16B (35‐194) nor mSec16A (1096‐1190) maintain ERES targeting. These findings support previous observations of the need for the membrane binding regions to be expressed in cis with a Central Conserved Domain (CCD) in both proteins to convey ERES targeting....

  14. Porcine prion protein amyloid

    OpenAIRE

    Hammarstr?m, Per; Nystr?m, Sofie

    2015-01-01

    ABSTRACT Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat...

  15. Engineering ancestral protein hyperstability.

    Science.gov (United States)

    Romero-Romero, M Luisa; Risso, Valeria A; Martinez-Rodriguez, Sergio; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M

    2016-10-15

    Many experimental analyses and proposed scenarios support that ancient life was thermophilic. In congruence with this hypothesis, proteins encoded by reconstructed sequences corresponding to ancient phylogenetic nodes often display very high stability. Here, we show that such 'reconstructed ancestral hyperstability' can be further engineered on the basis of a straightforward approach that uses exclusively information afforded by the ancestral reconstruction process itself. Since evolution does not imply continuous progression, screening of the mutations between two evolutionarily related resurrected ancestral proteins may identify mutations that further stabilize the most stable one. To explore this approach, we have used a resurrected thioredoxin corresponding to the last common ancestor of the cyanobacterial, Deinococcus and Thermus groups (LPBCA thioredoxin), which has a denaturation temperature of ∼123°C. This high value is within the top 0.1% of the denaturation temperatures in the ProTherm database and, therefore, achieving further stabilization appears a priori as a challenging task. Nevertheless, experimental comparison with a resurrected thioredoxin corresponding to the last common ancestor of bacteria (denaturation temperature of ∼115°C) immediately identifies three mutations that increase the denaturation temperature of LPBCA thioredoxin to ∼128°C. Comparison between evolutionarily related resurrected ancestral proteins thus emerges as a simple approach to expand the capability of ancestral reconstruction to search sequence space for extreme protein properties of biotechnological interest. The fact that ancestral sequences for many phylogenetic nodes can be derived from a single alignment of modern sequences should contribute to the general applicability of this approach. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  16. Immunoprecipitation-based analysis of protein-protein interactions.

    Science.gov (United States)

    Speth, Corinna; Toledo-Filho, Luis A A; Laubinger, Sascha

    2014-01-01

    Several techniques allow the detection of protein-protein interactions. In vivo co-immunoprecipitation (Co-IP) studies are an important complement to other commonly used techniques such as yeast two-hybrid or fluorescence complementation, as they reveal interactions between functional proteins at physiological relevant concentrations. Here, we describe an in vivo Co-IP approach using either GFP affinity matrix or specific antibodies to purify proteins of interests and their interacting partners.

  17. Neutron protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    X-ray diffraction of single crystal has enriched the knowledge of various biological molecules such as proteins, DNA, t-RNA, viruses, etc. It is difficult to make structural analysis of hydrogen atoms in a protein using X-ray crystallography, whereas neutron diffraction seems usable to directly determine the location of those hydrogen atoms. Here, neutron diffraction method was applied to structural analysis of hen egg-white lysozyme. Since the crystal size of a protein to analyze is generally small (5 mm{sup 3} at most), the neutron beam at the sample position in monochromator system was set to less than 5 x 5 mm{sup 2} and beam divergence to 0.4 degree or less. Neutron imaging plate with {sup 6}Li or Gd mixed with photostimulated luminescence material was used and about 2500 Bragg reflections were recorded in one crystal setting. A total of 38278 reflections for 2.0 A resolution were collected in less than 10 days. Thus, stereo views of Trp-111 omit map around the indol ring of Trp-111 was presented and the three-dimensional arrangement of 696H and 264D atoms in the lysozyme molecules was determined using the omit map. (M.N.)

  18. Metabolism of minor isoforms of prion proteins: Cytosolic prion protein and transmembrane prion protein

    Science.gov (United States)

    Song, Zhiqi; Zhao, Deming; Yang, Lifeng

    2013-01-01

    Transmissible spongiform encephalopathy or prion disease is triggered by the conversion from cellular prion protein to pathogenic prion protein. Growing evidence has concentrated on prion protein configuration changes and their correlation with prion disease transmissibility and pathogenicity. In vivo and in vitro studies have shown that several cytosolic forms of prion protein with specific topological structure can destroy intracellular stability and contribute to prion protein pathogenicity. In this study, the latest molecular chaperone system associated with endoplasmic reticulum-associated protein degradation, the endoplasmic reticulum resident protein quality-control system and the ubiquitination proteasome system, is outlined. The molecular chaperone system directly correlates with the prion protein degradation pathway. Understanding the molecular mechanisms will help provide a fascinating avenue for further investigations on prion disease treatment and prion protein-induced neurodegenerative diseases. PMID:25206608

  19. Understanding Protein Non-Folding

    Science.gov (United States)

    Uversky, Vladimir N.; Dunker, A. Keith

    2010-01-01

    This review describes the family of intrinsically disordered proteins, members of which fail to form rigid 3-D structures under physiological conditions, either along their entire lengths or only in localized regions. Instead, these intriguing proteins/regions exist as dynamic ensembles within which atom positions and backbone Ramachandran angles exhibit extreme temporal fluctuations without specific equilibrium values. Many of these intrinsically disordered proteins are known to carry out important biological functions which, in fact, depend on the absence of specific 3-D structure. The existence of such proteins does not fit the prevailing structure-function paradigm, which states that unique 3-D structure is a prerequisite to function. Thus, the protein structure-function paradigm has to be expanded to include intrinsically disordered proteins and alternative relationships among protein sequence, structure, and function. This shift in the paradigm represents a major breakthrough for biochemistry, biophysics and molecular biology, as it opens new levels of understanding with regard to the complex life of proteins. This review will try to answer the following questions: How were intrinsically disordered proteins discovered? Why don't these proteins fold? What is so special about intrinsic disorder? What are the functional advantages of disordered proteins/regions? What is the functional repertoire of these proteins? What are the relationships between intrinsically disordered proteins and human diseases? PMID:20117254

