A weakened cascade model for turbulence in astrophysical plasmas
International Nuclear Information System (INIS)
Howes, G. G.; TenBarge, J. M.; Dorland, W.
2011-01-01
A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.
Kaplan, S A; ter Haar, D
2013-01-01
Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary
Shukla-Spatschek diffusion effects on surface plasma waves in astrophysical turbulent plasmas
Lee, Myoung-Jae; Jung, Young-Dae
2017-02-01
The effects of Shukla-Spatschek turbulent diffusion on a temporal mode of surface waves propagating at the interface of an astrophysical turbulent plasma are investigated. The damping rates for high and low modes of surface wave are kinetically derived by employing the Vlasov-Poisson equation and the specular reflection boundary condition. We found that the diffusion caused by the fluctuating electric fields leads to damping for both high and low modes of surface waves. The high-mode damping is enhanced with an increase of the wavenumber and the diffusion coefficient, but suppressed by an increase of electron thermal energy. By contrast, the low-mode damping is suppressed as the wavenumber and the thermal energy increase although it is enhanced as the diffusion increases. The variation of the damping rate due to the Shukla-Spatschek turbulent diffusion is also discussed.
Complexity methods applied to turbulence in plasma astrophysics
Vlahos, L.; Isliker, H.
2016-09-01
In this review many of the well known tools for the analysis of Complex systems are used in order to study the global coupling of the turbulent convection zone with the solar atmosphere where the magnetic energy is dissipated explosively. Several well documented observations are not easy to interpret with the use of Magnetohydrodynamic (MHD) and/or Kinetic numerical codes. Such observations are: (1) The size distribution of the Active Regions (AR) on the solar surface, (2) The fractal and multi fractal characteristics of the observed magnetograms, (3) The Self-Organised characteristics of the explosive magnetic energy release and (4) the very efficient acceleration of particles during the flaring periods in the solar corona. We review briefly the work published the last twenty five years on the above issues and propose solutions by using methods borrowed from the analysis of complex systems. The scenario which emerged is as follows: (a) The fully developed turbulence in the convection zone generates and transports magnetic flux tubes to the solar surface. Using probabilistic percolation models we were able to reproduce the size distribution and the fractal properties of the emerged and randomly moving magnetic flux tubes. (b) Using a Non Linear Force Free (NLFF) magnetic extrapolation numerical code we can explore how the emerged magnetic flux tubes interact nonlinearly and form thin and Unstable Current Sheets (UCS) inside the coronal part of the AR. (c) The fragmentation of the UCS and the redistribution of the magnetic field locally, when the local current exceeds a Critical threshold, is a key process which drives avalanches and forms coherent structures. This local reorganization of the magnetic field enhances the energy dissipation and influences the global evolution of the complex magnetic topology. Using a Cellular Automaton and following the simple rules of Self Organized Criticality (SOC), we were able to reproduce the statistical characteristics of the
International Nuclear Information System (INIS)
Schekochihin, A.A.; Cowley, S.C.; Dorland, W.; Hammett, G.W.; Howes, G.G.; Quataert, E.; Tatsuno, T.
2009-01-01
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the 'inertial range' above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-field strength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
Energy Technology Data Exchange (ETDEWEB)
Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.
2009-04-23
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
Astrophysical gyrokinetics: turbulence in pressure-anisotropic plasmas at ion scales and beyond
Kunz, M. W.; Abel, I. G.; Klein, K. G.
2018-04-01
We present a theoretical framework for describing electromagnetic kinetic turbulence in a multi-species, magnetized, pressure-anisotropic plasma. The turbulent fluctuations are assumed to be small compared to the mean field, to be spatially anisotropic with respect to it and to have frequencies small compared to the ion cyclotron frequency. At scales above the ion-Larmor radius, the theory reduces to the pressure-anisotropic generalization of kinetic reduced magnetohydrodynamics (KRMHD) formulated by Kunz et al. (J. Plasma Phys., vol. 81, 2015, 325810501). At scales at and below the ion-Larmor radius, three main objectives are achieved. First, we analyse the linear response of the pressure-anisotropic gyrokinetic system, and show it to be a generalization of previously explored limits. The effects of pressure anisotropy on the stability and collisionless damping of Alfvénic and compressive fluctuations are highlighted, with attention paid to the spectral location and width of the frequency jump that occurs as Alfvén waves transition into kinetic Alfvén waves. Secondly, we derive and discuss a very general gyrokinetic free-energy conservation law, which captures both the KRMHD free-energy conservation at long wavelengths and dual cascades of kinetic Alfvén waves and ion entropy at sub-ion-Larmor scales. We show that non-Maxwellian features in the distribution function change the amount of phase mixing and the efficiency of magnetic stresses, and thus influence the partitioning of free energy amongst the cascade channels. Thirdly, a simple model is used to show that pressure anisotropy, even within the bounds imposed on it by firehose and mirror instabilities, can cause order-of-magnitude variations in the ion-to-electron heating ratio due to the dissipation of Alfvénic turbulence. Our theory provides a foundation for determining how pressure anisotropy affects turbulent fluctuation spectra, the differential heating of particle species and the ratio of parallel
International Nuclear Information System (INIS)
Horton, W.
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates
International Nuclear Information System (INIS)
Kulsrud, R.M.
1982-10-01
Two examples of plasma phenomena of importance to astrophysics are reviewed. These are examples where astrophysical understanding hinges on further progress in plasma physics understanding. The two examples are magnetic reconnection and the collisionless interaction between a population of energetic particles and a cooler gas or plasma, in particular the interaction between galactic cosmic rays and the interstellar medium
Collisionless plasmas in astrophysics
Belmont, Gerard; Mottez, Fabrice; Pantellini, Filippo; Pelletier, Guy
2013-01-01
Collisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as "collisionless (Landau) damping". Abundant illustrations
Relation of astrophysical turbulence and magnetic reconnection
Energy Technology Data Exchange (ETDEWEB)
Lazarian, A. [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, Wisconsin 53706 (United States); Eyink, Gregory L. [Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vishniac, E. T. [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)
2012-01-15
Astrophysical fluids are generically turbulent and this must be taken into account for most transport processes. We discuss how the preexisting turbulence modifies magnetic reconnection and how magnetic reconnection affects the MHD turbulent cascade. We show the intrinsic interdependence and interrelation of magnetic turbulence and magnetic reconnection, in particular, that strong magnetic turbulence in 3D requires reconnection and 3D magnetic turbulence entails fast reconnection. We follow the approach in Eyink et al.[Astrophys. J. 743, 51 (2011)] to show that the expressions of fast magnetic reconnection in A. Lazarian and E. T. Vishniac [Astrophys. J. 517, 700 (1999)] can be recovered if Richardson diffusion of turbulent flows is used instead of ordinary Ohmic diffusion. This does not revive, however, the concept of magnetic turbulent diffusion which assumes that magnetic fields can be mixed up in a passive way down to a very small dissipation scales. On the contrary, we are dealing the reconnection of dynamically important magnetic field bundles which strongly resist bending and have well defined mean direction weakly perturbed by turbulence. We argue that in the presence of turbulence the very concept of flux-freezing requires modification. The diffusion that arises from magnetic turbulence can be called reconnection diffusion as it based on reconnection of magnetic field lines. The reconnection diffusion has important implications for the continuous transport processes in magnetized plasmas and for star formation. In addition, fast magnetic reconnection in turbulent media induces the First order Fermi acceleration of energetic particles, can explain solar flares and gamma ray bursts. However, the most dramatic consequence of these developments is the fact that the standard flux freezing concept must be radically modified in the presence of turbulence.
Wise, John
In the near future, next-generation telescopes, covering most of the electromagnetic spectrum, will provide a view into the very earliest stages of galaxy formation. To accurately interpret these future observations, accurate and high-resolution simulations of the first stars and galaxies are vital. This proposal is centered on the formation of the first galaxies in the Universe and their observational signatures in preparation for these future observatories. This proposal has two overall goals: 1. To simulate the formation and evolution of a statistically significant sample of galaxies during the first billion years of the Universe, including all relevant astrophysics while resolving individual molecular clouds, in various cosmological environments. These simulations will utilize a sophisticated physical model of star and black hole formation and feedback, including radiation transport and magnetic fields, which will lead to the most realistic and resolved predictions for the early universe; 2. To predict the observational features of the first galaxies throughout the electromagnetic spectrum, allowing for optimal extraction of galaxy and dark matter halo properties from their photometry, imaging, and spectra; The proposed research plan addresses a timely and relevant issue to theoretically prepare for the interpretation of future observations of the first galaxies in the Universe. A suite of adaptive mesh refinement simulations will be used to follow the formation and evolution of thousands of galaxies observable with the James Webb Space Telescope (JWST) that will be launched during the second year of this project. The simulations will have also tracked the formation and death of over 100,000 massive metal-free stars. Currently, there is a gap of two orders of magnitude in stellar mass between the smallest observed z > 6 galaxy and the largest simulated galaxy from "first principles", capturing its entire star formation history. This project will eliminate this
Important plasma problems in astrophysics
International Nuclear Information System (INIS)
Kulsrud, R.M.
1995-01-01
In astrophysics, plasmas occur under very extreme conditions. For example, there are ultrastrong magnetic fields in neutron stars, relativistic plasmas around black holes and in jets, extremely energetic particles such as cosmic rays in the interstellar medium, extremely dense plasmas in accretion disks, and extremely large magnetic Reynolds numbers in the interstellar medium. These extreme limits for astrophysical plasmas make plasma phenomena much simpler to analyze in astrophysics than in the laboratory. An understanding of such phenomena often results in an interesting way, by simply taking the extreme limiting case of a known plasma theory. The author will describe one of the more exciting examples and will attempt to convey the excitement he felt when he was first exposed to it. However, not all plasma astrophysical phenomena are so simple. There are certain important plasma phenomena in astrophysics that have not been so easily resolved. In fact, a resolution of them is blocking significant progress in astrophysical research. They have not yet yielded to attacks by theoretical astrophysicists nor to extensive numerical simulation. The author will attempt to describe one of the more important of these plasma--astrophysical problems, and discuss why its resolution is so important to astrophysics. This significant example is fast, magnetic reconnection. Another significant example is the large-magnetic-Reynolds number magnetohydrodynamics (MHD) dynamos
Plasma Turbulence General Topics
Energy Technology Data Exchange (ETDEWEB)
Kadomtsev, B. B. [Nuclear Energy Institute, Academy of Sciences of the USSR, Moscow, USSR (Russian Federation)
1965-06-15
It is known that under experimental conditions plasma often shows chaotic motion. Such motion, when many degrees of freedom are excited to levels considerably above the thermal level, will be called turbulent. The properties of turbulent plasma in many respects differ from the properties of laminar plasma. It can be said that the appearance of various anomalies in plasma behaviour indicates the presence of turbulence in plasma. In order to verify directly the presence of turbulent motion in plasma we must, however, measure the fluctuation of some microscopic parameters in plasma.
Plasma Soliton Turbulence and Statistical Mechanics
International Nuclear Information System (INIS)
Treumann, R.A.; Pottelette, R.
1999-01-01
Collisionless kinetic plasma turbulence is described approximately in terms of a superposition of non-interacting solitary waves. We discuss the relevance of such a description under astrophysical conditions. Several types of solitary waves may be of interest in this relation as generators of turbulence and turbulent transport. A consistent theory of turbulence can be given only in a few particular cases when the description can be reduced to the Korteweg-de Vries equation or some other simple equation like the Kadomtsev-Petviashvili equation. It turns out that the soliton turbulence is usually energetically harder than the ordinary weakly turbulent plasma description. This implies that interaction of particles with such kinds of turbulence can lead to stronger acceleration than in ordinary turbulence. However, the description in our model is only classical and non-relativistic. Transport in solitary turbulence is most important for drift wave turbulence. Such waves form solitary drift wave vortices which may provide cross-field transport. A more general discussion is given on transport. In a model of Levy flight trapping of particles in solitons (or solitary turbulence) one finds that the residence time of particles in the region of turbulence may be described by a generalized Lorentzian probability distribution. It is shown that under collisionless equilibrium conditions far away from thermal equilibrium such distributions are natural equilibrium distributions. A consistent thermodynamic description of such media can be given in terms of a generalized Lorentzian statistical mechanics and thermodynamics. (author)
Energy Technology Data Exchange (ETDEWEB)
Caldas, Ibere L.; Heller, M.V.A.P.; Brasilio, Z.A. [Sao Paulo Univ., SP, RJ (Brazil). Inst. de Fisica
1997-12-31
Full text. In this work we summarize the results from experiments on electrostatic and magnetic fluctuations in tokamak plasmas. Spectral analyses show that these fluctuations are turbulent, having a broad spectrum of wavectors and a broad spectrum of frequencies at each wavector. The electrostatic turbulence induces unexpected anomalous particle transport that deteriorates the plasma confinement. The relationship of these fluctuations to the current state of plasma theory is still unclear. Furthermore, we describe also attempts to control this plasma turbulence with external magnetic perturbations that create chaotic magnetic configurations. Accordingly, the magnetic field lines may become chaotic and then induce a Lagrangian diffusion. Moreover, to discuss nonlinear coupling and intermittency, we present results obtained by using numerical techniques as bi spectral and wavelet analyses. (author)
Multi-scale Dynamical Processes in Space and Astrophysical Plasmas
Vörös, Zoltán; IAFA 2011 - International Astrophysics Forum 2011 : Frontiers in Space Environment Research
2012-01-01
Magnetized plasmas in the universe exhibit complex dynamical behavior over a huge range of scales. The fundamental mechanisms of energy transport, redistribution and conversion occur at multiple scales. The driving mechanisms often include energy accumulation, free-energy-excited relaxation processes, dissipation and self-organization. The plasma processes associated with energy conversion, transport and self-organization, such as magnetic reconnection, instabilities, linear and nonlinear waves, wave-particle interactions, dynamo processes, turbulence, heating, diffusion and convection represent fundamental physical effects. They demonstrate similar dynamical behavior in near-Earth space, on the Sun, in the heliosphere and in astrophysical environments. 'Multi-scale Dynamical Processes in Space and Astrophysical Plasmas' presents the proceedings of the International Astrophysics Forum Alpbach 2011. The contributions discuss the latest advances in the exploration of dynamical behavior in space plasmas environm...
Plasma turbulence calculations on supercomputers
International Nuclear Information System (INIS)
Carreras, B.A.; Charlton, L.A.; Dominguez, N.; Drake, J.B.; Garcia, L.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Sidikman, K.
1991-01-01
Although the single-particle picture of magnetic confinement is helpful in understanding some basic physics of plasma confinement, it does not give a full description. Collective effects dominate plasma behavior. Any analysis of plasma confinement requires a self-consistent treatment of the particles and fields. The general picture is further complicated because the plasma, in general, is turbulent. The study of fluid turbulence is a rather complex field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples back to the fluid. Since the fluid is not a perfect conductor, this turbulence can lead to changes in the topology of the magnetic field structure, causing the magnetic field lines to wander radially. Because the plasma fluid flows along field lines, they carry the particles with them, and this enhances the losses caused by collisions. The changes in topology are critical for the plasma confinement. The study of plasma turbulence and the concomitant transport is a challenging problem. Because of the importance of solving the plasma turbulence problem for controlled thermonuclear research, the high complexity of the problem, and the necessity of attacking the problem with supercomputers, the study of plasma turbulence in magnetic confinement devices is a Grand Challenge problem
Laboratory Plasma Source as an MHD Model for Astrophysical Jets
Mayo, Robert M.
1997-01-01
The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to
Coherent emission mechanisms in astrophysical plasmas
Melrose, D. B.
2017-12-01
Three known examples of coherent emission in radio astronomical sources are reviewed: plasma emission, electron cyclotron maser emission (ECME) and pulsar radio emission. Plasma emission is a multi-stage mechanism with the first stage being generation of Langmuir waves through a streaming instability, and subsequent stages involving partial conversion of the Langmuir turbulence into escaping radiation at the fundamental (F) and second harmonic (H) of the plasma frequency. The early development and subsequent refinements of the theory, motivated by application to solar radio bursts, are reviewed. The driver of the instability is faster electrons outpacing slower electrons, resulting in a positive gradient ({d}f(v_allel )/{d}v_allel >0) at the front of the beam. Despite many successes of the theory, there is no widely accepted explanation for type I bursts and various radio continua. The earliest models for ECME were purely theoretical, and the theory was later adapted and applied to Jupiter (DAM), the Earth (AKR), solar spike bursts and flare stars. ECME strongly favors the x mode, whereas plasma emission favors the o mode. Two drivers for ECME are a ring feature (implying {d}f(v)/{d}v>0) and a loss-cone feature. Loss-cone-driven ECME was initially favored for all applications. The now favored driver for AKR is the ring-feature in a horseshoe distribution, which results from acceleration by a parallel electric on converging magnetic field lines. The driver in DAM and solar and stellar applications is uncertain. The pulsar radio emission mechanism remains an enigma. Ingredients needed in discussing possible mechanisms are reviewed: general properties of pulsars, pulsar electrodynamics, the properties of pulsar plasma and wave dispersion in such plasma. Four specific emission mechanisms (curvature emission, linear acceleration emission, relativistic plasma emission and anomalous Doppler emission) are discussed and it is argued that all encounter difficulties. Coherent
Plasma Astrophysics, part II Reconnection and Flares
Somov, Boris V
2007-01-01
This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.
Plasma Astrophysics, Part I Fundamentals and Practice
Somov, Boris V
2006-01-01
This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.
Turbulence measurements in fusion plasmas
International Nuclear Information System (INIS)
Conway, G D
2008-01-01
Turbulence measurements in magnetically confined toroidal plasmas have a long history and relevance due to the detrimental role of turbulence induced transport on particle, energy, impurity and momentum confinement. The turbulence-the microscopic random fluctuations in particle density, temperature, potential and magnetic field-is generally driven by radial gradients in the plasma density and temperature. The correlation between the turbulence properties and global confinement, via enhanced diffusion, convection and direct conduction, is now well documented. Theory, together with recent measurements, also indicates that non-linear interactions within the turbulence generate large scale zonal flows and geodesic oscillations, which can feed back onto the turbulence and equilibrium profiles creating a complex interdependence. An overview of the current status and understanding of plasma turbulence measurements in the closed flux surface region of magnetic confinement fusion devices is presented, highlighting some recent developments and outstanding problems.
Wave turbulence in magnetized plasmas
Directory of Open Access Journals (Sweden)
S. Galtier
2009-02-01
Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.
Critical ionisation velocity effects in astrophysical plasmas
International Nuclear Information System (INIS)
Raadu, M.A.
1979-08-01
Critical ionisation velocity effects are relevant to astrophysical situations where neutral gas moves through a magnetised plasma. The experimental significance of the critical velocity is well established and the physical basis is now becoming clear. The underlying mechanism depends on the combined effects of electron impact ionisation and electron energisation by collective plasma interactions. For low density plasmas a theory based on a circular process involving electron heating through a modified two stream instability has been developed. Several applications of critical velocity effects to astrophysical plasmas have been discussed in the literature. The importance of the effect in any particular case may be determined from a detailed consideration of energy and momentum balance, using appropriate atomic rate coefficients and taking full account of collective plasma processes. (Auth.)
Turbulence and Self-Organization Modeling Astrophysical Objects
Marov, Mikhail Ya
2013-01-01
This book focuses on the development of continuum models of natural turbulent media. It provides a theoretical approach to the solutions of different problems related to the formation, structure and evolution of astrophysical and geophysical objects. A stochastic modeling approach is used in the mathematical treatment of these problems, which reflects self-organization processes in open dissipative systems. The authors also consider examples of ordering for various objects in space throughout their evolutionary processes. This volume is aimed at graduate students and researchers in the fields of mechanics, astrophysics, geophysics, planetary and space science.
Doppler tomography in fusion plasmas and astrophysics
DEFF Research Database (Denmark)
Salewski, Mirko; Geiger, B.; Heidbrink, W. W.
2015-01-01
Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plasma......, the Dα-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright...... and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography and what can be learned by comparison of these applications....
Study of aluminum emission spectra in astrophysical plasmas
International Nuclear Information System (INIS)
Jin Zhan; Zhang Jie
2001-01-01
High temperature, high density and strong magnetic fields in plasmas produced by ultra-high intensity and ultrashort laser pulses are similar to the main characteristics of astrophysical plasmas. This makes it possible to simulate come astrophysical processes at laboratories. The author presents the theoretic simulation of aluminum emission spectra in astrophysical plasmas. It can be concluded that using laser produced plasmas, the authors can obtain rich information on astrophysical spectroscopy, which is unobservable for astronomer
Challenges and opportunities in laboratory plasma astrophysics
Drake, R. Paul
2017-06-01
We are in a period of explosive success and opportunity in the laboratory study of plasma phenomena that are relevant to astrophysics. In this talk I will share with you several areas in which recent work, often foreshadowed 20 or 30 years ago, has produced dramatic initial success with prospects for much more. To begin, the talk will provide a brief look at the types of devices used and the regimes they access, showing how they span many orders of magnitude in parameters of interest. It will then illustrate the types of work one can do with laboratory plasmas that are relevant to astrophysics, which range from direct measurement of material properties to the production of scaled models of certain dynamics to the pursuit of complementary understanding. Examples will be drawn from the flow of energy and momentum in astrophysics, the formation and structure of astrophysical systems, and magnetization and its consequences. I hope to include some discussion of collisionless shocks, very dense plasmas, work relevant to the end of the Dark Ages, reconnection, and dynamos. The talk will conclude by highlighting some topics where it seems that we may be on the verge of exciting new progress.The originators of work discussed, and collaborators and funding sources when appropriate, will be included in the talk.
Conditional Eddies in Plasma Turbulence
DEFF Research Database (Denmark)
Johnsen, Helene; Pécseli, Hans; Trulsen, J.
1986-01-01
Conditional structures, or eddies, in turbulent flows are discussed with special attention to electrostatic turbulence in plasmas. The potential variation of these eddies is obtained by sampling the fluctuations only when a certain condition is satisfied in a reference point. The resulting...
Suprathermal ion transport in turbulent magnetized plasmas
International Nuclear Information System (INIS)
Bovet, A. D.
2015-01-01
Suprathermal ions, which have an energy greater than the quasi-Maxwellian background plasma temperature, are present in many laboratory and astrophysical plasmas. In fusion devices, they are generated by the fusion reactions and auxiliary heating. Controlling their transport is essential for the success of future fusion devices that could provide a clean, safe and abundant source of electric power to our society. In space, suprathermal ions include energetic solar particles and cosmic rays. The understanding of the acceleration and transport mechanisms of these particles is still incomplete. Basic plasma devices allow detailed measurements that are not accessible in astrophysical and fusion plasmas, due to the difficulty to access the former and the high temperatures of the latter. The basic toroidal device TORPEX offers an easy access for diagnostics, well characterized plasma scenarios and validated numerical simulations of its turbulence dynamics, making it the ideal platform for the investigation of suprathermal ion transport. This Thesis presents three-dimensional measurements of a suprathermal ion beam injected in turbulent TORPEX plasmas. The combination of uniquely resolved measurements and first principle numerical simulations reveals the general non-diffusive nature of the suprathermal ion transport. A precise characterization of their transport regime shows that, depending on their energies, suprathermal ions can experience either a super diffusive transport or a subdiffusive transport in the same background turbulence. The transport character is determined by the interaction of the suprathermal ion orbits with the turbulent plasma structures, which in turn depends on the ratio between the ion energy and the background plasma temperature. Time-resolved measurements reveal a clear difference in the intermittency of suprathermal ions time-traces depending on the transport regime they experience. Conditionally averaged measurements uncover the influence of
Turbulence in unmagnetized Vlasov plasmas
International Nuclear Information System (INIS)
Kuo, S.P.
1985-01-01
The classical technique of transformation and characteristics is employed to analyze the problem of strong turbulence in unmagnetized plasmas. The effect of resonance broadening and perturbation expansion are treated simultaneously, without time secularities. The renormalization procedure of Dupree and Tetreault is used in the transformed Vlasov equation to analyze the turbulence and to derive explicitly a diffusion equation. Analyses are extended to inhomogeneous plasmas and the relationship between the transformation and ponderomotive force is obtained. (author)
Information Theory and Plasma Turbulence
International Nuclear Information System (INIS)
Dendy, R. O.
2009-01-01
Information theory, applied directly to measured signals, yields new perspectives on, and quantitative knowledge of, the physics of strongly nonlinear and turbulent phenomena in plasmas. It represents a new and productive element of the topical research programmes that use modern techniques to characterise strongly nonlinear signals from plasmas, and that address global plasma behaviour from a complex systems perspective. We here review some pioneering studies of mutual information in solar wind and magnetospheric plasmas, using techniques tested on standard complex systems.
Strong Turbulence in Low-beta Plasmas
DEFF Research Database (Denmark)
Tchen, C. M.; Pécseli, Hans; Larsen, Søren Ejling
1980-01-01
An investigation of the spectral structure of turbulence in a plasma confined by a strong homogeneous magnetic field was made by means of a fluid description. The turbulent spectrum is divided into subranges. Mean gradients of velocity and density excite turbulent motions, and govern the production......-cathode reflex arc, Stellarator, Zeta discharge, ionospheric plasmas, and auroral plasma turbulence....
Understanding Turbulence in Compressing Plasmas and Its Exploitation or Prevention
Davidovits, Seth
Unprecedented densities and temperatures are now achieved in compressions of plasma, by lasers and by pulsed power, in major experimental facilities. These compressions, carried out at the largest scale at the National Ignition Facility and at the Z Pulsed Power Facility, have important applications, including fusion, X-ray production, and materials research. Several experimental and simulation results suggest that the plasma in some of these compressions is turbulent. In fact, measurements suggest that in certain laboratory plasma compressions the turbulent energy is a dominant energy component. Similarly, turbulence is dominant in some compressing astrophysical plasmas, such as in molecular clouds. Turbulence need not be dominant to be important; even small quantities could greatly influence experiments that are sensitive to mixing of non-fuel into fuel, such as compressions seeking fusion ignition. Despite its important role in major settings, bulk plasma turbulence under compression is insufficiently understood to answer or even to pose some of the most fundamental questions about it. This thesis both identifies and answers key questions in compressing turbulent motion, while providing a description of the behavior of three-dimensional, isotropic, compressions of homogeneous turbulence with a plasma viscosity. This description includes a simple, but successful, new model for the turbulent energy of plasma undergoing compression. The unique features of compressing turbulence with a plasma viscosity are shown, including the sensitivity of the turbulence to plasma ionization, and a "sudden viscous dissipation'' effect which rapidly converts plasma turbulent energy into thermal energy. This thesis then examines turbulence in both laboratory compression experiments and molecular clouds. It importantly shows: the possibility of exploiting turbulence to make fusion or X-ray production more efficient; conditions under which hot-spot turbulence can be prevented; and a
MHD turbulent dynamo in astrophysics: Theory and numerical simulation
Chou, Hongsong
2001-10-01
This thesis treats the physics of dynamo effects through theoretical modeling of magnetohydrodynamic (MHD) systems and direct numerical simulations of MHD turbulence. After a brief introduction to astrophysical dynamo research in Chapter 1, the following issues in developing dynamic models of dynamo theory are addressed: In Chapter 2, nonlinearity that arises from the back reaction of magnetic field on velocity field is considered in a new model for the dynamo α-effect. The dependence of α-coefficient on magnetic Reynolds number, kinetic Reynolds number, magnetic Prandtl number and statistical properties of MHD turbulence is studied. In Chapter 3, the time-dependence of magnetic helicity dynamics and its influence on dynamo effects are studied with a theoretical model and 3D direct numerical simulations. The applicability of and the connection between different dynamo models are also discussed. In Chapter 4, processes of magnetic field amplification by turbulence are numerically simulated with a 3D Fourier spectral method. The initial seed magnetic field can be a large-scale field, a small-scale magnetic impulse, and a combination of these two. Other issues, such as dynamo processes due to helical Alfvénic waves and the implication and validity of the Zeldovich relation, are also addressed in Appendix B and Chapters 4 & 5, respectively. Main conclusions and future work are presented in Chapter 5. Applications of these studies are intended for astrophysical magnetic field generation through turbulent dynamo processes, especially when nonlinearity plays central role. In studying the physics of MHD turbulent dynamo processes, the following tools are developed: (1)A double Fourier transform in both space and time for the linearized MHD equations (Chapter 2 and Appendices A & B). (2)A Fourier spectral numerical method for direct simulation of 3D incompressible MHD equations (Appendix C).
Turbulent transport in magnetized plasmas
Horton, Wendell
2012-01-01
This book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th century. It describes theory, experiments and simulations in a unified and up-to-date presentation of the issues of achieving nuclear fusion power.
Plasma turbulence effects on aurorae
International Nuclear Information System (INIS)
Mishin, E.V.; Telegin, V.A.
1989-01-01
Analysis of modern state of microprocesses physics in plasma of aurorare, initiated by energetic electron flow intrusion, is presented. It is shown that there is a number of phenomena, which cannot be explained under non-collision (collective) mechanisms of interaction are applied. Effects of plasma turbulence in the area of auroral arcs are considered. Introduction of a new structural element to auroral arc - plasma-turbulence (PT) layer is substantiated. Numerical simulation of electron kinetics, changes in neutral composition, as well as generation of IR- and UV-radiation in PT layer has been realized
ZAPP: The Z Astrophysical Plasma Properties collaboration
International Nuclear Information System (INIS)
Rochau, G. A.; Bailey, J. E.; Falcon, R. E.; Loisel, G. P.; Nagayama, T.; Mancini, R. C.; Hall, I.; Winget, D. E.; Montgomery, M. H.; Liedahl, D. A.
2014-01-01
The Z Facility at Sandia National Laboratories [Matzen et al., Phys. Plasmas 12, 055503 (2005)] provides MJ-class x-ray sources that can emit powers >0.3 PW. This capability enables benchmark experiments of fundamental material properties in radiation-heated matter at conditions previously unattainable in the laboratory. Experiments on Z can produce uniform, long-lived, and large plasmas with volumes up to 20 cc, temperatures from 1–200 eV, and electron densities from 10 17–23 cc −1 . These unique characteristics and the ability to radiatively heat multiple experiments in a single shot have led to a new effort called the Z Astrophysical Plasma Properties (ZAPP) collaboration. The focus of the ZAPP collaboration is to reproduce the radiation and material characteristics of astrophysical plasmas as closely as possible in the laboratory and use detailed spectral measurements to strengthen models for atoms in plasmas. Specific issues under investigation include the LTE opacity of iron at stellar-interior conditions, photoionization around active galactic nuclei, the efficiency of resonant Auger destruction in black-hole accretion disks, and H-Balmer line shapes in white dwarf photospheres
Modeling the astrophysical dynamical process with laser-plasmas
International Nuclear Information System (INIS)
Xia Jiangfan; Zhang Jun; Zhang Jie
2001-01-01
The use of the state-of-the-art laser facility makes it possible to create conditions of the same or similar to those in the astrophysical processes. The introduction of the astrophysics-relevant ideas in laser-plasma experiments is propitious to the understanding of the astrophysical phenomena. However, the great difference between the laser-produced plasmas and the astrophysical processes makes it awkward to model the latter by laser-plasma experiments. The author addresses the physical backgrounds for modeling the astrophysical plasmas by laser plasmas, connecting these two kinds of plasmas by scaling laws. Thus, allowing the creation of experimental test beds where observations and models can be quantitatively compared with laser-plasma data. Special attentions are paid on the possibilities of using home-made laser facilities to model astrophysical phenomena
Directory of Open Access Journals (Sweden)
Adolfo Ribeiro
2015-03-01
Full Text Available Planets and stars are often capable of generating their own magnetic fields. This occurs through dynamo processes occurring via turbulent convective stirring of their respective molten metal-rich cores and plasma-based convection zones. Present-day numerical models of planetary and stellar dynamo action are not carried out using fluids properties that mimic the essential properties of liquid metals and plasmas (e.g., using fluids with thermal Prandtl numbers Pr < 1 and magnetic Prandtl numbers Pm ≪ 1. Metal dynamo simulations should become possible, though, within the next decade. In order then to understand the turbulent convection phenomena occurring in geophysical or astrophysical fluids and next-generation numerical models thereof, we present here canonical, end-member examples of thermally-driven convection in liquid gallium, first with no magnetic field or rotation present, then with the inclusion of a background magnetic field and then in a rotating system (without an imposed magnetic field. In doing so, we demonstrate the essential behaviors of convecting liquid metals that are necessary for building, as well as benchmarking, accurate, robust models of magnetohydrodynamic processes in Pm ≪ Pr < 1 geophysical and astrophysical systems. Our study results also show strong agreement between laboratory and numerical experiments, demonstrating that high resolution numerical simulations can be made capable of modeling the liquid metal convective turbulence needed in accurate next-generation dynamo models.
Ion-acoustic plasma turbulence
International Nuclear Information System (INIS)
Bychenkov, V.Y.; Silin, V.P.
1982-01-01
A theory is developed of the nonlinear state that is established in a plasma as a result of development of ion-acoustic instability. Account is taken simultaneously of the linear induced scattering of the waves by the ions and of the quasilinear relaxation of the electrons by the ion-acoustic pulsations. The distribution of the ion-acoustic turbulence in frequency and in angle is obtained. An Ohm's law is established and expressions are obtained for the electronic heat flux and for the relaxation time of the electron temperature in a turbulent plasma. Anomalously large absorption and scattering of the electromagnetic waves by the ion-acoustic pulsations is predicted
Resonant quasiparticles in plasma turbulence
International Nuclear Information System (INIS)
Mendonca, J.T.; Bingham, R.; Shukla, P.K.
2003-01-01
A general view is proposed on wave propagation in fluids and plasmas where the resonant interaction of monochromatic waves with quasiparticles is considered. A kinetic equation for quasiparticles is used to describe the broadband turbulence interacting with monochromatic waves. Resonant interactions occur when the phase velocity of the long wavelength monochromatic wave is nearly equal to the group velocity of short wavelength wave packets, or quasiparticles, associated with the turbulent spectrum. It is shown that quasiparticle Landau damping can take place, as well as quasiparticle beam instabilities, thus establishing a direct link between short and large wavelength perturbations of the medium. This link is distinct from the usual picture of direct and inverse energy cascades, and it can be used as a different paradigm for the fluid and plasma turbulence theories
Conditional Eddies in Plasma Turbulence
DEFF Research Database (Denmark)
Johnsen, H.; Pécseli, H.L.; Trulsen, J.
1987-01-01
Low‐frequency electrostatic turbulence generated by the ion–ion beam instability was investigated experimentally in a double‐plasma device. Real time signals were recorded and examined by a conditional statistical analysis. Conditionally averaged potential distributions reveal the formation...... and propagation of structures with a relatively long lifetime. Various methods for making a conditional analysis are discussed and compared. The results are discussed with reference to ion phase space vortices and clump formation in collisionless plasmas....
Implications of Navier-Stokes turbulence theory for plasma turbulence
International Nuclear Information System (INIS)
Montgomery, David
1977-01-01
A brief discussion of Navier-Stokes turbulence theory is given with particular reference to the two dimensional case. The MHD turbulence is introduced with possible applications of techniques developed in Navier-Stokes theory. Turbulence in Vlasov plasma is also discussed from the point of view of the ''direct interaction approximation'' (DIA). (A.K.)
Microstructures (clumps) in turbulent plasmas
International Nuclear Information System (INIS)
Balescu, R.; Misguich, J.H.
1977-01-01
A general analysis of binary correlations in a turbulent plasma leads to a functional relation relating correlations to the one-particle distribution function. Such a relation allows to understand the mechanism of generation of the microstructures or clumps introduced by Dupree. The expressions introduced by this author appear as a lowest approximation of the general equation. The features and interpretation of these microstructures are briefly discussed [fr
The roles of turbulence on plasma heating
International Nuclear Information System (INIS)
Kawamura, Takaichi; Kawabe, Takaya
1976-01-01
The relation between the heating rate of plasma particles and the thermalization frequency is established, and the important role of plasma turbulence in the fast thermalization process is underlined. This relation can be applied not only in the case of high current turbulent heating but also when turbulent phenomena occur with other heating means. The experimental results on ion and electron heating during the Mach II experiment are presented. The role of turbulence on particle losses accross the magnetic field is analyzed
Dusty plasmas in application to astrophysics
International Nuclear Information System (INIS)
Verheest, F.
1999-01-01
Highly charged and massive dust grains have much smaller characteristic frequencies than electrons and ions and lead to interesting modifications of existing modes and to exciting new possibilities for modes and instabilities at the lower frequency end of the spectrum. Space observations of planets and comets have shown wave-like behaviour which can only be explained by the presence of charged dust grains. Two typical solar system applications are spokes and braids in the rings of Saturn and the influence of charged dust on the pickup process of ions of cometary origin by the solar wind. As dust is ubiquitous in the universe, the Jeans instability in astrophysics is modified by incorporating plasma and charged dust and treating electromagnetic and self-gravitational aspects together. Besides the usual mechanism based upon thermal agitation, other ways of countering gravitational contraction are via excitation of electrostatic dust-acoustic modes or via Alfven-Jeans instabilities for perpendicular magnetosonic waves. The unstable wavelengths tend to be much larger, due to the dominance of plasma and magnetic pressures in inhibiting gravitational collapse. (author)
Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.
2018-02-01
We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.
Langmuir turbulence in space plasmas
Energy Technology Data Exchange (ETDEWEB)
Goldman, M.V. [Colorado Univ., Boulder, CO (United States); Newman, D.L. [Colorado Univ., Boulder, CO (United States); Wang, J.G. [Colorado Univ., Boulder, CO (United States); Muschietti, L. [California Univ., Berkeley (United States). Space Sciences Lab.
1996-11-01
Recent developments in theoretical and numerical modeling of Langmuir turbulence in space and laboratory plasmas are addressed. Kinetic effects, which have been missing from (fluid) traditional Zakharov equation models are explored using Vlasov code simulations. These studies are motivated by beam-driven Langmuir waves and particle distributions measured in earth`s foreshock region, and by beam-driven Langmuir waves and beams that underlie type III solar radio emission in the solar wind. The nonlinear physical processes studied in these 1-D Vlasov simulations include both wave-wave interactions and acceleration of particles by waves-leading to electron-beam flattening. We study bump-on-tail instabilities as boundary value problems, and determine the interplay in space and time between beam plateau formation, stimulated wave-wave backscatter cascades, and strong turbulence wave-packet collapse. (orig.).
Statistical theory of plasmas turbulence
International Nuclear Information System (INIS)
Kim, Eun-jin; Anderson, Johan
2009-01-01
We present a statistical theory of intermittency in plasma turbulence based on short-lived coherent structures (instantons). In general, the probability density functions (PDFs) of the flux R are shown to have an exponential scaling P(R) ∝ exp (-cR s ) in the tails. In ion-temperature-gradient turbulence, the exponent takes the value s=3/2 for momentum flux and s=3 for zonal flow formation. The value of s follows from the order of the highest nonlinear interaction term and the moments for which the PDFs are computed. The constant c depends on the spatial profile of the coherent structure and other physical parameters in the model. Our theory provides a powerful mechanism for ubiquitous exponential scalings of PDFs, often observed in various tokamaks. Implications of the results, in particular, on structure formation are further discussed. (author)
Parallel plasma fluid turbulence calculations
International Nuclear Information System (INIS)
Leboeuf, J.N.; Carreras, B.A.; Charlton, L.A.; Drake, J.B.; Lynch, V.E.; Newman, D.E.; Sidikman, K.L.; Spong, D.A.
1994-01-01
The study of plasma turbulence and transport is a complex problem of critical importance for fusion-relevant plasmas. To this day, the fluid treatment of plasma dynamics is the best approach to realistic physics at the high resolution required for certain experimentally relevant calculations. Core and edge turbulence in a magnetic fusion device have been modeled using state-of-the-art, nonlinear, three-dimensional, initial-value fluid and gyrofluid codes. Parallel implementation of these models on diverse platforms--vector parallel (National Energy Research Supercomputer Center's CRAY Y-MP C90), massively parallel (Intel Paragon XP/S 35), and serial parallel (clusters of high-performance workstations using the Parallel Virtual Machine protocol)--offers a variety of paths to high resolution and significant improvements in real-time efficiency, each with its own advantages. The largest and most efficient calculations have been performed at the 200 Mword memory limit on the C90 in dedicated mode, where an overlap of 12 to 13 out of a maximum of 16 processors has been achieved with a gyrofluid model of core fluctuations. The richness of the physics captured by these calculations is commensurate with the increased resolution and efficiency and is limited only by the ingenuity brought to the analysis of the massive amounts of data generated
The roles of turbulence on plasma heating
International Nuclear Information System (INIS)
Kawamura, Takaichi; Kawabe, Takaya.
1976-06-01
In this paper, the characteristic features of the turbulent heating are reviewed, which is considered to be one of the strong candidates of the further heating method in fusion reactor systems, referring to the works in the Institute of Plasma Physics, Nagoya University. The roles of turbulence in plasma heating including toroidal plasma heating are discussed from several points of view. The relation between the heating rate of plasma particles and the thermalization (randomization) frequency is theoretically investigated and the role of plasma turbulence in the fast thermalization is shown. The experimental results on fluctuation and heating of electrons and ions in turbulently heated plasmas are presented. The influence of turbulence, which is responsible for the particle heating, on the diffusion across the confinement magnetic field is considered for the application in the toroidal plasmas. It is pointed out that the turbulent fields in the fast turbulent heating give only a minor effect to the loss of particles across the magnetic field. It can be said that the enhanced fluctuation in turbulent plasma gives its field energy to the plasma particles while it can play the role of the fast thermalization of the ordered motion of particles that is produced in the plasma by some acceleration process. (Kato, T.)
A plasma deflagration accelerator as a platform for laboratory astrophysics
Underwood, Thomas C.; Loebner, Keith T. K.; Cappelli, Mark A.
2017-06-01
The replication of astrophysical flows in the laboratory is critical for isolating particular phenomena and dynamics that appear in complex, highly-coupled natural systems. In particular, plasma jets are observed in astrophysical contexts at a variety of scales, typically at high magnetic Reynolds number and driven by internal currents. In this paper, we present detailed measurements of the plasma parameters within deflagration-produced plasma jets, the scaling of these parameters against both machine operating conditions and the corresponding astrophysical phenomena. Using optical and spectroscopic diagnostics, including Schlieren cinematography, we demonstrate the production of current-driven plasma jets of ∼100 km/s and magnetic Reynolds numbers of ∼100, and discuss the dynamics of their acceleration into vacuum. The results of this study will contribute to the reproduction of various types of astrophysical jets in the laboratory and indicate the ability to further probe active research areas such as jet collimation, stability, and interaction.
The usage of numerical code FLASH in plasma astrophysics
BROŽ, Jaroslav
2013-01-01
My diploma thesis is focused on the use of numerical computer codes for simulation in plasma astrophysics. They will learn the basic characteristics of the Sun, a closer focus on the solar corona and the solar corona heating problem. The following section is devoted to simulation software in plasma astrophysics, their installing and displaying the results using the visualization software. In the conclusion is demonstrated using this software on a model example and a simulation that performs s...
Current-driven turbulence in plasmas
International Nuclear Information System (INIS)
Kluiver, H. de.
1977-10-01
Research on plasma heating in linear and toroidal systems using current-driven turbulence is reviewed. The motivation for this research is presented. Relations between parameters describing the turbulent plasma state and macroscopic observables are given. Several linear and toroidal devices used in current-driven turbulence studies are described, followed by a discussion of special diagnostic methods used. Experimental results on the measurement of electron and ion heating, anomalous plasma conductivity and associated turbulent fluctuation spectra are reviewed. Theories on current-driven turbulence are discussed and compared with experiments. It is demonstrated from the experimental results that current-driven turbulence occurs not only for extreme values of the electric field but also for an experimentally much more accessible and wide range of parameters. This forms a basis for a discussion on possible future applications in fusion-oriented plasma research
Turbulence of high-beta plasma
International Nuclear Information System (INIS)
Khvesyuk, V.I.; Chirkov, A.Y.
1999-01-01
Principals of numerical modelling of turbulence in high-beta plasma (β > 0.1) are discussed. Creation of transport model for axial symmetric nonuniform confining magnetic field is considered. Numerical model of plasma turbulence in FRC is presented. The physical and mathematical models are formulated from nonuniform axial symmetric high-beta plasma. It is shown that influence of waves arise under this plasma conditions lead to chaotic motion of charged particles across magnetic field. (author)
Suppression of Phase Mixing in Drift-Kinetic Plasma Turbulence
Parker, J. T.; Dellar, P. J.; Schekochihin, A. A.; Highcock, E. G.
2017-12-01
The solar wind and interstellar medium are examples of strongly magnetised, weakly collisional, astrophysical plasmas. Their turbulent fluctuations are strongly anisotropic, with small amplitudes, and frequencies much lower than the Larmor frequency. This regime is described by gyrokinetic theory, a reduced five-dimensional kinetic system describing averages over Larmor orbits. A turbulent plasma may transfer free energy, a measure of fluctuation amplitudes, from injection at large scales, typically by an instability, to dissipation at small physical scales like a turbulent fluid. Alternatively, a turbulent plasma may form fine scale structures in velocity space via phase-mixing, the mechanism that leads to Landau damping in linear plasma theory. Macroscopic plasma properties like heat and momentum transport are affected by both mechanisms. While each is understood in isolation, their interaction is not. We study this interaction using a Hankel-Hermite velocity space representation of gyrokinetic theory. The Hankel transform interacts neatly with the Bessel functions that arise from averaging over Larmor orbits, so the perpendicular velocity space is decoupled for linearized problems. The Hermite transform expresses phase mixing as nearest-neighbor coupling between parallel velocity space scales represented by Hermite mode numbers. We use this representation to study transfer mechanisms in drift-kinetic plasma turbulence, the long wavelength limit of gyrokinetic theory. We show that phase space is divided into two regions, with one transfer mechanism dominating in each. Most energy is contained in the region where the fluid-like nonlinear cascade dominates. Moreover, in that region the nonlinear cascade interferes with phase mixing by exciting an "anti phase mixing" transfer of free energy from small to large velocity space scales. This cancels out the usual phase mixing, and renders the overall behavior fluid-like. These results profoundly change our understanding
Spectral line profiles in weakly turbulent plasmas
International Nuclear Information System (INIS)
Capes, H.; Voslamber, D.
1976-07-01
The unified theory of line broadening by electron perturbers is generalized to include the case of a weakly turbulent plasma. The collision operator in the line shape expression is shown to be the sum of two terms, both containing effects arising from the non-equilibrium nature of the plasma. One of the two terms represents the influence of individual atom-particle interactions occuring via the nonequilibrium dielectric plasma medium. The other term is due to the interaction of the atom with the turbulent waves. Both terms contain damping and diffusion effects arising from the plasma turbulence
Sudden viscous dissipation in compressing plasma turbulence
Davidovits, Seth; Fisch, Nathaniel
2015-11-01
Compression of a turbulent plasma or fluid can cause amplification of the turbulent kinetic energy, if the compression is fast compared to the turnover and viscous dissipation times of the turbulent eddies. The consideration of compressing turbulent flows in inviscid fluids has been motivated by the suggestion that amplification of turbulent kinetic energy occurred on experiments at the Weizmann Institute of Science Z-Pinch. We demonstrate a sudden viscous dissipation mechanism whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, which further increases the temperature, feeding back to further enhance the dissipation. Application of this mechanism in compression experiments may be advantageous, if the plasma can be kept comparatively cold during much of the compression, reducing radiation and conduction losses, until the plasma suddenly becomes hot. This work was supported by DOE through contract 67350-9960 (Prime # DOE DE-NA0001836) and by the DTRA.
Transfer anisotropy effect in a turbulent plasma
International Nuclear Information System (INIS)
Bychenkov, V.Yu.; Gradov, O.M.; Silin, V.P.
1982-01-01
A theory is developed of transfer phenomena with pronounced ion-sound turbulence. A transfer anisotropy effect is observed which is due to the temperature gradient. The corresponding fluxes across the effective force vector generating the turbulence are found to be considerably greater than the longitudinal fluxes in a plasma with a comparatively low degree of nonisothermality. In a strongly nonisothermal plasma the suppression of transverse fluxes occurs, corresponding to the growth of thermal insulation of the current-carrying plasma filaments
A plasma formulary for physics, technology, and astrophysics
Diver, Declan
2011-01-01
Plasma physics has matured rapidly as a discipline, and now touches on many different research areas, including manufacturing processes. This collection of fundamental formulae and definitions in plasma physics is vital to anyone with an interest in plasmas or ionized gases, whether in physics, astronomy or engineering.Both theorists and experimentalists will find this book useful, as it incorporates the latest results and findings.The text treats astrophysical plasmas, fusion plasmas, industrial plasmas and low temperature plasmas as aspects of the same discipline - a unique approach made pos
Mini-conference and Related Sessions on Laboratory Plasma Astrophysics
International Nuclear Information System (INIS)
Hantao Ji
2004-01-01
This paper provides a summary of some major physics issues and future perspectives discussed in the Mini-Conference on Laboratory Plasma Astrophysics. This Mini-conference, sponsored by the Topical Group on Plasma Astrophysics, was held as part of the American Physical Society's Division of Plasma Physics 2003 Annual Meeting (October 27-31, 2003). Also included are brief summaries of selected talks on the same topic presented at two invited paper sessions (including a tutorial) and two contributed focus oral sessions, which were organized in coordination with the Mini-Conference by the same organizers
Mini-conference and Related Sessions on Laboratory Plasma Astrophysics
Energy Technology Data Exchange (ETDEWEB)
Hantao Ji
2004-02-27
This paper provides a summary of some major physics issues and future perspectives discussed in the Mini-Conference on Laboratory Plasma Astrophysics. This Mini-conference, sponsored by the Topical Group on Plasma Astrophysics, was held as part of the American Physical Society's Division of Plasma Physics 2003 Annual Meeting (October 27-31, 2003). Also included are brief summaries of selected talks on the same topic presented at two invited paper sessions (including a tutorial) and two contributed focus oral sessions, which were organized in coordination with the Mini-Conference by the same organizers.
Recent developments in plasma turbulence and turbulent transport
Energy Technology Data Exchange (ETDEWEB)
Terry, P.W. [Univ. of Wisconsin, Madison, WI (United States)
1997-09-22
This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.
Turbulent transport in low-beta plasmas
DEFF Research Database (Denmark)
Nielsen, A.H.; Pécseli, H.L.; Juul Rasmussen, J.
1996-01-01
Low-frequency electrostatic fluctuations are studied experimentally in a low-P plasma, with particular attention to their importance for the anomalous plasma transport across magnetic field lines. The presence of large coherent structures in a turbulent background at the edge of the plasma column...... is demonstrated by a statistical analysis. The importance of these structures for the turbulent transport is investigated. The study is extended by a multichannel conditional analysis to illustrate detailed properties and parameter dependences of the turbulent transport. (C) 1996 American Institute of Physics....
FOREWORD: Workshop on "Very Hot Astrophysical Plasmas"
Koch-Miramond, Lydie; Montemerie, Thierry
1984-01-01
A Workshop on "Very Hot Astrophysical Plasmas" was held in Nice, France, on 8-10 November 1982. Dedicated mostly to theoretical, observational, and experimental aspects of X-ray astronomy and related atomic physics, it was the first of its kind to be held in France. The Workshop was "European" in the sense that one of its goals (apart from pure science) was to gather the European astronomical community in view of the forthcoming presentation of the "X-80" project for final selection to be the next scientific satellite of the European Space Agency. We now know that the Infrared Space Observatory has been chosen instead, but the recent successful launch of EXOSAT still keeps X-ray astronomy alive, and should be able to transfer, at least for a time, the leadership in this field from the U.S. to Europe, keeping in mind the competitive level of our Japanese colleagues. (With respect to the selection of ISO, one should also keep in mind that observations in the infrared often bring material relevant to the study of X-ray sources!) On a longer time scale, the Workshop also put emphasis on several interesting projects for the late eighties-early nineties, showing the vitality of the field in Europe. Some proposals have already taken a good start, like XMM, the X-ray Multi-Mirror project, selected by ESA last December for an assessment study in 1983. The present proceedings contain most of the papers that were presented at the Workshop. Only the invited papers were presented orally, contributed papers being presented in the form of posters but summarized orally by rapporteurs. To make up this volume, the written versions of these papers were either cross-reviewed by the Invited Speakers, or refereed by the Rapporteurs (for contributed papers) and edited by us, when necessary. Note, however, that the conclusions of the Workshop, which were kindly presented by Richard McCray, have already appeared in the "News and Views" section of Nature (301, 372, 1983). Altogether, the
Statistical properties of transport in plasma turbulence
DEFF Research Database (Denmark)
Naulin, V.; Garcia, O.E.; Nielsen, A.H.
2004-01-01
The statistical properties of the particle flux in different types of plasma turbulence models are numerically investigated using probability distribution functions (PDFs). The physics included in the models range from two-dimensional drift wave turbulence to three-dimensional MHD dynamics...
Multiscale coherent structures in tokamak plasma turbulence
International Nuclear Information System (INIS)
Xu, G. S.; Wan, B. N.; Zhang, W.; Yang, Q. W.; Wang, L.; Wen, Y. Z.
2006-01-01
A 12-tip poloidal probe array is used on the HT-7 superconducting tokamak [Li, Wan, and Mao, Plasma Phys. Controlled Fusion 42, 135 (2000)] to measure plasma turbulence in the edge region. Some statistical analysis techniques are used to characterize the turbulence structures. It is found that the plasma turbulence is composed of multiscale coherent structures, i.e., turbulent eddies and there is self-similarity in a relative short scale range. The presence of the self-similarity is found due to the structural similarity of these eddies between different scales. These turbulent eddies constitute the basic convection cells, so the self-similar range is just the dominant scale range relevant to transport. The experimental results also indicate that the plasma turbulence is dominated by low-frequency and long-wavelength fluctuation components and its dispersion relation shows typical electron-drift-wave characteristics. Some large-scale coherent structures intermittently burst out and exhibit a very long poloidal extent, even longer than 6 cm. It is found that these large-scale coherent structures are mainly contributed by the low-frequency and long-wavelength fluctuating components and their presence is responsible for the observations of long-range correlations, i.e., the correlation in the scale range much longer than the turbulence decorrelation scale. These experimental observations suggest that the coexistence of multiscale coherent structures results in the self-similar turbulent state
Laboratory studies of photoionized plasma related to astrophysics
International Nuclear Information System (INIS)
Yang Peiqiang; Wang Feilu; Zhao Gang
2011-01-01
Photoionized plasma is universal in astronomy and has great importance on account of its close relation to compact astrophysical objects such as black holes. Recently, with the development of high energy density lasers and Z-pinch facilities, it has become possible to simulate astronomical photoionized plasma in the laboratory. These experiments help us to benchmark and modify the photoionization models, and to understand the photoionization processes to diagnose related astronomical plasma environments. (authors)
A dynamics investigation into edge plasma turbulence
International Nuclear Information System (INIS)
Thomsen, H.
2002-08-01
The present experimental work investigates plasma turbulence in the edge region of magnetized high-temperature plasmas. A main topic is the turbulent dynamics parallel to the magnetic field, where hitherto only a small data basis existed, especially for very long scale lengths in the order of ten of meters. A second point of special interest is the coupling of the dynamics parallel and perpendicular to the magnetic field. This anisotropic turbulent dynamics is investigated by two different approaches. Firstly, spatially and temporally high-resolution measurements of fluctuating plasma parameters are investigated by means of two-point correlation analysis. Secondly, the propagation of signals externally imposed into the turbulent plasma background is studied. For both approaches, Langmuir probe arrays were utilized for diagnostic purposes. (orig.)
Boundary Plasma Turbulence Simulations for Tokamaks
International Nuclear Information System (INIS)
Xu, X.; Umansky, M.; Dudson, B.; Snyder, P.
2008-05-01
The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T e ; T i ) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics
Transfer anisotropy in a turbulent plasma
International Nuclear Information System (INIS)
Bychenkov, V.Y.; Gradov, O.M.; Silin, V.P.
1982-01-01
We formulate a theory for transfer phenomena in a plasma with developed ion-sound turbulence. A transfer anisotropy effect caused by a temperature gradient is revealed. The corresponding fluxes transverse to the effective force vector (1) which generates the turbulence turn out to be considerably larger than the longitudinal fluxes in a plasma with a relatively small degree of nonisothermality. For a strongly nonisothermal plasma a suppression of the transverse fluxes takes place and corresponds to a growth of the thermal insulation of the current-carrying plasma filaments
Dissipation range turbulent cascades in plasmas
International Nuclear Information System (INIS)
Terry, P. W.; Almagri, A. F.; Forest, C. B.; Nornberg, M. D.; Rahbarnia, K.; Sarff, J. S.; Fiksel, G.; Hatch, D. R.; Jenko, F.; Prager, S. C.; Ren, Y.
2012-01-01
Dissipation range cascades in plasma turbulence are described and spectra are formulated from the scaled attenuation in wavenumber space of the spectral energy transfer rate. This yields spectra characterized by the product of a power law and exponential fall-off, applicable to all scales. Spectral indices of the power law and exponential fall-off depend on the scaling of the dissipation, the strength of the nonlinearity, and nonlocal effects when dissipation rates of multiple fluctuation fields are different. The theory is used to derive spectra for MHD turbulence with magnetic Prandtl number greater than unity, extending previous work. The theory is also applied to generic plasma turbulence by considering the spectrum from damping with arbitrary wavenumber scaling. The latter is relevant to ion temperature gradient turbulence modeled by gyrokinetics. The spectrum in this case has an exponential component that becomes weaker at small scale, giving a power law asymptotically. Results from the theory are compared to three very different types of turbulence. These include the magnetic plasma turbulence of the Madison Symmetric Torus, the MHD turbulence of liquid metal in the Madison Dynamo Experiment, and gyrokinetic simulation of ion temperature gradient turbulence.
Effect of turbulent collisions on diffusion in stationary plasma turbulence
International Nuclear Information System (INIS)
Xia, H.; Ishihara, O.
1990-01-01
Recently the velocity diffusion process was studied by the generalized Langevin equation derived by the projection operator method. The further study shows that the retarded frictional function plays an important role in suppressing particle diffusion in the velocity space in stronger turbulence as much as the resonance broadening effect. The retarded frictional effect, produced by the effective collisions due to the plasma turbulence is assumed to be a Gaussian, but non-Markovian and non-wide-sense stationary process. The relations between the proposed formulation and the extended resonance broadening theory is discussed. The authors also carry out test particle numerical experiment for Langmuir turbulence to test the theories. In a stronger turbulence a deviation of the diffusion rate from the one predicted by both the quasilinear and the extended resonance theories has been observed and is explained qualitatively by the present formulation
High-resolution Hybrid Simulations of Kinetic Plasma Turbulence at Proton Scales
Czech Academy of Sciences Publication Activity Database
Franci, L.; Landi, S.; Matteini, L.; Verdini, A.; Hellinger, Petr
2015-01-01
Roč. 812, č. 1 (2015), 21/1-21/15 ISSN 0004-637X R&D Projects: GA ČR GA15-10057S Institutional support: RVO:67985815 Keywords : plasmas * solar wind * turbulence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015
Dynamics of dust in astrophysical plasma and implications
Hoang, Thiem
2012-06-01
Dust is a ubiquitous constituent of the interstellar medium, molecular clouds, and circumstellar and protoplanetary disks. Dust emission interferes with observations of cosmic microwave background (CMB) temperature anisotropy and its polarized emission dominates the CMB B-mode polarization that prevents us from getting insight into the inflation epoch of the early universe. In my PhD thesis, I have studied fundamental physical processes of dust dynamics in astrophysical plasma and explored their implications for observations of the CMB, studies of magnetic fields, and formation of planets. I have investigated the spinning dust emission from very small grains (e.g., polycyclic aromatic hydrocarbons) of non-spherical shapes (including spheroid and triaxial ellipsoid shapes) that have grain axes fluctuating around grain angular momentum due to internal thermal fluctuations within the grain. I have proposed an approach based on Fourier transform to find power spectrum of spinning dust emission from grains of arbitrary grain shape. In particular, I have devised a method to find exact grain angular momentum distribution using the Langevin equation. I have explored the effects of transient spin-up by single-ion collisions, transient heating by single UV photons, and compressible turbulence on spinning dust emission. This improved model of spinning dust emission well reproduces observation data by Wilkinson Microwave Anisotropy Probe and allows a reliable separation of Galactic contamination from the CMB. I have identified grain helicity as the major driver for grain alignment via radiative torques (RATs) and suggested an analytical model of RATs based on this concept. Dust polarization predicted by the model has been confirmed by numerous observations, and can be used as a frequency template for the CMB B-mode searches. I have proposed a new type of dust acceleration due to magnetohydrodynamic turbulence through transit time damping for large grains, and quantified a
Global variation of meteor trail plasma turbulence
Directory of Open Access Journals (Sweden)
L. P. Dyrud
2011-12-01
Full Text Available We present the first global simulations on the occurrence of meteor trail plasma irregularities. These results seek to answer the following questions: when a meteoroid disintegrates in the atmosphere, will the resulting trail become plasma turbulent? What are the factors influencing the development of turbulence? and how do these trails vary on a global scale? Understanding meteor trail plasma turbulence is important because turbulent meteor trails are visible as non-specular trails to coherent radars. Turbulence also influences the evolution of specular radar meteor trails; this fact is important for the inference of mesospheric temperatures from the trail diffusion rates, and their usage for meteor burst communication. We provide evidence of the significant effect that neutral atmospheric winds and ionospheric plasma density have on the variability of meteor trail evolution and on the observation of non-specular meteor trails. We demonstrate that trails are far less likely to become and remain turbulent in daylight, explaining several observational trends for non-specular and specular meteor trails.
Structure formation in turbulent plasmas - test of nonlinear processes in plasma experiments
International Nuclear Information System (INIS)
Itoh, S.-I.; Yagi, Masatoshi; Inagaki, Shigeru
2009-01-01
Full text: Recent developments in plasma physics, either in the fusion research in a new era of ITER, or in space and in astro-physics, the world-wide and focused research has been developed on the subject of structural formation in turbulent plasma being associated with electro-magnetic field formation. Keys for the progress were a change of the physics view from the 'linear, local and deterministic' picture to the description based on 'nonlinear instability, nonlocal interaction and probabilistic excitation' for the turbulent state, and the integration of the theory-simulation-experiment. In this presentation, we first briefly summarize the theory of microscopic turbulence and mesoscale fluctuations and selection rules. In addition, the statistical formation of large-scale structure/deformation by turbulence is addressed. Then, the experimental measurements of the mesoscale structures (e.g., zonal flows, zonal fields, streamer and transport interface) and of the nonlinear interactions among them in turbulent plasmas are reported. Confirmations by, and new challenges from, the experiments are overviewed. Work supported by the Grant-in-Aid for Specially-Promoted Research (16002005). (author)
Scrape-off layer tokamak plasma turbulence
Bisai, N.; Singh, R.; Kaw, P. K.
2012-05-01
Two-dimensional (2D) interchange turbulence in the scrape-off layer of tokamak plasmas and their subsequent contribution to anomalous plasma transport has been studied in recent years using electron continuity, current balance, and electron energy equations. In this paper, numerically it is demonstrated that the inclusion of ion energy equation in the simulation changes the nature of plasma turbulence. Finite ion temperature reduces floating potential by about 15% compared with the cold ion temperature approximation and also reduces the radial electric field. Rotation of plasma blobs at an angular velocity about 1.5×105 rad/s has been observed. It is found that blob rotation keeps plasma blob charge separation at an angular position with respect to the vertical direction that gives a generation of radial electric field. Plasma blobs with high electron temperature gradients can align the charge separation almost in the radial direction. Influence of high ion temperature and its gradient has been presented.
Coherent Structures and Intermittency in Plasma Turbulence
International Nuclear Information System (INIS)
Das, Amita; Kaw, Predhiman; Sen, Abhijit
2008-01-01
The paper discusses some fundamental issues related to the phenomenon of intermittency in plasma turbulence with particular reference to experimental observations in fusion devices. Intermittency is typically associated with the presence of coherent structures in turbulence. Since coherent structures can play an important role in governing the transport properties of a system they have received a great deal of attention in fusion research. We review some of the experimental measurements and numerical simulation studies on the presence and formation of coherent structures in plasmas and discuss their relevance to intermittency. Intermittency, as widely discussed in the context of neutral fluid turbulence, implies multiscaling behaviour in contrast to self-similar scaling patterns observed in self organized criticality (SOC) phenomenon. The experimental evidence from plasma turbulence measurements reveal a mixed picture--while some observations support the SOC model description others indicate the presence of multiscaling behaviour. We discuss these results in the light of our present understanding of plasma turbulence and in terms of certain unique aspects of intermittency as revealed by fluid models of plasmas.
Introduction to plasma physics with space, laboratory and astrophysical applications
Gurnett, Donald A
2017-01-01
Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book...
Understanding SOL plasma turbulence by interchange motions
Czech Academy of Sciences Publication Activity Database
Horáček, Jan; Pitts, R. A.; Nielsen, A.H.; Garcia, O.E.
2007-01-01
Roč. 52, č. 16 (2007), s. 192-193 ISSN 0003-0503. [Annual meeting of the division of plasma physics/49th./. Orlando , 12.11.2007-16.11.2007] Grant - others:-(XE) European Training fellowships and Grants (Euratom), EDGETURB Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * plasma * scrape-off layer * turbulence * interchange instability Subject RIV: BL - Plasma and Gas Discharge Physics http://meetings.aps.org/Meeting/DPP07/Event/70125
Energy Technology Data Exchange (ETDEWEB)
Ebrahimi, Fatima [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences
2018-02-22
Magnetic fields are observed to exist on all scales in many astrophysical sources such as stars, galaxies, and accretion discs. Understanding the origin of large scale magnetic fields, whereby the field emerges on spatial scales large compared to the fluctuations, has been a particularly long standing challenge. Our physics objective are: 1) what are the minimum ingredients for large-scale dynamo growth? 2) could a large-scale magnetic field grow out of turbulence and sustained despite the presence of dissipation? These questions are fundamental for understanding the large-scale dynamo in both laboratory and astrophysical plasmas. Here, we report major new findings in the area of Large-Scale Dynamo (magnetic field generation).
Plasma phenomenology in astrophysical systems: Radio-sources and jets
International Nuclear Information System (INIS)
Montani, Giovanni; Petitta, Jacopo
2014-01-01
We review the plasma phenomenology in the astrophysical sources which show appreciable radio emissions, namely Radio-Jets from Pulsars, Microquasars, Quasars, and Radio-Active Galaxies. A description of their basic features is presented, then we discuss in some details the links between their morphology and the mechanisms that lead to the different radio-emissions, investigating especially the role played by the plasma configurations surrounding compact objects (Neutron Stars, Black Holes). For the sake of completeness, we briefly mention observational techniques and detectors, whose structure set them apart from other astrophysical instruments. The fundamental ideas concerning angular momentum transport across plasma accretion disks—together with the disk-source-jet coupling problem—are discussed, by stressing their successes and their shortcomings. An alternative scenario is then inferred, based on a parallelism between astrophysical and laboratory plasma configurations, where small-scale structures can be found. We will focus our attention on the morphology of the radio-jets, on their coupling with the accretion disks and on the possible triggering phenomena, viewed as profiles of plasma instabilities
Spectral properties of electromagnetic turbulence in plasmas
Directory of Open Access Journals (Sweden)
D. Shaikh
2009-03-01
Full Text Available We report on the nonlinear turbulent processes associated with electromagnetic waves in plasmas. We focus on low-frequency (in comparison with the electron gyrofrequency nonlinearly interacting electron whistlers and nonlinearly interacting Hall-magnetohydrodynamic (H-MHD fluctuations in a magnetized plasma. Nonlinear whistler mode turbulence study in a magnetized plasma involves incompressible electrons and immobile ions. Two-dimensional turbulent interactions and subsequent energy cascades are critically influenced by the electron whisters that behave distinctly for scales smaller and larger than the electron skin depth. It is found that in whistler mode turbulence there results a dual cascade primarily due to the forward spectral migration of energy that coexists with a backward spectral transfer of mean squared magnetic potential. Finally, inclusion of the ion dynamics, resulting from a two fluid description of the H-MHD plasma, leads to several interesting results that are typically observed in the solar wind plasma. Particularly in the solar wind, the high-time-resolution databases identify a spectral break at the end of the MHD inertial range spectrum that corresponds to a high-frequency regime. In the latter, turbulent cascades cannot be explained by the usual MHD model and a finite frequency effect (in comparison with the ion gyrofrequency arising from the ion inertia is essentially included to discern the dynamics of the smaller length scales (in comparison with the ion skin depth. This leads to a nonlinear H-MHD model, which is presented in this paper. With the help of our 3-D H-MHD code, we find that the characteristic turbulent interactions in the high-frequency regime evolve typically on kinetic-Alfvén time-scales. The turbulent fluctuation associated with kinetic-Alfvén interactions are compressive and anisotropic and possess equipartition of the kinetic and magnetic energies.
Weakly Collisional and Collisionless Astrophysical Plasmas
DEFF Research Database (Denmark)
Berlok, Thomas
are used to study weakly collisional, stratified atmospheres which offer a useful model of the intracluster medium of galaxy clusters. Using linear theory and computer simulations, we study instabilities that feed off thermal and compositional gradients. We find that these instabilities lead to vigorous...... investigate helium mixing in the weakly collisional intracluster medium of galaxy clusters using Braginskii MHD. Secondly, we present a newly developed Vlasov-fluid code which can be used for studying fully collisionless plasmas such as the solar wind and hot accretions flows. The equations of Braginskii MHD...... associated with the ions and is thus well suited for studying collisionless plasmas. We have developed a new 2D-3V Vlasov-fluid code which works by evolving the phase-space density distribution of the ions while treating the electrons as an inertialess fluid. The code uses the particle-incell (PIC) method...
A new maser effect in plasma turbulence
International Nuclear Information System (INIS)
Nambu, M.
1983-01-01
The present state of understanding of a new maser effect is reviewed. The new maser effect, the idea that the resonant electrons in a turbulent plasma can radiate amplified electromagnetic radiation, does not require population inversion of electrons. The new maser effect always coexists with Landau (or cyclotron) damping; thus it is a fundamental effect in plasma turbulence. In nuclear fusion, magnetic confinement will be at a disadvantage due to the enhanced radiation losses in the long wave length region, while inertial confinement will be improved by the laser effect in the X-ray region. (author)
Exploring extreme plasma physics in the laboratory and in astrophysics
Silva, L. O.; Grismayer, T.; Fonseca, R. A.; Cruz, F.; Gaudio, F. D.; Martins, J. L.; Vieira, J.; Vranic, M.
2017-10-01
The interaction of ultra intense fields with plasmas is at the confluence of several sub-fields ranging from QED, and nuclear physics to high energy astrophysics, and fundamental plasma processes. It requires novel theoretical tools, highly optimised numerical codes and algorithms tailored to these complex scenarios, where physical mechanisms at very disparate temporal and spatial scales are self-consistently coupled in multidimensional geometries. The key developments implemented in Osiris will be presented along with some examples of problems, relevant for laboratory or astrophysical scenarios, that are being addressed resorting to the combination of massively parallel simulations with theoretical models. The relevance for near future experimental facilities such as ELI will also be presented. Work supported by the European Research Council (ERC-AdG-2015 InPairs Grant No. 695088).
Physics and astrophysics of quark-gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Anon.
1993-06-15
The quark gluon plasma - matter too hot or dense for quarks to crystallize into particles - played a vital role in the formation of the Universe. Efforts to recreate and understand this type of matter are forefront physics and astrophysics, and progress was highlighted in the Second International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPA-QGP 93), held in Calcutta from 19-23 January. (The first conference in the series was held in Bombay in February 1988). Although primarily motivated towards enlightening the Indian physics community in this new and rapidly evolving area, in which India now plays an important role, the conference also catered for an international audience. Particular emphasis was placed on the role of quark gluon plasma in astrophysics and cosmology. While Charles Alcock of Lawrence Livermore looked at a less conventional picture giving inhomogeneous ('clumpy') nucleosynthesis, David Schramm (Chicago) covered standard big bang nucleosynthesis. The abundances of very light elements do not differ appreciably for these contrasting scenarios; the crucial difference between them shows up for heavier elements like lithium-7 and -8 and boron-11. Richard Boyd (Ohio State) highlighted the importance of accurate measurements of the primordial abundances of these elements for clues to the cosmic quark hadron phase transition. B. Banerjee (Bombay) argued, on the basis of lattice calculations, for only slight supercooling in the cosmic quark phase transition - an assertion which runs counter to the inhomogeneous nucleosynthesis scenario.
Physics and astrophysics of quark-gluon plasma
International Nuclear Information System (INIS)
Anon.
1993-01-01
The quark gluon plasma - matter too hot or dense for quarks to crystallize into particles - played a vital role in the formation of the Universe. Efforts to recreate and understand this type of matter are forefront physics and astrophysics, and progress was highlighted in the Second International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPA-QGP 93), held in Calcutta from 19-23 January. (The first conference in the series was held in Bombay in February 1988). Although primarily motivated towards enlightening the Indian physics community in this new and rapidly evolving area, in which India now plays an important role, the conference also catered for an international audience. Particular emphasis was placed on the role of quark gluon plasma in astrophysics and cosmology. While Charles Alcock of Lawrence Livermore looked at a less conventional picture giving inhomogeneous ('clumpy') nucleosynthesis, David Schramm (Chicago) covered standard big bang nucleosynthesis. The abundances of very light elements do not differ appreciably for these contrasting scenarios; the crucial difference between them shows up for heavier elements like lithium-7 and -8 and boron-11. Richard Boyd (Ohio State) highlighted the importance of accurate measurements of the primordial abundances of these elements for clues to the cosmic quark hadron phase transition. B. Banerjee (Bombay) argued, on the basis of lattice calculations, for only slight supercooling in the cosmic quark phase transition - an assertion which runs counter to the inhomogeneous nucleosynthesis scenario
Experimental and numerical investigations of plasma turbulence
International Nuclear Information System (INIS)
Huld, T.
1990-07-01
Turbulence in plasmas has been investigated experimentally and numerically. The work described here is divided into four parts: - experiments on edge turbulence in a single-ended Q-machine. Convective cells are investigated in detail together with the anomalous transport caused by them. - Numerical simulation of the edge turbulence in the Q-machine. This simulation uses spectral methods to solve Euler's equation in a cylindrical geometry. - Measurements on wave propagation and the ion beam instability in an unmagnetized plasma with an ion beam with a finite diameter. - Development of software for the automated acquisition of data. This program can control an experiment as well as make measurements. It also include a graphics part. (author) 66 ills., 47 refs
Electrostatic turbulence in strongly magnetized plasmas
International Nuclear Information System (INIS)
Nielsen, A.H.
1993-01-01
Turbulence in plasmas has been investigated experimentally and numerically. On the experimental side the turbulent nature of the Kelvin-Helmholtz instability has been studied in a single-ended Q-machine. The development of coherent structures in the background of the turbulent flow has been demonstrated and the capability of structures of transporting plasma across the magnetic field-lines is explained in detail. The numerical investigations are divided into two parts: Numerical simulations of the dynamics from the Q-machine experiments using spectral methods to solve the two-dimensional Navier-Stokes equations in a cylindrical geometry. A numerical study of the Eulerian-Lagrangian transformation in a two-dimensional flow. Here the flow is made up by a large number of structures, where each individual structure is convected by the superposed flow field of all the others. (au) (33 ills., 67 refs.)
Functional calculus in strong plasma turbulence
International Nuclear Information System (INIS)
Ahmadi, G.; Hirose, A.
1980-01-01
The theory of electrostatic plasma turbulence is considered. The basic equations for the dynamics of the hierarchy of the moment equations are derived and the difficulty of the closure problem for strong plasma turbulence is discussed. The characteristic functional in phase space is introduced and its relations to the correlation functions are described. The Hopf functional equation for dynamics of the characteristic functional is derived, and its equivalence to the hierarchy of the moment equations is established. Similar formulations were carried out in velocity-wave vector space. The cross-spectral moments and the characteristic functional are considered and their relationships are studied. An approximate solution for Hopf's equation for the nearly normal turbulence is obtained which is shown to predict diffusion of the mean distribution function in velocity space. (author)
Intermittent and global transitions in plasma turbulence
International Nuclear Information System (INIS)
Vlad, M.; Spineanu, F.; Itoh, K.; Itoh, S.-I.
2003-07-01
The dynamics of the transition processes in plasma turbulence described by the nonlinear Langevin equation (1) is studied. We show that intermittent or global transitions between metastable states can appear. The conditions for the generation of these transitions and their statistical characteristics are determined. (author)
Absorption of turbulent laser plasma radiation
International Nuclear Information System (INIS)
Silin, V.P.
1979-02-01
Some theoretical results relating to the interaction of high-power laser radiation with a plasma are presented including the development of a theory of parametric instabilities in an inhomogeneous laser plasma which shows that the size of the spatial region in which the turbulent state develops is comparable with the characteristic dimension of a several-fold fluctuation in the plasma density close to its critical value. The conditions are identified under which parametric turbulence gives an anomalous effective collision frequency substantially greater than the normal electron-ion collision frequency. Even during the build-up of strong parametric turbulence, conditions are found for the development of anomalous dissipation which results in heating of the bulk of the electrons. Under opposite conditions, the dynamic behaviour due to the influence of the ponderomotive forces associated with the p component of the radiation field shows that under slow plasma flow conditions, a considerable proportion of the laser energy absorbed by the plasma is transferred to the fast electrons. Suppression of the Cherenkov mechanism for generation of the fast electron component is observed on transition to fast plasma flow conditions. (author)
Astrophysical Aspects of Neutrino Dynamics in Ultradegenerate Quark Gluon Plasma
Directory of Open Access Journals (Sweden)
Souvik Priyam Adhya
2017-01-01
Full Text Available The cardinal focus of the present review is to explore the role of neutrinos originating from the ultradense core of neutron stars composed of quark gluon plasma in the astrophysical scenario. The collective excitations of the quarks involving the neutrinos through the different kinematical processes have been studied. The cooling of the neutron stars as well as pulsar kicks due to asymmetric neutrino emission has been discussed in detail. Results involving calculation of relevant physical quantities like neutrino mean free path and emissivity have been presented in the framework of non-Fermi liquid behavior as applicable to ultradegenerate plasma.
Magnetized and collimated millimeter scale plasma jets with astrophysical relevance
International Nuclear Information System (INIS)
Brady, Parrish C.; Quevedo, Hernan J.; Valanju, Prashant M.; Bengtson, Roger D.; Ditmire, Todd
2012-01-01
Magnetized collimated plasma jets are created in the laboratory to extend our understanding of plasma jet acceleration and collimation mechanisms with particular connection to astrophysical jets. In this study, plasma collimated jets are formed from supersonic unmagnetized flows, mimicking a stellar wind, subject to currents and magnetohydrodynamic forces. It is found that an external poloidal magnetic field, like the ones found anchored to accretion disks, is essential to stabilize the jets against current-driven instabilities. The maximum jet length before instabilities develop is proportional to the field strength and the length threshold agrees well with Kruskal-Shafranov theory. The plasma evolution is modeled qualitatively using MHD theory of current-carrying flux tubes showing that jet acceleration and collimation arise as a result of electromagnetic forces.
Radio images of the interplanetary turbulent plasma
International Nuclear Information System (INIS)
Vlasov, V.I.
1979-01-01
The results of the interplanetary scintillation daily observations of approximately 140 radio sources are given. The observations were carried out at the radiotelescope VLPA FIAN during 24 days in October-November 1975 and 6 days in April 1976. The maps (radio images) of interplanetary turbulent plasma are presented. The analysis of the maps reveals the presence of large-scale irregularities in the interplanetary plasma. The variability in large-scale structure of the interplanetary plasma is due mainly to transport of matter from the Sun. A comparison of the scintillation with the geomagnetic activity index detected the presence of a straight connection between them
Measurements of radiative material properties for astrophysical plasmas
International Nuclear Information System (INIS)
Bailey, James E.
2010-01-01
The new generation of z-pinch, laser, and XFEL facilities opens the possibility to produce astrophysically-relevant laboratory plasmas with energy densities beyond what was previously possible. Furthermore, macroscopic plasmas with uniform conditions can now be created, enabling more accurate determination of the material properties. This presentation will provide an overview of our research at the Z facility investigating stellar interior opacities, AGN warm-absorber photoionized plasmas, and white dwarf photospheres. Atomic physics in plasmas heavily influence these topics. Stellar opacities are an essential ingredient of stellar models and they affect what we know about the structure and evolution of stars. Opacity models have become highly sophisticated, but laboratory tests have not been done at the conditions existing inside stars. Our research is presently focused on measuring Fe at conditions relevant to the base of the solar convection zone, where the electron temperature and density are believed to be 190 eV and 9 x 10 22 e/cc, respectively. The second project is aimed at testing atomic kinetics models for photoionized plasmas. Photoionization is an important process in many astrophysical plasmas and the spectral signatures are routinely used to infer astrophysical object's characteristics. However, the spectral synthesis models at the heart of these interpretations have been the subject of very limited experimental tests. Our current research examines photoionization of neon plasma subjected to radiation flux similar to the warm absorber that surrounds active galactic nuclei. The third project is a recent initiative aimed at producing a white dwarf photosphere in the laboratory. Emergent spectra from the photosphere are used to infer the star's effective temperature and surface gravity. The results depend on knowledge of H, He, and C spectral line profiles under conditions where complex physics such as quasi-molecule formation may be important. These
FIRST KODAI-TRIESTE WORKSHOP ON PLASMA ASTROPHYSICS
Hasan, S. S; Krishan, V; TURBULENCE, DYNAMOS, ACCRETION DISKS, PULSARS AND COLLECTIVE PLASMA PROCESSES
2008-01-01
It is well established and appreciated by now that more than 99% of the baryonic matter in the universe is in the plasma state. Most astrophysical systems could be approximated as conducting fluids in a gravitational field. It is the combined effect of these two that gives rise to the mind boggling variety of configurations in the form of filaments, loops , jets and arches. The plasma structures that cannot last for more than a second or less in a laboratory remain intact for astronomical time and spatial scales in an astrophysical setting. The case in point is the well known extragalactic jets whose collimation and stability has remained an enigma inspite of the efforts of many for many long years. The high energy radiation sources such as the active galactic nuclei again summon the coherent plasma radiation processes for their exceptionally large output from regions of relatively small physical sizes. The generation of magnetic field, anomalous transport of angular momentum with decisive bearing on star for...