  20. Regulation of protein function by ‘microProteins'

    OpenAIRE

    Staudt, Annica-Carolin; Wenkel, Stephan

    2010-01-01

    Elegant post-translational regulation is achieved by ‘microProteins', which form homotypic dimers with their targets and act through the dominant–negative suppression of protein complex function. The recent identification of new microProteins suggests their role is general and has evolved in both the plant and animal kingdoms.

  1. Digestion of protein and protein gels in simulated gastric environment

    NARCIS (Netherlands)

    Luo, Q.; Boom, R.M.; Janssen, A.E.M.

    2015-01-01

    Despite the increasing attention to food digestion research, food scientists still need to better understand the underlying mechanisms of digestion. Most in vitro studies on protein digestion are based on experiments with protein solutions. In this study, the digestion of egg white protein and whey

  2. Molecular simulations of lipid-mediated protein-protein interactions

    NARCIS (Netherlands)

    de Meyer, F.J.M.; Venturoli, M.; Smit, B.

    2008-01-01

    Recent experimental results revealed that lipid-mediated interactions due to hydrophobic forces may be important in determining the protein topology after insertion in the membrane, in regulating the protein activity, in protein aggregation and in signal transduction. To gain insight into the

  3. The interface of protein structure, protein biophysics, and molecular evolution

    Science.gov (United States)

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  4. Utilization of soya protein as an alternative protein source in ...

    African Journals Online (AJOL)

    In contrast, no significant differences were found in feed and protein utilization parameters. For carcass trait, ash, crude fat, and energy varied significantly with soya protein incorporation in fish diet. Concerning organoleptic characteristics, odour and texture in mouth were not affected by incorporation of soya protein in diet.

  5. Protein engineering techniques gateways to synthetic protein universe

    CERN Document Server

    Poluri, Krishna Mohan

    2017-01-01

    This brief provides a broad overview of protein-engineering research, offering a glimpse of the most common experimental methods. It also presents various computational programs with applications that are widely used in directed evolution, computational and de novo protein design. Further, it sheds light on the advantages and pitfalls of existing methodologies and future perspectives of protein engineering techniques.

  6. Recent excitements in protein NMR: Large proteins and biologically ...

    Indian Academy of Sciences (India)

    The advent of Transverse Relaxation Optimized SpectroscopY (TROSY) and perdeuteration allowed biomolecularNMR spectroscopists to overcome the size limitation barrier (~20 kDa) in de novo structure determination of proteins.The utility of these techniques was immediately demonstrated on large proteins and protein ...

  7. Protein stress and stress proteins: implications in aging and disease

    Indian Academy of Sciences (India)

    2007-04-02

    Apr 2, 2007 ... Environmantal stress induces damage that activates an adaptive response in any organism. The cellular stress response is based on the induction of cytoprotective proteins, the so called stress or heat shock proteins. The stress response as well as stress proteins are ubiquitous, highly conserved ...

  8. Multiple cellular proteins interact with LEDGF/p75 through a conserved unstructured consensus motif

    Czech Academy of Sciences Publication Activity Database

    Těšina, Petr; Čermáková, K.; Hořejší, Magdalena; Procházková, Kateřina; Fábry, Milan; Sharma, S.; Christ, F.; Demeulemeester, J.; Debyser, Z.; De Rijck, J.; Veverka, Václav; Řezáčová, Pavlína

    2015-01-01

    Roč. 6, Aug (2015), 7968/1-7968/14 ISSN 2041-1723 R&D Projects: GA MŠk(CZ) LK11205; GA MŠk(CZ) 7E08066; GA MŠk(CZ) LO1304; GA MŠk LO1302 EU Projects: European Commission(XE) 201032 - THINC Institutional support: RVO:61388963 ; RVO:68378050 Keywords : LEDGF/p75 * PogZ * JPO2 * PSIP1 * IWS1 * H3K36me3 * integrase Subject RIV: CE - Biochemistry Impact factor: 11.329, year: 2015

  9. Multiple cellular proteins interact with LEDGF/p75 through a conserved unstructured consensus motif

    Czech Academy of Sciences Publication Activity Database

    Těšina, Petr; Čermáková, K.; Hořejší, M.; Procházková, K.; Fábry, Milan; Sharma, S.; Christ, F.; Demeulemeester, J.; Debyser, Z.; De Rijck, J.; Veverka, V.; Řezáčová, Pavlína

    2015-01-01

    Roč. 6, Aug (2015), 7968/1-7968/14 ISSN 2041-1723 R&D Projects: GA MŠk(CZ) LK11205; GA MŠk(CZ) 7E08066; GA MŠk(CZ) LO1304; GA MŠk LO1302 EU Projects: European Commission 201032 Institutional support: RVO:61388963 ; RVO:68378050 Keywords : LEDGF/p75 * PogZ * JPO2 * PSIP1 * IWS1 * H3K36me3 * integrase Subject RIV: EB - Genetics ; Molecular Biology; CE - Biochemistry (UOCHB-X) Impact factor: 11.329, year: 2015

  10. Protein: MPA1 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available feron stimulator, Mediator of IRF3 activation, Stimulator of interferon genes protein 9606 Homo sapiens Q86WV6 340061 ... ...MPA1 TLR signaling molecules TMEM173 ERIS, MITA, STING Transmembrane protein 173 Endoplasmic reticulum inter

  11. Epitope tagging of recombinant proteins.

    Science.gov (United States)

    Brizzard, B; Chubet, R

    2001-05-01

    Epitope tagging is a method of expressing proteins whereby an epitope for a specific monoclonal antibody is fused to a target protein using recombinant DNA techniques. The fusion gene is cloned into an appropriate expression vector for the experimental cell type and host cells are transfected. The fusion protein can then be detected and/or purified using a monoclonal antibody specific for the epitope tag. This unit presents protocols for detection and purification of proteins tagged with a particular epitope, the FLAG tag, although the same general approach can be applied to other epitope tags. The protocols in this unit employ the anti-FLAG M2 antibody to detect and purify FLAG-tagged proteins. The methods presented are immunoprecipitation of FLAG fusion proteins from cells using an anti-FLAG M2 affinity gel, detection of FLAG fusion proteins by western blotting, and purification of FLAG fusion proteins by anti-FLAG M2 affinity chromatography.

  12. Protein: FBA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA3 Atg1 kinase complex TOR1 DRR1 Serine/threonine-protein kinase TOR1 Dominant rapamycin... resistance protein 1, Phosphatidylinositol kinase homolog TOR1, Target of rapamycin kinase 1 559292

  13. Functional aspects of protein flexibility

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan G; Kragelund, Birthe B

    2009-01-01

    Proteins are dynamic entities, and they possess an inherent flexibility that allows them to function through molecular interactions within the cell, among cells and even between organisms. Appreciation of the non-static nature of proteins is emerging, but to describe and incorporate...... this into an intuitive perception of protein function is challenging. Flexibility is of overwhelming importance for protein function, and the changes in protein structure during interactions with binding partners can be dramatic. The present review addresses protein flexibility, focusing on protein-ligand interactions....... The thermodynamics involved are reviewed, and examples of structure-function studies involving experimentally determined flexibility descriptions are presented. While much remains to be understood about protein flexibility, it is clear that it is encoded within their amino acid sequence and should be viewed...

  14. Protein Linked to Atopic Dermatitis

    Science.gov (United States)

    ... Research Matters January 14, 2013 Protein Linked to Atopic Dermatitis Normal skin from a mouse (left) shows no ... that lack of a certain protein may trigger atopic dermatitis, the most common type of eczema. The finding ...

  15. Protein-ECE MEtallopincer Hybrids

    NARCIS (Netherlands)

    Kruithof, C.A.

    2007-01-01

    Modification of proteins with metal complexes is a promising and a relatively new field which conceals many challenges and potential applications. The field is a balance of contributions from the biological (protein engineering, bioconjugation) and chemical sciences (organic, inorganic and

  16. Leptospira Protein Expression During Infection

    Science.gov (United States)

    We are characterizing protein expression in vivo during experimental leptospirosis using immunofluorescence microscopy. Coding regions for several proteins were identified through analysis of Leptospira interrogans serovar Copenhageni and L. borgpetersenii serovar Hardjo genomes. In addition, codi...

  17. Yeast Interacting Proteins Database: YJL199C, YJL199C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available d in closely related Saccharomyces species; protein detected in large-scale protein-protein interaction studies...cies; protein detected in large-scale protein-protein interaction studies Rows with this prey as prey (4) Ro...n; not conserved in closely related Saccharomyces species; protein detected in large-scale protein-protein interaction studies... species; protein detected in large-scale protein-protein interaction studies Rows with this prey as prey Ro

  18. Protein: MPA6 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA6 Adionectin and its receptors Adipoq Acdc, Acrp30, Apm1 Adiponectin 30 kDa adipocyte complement-relate...d protein, Adipocyte complement-related 30 kDa protein, Adipocyte, C1q and collagen domain-containing prote...in, Adipocyte-specific protein AdipoQ 10090 Mus musculus 11450 Q60994 1C28, 1C3H Q60994 18446001, 19788607 ...

  19. Dipolar response of hydrated proteins

    OpenAIRE

    Matyushov, Dmitry V.

    2011-01-01

    The paper presents an analytical theory and numerical simulations of the dipolar response of hydrated proteins. The effective dielectric constant of the solvated protein, representing the average dipole moment induced at the protein by a uniform external field, shows a remarkable variation among the proteins studied by numerical simulations. It changes from 0.5 for ubiquitin to 640 for cytochrome c. The former value implies a negative dipolar susceptibility of ubiquitin, that is a dia-electri...

  20. Protein corona: Opportunities and challenges

    Science.gov (United States)

    Zanganeh, Saeid; Spitler, Ryan; Erfanzadeh, Mohsen; Alkilany, Alaaldin M.; Mahmoudi, Morteza

    2017-01-01

    In contact with biological fluids diverse type of biomolecules (e.g., proteins) adsorb onto nanoparticles forming protein corona. Surface properties of the coated nanoparticles, in terms of type and amount of associated proteins, dictate their interactions with biological systems and thus biological fate, therapeutic efficiency and toxicity. In this perspective, we will focus on the recent advances and pitfalls in the protein corona field. PMID:26783938

  1. The papillomavirus E2 proteins.

    Science.gov (United States)

    McBride, Alison A

    2013-10-01

    The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein. Published by Elsevier Inc.