Turbulent current heating of dense plasma
International Nuclear Information System (INIS)
Suprunenko, V.A.; Sukhomlin, E.A.; Volkov, E.D.; Perepelkij, N.F.
1976-01-01
Based upon experimental results an attempt is made for systematizing and analysing conditions of experiments in anomalous resistance and turbulent heating of a plasma. The extensive program of such investigations aims at a direct practical study on quasistationary heating and plasma containment in magnetic traps. It has been shown that in real conditions turbulent heating turns out to be a far more complicated phenomenon than that described within the framework of theories developed so far. It has been established that the phenomenon alters in the transition through the critical values of electric and magnetic fields. This makes it possible to separate four characteristic experimental regimes. For all the regimes the stabilization of the electron current drift rate is typical. On the basis of the experimental results obtained an explanation is given of the sporadic character of the ultrathermal radiation in a quasistationary discharge
Turbulence theories and modelling of fluids and plasmas
Energy Technology Data Exchange (ETDEWEB)
Yoshizawa, Akira; Yokoi, Nobumitsu [Institute of Industrial Science, Univ. of Tokyo, Tokyo (Japan); Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)
2001-04-01
Theoretical and heuristic modelling methods are reviewed for studying turbulence phenomena of fluids and plasmas. Emphasis is put on understanding of effects on turbulent characteristics due to inhomogeneities of field and plasma parameters. The similarity and dissimilarity between the methods for fluids and plasmas are sought in order to shed light on the properties that are shared or not by fluid and plasma turbulence. (author)
Introduction to turbulent transport in fusion plasmas
International Nuclear Information System (INIS)
Garbet, X.
2006-01-01
This introduction presents the main instabilities responsible for turbulence in tokamak plasmas, and the prominent features of the resulting transport. The usual techniques to construct reduced transport models are described. These models can be tested by analysing steady state and transient regimes. Another way to test the theory is to use a similarity principle, similar to the one used in fluid mechanics. Finally, the physics involved in the formation and sustainment of transport barriers is presented. (author)
PLASMA EMISSION BY WEAK TURBULENCE PROCESSES
Energy Technology Data Exchange (ETDEWEB)
Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)
2014-11-10
The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.
Electron acceleration by wave turbulence in a magnetized plasma
Rigby, A.; Cruz, F.; Albertazzi, B.; Bamford, R.; Bell, A. R.; Cross, J. E.; Fraschetti, F.; Graham, P.; Hara, Y.; Kozlowski, P. M.; Kuramitsu, Y.; Lamb, D. Q.; Lebedev, S.; Marques, J. R.; Miniati, F.; Morita, T.; Oliver, M.; Reville, B.; Sakawa, Y.; Sarkar, S.; Spindloe, C.; Trines, R.; Tzeferacos, P.; Silva, L. O.; Bingham, R.; Koenig, M.; Gregori, G.
2018-05-01
Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ1-3. Strong shocks are expected to accelerate particles to very high energies4-6; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration4 process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool7,8. Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind9, a setting where electron acceleration via lower-hybrid waves is possible.
Phase space diffusion in turbulent plasmas
International Nuclear Information System (INIS)
Pecseli, H.L.
1990-01-01
Turbulent diffusion of charged test particles in electrostatic plasma turbulence is reviewed. Two different types of test particles can be distinguished. First passice particles which are subject to the fluctuating electric fields without themselves contributing to the local space charge. The second type are particles introduced at a prescribed phase space position at a certain time and which then self-consistently participate in the phase space dynamics of the turbulent. The latter ''active'' type of particles can be subjected to an effective frictional force due to radiation of plasma waves. In terms of these test particle types, two basically different problems can be formulated. One deals with the diffusion of a particle with respect to its point of release in phase space. Alternatively the relative diffusion between many, or just two, particles can be analyzed. Analytical expressions for the mean square particle displacements in phase space are discussed. More generally equations for the full probability densities are derived and these are solved analytically in special limits. (orig.)
Coherent structures in two-dimensional plasma turbulence
DEFF Research Database (Denmark)
Huld, T.; Nielsen, A.H.; Pécseli, H.L.
1991-01-01
-band turbulent fluctuations is demonstrated by a conditional sampling technique. Depending on plasma parameters, the dominant structures can appear as monopole or multipole vortices, dipole vortices in particular. The importance of large structures for the turbulent plasma diffusion is discussed. A statistical...... analysis of the randomly varying plasma flux is presented....
Turbulence and transport in a magnetized argon plasma
International Nuclear Information System (INIS)
Pots, B.F.M.
1979-01-01
An experimental study on turbulence and transport in the highly ionized argon plasma of a hollow cathode discharge is described. In order to determine the plasma parameters three standard diagnostics have been used, whilst two diagnostics have been developed to study the plasma turbulence. (Auth.)
Schertzer, D.; Falgarone, E.
1 Facts about the Workshop This workshop was convened on November 13-15 1995 by E. Falgarone and D. Schertzer within the framework of the Groupe de Recherche Mecanique des Fluides Geophysiques et Astrophysiques (GdR MFGA, Research Group of Geophysical and Astrophysical Fluid Mechanics) of Centre National de la Recherche Scientifique (CNRS, (French) National Center for Scientific Research). This Research Group is chaired by A. Babiano and the meeting was held at Ecole Normale Superieure, Paris, by courtesy of its Director E. Guyon. More than sixty attendees participated to this workshop, they came from a large number of institutions and countries from Europe, Canada and USA. There were twenty-five oral presentations as well as a dozen posters. A copy of the corresponding book of abstracts can be requested to the conveners. The theme of this meeting is somewhat related to the series of Nonlinear Variability in Geophysics conferences (NVAG1, Montreal, Aug. 1986; NVAG2, Paris, June 1988; NVAG3, Cargese (Corsica), September, 1993), as well as seven consecutive annual sessions at EGS general assemblies and two consecutive spring AGU meeting sessions devoted to similar topics. One may note that NVAG3 was a joint American Geophysical Union Chapman and European Geophysical Society Richardson Memorial conference, the first topical conference jointly sponsored by the two organizations. The corresponding proceedings were published in a special NPG issue (Nonlinear Processes in Geophysics 1, 2/3, 1994). In comparison with these previous meetings, MFGA-IDT2 is at the same time specialized to fluid turbulence and its intermittency, and an extension to the fields of astrophysics. Let us add that Nonlinear Processes in Geophysics was readily chosen as the appropriate journal for publication of these proceedings since this journal was founded in order to develop interdisciplinary fundamental research and corresponding innovative nonlinear methodologies in Geophysics. It had an
Directory of Open Access Journals (Sweden)
D. Schertzer
1996-01-01
Full Text Available 1 Facts about the Workshop This workshop was convened on November 13-15 1995 by E. Falgarone and D. Schertzer within the framework of the Groupe de Recherche Mecanique des Fluides Geophysiques et Astrophysiques (GdR MFGA, Research Group of Geophysical and Astrophysical Fluid Mechanics of Centre National de la Recherche Scientifique (CNRS, (French National Center for Scientific Research. This Research Group is chaired by A. Babiano and the meeting was held at Ecole Normale Superieure, Paris, by courtesy of its Director E. Guyon. More than sixty attendees participated to this workshop, they came from a large number of institutions and countries from Europe, Canada and USA. There were twenty-five oral presentations as well as a dozen posters. A copy of the corresponding book of abstracts can be requested to the conveners. The theme of this meeting is somewhat related to the series of Nonlinear Variability in Geophysics conferences (NVAG1, Montreal, Aug. 1986; NVAG2, Paris, June 1988; NVAG3, Cargese (Corsica, September, 1993, as well as seven consecutive annual sessions at EGS general assemblies and two consecutive spring AGU meeting sessions devoted to similar topics. One may note that NVAG3 was a joint American Geophysical Union Chapman and European Geophysical Society Richardson Memorial conference, the first topical conference jointly sponsored by the two organizations. The corresponding proceedings were published in a special NPG issue (Nonlinear Processes in Geophysics 1, 2/3, 1994. In comparison with these previous meetings, MFGA-IDT2 is at the same time specialized to fluid turbulence and its intermittency, and an extension to the fields of astrophysics. Let us add that Nonlinear Processes in Geophysics was readily chosen as the appropriate journal for publication of these proceedings since this journal was founded in order to develop interdisciplinary fundamental research and corresponding innovative nonlinear methodologies in Geophysics
High density plasmas formation in Inertial Confinement Fusion and Astrophysics
International Nuclear Information System (INIS)
Martinez-Val, J. M.; Minguez, E.; Velarde, P.; Perlado, J. M.; Velarde, G.; Bravo, E.; Eliezer, S.; Florido, R.; Garcia Rubiano, J.; Garcia-Senz, D.; Gil de la Fe, J. M.; Leon, P. T.; Martel, P.; Ogando, F.; Piera, M.; Relano, A.; Rodriguez, R.; Garcia, C.; Gonzalez, E.; Lachaise, M.; Oliva, E.
2005-01-01
In inertially confined fusion (ICF), high densities are required to obtain high gains. In Fast Ignition, a high density, low temperature plasma can be obtained during the compression. If the final temperature reached is low enough, the electrons of the plasma can be degenerate. In degenerate plasmas. Bremsstrahlung emission is strongly suppressed an ignition temperature becomes lower than in classical plasmas, which offers a new design window for ICF. The main difficulty of degenerate plasmas in the compression energy needed for high densities. Besides that, the low specific heat of degenerate electrons (as compared to classical values) is also a problem because of the rapid heating of the plasma. Fluid dynamic evolution of supernovae remnants is a very interesting problem in order to predict the thermodynamical conditions achieved in their collision regions. Those conditions have a strong influence in the emission of light and therefore the detection of such events. A laboratory scale system has been designed reproducing the fluid dynamic field in high energy experiments. The evolution of the laboratory system has been calculated with ARWEN code, 2D Radiation CFD that works with Adaptive Mesh Refinement. Results are compared with simulations on the original system obtained with a 3D SPH astrophysical code. New phenomena at the collision plane and scaling of the laboratory magnitudes will be described. Atomic physics for high density plasmas has been studied with participation in experiments to obtain laser produced high density plasmas under NLTE conditions, carried out at LULI. A code, ATOM3R, has been developed which solves rate equations for optically thin plasmas as well as for homogeneous optically thick plasmas making use of escape factors. New improvements in ATOM3R are been done to calculate level populations and opacities for non homogeneous thick plasmas in NLTE, with emphasis in He and H lines for high density plasma diagnosis. Analytical expression
International Nuclear Information System (INIS)
Casse, Fabien
2013-01-01
After having outlined that the study of turbulence is a point of convergence between mathematics and physics, and that magnetic turbulence is omnipresent in astrophysical plasmas and also present in the interstellar medium, in stars and in their environment, in accretion disks, at the vicinity of shocks, and so on, the author proposes an overview of his research works which started with a research thesis on magnetised accretion disks and transport of relativistic particles in a magnetic turbulence. So, in this report for an accreditation to supervise research (HDR), he first focuses on physics of systems in accretion, and particularly on magnetised accretion-ejection structures. He evokes his work on a stationary modelling of these structures, on magnetohydrodynamics digital simulation of these systems, and on some instabilities in accretion disks and their interest in astrophysics. In a second part, the author reports his works on numerical assessment of coefficients of spatial diffusion of cosmic rays in a magnetic turbulence, and the description of multi-scale environments such as supernovae debris or different regions of extra-galactic jets.
Ion transport in turbulent edge plasmas
International Nuclear Information System (INIS)
Helander, P.; Massachusetts Inst. of Tech., Cambridge, MA; Hazeltine, R.D.; Catto, P.J.
1996-02-01
Edge plasmas, such as the tokamak scrape-off layer, exist as a consequence of a balance between cross-field diffusion and parallel losses. The former is usually anomalous, and is widely thought to be driven by strong electrostatic turbulence. It is shown that the anomalous diffusion affects the parallel ion transport by giving rise to a new type of thermal force between different ion species. This force is parallel to the magnetic field, but arises entirely because of perpendicular gradients, and could be important for impurity retention in the tokamak divertor. (author)
Phase space diffusion in turbulent plasmas
DEFF Research Database (Denmark)
Pécseli, Hans
1990-01-01
. The second type are particles introduced at a prescribed phase space position at a certain time and which then self-consistently participate in the phase space dynamics of the turbulence. The latter "active" type of particles can be subject to an effective frictional force due to radiation of plasma waves....... In terms of these test particle types, two basically different problems can be formulated. One deals with the diffusion of a particle with respect to its point of release in phase space. Alternatively the relative diffusion between many, or just two, particles can be analyzed. Analytical expressions...
Radio propagation through the turbulent interstellar plasma
International Nuclear Information System (INIS)
Rickett, B.J.
1990-01-01
The current understanding of interstellar scattering is reviewed, and its impact on radio astronomy is examined. The features of interstellar plasma turbulence are also discussed. It is concluded that methods involving the investigation of the flux variability of pulsars and extragalactic sources and the VLBI visibility curves constitute new techniques for probing the ISM. However, scattering causes a seeing limitation in radio observations. It is now clear that variation due to RISS (refractive interstellar scintillations) is likely to be important for several classes of variable sources, especially low-frequency variables and centimeter-wave flickering. 168 refs
Investigation of plasma turbulence in a theta-pinch-discharge
International Nuclear Information System (INIS)
Lins, G.
1980-01-01
This thesis is concerned with investigations of plasma turbulence in a 3 KJ Theta-Pinch during implosion by high-frequency Stark-effect and Thomson scattering. The next points are modifications of electron-distribution function by ionization in low preionizized turbulent plasma and energy losses by particle flow and heat flow at the ends. (HT)
Model of magnetic reconnection in space and astrophysical plasmas
Energy Technology Data Exchange (ETDEWEB)
Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)
2013-03-15
Maxwell's equations imply that exponentially smaller non-ideal effects than commonly assumed can give rapid magnetic reconnection in space and astrophysical plasmas. In an ideal evolution, magnetic field lines act as stretchable strings, which can become ever more entangled but cannot be cut. High entanglement makes the lines exponentially sensitive to small non-ideal changes in the magnetic field. The cause is well known in popular culture as the butterfly effect and in the theory of deterministic dynamical systems as a sensitive dependence on initial conditions, but the importance to magnetic reconnection is not generally recognized. Two-coordinate models are too constrained geometrically for the required entanglement, but otherwise the effect is general and can be studied in simple models. A simple model is introduced, which is periodic in the x and y Cartesian coordinates and bounded by perfectly conducting planes in z. Starting from a constant magnetic field in the z direction, reconnection is driven by a spatially smooth, bounded force. The model is complete and could be used to study the impulsive transfer of energy between the magnetic field and the ions and electrons using a kinetic plasma model.
Model of magnetic reconnection in space and astrophysical plasmas
International Nuclear Information System (INIS)
Boozer, Allen H.
2013-01-01
Maxwell's equations imply that exponentially smaller non-ideal effects than commonly assumed can give rapid magnetic reconnection in space and astrophysical plasmas. In an ideal evolution, magnetic field lines act as stretchable strings, which can become ever more entangled but cannot be cut. High entanglement makes the lines exponentially sensitive to small non-ideal changes in the magnetic field. The cause is well known in popular culture as the butterfly effect and in the theory of deterministic dynamical systems as a sensitive dependence on initial conditions, but the importance to magnetic reconnection is not generally recognized. Two-coordinate models are too constrained geometrically for the required entanglement, but otherwise the effect is general and can be studied in simple models. A simple model is introduced, which is periodic in the x and y Cartesian coordinates and bounded by perfectly conducting planes in z. Starting from a constant magnetic field in the z direction, reconnection is driven by a spatially smooth, bounded force. The model is complete and could be used to study the impulsive transfer of energy between the magnetic field and the ions and electrons using a kinetic plasma model.
Role of Magnetic Reconnection in Heating Astrophysical Plasmas
Hammoud, M. M.; El Eid, M.; Darwish, M.; Dayeh, M. A.
2017-12-01
The description of plasma in the context of a fluid model reveals the important phenomenon of magnetic reconnection (MGR). This process is thought to be the cause of particle heating and acceleration in various astrophysical phenomena. Examples are geomagnetic storms, solar flares, or heating the solar corona, which is the focus of the present contribution. The magnetohydrodynamic approach (MHD) provides a basic description of MGR. However, the simulation of this process is rather challenging. Although it is not yet established whether waves or reconnection play the dominant role in heating the solar atmosphere, the present goal is to examine the tremendous increase of the temperature between the solar chromosphere and the corona in a very narrow transition region. Since we are dealing with very-high temperature plasma, the modeling of such heating process seems to require a two-fluid description consisting of ions and electrons. This treatment is an extension of the one-fluid model of resistive MHD that has been recently developed by [Hammoud et al., 2017] using the modern numerical openfoam toolbox. In this work, we outline the two-fluid approach using coronal conditions, show evidence of MGR in the two-fluid description, and investigate the temperature increase as a result of this MGR process.
Laser-Driven Hydrodynamic Experiments in the Turbulent Plasma Regime: from OMEGA to NIF
International Nuclear Information System (INIS)
Robey, H F; Miles, A R; Hansen, J F; Blue, B E; Drake, R P
2003-01-01
There is a great deal of interest in studying the evolution of hydrodynamic phenomena in high energy density plasmas that have transitioned beyond the initial phases of instability into an Ely developed turbulent state. Motivation for this study arises both in fusion plasmas as well as in numerous astrophysical applications where the understanding of turbulent mixing is essential. Double-shell ignition targets, for example, are subject to large growth of short wavelength perturbations on both surfaces of the high-Z inner shell. These perturbations, initiated by Richtmyer-Meshkov and Rayleigh-Taylor instabilities, can transition to a turbulent state and will lead to deleterious mixing of the cooler shell material with the hot burning fuel. In astrophysical plasmas, due to the extremely large scale, turbulent hydrodynamic mixing is also of wide-spread interest. The radial mixing that occurs in the explosion phase of core-collapse supernovae is an example that has received much attention in recent years and yet remains only poorly understood. In all of these cases, numerical simulation of the flow field is very difficult due to the large Reynolds number and corresponding wide range of spatial scales characterizing the plasma. Laboratory experiments on high energy density facilities that can access this regime are therefore of great interest. Experiments exploring the transition to turbulence that are currently being conducted on the Omega laser will be described. We will also discuss experiments being planned for the initial commissioning phases of the NIF as well as the enhanced experimental parameter space that will become available, as additional quads are made operational
Energy Technology Data Exchange (ETDEWEB)
Garbet, X
2001-06-01
The purpose of this work is to introduce the main processes that occur in a magnetized plasma. During the last 2 decades, the understanding of turbulence has made great progress but analytical formulas and simulations are far to produce reliable predictions. The values of transport coefficients in a tokamak plasma exceed by far those predicted by the theory of collisional transport. This phenomenon is called abnormal transport and might be due to plasma fluctuations. An estimation of turbulent fluxes derived from the levels of fluctuations, is proposed. A flow description of plasma allows the understanding of most micro-instabilities. The ballooning representation deals with instabilities in a toric geometry. 3 factors play an important role to stabilize plasmas: density pinch, magnetic shear and speed shear. The flow model of plasma gives an erroneous value for the stability threshold, this is due to a bad description of the resonant interaction between wave and particle. As for dynamics, flow models can be improved by adding dissipative terms so that the linear response nears the kinetic response. The kinetic approach is more accurate but is complex because of the great number of dimensions involved. (A.C.)
Chaos control and taming of turbulence in plasma devices
DEFF Research Database (Denmark)
Klinger, T.; Schröder, C.; Block, D.
2001-01-01
Chaos and turbulence are often considered as troublesome features of plasma devices. In the general framework of nonlinear dynamical systems, a number of strategies have been developed to achieve active control over complex temporal or spatio-temporal behavior. Many of these techniques apply...... to plasma instabilities. In the present paper we discuss recent progress in chaos control and taming of turbulence in three different plasma "model" experiments: (1) Chaotic oscillations in simple plasma diodes, (2) ionization wave turbulence in the positive column of glow discharges, and (3) drift wave...
Weak turbulence theory for beam-plasma interaction
Yoon, Peter H.
2018-01-01
The kinetic theory of weak plasma turbulence, of which Ronald C. Davidson was an important early pioneer [R. C. Davidson, Methods in Nonlinear Plasma Theory, (Academic Press, New York, 1972)], is a venerable and valid theory that may be applicable to a large number of problems in both laboratory and space plasmas. This paper applies the weak turbulence theory to the problem of gentle beam-plasma interaction and Langmuir turbulence. It is shown that the beam-plasma interaction undergoes various stages of physical processes starting from linear instability, to quasilinear saturation, to mode coupling that takes place after the quasilinear stage, followed by a state of quasi-static "turbulent equilibrium." The long term quasi-equilibrium stage is eventually perturbed by binary collisional effects in order to bring the plasma to a thermodynamic equilibrium with increased entropy.
Study of edge turbulence in tokamak plasmas
International Nuclear Information System (INIS)
Sarazin, Y.
1997-01-01
The aim of this work is to propose a new frame to study turbulent transport in plasmas. In order to avoid the restraint of scale separability the forcing by flux is used. A critical one-dimension self-organized cellular model is developed. In keeping with experience the average transport can be described by means of diffusion and convection terms whereas the local transport could not. The instability due to interchanging process is thoroughly studied and some simplified equations are derived. The proposed model agrees with the following experimental results: the relative fluctuations of density are maximized on the edge, the profile shows an exponential behaviour and the amplitude of density fluctuations depends on ionization source strongly. (A.C.)
Turbulence and abnormal transport in tokamak plasmas
International Nuclear Information System (INIS)
Garbet, X.
1988-09-01
Microinstabilities in linear and nonlinear tokamak plasmas were studied. A variational method based on the existence of a system of angular variables and action for the charged particles in the magnetic configuration of a tokamak is described. The corresponding functional, extremal in relation to the fluctuating electromagnetic field, is calculated analytically, taking into account the effects of the toroidal geometry. A numerical code, TORRID, was derived from these principles and the main instabilities, especially ion instabilities and microtearing, were studied linearly. Nonlinear methods were also applied to microtearing. Quasi-linear transport coefficients are derived from a principle of minimum entropy production. Thermal ionic conductivity and viscosity are calculated for an ionic turbulence [fr
Turbulence and abnormal transport in tokamak plasmas
International Nuclear Information System (INIS)
Garbet, X.
1988-06-01
The objective of this thesis is the study of plasma microinstabilities in linear and nonlinear tokamak regime. After a brief review of experimental results the theoretical tools used in this study are presented. A variational method founded on the existence of angular variables system and on action for charged particles in tokamak configurations is detailed. The correspondent functional extreme with regard to fluctuating electromagnetic field, is calculated analytically with taking into account the toroidal geometry. A numerical code, TORRID, has been constructed on this principle and the main instabilities, particularly ionic instabilities and microtearing, has been linearly studied. The most simple non linear methods are rewieved and applied at the microtearing instabilities. The quasilinear transport coefficients are deducted of an entropy minimum production principle. The ionic thermic conductivity and the viscosity are calculated for an ionic turbulence [fr
A hybrid gyrokinetic ion and isothermal electron fluid code for astrophysical plasma
Kawazura, Y.; Barnes, M.
2018-05-01
This paper describes a new code for simulating astrophysical plasmas that solves a hybrid model composed of gyrokinetic ions (GKI) and an isothermal electron fluid (ITEF) Schekochihin et al. (2009) [9]. This model captures ion kinetic effects that are important near the ion gyro-radius scale while electron kinetic effects are ordered out by an electron-ion mass ratio expansion. The code is developed by incorporating the ITEF approximation into AstroGK, an Eulerian δf gyrokinetics code specialized to a slab geometry Numata et al. (2010) [41]. The new code treats the linear terms in the ITEF equations implicitly while the nonlinear terms are treated explicitly. We show linear and nonlinear benchmark tests to prove the validity and applicability of the simulation code. Since the fast electron timescale is eliminated by the mass ratio expansion, the Courant-Friedrichs-Lewy condition is much less restrictive than in full gyrokinetic codes; the present hybrid code runs ∼ 2√{mi /me } ∼ 100 times faster than AstroGK with a single ion species and kinetic electrons where mi /me is the ion-electron mass ratio. The improvement of the computational time makes it feasible to execute ion scale gyrokinetic simulations with a high velocity space resolution and to run multiple simulations to determine the dependence of turbulent dynamics on parameters such as electron-ion temperature ratio and plasma beta.
Plasma turbulence measured by fast sweep reflectometry on Tore Supra
International Nuclear Information System (INIS)
Clairet, F.; Vermare, L.; Leclert, G.
2004-01-01
Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal. (authors)
Plasma turbulence measured by fast sweep reflectometry on Tore Supra
International Nuclear Information System (INIS)
Clairet, F.; Vermare, L.; Heuraux, S.; Leclert, G.
2004-01-01
Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal
ENERGY DISSIPATION AND LANDAU DAMPING IN TWO- AND THREE-DIMENSIONAL PLASMA TURBULENCE
Energy Technology Data Exchange (ETDEWEB)
Li, Tak Chu; Howes, Gregory G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Klein, Kristopher G. [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); TenBarge, Jason M. [IREAP, University of Maryland, College Park, MD 20742 (United States)
2016-12-01
Plasma turbulence is ubiquitous in space and astrophysical plasmas, playing an important role in plasma energization, but the physical mechanisms leading to dissipation of the turbulent energy remain to be definitively identified. Kinetic simulations in two dimensions (2D) have been extensively used to study the dissipation process. How the limitation to 2D affects energy dissipation remains unclear. This work provides a model of comparison between two- and three-dimensional (3D) plasma turbulence using gyrokinetic simulations; it also explores the dynamics of distribution functions during the dissipation process. It is found that both 2D and 3D nonlinear gyrokinetic simulations of a low-beta plasma generate electron velocity-space structures with the same characteristics as that of the linear Landau damping of Alfvén waves in a 3D linear simulation. The continual occurrence of the velocity-space structures throughout the turbulence simulations suggests that the action of Landau damping may be responsible for the turbulent energy transfer to electrons in both 2D and 3D, and makes possible the subsequent irreversible heating of the plasma through collisional smoothing of the velocity-space fluctuations. Although, in the 2D case where variation along the equilibrium magnetic field is absent, it may be expected that Landau damping is not possible, a common trigonometric factor appears in the 2D resonant denominator, leaving the resonance condition unchanged from the 3D case. The evolution of the 2D and 3D cases is qualitatively similar. However, quantitatively, the nonlinear energy cascade and subsequent dissipation is significantly slower in the 2D case.
International Nuclear Information System (INIS)
Krommes, J.A.
2000-01-01
Recent results and future challenges in the systematic analytical description of plasma turbulence are described. First, the importance of statistical realizability is stressed, and the development and successes of the Realizable Markovian Closure are briefly reviewed. Next, submarginal turbulence (linearly stable but nonlinearly self-sustained fluctuations) is considered and the relevance of nonlinear instability in neutral-fluid shear flows to submarginal turbulence in magnetized plasmas is discussed. For the Hasegawa-Wakatani equations, a self-consistency loop that leads to steady-state vortex regeneration in the presence of dissipation is demonstrated and a partial unification of recent work of Drake (for plasmas) and of Waleffe (for neutral fluids) is given. Brief remarks are made on the difficulties facing a quantitatively accurate statistical description of submarginal turbulence. Finally, possible connections between intermittency, submarginal turbulence, and self-organized criticality (SOC) are considered and outstanding questions are identified
Comparing simulation of plasma turbulence with experiment
International Nuclear Information System (INIS)
Ross, David W.; Bravenec, Ronald V.; Dorland, William; Beer, Michael A.; Hammett, G. W.; McKee, George R.; Fonck, Raymond J.; Murakami, Masanori; Burrell, Keith H.; Jackson, Gary L.; Staebler, Gary M.
2002-01-01
The direct quantitative correspondence between theoretical predictions and the measured plasma fluctuations and transport is tested by performing nonlinear gyro-Landau-fluid simulations with the GRYFFIN (or ITG) code [W. Dorland and G. W. Hammett, Phys. Fluids B 5, 812 (1993); M. A. Beer and G. W. Hammett, Phys. Plasmas 3, 4046 (1996)]. In an L-mode reference discharge in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)], which has relatively large fluctuations and transport, the turbulence is dominated by ion temperature gradient (ITG) modes. Trapped electron modes and impurity drift waves also play a role. Density fluctuations are measured by beam emission spectroscopy [R. J. Fonck, P. A. Duperrex, and S. F. Paul, Rev. Sci. Instrum. 61, 3487 (1990)]. Experimental fluxes and corresponding diffusivities are analyzed by the TRANSP code [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, edited by B. Coppi, G. G. Leotta, D. Pfirsch, R. Pozzoli, and E. Sindoni (Pergamon, Oxford, 1980), Vol. 1, p. 19]. The shape of the simulated wave number spectrum is close to the measured one. The simulated ion thermal transport, corrected for ExB low shear, exceeds the experimental value by a factor of 1.5 to 2.0. The simulation overestimates the density fluctuation level by an even larger factor. On the other hand, the simulation underestimates the electron thermal transport, which may be accounted for by modes that are not accessible to the simulation or to the BES measurement
Turbulent ion heating in TCV Tokamak plasmas
International Nuclear Information System (INIS)
Schlatter, Ch.
2009-08-01
charge exchange measurements, by doping the plasma with ion neutralisation targets injected with the diagnostic neutral beam (DNBI), were used to absolutely calibrate the NPA. Advanced modelling of the measured hydrogenic charge exchange spectra with the neutralisation and neutral transport codes KN1D and DOUBLE-TCV permitted a calculation of the absolute neutral density profiles of the plasma species.The energisation and the properties of fast ions were studied in dedicated, low density, cold ion, hot electron plasmas, resonantly heated at the second harmonic of the electron cyclotron frequency. The ion acceleration occurs on a characteristic timescale in the sub-millisecond range and comprises up to 20 % of the plasma ions. The number of fast ions n i s and their effective temperature T i s are found to depend strongly on the bulk and suprathermal electron parameters, in particular T i s ≥ T e b (electron bulk) and n i s ∼ v de (toroidal electron drift speed). The suprathermal electrons, abundantly generated in plasmas subjected to ECCD, are diagnosed with perpendicular and oblique viewing electron cyclotron emission (ECE) antennas and the measured frequency spectra are reconstructed with the relativistic ECE radiation balance code NOTEC-TCV. With steady-state ECRH and ECCD, the fast ion population reaches an equilibrium state. The spatial fast ion temperature profile is broad, of similar shape compared to the bulk ion temperature profile. The hottest suprathermal temperature observed is T i s ≥ 6 keV. Various potential ion acceleration mechanisms were examined for relevance in the TCV parameter range. The simultaneous wave-electron and wave-ion resonances of ion acoustic turbulence (IAT) show the best correlation with the available experimental knowledge. Ion acoustic waves are emitted by the weakly relativistic circulating electrons and are mainly Landau damped onto the ions. Destabilisation of IAT is markedly facilitated by the important degree of
Can Venus magnetosheath plasma evolve into turbulence?
Dwivedi, Navin; Schmid, Daniel; Narita, Yasuhito; Volwerk, Martin; Delva, Magda; Voros, Zoltan; Zhang, Tielong
2014-05-01
The present work aims to understand turbulence properties in planetary magnetosheath regions to obtain physical insight on the energy transfer from the larger to smaller scales, in spirit of searching for power-law behaviors in the spectra which is an indication of the energy cascade and wave-wave interaction. We perform a statistical analysis of energy spectra using the Venus Express spacecraft data in the Venusian magnetosheath. The fluxgate magnetometer data (VEXMAG) calibrated down to 1 Hz as well as plasma data from the ion mass analyzer (ASPERA) aboard the spacecraft are used in the years 2006-2009. Ten-minute intervals in the magnetosheath are selected, which is typical time length of observations of quasi-stationary fluctuations avoiding multiple boundaries crossings. The magnetic field data are transformed into the mean-field-aligned (MFA) coordinate system with respect to the large-scale magnetic field direction and the energy spectra are evaluated using a Welch algorithm in the frequency range between 0.008 Hz and 0.5 Hz for 105 time intervals. The averaged energy spectra show a power law upto 0.3 Hz with the approximate slope of -1, which is flatter than the Kolmogorov slope, -5/3. A slight hump in the spectra is found in the compressive component near 0.3 Hz, which could possibly be realization of mirror mode in the magnetosheath. A spectral break (sudden change in slope) accompanies the spectral hump at 0.4 Hz, above which the spectral curve becomes steeper. The overall spectral shape is reminiscent of turbulence. The low-frequency part with the slope -1 is interpreted as realization of the energy containing range, while the high-frequency part with the steepening is interpreted either as the beginning of energy cascade mediated by mirror mode or as the dissipation range due to wave-particle resonance processes. The present research work is fully supported by FP7/STORM (313038).
International Nuclear Information System (INIS)
Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel
2015-01-01
We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ∼ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p ∥ and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ∼ 0.3 (B) in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ∼ 0.1 (B), the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes
Analysis of chaos in plasma turbulence
DEFF Research Database (Denmark)
Pedersen, T.S.; Michelsen, Poul; Juul Rasmussen, J.
1996-01-01
-stationary turbulent state is reached in a finite time, independent of the initial conditions. Different regimes of the turbulent state can be obtained by varying the coupling parameter C, related to the parallel electron dynamics. The turbulence is described by using particle tracking and tools from chaos analysis...
Scaling of plasma turbulence resulting from parametric instabilities
International Nuclear Information System (INIS)
Ott, E.
1976-01-01
Dimensional analysis is used to obtain results on the turbulent state resulting from parametric instabilities of an initially cold plasma. The results include the possibility of an applied magnetic field, multiple ion species, and arbitrary dimensionality
On plasma coupling and turbulence effects in low velocity stopping
Energy Technology Data Exchange (ETDEWEB)
Kurilenkov, Yu K [Unified Institute for High Temperatures of Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412 Moscow (Russian Federation); Maynard, G [Laboratoire de Physique des Gaz et des Plasmas, UMR-8578, Bat. 210, Universite Paris XI, F-91405 Orsay (France); Barriga-Carrasco, M D [Laboratoire de Physique des Gaz et des Plasmas, UMR-8578, Bat. 210, Universite Paris XI, F-91405 Orsay (France); Valuev, A A [Unified Institute for High Temperatures of Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412 Moscow (Russian Federation)
2006-04-28
The problem of stopping power (SP) for projectile ions is analysed in terms of the dielectric function and effective collision frequency for moderately dense and strongly coupled plasmas (SCP). We consider several issues regarding the calculation of stopping power for correlated ensembles of particles and oscillators. In particular, effects of group (few particle) modes, transition from positive to negative dispersion and excitation of collective modes up to suprathermal level at plasma targets are addressed. Linear SP of dense suprathermal (nonlinear) plasma targets at different levels of target plasma turbulence is estimated. The force of suprathermal plasma oscillations on the projectile ions is mostly in the nature of increased frictional drag. The results obtained show the possibility of increasing low velocity stopping (up to 'turbulent' values) in comparison with losses in equilibrium dense plasma targets. Experimental conditions to create specific turbulent targets as well as some connection between stopping phenomena and SCP transport properties are discussed briefly.
On plasma coupling and turbulence effects in low velocity stopping
International Nuclear Information System (INIS)
Kurilenkov, Yu K; Maynard, G; Barriga-Carrasco, M D; Valuev, A A
2006-01-01
The problem of stopping power (SP) for projectile ions is analysed in terms of the dielectric function and effective collision frequency for moderately dense and strongly coupled plasmas (SCP). We consider several issues regarding the calculation of stopping power for correlated ensembles of particles and oscillators. In particular, effects of group (few particle) modes, transition from positive to negative dispersion and excitation of collective modes up to suprathermal level at plasma targets are addressed. Linear SP of dense suprathermal (nonlinear) plasma targets at different levels of target plasma turbulence is estimated. The force of suprathermal plasma oscillations on the projectile ions is mostly in the nature of increased frictional drag. The results obtained show the possibility of increasing low velocity stopping (up to 'turbulent' values) in comparison with losses in equilibrium dense plasma targets. Experimental conditions to create specific turbulent targets as well as some connection between stopping phenomena and SCP transport properties are discussed briefly
International Nuclear Information System (INIS)
Falgarone, Edith; Rieutord, Michel; Richard, Denis; Zahn, Jean-Paul; Dauchot, Olivier; Daviaud, Francois; Dubrulle, Berengere; Laval, Jean-Philippe; Noullez, Alain; Bourgoin, Mickael; Odier, Philippe; Pinton, Jean-Francois; Leveque, Emmanuel; Chainais, Pierre; Abry, Patrice; Mordant, Nicolas; Michel, Olivier; Marie, Louis; Chiffaudel, Arnaud; Daviaud, Francois; Petrelis, Francois; Fauve, Stephan; Nore, C.; Brachet, M.-E.; Politano, H.; Pouquet, A.; Leorat, Jacques; Grapin, Roland; Brun, Sacha; Delour, Jean; Arneodo, Alain; Muzy, Jean-Francois; Magnaudet, Jacques; Braza, Marianna; Boree, Jacques; Maurel, S.; Ben, L.; Moreau, J.; Bazile, R.; Charnay, G.; Lewandowski, Roger; Laveder, Dimitri; Bouchet, Freddy; Sommeria, Joel; Le Gal, P.; Eloy, C.; Le Dizes, S.; Schneider, Kai; Farge, Marie; Bottausci, Frederic; Petitjeans, Philippe; Maurel, Agnes; Carlier, Johan; Anselmet, Fabien
2001-05-01
This publication gathers extended summaries of presentations proposed during two days on astrophysics and magnetohydrodynamics (MHD). The first session addressed astrophysics and MHD: The cold interstellar medium, a low ionized turbulent plasma; Turbulent convection in stars; Turbulence in differential rotation; Protoplanetary disks and washing machines; gravitational instability and large structures; MHD turbulence in the sodium von Karman flow; Numerical study of the dynamo effect in the Taylor-Green eddy geometry; Solar turbulent convection under the influence of rotation and of the magnetic field. The second session addressed the description of turbulence: Should we give up cascade models to describe the spatial complexity of the velocity field in a developed turbulence?; What do we learn with RDT about the turbulence at the vicinity of a plane surface?; Qualitative explanation of intermittency; Reduced model of Navier-Stokes equations: quickly extinguished energy cascade; Some mathematical properties of turbulent closure models. The third session addressed turbulence and coherent structures: Alfven wave filamentation and formation of coherent structures in dispersive MHD; Statistical mechanics for quasi-geo-strophic turbulence: applications to Jupiter's coherent structures; Elliptic instabilities; Physics and modelling of turbulent detached unsteady flows in aerodynamics and fluid-structure interaction; Intermittency and coherent structures in a washing machine: a wavelet analysis of joint pressure/velocity measurements; CVS filtering of 3D turbulent mixing layer using orthogonal wavelets. The last session addressed experimental methods: Lagrangian velocity measurements; Energy dissipation and instabilities within a locally stretched vortex; Study by laser imagery of the generation and breakage of a compressed eddy flow; Study of coherent structures of turbulent boundary layer at high Reynolds number
Coherent vortical structures in two-dimensional plasma turbulence
DEFF Research Database (Denmark)
Pécseli, H.L.; Coutsias, E.A.; Huld, T.
1992-01-01
A laboratory experiment was carried out in order to study the nonlinear saturated stage of the cross-field electrostatic Kelvin-Helmholtz instability in a strongly magnetized plasma. The presence of large vortex-like structures in a background of wide-band turbulent fluctuations was demonstrated...... simulations. The importance of the large scale structures for the turbulent plasma transport across magnetic field lines was analyzed in detail....