  2. Protein corona: Opportunities and challenges.

    Science.gov (United States)

    Zanganeh, Saeid; Spitler, Ryan; Erfanzadeh, Mohsen; Alkilany, Alaaldin M; Mahmoudi, Morteza

    2016-06-01

    In contact with biological fluids diverse type of biomolecules (e.g., proteins) adsorb onto nanoparticles forming protein corona. Surface properties of the coated nanoparticles, in terms of type and amount of associated proteins, dictate their interactions with biological systems and thus biological fate, therapeutic efficiency and toxicity. In this perspective, we will focus on the recent advances and pitfalls in the protein corona field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A Novel Approach for Protein-Named Entity Recognition and Protein-Protein Interaction Extraction

    Directory of Open Access Journals (Sweden)

    Meijing Li

    2015-01-01

    Full Text Available Many researchers focus on developing protein-named entity recognition (Protein-NER or PPI extraction systems. However, the studies about these two topics cannot be merged well; then existing PPI extraction systems’ Protein-NER still needs to improve. In this paper, we developed the protein-protein interaction extraction system named PPIMiner based on Support Vector Machine (SVM and parsing tree. PPIMiner consists of three main models: natural language processing (NLP model, Protein-NER model, and PPI discovery model. The Protein-NER model, which is named ProNER, identifies the protein names based on two methods: dictionary-based method and machine learning-based method. ProNER is capable of identifying more proteins than dictionary-based Protein-NER model in other existing systems. The final discovered PPIs extracted via PPI discovery model are represented in detail because we showed the protein interaction types and the occurrence frequency through two different methods. In the experiments, the result shows that the performances achieved by our ProNER and PPI discovery model are better than other existing tools. PPIMiner applied this protein-named entity recognition approach and parsing tree based PPI extraction method to improve the performance of PPI extraction. We also provide an easy-to-use interface to access PPIs database and an online system for PPIs extraction and Protein-NER.

  4. Proteins: Chemistry, Characterization, and Quality

    NARCIS (Netherlands)

    Sforza, S.; Tedeschi, T.; Wierenga, P.A.

    2016-01-01

    Proteins are one of the major macronutrients in food, and several traditional food commodities are good sources of proteins (meat, egg, milk and dairy products, fish, and soya). Proteins are polymers made by 20 different amino acids. They might undergo desired or undesired chemical or enzymatic

  5. Protein: MPA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA3 NADPH oxidase regulators NOXO1 P41NOX, SH3PXD5 NOXO1 NADPH oxidase organizer 1... NADPH oxidase regulatory protein, Nox organizer 1, Nox-organizing protein 1, SH3 and PX domain-containing protein 5 9606 Homo sapiens Q8NFA2 124056 2L73 ...

  6. Protein: MPA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available 1 47 kDa autosomal chronic granulomatous disease protein, 47 kDa neutrophil oxidase factor, NCF-47K, Neutro...phil NADPH oxidase factor 1, Nox organizer 2, Nox-organizing protein 2, SH3 and PX domain-containing protein

  7. Protein: MPB1 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB1 Related chemokines IL8 CXCL8 Interleukin_8 Interleukin-8 C-X-C motif chemokine... 8, Emoctakin, Granulocyte chemotactic protein 1, Monocyte-derived neutrophil chemotactic factor, Monocyte-d...erived neutrophil-activating peptide, Neutrophil-activating protein 1, Protein 3-10C, T-cell chemotactic fac

  8. Protein: FBA4 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available ng kinase assembly factor MAT1 CDK7/cyclin-H assembly factor, Cyclin-G1-interacting protein, Menage a trois, RING finger prote...in 66, RING finger protein MAT1, p35, p36 9606 Homo sapiens P51948 4331 1G25 4331 P51948 ...

  9. Photoreceptor proteins from purple bacteria

    NARCIS (Netherlands)

    Hendriks, J.; van der Horst, M.A.; Chua, T.K.; Ávila Pérez, M.; van Wilderen, L.J.; Alexandre, M.T.A.; Groot, M.-L.; Kennis, J.T.M.; Hellingwerf, K.J.; Hunter, C.N.; Daldal, F.; Thurnauer, M.C.; Beatty, J.T.

    2009-01-01

    Purple bacteria contain representatives of four of the six main families of photoreceptor proteins: phytochromes, BLUF domain containing proteins, xanthopsins (i.e., photoactive yellow proteins), and phototropins (containing one or more light, oxygen, or voltage (LOV) domains). Most of them have a

  10. Protein quality of pig diets

    NARCIS (Netherlands)

    Hulshof, Tetske

    2016-01-01

    The increasing world population and per capita income imposes a risk for protein scarcity. It is, therefore, necessary to use current ingredients more efficiently which includes the accurate assessment of protein quality before inclusion in animal diets. Protein quality is defined in this thesis as

  11. Modeling complexes of modeled proteins.

    Science.gov (United States)

    Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A

    2017-03-01

    Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C α RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Structuring high-protein foods

    NARCIS (Netherlands)

    Purwanti, N.

    2012-01-01

    Increased protein consumption gives rise to various health benefits. High-protein intake can lead to muscle development, body weight control and suppression of sarcopenia progression. However, increasing the protein content in food products leads to textural changes over time. These changes result

  13. Functional Foods Containing Whey Proteins

    Science.gov (United States)

    Whey proteins, modified whey proteins, and whey components are useful as nutrients or supplements for health maintenance. Extrusion modified whey proteins can easily fit into new products such as beverages, confectionery items (e.g., candies), convenience foods, desserts, baked goods, sauces, and in...