Characterizing electrostatic turbulence in tokamak plasmas with high MHD activity
Energy Technology Data Exchange (ETDEWEB)
Guimaraes-Filho, Z O; Santos Lima, G Z dos; Caldas, I L; Nascimento, I C; Kuznetsov, Yu K [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66316, 05315-970, Sao Paulo, SP (Brazil); Viana, R L, E-mail: viana@fisica.ufpr.b [Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19044, 81531-990, Curitiba, PR (Brazil)
2010-09-01
One of the challenges in obtaining long lasting magnetic confinement of fusion plasmas in tokamaks is to control electrostatic turbulence near the vessel wall. A necessary step towards achieving this goal is to characterize the turbulence level and so as to quantify its effect on the transport of energy and particles of the plasma. In this paper we present experimental results on the characterization of electrostatic turbulence in Tokamak Chauffage Alfven Bresilien (TCABR), operating in the Institute of Physics of University of Sao Paulo, Brazil. In particular, we investigate the effect of certain magnetic field fluctuations, due to magnetohydrodynamical (MHD) instabilities activity, on the spectral properties of electrostatic turbulence at plasma edge. In some TCABR discharges we observe that this MHD activity may increase spontaneously, following changes in the edge safety factor, or after changes in the radial electric field achieved by electrode biasing. During the high MHD activity, the magnetic oscillations and the plasma edge electrostatic turbulence present several common linear spectral features with a noticeable dominant peak in the same frequency. In this article, dynamical analyses were applied to find other alterations on turbulence characteristics due to the MHD activity and turbulence enhancement. A recurrence quantification analysis shows that the turbulence determinism radial profile is substantially changed, becoming more radially uniform, during the high MHD activity. Moreover, the bicoherence spectra of these two kinds of fluctuations are similar and present high bicoherence levels associated with the MHD frequency. In contrast with the bicoherence spectral changes, that are radially localized at the plasma edge, the turbulence recurrence is broadly altered at the plasma edge and the scrape-off layer.
Turbulence studies in tokamak boundary plasmas with realistic divertor geometry
International Nuclear Information System (INIS)
Xu, X.Q.; Cohen, R.H.; Porter, G.D.; Rognlien, T.; Ryutov, D.D.; Myra, J.R.; D'Ippolito, D.A.; Moyer, R.; Groebner, R.J.
2001-01-01
Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT and the linearized shooting code BAL for studies of turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and nite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters. (author)
Turbulence studies in tokamak boundary plasmas with realistic divertor geometry
International Nuclear Information System (INIS)
Xu, X.Q.; Cohen, R.H.; Por, G.D. ter; Rognlien, T.D.; Ryutov, D.D.; Myra, J.R.; D'Ippolito, D.A.; Moyer, R.; Groebner, R.J.
1999-01-01
Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT and the linearized shooting code BAL for studies of turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the E x B drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters. (author)
Toward the Theory of Turbulence in Magnetized Plasmas
International Nuclear Information System (INIS)
Boldyrev, Stanislav
2013-01-01
The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a 'condensate', that is, concentration of magnetic and kinetic energy at small kllel)). A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model
Drift wave turbulence in low-β plasmas
DEFF Research Database (Denmark)
Mikkelsen, Torben; Larsen, Søren Ejling; Pécseli, Hans
1983-01-01
Experimental investigations of strong turbulence associated with the radial density gradient of a rotating magnetized plasma column are reported. The experiment is designed to make Taylor's hypothesis effective, in order to allow a simple interpretation of measured frequency spectra in terms of w...... spectrum is demonstrated. Some aspects of the relative diffusion of a test-cloud of charged particles released in the turbulent field are discussed.......Experimental investigations of strong turbulence associated with the radial density gradient of a rotating magnetized plasma column are reported. The experiment is designed to make Taylor's hypothesis effective, in order to allow a simple interpretation of measured frequency spectra in terms...... of wavenumber spectra. The spectral index of the turbulent potential fluctuations is determined and the variation of the spectral intensity is investigated for varying magnetic fields. The results compare favourably with theoretical predictions. The importance of distinguishing subranges in the turbulent...
Czech Academy of Sciences Publication Activity Database
Franci, L.; Landi, S.; Matteini, L.; Verdini, A.; Hellinger, Petr
2016-01-01
Roč. 833, č. 1 (2016), 91/1-91/7 ISSN 0004-637X R&D Projects: GA ČR GA15-10057S Institutional support: RVO:67985815 Keywords : plasmas * solar wind * turbulence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.533, year: 2016
Simulation of some nonstationary astrophysical processes in laser-produced-plasma experiments
International Nuclear Information System (INIS)
Antonov, V.M.; Zakharov, Yu.P.; Orishich, A.M.; Ponomarenko, A.G.; Posukh, V.G.
1985-01-01
Preliminary results and calibration are reported on the astrophysical plasma dynamics simulator. This apparatus creates a spherical plasma cloud by the irradiation of a perlon filament target from two radial opposite directions by pulses of highly ionized background plasma in a high-vacuum chamber with diameter of 1.2 m and length of 5 m. The spherical plasma cloud simulates the exploding peripheric part of a supernova, expanding into the interstellar medium. (author)
An introduction to astrophysical hydrodynamics
Shore, Steven N
1992-01-01
This book is an introduction to astrophysical hydrodynamics for both astronomy and physics students. It provides a comprehensive and unified view of the general problems associated with fluids in a cosmic context, with a discussion of fluid dynamics and plasma physics. It is the only book on hydrodynamics that addresses the astrophysical context. Researchers and students will find this work to be an exceptional reference. Contents include chapters on irrotational and rotational flows, turbulence, magnetohydrodynamics, and instabilities.
Self-consistent dynamo-like activity in turbulent plasmas
International Nuclear Information System (INIS)
Bhattacharjee, A.; Hameiri, E.
1986-05-01
The evolution of turbulent plasmas is investigated within the framework of resistive magnetohydrodynamics. The functional form of the mean electric field is derived for fluctuations generated by tearing and resistive interchange modes. It is shown that a bath of such local and global modes in pinches causes toroidal field-reversal with finite pressure gradients in the plasma
Coherent Structures in Numerically Simulated Plasma Turbulence
DEFF Research Database (Denmark)
Kofoed-Hansen, O.; Pécseli, H.L.; Trulsen, J.
1989-01-01
Low level electrostatic ion acoustic turbulence generated by the ion-ion beam instability was investigated numerically. The fluctuations in potential were investigated by a conditional statistical analysis revealing propagating coherent structures having the form of negative potential wells which...
Turbulence effect on Ohm's law in partially ionized plasmas
International Nuclear Information System (INIS)
Numano, M.
1977-01-01
An investigation of the effect of nonuniformity on electric current flow in partially ionized plasmas is made. An Ohm's law for a nonuniform plasma was derived, from which Rosa's equation is obtained as a special case. Making use of this new Ohm's law, the effective electrical conductivity and Hall coefficient are determined for isotropically turbulent plasmas. They are found to be in good agreement with the results obtained previously. (author)
BOOK REVIEW: Plasma and Fluid Turbulence: Theory and Modelling
Yoshizawa, A.; Itoh, S. I.; Itoh, K.
2003-03-01
The area of turbulence has been covered by many books over the years. This has, of course, mainly been fluid turbulence, while the area of plasma turbulence has been treated much less. This book by Yoshizawa et al covers both plasma and fluid turbulence, in a way that does justice to both areas at the same time as cross-disciplinary aspects are illuminated. The book should be useful to physicists working in both areas partly because it examines fundamental aspects in a pedagogical way, partly because it is up to date and partly because of the cross-disciplinary aspects which enrich both areas. It is written as an advanced textbook. The reader should have previous knowledge of at least one of the areas and also some background in statistical physics. The book starts with the very important and highly up to date area of structure formation which is relevant both to fluids and plasmas. Here, pipe flow of fluids is treated as an introduction to the area, then follows discussion of the generation of magnetic fields by turbulent motion in stellar objects and stucture formation in plasmas confined by a magnetic field. Also the concept of bifurcation is introduced. This part builds up knowledge from the simple fluid case to the problems of magnetic confinement of plasmas in a very pedagogical way. It continues by introducing the fundamentals of fluid turbulence. This is done very systematically and concepts useful for industrial applications like the K-e method and several ways of heuristic modelling are introduced. Also the two dimensional vortex equation, which is also relevant to magnetized plasmas is introduced. In chapter 5 the statistical theory of turbulence is treated. It starts with a very nice and easy to understand example of renormalization of a simple nonlinear equation where the exact solution is known. It introduces the method of partial renormalization, Greens functions and the direct interaction approximation (DIA). The book then continues with an
Ion turbulence and thermal transport in laser-produced plasmas
International Nuclear Information System (INIS)
Barr, H.C.; Boyd, T.J.M.
1982-01-01
In the interaction of high-intensity lasers with target plasmas the transport of thermal energy from the region in which the radiation is absorbed, to the cold dense plasma in the interior of the target, is an issue of central importance. The role of ion turbulence as a flux limiter is addressed with particular regard to recent experiments in which target plasmas were irradiated by 1.06 μm neodymium laser light at irradiances of 10 15 W cm - 2 and greater. Saturation levels of the ion-acoustic turbulence driven by a combination of a suprathermal electron current and a heat flux are calculated on the basis of perturbed orbit theory. The levels of turbulence are found to be markedly lower than those commonly estimated from simple trapping arguments and too low to explain the thermal flux inhibition observed in the experiments used as a basis for the model. (author)
Heating of plasmas in tokamaks by current-driven turbulence
International Nuclear Information System (INIS)
Kluiver, H. de.
1985-10-01
Investigations of current-driven turbulence have shown the potential to heat plasmas to elevated temperatures in relatively small cross-section devices. The fundamental processes are rather well understood theoretically. Even as it is shown to be possible to relax the technical requirements on the necessary electric field and the pulse length to acceptable values, the effect of energy generation near the plasma edge, the energy transport, the impurity influx and the variation of the current profile are still unknown for present-day large-radius tokamaks. Heating of plasmas by quasi-stationary weakly turbulent states caused by moderate increases of the resistivity due to higher loop voltages could be envisaged. Power supplies able to furnish power levels 5-10 times higher than the usual values could be used for a demonstration of those regimes. At several institutes and university laboratories the study of turbulent heating in larger tokamaks and stellarators is pursued
Spatial structure of ion-scale plasma turbulence
Directory of Open Access Journals (Sweden)
Yasuhito eNarita
2014-03-01
Full Text Available Spatial structure of small-scale plasma turbulence is studied under different conditions of plasma parameter beta directly in the three-dimensional wave vector domain. Two independent approaches are taken: observations of turbulent magnetic field fluctuations in the solar wind measured by four Cluster spacecraft, and direct numerical simulations of plasma turbulence using the hybrid code AIKEF, both resolving turbulence on the ion kinetic scales. The two methods provide independently evidence of wave vector anisotropy as a function of beta. Wave vector anisotropy is characterized primarily by an extension of the energy spectrum in the direction perpendicular to the large-scale magnetic field. The spectrum is strongly anisotropic at lower values of beta, and is more isotropic at higher values of beta. Cluster magnetic field data analysis also provides evidence of axial asymmetry of the spectrum in the directions around the large-scale field. Anisotropy is interpreted as filament formation as plasma evolves into turbulence. Axial asymmetry is interpreted as the effect of radial expansion of the solar wind from the corona.
Computer simulation of plasma turbulence in open systems
International Nuclear Information System (INIS)
Sigov, Yu.S.
1982-01-01
A short review of the results of kinetic simulation of collective phenomena in open plasma systems with the variable total energy and number of particles, i.e., the particle and energy fluxes on boundary surfaces and/or their internal sources and channels is given. Three specific problems are considered in different detail for such systems in one-dimensional geometry: the generation and evolution of double layers in a currently unstable plasma; the collisionless relaxation of strongly non-equilibrium electron distributions; the Langmuir collapse and strong electrostatic turbulence in systems with parametric excitation of a plasma by an external pumping wave and with cooling the fast non-Maxwell electrons. In all these cases the non-linearity and a collective character of processes give examples of new dissipative plasma structures that essentially widen our idea about the nature of the plasma turbulence in non-homogeneous open systems. (Auth.)
On the bicoherence analysis of plasma turbulence
International Nuclear Information System (INIS)
Itoh, K.; Nagashima, Y.; Fujisawa, A.; Itoh, S.-I.; Yagi, M.; Diamond, P.H.; Fukuyama, A.
2005-10-01
The bicoherence of fluctuations in a system of drift waves and zonal flows is discussed. In strong drift-wave turbulence, where broad-band fluctuations are excited, the bicoherence is examined. A Langevin equation formalism of turbulent interactions allows us to relate the bicoherence coefficient to the projection of nonlinear force onto the test mode. The dependence of the summed bicoherence on the amplitude of zonal flows is clarified. The importance of observing biphase is also stressed. The results provide a basis for measurement of nonlinear interaction in a system of drift waves and zonal flow. (author)
Suppression of plasma turbulence during optimised shear configurations in JET
International Nuclear Information System (INIS)
Conway, G.D.; Borba, D.N.; Alper, B.
1999-08-01
Density turbulence suppression is observed in the internal transport barrier (ITB) region of JET discharges with optimised magnetic shear. The suppression occurs in two stages. First, low frequency turbulence is reduced across the plasma core by a toroidal velocity shear generated by intense auxiliary heating. Then when the ITB forms, high frequency turbulence is reduced locally within the steep pressure gradient region of the ITB, consistent with the effects of enhanced E x B poloidal shear. The turbulence suppression is correlated with reduced plasma transport and improved fusion performance. Much effort has been spent in recent years in developing alternative scenarios for operating tokamak fusion reactors. One particular scenario involves reversing or reducing the central magnetic shear to form an internal transport barrier (ITB). The result is reduced plasma core energy transport and enhanced fusion performance. It is believed that ITBs may be formed through a combination of E x B velocity shear and magnetic shear stabilisation of plasma turbulence and instabilities. In this Letter we present results from JET optimised shear discharges showing that turbulence suppression during ITB formation occurs in two stages. First low frequency turbulence is reduced across the plasma core, coinciding with a region of strong toroidal velocity shear; then high frequency turbulence is locally suppressed around the ITB region, consistent with enhanced pressure gradient driven E x B poloidal shear. The measurements were made using a system of X-mode reflectometers consisting of two, dual-channel toroidal correlation reflectometers at 75 GHz (covering plasma outboard edge) and 105 GHz (core and inboard edge), and a 92-96 GHz swept frequency radial correlation reflectometer (plasma core). Reflectometry is a powerful tool for measuring density fluctuations. The highly localised reflection of the microwave beam gives excellent spatial localisation. Measurements can be made
Relativistic plasma turbulence and its application to pulsar phenomena
International Nuclear Information System (INIS)
Hinata, S.
1976-01-01
A turbulent plasma model of pulsars which has the potential of providing a self-regulatory mechanism for producing an electron-positron plasma over the polar caps, as well as the coherency of the radio wave emission, is analyzed. Turbulent plasma properties including the kinetic and electrostatic energy densities, the wavelength of the most unstable mode, and the effective collision frequency due to the excited electric field, are obtained and applied to the pulsar situation. Since these properties depend on the momentum distribution of the plasma particles, model calculations have been carried out with simple momentum distribution functions. The radio luminosity due to turbulence (bunching or otherwise) turned out to be either insufficient or unclear at the moment for these simple momentum distributions. This indicates that a further investigation of turbulence processes with the self-consistently determined momentum distribution is needed. This is left for future analysis, because entirely different processes (e.g. trapping) are likely to dominate the physics as is demonstrated for one of the model distribution functions. In addition to the above mentioned model, we examine some wave propagation properties in a relativistic electron-positron plasma immersed in a strong magnetic field
International Nuclear Information System (INIS)
Lin, Z; Rewoldt, G; Ethier, S; Hahm, T S; Lee, W W; Lewandowski, J L V; Nishimura, Y; Wang, W X
2005-01-01
Recent progress in gyrokinetic particle-in-cell simulations of turbulent plasmas using the gyrokinetic toroidal code (GTC) is surveyed. In particular, recent results for electron temperature gradient (ETG) modes and their resulting transport are presented. Also, turbulence spreading, and the effects of the parallel nonlinearity, are described. The GTC code has also been generalized for non-circular plasma cross-section, and initial results are presented. In addition, two distinct methods of generalizing the GTC code to be electromagnetic are described, along with preliminary results. Finally, a related code, GTC-Neo, for calculating neoclassical fluxes, electric fields, and velocities, are described
Studies on waves and turbulence in natural plasmas and in laboratory plasmas
International Nuclear Information System (INIS)
Ferreira, J.L.
1990-09-01
The project for studying plasma waves and plasma turbulence submitted to CAPES to be included in the CAPES/COFECUB international cooperation agreement is presented. The project will be carry out in cooperation with Paris University aiming to simulate in laboratory wave-particle interaction phenomena occuring in space plasma. (M.C.K.)
Transport processes in space physics and astrophysics
Zank, Gary P
2014-01-01
Transport Processes in Space Physics and Astrophysics' is aimed at graduate level students to provide the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. Subjects emphasized in the work include collisional and collisionless processes in gases (neutral or plasma), analogous processes in turbulence fields and radiation fields, and allows for a simplified treatment of the statistical description of the system. A systematic study that addresses the common tools at a graduate level allows students to progress to a point where they can begin their research in a variety of fields within space physics and astrophysics. This book is for graduate students who expect to complete their research in an area of plasma space physics or plasma astrophysics. By providing a broad synthesis in several areas of transport theory and modeling, the work also benefits resear...
Energy Transfer and Dual Cascade in Kinetic Magnetized Plasma Turbulence
International Nuclear Information System (INIS)
Plunk, G. G.; Tatsuno, T.
2011-01-01
The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.
Energy Transfer and Dual Cascade in Kinetic Magnetized Plasma Turbulence
Plunk, G. G.; Tatsuno, T.
2011-04-01
The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.
Long-range correlations and universality in plasma edge turbulence
International Nuclear Information System (INIS)
Milligen, B.Ph. van; Pedrosa, M.A.; Carreras, B.A.
1999-01-01
Long-range correlations in turbulence, associated with self-similarity of the fluctuations, are a signature of transport by avalanches as occurs in Self-Organized Critical systems. We have investigated long-range correlations in plasma edge fluctuations in a variety of fusion devices, using the Rescaled-Range and similar techniques. We find that the degree of self-similarity in confining devices is high and similar between devices, and much different from non-confining devices where it is low. Likewise, we find that turbulent spectra show a high degree of similarity between devices. These findings strongly indicate the existence of universality in plasma edge (ohmic) turbulence, and demonstrate its non-Gaussian character. (author)
Wave launching as a diagnostic tool to investigate plasma turbulence
International Nuclear Information System (INIS)
Tsui, H.Y.W.; Bengtson, R.D.; Li, G.X.; Richards, B.; Uglum, J.; Wootton, A.J.; Uckan, T.
1994-01-01
An experimental scheme to extend the investigation of plasma turbulence has been implemented. It involves driving waves into the plasma to modify the statistical properties of the fluctuations; the dynamic balance of the turbulence is perturbed via the injection of waves at selected spectral regions. A conditional sampling technique is used in conjunction with correlation analyses to study the wave launching and the wave-wave coupling processes. Experimental results from TEXT-U tokamak show that the launched waves interact with the intrinsic fluctuations both linearly and nonlinearly. The attainment of driven nonlinearity is necessary for this diagnostic scheme to work. It is also the key to an active modification and control of edge turbulence in tokamaks
Turbulence and intermittent transport at the boundary of magnetized plasmas
DEFF Research Database (Denmark)
Garcia, O.E.; Naulin, V.; Nielsen, A.H.
2005-01-01
Numerical fluid simulations of interchange turbulence for geometry and parameters relevant to the boundary region of magnetically confined plasmas are shown to result in intermittent transport qualitatively similar to recent experimental measurements. The two-dimensional simulation domain features...... a forcing region with spatially localized sources of particles and heat outside which losses due to the motion along open magnetic-field lines dominate, corresponding to the edge region and the scrape-off layer, respectively. Turbulent states reveal intermittent eruptions of hot plasma from the edge region...... fluctuation wave forms and transport statistics are also in a good agreement with those derived from the experiments. Associated with the turbulence bursts are relaxation oscillations in the particle and heat confinements as well as in the kinetic energy of the sheared poloidal flows. The formation of blob...
Study of the plasma edge turbulence in tokamaks
International Nuclear Information System (INIS)
Garbet, X.; Laurent, L.; Mourgues, F.; Roubin, J.P.; Samain, A.
1990-01-01
The plasma edge in tokamaks is known to be very turbulent. We investigate here the non linear stability of a test mode in presence of an helical potential perturbation, i.e. a pump mode, which simulates the plasma turbulence. The particle trajectories in this perturbed equilibrium are derived using an hamiltonian formalism. The electrons appear to have trapped trajectories in the potential well of the pump mode, while the ions experience a large convective motion. These two effects have a large influence on the test mode stability. First, non linearly trapped electrons supply an energy source for the test mode. Second, the ion convective motion introduces a radial scale of the test mode larger than the ion Larmor radius, in agreement with experimental data. These two phenomena allow a bifurcation in the turbulence level and provide therefore an explanation for the L-H transition
Exact Turbulence Law in Collisionless Plasmas: Hybrid Simulations
Hellinger, P.; Verdini, A.; Landi, S.; Franci, L.; Matteini, L.
2017-12-01
An exact vectorial law for turbulence in homogeneous incompressible Hall-MHD is derived and tested in two-dimensional hybrid simulations of plasma turbulence. The simulations confirm the validity of the MHD exact law in the kinetic regime, the simulated turbulence exhibits a clear inertial range on large scales where the MHD cascade flux dominates. The simulation results also indicate that in the sub-ion range the cascade continues via the Hall term and that the total cascade rate tends to decrease at around the ion scales, especially in high-beta plasmas. This decrease is like owing to formation of non-thermal features, such as collisionless ion energization, that can not be retained in the Hall MHD approximation.
Statistics of turbulent structures in a thermal plasma jet
Czech Academy of Sciences Publication Activity Database
Hlína, Jan; Šonský, Jiří; Něnička, Václav; Zachar, Andrej
2005-01-01
Roč. 38, - (2005), s. 1760-1768 ISSN 0022-3727 R&D Projects: GA AV ČR(CZ) IAA1057202; GA ČR(CZ) GA202/05/0728 Institutional research plan: CEZ:AV0Z20570509 Keywords : turbulent structures * thermal plasma jet Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.957, year: 2005
Turbulence in the solar atmosphere and in the interplanetary plasma
International Nuclear Information System (INIS)
Chashei, I.V.; Shishov, V.I.
1984-01-01
Analysis of the basic properties of the turbulence in the solar chromosphere, corona, and supercorona (the plasma acceleration zone) indicates that the energy of acoustic disturbances generated at the photospheric level will be conveyed outward into the interplanetary plasma jointly by nonlinear wave interactions and wave propagation effects. Above the chromosphere, damping will be strongest at heights Rroughly-equal0.4 R/sub sun/ for acoustic-type waves and at Rroughly-equalR/sub sun/ for Alfven waves
Detonability of turbulent white dwarf plasma: Hydrodynamical models at low densities
Fenn, Daniel
The origins of Type Ia supernovae (SNe Ia) remain an unsolved problem of contemporary astrophysics. Decades of research indicate that these supernovae arise from thermonuclear runaway in the degenerate material of white dwarf stars; however, the mechanism of these explosions is unknown. Also, it is unclear what are the progenitors of these objects. These missing elements are vital components of the initial conditions of supernova explosions, and are essential to understanding these events. A requirement of any successful SN Ia model is that a sufficient portion of the white dwarf plasma must be brought under conditions conducive to explosive burning. Our aim is to identify the conditions required to trigger detonations in turbulent, carbon-rich degenerate plasma at low densities. We study this problem by modeling the hydrodynamic evolution of a turbulent region filled with a carbon/oxygen mixture at a density, temperature, and Mach number characteristic of conditions found in the 0.8+1.2 solar mass (CO0812) model discussed by Fenn et al. (2016). We probe the ignition conditions for different degrees of compressibility in turbulent driving. We assess the probability of successful detonations based on characteristics of the identified ignition kernels, using Eulerian and Lagrangian statistics of turbulent flow. We found that material with very short ignition times is abundant in the case that turbulence is driven compressively. This material forms contiguous structures that persist over many ignition time scales, and that we identify as prospective detonation kernels. Detailed analysis of the kernels revealed that their central regions are densely filled with material characterized by short ignition times and contain the minimum mass required for self-sustained detonations to form. It is conceivable that ignition kernels will be formed for lower compressibility in the turbulent driving. However, we found no detonation kernels in models driven 87.5 percent
Spontaneous emission of electromagnetic radiation in turbulent plasmas
Energy Technology Data Exchange (ETDEWEB)
Ziebell, L. F., E-mail: luiz.ziebell@ufrgs.br [Instituto de Física, UFRGS, Porto Alegre, Rio Grande do Sul (Brazil); Yoon, P. H., E-mail: yoonp@umd.edu [School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701, South Korea and University of Maryland, College Park, Maryland 20742 (United States); Simões, F. J. R.; Pavan, J. [Instituto de Física e Matemática, UFPel, Pelotas, Rio Grande do Sul (Brazil); Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, Rio Grande do Sul (Brazil); Instituto de Física e Matemática, UFPel, Pelotas, Rio Grande do Sul (Brazil)
2014-01-15
Known radiation emission mechanisms in plasmas include bremmstrahlung (or free-free emission), gyro- and synchrotron radiation, cyclotron maser, and plasma emission. For unmagnetized plasmas, only bremmstrahlung and plasma emissions are viable. Of these, bremmstrahlung becomes inoperative in the absence of collisions, and the plasma emission requires the presence of electron beam, followed by various scattering and conversion processes. The present Letter proposes a new type of radiation emission process for plasmas in a state of thermodynamic quasi-equilibrium between particles and enhanced Langmuir turbulence. The radiation emission mechanism proposed in the present Letter is not predicted by the linear theory of thermal plasmas, but it relies on nonlinear wave-particle resonance processes. The electromagnetic particle-in-cell numerical simulation supports the new mechanism.
Turbulence and anomalous transport in toroidal plasmas
Energy Technology Data Exchange (ETDEWEB)
Nordman, H
1990-12-31
In present-day Tokamak fusion machines, instabilities and turbulence driven by temperature gradients can have a considerable impact on the confinement qualities. This thesis is mainly devoted to analyzing the nonlinear evolution of these instabilities and the associated turbulent transport. A combined analytical and numerical study of the ion temperature gradient driven turbulence is presented. An analytical expression for the ion thermal conductivity is derived and found to be in good agreement with the simulation results. The scaling properties of chi{sub i} are investigated and compared with experimental results. The transport due to the simultaneous presence of a trapped electron mode and an ion temperature gradient mode is analysed. It is found that the coupling of the modes can give rise to inward diffusive fluxes of both particles and energy. The tendency of the system to equilibrate density and temperature scale lengths is compared with recent experimental trends. The nonlinear behaviour of the instabilities is also studied in the context of low dimensional dynamical systems. Here, the relation between the fully nonlinear fluid models and the low dimensional models is discussed. The influence of a high frequency RF-field on the ion temperature gradient driven mode is investigated analytically. The consequences for mode stability and transport are considered. 23 refs.
Turbulence and anomalous transport in toroidal plasmas
International Nuclear Information System (INIS)
Nordman, H.
1989-01-01
In present-day Tokamak fusion machines, instabilities and turbulence driven by temperature gradients can have a considerable impact on the confinement qualities. This thesis is mainly devoted to analyzing the nonlinear evolution of these instabilities and the associated turbulent transport. A combined analytical and numerical study of the ion temperature gradient driven turbulence is presented. An analytical expression for the ion thermal conductivity is derived and found to be in good agreement with the simulation results. The scaling properties of chi i are investigated and compared with experimental results. The transport due to the simultaneous presence of a trapped electron mode and an ion temperature gradient mode is analysed. It is found that the coupling of the modes can give rise to inward diffusive fluxes of both particles and energy. The tendency of the system to equilibrate density and temperature scale lengths is compared with recent experimental trends. The nonlinear behaviour of the instabilities is also studied in the context of low dimensional dynamical systems. Here, the relation between the fully nonlinear fluid models and the low dimensional models is discussed. The influence of a high frequency RF-field on the ion temperature gradient driven mode is investigated analytically. The consequences for mode stability and transport are considered. 23 refs
Statistical characterization of turbulence in the boundary plasma of EAST
DEFF Research Database (Denmark)
Yan, Ning; Nielsen, Anders Henry; Xu, G.S.
2013-01-01
In Ohmic heated low confinement mode (L-mode) discharges, the intermittent statistical characteristics of turbulent fluctuations have been investigated in the edge and the scrape-off layer (SOL) plasma on EAST (the experimental advanced superconducting tokamak) by fast reciprocating Langmuir probe...
Fluid model of the magnetic presheath in a turbulent plasma
International Nuclear Information System (INIS)
Stanojevic, M; Duhovnik, J; Jelic, N; Kendl, A; Kuhn, S
2005-01-01
A fluid model of the magnetic presheath in a turbulent boundary plasma is presented. Turbulent transport corrections of the classical three-dimensional fluid transport equations, which can be used to study magnetic presheaths in various geometries, are derived by means of the ensemble averaging procedure from the statistical theory of plasma turbulence. Then, the magnetic presheath in front of an infinite plane surface is analysed in detail. The linearized planar magnetic presheath equations are applied to the plasma-presheath-magnetic-presheath boundary (i.e. the magnetic presheath edge), whereas the original non-linear planar magnetic presheath equations are used for the entire magnetic presheath, allowing for various sets of experimentally relevant free model parameters to be applied. Important new results of this study are, among others, new expressions for the fluid Bohm criterion at the Debye sheath edge and for the ion flux density perpendicular to the wall. These new results, which exhibit corrections due to the turbulent charged particle transport, can qualitatively explain the fact that whenever the angle between the magnetic field and the wall is very small (i.e. several degrees) or zero, electric currents, measured by Langmuir probes in the boundary regions of nuclear fusion devices and in various low-temperature plasmas, are anomalously enhanced in comparison with those expected or predicted by other theoretical models
Magnetic Reconnection as a Driver for a Sub-ion-scale Cascade in Plasma Turbulence
Czech Academy of Sciences Publication Activity Database
Franci, L.; Cerri, S.S.; Califano, F.; Landi, S.; Papini, E.; Verdini, A.; Matteini, L.; Jenko, F.; Hellinger, Petr
2017-01-01
Roč. 850, č. 1 (2017), L16/1-L16/6 ISSN 2041-8205 R&D Projects: GA ČR GA15-10057S Institutional support: RVO:67985815 Keywords : magnetic reconnection * solar wind * turbulence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.522, year: 2016
Relativistic generalization of strong plasma turbulence
International Nuclear Information System (INIS)
Chian, A.C.-L.
1982-01-01
Two fundamental electrostatic modes of an unmagnetized plasma, namely, ion acoustic mode and Langumir mode are studied. Previous theories are generalized to include the effect of relativistic mass variations. The existence of relativistic ion acoustic solitons is demonstrated. In addition, it is shown that simple, relativistic Langumir solitons do not exist in a infinite plasma. (L.C.) [pt
MHD instabilities in astrophysical plasmas: very different from MHD instabilities in tokamaks!
Goedbloed, J. P.
2018-01-01
The extensive studies of MHD instabilities in thermonuclear magnetic confinement experiments, in particular of the tokamak as the most promising candidate for a future energy producing machine, have led to an ‘intuitive’ description based on the energy principle that is very misleading for most astrophysical plasmas. The ‘intuitive’ picture almost directly singles out the dominant stabilizing field line bending energy of the Alfvén waves and, consequently, concentrates on expansion schemes that minimize that contribution. This happens when the wave vector {{k}}0 of the perturbations, on average, is perpendicular to the magnetic field {B}. Hence, all macroscopic instabilities of tokamaks (kinks, interchanges, ballooning modes, ELMs, neoclassical tearing modes, etc) are characterized by satisfying the condition {{k}}0 \\perp {B}, or nearly so. In contrast, some of the major macroscopic instabilities of astrophysical plasmas (the Parker instability and the magneto-rotational instability) occur when precisely the opposite condition is satisfied: {{k}}0 \\parallel {B}. How do those instabilities escape from the dominance of the stabilizing Alfvén wave? The answer to that question involves, foremost, the recognition that MHD spectral theory of waves and instabilities of laboratory plasmas could be developed to such great depth since those plasmas are assumed to be in static equilibrium. This assumption is invalid for astrophysical plasmas where rotational and gravitational accelerations produce equilibria that are at best stationary, and the associated spectral theory is widely, and incorrectly, believed to be non-self adjoint. These complications are addressed, and cured, in the theory of the Spectral Web, recently developed by the author. Using this method, an extensive survey of instabilities of astrophysical plasmas demonstrates how the Alfvén wave is pushed into insignificance under these conditions to give rise to a host of instabilities that do not
Strong plasma turbulence in the earth's electron foreshock
Robinson, P. A.; Newman, D. L.
1991-01-01
A quantitative model is developed to account for the distribution in magnitude and location of the intense plasma waves observed in the earth's electron foreshock given the observed rms levels of waves. In this model, nonlinear strong-turbulence effects cause solitonlike coherent wave packets to form and decouple from incoherent background beam-excited weak turbulence, after which they convect downstream with the solar wind while collapsing to scales as short as 100 m and fields as high as 2 V/m. The existence of waves with energy densities above the strong-turbulence wave-collapse threshold is inferred from observations from IMP 6 and ISEE 1 and quantitative agreement is found between the predicted distribution of fields in an ensemble of such wave packets and the actual field distribution observed in situ by IMP 6. Predictions for the polarization of plasma waves and the bandwidth of ion-sound waves are also consistent with the observations. It is shown that strong-turbulence effects must be incorporated in any comprehensive theory of the propagation and evolution of electron beams in the foreshock. Previous arguments against the existence of strong turbulence in the foreshock are refuted.
Strong plasma turbulence in the earth's electron foreshock
International Nuclear Information System (INIS)
Robinson, P.A.; Newman, D.L.
1991-01-01
A quantitative model is developed to account for the distribution in magnitude and location of the intense plasma waves observed in the Earth's electron foreshock given the observed rms levels of waves. In this model, nonlinear strong-turbulence effects cause solitonlike coherent wave packets to form and decouple from incoherent background beam-excited weak turbulence, after which they convect downstream with the solar wind while collapsing to scales as short as 100 m and fields as high as 2 V m -1 . The existence of waves with energy densities above the strong-turbulence wave-collapse threshold is inferred from observations from IMP 6 and ISEE 1 and quantitative agreement is found between the predicted distribution of fields in an ensemble of such wave packets and the actual field distribution observed in situ by IMP 6. Predictions for the polarization of plasma waves and the bandwidth of ion-sound waves are also consistent with the observations. It is shown that strong-turbulence effects must be incorporated in any comprehensive theory of the propagation and evolution of electron beams in the foreshock. Previous arguments against the existence of strong turbulence in the foreshock are refuted
Theory of self-sustained turbulence in confined plasmas
International Nuclear Information System (INIS)
Itoh, K.; Itoh, S.-I.; Fukuyama, A.; Yagi, M.
1996-01-01
This article reviews some aspects of recent theoretical activities in Japan on the problem of turbulent transport in confined plasmas. The method of self-sustained turbulence is discussed. The process of the renormalization is shown and the turbulent Prandtl number is introduced. Nonlinear destabilization by the electron momentum diffusion is explained. The nonlinear eigenmode equation is derived for the dressed-test-mode for the inhomogeneous plasma in the shear magnetic field. The eigenvalue equation is solved, and the least stable mode determines the anomalous transport coefficient. The formula of the thermal conductivity is presented for the system of bad average magnetic curvature (current diffusive interchange mode (CDIM) turbulence) and that for the average good magnetic curvature (current diffusive ballooning mode (CDBM) turbulence). The transport coefficient, scale length of fluctuations and fluctuation level are shown to be an increasing function of the pressure gradient. Verification by use of the nonlinear simulation is shown. The bifurcation of the electric field and improved confinement are addressed, in order to explain the H-mode physics. The improved confinement and dynamics such as ELMs are explained. Application to the transport analysis of tokamaks is also presented, including explanations of the L-mode confinement, internal transport barrier, and the role of the current profile control
R-matrix calculations for electron impact excitation and their application in astrophysical plasmas
International Nuclear Information System (INIS)
Liang, G Y; Badnell, N R; Zhao, G; Del Zanna, G; Mason, H E; Storey, P J
2012-01-01
The large number of high-resolution spectra routinely recorded in the astrophysical and fusion communities leads to the need for an extensive set of accurate baseline atomic data. The advantages of the intermediate-coupling frame transformation (ICFT) R-matrix method make it feasible to provide excitation data along iso-electronic sequences (Z ≤ 36) at the high level of accuracy afforded by the R-matrix method. The resultant data helps to overcome the longstanding shortcomings in X-ray and EUV astronomy. This is one of the key goals of the UK Atomic Processes for Astrophysical Plasmas (APAP) network.
Plasma shaping effects on tokamak scrape-off layer turbulence
Riva, Fabio; Lanti, Emmanuel; Jolliet, Sébastien; Ricci, Paolo
2017-03-01
The impact of plasma shaping on tokamak scrape-off layer (SOL) turbulence is investigated. The drift-reduced Braginskii equations are written for arbitrary magnetic geometries, and an analytical equilibrium model is used to introduce the dependence of turbulence equations on tokamak inverse aspect ratio (ε ), Shafranov’s shift (Δ), elongation (κ), and triangularity (δ). A linear study of plasma shaping effects on the growth rate of resistive ballooning modes (RBMs) and resistive drift waves (RDWs) reveals that RBMs are strongly stabilized by elongation and negative triangularity, while RDWs are only slightly stabilized in non-circular magnetic geometries. Assuming that the linear instabilities saturate due to nonlinear local flattening of the plasma gradient, the equilibrium gradient pressure length {L}p=-{p}e/{{\
Influence of pinches on magnetic reconnection in turbulent space plasmas
Olshevsky, Vyacheslav; Lapenta, Giovanni; Markidis, Stefano; Divin, Andrey
A generally accepted scenario of magnetic reconnection in space plasmas is the breakage of magnetic field lines in X-points. In laboratory, reconnection is widely studied in pinches, current channels embedded into twisted magnetic fields. No model of magnetic reconnection in space plasmas considers both null-points and pinches as peers. We have performed a particle-in-cell simulation of magnetic reconnection in a three-dimensional configuration where null-points are present nitially, and Z-pinches are formed during the simulation. The X-points are relatively stable, and no substantial energy dissipation is associated with them. On contrary, turbulent magnetic reconnection in the pinches causes the magnetic energy to decay at a rate of approximately 1.5 percent per ion gyro period. Current channels and twisted magnetic fields are ubiquitous in turbulent space plasmas, so pinches can be responsible for the observed high magnetic reconnection rates.
Current filaments in turbulent magnetized plasmas
DEFF Research Database (Denmark)
Martines, E.; Vianello, N.; Sundkvist, D.
2009-01-01
gradient region of a fusion plasma confined in reversed field pinch configuration and in a density gradient region in the Earth magnetosphere are measured and compared, showing that in both environments they can be attributed to drift-Alfvén vortices. Current structures associated with reconnection events......Direct measurements of current density perturbations associated with non-linear phenomena in magnetized plasmas can be carried out using in situ magnetic measurements. In this paper we report such measurements for three different kinds of phenomena. Current density fluctuations in the edge density...... measured in a reversed field pinch plasma and in the magnetosheath are detected and compared. Evidence of current filaments occurring during ELMs in an H-mode tokamak plasma is displayed....
Investigations into the relationship between spheromak, solar, and astrophysical plasmas
International Nuclear Information System (INIS)
Bellan, P.M.; Hsu, S.C.; Hansen, J.F.; Tokman, M.; Pracko, S.E.; Romero-Talamas, C.A.
2003-01-01
Spheromaks offer the potential for a simple, low cost fusion reactor and involve physics similar to certain solar and astrophysical phenomena. A program to improve understanding of spheromaks by exploiting this relationship is underway using (i) a planar spheromak gun and (ii) a solar prominence simulator. These devices differ in symmetry but both involve spheromak technology whereby high-voltage is applied across electrodes linking a bias magnetic flux created by external coils. The planar spheromak gun consists of a co-planar disk and annulus linked by a poloidal bias field. Application of high voltage across the gap between disk and annulus drives a current along the bias field. If the current to flux ratio exceeds the inverse of the characteristic linear dimension, a spheromak is ejected. A distinct kink forms just below the ejection threshold. The solar simulation gun consists of two adjacent electromagnets which generate a 'horse-shoe' arched bias field. A current is driven along this arched field by a capacitor bank. The current channel first undergoes pinching, then writhes, and finally bulges outwards due to the hoop force. (author)
High density turbulent plasma processes from a shock tube
International Nuclear Information System (INIS)
Oyedeji, O.; Johnson, J.A. III
1991-01-01
We have finished the first stages of our experimental and theoretical investigations on models for energy and momentum transport and for photon-particle collision processes in a turbulent quasi-stationary high density plasma. The system is explored by beginning to determine the turbulence phenomenology associated with an ionizing shock wave. The theoretical underpinnings are explored for phonon particle collisions by determining the collisional redistribution function, using Lioville Space Green's Function, which will characterize the inelastic scattering of the radiation from one frequency to another. We have observed that a weak magnetic field tends to increase the apparent random-like behaviors in a collisional turbulent plasma. On the theoretical side, we have been able to achieve a form for the collisional redistribution function. It remains to apply these concepts to a stationary turbulent plasma in the reflected ionizing shock wave and to exercise the implications of evaluations of the collisional redistribution function for such a system when it is probed by a strong radiation source. These results are discussed in detail in the publications, which have resulted from the this effort, cited at the end of the report
Instabilities responsible for magnetic turbulence in laboratory rotating plasma
International Nuclear Information System (INIS)
Mikhailovskii, A.B.; Lominadze, J.G.; Churikov, A.P.; Erokhin, N.N.; Pustovitov, V.D.; Konovalov, S.V.
2008-01-01
Instabilities responsible for magnetic turbulence in laboratory rotating plasma are investigated. It is shown that the plasma compressibility gives a new driving mechanism in addition to the known Velikhov effect due to the negative rotation frequency gradient. This new mechanism is related to the perpendicular plasma pressure gradient, while the density gradient gives an additional drive depending also on the pressure gradient. It is shown that these new effects can manifest themselves even in the absence of the equilibrium magnetic field, which corresponds to nonmagnetic instabilities
Universal Probability Distribution Function for Bursty Transport in Plasma Turbulence
International Nuclear Information System (INIS)
Sandberg, I.; Benkadda, S.; Garbet, X.; Ropokis, G.; Hizanidis, K.; Castillo-Negrete, D. del
2009-01-01
Bursty transport phenomena associated with convective motion present universal statistical characteristics among different physical systems. In this Letter, a stochastic univariate model and the associated probability distribution function for the description of bursty transport in plasma turbulence is presented. The proposed stochastic process recovers the universal distribution of density fluctuations observed in plasma edge of several magnetic confinement devices and the remarkable scaling between their skewness S and kurtosis K. Similar statistical characteristics of variabilities have been also observed in other physical systems that are characterized by convection such as the x-ray fluctuations emitted by the Cygnus X-1 accretion disc plasmas and the sea surface temperature fluctuations.
Renormalized plasma turbulence theory: A quasiparticle picture
International Nuclear Information System (INIS)
DuBois, D.F.
1981-01-01
A general renormalized statistical theory of Vlasov turbulence is given which proceeds directly from the Vlasov equation and does not assume prior knowledge of sophisticated field-theoretic techniques. Quasiparticles are the linear excitations of the turbulent system away from its instantaneous mean (ensemble-averaged) state or background; the properties of this background state ''dress'' or renormalize the quasiparticle responses. It is shown that all two-point responses (including the dielectric) and all two-point correlation functions can be completely described by the mean distribution function and three fundamental quantities. Two of these are the quasiparticle responses: the propagator and the potential source: which measure, respectively, the separate responses of the mean distribution function and the mean electrostatic potential to functional changes in an external phase-space source added to Vlasov's equation. The third quantity is the two-point correlation function of the incoherent part of the phase-space density which acts as a self-consistent source of quasiparticle and potential fluctuations. This theory explicitly takes into account the self-consistent nature of the electrostatic-field fluctuations which introduces new effects not found in the usual ''test-particle'' theories. Explicit equations for the fundamental quantities are derived in the direct interaction approximation. Special attention is paid to the two-point correlations and the relation to theories of phase-space granulation
Fractional Transport in Strongly Turbulent Plasmas
Isliker, Heinz; Vlahos, Loukas; Constantinescu, Dana
2017-07-01
We analyze statistically the energization of particles in a large scale environment of strong turbulence that is fragmented into a large number of distributed current filaments. The turbulent environment is generated through strongly perturbed, 3D, resistive magnetohydrodynamics simulations, and it emerges naturally from the nonlinear evolution, without a specific reconnection geometry being set up. Based on test-particle simulations, we estimate the transport coefficients in energy space for use in the classical Fokker-Planck (FP) equation, and we show that the latter fails to reproduce the simulation results. The reason is that transport in energy space is highly anomalous (strange), the particles perform Levy flights, and the energy distributions show extended power-law tails. Newly then, we motivate the use and derive the specific form of a fractional transport equation (FTE), we determine its parameters and the order of the fractional derivatives from the simulation data, and we show that the FTE is able to reproduce the high energy part of the simulation data very well. The procedure for determining the FTE parameters also makes clear that it is the analysis of the simulation data that allows us to make the decision whether a classical FP equation or a FTE is appropriate.
Line radiation effects in laboratory and astrophysical plasmas
Czech Academy of Sciences Publication Activity Database
Kerr, F.M.; Gouveia, A.; Renner, Oldřich; Rose, S. J.; Scott, H.A.; Wark, J. S.
2006-01-01
Roč. 99, - (2006), s. 363-369 ISSN 0022-4073 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : radiation transport * plasmas * opacity effects Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.599, year: 2006
Intrinsic suppression of turbulence in linear plasma devices
Leddy, J.; Dudson, B.
2017-12-01
Plasma turbulence is the dominant transport mechanism for heat and particles in magnetised plasmas in linear devices and tokamaks, so the study of turbulence is important in limiting and controlling this transport. Linear devices provide an axial magnetic field that serves to confine a plasma in cylindrical geometry as it travels along the magnetic field from the source to the strike point. Due to perpendicular transport, the plasma density and temperature have a roughly Gaussian radial profile with gradients that drive instabilities, such as resistive drift-waves and Kelvin-Helmholtz. If unstable, these instabilities cause perturbations to grow resulting in saturated turbulence, increasing the cross-field transport of heat and particles. When the plasma emerges from the source, there is a time, {τ }\\parallel , that describes the lifetime of the plasma based on parallel velocity and length of the device. As the plasma moves down the device, it also moves azimuthally according to E × B and diamagnetic velocities. There is a balance point in these parallel and perpendicular times that sets the stabilisation threshold. We simulate plasmas with a variety of parallel lengths and magnetic fields to vary the parallel and perpendicular lifetimes, respectively, and find that there is a clear correlation between the saturated RMS density perturbation level and the balance between these lifetimes. The threshold of marginal stability is seen to exist where {τ }\\parallel ≈ 11{τ }\\perp . This is also associated with the product {τ }\\parallel {γ }* , where {γ }* is the drift-wave linear growth rate, indicating that the instability must exist for roughly 100 times the growth time for the instability to enter the nonlinear growth phase. We explore the root of this correlation and the implications for linear device design.
Influence of ions on relativistic double layers radiation in astrophysical plasmas
Directory of Open Access Journals (Sweden)
AM Ahadi
2009-12-01
Full Text Available As double layers (DLs are one of the most important acceleration mechanisms in space as well as in laboratory plasmas, they are studied from different points of view. In this paper, the emitted power and energy radiated from charged particles, accelerated in relativistic cosmic DLs are investigated. The effect of the presence of additional ions in a multi-species plasma, as a real example of astrophysical plasma, is also investigated. Considering the acceleration role of DLs, radiations from accelerated charged particles could be seen as a loss mechanism. These radiations are influenced directly by the additional ion species as well as their relative densities.
Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas
Energy Technology Data Exchange (ETDEWEB)
H. R. Strauss
2012-11-27
The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.
Coarse Grained Transport Model for Neutrals in Turbulent SOL Plasmas
Energy Technology Data Exchange (ETDEWEB)
Marandet, Y.; Mekkaoui, A.; Genesio, P.; Rosato, J.; Capes, H.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R., E-mail: yannick.marandet@univ-amu.fr [PIIM, CNRS/Aix-Marseille University, Marseille (France); Reiter, D.; Boerner, P. [IEK4, FZJ, Juelich (Germany)
2012-09-15
Full text: Edge plasmas of magnetic fusion devices exhibit strong intermittent turbulence, which governs perpendicular transport of particles and heat. Turbulent fluxes result from the coarse graining procedure used to derive the transport equation, which entails time averaging of the underlying equations governing the turbulent evolution of the electron and ion fluids. In previous works, we have pointed out that this averaging is not carried out on the Boltzmann equation that describes the transport of neutral particles (atoms, molecules) in current edge code suites (such as SOLPS). Since fluctuations in the far SOL are of order unity, calculating the transport of neutral particles, hence the source terms in plasma fluid equations, in the average plasma background might lead to misleading results. In particular, retaining the effects of fluctuations could affect the estimation of the importance of main chamber recycling, hence first wall sputtering by charge exchange atoms, as well as main chamber impurity contamination and transport. In this contribution, we obtain an exact coarse-grained equation for the average neutral density, assuming that density fluctuations are described by multivariate Gamma statistics. This equation is a scattering free Boltzmann equation, where the ionization rate has been renormalized to account for fluctuations. The coarse grained transport model for neutrals has been implemented in the EIRENE code, and applications in 2D geometry with ITER relevant plasma parameters are presented. Our results open the way for the implementation of the effects of turbulent fluctuations on the transport of neutral particles in coupled plasma/neutral edge codes like B2-EIRENE. (author)
Stochastic catastrophe theory and instabilities in plasma turbulence
International Nuclear Information System (INIS)
Rajkovic, Milan; Skoric, Milos
2009-01-01
Full text: A Langevin equation (LE) describing evolution of turbulence amplitude in plasma is analyzed from the aspect of stochastic catastrophe theory (SCT) so that turbulent plasma is considered as a stochastic gradient system. According to SCT the dynamics of the system is completely determined by the stochastic potential function and the maximum likelihood estimates of stable and unstable equilibria are associated with the modes and anti-modes, respectively, of the system's stationary probability density function. First order phase transitions occur at degenerate equilibrium points and the potential function at these points may be represented in a generic way. Since the diffusion function of plasma LE is not constant the probability density function (pdf) is not a reliable estimator of the number of stable states. We show that the generalized pdf represented as the product of the stationary pdf and the diffusion function is a reliable estimator of the stable states and that it can be evaluated from the zero mean crossing analysis of plasma turbulence signal. Stochastic bifurcations, and particularly the sudden (catastrophic) ones, are recognized from the pdf's obtained by the zero crossing analysis and we illustrate the applications of SCT in plasma turbulence on data obtained from the MAST (Mega Ampere Spherical Tokamak) for low (L), high (H) and unstable dithering (L/H) confinement regimes. The relationship of the transformation invariant zero-crossing function and SCT is shown to provide important information about the nature of edge localized modes (ELMs) and L-H transition. Finally we show that ELMs occur as a result of catastrophic (hard) bifurcations ruling out the self-organized criticality scenario for their origin. (author)
On the Anisotropic Nature of MRI-driven Turbulence in Astrophysical Disks
DEFF Research Database (Denmark)
Murphy, Gareth; Pessah, Martin E.
2015-01-01
-periodic way on timescales comparable to ∼10 inverse angular frequencies, motivating the temporal analysis of its anisotropy. We introduce a 3D tensor invariant analysis to quantify and classify the evolution of the anisotropy of the turbulent flow. This analysis shows a continuous high level of anisotropy......, with brief sporadic transitions toward two- and three-component isotropic turbulent flow. This temporal-dependent anisotropy renders standard shell averaging especially when used simultaneously with long temporal averages, inadequate for characterizing MRI-driven turbulence. We propose an alternative way...
Instabilities, turbulence and transport in a magnetized plasma
International Nuclear Information System (INIS)
Garbet, X.
2001-06-01
The purpose of this work is to introduce the main processes that occur in a magnetized plasma. During the last 2 decades, the understanding of turbulence has made great progress but analytical formulas and simulations are far to produce reliable predictions. The values of transport coefficients in a tokamak plasma exceed by far those predicted by the theory of collisional transport. This phenomenon is called abnormal transport and might be due to plasma fluctuations. An estimation of turbulent fluxes derived from the levels of fluctuations, is proposed. A flow description of plasma allows the understanding of most micro-instabilities. The ballooning representation deals with instabilities in a toric geometry. 3 factors play an important role to stabilize plasmas: density pinch, magnetic shear and speed shear. The flow model of plasma gives an erroneous value for the stability threshold, this is due to a bad description of the resonant interaction between wave and particle. As for dynamics, flow models can be improved by adding dissipative terms so that the linear response nears the kinetic response. The kinetic approach is more accurate but is complex because of the great number of dimensions involved. (A.C.)
Transition in multiple-scale-lengths turbulence in plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, S.-I.; Yagi, M.; Kawasaki, M.; Kitazawa, A. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Itoh, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)
2002-02-01
The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Statistical nonlinear interactions between semi-micro and micro modes are first kept in the analysis as the drag, noise and drive. The nonlinear dynamics determines both the fluctuation levels and the cross field turbulent transport for the fixed global parameters. A quenching or suppressing effect is induced by their nonlinear interplay, even if both modes are unstable when analyzed independently. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. The thermal fluctuation of the scale length of {lambda}{sub D} is assumed to be statistically independent. The hierarchical structure is constructed according to the scale lengths. Transitions in turbulence are found and phase diagrams with cusp type catastrophe are obtained. Dynamics is followed. Statistical properties of the subcritical excitation are discussed. The probability density function (PDF) and transition probability are obtained. Power-laws are obtained in the PDF as well as in the transition probability. Generalization for the case where turbulence is composed of three-classes of modes is also developed. A new catastrophe of turbulent sates is obtained. (author)
Transition in multiple-scale-lengths turbulence in plasmas
International Nuclear Information System (INIS)
Itoh, S.-I.; Yagi, M.; Kawasaki, M.; Kitazawa, A.
2002-02-01
The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Statistical nonlinear interactions between semi-micro and micro modes are first kept in the analysis as the drag, noise and drive. The nonlinear dynamics determines both the fluctuation levels and the cross field turbulent transport for the fixed global parameters. A quenching or suppressing effect is induced by their nonlinear interplay, even if both modes are unstable when analyzed independently. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. The thermal fluctuation of the scale length of λ D is assumed to be statistically independent. The hierarchical structure is constructed according to the scale lengths. Transitions in turbulence are found and phase diagrams with cusp type catastrophe are obtained. Dynamics is followed. Statistical properties of the subcritical excitation are discussed. The probability density function (PDF) and transition probability are obtained. Power-laws are obtained in the PDF as well as in the transition probability. Generalization for the case where turbulence is composed of three-classes of modes is also developed. A new catastrophe of turbulent sates is obtained. (author)
Astrophysics of magnetically collimated jets generated from laser-produced plasmas.
Ciardi, A; Vinci, T; Fuchs, J; Albertazzi, B; Riconda, C; Pépin, H; Portugall, O
2013-01-11
The generation of astrophysically relevant jets, from magnetically collimated, laser-produced plasmas, is investigated through three-dimensional, magnetohydrodynamic simulations. We show that for laser intensities I∼10(12)-10(14) W cm(-2), a magnetic field in excess of ∼0.1 MG, can collimate the plasma plume into a prolate cavity bounded by a shock envelope with a standing conical shock at its tip, which recollimates the flow into a supermagnetosonic jet beam. This mechanism is equivalent to astrophysical models of hydrodynamic inertial collimation, where an isotropic wind is focused into a jet by a confining circumstellar toruslike envelope. The results suggest an alternative mechanism for a large-scale magnetic field to produce jets from wide-angle winds.
Sultana, S.; Schlickeiser, R.
2018-05-01
Fully nonlinear features of heavy ion-acoustic solitary waves (HIASWs) have been investigated in an astrophysical degenerate relativistic quantum plasma (ADRQP) containing relativistically degenerate electrons and non-relativistically degenerate light ion species, and non-degenerate heavy ion species. The pseudo-energy balance equation is derived from the fluid dynamical equations by adopting the well-known Sagdeev-potential approach, and the properties of arbitrary amplitude HIASWs are examined. The small amplitude limit for the propagation of HIASWs is also recovered. The basic features (width, amplitude, polarity, critical Mach number, speed, etc.) of HIASWs are found to be significantly modified by the relativistic effect of the electron species, and also by the variation of the number density of electron, light ion, and heavy ion species. The basic properties of HIASWs, that may propagated in some realistic astrophysical plasma systems (e.g., in white dwarfs), are briefly discussed.
Energy Technology Data Exchange (ETDEWEB)
Dubuit, N
2006-10-15
This work deals with the transport of impurities in magnetically confined thermonuclear plasmas. The accumulation of impurities in the core of the plasma would imply dramatic losses of energy that may lead to the extinction of the plasma. On the opposite, the injection of impurities in the plasma edge is considered as an efficient means to extract heat without damaging the first wall. The balance between these 2 contradictory constraints requires an accurate knowledge of the impurity transport inside the plasma. The effect of turbulence, the main transport mechanism for impurities is therefore a major issue. In this work, the complete formula of a turbulent flow of impurities for a given fluctuation spectrum has been inferred. The origin and features of the main accumulation processes have been identified. The main effect comes from the compressibility of the electrical shift speed in a plane perpendicular to the magnetic field. This compressibility appears to be linked to the curvature of the magnetic field. A less important effect is a thermal-diffusion process that is inversely proportional to the number of charges and then disappears for most type of impurities except the lightest. This effect implies an impurity flux proportional to the temperature gradient and its direction can change according to the average speed of fluctuations. A new version of the turbulence code TRB has been developed. This new version allows the constraints of the turbulence not by the gradients but by the flux which is more realistic. The importance of the processes described above has been confirmed by a comparison between calculation and experimental data from Tore-supra and the Jet tokamak. The prevailing role of the curvature of the magnetic field in the transport impurity is highlighted. (A.C.)
Experiments on plasma turbulence induced by strong, steady electric fields
International Nuclear Information System (INIS)
Hamberger, S.M.
1975-01-01
The author discusses the effect of applying a strong electric field to collisionless plasma. In particular are compared what some ideas and prejudices lead one to expect to happen, what computer simulation experiments tell one ought to happen, and what actually does happen in two laboratory experiments which have been designed to allow the relevant instability and turbulent processes to occur unobstructed and which have been studied in sufficient detail. (Auth.)
Trapped Electron Mode Turbulence Driven Intrinsic Rotation in Tokamak Plasmas
International Nuclear Information System (INIS)
Wang, W.X.; Hahm, T.S.; Ethier, S.; Zakharov, L.E.
2011-01-01
Recent progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported with emphasis on electron thermal transport dominated regimes. The turbulence driven intrinsic torque associated with nonlinear residual stress generation by the fluctuation intensity and the intensity gradient in the presence of zonal flow shear induced asymmetry in the parallel wavenumber spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current. These results qualitatively reproduce empirical scalings of intrinsic rotation observed in various experiments. The origin of current scaling is found to be due to enhanced kll symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic torque on pressure gradient is that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving residual stress, increase with the strength of turbulence drive, which is R0/LTe and R0/Lne for the trapped electron mode.
Coherent structures and transport in drift wave plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Bang Korsholm, S.
2011-12-15
Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)
Coherent structures and transport in drift wave plasma turbulence
International Nuclear Information System (INIS)
Bang Korsholm, S.
2011-12-01
Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)
Conception of divertorless tokamak reactor with turbulent plasma blanket
International Nuclear Information System (INIS)
Nedospasov, A.V.; Tokar, M.Z.
1980-01-01
The results of the calculations presented here demonstrate that, with technically reasonable degree of the magnetic field stochastisation, the turbulent plasma blanket can take the place of a divertor. It performs the three main functions of the divertor: (a) the exhaust of the helium and unburned fuel; (b) weakening of the fast particle flux to the wall surface; and (c) essential reduction of the impurity content in the active zone of the reactor. Taking into account that plasma flows to the first wall along field lines, we may figuratively say that the first wall plays the role of a divertor in our conception. (orig.)
International Nuclear Information System (INIS)
Liang, G Y; Li, F; Wang, F L; Zhong, J Y; Zhao, G; Wu, Y
2014-01-01
Spectroscopic researches in astronomy are significantly dependent on theoretical modelling methods, such as Chianti, Xstar, Cloudy etc. Recently, a different research community - Laboratory Astrophysics tries to benchmark these theoretical models or simulate the astrophysical phenomenon directly in conditions accessed in ground laboratory. Those unavoidable differences between the astrophysical objects and laboratory provide a need for a self-consistent model to make a bridge for the two cases. So we setup a visualized simulation package for soft X-ray and EUV spectroscopy in astrophysical and laboratory plasmas.
Energy Technology Data Exchange (ETDEWEB)
Kowal, G [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, 05508-900, Sao Paulo (Brazil); Falceta-Goncalves, D A; Lazarian, A, E-mail: kowal@astro.iag.usp.br [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States)
2011-05-15
In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e.g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of
International Nuclear Information System (INIS)
Kowal, G; Falceta-Goncalves, D A; Lazarian, A
2011-01-01
In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e.g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of
Field experiments and laboratory study of plasma turbulence and effects on EM wave propagation
International Nuclear Information System (INIS)
Lee, M.C.; Kuo, S.P.
1990-01-01
Both active experiments in space and laboratory experiments with plasma chambers have been planned to investigate plasma turbulence and effects on electromagnetic wave propagation. Plasma turbulence can be generated by intense waves or occur inherently with the production of plasmas. The turbulence effects to be singled out for investigation include nonlinear mode conversion process and turbulence scattering of electromagnetic waves by plasma density fluctuations. The authors have shown theoretically that plasma density fluctuations can render the nonlinear mode conversion of electromagnetic waves into lower hybrid waves, leading to anomalous absorption of waves in magnetoplasmas. The observed spectral broadening of VLF waves is the evidence of the occurrence of this process. Since the density fluctuations may have a broad range of scale lengths, this process is effective in weakening the electromagnetic waves in a wideband. In addition, plasma density fluctuations can scatter waves and diversify the electromagnetic energy. Schemes of generating plasma turbulence and the diagnoses of plasma effects are discussed
Project of experimental study on plasma waves and plasma turbulence
International Nuclear Information System (INIS)
Ferreira, J.L.
1990-09-01
The objective of this project is to perform experiments with wave phenomena on plasmas. Particular attention will be given to Langmuir and whistler waves due to its relations with several phenomena occuring on space and laboratory plasmas. The new concepts of particle acceleration with electromagnetic waves, the auroral phenomena on the polar regions and the charged particle precipitation to the atmosphere through anomalies of the earth magnetic field are examples where these waves have an important role. In this project we intend to study the propagation of these waves in a quiescent plasma machine. This machine is able to produce a plasma with density and temperature with values similar to what is met in the ionosphere. This project will be a part of the activities of the basic plasma group of the INPE's Associated Plasma Laboratory (LAP). It will have the collaboration of the departments of Aeronomy and Geophysics also from INPE, and the collaboration of the Plasma and Gas Physics Laboratory from University of Paris - South, in France. (author)
Complex astrophysical experiments relating to jets, solar loops, and water ice dusty plasma
Bellan, P. M.; Zhai, X.; Chai, K. B.; Ha, B. N.
2015-10-01
> Recent results of three astrophysically relevant experiments at Caltech are summarized. In the first experiment magnetohydrodynamically driven plasma jets simulate astrophysical jets that undergo a kink instability. Lateral acceleration of the kinking jet spawns a Rayleigh-Taylor instability, which in turn spawns a magnetic reconnection. Particle heating and a burst of waves are observed in association with the reconnection. The second experiment uses a slightly different setup to produce an expanding arched plasma loop which is similar to a solar corona loop. It is shown that the plasma in this loop results from jets originating from the electrodes. The possibility of a transition from slow to fast expansion as a result of the expanding loop breaking free of an externally imposed strapping magnetic field is investigated. The third and completely different experiment creates a weakly ionized plasma with liquid nitrogen cooled electrodes. Water vapour injected into this plasma forms water ice grains that in general are ellipsoidal and not spheroidal. The water ice grains can become quite long (up to several hundred microns) and self-organize so that they are evenly spaced and vertically aligned.
The inverse problem for the refractometry diagnostics of electromagnetic turbulence in plasma
Energy Technology Data Exchange (ETDEWEB)
Lazarian, A [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics
1994-06-01
Turbulence is an important property of laboratory plasmas. A number of relevant diagnostics are based on the interaction of an electromagnetic beam with plasma. Here we discuss a refractometry technique, where information on plasma properties is obtained by probing plasma with a plane polarized electromagnetic beam. It is shown that the problem of recovering statistical properties of plasma turbulence from the line integrated data can be solved uniquely using a realistic model of plasma. Analytical expressions relating statistics of both the random density and random magnetic fields to the measured statistics have been found. This information is of importance in studies of plasma turbulence. (author).
The inverse problem for the refractometry diagnostics of electromagnetic turbulence in plasma
International Nuclear Information System (INIS)
Lazarian, A.
1994-01-01
Turbulence is an important property of laboratory plasmas. A number of relevant diagnostics are based on the interaction of an electromagnetic beam with plasma. Here we discuss a refractometry technique, where information on plasma properties is obtained by probing plasma with a plane polarized electromagnetic beam. It is shown that the problem of recovering statistical properties of plasma turbulence from the line integrated data can be solved uniquely using a realistic model of plasma. Analytical expressions relating statistics of both the random density and random magnetic fields to the measured statistics have been found. This information is of importance in studies of plasma turbulence. (author)
Turbulent and neoclassical toroidal momentum transport in tokamak plasmas
International Nuclear Information System (INIS)
Abiteboul, J.
2012-10-01
The goal of magnetic confinement devices such as tokamaks is to produce energy from nuclear fusion reactions in plasmas at low densities and high temperatures. Experimentally, toroidal flows have been found to significantly improve the energy confinement, and therefore the performance of the machine. As extrinsic momentum sources will be limited in future fusion devices such as ITER, an understanding of the physics of toroidal momentum transport and the generation of intrinsic toroidal rotation in tokamaks would be an important step in order to predict the rotation profile in experiments. Among the mechanisms expected to contribute to the generation of toroidal rotation is the transport of momentum by electrostatic turbulence, which governs heat transport in tokamaks. Due to the low collisionality of the plasma, kinetic modeling is mandatory for the study of tokamak turbulence. In principle, this implies the modeling of a six-dimensional distribution function representing the density of particles in position and velocity phase-space, which can be reduced to five dimensions when considering only frequencies below the particle cyclotron frequency. This approximation, relevant for the study of turbulence in tokamaks, leads to the so-called gyrokinetic model and brings the computational cost of the model within the presently available numerical resources. In this work, we study the transport of toroidal momentum in tokamaks in the framework of the gyrokinetic model. First, we show that this reduced model is indeed capable of accurately modeling momentum transport by deriving a local conservation equation of toroidal momentum, and verifying it numerically with the gyrokinetic code GYSELA. Secondly, we show how electrostatic turbulence can break the axisymmetry and generate toroidal rotation, while a strong link between turbulent heat and momentum transport is identified, as both exhibit the same large-scale avalanche-like events. The dynamics of turbulent transport are
Plasma turbulence imaging using high-power laser Thomson scattering
Zweben, S. J.; Caird, J.; Davis, W.; Johnson, D. W.; Le Blanc, B. P.
2001-01-01
The two-dimensional (2D) structure of plasma density turbulence in a magnetically confined plasma can potentially be measured using a Thomson scattering system made from components of the Nova laser of Lawrence Livermore National Laboratory. For a plasma such as the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory, the laser would form an ≈10-cm-wide plane sheet beam passing vertically through the chamber across the magnetic field. The scattered light would be imaged by a charge coupled device camera viewing along the direction of the magnetic field. The laser energy required to make 2D images of density turbulence is in the range 1-3 kJ, which can potentially be obtained from a set of frequency-doubled Nd:glass amplifiers with diameters in the range of 208-315 mm. A laser pulse width of ⩽100 ns would be short enough to capture the highest frequency components of the expected density fluctuations.
The role of magnetic turbulence in astrophysical jet launching and cosmic ray transport
International Nuclear Information System (INIS)
Casse, Fabien
2001-01-01
The first part of my thesis shows how Keplerian discs can launch MHD jets, under some conditions. The key points of this first part are the adding of viscosity inside the disc and a relevant energy equation, In particular, I have shown both analytically and numerically that the angular momentum transport is constrained by the MHD turbulence properties. I have also shown that one must take into account a relevant energy equation in order to have a more realistic description of jets observed in the Universe. Moreover, some energy turbulent transport mechanisms cannot be described in a simple MHD approach. In order to better understand the interaction between a turbulent magnetic field and charged particles, I have undertaken a study dealing with spatial and angular diffusion of hadrons with a chaotic magnetic field generated by a magnetic turbulence. In this study, it clearly appears that the spatial diffusion coefficient along the mean magnetic field extrapolate the results of quasi-linear theory for weak turbulence. At the opposite, in the inertial range, the spatial diffusion coefficient across the mean magnetic field is inconsistent with such a theory. Indeed the spatial diffusion coefficient across the mean magnetic field has a behaviour that can be interpreted as a chaotic diffusion regime as the one predicted by Rechester and Rosenbluth. Moreover, outside this range, the behaviours of all spatial diffusion coefficients are different of those expected in the framework of quasi-linear theory. At last, it has been found that a Bohm diffusion regime never occurs whatever the magnetic chaos. (author) [fr
Structure functions and intermittency in ionospheric plasma turbulence
Directory of Open Access Journals (Sweden)
L. Dyrud
2008-11-01
Full Text Available Low frequency electrostatic turbulence in the ionospheric E-region is studied by means of numerical and experimental methods. We use the structure functions of the electrostatic potential as a diagnostics of the fluctuations. We demonstrate the inherently intermittent nature of the low level turbulence in the collisional ionospheric plasma by using results for the space-time varying electrostatic potential from two dimensional numerical simulations. An instrumented rocket can not directly detect the one-point potential variation, and most measurements rely on records of potential differences between two probes. With reference to the space observations we demonstrate that the results obtained by potential difference measurements can differ significantly from the one-point results. It was found, in particular, that the intermittency signatures become much weaker, when the proper rocket-probe configuration is implemented. We analyze also signals from an actual ionospheric rocket experiment, and find a reasonably good agreement with the appropriate simulation results, demonstrating again that rocket data, obtained as those analyzed here, are unlikely to give an adequate representation of intermittent features of the low frequency ionospheric plasma turbulence for the given conditions.
Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields
International Nuclear Information System (INIS)
Krommes, John A.
2001-01-01
A pedagogical review of the historical development and current status (as of early 2000) of systematic statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and methodology, not practical applications. Particular attention is paid to equations and formalism appropriate to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those are developed independently, then shown to be special cases of the direct-interaction approximation (DIA), which provides a central focus for the article. Various methods of renormalized perturbation theory are described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose. A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations
Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields
Energy Technology Data Exchange (ETDEWEB)
John A. Krommes
2001-02-16
A pedagogical review of the historical development and current status (as of early 2000) of systematic statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and methodology, not practical applications. Particular attention is paid to equations and formalism appropriate to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those are developed independently, then shown to be special cases of the direct-interaction approximation (DIA), which provides a central focus for the article. Various methods of renormalized perturbation theory are described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose. A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations
Quasilinear theory of plasma turbulence. Origins, ideas, and evolution of the method
Bakunin, O. G.
2018-01-01
The quasilinear method of describing weak plasma turbulence is one of the most important elements of current plasma physics research. Today, this method is not only a tool for solving individual problems but a full-fledged theory of general physical interest. The author's objective is to show how the early ideas of describing the wave-particle interactions in a plasma have evolved as a result of the rapid expansion of the research interests of turbulence and turbulent transport theorists.
Magnetorotational instability and dynamo action in gravito-turbulent astrophysical discs
Riols, A.; Latter, H.
2018-02-01
Though usually treated in isolation, the magnetorotational and gravitational instabilities (MRI and GI) may coincide at certain radii and evolutionary stages of protoplanetary discs and active galactic nuclei. Their mutual interactions could profoundly influence several important processes, such as accretion variability and outbursts, fragmentation and disc truncation, or large-scale magnetic field production. Direct numerical simulations of both instabilities are computationally challenging and remain relatively unexplored. In this paper, we aim to redress this neglect via a set of 3D vertically stratified shearing-box simulations, combining self-gravity and magnetic fields. We show that gravito-turbulence greatly weakens the zero-net-flux MRI. In the limit of efficient cooling (and thus enhanced GI), the MRI is completely suppressed, and yet strong magnetic fields are sustained by the gravito-turbulence. This turbulent `spiral wave' dynamo may have widespread application, especially in galactic discs. Finally, we present preliminary work showing that a strong net-vertical-flux revives the MRI and supports a magnetically dominated state in which the GI is secondary.
Modification of Edge Plasma Turbulence by External Magnetic Pertubations
International Nuclear Information System (INIS)
Boedo, J.; McKee, G.; Rudakov, D.; Reiser, D.; Evans, T.; Moyer, R.; Schaffer, M.; Watkins, J.; Allen, S.; Fenstermacher, M.; Groth, M.; Holland, C.; Hollmann, E.; Lasnier, C.; Leonard, A.; Mahdavi, M.; McLean, A.; Tynan, G.; Wang, G.; West, W.; Zeng, L.
2006-01-01
Magnetostatic perturbations applied to the DIII-D plasma using a n=3 coil set have significant impact on the plasma edge, such as edge localized mode (ELM) suppression [1], but also affect the background turbulence levels. Discharges with parameters R=1.75 m, a=0.56 m, B T ∼ 1.6 T, I p ∼ 1 MA and n e ∼ 3 x 10 13 cm -3 -n e ∼ 7 x 10 13 cm -3 (low, v* e ∼ 0.1 and moderate, v* e ∼ 1 electron pedestal collisionality) were used as a target for the perturbation, [applied at 3 s Fig. 1(a) and 2 s Fig. 1(b)]. The global density and energy content, among many other parameters, are unaffected, raising the issue of what mechanism replaces the particle and heat exhaust otherwise mediated by ELMs. Mixed ELMs (high frequency, low amplitude Type II ELMs interspersed with Type I) in the moderate collisionality regime and Type I ELMs in the low collisionality regime, are replaced by intermittency and broadband turbulence or semiperiodic events. It is important to notice that the coils can be energized in high poloidal mode spectra (upper and lower coils produce fields in the same direction) or odd configuration (upper and lower coils produce fields in the opposite direction) and also rotated 60 deg toroidally. Although we will focus on scanning probe [2] data obtained in the scrape-off layer (SOL), other diagnostics, beam emission spectroscopy (BES), reflectometry [3], were used to study the changes in the plasma turbulence when the ELMs are suppressed and the underlying turbulence and transport change. Thomson scattering n e and T e profiles (Fig. 2) accumulated over 200 ms before (red) and during (blue) I-coil perturbation are fitted with y = a + b* tanh[(r-c)/d] resulting in a,b staying constant while d varies from -0.009 to -0.011 and c from -0.013 to -0.009, i.e. the profiles mostly broaden and shift outward, changes which may be connected to an increase in radial turbulent transport assuming no deformation of the separatrix. This broadening is seen in both low and
Dynamics of Turbulence Suppression in a Helicon Plasma
Hayes, Tiffany; Gilmore, Mark
2012-10-01
Experiments are currently being conducted in the the Helicon-Cathode Device (HelCat) at the University of New Mexico. The goal is to the study in detail the transition from a turbulent to a non-turbulent state in the presence of flow shear. HelCat has intrinsic fluctuations that have been identified as drift-waves. Using simple electrode biasing, it has been found that these fluctuations can be completely suppressed. In some extreme cases, a different instability, possibly the Kelvin-Helmholtz instability, can be excited. Detailed studies are underway in order to understand the characteristics of each mode, and to elucidate the underlying physics that cause the change between an unstable plasma, and an instability-free plasma. Dynamics being observed include changes in flow profiles, both azimuthal and parallel, as well as changes in potential and temperature gradients. Further understanding is being sought using several computer codes developed at EPFL: a linear stability solver (LSS,footnotetextP. Ricci and B.N. Rogers (2009). Phys Plasmas 16, 062303. a one-dimensional PIC code/sheath solver, ODISEE,footnotetextJ. Loizu, P. Ricci, and C. Theiler (2011). Phys Rev E 83, 016406 and a global, 3D Braginski code, GBS.footnotetextRicci, Rogers (2009) A basic overview of results will be presented.
High Energy Density Laboratory Astrophysics
Lebedev, Sergey V
2007-01-01
During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...
Energy Technology Data Exchange (ETDEWEB)
Ata-ur-Rahman,; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan)
2013-04-15
We have studied the propagation of ion acoustic shock waves involving planar and non-planar geometries in an unmagnetized plasma, whose constituents are non-degenerate ultra-cold ions, relativistically degenerate electrons, and positrons. By using the reductive perturbation technique, Korteweg-deVries Burger and modified Korteweg-deVries Burger equations are derived. It is shown that only compressive shock waves can propagate in such a plasma system. The effects of geometry, the ion kinematic viscosity, and the positron concentration are examined on the ion acoustic shock potential and electric field profiles. It is found that the properties of ion acoustic shock waves in a non-planar geometry significantly differ from those in planar geometry. The present study has relevance to the dense plasmas, produced in laboratory (e.g., super-intense laser-dense matter experiments) and in dense astrophysical objects.
Electrostatic instabilities and turbulence in a toroidal magnetized plasma
International Nuclear Information System (INIS)
Poli, F. M.
2007-06-01
This Thesis aims at characterizing the linear properties of electrostatic drift instabilities arising in a toroidal plasma and the mechanisms leading to their development into turbulence. The experiments are performed on the TORoidal Plasma EXperiment (TORPEX) at CRPP-EPFL, Lausanne. The first part of the Thesis focuses on the identification of the nature of the instabilities observed in TORPEX, using a set of electrostatic probes, designed and built for this purpose. The global features of fluctuations, analyzed for different values of control parameters such as the magnetic field, the neutral gas pressure and the injected microwave power, are qualitatively similar in different experimental scenarios. The maximum of fluctuations is observed on the low field side, where the pressure gradient and the gradient of the magnetic field are co-linear, indicating that the curvature of the magnetic field lines has an important role in the destabilization of the waves. The power spectrum is dominated by electrostatic fluctuations with frequencies much lower than the ion cyclotron frequency. Taking advantage of the extended diagnostics coverage, the spectral properties of fluctuations are measured over the whole poloidal cross-section. Both drift and interchange instabilities develop and propagate on TORPEX, with the stability of both being affected by the curvature of the magnetic field. It is shown that modes of different nature are driven at separate locations over the plasma cross-section and that the wavenumber and frequency spectra, narrow at the location where the instabilities are generated, broaden during convection, suggesting an increase in the degree of turbulence. The transition from coherent to turbulent spectral features and the role of nonlinear coupling between modes in the development of turbulence are treated in the second part of this work. It is found that nonlinear mode-mode coupling is responsible for the redistribution of spectral energy from the
Investigation of turbulent structures in the edge of magnetized plasmas
International Nuclear Information System (INIS)
Nold, Bernhard
2012-01-01
Rising energy cost and progressing climate change will exacerbate existing and give birth to new conflicts. Energy savings and the development of new technologies can counteract the reasons for these conflicts. Beside renewable energy sources, nuclear fusion can help to meet this challenge. To build future fusion power plants smaller and more efficient, the magnetic confinement must be improved and the load on plasma facing components reduced. To this end, better understanding is required of turbulent transport processes in magnetized plasmas. Within the frame of the present work, the properties and dynamics of turbulent density structures (''blobs'') have been investigated, as well as their interaction with shear flows. Langmuir-probe measurements have been conducted in the tokamak ASDEX Upgrade and in the stellarator TJ-K, and compared with GEMR plasma turbulence simulations. It has been shown, that blobs are generated at the last closed flux surface (LCFS) of ASDEX Upgrade. They propagate perpendicular to the magnetic field lines in the radial and poloidal directions. The poloidal E x B-drift depends on the radial variation of the plasma potential. The latter is given by the electron temperature profile in front of the electrically conducting wall. Experimental results show, that this can lead to a shear layer inside the scrape-off layer (SOL) of a divertor tokamak due to inhomogeneous connection lengths to the wall. Blobs can hardly cross such a shear layer unchanged. This investigation shows how blobs can exchange particles and energy across a shear layer without changing their shapes and velocities substantially. However, the dynamics of the structures are different between both sides of the shear layer. Parallel drift-wave dynamics are dominant on the plasma core side, i.e. density and potential of the blobs are in phase. Outside of the shear layer, the interchange mechanism dominates due to shorter parallel connection lengths to the wall. The poloidal
International Nuclear Information System (INIS)
Sagdeev, R.Z.; Shapiro, V.D.; Shevchenko, V.I.