  14. Protein Quantitation Using Mass Spectrometry

    Science.gov (United States)

    Zhang, Guoan; Ueberheide, Beatrix M.; Waldemarson, Sofia; Myung, Sunnie; Molloy, Kelly; Eriksson, Jan; Chait, Brian T.; Neubert, Thomas A.; Fenyö, David

    2013-01-01

    Mass spectrometry is a method of choice for quantifying low-abundance proteins and peptides in many biological studies. Here, we describe a range of computational aspects of protein and peptide quantitation, including methods for finding and integrating mass spectrometric peptide peaks, and detecting interference to obtain a robust measure of the amount of proteins present in samples. PMID:20835801

  15. Biophysics of protein evolution and evolutionary protein biophysics

    Science.gov (United States)

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  16. Protein-protein interactions and cancer: targeting the central dogma.

    Science.gov (United States)

    Garner, Amanda L; Janda, Kim D

    2011-01-01

    Between 40,000 and 200,000 protein-protein interactions have been predicted to exist within the human interactome. As these interactions are of a critical nature in many important cellular functions and their dysregulation is causal of disease, the modulation of these binding events has emerged as a leading, yet difficult therapeutic arena. In particular, the targeting of protein-protein interactions relevant to cancer is of fundamental importance as the tumor-promoting function of several aberrantly expressed proteins in the cancerous state is directly resultant of its ability to interact with a protein-binding partner. Of significance, these protein complexes play a crucial role in each of the steps of the central dogma of molecular biology, the fundamental processes of genetic transmission. With the many important discoveries being made regarding the mechanisms of these genetic process, the identification of new chemical probes are needed to better understand and validate the druggability of protein-protein interactions related to the central dogma. In this review, we provide an overview of current small molecule-based protein-protein interaction inhibitors for each stage of the central dogma: transcription, mRNA splicing and translation. Importantly, through our analysis we have uncovered a lack of necessary probes targeting mRNA splicing and translation, thus, opening up the possibility for expansion of these fields.

  17. The Proteins API: accessing key integrated protein and genome information.

    Science.gov (United States)

    Nightingale, Andrew; Antunes, Ricardo; Alpi, Emanuele; Bursteinas, Borisas; Gonzales, Leonardo; Liu, Wudong; Luo, Jie; Qi, Guoying; Turner, Edd; Martin, Maria

    2017-07-03

    The Proteins API provides searching and programmatic access to protein and associated genomics data such as curated protein sequence positional annotations from UniProtKB, as well as mapped variation and proteomics data from large scale data sources (LSS). Using the coordinates service, researchers are able to retrieve the genomic sequence coordinates for proteins in UniProtKB. This, the LSS genomics and proteomics data for UniProt proteins is programmatically only available through this service. A Swagger UI has been implemented to provide documentation, an interface for users, with little or no programming experience, to 'talk' to the services to quickly and easily formulate queries with the services and obtain dynamically generated source code for popular programming languages, such as Java, Perl, Python and Ruby. Search results are returned as standard JSON, XML or GFF data objects. The Proteins API is a scalable, reliable, fast, easy to use RESTful services that provides a broad protein information resource for users to ask questions based upon their field of expertise and allowing them to gain an integrated overview of protein annotations available to aid their knowledge gain on proteins in biological processes. The Proteins API is available at (http://www.ebi.ac.uk/proteins/api/doc). © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. The Proteins API: accessing key integrated protein and genome information

    Science.gov (United States)

    Antunes, Ricardo; Alpi, Emanuele; Gonzales, Leonardo; Liu, Wudong; Luo, Jie; Qi, Guoying; Turner, Edd

    2017-01-01

    Abstract The Proteins API provides searching and programmatic access to protein and associated genomics data such as curated protein sequence positional annotations from UniProtKB, as well as mapped variation and proteomics data from large scale data sources (LSS). Using the coordinates service, researchers are able to retrieve the genomic sequence coordinates for proteins in UniProtKB. This, the LSS genomics and proteomics data for UniProt proteins is programmatically only available through this service. A Swagger UI has been implemented to provide documentation, an interface for users, with little or no programming experience, to ‘talk’ to the services to quickly and easily formulate queries with the services and obtain dynamically generated source code for popular programming languages, such as Java, Perl, Python and Ruby. Search results are returned as standard JSON, XML or GFF data objects. The Proteins API is a scalable, reliable, fast, easy to use RESTful services that provides a broad protein information resource for users to ask questions based upon their field of expertise and allowing them to gain an integrated overview of protein annotations available to aid their knowledge gain on proteins in biological processes. The Proteins API is available at (http://www.ebi.ac.uk/proteins/api/doc). PMID:28383659

  19. Characterization of protein-protein interactions by isothermal titration calorimetry.

    Science.gov (United States)

    Velazquez-Campoy, Adrian; Leavitt, Stephanie A; Freire, Ernesto

    2004-01-01

    Isothermal titration calorimetry (ITC) is a powerful technique to study both protein-ligand and protein-protein interactions. This methods chapter is devoted to describing protein-protein interactions, in particular, the association between two different proteins and the self-association of a protein into homodimers. ITC is the only technique that determines directly the thermodynamic parameters of a given reaction: DeltaG, DeltaH, DeltaS, and DeltaCP. Isothermal titration calorimeters have evolved over the years and one of the latest models is the VP-ITC produced by Microcal, Inc. In this chapter we will be describing the general procedure for performing an ITC experiment as well as for the specific cases of porcine pancreatic trypsin binding to soybean trypsin inhibitor and the dissociation of bovine pancreatic alpha-chymotrypsin.