1980-01-01
An attempt is made to analyze two assumptions of the present theory of plasma turbulence, initiated by an electromagnetic wave, as applied to the problem of heating the plasma target. It has been assumed that in the long-scale region (the region of an electromagnetic wave source) and in the inertia range, separating the source region and the short-wave absorption region, there is a permanent pumping. The first assumption consists in simulating a situation in a plasma target when the Langmuir turbulence arises due to an electromagnetic wave incident on the target. The second assumption is valid only at a very high intensity of plasma waves when their energy is significantly less than the thermal energy of plasma W/nsub(c)T 0 is the frequency of an incident electromagnetic wave). At W approximately equal to nsub(c)T the plasma oscillations, arising due to modulation instability from the electromagnetic pumping wave, fall immediately into the absorption region. A phenomenological theory of such a turbulence, called ''superstrong'', is formulated on the assumption that there is a mechanism of ''mixing up'' plasmon phases as a result of their populating the long-wave density fluctuations
Study of plasma turbulence by ultrafast sweeping reflectometry on the Tore Supra Tokamak
International Nuclear Information System (INIS)
Hornung, Gregoire
2013-01-01
The performance of a fusion reactor is closely related to the turbulence present in the plasma. The latter is responsible for anomalous transport of heat and particles that degrades the confinement. The measure and characterization of turbulence in tokamak plasma is therefore essential to the understanding and control of this phenomenon. Among the available diagnostics, the sweeping reflectometer installed on Tore Supra allows to access the plasma density fluctuations from the edge to the centre of the plasma discharge with a fine spatial (mm) and temporal resolution (μs), that is of the order of the characteristic turbulence scales.This thesis consisted in the characterization of plasma turbulence in Tore Supra by ultrafast sweeping reflectometry measurements. Correlation analyses are used to quantify the spatial and temporal scales of turbulence as well as their radial velocity. In the first part, the characterization of turbulence properties from the reconstructed plasma density profiles is discussed, in particular through a comparative study with Langmuir probe data. Then, a parametric study is presented, highlighting the effect of collisionality on turbulence, an interpretation of which is proposed in terms of the stabilization of trapped electron turbulence in the confined plasma. Finally, it is shown how additional heating at ion cyclotron frequency produces a significant though local modification of the turbulence in the plasma near the walls, resulting in a strong increase of the structure velocity and a decrease of the correlation time. The supposed effect of rectified potentials generated by the antenna is investigated via numerical simulations. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Sarazin, Y
2004-03-01
This document gathers the lectures made in the framework of a Ph.D level physics class dedicated to plasma physics. This course is made up of 3 parts : 1) collisions and transport, 2) transport and turbulence, and 3) study of a few exchange instabilities. More precisely the first part deals with the following issues: thermonuclear fusion, Coulomb collisions, particles trajectories in a tokamak, neo-classical transport in tokamaks, the bootstrap current, and ware pinch. The second part involves: particle transport in tokamaks, quasi-linear transport, resonance islands, resonance in tokamaks, from quasi to non-linear transport, and non-linear saturation of turbulence. The third part deals with: shift velocities in fluid theory, a model for inter-change instabilities, Rayleigh-Benard instability, Hasegawa-Wakatani model, and Hasegawa-Mima model. This document ends with a series of appendices dealing with: particle-wave interaction, determination of the curvature parameter G, Rossby waves.
RX emission of thin astrophysical plasma: interstellar medium and intra-cluster medium
International Nuclear Information System (INIS)
Arnaud, Monique
1984-01-01
As previous publications presented an important discrepancy of ionisation rates in astrophysical plasmas, this research thesis first reports a systematic study (by isoelectric sequence) of ionisation cross sections, based on measurements performed by mono-energetic beams, and on quantum assessments. The author proposes simple analytic fits for ionisation rates, for direct ionisation and for excitation-self-ionisation of ions of interest in astrophysics. He reports a critical review of recombination rates published in the literature, and the calculation of radiative recombination rates for different ions (hydrogen-like, helium-like, and lithium-like). Software have then been developed to determine the ionisation rate at the equilibrium and out of it for thin plasma, and to obtain ion fraction tables for different ions (H, He, C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Fe, Ni). Then, a software integrating recent data on collisional excitation rates has been used to calculate the emission spectrum of a thin plasma with respect to temperature. These results are then used for the study of the interstellar medium and of supernovae remnants, and finally for the study of the intra-cluster medium [fr
Comments on the dispersion equation of a turbulent plasma - an inhomogeneous, magnetoactive case
International Nuclear Information System (INIS)
Ag, A.
1978-03-01
A weakly turbulent, magnetoactive plasma is considered in an inhomogeneous case with anisotropic temperature distribution. The dispersion relation is established following a method developed by Tsytovich and Nekrasov. The correction coefficients are calculated in the three principal scaling modes: (1) the turbulent frequencies predominate, (2) the cyclotronic velocities of the macroinstabilities predominate, (3) the turbulent frequencies are lower. (D.P.)
THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS
Energy Technology Data Exchange (ETDEWEB)
Federrath, Christoph [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Schober, Jennifer [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Bovino, Stefano; Schleicher, Dominik R. G., E-mail: christoph.federrath@anu.edu.au [Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany)
2014-12-20
The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.
Differential neutrino rates and emissivities from the plasma process in astrophysical systems
International Nuclear Information System (INIS)
Ratkovic, Sasa; Iyer Dutta, Sharada; Prakash, Madappa
2003-01-01
The differential rates and emissivities of neutrino pairs from an equilibrium plasma are calculated for the wide range of density and temperature encountered in astrophysical systems. New analytical expressions are derived for the differential emissivities which yield total emissivities in full agreement with those previously calculated. The photon and plasmon pair production and absorption kernels in the source term of the Boltzmann equation for neutrino transport are provided. The appropriate Legendre coefficients of these kernels, in forms suitable for multi-group flux-limited diffusion schemes are also computed
Zonal flows and turbulence in fluids and plasmas
Parker, Jeffrey Bok-Cheung
In geophysical and plasma contexts, zonal flows are well known to arise out of turbulence. We elucidate the transition from statistically homogeneous turbulence without zonal flows to statistically inhomogeneous turbulence with steady zonal flows. Starting from the Hasegawa--Mima equation, we employ both the quasilinear approximation and a statistical average, which retains a great deal of the qualitative behavior of the full system. Within the resulting framework known as CE2, we extend recent understanding of the symmetry-breaking 'zonostrophic instability'. Zonostrophic instability can be understood in a very general way as the instability of some turbulent background spectrum to a zonally symmetric coherent mode. As a special case, the background spectrum can consist of only a single mode. We find that in this case the dispersion relation of zonostrophic instability from the CE2 formalism reduces exactly to that of the 4-mode truncation of generalized modulational instability. We then show that zonal flows constitute pattern formation amid a turbulent bath. Zonostrophic instability is an example of a Type I s instability of pattern-forming systems. The broken symmetry is statistical homogeneity. Near the bifurcation point, the slow dynamics of CE2 are governed by a well-known amplitude equation, the real Ginzburg-Landau equation. The important features of this amplitude equation, and therefore of the CE2 system, are multiple. First, the zonal flow wavelength is not unique. In an idealized, infinite system, there is a continuous band of zonal flow wavelengths that allow a nonlinear equilibrium. Second, of these wavelengths, only those within a smaller subband are stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets. These behaviors are shown numerically to hold in the CE2 system, and we calculate a stability diagram. The stability diagram is in agreement with direct numerical simulations of the quasilinear
Turbulent Evolution of a Plasma Described Through Classical Mechanics Only
International Nuclear Information System (INIS)
Escande, D.F.; Elskens, Y.
2003-01-01
For the first time an old dream of the XIXth century comes true: the non trivial evolution of a macroscopic many-body system is described through classical mechanics only. This is done for the relaxation of a warm electron beam in a plasma, which results in the generation of Langmuir turbulence and in the formation of a plateau in the velocity distribution function of the electrons. Our derivation starts from the hamiltonian describing the one-dimensional N-body system corresponding to the beam and plasma bulk electrons in electrostatic interaction. For such a system, the dynamics can be reduced to the resonant interaction of M Langmuir waves with N'( > 1 Langmuir waves with N' >> 1 beam particles. This yields the proof of the classical quasilinear equations describing the coupled evolution of the wave spectrum and of the beam velocity distribution function in the strongly nonlinear regime where their validity is the matter of a longstanding controversy
Transport and turbulence in a magnetized argon plasma
International Nuclear Information System (INIS)
Vogels, J.M.M.J.
1984-01-01
Three aspects of the longitudinal motion of ionized and neutral particles in a hollow cathode arc are investigated. The longitudinal plasma momentum balance of the column has been investigated, we have studied the momentum balance in relation to turbulence and we have investigated the source properties of the cathode. The study of the plasma momentum balance contains two aspects: (1) to collect experimental data on ion drift velocities and temperatures with Fabry-Perot interferometry, on electron densities and temperatures with Thomson scattering or optical spectroscopy and on neutral densities with a collisional radiative model combined with the ion energy balance; (2) to check the (classical) theory of the momentum balance with these data. The coupling between these aspects has been investigated and found to be in good agreement. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Klimachkov, D.A., E-mail: klimachkovdmitry@gmail.com [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Petrosyan, A.S. [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Moscow Institute of Physics and Technology (State University), 9 Institutskyi per., Dolgoprudny, Moscow Region, 141700 (Russian Federation)
2017-01-15
This article deals with magnetohydrodynamic (MHD) flows of a thin rotating layer of astrophysical plasma in external magnetic field. We use the shallow water approximation to describe thin rotating plasma layer with a free surface in a vertical external magnetic field. The MHD shallow water equations with external vertical magnetic field are revised by supplementing them with the equations that are consequences of the magnetic field divergence-free conditions and reveal the existence of third component of the magnetic field in such approximation providing its relation with the horizontal magnetic field. It is shown that the presence of a vertical magnetic field significantly changes the dynamics of the wave processes in astrophysical plasma compared to the neutral fluid and plasma layer in a toroidal magnetic field. The equations for the nonlinear wave packets interactions are derived using the asymptotic multiscale method. The equations for three magneto-Poincare waves interactions, for three magnetostrophic waves interactions, for the interactions of two magneto-Poincare waves and for one magnetostrophic wave and two magnetostrophic wave and one magneto-Poincare wave interactions are obtained. The existence of parametric decay and parametric amplifications is predicted. We found following four types of parametric decay instabilities: magneto-Poincare wave decays into two magneto-Poincare waves, magnetostrophic wave decays into two magnetostrophic waves, magneto-Poincare wave decays into one magneto-Poincare wave and one magnetostrophic wave, magnetostrophic wave decays into one magnetostrophic wave and one magneto-Poincare wave. Following mechanisms of parametric amplifications are found: parametric amplification of magneto-Poincare waves, parametric amplification of magnetostrophic waves, magneto-Poincare wave amplification in magnetostrophic wave presence and magnetostrophic wave amplification in magneto-Poincare wave presence. The instabilities growth rates
Statistical properties of turbulence in a toroidal magnetized ECR plasma
International Nuclear Information System (INIS)
Yu Yi; Lu Ronghua; Wang Zhijiang; Wen Yizhi; Yu Changxuan; Wan Shude; Liu, Wandong
2008-01-01
The statistical analyses of fluctuation data measured by electrostatic-probe arrays clearly show that the self-organized criticality (SOC) avalanches are not the dominant behaviors in a toroidal ECR plasma in the SMT (Simple Magnetic Torus) mode of KT-5D device. The f -1 index region in the auto-correlation spectra of the floating potential V f and the ion saturation current I s , which is a fingerprint of a SOC system, ranges only in a narrow frequency band. By investigating the Hurst exponents at increasingly coarse grained time series, we find that at a time scale of τ>100 μs, there exists no or a very weak long-range correlation over two decades in τ. The difference between the PDFs of I s and V f clearly shows a more global nature of the latter. The transport flux induced by the turbulence suggests that the natural intermittency of turbulent transport maybe independent of the avalanche induced by near criticality. The drift instability is dominant in a SMT plasma generated by means of ECR discharges
Wienkers, A. F.; Ogilvie, G. I.
2018-04-01
Non-linear evolution of the parametric instability of inertial waves inherent to eccentric discs is studied by way of a new local numerical model. Mode coupling of tidal deformation with the disc eccentricity is known to produce exponentially growing eccentricities at certain mean-motion resonances. However, the details of an efficient saturation mechanism balancing this growth still are not fully understood. This paper develops a local numerical model for an eccentric quasi-axisymmetric shearing box which generalises the often-used cartesian shearing box model. The numerical method is an overall second order well-balanced finite volume method which maintains the stratified and oscillatory steady-state solution by construction. This implementation is employed to study the non-linear outcome of the parametric instability in eccentric discs with vertical structure. Stratification is found to constrain the perturbation energy near the mid-plane and localise the effective region of inertial wave breaking that sources turbulence. A saturated marginally sonic turbulent state results from the non-linear breaking of inertial waves and is subsequently unstable to large-scale axisymmetric zonal flow structures. This resulting limit-cycle behaviour reduces access to the eccentric energy source and prevents substantial transport of angular momentum radially through the disc. Still, the saturation of this parametric instability of inertial waves is shown to damp eccentricity on a time-scale of a thousand orbital periods. It may thus be a promising mechanism for intermittently regaining balance with the exponential growth of eccentricity from the eccentric Lindblad resonances and may also help explain the occurrence of "bursty" dynamics such as the superhump phenomenon.
Production of radiatively cooled hypersonic plasma jets and links to astrophysical jets
International Nuclear Information System (INIS)
Lebedev, S V; Ciardi, A; Ampleford, D J; Bland, S N; Bott, S C; Chittenden, J P; Hall, G N; Rapley, J; Jennings, C; Sherlock, M; Frank, A; Blackman, E G
2005-01-01
We present results of high energy density laboratory experiments on the production of supersonic radiatively cooled plasma jets with dimensionless parameters (Mach number ∼30, cooling parameter ∼1 and density contrast ρ j /ρ a ∼ 10) similar to those in young stellar objects jets. The jets are produced using two modifications of wire array Z-pinch driven by 1 MA, 250 ns current pulse of MAGPIE facility at Imperial College, London. In the first set of experiments the produced jets are purely hydrodynamic and are used to study deflection of the jets by the plasma cross-wind, including the structure of internal oblique shocks in the jets. In the second configuration the jets are driven by the pressure of the toroidal magnetic field and this configuration is relevant to the astrophysical models of jet launching mechanisms. Modifications of the experimental configuration allowing the addition of the poloidal magnetic field and angular momentum to the jets are also discussed. We also present three-dimensional resistive magneto-hydrodynamic simulations of the experiments and discuss the scaling of the experiments to the astrophysical systems
From the Telescope to the Laboratory and Back Again: The Center for Astrophysical Plasma Properties
Houston Montgomery, Michael; Winget, Don; Schaeuble, Marc; Hawkins, Keith; Wheeler, Craig
2018-01-01
The Center for Astrophysical Plasma Properties (CAPP) is a new center focusing on the spectroscopic properties of stars and accretion disks using “at-parameter” experiments. Currently, these experiments use the X-ray output of the Z machine at Sandia National Laboratories—the largest X-ray source in the world—to heat plasmas to the same conditions (temperature, density, and radiation environment) as those observed in astronomical objects. Current experiments include measuring (1) density-dependent opacities of iron-peak elements at solar interior conditions, (2) spectral lines of low-Z elements at white dwarf photospheric conditions, (3) atomic population kinetics of neon in a radiation-dominated environment, and (4) resonant Auger destruction (RAD) of silicon at accretion disk conditions around supermassive black holes. We will be moving to new astrophysical environments and additional experimental facilities, such as the National Ignition Facility (NIF) and the OMEGA facility at the Laboratory for Laser Energetics (LLE). We seek students and collaborators to work on these experiments as well as the calculations that complement them. CAPP has funding for 5 years and can support up to six graduate students and three post-docs.
Tenth International Colloquium on UV and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas
Silver, Eric H.; Kahn, Steven M.
UV and X-ray spectroscopy of astrophysical and laboratory plasmas draws interest from many disciplines. Contributions from international specialists are collected together in this book from a timely recent conference. In astrophysics, the Hubble Space Telescope, Astro 1 and ROSAT observatories are now providing UV and X-ray spectra and images of cosmic sources in unprecedented detail, while the Yohkoh mission recently collected superb data on the solar corona. In the laboratory, the development of ion-trap facilities and novel laser experiments are providing vital new data on high temperature plasmas. Recent innovations in the technology of spectroscopic instrumentation are discussed. These papers constitute an excellent up-to-date review of developments in short-wavelength spectroscopy and offer a solid introduction to its theoretical and experimental foundations. These proceedings give an up-to-date review of developments in short-wavelength spectroscopy and offer a solid introduction to its theoretical and experimental foundations. Various speakers presented some of the first results from the high resolution spectrograph on the Hubble Space Telescope, the high sensitivity far ultraviolet and X-ray spectrometers of the ASTRO 1 Observatory, the imaging X-ray spectrometer on the ROSAT Observatory, and the high resolution solar X-ray spectrometer on Yohkoh. The development of ion trap devices had brought about a revolution in laboratory investigations of atomic processes in highly charged atoms. X-ray laser experiments had not only yielded considerable insight into electron ion interactions in hot dense plasmas, but also demonstrated the versatility of laser plasmas as laboratory X-ray sources. Such measurements also motivated and led to refinements in the development of large-scale atomic and molecular codes. On the instrumental side, the design and development of the next series of very powerful short wavelength observatories had generated a large number of
Plasma turbulence and kinetic instabilities at ion scales in the expanding solar wind
Czech Academy of Sciences Publication Activity Database
Hellinger, Petr; Matteini, L.; Landi, S.; Verdini, A.; Franci, L.; Trávníček, Pavel M.
2015-01-01
Roč. 811, č. 2 (2015), L32/1-L32/6 ISSN 2041-8205 Institutional support: RVO:68378289 Keywords : instabilities * solar wind * turbulence * waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.487, year: 2015 http://iopscience.iop.org/article/10.1088/2041-8205/811/2/L32/pdf
Plasma Turbulence and Kinetic Instabilities at Ion Scales in the Expanding Solar Wind
Czech Academy of Sciences Publication Activity Database
Hellinger, Petr; Matteini, L.; Landi, S.; Franci, L.; Trávníček, Pavel M.
2015-01-01
Roč. 812, č. 2 (2015), L32/1-L32/6 ISSN 2041-8205 R&D Projects: GA ČR GA15-10057S Grant - others:European Commission(XE) 284515 Institutional support: RVO:67985815 Keywords : instabilities * solar wind * turbulence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.487, year: 2015
Low frequency fluid drift turbulence in magnetised plasmas
International Nuclear Information System (INIS)
Scott, B.
2001-03-01
We start with the first principles of fluid dynamics and classical electrodynamics and then find the regime in which we can reduce to quasineutral dynamics, which also implicitly underlies MHD. Then, we find the limits under which we can specialise to the MHD model as a subset, first of two fluid dynamics, then of the fluid drift dynamics that results when the motions are not vigorous enough to compress the magnetic field. In Chapters 4 and 5 we find the basic character of small disturbances in this system. Chapters 6 through 9 treat various aspects of fluid drift turbulence, also called drift wave turbulence, moving from a simple consideration of the underlying nonlinear dynamics, to some methods by which one can diagnose computations to find out what is going on, and then to the nonlinear instability which is the hallmark of this physics, and then to the interactions with large scale sheared flows. Chapter 10 introduces interchange turbulence, which is the plasma analog of the buoyant convection well known from fluid dynamics. Chapters 11 through 13 treat electromagnetic drift wave turbulence in closed magnetic field geometry, starting with a simplified model treating only the electron pressure and then introducing the electron and ion temperatures. Chapter 14 treats the basic characteristics of the transport that results from fluid drift turbulence, as this is quite different from the kinetic diffusion, such as heat conduction, that is more familiar. Appendices A and B treat the details of the numerical methods and models of magnetic field geometry necessary to treat all but the simplest cases. For this subject is dominated by nonlinear physics and therefore numerical computation. Computations therefore form an integral part of its study right from the beginning. Citations to the literature are not intended to be comprehensive but to serve as starting points for further reading, a section for which is included in every chapter. Much of this work is very new, and
Interchange turbulence model for the edge plasma in SOLEDGE2D-EIRENE
Energy Technology Data Exchange (ETDEWEB)
Bufferand, H.; Marandet, Y. [Aix-Marseille Universite, CNRS, PIIM, Marseille (France); Ciraolo, G.; Ghendrih, P.; Bucalossi, J.; Fedorczak, N.; Gunn, J.; Tamain, P. [CEA, IRFM, Saint-Paul-Lez-Durance (France); Colin, C.; Galassi, D.; Leybros, R.; Serre, E. [Aix-Marseille Universite, CNRS, M2P2, Marseille (France)
2016-08-15
Cross-field transport in edge tokamak plasmas is known to be dominated by turbulent transport. A dedicated effort has been made to simulate this turbulent transport from first principle models but the numerical cost to run these simulations on the ITER scale remains prohibitive. Edge plasma transport study relies mostly nowadays on so-called transport codes where the turbulent transport is taken into account using effective ad-hoc diffusion coefficients. In this contribution, we propose to introduce a transport equation for the turbulence intensity in SOLEDGE2D-EIRENE to describe the interchange turbulence properties. Going beyond the empirical diffusive model, this system automatically generates profiles for the turbulent transport and hence reduces the number of degrees of freedom for edge plasma transport codes. We draw inspiration from the k-epsilon model widely used in the neutral fluid community. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
International Nuclear Information System (INIS)
Hur, Min; Hong, Sang Hee
2002-01-01
The thermal plasma characteristics inside the two non-transferred plasma torches with rod-type cathode (RTC) and well-type cathode (WTC) are analysed in conjunction with turbulent effects on them in the atmospheric-pressure conditions. A control volume method and a modified semi-implicit pressure linked equations revised algorithm are used for solving the governing equations, i.e. conservation equations of mass, momentum, and energy together with a current continuity equation for arc discharge. A cold flow analysis is introduced to find the cathode spot position in the WTC torch, and both the laminar and turbulent models are employed to gain a physical insight into the turbulent effects on the thermal plasma characteristics produced inside the two torches. The numerical analysis for an RTC torch shows that slightly different values of plasma temperature and velocity between the laminar and turbulent calculations occur and the radial temperature profiles are constricted at the axis with increasing the gas flow rate, and that the large turbulent viscosities appear mostly near the anode wall. These calculated results indicate that the turbulent effects on the thermal plasma characteristics are very weak in the whole discharge region inside the RTC torch. On the other hand, the calculated results of the two numerical simulations for a WTC torch present that the significantly different values of plasma characteristics between the two models appear in the whole torch region and the plasma temperatures decrease with increasing the gas flow rate because the relatively strong turbulent effects are prevailing in the entire interior region of the WTC torch. From the comparisons of plasma net powers calculated and measured in this work, the turbulent modelling turns out to provide the more accurately calculated results close to the measured ones compared with the laminar one, especially for the torch with WTC. This is because the turbulent effects are considerably strong in
Collision excitation studies useful for plasma diagnostics in astrophysics and fusion research
International Nuclear Information System (INIS)
Man Mohan; Aggarwal, Sunny
2015-01-01
The urgent research for energy sources has led many countries to collaborate on demonstrating the scientific and technological feasibility of magnetic fusion through the construction of International Thermonuclear Experimental Reactor in France. Data on highly charged ions with high Z will be important in this quest. Atomic data such as energy levels, radiative rates and collision excitation plays an important role in fusion research and extensive knowledge of atomic parameters is needed for plasma diagnostics. There is a very limited knowledge so far about the heavy atoms due to involvement of strong relativistic effects. For heavy atoms, electron correlation effects and relativistic effects are strongly coupled making it necessary to use a relativistic theory which also incorporates 'electron correlations effects on the same footing. For treating heavy atoms there have been new developments and many codes in the relativistic domain have been developed by various authors. Among them, multi-configuration Hartree (Dirac) Fock (MCDF) model based codes have been found very useful in ab-initio investigations. We have calculated the energy levels, radiative rates and lifetimes for heavy charged F, Na and Mg like tungsten ions using MCDF and FAC and compared our results with the other available theoretical and experimental results. Also, we have performed collision excitation calculations for F, Na and Mg like tungsten ions which will be useful for astrophysical and fusion, plasma. Also, we have compared our collision excitation results with distorted wave calculations and they are found to be in good agreement. The main goal of this paper is to provide useful atomic physics data for use in fusion research and in astrophysical and industrial plasmas. (author)
Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence
Energy Technology Data Exchange (ETDEWEB)
Belli, E. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hammett, G. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Dorland, W. [Univ. of Maryland, College Park, MD (United States)
2008-08-01
The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ~ κ^{-1.5} or κ^{-2.0}, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.
Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence
International Nuclear Information System (INIS)
E.A. Belli, G.W. Hammett and W. Dorland
2008-01-01
The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ∼ κ -1.5 or κ -2.0 , depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows
Asymmetry of edge plasma turbulence in biasing experiments on tokamak TF-2
International Nuclear Information System (INIS)
Budaev, V.P.
1994-01-01
It was observed in tokamaks the suppression of edge turbulence causes by setting a radial electric field at the plasma edge. The poloidal plasma rotation governed by this electric field is likely to result in changes in edge convention and poloidal asymmetry, however there is no experimental evidence about that of the experimental database concerning the biasing and conditions of edge plasma electrostatic turbulence excitation is not still complete. Also a relation between macroscopic convection and small-scale electrostatic turbulence have not yet revealed both in biasing and non biasing plasmas. In this paper results from biasing experiments carried on on ohmically heated tokamak TF-2 are presented. Changes in both equilibrium and fluctuated edge plasma parameters also convection and turbulence driven particle flux were demonstrated in probe measurements with biasing of electrode immersed within Last Closed Flux Surface (LCFS). Poloidal edge plasma structure and charge in asymmetry have demonstrated in the biasing experiments. (author). 6 refs, 4 figs
Four-fluid description of turbulent plasma focus dynamics
International Nuclear Information System (INIS)
Hayd, A.; Maurer, M.; Meinke, P.; Kaeppeler, H.J.
1984-06-01
The dynamic phenomena in the compression, pinch and late phases of the plasma focus experiment POSEIDON in its operational mode at 60 kV, 280 kJ, were previously calculated from a two-fluid theory using the new hybrid code REDUCE/FORTRAN. Two important results were found: the neutron production already in the pinch phase for currents larger than 500 kA and filamentary structures on and around the pinch axis. In a continuation of this work, a four-fluid system of dynamical equations was formulated and programmed with the REDUCE/FORTRAN code. Besides macro-turbulence, the new four-fluid theory includes micro-instabilities and anomalous transport properties, as well as the runaway effect for electrons and ions. First results from calculations with this new theory are presented and are compared with previous calculations and with recent experimental observations. (orig.)
Interstellar turbulence model : A self-consistent coupling of plasma and neutral fluids
International Nuclear Information System (INIS)
Shaikh, Dastgeer; Zank, Gary P.; Pogorelov, Nikolai
2006-01-01
We present results of a preliminary investigation of interstellar turbulence based on a self-consistent two-dimensional fluid simulation model. Our model describes a partially ionized magnetofluid interstellar medium (ISM) that couples a neutral hydrogen fluid to a plasma through charge exchange interactions and assumes that the ISM turbulent correlation scales are much bigger than the shock characteristic length-scales, but smaller than the charge exchange mean free path length-scales. The shocks have no influence on the ISM turbulent fluctuations. We find that nonlinear interactions in coupled plasma-neutral ISM turbulence are influenced substantially by charge exchange processes
DEFF Research Database (Denmark)
Manz, P.; Ramisch, M.; Stroth, U.
2008-01-01
Experimental density and potential fluctuation data from a 2D probe array have been analysed to study the turbulent cascade in a toroidally confined magnetized plasma. The bispectral analysis technique used is from Ritz et al ( 1989 Phys. Fluids B 1 153) and Kim et al ( 1996 Phys. Plasmas 3 3998...... scales. This is the first experimental evidence for the dual turbulent cascade in a magnetized plasma....
Modeling X-ray Spectra of Astrophysical Plasmas: Current Status and Future Needs
Smith, Randall
Existing high-resolution astrophysical X-ray spectra has exposed the need for high-quality atomic data of all stripes: wavelengths, collisional and absorption cross sections, and radiative rates. The Astro-H soft X-ray spectrometer (2015 launch) will vastly increase the number and type of high-resolution X-ray spectra available and likely expose a number of shortcomings in our models. I will describe recent advances in theoretical calculations and laboratory measurements, as well as a number of existing needs in the field. These include accurate soft X-ray wavelengths for L-shell ions, diagnostic emission line ratios with estimated error bars, and high-resolution absorption cross sections for abundant ions and molecules. Finally, new models of emission from non-equilibrium ionization plasmas and astrophysical charge exchange will be discussed. This latter emission arises due to the interaction of highly charged ions with neutral atoms, forming a diffuse background in the case of solar wind ions and possibly also arising in more distant environments.
Interaction between plasma synthetic jet and subsonic turbulent boundary layer
Zong, Haohua; Kotsonis, Marios
2017-04-01
This paper experimentally investigates the interaction between a plasma synthetic jet (PSJ) and a subsonic turbulent boundary layer (TBL) using a hotwire anemometer and phase-locked particle imaging velocimetry. The PSJ is interacting with a fully developed turbulent boundary layer developing on the flat wall of a square wind tunnel section of 1.7 m length. The Reynolds number based on the freestream velocity (U∞ = 20 m/s) and the boundary layer thickness (δ99 = 34.5 mm) at the location of interaction is 44 400. A large-volume (1696 mm3) three-electrode plasma synthetic jet actuator (PSJA) with a round exit orifice (D = 2 mm) is adopted to produce high-speed (92 m/s) and short-duration (Tjet = 1 ms) pulsed jets. The exit velocity variation of the adopted PSJA in a crossflow is shown to remain almost identical to that in quiescent conditions. However, the flow structures emanating from the interaction between the PSJ and the TBL are significantly different from what were observed in quiescent conditions. In the midspan xy plane (z = 0 mm), the erupted jet body initially follows a wall-normal trajectory accompanied by the formation of a distinctive front vortex ring. After three convective time scales the jet bends to the crossflow, thus limiting the peak penetration depth to approximately 0.58δ99. Comparison of the normalized jet trajectories indicates that the penetration ability of the PSJ is less than steady jets with the same momentum flow velocity. Prior to the jet diminishing, a recirculation region is observed in the leeward side of the jet body, experiencing first an expansion and then a contraction in the area. In the cross-stream yz plane, the signature structure of jets in a crossflow, the counter-rotating vortex pair (CVP), transports high-momentum flow from the outer layer to the near-wall region, leading to a fuller velocity profile and a drop in the boundary layer shape factor (1.3 to 1.2). In contrast to steady jets, the CVP produced by the PSJ
International Nuclear Information System (INIS)
Gilmore, Mark Allen
2017-01-01
Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB's)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB's] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.
Energy Technology Data Exchange (ETDEWEB)
Gilmore, Mark Allen [Univ. of New Mexico, Albuquerque, NM (United States)
2017-02-05
Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.
Energy Technology Data Exchange (ETDEWEB)
Sarazin, Y
1997-11-21
The aim of this work is to propose a new frame to study turbulent transport in plasmas. In order to avoid the restraint of scale separability the forcing by flux is used. A critical one-dimension self-organized cellular model is developed. In keeping with experience the average transport can be described by means of diffusion and convection terms whereas the local transport could not. The instability due to interchanging process is thoroughly studied and some simplified equations are derived. The proposed model agrees with the following experimental results: the relative fluctuations of density are maximized on the edge, the profile shows an exponential behaviour and the amplitude of density fluctuations depends on ionization source strongly. (A.C.) 103 refs.
Maroof, R.; Ali, S.; Mushtaq, A.; Qamar, A.
2015-11-01
Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.
Energy Technology Data Exchange (ETDEWEB)
Maroof, R. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan)
2015-11-15
Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.
The acceleration and propagation of energetic particles in turbulent cosmic plasmas
International Nuclear Information System (INIS)
Achterberg, A.
1981-01-01
This thesis concentrates on the acceleration and propagation of energetic particles in turbulent cosmic plasmas. The stochastic acceleration of relativistic electrons by long-wavelength weak magnetohydrodynamic turbulence is considered and a model is discussed that allows the determination of both the electron energy spectrum and the wavenumber spectrum of the magnetohydrodynamic turbulence in a consistent way. The question of second phase acceleration in large solar flares and the precise form of the force exerted on the background plasma when Alfven waves are generated by fast particles are considered. The energy balance in the shock wave acceleration, the propagation of energetic particles in a high β plasma (β>10 2 ) and sheared flow as a possible source of plasma turbulence for a magnetized plasma with field-aligned flow, are discussed. (Auth./C.F.)
Plasma turbulence. Structure formation, selection rule, dynamic response and dynamics transport
International Nuclear Information System (INIS)
Ito, Sanae I.
2010-01-01
The five-year project of Grant-in-Aid for Specially Promoted Research entitled general research on the structure formation and selection rule in plasma turbulence had brought many outcomes. Based on these outcomes, the Grant-in-Aid for Scientific Research (S) program entitled general research on dynamic response and dynamic transport in plasma turbulence has started. In the present paper, the state-of-the-art of the research activities on the structure formation, selection rule and dynamics in plasma turbulence are reviewed with reference to outcomes of these projects. (author)
Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence
DEFF Research Database (Denmark)
Priego, M.; Garcia, O.E.; Naulin, V.
2005-01-01
The turbulent transport of impurity particles in plasma edge turbulence is investigated. The impurities are modeled as a passive fluid advected by the electric and polarization drifts, while the ambient plasma turbulence is modeled using the two-dimensional Hasegawa-Wakatani paradigm for resistive...... drift-wave turbulence. The features of the turbulent transport of impurities are investigated by numerical simulations using a novel code that applies semi-Lagrangian pseudospectral schemes. The diffusive character of the turbulent transport of ideal impurities is demonstrated by relative...... orientation determined by the charge of the impurity particles. Second, a radial pinch scaling linearly with the mass-charge ratio of the impurities is discovered. Theoretical explanation for these observations is obtained by analysis of the model equations. (C) 2005 American Institute of Physics....
A reduced model for ion temperature gradient turbulent transport in helical plasmas
International Nuclear Information System (INIS)
Nunami, M.; Watanabe, T.-H.; Sugama, H.
2013-07-01
A novel reduced model for ion temperature gradient (ITG) turbulent transport in helical plasmas is presented. The model enables one to predict nonlinear gyrokinetic simulation results from linear gyrokinetic analyses. It is shown from nonlinear gyrokinetic simulations of the ITG turbulence in helical plasmas that the transport coefficient can be expressed as a function of the turbulent fluctuation level and the averaged zonal flow amplitude. Then, the reduced model for the turbulent ion heat diffusivity is derived by representing the nonlinear turbulent fluctuations and zonal flow amplitude in terms of the linear growth rate of the ITG instability and the linear response of the zonal flow potentials. It is confirmed that the reduced transport model results are in good agreement with those from nonlinear gyrokinetic simulations for high ion temperature plasmas in the Large Helical Device. (author)
Czech Academy of Sciences Publication Activity Database
Van Oost, G.; Bulanin, V.V.; Donné, A.J.H.; Gusakov, E.Z.; Krämer-Flecken, A.; Krupnik, L.I.; Melnikov, A.; Peleman, P.; Razumova, K.; Stöckel, Jan; Vershkov, V.; Altukov, A.B.; Andreev, V.F.; Askinazi, L.G.; Bondarenko, I.S.; Dnestrovskij, A.Yu.; Eliseev, L.G.; Esipov, L.A.; Grashin, S.A.; Gurchenko, A.D.; Hogeweij, G.M.D.; Jachmin, S.; Khrebtov, S.M.; Kouprienko, D.V.; Lysenko, S.E.; Perfilov, S.V.; Petrov, A.V.; Popov, A.Yu.; Reiser, D.; Soldatov, S.; Stepanov, A.Yu.; Telesca, G.; Urazbaev, A.O.; Verdoolaege, G.; Zimmermann, O.
2006-01-01
Roč. 12, č. 6 (2006), s. 14-19 ISSN 1562-6016. [International Conference on Plasma Physics and Technology/11th./. Alushta, 11.9.2006-16.9.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * plasma * improved confinement * turbulence Subject RIV: BL - Plasma and Gas Discharge Physics http:// vant .kipt.kharkov.ua/TABFRAME.html
Kinetic theory of instabilities responsible for magnetic turbulence in laboratory rotating plasma
International Nuclear Information System (INIS)
Mikhailovskii, A.B.; Lominadze, J.G.; Churikov, A.P.; Pustovitov, V.D.; Erokhin, N.N.; Konovalov, S.V.
2008-01-01
The problem of instabilities responsible for magnetic turbulence in collisionless laboratory rotating plasma is investigated. It is shown that the standard mechanism of driving the magnetorotational instability (MRI), due to negative rotation frequency gradient, disappears in such a plasma. Instead of it, a new driving mechanism due to plasma pressure gradient is predicted
Multifractal analysis of plasma turbulence in biasing experiments on Castor tokamak
Czech Academy of Sciences Publication Activity Database
Budaev, V.P.; Dufková, Edita; Nanobashvili, S.; Weinzettl, Vladimír; Zajac, Jaromír
2005-01-01
Roč. 55, C (2005), s. 1615-1621 ISSN 0011-4626. [Workshop “Electric Fields, Structures and Relaxation in Edge Plasmas". Tarragona, 5.7.2005-5.7.2005] Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma turbulence * multifractal analysis Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.360, year: 2005
International Nuclear Information System (INIS)
Kolesnikov, R.A.; Krommes, J.A.
2005-01-01
The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with 10 degrees of freedom. The study of a four-dimensional center manifold predicts a 'Dimits shift' of the threshold for turbulence due to the excitation of zonal flows and establishes (for the model) the exact value of that shift
International Nuclear Information System (INIS)
R Paul Drake
2004-01-01
OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves
Phase-space diffusion in turbulent plasmas: The random acceleration problem revisited
DEFF Research Database (Denmark)
Pécseli, H.L.; Trulsen, J.
1991-01-01
Phase-space diffusion of test particles in turbulent plasmas is studied by an approach based on a conditional statistical analysis of fluctuating electrostatic fields. Analytical relations between relevant conditional averages and higher-order correlations, , and triple...
Time dependent plasma viscosity and relation between neoclassical transport and turbulent transport
International Nuclear Information System (INIS)
Shaing, K.C.
2005-01-01
Time dependent plasma viscosities for asymmetric toroidal plasmas in various collisionality regimes are calculated. It is known that in the symmetric limit the time dependent plasma viscosities accurately describe plasma flow damping rate. Thus, time dependent plasma viscosities are important in modeling the radial electric field of the zonal flow. From the momentum balance equation, it is shown that, at the steady state, the balance of the viscosity force and the momentum source determines the radial electric field of the zonal flow. Thus, for a fixed source, the smaller the viscous force is, the larger the value of the radial electric field is, which in turn suppresses the turbulence fluctuations more and improves turbulence transport. However, the smaller the viscous force also implies the smaller the neoclassical transport fluxes based on the neoclassical flux-force relationship. We thus show that when neoclassical transport fluxes are improved so are the turbulent fluxes in toroidal plasmas. (author)
The Rayleigh-Taylor instability in inertial fusion, astrophysical plasma and flames
International Nuclear Information System (INIS)
Bychkov, V; Modestov, M; Akkerman, V; Eriksson, L-E
2007-01-01
Previous results are reviewed and new results are presented on the Rayleigh-Taylor instability in inertial confined fusion, flames and supernovae including gravitational and thermonuclear explosion mechanisms. The instability couples micro-scale plasma effects to large-scale hydrodynamic phenomena. In inertial fusion the instability reduces target compression. In supernovae the instability produces large-scale convection, which determines the fate of the star. The instability is often accompanied by mass flux through the unstable interface, which may have either a stabilizing or a destabilizing influence. Destabilization happens due to the Darrieus-Landau instability of a deflagration front. Still, it is unclear whether the instabilities lead to well-organized large-scale structures (bubbles) or to relatively isotropic turbulence (mixing layer)
Anomalous transport in turbulent plasmas and continuous time random walks
International Nuclear Information System (INIS)
Balescu, R.
1995-01-01
The possibility of a model of anomalous transport problems in a turbulent plasma by a purely stochastic process is investigated. The theory of continuous time random walks (CTRW's) is briefly reviewed. It is shown that a particular class, called the standard long tail CTRW's is of special interest for the description of subdiffusive transport. Its evolution is described by a non-Markovian diffusion equation that is constructed in such a way as to yield exact values for all the moments of the density profile. The concept of a CTRW model is compared to an exact solution of a simple test problem: transport of charged particles in a fluctuating magnetic field in the limit of infinite perpendicular correlation length. Although the well-known behavior of the mean square displacement proportional to t 1/2 is easily recovered, the exact density profile cannot be modeled by a CTRW. However, the quasilinear approximation of the kinetic equation has the form of a non-Markovian diffusion equation and can thus be generated by a CTRW
Fast-ion stabilization of tokamak plasma turbulence
Di Siena, A.; Görler, T.; Doerk, H.; Poli, E.; Bilato, R.
2018-05-01
A significant reduction of the turbulence-induced anomalous heat transport has been observed in recent studies of magnetically confined plasmas in the presence of a significant fast-ion fractions. Therefore, the control of fast-ion populations with external heating might open the way to more optimistic scenarios for future fusion devices. However, little is known about the parameter range of relevance of these fast-ion effects which are often only highlighted in correlation with substantial electromagnetic fluctuations. Here, a significant fast ion induced stabilization is also found in both linear and nonlinear electrostatic gyrokinetic simulations which cannot be explained with the conventional assumptions based on pressure profile and dilution effects. Strong wave-fast particle resonant interactions are observed for realistic parameters where the fast particle trace approximation clearly failed and explained with the help of a reduced Vlasov model. In contrast to previous interpretations, fast particles can actively modify the Poisson field equation—even at low fast particle densities where dilution tends to be negligible and at relatively high temperatures, i.e. T < 30T e . Further key parameters controlling the role of the fast ions are identified in the following and various ways of further optimizing their beneficial impact are explored. Finally, possible extensions into the electromagnetic regime are briefly discussed and the relevance of these findings for ITER standard scenarios is highlighted.
Maneva, Y. G.; Poedts, S.
2018-05-01
The power spectra of magnetic field fluctuations in the solar wind typically follow a power-law dependence with respect to the observed frequencies and wave-numbers. The background magnetic field often influences the plasma properties, setting a preferential direction for plasma heating and acceleration. At the same time the evolution of the solar-wind turbulence at the ion and electron scales is influenced by the plasma properties through local micro-instabilities and wave-particle interactions. The solar-wind-plasma temperature and the solar-wind turbulence at sub- and sup-ion scales simultaneously show anisotropic features, with different components and fluctuation power in parallel with and perpendicular to the orientation of the background magnetic field. The ratio between the power of the magnetic field fluctuations in parallel and perpendicular direction at the ion scales may vary with the heliospheric distance and depends on various parameters, including the local wave properties and nonthermal plasma features, such as temperature anisotropies and relative drift speeds. In this work we have performed two-and-a-half-dimensional hybrid simulations to study the generation and evolution of anisotropic turbulence in a drifting multi-ion species plasma. We investigate the evolution of the turbulent spectral slopes along and across the background magnetic field for the cases of initially isotropic and anisotropic turbulence. Finally, we show the effect of the various turbulent spectra for the local ion heating in the solar wind.
International Nuclear Information System (INIS)
Sergeev, E.N.; Boiko, G.N.; Frolov, V.L.
1994-01-01
The results of measurements of the growth and decay characteristics of artificial ionospheric radio emission and their dependence on the level of low-frequency artificial turbulence, time of day, and pump-wave frequency are presented. A time delay of the onset of the exponential nature of the decay process is detected, and its characteristics are studied. It is shown that the effect is determined by nonlinear pumping over the spectrum of high-frequency plasma turbulence. The experimental results demonstrate the possibilities of using artificial radio emission to study the properties of high-frequency plasma turbulence. Areas of future research are discussed
Turbulence spectra, transport, and E × B flows in helical plasmas
International Nuclear Information System (INIS)
Watanabe, T.-H.; Nunami, M.; Sugama, H.; Satake, S.; Matsuoka, S.; Ishizawa, A.; Tanaka, K.; Maeyama, Shinya
2012-11-01
Gyrokinetic simulation of ion temperature gradient turbulence and zonal flows for helical plasmas has been validated against the Large Helical Device experiments with high ion temperature, where a reduced modeling of ion heat transport is also considered. It is confirmed by the entropy transfer analysis that the turbulence spectrum elongated in the radial wavenumber space is associated with successive interactions with zonal flows. A novel multi-scale simulation for turbulence and zonal flows in poloidally-rotating helical plasmas has demonstrated strong zonal flow generation by turbulence, which implies that turbulent transport processes in non-axisymmetric systems are coupled to neoclassical transport through the macroscopic E × B flows determined by the ambipolarty condition for neoclassical particle fluxes. (author)
Plasma instabilities and turbulence in non-Abelian gauge theories
Energy Technology Data Exchange (ETDEWEB)
Scheffler, Sebastian Herwig Juergen
2010-02-17
Several aspects of the thermalisation process in non-Abelian gauge theories are investigated. Both numerical simulations in the classical statistical approximation and analytical computations in the framework of the two-particle-irreducible effective action are carried out and their results are compared to each other. The physical quantities of central importance are the correlation functions of the gauge field in Coulomb and temporal axial gauge as well as the gauge invariant energy-momentum tensor. Following a general introduction, the theoretical framework of the ensuing investigations is outlined. In doing so, the range of validity of the employed approximation schemes is discussed as well. The first main part of the thesis is concerned with the early stage of the thermalisation process where particular emphasis is on the role of plasma instabilities. These investigations are relevant to the phenomenological understanding of present heavy ion collision experiments. First, an ensemble of initial conditions motivated by the ''colour glass condensate'' is developed which captures characteristic properties of the plasma created in heavy ion collisions. Here, the strong anisotropy and the large occupation numbers of low-momentum degrees of freedom are to be highlighted. Numerical calculations demonstrate the occurrence of two kinds of instabilities. Primary instabilities result from the specific initial conditions. Secondary instabilities are caused by nonlinear fluctuation effects of the preceding primary instabilities. The time scale associated with the instabilities is of order 1 fm/c. It is shown that the plasma instabilities isotropize the initially strongly anisotropic ensemble in the domain of low momenta (
Plasma instabilities and turbulence in non-Abelian gauge theories
International Nuclear Information System (INIS)
Scheffler, Sebastian Herwig Juergen
2010-01-01
Several aspects of the thermalisation process in non-Abelian gauge theories are investigated. Both numerical simulations in the classical statistical approximation and analytical computations in the framework of the two-particle-irreducible effective action are carried out and their results are compared to each other. The physical quantities of central importance are the correlation functions of the gauge field in Coulomb and temporal axial gauge as well as the gauge invariant energy-momentum tensor. Following a general introduction, the theoretical framework of the ensuing investigations is outlined. In doing so, the range of validity of the employed approximation schemes is discussed as well. The first main part of the thesis is concerned with the early stage of the thermalisation process where particular emphasis is on the role of plasma instabilities. These investigations are relevant to the phenomenological understanding of present heavy ion collision experiments. First, an ensemble of initial conditions motivated by the ''colour glass condensate'' is developed which captures characteristic properties of the plasma created in heavy ion collisions. Here, the strong anisotropy and the large occupation numbers of low-momentum degrees of freedom are to be highlighted. Numerical calculations demonstrate the occurrence of two kinds of instabilities. Primary instabilities result from the specific initial conditions. Secondary instabilities are caused by nonlinear fluctuation effects of the preceding primary instabilities. The time scale associated with the instabilities is of order 1 fm/c. It is shown that the plasma instabilities isotropize the initially strongly anisotropic ensemble in the domain of low momenta (< or similar 1 GeV). Essential results can be translated from the gauge group SU(2) to SU(3) by a simple rescaling procedure. Finally, the role of Nielsen-Olesen instabilities in an idealised setup is investigated. In the second part, the quasi
Plasma Turbulence in Earth's Magnetotail Observed by the Magnetospheric Multiscale Mission
Mackler, D. A.; Avanov, L. A.; Boardsen, S. A.; Pollock, C. J.
2017-12-01
Magnetic reconnection, a process in which the magnetic topology undergoes multi-scale changes, is a significant mechanism for particle energization as well as energy dissipation. Reconnection is observed to occur in thin current sheets generated between two regions of magnetized plasma merging with a non-zero shear angle. Within a thinning current sheet, the dominant scale size approaches first the ion and then electron kinetic scale. The plasma becomes demagnetized, field lines transform, then once again the plasma becomes frozen-in. The reconnection process accelerates particles, leading to heated jets of plasma. Turbulence is another fundamental process in collision less plasmas. Despite decades of turbulence studies, an essential science question remains as to how turbulent energy dissipates at small scales by heating and accelerating particles. Turbulence in both plasmas and fluids has a fundamental property in that it follows an energy cascade into smaller scales. Energy introduced into a fluid or plasma can cause large scale motion, introducing vorticity, which merge and interact to make increasingly smaller eddies. It has been hypothesized that turbulent energy in magnetized plasmas may be dissipated by magnetic reconnection, just as viscosity dissipates energy in neutral fluid turbulence. The focus of this study is to use the new high temporal resolution suite of instruments on board the Magnetospheric MultiScale (MMS) mission to explore this hypothesis. An observable feature of the energy cascade in a turbulent magnetized plasma is its similarity to classical hydrodynamics in that the Power Spectral Density (PSD) of turbulent fluctuations follows a Kolmogorov-like power law (Image-5/3). We use highly accurate (0.1 nT) Flux Gate Magnetometer (FGM) data to derive the PSD as a function of frequency in the magnetic fluctuations. Given that we are able to confirm the turbulent nature of the flow field; we apply the method of Partial Variance of Increments (PVI
Intermittency, avalanche statistics, and long-term correlations in a turbulent plasma
International Nuclear Information System (INIS)
Castellanos, Omar; Sentíes, José M; Anabitarte, Ernesto; López, Juan M
2013-01-01
We study the turbulent dynamics of a helium plasma in a non-confining cylindrical configuration. Our experimental setup allows us to analyze particle transport in different plasma regions. We find that, whereas the transport is diffusive in the innermost regions of the plasma, distinctive non-diffusive features appear in regions away from the center. Indeed, at the plasma edge we find that particle flux exhibits a power-law distribution of avalanche durations, intermittency, and long-term correlations. (paper)
Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas
Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.
2011-01-01
Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.
Furno, I.; Fasoli, A.; Avino, F.; Bovet, A.; Gustafson, K.; Iraji, D.; Labit, B.; Loizu, J.; Ricci, P.; Theiler, C.
2012-04-01
TORPEX is a toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. The turbulence driven by magnetic curvature and plasma gradients causes plasma transport in the radial direction while at the same time plasma is progressively lost along the field lines. The relatively simple magnetic geometry and diagnostic access of the TORPEX configuration facilitate the experimental study of low frequency instabilities and related turbulent transport, and make an accurate comparison between simulations and experiments possible. We first present a detailed investigation of electrostatic interchange turbulence, associated structures and their effect on plasma using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Interchange modes nonlinearly develop blobs, radially propagating filaments of enhanced plasma pressure. Blob velocities and sizes are obtained from probe measurements using pattern recognition and are described by an analytical expression that includes ion polarization currents, parallel sheath currents and ion-neutral collisions. Then, we describe recent advances of a non-perturbative Li 6+ miniaturized ion source and a detector for the investigation of the interaction between supra thermal ions and interchange-driven turbulence. We present first measurements of the spatial and energy space distribution of the fast ion beam in different plasma scenarios, in which the plasma turbulence is fully characterized. The experiments are interpreted using two-dimensional fluid simulations describing the low-frequency interchange turbulence, taking into account the plasma source and plasma losses at the torus vessel. By treating fast ions as test particles, we integrate their equations of motion in the simulated electromagnetic fields, and
High density turbulent plasma processes from a shock tube. Final performance report
International Nuclear Information System (INIS)
Johnson, J.A. III.
1997-01-01
A broad-based set of measurements has begun on high density turbulent plasma processes. This includes determinations of new plasma physics and the initiation of work on new diagnostics for collisional plasmas as follows: (1) A transient increase is observed in both the spectral energy decay rate and the degree of chaotic complexity at the interface of a shock wave and a turbulent ionized gas. Even though the gas is apparently brought to rest by the shock wave, no evidence is found either of prompt relaminarization or of any systematic influence of end-wall material thermal conductivities on the turbulence parameters. (2) Point fluorescence emissions and averaged spectral line evolutions in turbulent plasmas produced in both the primary and the reflected shock wave flows exhibit ergodicity in the standard turbulence parameters. The data show first evidence of a reverse energy cascade in the collisional turbulent plasma. This suggests that the fully turbulent environment can be described using a stationary state formulation. In these same data, the author finds compelling evidence for a turbulent Stark effect on neutral emission lines in these data which is associated with evidence of large coherent structures and dominant modes in the Fourier analyses of the fluctuations in the optical spectra. (3) A neutral beam generator has been assembled by coupling a Colutron Ion Gun to a charge exchange chamber. Beam-target collisions where the target species is neutral and the beam is either singly charged or neutral have been performed using argon as the working gas. Spectral analysis of the emission shows specific radiative transitions characteristic of both Ar I and Ar II, indicating that some ionization of the target gas results. Gas and plasma parameters such as density, pressure, temperature and flow velocity and their fluctuations can now be followed in real time by spectroscopic analysis of carefully chosen radiative emissions
Energy Technology Data Exchange (ETDEWEB)
Liang, Edison; Fu, Wen [Rice University, Houston, TX 77005 (United States); Böttcher, Markus [North-West University, Potchefstroom, 2520 (South Africa)
2017-10-01
We present particle-in-cell simulation results of relativistic shear boundary layers between electron–ion and electron–positron plasmas and discuss their potential applications to astrophysics. Specifically, we find that in the case of a fast electron–positron spine surrounded by a slow-moving or stationary electron–ion sheath, lepton acceleration proceeds in a highly anisotropic manner due to electromagnetic fields created at the shear interface. While the highest-energy leptons still produce a beaming pattern (as seen in the quasi-stationary frame of the sheath) of order 1/Γ, where Γ is the bulk Lorentz factor of the spine, for lower-energy particles, the beaming is much less pronounced. This is in stark contrast to the case of pure electron–ion shear layers, in which anisotropic particle acceleration leads to significantly narrower beaming patterns than 1/Γ for the highest-energy particles. In either case, shear-layer acceleration is expected to produce strongly angle-dependent lepton (hence, emanating radiation) spectra, with a significantly harder spectrum in the forward direction than viewed from larger off-axis angles, much beyond the regular Doppler boosting effect from a co-moving isotropic lepton distribution. This may solve the problem of the need for high (and apparently arbitrarily chosen) minimum Lorentz factors of radiating electrons, often plaguing current blazar and GRB jet modeling efforts.
International Nuclear Information System (INIS)
Xu, Siyao; Yan, Huirong; Lazarian, A.
2016-01-01
We study the damping processes of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in a partially ionized medium. We start from the linear analysis of MHD waves, applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and the cutoff boundary of linear MHD waves is investigated. We find two branches of slow modes propagating in ions and neutrals, respectively, below the damping scale of slow MHD turbulence, and offer a thorough discussion of their propagation and dissipation behavior. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and the solar chromosphere. The importance of neutral viscosity in damping the Alfvenic turbulence in the interstellar warm neutral medium and the solar chromosphere is demonstrated. As a significant astrophysical utility, we introduce damping effects to the propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.
Dennis, Brian R.; Martin, Franklin D.; Prince, T.; Lin, R.; Bruner, M.; Culhane, L.; Ramaty, R.; Doschek, G.; Emslie, G.; Lingenfelter, R.
1986-01-01
The concept of the Solar High-Energy Astrophysical Plasmas Explorer (SHAPE) is studied. The primary goal is to understand the impulsive release of energy, efficient acceleration of particles to high energies, and rapid transport of energy. Solar flare studies are the centerpieces of the investigation because in flares these high energy processes can be studied in unmatched detail at most wavelenth regions of the electromagnetic spectrum as well as in energetic charged particles and neutrons.
Sahraoui, Fouad; Goldstein, Melvyn
2008-01-01
Several observations in space plasmas have reported the presence of coherent structures at different plasma scales. Structure formation is believed to be a direct consequence of nonlinear interactions between the plasma modes, which depend strongly on phase synchronization of those modes. Despite this important role of the phases in turbulence, very limited work has been however devoted to study the phases as a potential tracers of nonlinearities in comparison with the wealth of literature on power spectra of turbulence where phases are totally missed. We present a method based on surrogate data to systematically detect coherent structures in turbulent signals. The new method has been applied successfully to magnetosheath turbulence (Sahraoui, Phys. Rev. E, 2008, in press), where the relationship between the identified phase coherence and intermittency (classically identified as non Gaussian tails of the PDFs) as well as the energy cascade has been studied. Here we review the main results obtained in that study and show further applications to small scale solar wind turbulence. Implications of the results on theoretical modelling of space turbulence (applicability of weak/wave turbulence, its validity limits and its connection to intermittency) will be discussed.
International Nuclear Information System (INIS)
Heuraux, S; Silva, F da; Gusakov, E; Popov, A Yu; Kosolapova, N; Syisoeva, K V
2013-01-01
A first step towards the measurement of turbulence characteristics or transient events required for the understanding of turbulent transport is to build an interpretative model able to link the measurements of a given diagnostic to a wanted parameter of the turbulence, and simulation helps us to do that. To obtain density fluctuation parameters in fusion plasmas, microwaves can be used. However, the interpretation of the received signals requires generally sophisticated data processing to extract an exact evaluation of the wanted parameters. Simulations of electromagnetic wave propagation in turbulent plasmas permit to identify the main processes involved in probing wave-fluctuations interaction and the reflectometry signature of the expected events, which gives ideas to model them. It is shown here how simulations have permitted to exhibit the role of resonances of the probing wave induced by turbulence and to explain part of phase jumps seen during reflectometer measurements. The multi-scattering phenomena can be modelled by a photon diffusion equation which can be used to provide information on the turbulence at density fluctuations levels higher than allowed by usual methods. The reflectometry simulations show that at high level of turbulence a competition between the resonances generation mechanism, able to maintain the probing depth, and the Bragg backscattering exists. Its consequences on turbulence characterisation are discussed.
Holland, Christopher George
Studies of nonlinear couplings and dynamics in plasma turbulence are presented. Particular areas of focus are analytic studies of coherent structure formation in electron temperature gradient turbulence, measurement of nonlinear energy transfer in simulations of plasma turbulence, and bispectral analysis of experimental and computational data. The motivation for these works has been to develop and expand the existing theories of plasma transport, and verify the nonlinear predictions of those theories in simulation and experiment. In Chapter II, we study electromagnetic secondary instabilities of electron temperature gradient turbulence. The growth rate for zonal flow generation via modulational instability of electromagnetic ETG turbulence is calculated, as well as that for zonal (magnetic) field generation. In Chapter III, the stability and saturation of streamers in ETG turbulence is considered, and shown to depend sensitively upon geometry and the damping rates of the Kelvin-Helmholtz mode. Requirements for a credible theory of streamer transport are presented. In addition, a self-consistent model for interactions between ETG and ITG (ion temperature gradient) turbulence is presented. In Chapter IV, the nonlinear transfer of kinetic and internal energy is measured in simulations of plasma turbulence. The regulation of turbulence by radial decorrelation due to zonal flows and generation of zonal flows via the Reynolds stress are explicitly demonstrated, and shown to be symmetric facets of a single nonlinear process. Novel nonlinear saturation mechanisms for zonal flows are discussed. In Chapter V, measurements of fluctuation bicoherence in the edge of the DIII-D tokamak are presented. It is shown that the bicoherence increases transiently before a L-H transition, and decays to its initial value after the barrier has formed. The increase in bicoherence is localized to the region where the transport barrier forms, and shows strong coupling between well
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Y; Watanabe, T; Nagao, A; Nakamura, K; Kikuchi, M; Aoki, T; Hiraki, N; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Mitarai, O
1982-02-01
Critical condition for current-driven instability excited in turbulently heated TRIAM-1 tokamak plasma is investigated experimentally. Resistive hump in loop voltage, plasma density fluctuation and rapid increase of electron temperature in a skin layer are simultaneously observed at the time when the electron drift velocity amounts to the critical drift velocity for low-frequency ion acoustic instability.
Self-consistent mean field forces in turbulent plasmas: Current and momentum relaxation
International Nuclear Information System (INIS)
Hegna, C.C.
1997-08-01
The properties of turbulent plasmas are described using the two-fluid equations. Under some modest assumptions, global constraints for the turbulent mean field forces that act on the ion and electron fluids are derived. These constraints imply a functional form for the parallel mean field forces in the Ohm's law and the momentum balance equation. These forms suggest that the fluctuations attempt to relax the plasma to a state where both the current and the bulk plasma momentum are aligned along the mean magnetic field with proportionality constants that are global constants. Observations of flow profile evolution during discrete dynamo activity in reversed field pinch experiments are interpreted
Radially sheared azimuthal flows and turbulent transport in a cylindrical helicon plasma device
International Nuclear Information System (INIS)
Tynan, G R; Burin, M J; Holland, C; Antar, G; Diamond, P H
2004-01-01
A radially sheared azimuthal flow is observed in a cylindrical helicon plasma device. The shear flow is roughly azimuthally symmetric and contains both time-stationary and slowly varying components. The turbulent radial particle flux is found to peak near the density gradient maximum and vanishes at the shear layer location. The shape of the radial plasma potential profile associated with the azimuthal E x B flow is predicted accurately by theory. The existence of the mean shear flow in a plasma with finite flow damping from ion-neutral collisions and no external momentum input implies the existence of radial angular momentum transport from the turbulent Reynolds-stress
Dewhurst, J.; Hnat, B.; Dudson, B.; Dendy, R. O.; Counsell, G. F.; Kirk, A.
2007-12-01
Almost all astrophysical and magnetically confined fusion plasmas are turbulent. Here, we examine ion saturation current (Isat) measurements of edge plasma turbulence for three MAST L-mode plasmas that differ primarily in their edge magnetic field configurations. First, absolute moments of the coarse grained data are examined to obtain accurate values of scaling exponents. The dual scaling behaviour is identified in all samples, with the temporal scale τ ≍ 40-60 μs separating the two regimes. Strong universality is then identified in the functional form of the probability density function (PDF) for Isat fluctuations, which is well approximated by the Fréchet distribution on temporal scales τ ≤ 40μs. For temporal scales τ > 40μs, the PDFs appear to converge to the Gumbel distribution, which has been previously identified as a universal feature of many other complex phenomena. The optimal fitting parameters k=1.15 for Fréchet and a=1.35 for Gumbel provide a simple quantitative characterisation of the full spectrum of fluctuations. We conclude that, to good approximation, the properties of the edge turbulence are independent of the edge magnetic field configuration.
Leckrone, David S.; Sugar, Jack
1993-01-01
or about work currently in progress. This resulted in a number of interesting exchanges, and served to facilitate the coordination of work to be done in the near term. Over the past 15 years we have witnessed the explosive growth of astrophysical spectroscopic observations in both the ultraviolet and infrared bands. Recently, with the launch of the Hubble Space Telescope, the precision and resolution of such data have reached remarkable levels, giving one the sense that the body of atomic data currently to be found in the literature lags far behind what is needed to adequately interpret the observations. Similarly, high temperature laboratory experiments in plasma physics, e.g. fusion energy and x-ray lasers, are demanding larger quantities of atomic data over a wide range of ionization states. Fortunately, the experimental and computational techniques of atomic physics have kept pace. One may cite, for example, the extraordinary precision inherent in recent laboratory work with laser-induced fluorescence spectroscopy and with Fourier transform spectrometers, and for data of highly-ionized atoms, with ion traps and tokamak plasmas. The major challenge is to nurture and support expanded activity in those sub-disciplines of atomic physics that apply such modern techniques to the production of extensive volumes of atomic data, and to reinvigorate such "old fashioned" subjects as the term analysis of new, more accurate laboratory spectra. This series of conferences has a very special character. It is not sponsored or supported by any particular institution, government organization or professional society. The meetings occur only because they serve the common scientific interests of a broad and diverse group of people from around the world. They have had the delightful effect of stimulating professional collaborations and friendships among astronomers, physicists, chemists, mathematicians, and others, who might not have initially realized that they shared so much in
Radio wave dissipation in turbulent auroral plasma during the precipitation of energetic electrons
International Nuclear Information System (INIS)
Mishin, E.V.; Luk'ianova, L.N.; Makarenko, S.F.; Atamaniuk, B.M.
1992-01-01
The results of the theoretical analysis of anomalous (collisionless) radio wave absorption in the turbulent auroral ionosphere during the intrusion of energetic electrons (i.e., in aurorae) are presented. The implications of the plasma turbulent layer (PTL) theory are used. It is shown that the dissipation of radio waves with frequencies much higher than the plasma frequency is caused by the nonlinear (combined) scattering in turbulent plasma of the PTL. In the auroral electrojet layer the principal dissipative process for the radio waves with frequencies close to the plasma frequency is O-Z transformation on the field-aligned, small-scale density fluctuations. The typical dissipation decrements are estimated. 26 refs
Investigation of small-scale tokamak plasma turbulence by correlative UHR backscattering diagnostics
International Nuclear Information System (INIS)
Gusakov, E Z; Gurchenko, A D; Altukhov, A B; Bulanin, V V; Esipov, L A; Kantor, M Yu; Kouprienko, D V; Lashkul, S I; Petrov, A V; Stepanov, A Yu
2006-01-01
Fine scale turbulence is considered nowadays as a possible candidate for the explanation of anomalous ion and electron energy transport in magnetized fusion plasmas. The unique correlative upper hybrid resonance backscattering (UHR BS) technique is applied at the FT-2 tokamak for investigation of density fluctuations excited in this turbulence. The measurements are carried out in Ohmic discharge at several values of plasma current and density and during current ramp up experiment. The moveable focusing antennas set have been used in experiments allowing probing out of equatorial plane. The radial wave number spectra of the small-scale component of tokamak turbulence are determined from the correlation data with high spatial resolution. Two small-scale modes possessing substantially different phase velocities are observed in plasma under conditions when the threshold for the electron temperature gradient mode excitation is overcome. The possibility of plasma poloidal velocity profile determination using the UHR BS signal is demonstrated
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
Scaling law in laboratory astrophysics
International Nuclear Information System (INIS)
Xia Jiangfan; Zhang Jie
2001-01-01
The use of state-of-the-art lasers makes it possible to produce, in the laboratory, the extreme conditions similar to those in astrophysical processes. The introduction of astrophysics-relevant ideas in laser-plasma interaction experiments is propitious to the understanding of astrophysical phenomena. However, the great difference between laser-produced plasma and astrophysical objects makes it awkward to model the latter by laser-plasma experiments. The author presents the physical reasons for modeling astrophysical plasmas by laser plasmas, connecting these two kinds of plasmas by scaling laws. This allows the creation of experimental test beds where observation and models can be quantitatively compared with laboratory data
International Nuclear Information System (INIS)
Plouhinec, Damien; Zucchini, Frederic; Loyen, Arnaud; Sol, David; Combes, Philippe; Grunenwald, Julien; Hammer, David A.
2014-01-01
A high current driver based on microsecond LTD technology has been used to perform laboratory plasma astrophysics studies using a conical wire array load coupled a 950 kA, 1.2-μs pulsed power generator. A plasma jet is generated as a result of the on-axis shock formed by the ablation streams from the wires of a conical tungsten wire-array load together with conservation of the axial momentum. The aim of this paper is to produce a scaled-down laboratory simulation of astrophysical Herbig-Haro plasma jets occurring during star formation along with some of their interactions with the interstellar medium, such as a cross wind. Due to the relatively long duration of the current pulse delivered by the driver, the jet develops on a 2-μs timescale and grows up to 100 mm. A time-resolved laser interferometer has been fielded to measure the plasma areal electron density as a function of time in and around the plasma jets. The setup consists of a continuous diode-pumped solid state laser (5 W-532 nm), a Mach-Zehnder interferometer and fast gated visible multi frame camera. (authors)
International Nuclear Information System (INIS)
Miyato, Naoaki; Kishimoto, Yasuaki; Li, Jiquan
2004-08-01
Global structure of zonal flows driven by ion temperature gradient driven turbulence in tokamak plasmas is investigated using a global electromagnetic Landau fluid code. Characteristics of the coupled system of the zonal flows and the turbulence change with the safety factor q. In a low q region stationary zonal flows are excited and suppress the turbulence effectively. Coupling between zonal flows and poloidally asymmetric pressure perturbations via a geodesic curvature makes the zonal flows oscillatory in a high q region. Also we identify energy transfer from the zonal flows to the turbulence via the poloidally asymmetric pressure perturbations in the high q region. Therefore in the high q region the zonal flows cannot quench the turbulent transport completely. (author)
Ballistic propagation of turbulence front in tokamak edge plasmas
International Nuclear Information System (INIS)
Sugita, Satoru; Itoh, Kimitaka; Itoh, Sanae-I; Yagi, Masatoshi; Fuhr, Guillaume; Beyer, Peter; Benkadda, Sadruddin
2012-01-01
The flux-driven nonlinear simulation of resistive ballooning mode turbulence with tokamak edge geometry is performed to study the non-steady component in the edge turbulence. The large-scale and dynamical events in transport are investigated in a situation where the mean flow is suppressed. Two types of dynamics are observed. One is the radial propagation of the pulse of pressure gradient, the other is the appearance/disappearance of radially elongated global structure of turbulent heat flux. The ballistic propagation is observed in the pulse of pressure gradient, which is associated with the front of turbulent heat flux. We focus on this ballistic propagation phenomenon. Both of the bump of pressure gradient and the front of heat flux propagate inward and outward direction. It is confirmed that the strong fluctuation propagates with the pulse front. It is observed that the number of pulses going outward is close to those going inward. This ballistic phenomenon does not contradict to the turbulence spreading theory. Statistical characteristics of the ballistic propagation of pulses are evaluated and compared with scaling laws which is given by the turbulence spreading theory. It is found that they give qualitatively good agreement. (paper)
One possible method of mathematical modeling of turbulent transport processes in plasma
International Nuclear Information System (INIS)
Skvortsova, Nina N.; Batanov, German M.; Petrov, Alexander E.; Pshenichnikov, Anton A.; Sarksyan, Karen A.; Kharchev, Nikolay K.; Bening, Vladimir E.; Korolev, Victor Yu.
2003-01-01
It is proposed to use the mathematical modeling of the increments of fluctuating plasma variables to analyzing the probability characteristics of turbulent transport processes in plasma. It is shown that, in plasma of the L-2M stellarator and the TAU-1 linear device, the increments of the process of local fluctuating particle flux are stochastic in nature and their distribution is a scale mixture of Gaussians. (author)
On current fluctuations in near-earth space plasma with lower-hybrid-drift turbulence
International Nuclear Information System (INIS)
Meister, C.V.
1993-01-01
Electron and ion current fluctuations caused by lower-hybrid-drift turbulence are estimated within nonlinear theory for the plasma of the ionospheric F-layer, as well as for the plasma mantle and the plasma sheet boundary layer of the tail of the earth's magnetosphere. They are found to be of the order of 10 -14 - 10 -11 A/m 2 and 10 -13 - 10 -9 A/m 2 , respectively. (orig.)
International Nuclear Information System (INIS)
Wharton, C.B.
1977-01-01
A multi-kilovolt, moderate density plasma was generated in a magnetic mirror confinement system by two methods: turbulent heating and relativistic electron beam. Extensive diagnostic development permitted the measurement of important plasma characteristics, leading to interesting and novel conclusions regarding heating and loss mechanisms. Electron and ion heating mechanisms were categorized, and parameter studies made to establish ranges of importance. Nonthermal ion and electron energy distributions were measured. Beam propagation and energy deposition studies yielded the spatial dependence of plasma heating
International Nuclear Information System (INIS)
Kolesnikov, R.A.; Krommes, J.A.
2004-01-01
The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with ten degrees of freedom. Study of a four-dimensional center manifold predicts a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows and establishes the exact value of that shift in terms of physical parameters. For insight into fundamental physical mechanisms, the method provides a viable alternative to large simulations
International Nuclear Information System (INIS)
Colin-Bellot, Clothilde
2015-01-01
The possibility to produce power by using magnetically confined fusion is a scientific and technological challenge. The perspective of ITER conveys strong signals to intensify modeling effort on magnetized fusion plasmas. The success of the fusion operation is conditioned by the quality of plasma confinement in the core of the reactor and by the control of plasma exhaust on the wall. Both phenomena are related to turbulent cross-field transport that is at the heart of the notion of magnetic confinement studies, particle and heat losses. The study of edge phenomena is therefore complicated by a particularly complex magnetic geometry.This calls for an improvement of our capacity to develop numerical tools able to reproduce turbulent transport properties reliable to predict particle and energy fluxes on the plasma facing components. This thesis introduces the TOKAM3X fluid model to simulate edge plasma turbulence. A special focus is made on the code Verification and the Validation. It is a necessary step before using a code as a predictive tool. Then new insights on physical properties of the edge plasma turbulence are explored. In particular, the poloidal asymmetries induced by turbulence and observed experimentally in the Low-Field-Side of the devices are investigated in details. Great care is dedicated to the reproduction of the MISTRAL base case which consists in changing the magnetic configuration and observing the impact on parallel flows in the poloidal plane. The simulations recover experimental measurements and provide new insights on the effect of the plasma-wall contact position location on the turbulent features, which were not accessible in experiments. (author) [fr
Turbulence and transport characteristics of a barrier in a toroidal plasma
International Nuclear Information System (INIS)
Fujisawa, A; Shimizu, A; Nakano, H; Ohsima, S; Itoh, K; Iguchi, H; Yoshimura, Y; Minami, T; Nagaoka, K; Takahashi, C; Kojima, M; Nishimura, S; Isobe, M; Suzuki, C; Akiyama, T; Nagashima, Y; Ida, K; Toi, K; Ido, T; Itoh, S-I; Matsuoka, K; Okamura, S; Diamond, P H
2006-01-01
Turbulence and zonal flow at a transport barrier are studied with twin heavy ion beam probes in a toroidal helical plasma. A wavelet analysis is used to extract turbulence properties, e.g. spectra of both density and potential fluctuations, the coherence and the phase between them and the dispersion relation. Particle transport estimated from the fundamental characteristics is found to clearly rise with their intermittent activities after the barrier is broken down. Time-dependent analysis reveals that the intermittency of turbulence is correlated with the evolution of the stationary zonal flow
Turbulence and transport characteristics of a barrier in a toroidal plasma
International Nuclear Information System (INIS)
Fujisawa, A.; Shimizu, A.; Nakano, H.
2005-10-01
Turbulence and zonal flow at a transport barrier are studied with twin heavy ion beam probes in a toroidal helical plasma. A wavelet analysis is used to extract turbulence properties, e.g., spectra of both density and potential fluctuations, coherence and phase between them, and the dispersion relation. Particle transport estimated from the fundamental characteristics is found to clearly rise with their intermittent activities after the barrier is broken down. The time-dependent analysis reveals that intermittency of turbulence is correlated with evolution of stationary zonal flow. (author)
The role of the sheath in magnetized plasma turbulence and flows
International Nuclear Information System (INIS)
Loizu, J.
2013-01-01
Controlled nuclear fusion could provide our society with a clean, safe, and virtually inexhaustible source of electric power production. The tokamak has proven to be capable of producing large amounts of fusion reactions by conning magnetically the fusion fuel at sufficiently high density and temperature, thus in the plasma state. Because of turbulence, however, high temperature plasma reaches the outermost region of the tokamak, the Scrape-Off Layer (SOL), which features open magnetic field lines that channel particles and heat into a dedicated region of the vacuum vessel. The plasma dynamics in the SOL is crucial in determining the performance of tokamak devices, and constitutes one of the greatest uncertainties in the success of the fusion program. In the last few years, the development of numerical codes based on reduced fluid models has provided a tool to study turbulence in open field line configurations. In particular, the GBS (Global Braginskii Solver) code has been developed at CRPP and is used to perform global, three-dimensional, full-n, flux-driven simulations of plasma turbulence in open field lines. Reaching predictive capabilities is an outstanding challenge that involves a proper treatment of the plasma-wall interactions at the end of the field lines, to well describe the particle and energy losses. This involves the study of plasma sheaths, namely the layers forming at the interface between plasmas and solid surfaces, where the drift and quasi neutrality approximations break down. This is an investigation of general interest, as sheaths are present in all laboratory plasmas. This thesis presents progress in the understanding of plasma sheaths and their coupling with the turbulence in the main plasma. A kinetic code is developed to study the magnetized plasma-wall transition region and derive a complete set of analytical boundary conditions that supply the sheath physics to fluid codes. These boundary conditions are implemented in the GBS code and
Turbulence simulations of blob formation and radial propagation in toroidally magnetized plasmas
DEFF Research Database (Denmark)
Garcia, O.E.; Naulin, V.; Nielsen, A.H.
2006-01-01
the presence of long- range correlations in the particle density fluctuations. Finally, conditional statistics of the particle flux demonstrates the intermittency of the turbulent plasma transport and the quasi-periodic apparency of blob structures due to bursting in the global turbulence level....... of particles and heat, which is coupled to a scrape-off layer with linear damping terms for all dependent variables corresponding to transport along open magnetic field lines. The formation of blob structures is related to profile variations caused by bursting in the global turbulence level, which is due...... to a dynamical regulation by self- sustained differential rotation of the plasma layer. Radial propagation of the blob structures follows from a vertical charge polarization due to magnetic guiding centre drifts in the toroidally magnetized plasma. Statistical analysis of the particle density, radial electric...
Using Field-Particle Correlations to Diagnose the Collisionless Damping of Plasma Turbulence
Howes, Gregory; Klein, Kristropher
2016-10-01
Plasma turbulence occurs ubiquitously throughout the heliosphere, yet our understanding of how turbulence governs energy transport and plasma heating remains incomplete, constituting a grand challenge problem in heliophysics. In weakly collisional heliospheric plasmas, such as the solar corona and solar wind, damping of the turbulent fluctuations occurs due to collisionless interactions between the electromagnetic fields and the individual plasma particles. A particular challenge in diagnosing this energy transfer is that spacecraft measurements are typically limited to a single point in space. Here we present an innovative field-particle correlation technique that can be used with single-point measurements to estimate the energization of the plasma particles due to the damping of the electromagnetic fields, providing vital new information about this how energy transfer is distributed as a function of particle velocity. This technique has the promise to transform our ability to diagnose the kinetic plasma physical mechanisms responsible for not only the damping of turbulence, but also the energy conversion in both collisionless magnetic reconnection and particle acceleration. The work has been supported by NSF CAREER Award AGS-1054061, NSF AGS-1331355, and DOE DE-SC0014599.
Turbulent transport and shear at the E x B velocity in wall plasma of the TF-2 tokamak
International Nuclear Information System (INIS)
Budaev, V.P.
1999-01-01
Turbulence of near-the-wall plasma and potentialities of affecting the turbulence and periphery transport of the TF-2 tokamak by inducing radial electric fields and ergodization of periphery magnetic structure have been investigated, the results are presented. Essential role of the E x B velocity shear in suppression of the turbulence and turbulent transport in periphery has been pointed out. Decrease in transport losses stemming from effect of radial electric fields is brought about suppression of turbulence amplitude, decrease in correlations and decrease in the width of the wave numbers spectrum. Profiles of plasma density, electron temperature, turbulence level, electric fields over entire periphery of discharge change as a result. Ergodization of magnetic structure also results in the change of properties of periphery turbulence and turbulent transport [ru
International Nuclear Information System (INIS)
Uckan, T.; Richards, B.; Bengtson, R.D.
1993-01-01
The edge fluctuations play a critical role in the overall tokamak confinement. Experiments on TEXT show that electrostatic fluctuations in the edge plasma are the dominant mechanism for energy and particle transport. The basic mechanisms responsible for the edge turbulence are the subject of ongoing research in fusion devices. To understand the driving forces responsible for edge fluctuations, a novel experiment is underway on TEXT to actively modify the turbulence at the plasma edge by launching waves using electrostatic probes in the shadow of the limiter. This technique permits active probing of the spectral properties of the edge turbulence. This new approach to the study of edge fluctuations can provide more insight into the basic dynamics of the turbulence and may, in turn, enable detailed comparison with the theory. These experiments, which rely on the use of oscillating electric fields at the plasma edge, complement edge fluctuation control studies that are presently limited to the use of applied dc biasing to influence the edge electric field profile. These experiments have been extended to control of the edge plasma fluctuation level, using feedback to explore its effects on the edge turbulence characteristics as well as on confinement. (author) 8 refs., 7 figs
International Nuclear Information System (INIS)
Uckan, T.; Carreras, B.A.; Richards, B.; Bengtson, R.D.; Crockett, D.B.; Gentle, K.W.; Li, G.X.; Hurwitz, P.D.; Rowan, W.L.; Tsui, H.Y.W.; Wootton, A.J.