  20. Understanding Protein-Protein Interactions Using Local Structural Features

    DEFF Research Database (Denmark)

    Planas-Iglesias, Joan; Bonet, Jaume; García-García, Javier

    2013-01-01

    Protein-protein interactions (PPIs) play a relevant role among the different functions of a cell. Identifying the PPI network of a given organism (interactome) is useful to shed light on the key molecular mechanisms within a biological system. In this work, we show the role of structural features...... (loops and domains) to comprehend the molecular mechanisms of PPIs. A paradox in protein-protein binding is to explain how the unbound proteins of a binary complex recognize each other among a large population within a cell and how they find their best docking interface in a short timescale. We use...... interacting and non-interacting protein pairs to classify the structural features that sustain the binding (or non-binding) behavior. Our study indicates that not only the interacting region but also the rest of the protein surface are important for the interaction fate. The interpretation...

  1. Protein subcellular localization assays using split fluorescent proteins

    Science.gov (United States)

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  2. Diffusion of Integral Membrane Proteins in Protein-Rich Membranes

    DEFF Research Database (Denmark)

    Javanainen, Matti; Martinez-Seara, Hector; Metzler, Ralf

    2017-01-01

    of being protein-poor, native cell membranes are extremely crowded with proteins. On the basis of extensive molecular simulations, we here demonstrate that protein crowding of the membrane at physiological levels leads to deviations from the SD relation and to the emergence of a stronger Stokes......-like dependence D ∝ 1/R. We propose that this 1/R law mainly arises due to geometrical factors: smaller proteins are able to avoid confinement effects much better than their larger counterparts. The results highlight that the lateral dynamics in the crowded setting found in native membranes is radically different......The lateral diffusion of embedded proteins along lipid membranes in protein-poor conditions has been successfully described in terms of the Saffman-Delbrück (SD) model, which predicts that the protein diffusion coefficient D is weakly dependent on its radius R as D ∝ ln(1/R). However, instead...

  3. Protein from methanol

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, M.; Ushio, S.

    1974-01-07

    The biosynthesis of proteins from methanol produced from natural gas can provide an attractive alternative to the already commercially proven technique of protein synthesis from gas oil and n-paraffin feedstocks if current pilot-plant tests in England and Japan prove successful. The methanol route also provides other advantages as a protein feedstock: it is water soluble, contains no polycyclic aromatic compounds, and requires less oxygen than methane. Its lower boiling point helps ease the separation of feedstock from the product stream. Finally, it will require lower investment costs. Both ICI and Mitsubishi Gas Chemical Co. are large methanol producers. ICI already has a 1000 ton/yr plant operating at Teeside, England, and expects to decide on a 100,000 m ton/yr plant later this year. Mitsubishi is constructing a large-scale pilot plant scheduled to come onstream this year. ICI will use a Pseudomona bacterium at 98.6/sup 0/F (37/sup 0/C) in the fermenter. Mitsubishi has not yet decided on a yeast or a bacteria, and is searching for a strain capable of withstanding up to 115/sup 0/F (46/sup 0/C). In the more advanced ICI process, methanol will be mixed with phosphoric acid, potassium sulfate, sodium chloride, and traces of iron, copper, zinc, and molybdenum; diluted with water; passed through a sterilization tank; and fermented at pH 7 in a pressure cycle fermenter. The product stream, containing a 3 percent suspension of cellular dry matter, is taken near the top of the fermenter riser, then passed through a flotation vessel and a centrifuge to pack the cell concentration to 20 percent. Water is recycled. Whatever methanol remains in the fermenter product stream is either used up by the microorganisms in subsequent processing or vaporized in the dryer. (auth)

  4. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    Science.gov (United States)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  5. Protein-Protein Interactions: Structurally Conserved Residues Distinguish between Binding Sites and Exposed Protein Surfaces

    National Research Council Canada - National Science Library

    Buyong Ma; Tal Elkayam; Haim Wolfson; Ruth Nussinov

    2003-01-01

    Polar residue hot spots have been observed at protein-protein binding sites. Here we show that hot spots occur predominantly at the interfaces of macromolecular complexes, distinguishing binding sites from the remainder of the surface...

  6. Information contained in protein shapes

    Science.gov (United States)

    Sundaram, K.; Viswanadhan, V. N.; Macelroy, R. D.

    1983-01-01

    The sequence of local conformations at C-alpha atoms of a protein has been considered as an informational message string. The total self-information contents and self-information per letter have been evaluated for 83 globular proteins whose structures are known from X-ray crystallography. The derived information contents provide a method of quantitating structural specificity of proteins. This method of analysis enables repeating, intricate structural features to be recognized. Among the globular proteins whose structures have been solved, high potential iron protein stands out with the largest three-letter dependence.

  7. Protein-protein interaction network-based detection of functionally similar proteins within species.

    Science.gov (United States)

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.

  8. Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network

    NARCIS (Netherlands)

    Espinosa-Soto, C.; Immink, R.G.H.; Angenent, G.C.; Alvarez-Buylla, E.R.; Folter, de S.

    2014-01-01

    Background: MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate

  9. Discover Protein Complexes in Protein-Protein Interaction Networks Using Parametric Local Modularity

    Directory of Open Access Journals (Sweden)

    Tan Kai

    2010-10-01

    Full Text Available Abstract Background Recent advances in proteomic technologies have enabled us to create detailed protein-protein interaction maps in multiple species and in both normal and diseased cells. As the size of the interaction dataset increases, powerful computational methods are required in order to effectively distil network models from large-scale interactome data. Results We present an algorithm, miPALM (Module Inference by Parametric Local Modularity, to infer protein complexes in a protein-protein interaction network. The algorithm uses a novel graph theoretic measure, parametric local modularity, to identify highly connected sub-networks as candidate protein complexes. Using gold standard sets of protein complexes and protein function and localization annotations, we show our algorithm achieved an overall improvement over previous algorithms in terms of precision, recall, and biological relevance of the predicted complexes. We applied our algorithm to predict and characterize a set of 138 novel protein complexes in S. cerevisiae. Conclusions miPALM is a novel algorithm for detecting protein complexes from large protein-protein interaction networks with improved accuracy than previous methods. The software is implemented in Matlab and is freely available at http://www.medicine.uiowa.edu/Labs/tan/software.html.

  10. Detection of protein complex from protein-protein interaction network using Markov clustering

    Science.gov (United States)

    Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.

    2017-05-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.

  11. Human cancer protein-protein interaction network: a structural perspective.

    Directory of Open Access Journals (Sweden)

    Gozde Kar

    2009-12-01

    Full Text Available Protein-protein interaction networks provide a global picture of cellular function and biological processes. Some proteins act as hub proteins, highly connected to others, whereas some others have few interactions. The dysfunction of some interactions causes many diseases, including cancer. Proteins interact through their interfaces. Therefore, studying the interface properties of cancer-related proteins will help explain their role in the interaction networks. Similar or overlapping binding sites should be used repeatedly in single interface hub proteins, making them promiscuous. Alternatively, multi-interface hub proteins make use of several distinct binding sites to bind to different partners. We propose a methodology to integrate protein interfaces into cancer interaction networks (ciSPIN, cancer structural protein interface network. The interactions in the human protein interaction network are replaced by interfaces, coming from either known or predicted complexes. We provide a detailed analysis of cancer related human protein-protein interfaces and the topological properties of the cancer network. The results reveal that cancer-related proteins have smaller, more planar, more charged and less hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and high specificity of the cancer-related interactions. We also classified the genes in ciSPIN according to phenotypes. Within phenotypes, for breast cancer, colorectal cancer and leukemia, interface properties were found to be discriminating from non-cancer interfaces with an accuracy of 71%, 67%, 61%, respectively. In addition, cancer-related proteins tend to interact with their partners through distinct interfaces, corresponding mostly to multi-interface hubs, which comprise 56% of cancer-related proteins, and constituting the nodes with higher essentiality in the network (76%. We illustrate the interface related affinity properties of two cancer-related hub

  12. Molecular principles of human virus protein-protein interactions.

    Science.gov (United States)

    Halehalli, Rachita Ramachandra; Nagarajaram, Hampapathalu Adimurthy

    2015-04-01

    Viruses, from the human protein-protein interaction network perspective, target hubs, bottlenecks and interconnected nodes enriched in certain biological pathways. However, not much is known about the general characteristic features of the human proteins interacting with viral proteins (referred to as hVIPs) as well as the motifs and domains utilized by human-virus protein-protein interactions (referred to as Hu-Vir PPIs). Our study has revealed that hVIPs are mostly disordered proteins, whereas viral proteins are mostly ordered proteins. Protein disorder in viral proteins and hVIPs varies from one subcellular location to another. In any given viral-human PPI pair, at least one of the two proteins is structurally disordered suggesting that disorder associated conformational flexibility as one of the characteristic features of virus-host interaction. Further analyses reveal that hVIPs are (i) slowly evolving proteins, (ii) associated with high centrality scores in human-PPI network, (iii) involved in multiple pathways, (iv) enriched in eukaryotic linear motifs (ELMs) associated with protein modification, degradation and regulatory processes, (v) associated with high number of splice variants and (vi) expressed abundantly across multiple tissues. These aforementioned findings suggest that conformational flexibility, spatial diversity, abundance and slow evolution are the characteristic features of the human proteins targeted by viral proteins. Hu-Vir PPIs are mostly mediated via domain-motif interactions (DMIs) where viral proteins employ motifs that mimic host ELMs to bind to domains in human proteins. DMIs are shared among viruses belonging to different families indicating a possible convergent evolution of these motifs to help viruses to adopt common strategies to subvert host cellular pathways. Hu-Vir PPI data, DDI and DMI data for human-virus PPI can be downloaded from http://cdfd.org.in/labpages/computational_biology_datasets.html. Supplementary data are

  13. Introduction to protein crystallization.

    Science.gov (United States)

    McPherson, Alexander; Gavira, Jose A

    2014-01-01

    Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid-liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies.

  14. Bioactive proteins from pipefishes

    Directory of Open Access Journals (Sweden)

    E. Rethna Priya

    2013-08-01

    Full Text Available Objective: To screen antimicrobial potence of some pipefish species collected from Tuticorin coastal environment. Methods: Antimicrobial activity of pipefishes in methanol extract was investigated against 10 bacterial and 10 fungal human pathogenic strains. Results: Among the tested strains, in Centriscus scutatus, pipefish showed maximum zone of inhibition against Vibrio cholerae (8 mm and minimum in the sample of Hippichthys cyanospilos against Klebseilla pneumoniae (2 mm. In positive control, maximum zone of inhibition was recorded in Vibrio cholerae (9 mm and minimum in Klebseilla pneumoniae, and Salmonella paratyphi (5 mm. Chemical investigation indicated the presence of peptides as evidenced by ninhydrin positive spots on thin layer chromatography and presence of peptide. In SDS PAGE, in Centriscus scutatus, four bands were detected in the gel that represented the presence of proteins in the range nearly 25.8-75 kDa. In Hippichthys cyanospilos, five bands were detected in the gel that represented the presence of proteins in the range nearly 20.5-78 kDa. The result of FT-IR spectrum revealed that the pipe fishes extracts compriseed to have peptide derivatives as their predominant chemical groups. Conclusions: It can be conclude that this present investigation suggests the tested pipe fishes will be a potential source of natural bioactive compounds.

  15. Bioactive proteins from pipefishes

    Directory of Open Access Journals (Sweden)

    E. Rethna Priya

    2013-01-01

    Full Text Available Objective: To screen antimicrobial potence of some pipefish species collected from Tuticorin coastal environment. Methods: Antimicrobial activity of pipefishes in methanol extract was investigated against 10 bacterial and 10 fungal human pathogenic strains. Results: Among the tested strains, in Centriscus scutatus, pipefish showed maximum zone of inhibition against Vibrio cholerae (8 mm and minimum in the sample of Hippichthys cyanospilos against Klebseilla pneumoniae (2 mm. In positive control, maximum zone of inhibition was recorded in Vibrio cholerae (9 mm and minimum in Klebseilla pneumoniae, and Salmonella paratyphi (5 mm. Chemical investigation indicated the presence of peptides as evidenced by ninhydrin positive spots on thin layer chromatography and presence of peptide. In SDS PAGE, in Centriscus scutatus, four bands were detected in the gel that represented the presence of proteins in the range nearly 25.8-75 kDa. In Hippichthys cyanospilos, five bands were detected in the gel that represented the presence of proteins in the range nearly 20.5-78 kDa. The result of FT-IR spectrum revealed that the pipe fishes extracts compriseed to have peptide derivatives as their predominant chemical groups. Conclusions: It can be conclude that this present investigation suggests the tested pipe fishes will be a potential source of natural bioactive compounds.

  16. Protein Chemical Shift Prediction

    CERN Document Server

    Larsen, Anders S

    2014-01-01

    The protein chemical shifts holds a large amount of information about the 3-dimensional structure of the protein. A number of chemical shift predictors based on the relationship between structures resolved with X-ray crystallography and the corresponding experimental chemical shifts have been developed. These empirical predictors are very accurate on X-ray structures but tends to be insensitive to small structural changes. To overcome this limitation it has been suggested to make chemical shift predictors based on quantum mechanical(QM) calculations. In this thesis the development of the QM derived chemical shift predictor Procs14 is presented. Procs14 is based on 2.35 million density functional theory(DFT) calculations on tripeptides and contains corrections for hydrogen bonding, ring current and the effect of the previous and following residue. Procs14 is capable at performing predictions for the 13CA, 13CB, 13CO, 15NH, 1HN and 1HA backbone atoms. In order to benchmark Procs14, a number of QM NMR calculatio...

  17. Water-transporting proteins.

    Science.gov (United States)

    Zeuthen, Thomas

    2010-04-01

    Transport through lipids and aquaporins is osmotic and entirely driven by the difference in osmotic pressure. Water transport in cotransporters and uniporters is different: Water can be cotransported, energized by coupling to the substrate flux by a mechanism closely associated with protein. In the K(+)/Cl(-) and the Na(+)/K(+)/2Cl(-) cotransporters, water is entirely cotransported, while water transport in glucose uniporters and Na(+)-coupled transporters of nutrients and neurotransmitters takes place by both osmosis and cotransport. The molecular mechanism behind cotransport of water is not clear. It is associated with the substrate movements in aqueous pathways within the protein; a conventional unstirred layer mechanism can be ruled out, due to high rates of diffusion in the cytoplasm. The physiological roles of the various modes of water transport are reviewed in relation to epithelial transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity of the transportate to approach isotonicity.

  18. Mathematical methods for protein science

    Energy Technology Data Exchange (ETDEWEB)

    Hart, W.; Istrail, S.; Atkins, J. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    Understanding the structure and function of proteins is a fundamental endeavor in molecular biology. Currently, over 100,000 protein sequences have been determined by experimental methods. The three dimensional structure of the protein determines its function, but there are currently less than 4,000 structures known to atomic resolution. Accordingly, techniques to predict protein structure from sequence have an important role in aiding the understanding of the Genome and the effects of mutations in genetic disease. The authors describe current efforts at Sandia to better understand the structure of proteins through rigorous mathematical analyses of simple lattice models. The efforts have focused on two aspects of protein science: mathematical structure prediction, and inverse protein folding.

  19. Metagenomics and the protein universe

    Science.gov (United States)

    Godzik, Adam

    2011-01-01

    Metagenomics sequencing projects have dramatically increased our knowledge of the protein universe and provided over one-half of currently known protein sequences; they have also introduced a much broader phylogenetic diversity into the protein databases. The full analysis of metagenomic datasets is only beginning, but it has already led to the discovery of thousands of new protein families, likely representing novel functions specific to given environments. At the same time, a deeper analysis of such novel families, including experimental structure determination of some representatives, suggests that most of them represent distant homologs of already characterized protein families, and thus most of the protein diversity present in the new environments are due to functional divergence of the known protein families rather than the emergence of new ones. PMID:21497084

  20. The Papillomavirus E2 proteins

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Alison A., E-mail: amcbride@nih.gov

    2013-10-15

    The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein. - Highlights: • Overview of E2 protein functions. • Structural domains of the papillomavirus E2 proteins. • Analysis of E2 binding sites in different genera of papillomaviruses. • Compilation of E2 associated proteins. • Comparison of key mutations in distinct E2 functions.