1993-01-01
The edge fluctuations play a critical role in the overall tokamak confinement. Experiments on TEXT show that electrostatic fluctuations in the edge plasma are the dominant mechanism for energy and particle transport. The basic mechanisms responsible for the edge turbulence are the subject of ongoing research in fusion devices. To understand the driving forces responsible for edge fluctuations, a novel experiment is underway on TEXT to actively modify the turbulence at the plasma edge by launching waves using electrostatic probes in the shadow of the limiter. This technique permits active probing of the spectral properties of the edge turbulence. This new approach to the study of edge fluctuations can provide more insight into the basic dynamics of the turbulence and may, in turn, enable detailed comparison with the theory. These experiments, which rely on the use of oscillating electric fields at the plasma edge, complement edge fluctuation control studies that are presently limited to the use of applied dc biasing to influence the edge electric field profile. These experiments have been extended to control of the edge plasma fluctuation level, using feedback to explore its effects on the edge turbulence characteristics as well as on confinement
Investigation of the density turbulence in ohmic ASDEX plasmas
International Nuclear Information System (INIS)
Dodel, G.; Holtzhauer, E.
1989-01-01
A 119 μm homodyne laser scattering experiment is used on ASDEX to investigate wavenumber and frequency of the density fluctuations occuring in the different operational conditions of the machine. The changes of the density turbulence caused by additional heating are of primary interest with regard to a possible correlation to anomalous transport. Therefore, in the current experiment particular emphasis is placed on these investigations. On the other hand it is the ohmic phase which constitutes the least complicated physical situation in a tokamak and is therefore best suited to reveal the basic physical nature of the density turbulence. In the following we present a summary of our findings in the ohmic phase and make an attempt to compare these findings with what would be expected from the simplest model of density-gradient-driven driftwave turbulence saturated at the mixing-length level. (author) 3 refs., 4 figs
Investigation of the density turbulence in ohmic ASDEX plasmas
Energy Technology Data Exchange (ETDEWEB)
Dodel, G; Holtzhauer, E [Stuttgart Univ. (Germany, F.R.). Inst. fuer Plasmaforschung; Giannone, L.; Niedermeyer, H [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany, F.R.)
1989-01-01
A 119 {mu}m homodyne laser scattering experiment is used on ASDEX to investigate wavenumber and frequency of the density fluctuations occuring in the different operational conditions of the machine. The changes of the density turbulence caused by additional heating are of primary interest with regard to a possible correlation to anomalous transport. Therefore, in the current experiment particular emphasis is placed on these investigations. On the other hand it is the ohmic phase which constitutes the least complicated physical situation in a tokamak and is therefore best suited to reveal the basic physical nature of the density turbulence. In the following we present a summary of our findings in the ohmic phase and make an attempt to compare these findings with what would be expected from the simplest model of density-gradient-driven driftwave turbulence saturated at the mixing-length level. (author) 3 refs., 4 figs.
Statistical description of turbulent transport for flux driven toroidal plasmas
Anderson, J.; Imadera, K.; Kishimoto, Y.; Li, J. Q.; Nordman, H.
2017-06-01
A novel methodology to analyze non-Gaussian probability distribution functions (PDFs) of intermittent turbulent transport in global full-f gyrokinetic simulations is presented. In this work, the auto-regressive integrated moving average (ARIMA) model is applied to time series data of intermittent turbulent heat transport to separate noise and oscillatory trends, allowing for the extraction of non-Gaussian features of the PDFs. It was shown that non-Gaussian tails of the PDFs from first principles based gyrokinetic simulations agree with an analytical estimation based on a two fluid model.
Gaussian free turbulence: structures and relaxation in plasma models
International Nuclear Information System (INIS)
Gruzinov, A.V.
1993-01-01
Free-turbulent relaxation in two-dimensional MHD, the degenerate Hasegawa-Mima equation and a two-dimensional microtearing model are studied. The Gibbs distributions of these three systems can be completely analyzed, due to the special structure of their invariants and due to the existence of ultraviolet catastrophe. The free-turbulent field is seen to be a sum of a certain coherent structure (statistical attractor) and Gaussian random noise. Two-dimensional current layers are shown to be statistical attractors in 2D MHD. (author)
Turbulence in Wendelstein 7-AS plasmas measured by collective light scattering
International Nuclear Information System (INIS)
Basse, Nils Plesner
2002-08-01
This Ph.D. thesis contains theoretical and experimental work on plasma turbulence measurements using collective light scattering. The motivation for measuring turbulence in hot fusion plasmas is, along with the method used and results obtained, the subject of chapter 1. The theoretical part is divided into three chapters. Chapter 2 contains a full analytical derivation of the expected dependency of the detected signal on plasma parameters. Thereafter, spatial resolution of the measurements using different methods is treated in chapter 3. Finally, the spectral analysis tools used later in the thesis are described and illustrated in chapter 4. The experimental part is divided into four chapters. In chapter 5 transport concepts relevant to the thesis are outlined. Main parameters of the Wendelstein 7-AS (W7-AS) stellarator in which measurements were made are collected in chapter 6. The setup used to study fluctuations in the electron density of W7-AS plasmas is covered in chapter 7. This localised turbulence scattering (LOTUS) diagnostic is based on a CO 2 laser radiating at a wavelength of 10.59 μm. Fast, heterodyne, dual volume detection at variable wavenumbers between 14 and 62 cm -1 is performed. The central chapter of the thesis, chapter 8, contains an analysis of the measured density fluctuations before, during and after several confinement transition types. The aim was to achieve a better understanding of the connection between turbulence and the confinement quality of the plasma. Conclusions and suggestions for further work are summarised in chapter 9. (au)
Vortices, Reconnection and Turbulence in High Electron-Beta Plasmas
International Nuclear Information System (INIS)
Stenzel, R. L.
2004-01-01
Plasmas in which the kinetic energy exceeds the magnetic energy by a significant factor are common in space and in the laboratory. Such plasmas can convect magnetic fields and create null points in whose vicinity first the ions become unmagnetized, then the electrons. This project focuses on the detailed study of the transition regime of these plasmas
Energy Technology Data Exchange (ETDEWEB)
Payan, J
1994-05-01
After a review of turbulence and transport phenomena in tokamak plasmas and the radial electric field shear effect in various tokamaks, experimental measurements obtained at Tore Supra by the means of the ALTAIR plasma diagnostic technique, are presented. Electronic drift waves destabilization mechanisms, which are the main features that could describe the experimentally observed microturbulence, are then examined. The effect of a radial electric field shear on electronic drift waves is then introduced, and results with ohmic heating are studied together with relations between turbulence and transport. The possible existence of ionic waves is rejected, and a spectral frequency modelization is presented, based on the existence of an electric field sheared radial profile. The position of the inversion point of this field is calculated for different values of the mean density and the plasma current, and the modelization is applied to the TEXT tokamak. The radial electric field at Tore Supra is then estimated. The effect of the ergodic divertor on turbulence and abnormal transport is then described and the density fluctuation radial profile in presence of the ergodic divertor is modelled. 80 figs., 120 refs.
International Nuclear Information System (INIS)
Arnould, M.; Takahashi, K.
1999-01-01
Nuclear astrophysics is that branch of astrophysics which helps understanding of the Universe, or at least some of its many faces, through the knowledge of the microcosm of the atomic nucleus. It attempts to find as many nuclear physics imprints as possible in the macrocosm, and to decipher what those messages are telling us about the varied constituent objects in the Universe at present and in the past. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress made in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other subfields of physics and chemistry have also contributed to that advance. Notwithstanding the accomplishment, many long-standing problems remain to be solved, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endangering old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experimental and theoretical components. On top of the fact that large varieties of nuclei have to be dealt with, these nuclei are immersed in highly unusual environments which may have a significant impact on their static properties, the diversity of their transmutation modes, and on the probabilities of these modes. In order to have a chance of solving some of the problems nuclear astrophysics is facing, the astrophysicists and nuclear physicists are obviously bound to put their competence in common, and have sometimes to benefit from the help of other fields of physics, like particle physics, plasma physics or solid-state physics. Given the highly varied and complex aspects, we pick here some specific nuclear
Magnetohydrodynamic turbulence
Biskamp, Dieter
2003-01-01
This book presents an introduction to, and modern account of, magnetohydrodynamic (MHD) turbulence, an active field both in general turbulence theory and in various areas of astrophysics. The book starts by introducing the MHD equations, certain useful approximations and the transition to turbulence. The second part of the book covers incompressible MHD turbulence, the macroscopic aspects connected with the different self-organization processes, the phenomenology of the turbulence spectra, two-point closure theory, and intermittency. The third considers two-dimensional turbulence and compressi
On the interplay between turbulence and poloidal flows in plasmas
International Nuclear Information System (INIS)
Hidalgo, C.; Pedrosa, M.A.; Garcia-Cortes, I.
1999-01-01
The radial profile of Reynolds stress has been measured in the plasma boundary region of tokamaks and stellarator plasmas. The electrostatic Reynolds stress (proportional to r E-tilde θ >) shows a radial gradient close to the velocity shear layer location, showing that this mechanism can drive significant poloidal flows in the plasma boundary region of fusion plasmas. The generation of poloidal flows by Ion Bernstein Wave (IBW) is under investigation in toroidal plasmas. The radial gradient in the Reynolds stress increases with RF power and radial electric fields are modified at the RF resonance layer. (author)
International Nuclear Information System (INIS)
Bruma, C.; Cuperman, S.C.; Komoshvili, K.
2002-01-01
Turbulent transport of heat and particles is the principle obstacle confronting controlled fusion today. Thus, we investigate quantitatively the suppression of turbulence and formation of transport barriers in spherical tokamaks by sheared electric fields generated by externally driven radio-frequency (RF) waves, in the frequency range o)A n o] < o)ci (e)A and o)ci are the Alfven and ion cyclotron frequencies). This investigation consists of the solution of the full-wave equation for a spherical tokamak in the presence of externally driven fast waves and the evaluation of the power dissipation by the mode-converted Alfven waves. This in turn, provides a radial flow shear responsible for the suppression of plasma turbulence. Thus, a strongly non-linear equation for the radial sheared electric field is solved, the turbulent transport suppression rate is evaluated and compared with the ion temperature gradient (ITG) instability increment. For illustration, the case of START-like device (Sykes 2000) is treated. Thus, (i) the exact D-shape cross-section is considered; (ii) additional kinetic (including Landau damping) and particle trapping effects are added to the resistive two-fluid dielectric tensor operator; (iii) a finite extension antenna located on the low-field-side of the plasma is considered; (iv) a rigorous 2.5 finite elements numerical code (Sewell 1993) is used; and (v) the turbulence and transport barrier generated as a result of wave-plasma interaction is evaluated
International Nuclear Information System (INIS)
Assis, A.S. de; Silva, C.E. da; Dias Tavares, A. Jr.; Leubner, C.; Kuhn, S.
2001-07-01
We have studied the formation of auroral electron fluxes induced by a field aligned dc electric field in the presence of plasma wave turbulence. The effect of the wave spectral shape on the production rate has been considered. This acceleration scheme was modelled by the weak turbulence approach. The electron fluxes for narrow and broad band spectra, in the case of low and high phase velocities, are calculated, and it is found as a general feature, for all modes, that their enhancement is larger the weaker the background electric field, while for its absolute enhancement it is just the opposite. The electron fluxes are enhanced by many orders of magnitude over that without turbulence. It is also shown that the modes enhance the runaway production rate via their Cherenkov dissipation, and that a synergetic effect occurs in the enhancement when more than one mode turbulent is present in the acceleration region. (author)
International Nuclear Information System (INIS)
Hahm, T.S.; Diamond, P.H.; Terry, P.W.; Garcia, L.; Carreras, B.A.
1986-03-01
The role of impurity dynamics in resistivity gradient driven turbulence is investigated in the context of modeling tokamak edge plasma phenomena. The effects of impurity concentration fluctuations and gradients on the linear behavior of rippling instabilities and on the nonlinear evolution and saturation of resistivity gradient driven turbulence are studied both analytically and computationally. At saturation, fluctuation levels and particle and thermal diffusivities are calculated. In particular, the mean-square turbulent radial velocity is given by 2 > = (E 0 L/sub s/B/sub z/) 2 (L/sub/eta/ -1 + L/sub z -1 ) 2 . Thus, edged peaked impurity concentrations tend to enhance the turbulence, while axially peaked concentrations tend to quench it. The theoretical predictions are in semi-quantitative agreement with experimental results from the TEXT, Caltech, and Tosca tokamaks. Finally, a theory of the density clamp observed during CO-NBI on the ISX-B tokamak is proposed
Czech Academy of Sciences Publication Activity Database
Cerri, S.S.; Franci, L.; Califano, F.; Landi, S.; Hellinger, Petr
2017-01-01
Roč. 83, č. 2 (2017), 705830202/1-705830202/19 ISSN 0022-3778 R&D Projects: GA ČR GA15-10057S Institutional support: RVO:67985815 Keywords : astrophysical plasmas * magnetized plasmas * space plasma physics Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.160, year: 2016
The calculation of turbulence phenomena in plasma focus dynamics using REDUCE
International Nuclear Information System (INIS)
Hayd, A.; Maurer, M.; Meinke, P.; Kaeppeler, H.J.
1982-05-01
Based on previous calculations of the development of highly turbulent plasma states resulting from m=0 instabilities and the application to the turbulent development in the late stage of a plasma focus experiment, using REDUE, the treatment of plasma focus dynamics is extended to the compression stage and 'intermediate' stage between maximum density and m = o onset. For this, a two-fluid model of the magneto-fluid dynamic equations is employed. The non-linear development is again treated in ω, k-space and transformed back into r, t-space to obtain local dynamic variables as functions of time. The calculation is applied to the Stuttgart plasma focus experiment POSEIDON. It is shown that for relatively high pinch currents, neutron production also appears in the 'intermediate' phase, the life-time of which increases with increasing pinch current. (orig.)
Recent Progress on the magnetic turbulence experiment at the Bryn Mawr Plasma Laboratory
Schaffner, D. A.; Cartagena-Sanchez, C. A.; Johnson, H. K.; Fahim, L. E.; Fiedler-Kawaguchi, C.; Douglas-Mann, E.
2017-10-01
Recent progress is reported on the construction, implementation and testing of the magnetic turbulence experiment at the Bryn Mawr Plasma Laboratory (BMPL). The experiment at the BMPL consists of an ( 300 μs) long coaxial plasma gun discharge that injects magnetic helicity into a flux-conserving chamber in a process akin to sustained slow-formation of spheromaks. A 24cm by 2m cylindrical chamber has been constructed with a high density axial port array to enable detailed simultaneous spatial measurements of magnetic and plasma fluctuations. Careful positioning of the magnetic structure produced by the three separately pulsed coils (one internal, two external) are preformed to optimize for continuous injection of turbulent magnetized plasma. High frequency calibration of magnetic probes is also underway using a power amplifier.
Experimental observation of electron-temperature-gradient turbulence in a laboratory plasma.
Mattoo, S K; Singh, S K; Awasthi, L M; Singh, R; Kaw, P K
2012-06-22
We report the observation of electron-temperature-gradient (ETG) driven turbulence in the laboratory plasma of a large volume plasma device. The removal of unutilized primary ionizing and nonthermal electrons from uniform density plasma and the imposition and control of the gradient in the electron temperature (T[Symbol: see text] T(e)) are all achieved by placing a large (2 m diameter) magnetic electron energy filter in the middle of the device. In the dressed plasma, the observed ETG turbulence in the lower hybrid range of frequencies ν = (1-80 kHz) is characterized by a broadband with a power law. The mean wave number k perpendicular ρ(e) = (0.1-0.2) satisfies the condition k perpendicular ρ(e) ≤ 1, where ρ(e) is the electron Larmor radius.
International Nuclear Information System (INIS)
Angelino, P; Bottino, A; Hatzky, R; Jolliet, S; Sauter, O; Tran, T M; Villard, L
2006-01-01
The mutual interactions of ion temperature gradient (ITG) driven modes, zonal flows and geodesic acoustic modes (GAM) in tokamak plasmas are investigated using a global nonlinear gyrokinetic formulation with totally unconstrained evolution of temperature gradient and profile. A series of numerical simulations with the same initial temperature and density profile specifications is performed using a sequence of ideal MHD equilibria differing only in the value of the total plasma current, in particular with identical magnetic shear profiles and shapes of magnetic surfaces. On top of a bursty or quasi-steady state behaviour the zonal flows oscillate at the GAM frequency. The amplitude of these oscillations increases with the value of the safety factor q, resulting in a less effective suppression of ITG turbulence by zonal flows at a lower plasma current. The turbulence-driven volume-averaged radial heat transport is found to scale inversely with the total plasma current
Edge turbulence effect on ultra-fast swept reflectometry core measurements in tokamak plasmas
Zadvitskiy, G. V.; Heuraux, S.; Lechte, C.; Hacquin, S.; Sabot, R.
2018-02-01
Ultra-fast frequency-swept reflectometry (UFSR) enables one to provide information about the turbulence radial wave-number spectrum and perturbation amplitude with good spatial and temporal resolutions. However, a data interpretation of USFR is quiet tricky. An iterative algorithm to solve this inverse problem was used in past works, Gerbaud (2006 Rev. Sci. Instrum. 77 10E928). For a direct solution, a fast 1D Helmholtz solver was used. Two-dimensional effects are strong and should be taken into account during data interpretation. As 2D full-wave codes are still too time consuming for systematic application, fast 2D approaches based on the Born approximation are of prime interest. Such methods gives good results in the case of small turbulence levels. However in tokamak plasmas, edge turbulence is usually very strong and can distort and broaden the probing beam Sysoeva et al (2015 Nucl. Fusion 55 033016). It was shown that this can change reflectometer phase response from the plasma core. Comparison between 2D full wave computation and the simplified Born approximation was done. The approximated method can provide a right spectral shape, but it is unable to describe a change of the spectral amplitude with an edge turbulence level. Computation for the O-mode wave with the linear density profile in the slab geometry and for realistic Tore-Supra density profile, based on the experimental data turbulence amplitude and spectrum, were performed to investigate the role of strong edge turbulence. It is shown that the spectral peak in the signal amplitude variation spectrum which rises with edge turbulence can be a signature of strong edge turbulence. Moreover, computations for misaligned receiving and emitting antennas were performed. It was found that the signal amplitude variation peak changes its position with a receiving antenna poloidal displacement.
Rosato, J.; Capes, H.; Catoire, F.; Kadomtsev, M. B.; Levashova, M. G.; Lisitsa, V. S.; Marandet, Y.; Rosmej, F. B.; Stamm, R.
2011-08-01
In lithium-wall-conditioned tokamaks, the line radiation due to the intrinsic impurities (Li/Li+/Li++) plays a significant role on the power balance. Calculations of the radiation losses are usually performed using a stationary collisional-radiative model, assuming constant values for the plasma parameters (Ne, Te,…). Such an approach is not suitable for turbulent plasmas where the various parameters are time-dependent. This is critical especially for the edge region, where the fluctuation rates can reach several tens of percents [e.g. J.A. Boedo, J. Nucl. Mater. 390-391 (2009) 29-37]. In this work, the role of turbulence on the radiated power is investigated with a statistical formalism. A special emphasis is devoted to the role of temperature fluctuations, successively for low-frequency fluctuations and in the general case where the characteristic turbulence frequencies can be comparable to the collisional and radiative rates.
Arc Voltage Fluctuation in DC Laminar and Turbulent Plasma Jets Generation
International Nuclear Information System (INIS)
Pan Wenxia; Meng Xian; Wu Chengkang
2006-01-01
Arc voltage fluctuations in a direct current (DC) non-transferred arc plasma generator are experimentally studied, in generating a jet in the laminar, transitional and turbulent regimes. The study is with a view toward elucidating the mechanism of the fluctuations and their relationship with the generating parameters, arc root movement and flow regimes. Results indicate that the existence of a 300 Hz alternating current (AC) component in the power supply ripples does not cause the transition of the laminar plasma jet into a turbulent state. There exists a high frequency fluctuation at 4 kHz in the turbulent jet regime. It may be related to the rapid movement of the anode attachment point of the arc
Particle dynamics in the rmp ergodic layer under the influence of edge plasma turbulence
Czech Academy of Sciences Publication Activity Database
Kurian, M.; Krlín, Ladislav; Cahyna, Pavel; Pánek, Radomír
2013-01-01
Roč. 53, č. 4 (2013), s. 359-364 ISSN 1210-2709 R&D Projects: GA AV ČR IAA100430502; GA ČR GA202/07/0044; GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : resonant-magnetic perturbation * plasma turbulence * non-linear dynamics Subject RIV: BL - Plasma and Gas Discharge Physics http://ojs.cvut.cz/ojs/index.php/ap/article/view/1831/1663
Global full-f gyrokinetic simulations of plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Grandgirard, V [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Sarazin, Y [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Angelino, P [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Bottino, A [Max Plank Institut fr Plasmaphysik, IPP-EURATOM AssociationGarching (Germany); Crouseilles, N [IRMA, Universite Louis Pasteur, 7, rue Rene Descartes, 67084 Strasbourg Cedex (France); Darmet, G [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Dif-Pradalier, G [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Garbet, X [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Ghendrih, Ph [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Jolliet, S [CRPP, Association Euratom-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Latu, G [LaBRI, 341 Cours Liberation, 33405 Talence Cedex (France); Sonnendruecker, E [IRMA, Universite Louis Pasteur, 7, rue Rene Descartes, 67084 Strasbourg Cedex (France); Villard, L [CRPP, Association Euratom-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland)
2007-12-15
Critical physical issues can be specifically tackled with the global full-f gyrokinetic code GYSELA. Three main results are presented. First, the self-consistent treatment of equilibrium and fluctuations highlights the competition between two compensation mechanisms for the curvature driven vertical charge separation, namely, parallel flow and polarization. The impact of the latter on the turbulent transport is discussed. In the non-linear regime, the benchmark with the Particle-In-Cell code ORB5 looks satisfactory. Second, the transport scaling with {rho}{sub *} is found to depend both on {rho}{sub *} itself and on the distance to the linear threshold. Finally, a statistical steady-state turbulent regime is achieved in a reduced version of GYSELA by prescribing a constant heat source.
Global full-f gyrokinetic simulations of plasma turbulence
International Nuclear Information System (INIS)
Grandgirard, V; Sarazin, Y; Angelino, P; Bottino, A; Crouseilles, N; Darmet, G; Dif-Pradalier, G; Garbet, X; Ghendrih, Ph; Jolliet, S; Latu, G; Sonnendruecker, E; Villard, L
2007-01-01
Critical physical issues can be specifically tackled with the global full-f gyrokinetic code GYSELA. Three main results are presented. First, the self-consistent treatment of equilibrium and fluctuations highlights the competition between two compensation mechanisms for the curvature driven vertical charge separation, namely, parallel flow and polarization. The impact of the latter on the turbulent transport is discussed. In the non-linear regime, the benchmark with the Particle-In-Cell code ORB5 looks satisfactory. Second, the transport scaling with ρ * is found to depend both on ρ * itself and on the distance to the linear threshold. Finally, a statistical steady-state turbulent regime is achieved in a reduced version of GYSELA by prescribing a constant heat source
A diagrammatic approach to the theory of clumps in turbulent plasmas
International Nuclear Information System (INIS)
Balescu, R.; Misguich, J.H.
1983-05-01
It is shown that much insight is gained by the use of a diagrammatic method in the analysis and classification of both the one-particle fluctuations and the two-particle correlations in a turbulence Vlasov plasma. The various types of renormalization are discussed. The kinetic equation for the average background distribution function is discussed in some detail
Simulations of edge and scrape off layer turbulence in mega ampere spherical tokamak plasmas
DEFF Research Database (Denmark)
Militello, F; Fundamenski, W; Naulin, Volker
2012-01-01
The L-mode interchange turbulence in the edge and scrape-off-layer (SOL) of the tight aspect ratio tokamak MAST is investigated numerically. The dynamics of the boundary plasma are studied using the 2D drift-fluid code ESEL, which has previously shown good agreement with large aspect ratio machin...
International Nuclear Information System (INIS)
1984-01-01
This volume represents the Proceedings of the Eighth International Colloquium on Ultraviolet and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas. The aim of this series of colloquia has been to bring together workers in the fields of astrophysical spectroscopy, laboratory spectroscopy and atomic physics in order to exchange ideas and results on problems which are common to these different disciplines. In addition to the presented papers there was a poster paper session
Energy Technology Data Exchange (ETDEWEB)
1984-01-01
This volume represents the Proceedings of the Eighth International Colloquium on Ultraviolet and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas. The aim of this series of colloquia has been to bring together workers in the fields of astrophysical spectroscopy, laboratory spectroscopy and atomic physics in order to exchange ideas and results on problems which are common to these different disciplines. In addition to the presented papers there was a poster paper session. (WRF)
Energy Technology Data Exchange (ETDEWEB)
Seo, Janghoon; Choe, W. [Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Chang, C. S.; Ku, S. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Kwon, J. M. [National Fusion Research institute, Daejeon 305-806 (Korea, Republic of); Müller, Stefan H. [Max Planck Institute for Plasma Physics, Garching 85748 (Germany); Center for Energy Research, University of California San Diego, La Jolla, California 92093 (United States)
2014-09-15
Fluid Reynolds stress from turbulence has usually been considered to be responsible for the anomalous toroidal momentum transport in tokamak plasma. Experiment by Müller et al. [Phys. Rev. Lett. 106, 115001 (2011)], however, reported that neither the observed edge rotation profile nor the inward momentum transport phenomenon at the edge region of an H-mode plasma could be explained by the fluid Reynolds stress measured with reciprocating Langmuir-probe. The full-function gyrokinetic code XGC1 is used to explain, for the first time, Müller et al.'s experimental observations. It is discovered that, unlike in the plasma core, the fluid Reynolds stress from turbulence is not sufficient for momentum transport physics in plasma edge. The “turbulent neoclassical” physics arising from the interaction between kinetic neoclassical orbit dynamics and plasma turbulence is key in the tokamak edge region across the plasma pedestal into core.
International Nuclear Information System (INIS)
Ferreira, J.L.
1991-01-01
Quiescent plasmas generated by thermionic discharges and surface confined by multipole magnetic fields have been used in basic plasma research since 1973. The first machine was developed at UCLA (USA) to produce an uniform plasma for beam and waves studies in large cross section plasmas. A double quiescent plasma machine was constructed at the plasma laboratory of INPE in 1981, it began its operation producing linear ion-acoustic waves in an Argon plasma. Later on non linear ion acoustic waves and solitons were studied in plasma containing several species of negative and positive ions. The anomalous particle transport across multipole magnetic fields were also investigated. An anomalous resistivity associated with an ion acoustic turbulence is responsible for the formation of a small amplitude double-layer. The existence of a bootstrap mechanism is shown experimentally. Today, the main interest is toward the generation of Langmuir waves in non uniform plasmas. An experimental study on Langmuir wave generation using a grid system is been carried on. A magnetized quiescent plasma device for studies of whistle wave generation is been constructed. This machine will make possible future studies on several wave modes of magnetized plasmas. (author). 31 refs, 16 figs
International Nuclear Information System (INIS)
Hornsby, W. A.; Peeters, A. G.; Snodin, A. P.; Casson, F. J.; Camenen, Y.; Szepesi, G.; Siccinio, M.; Poli, E.
2010-01-01
The interaction between small scale turbulence (of the order of the ion Larmor radius) and mesoscale magnetic islands is investigated within the gyrokinetic framework. Turbulence, driven by background temperature and density gradients, over nonlinear mode coupling, pumps energy into long wavelength modes, and can result in an electrostatic vortex mode that coincides with the magnetic island. The strength of the vortex is strongly enhanced by the modified plasma flow response connected with the change in topology, and the transport it generates can compete with the parallel motion along the perturbed magnetic field. Despite the stabilizing effect of sheared plasma flows in and around the island, the net effect of the island is a degradation of the confinement. When density and temperature gradients inside the island are below the threshold for turbulence generation, turbulent fluctuations still persist through turbulence convection and spreading. The latter mechanisms then generate a finite transport flux and, consequently, a finite pressure gradient in the island. A finite radial temperature gradient inside the island is also shown to persist due to the trapped particles, which do not move along the field around the island. In the low collisionality regime, the finite gradient in the trapped population leads to the generation of a bootstrap current, which reduces the neoclassical drive.
Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas
Energy Technology Data Exchange (ETDEWEB)
Diamond, P.H.; Lin, Z.; Wang, W.; Horton, W.; Klasky, S.; Decyk, V.; Ma, K.-L.; Chames, J.; Adams, M.
2011-09-21
The three-year project GPS-TTBP resulted in over 152 publications and 135 presentations. This summary focuses on the scientific progress made by the project team. A major focus of the project was on the physics intrinsic rotation in tokamaks. Progress included the first ever flux driven study of net intrinsic spin-up, mediated by boundary effects (in collaboration with CPES), detailed studies of the microphysics origins of the Rice scaling, comparative studies of symmetry breaking mechanisms, a pioneering study of intrinsic torque driven by trapped electron modes, and studies of intrinsic rotation generation as a thermodynamic engine. Validation studies were performed with C-Mod, DIII-D and CSDX. This work resulted in very successful completion of the FY2010 Theory Milestone Activity for OFES, and several prominent papers of the 2008 and 2010 IAEA Conferences. A second major focus was on the relation between zonal flow formation and transport non-locality. This culminated in the discovery of the ExB staircase - a conceptually new phenomenon. This also makes useful interdisciplinary contact with the physics of the PV staircase, well-known in oceans and atmospheres. A third topic where progress was made was in the simulation and theory of turbulence spreading. This work, now well cited, is important for understanding the dynamics of non-locality in turbulent transport. Progress was made in studies of conjectured non-diffusive transport in trapped electron turbulence. Pioneering studies of ITB formation, coupling to intrinsic rotation and hysteresis were completed. These results may be especially significant for future ITER operation. All told, the physics per dollar performance of this project was quite good. The intense focus was beneficial and SciDAC resources were essential to its success.
Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas
International Nuclear Information System (INIS)
Diamond, P.H.; Lin, Z.; Wang, W.; Horton, W.; Klasky, S.; Decyk, V.; Ma, K.-L.; Chames, J.; Adams, M.
2011-01-01
The three-year project GPS-TTBP resulted in over 152 publications and 135 presentations. This summary focuses on the scientific progress made by the project team. A major focus of the project was on the physics intrinsic rotation in tokamaks. Progress included the first ever flux driven study of net intrinsic spin-up, mediated by boundary effects (in collaboration with CPES), detailed studies of the microphysics origins of the Rice scaling, comparative studies of symmetry breaking mechanisms, a pioneering study of intrinsic torque driven by trapped electron modes, and studies of intrinsic rotation generation as a thermodynamic engine. Validation studies were performed with C-Mod, DIII-D and CSDX. This work resulted in very successful completion of the FY2010 Theory Milestone Activity for OFES, and several prominent papers of the 2008 and 2010 IAEA Conferences. A second major focus was on the relation between zonal flow formation and transport non-locality. This culminated in the discovery of the ExB staircase - a conceptually new phenomenon. This also makes useful interdisciplinary contact with the physics of the PV staircase, well-known in oceans and atmospheres. A third topic where progress was made was in the simulation and theory of turbulence spreading. This work, now well cited, is important for understanding the dynamics of non-locality in turbulent transport. Progress was made in studies of conjectured non-diffusive transport in trapped electron turbulence. Pioneering studies of ITB formation, coupling to intrinsic rotation and hysteresis were completed. These results may be especially significant for future ITER operation. All told, the physics per dollar performance of this project was quite good. The intense focus was beneficial and SciDAC resources were essential to its success.
Search for coherent structure within tokamak plasma turbulence
International Nuclear Information System (INIS)
Zweben, S.J.
1985-01-01
Two-dimensional tokamak edge density turbulence data are examined for possible coherent or organized structure. The spatial patterns of density fluctuations n appear to consist of localized ''blobs'' of relatively high or low density which can move irregularly both radially and poloidally through the edge region. However, a statistical analysis of the lifetime, area, direction, speed, and amplitude of these blobs does not as yet suggest any organized structure associated with the blobs beyond that which can be described by time-averaged correlation functions
Internal magnetic turbulence measurement in plasma by cross polarization scattering
Energy Technology Data Exchange (ETDEWEB)
Zou, X L; Colas, L; Paume, M; Chareau, J M; Laurent, L; Devynck, P; Gresillon, D
1994-09-01
For the first time, the internal magnetic turbulence is measured by a new cross polarization scattering diagnostic in Tore Supra tokamak. The principle of this experiment is presented. It is based on the polarization change or mode conversion of the e.m. wave scattering by magnetic fluctuations. The role of different physical processes on the signal formation are investigated. From the Observation, a rough estimate for the relative magnetic fluctuations of about 10{sup -4} is obtained. A strong correlation of the measured signal with additional heating is observed. (author). 14 refs., 4 figs.
Directory of Open Access Journals (Sweden)
V. E. Zakharov
Full Text Available The electron component of intensive electric currents flowing along the geomagnetic field lines excites turbulence in the thermal magnetospheric plasma. The protons are then scattered by the excited electromagnetic waves, and as a result the plasma is stable. As the electron and ion temperatures of the background plasma are approximately equal each other, here electrostatic ion-cyclotron (EIC turbulence is considered. In the nonisothermal plasma the ion-acoustic turbulence may occur additionally. The anomalous resistivity of the plasma causes large-scale differences of the electrostatic potential along the magnetic field lines. The presence of these differences provides heating and acceleration of the thermal and energetic auroral plasma. The investigation of the energy and momentum balance of the plasma and waves in the turbulent region is performed numerically, taking the magnetospheric convection and thermal conductivity of the plasma into account. As shown for the quasi-steady state, EIC turbulence may provide differences of the electric potential of ΔV≈1–10 kV at altitudes of 500 < h < 10 000 km above the Earth's surface. In the turbulent region, the temperatures of the electrons and protons increase only a few times in comparison with the background values.
Key words. Magnetospheric physics (electric fields; plasma waves and instabilities
Turbulence induced radial transport of toroidal momentum in boundary plasma of EAST tokamak
International Nuclear Information System (INIS)
Zhao, N.; Yan, N.; Xu, G. S.; Wang, H. Q.; Wang, L.; Ding, S. Y.; Chen, R.; Chen, L.; Zhang, W.; Hu, G. H.; Shao, L. M.; Wang, Z. X.
2016-01-01
Turbulence induced toroidal momentum transport in boundary plasma is investigated in H-mode discharge using Langmuir-Mach probes on EAST. The Reynolds stress is found to drive an inward toroidal momentum transport, while the outflow of particles convects the toroidal momentum outwards in the edge plasma. The Reynolds stress driven momentum transport dominates over the passive momentum transport carried by particle flux, which potentially provides a momentum source for the edge plasma. The outflow of particles delivers a momentum flux into the scrape-off layer (SOL) region, contributing as a momentum source for the SOL flows. At the L-H transitions, the outward momentum transport suddenly decreases due to the suppression of edge turbulence and associated particle transport. The SOL flows start to decelerate as plasma entering into H-mode. The contributions from turbulent Reynolds stress and particle transport for the toroidal momentum transport are identified. These results shed lights on the understanding of edge plasma accelerating at L-H transitions.
Advection of long lived density blobs in the turbulent state of a simple magnetized torus plasma
International Nuclear Information System (INIS)
Barni, R; Riccardi, C
2009-01-01
The turbulent regime of a simple magnetized toroidal plasma column has been studied in the plasma device Thorello. The detection and the study of the spatio-temporal evolution of structures have been performed by means of conditional sampling techniques as well as other statistical tools. As a result the evidence of plasma blob formation and expulsion from the edge of the main plasma column has been obtained. The relation between structure phenomenology and statistical characteristics of the turbulent regime has been investigated. The motion of the density structures in the edge region of our device does not look ballistic but rather driven by the overall potential profile established in the turbulent state. Potential fluctuations are strongly anti-correlated with density structures, located in the same position and somewhat more extended. They provide a shallow potential well with a flat bottom and quite sharp edges surrounding and co-moving with the blobs. Blob lifetime exceeds the residence time associated with the overall E x B drift field. Then such persistent structures provide a means for a net convection of the charged particles to the limiter, across the magnetic field and beyond the edge region of the plasma.
International Nuclear Information System (INIS)
Kuritsyn, Aleksey; Levinton, Fred M.
2004-01-01
A megahertz LIF-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal 2D images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultra-fast CCD camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique
Electron acceleration by turbulent plasmoid reconnection
Zhou, X.; Büchner, J.; Widmer, F.; Muñoz, P. A.
2018-04-01
In space and astrophysical plasmas, like in planetary magnetospheres, as that of Mercury, energetic electrons are often found near current sheets, which hint at electron acceleration by magnetic reconnection. Unfortunately, electron acceleration by reconnection is not well understood yet, in particular, acceleration by turbulent plasmoid reconnection. We have investigated electron acceleration by turbulent plasmoid reconnection, described by MHD simulations, via test particle calculations. In order to avoid resolving all relevant turbulence scales down to the dissipation scales, a mean-field turbulence model is used to describe the turbulence of sub-grid scales and their effects via a turbulent electromotive force (EMF). The mean-field model describes the turbulent EMF as a function of the mean values of current density, vorticity, magnetic field as well as of the energy, cross-helicity, and residual helicity of the turbulence. We found that, mainly around X-points of turbulent reconnection, strongly enhanced localized EMFs most efficiently accelerated electrons and caused the formation of power-law spectra. Magnetic-field-aligned EMFs, caused by the turbulence, dominate the electron acceleration process. Scaling the acceleration processes to parameters of the Hermean magnetotail, electron energies up to 60 keV can be reached by turbulent plasmoid reconnection through the thermal plasma.
Energy Technology Data Exchange (ETDEWEB)
Rosa, Reinaldo Roberto; Gomes, Vitor; Araujo, Amarisio [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Clua, Esteban [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)
2011-07-01
Full text: Turbulent-like behaviour is an important and recent ingredient in the investigation of large-scale structure formation in the observable universe. Recently, an established statistical method was used to demonstrate the importance of considering chaotic advection (or Lagrange turbulence) in combination with gravitational instabilities in the {Lambda}-CDM simulations performed from the Virgo Consortium (VC). However, the Hubble volumes simulated from GADGET-VC algorithm have some limitations for direct Lagrangian data analysis due to the large amount of data and no real time computation for particle kinetic velocity along the dark matter structure evolution. Hence, the Lab for Computing and Applied Mathematics at INPE, Brazil, has been working for the past two years in computational environments to achieve the so-called COsmic LAgrangian TUrbulence Simulator (COLATUS) allowing N-body simulation from a Lagrangian perspective. The COLATUS prototype, as usual packages, computes gravitational forces with a hierarchical tree algorithm in combination with a local particle kinetic velocity vector in a particle-mesh scheme for long-range gravitational forces. In the present work we show preliminary simulations for 106 particles showing Lagrangian power spectra for individual particles converging to a stable power-law of S(v) {approx} v{sup 5}. The code may be run on an arbitrary number of processors, with a restriction to powers of two. COLATUS has a potential to evaluate complex kinematics of a single particle in a simulated N-body gravitational system. However, to introduce this method as a GNU software further improvements and investigations are necessary. Then, the mapping techniques for the N-body problem incorporating radiation pressure and fluid characteristics by means of smoothed particle hydrodynamics (SPH) are discussed. Finally, we focus on the all-pairs computational kernel and its future GPU implementation using the NVIDIA CUDA programming model
International Nuclear Information System (INIS)
Rosa, Reinaldo Roberto; Gomes, Vitor; Araujo, Amarisio; Clua, Esteban
2011-01-01
Full text: Turbulent-like behaviour is an important and recent ingredient in the investigation of large-scale structure formation in the observable universe. Recently, an established statistical method was used to demonstrate the importance of considering chaotic advection (or Lagrange turbulence) in combination with gravitational instabilities in the Λ-CDM simulations performed from the Virgo Consortium (VC). However, the Hubble volumes simulated from GADGET-VC algorithm have some limitations for direct Lagrangian data analysis due to the large amount of data and no real time computation for particle kinetic velocity along the dark matter structure evolution. Hence, the Lab for Computing and Applied Mathematics at INPE, Brazil, has been working for the past two years in computational environments to achieve the so-called COsmic LAgrangian TUrbulence Simulator (COLATUS) allowing N-body simulation from a Lagrangian perspective. The COLATUS prototype, as usual packages, computes gravitational forces with a hierarchical tree algorithm in combination with a local particle kinetic velocity vector in a particle-mesh scheme for long-range gravitational forces. In the present work we show preliminary simulations for 106 particles showing Lagrangian power spectra for individual particles converging to a stable power-law of S(v) ∼ v 5 . The code may be run on an arbitrary number of processors, with a restriction to powers of two. COLATUS has a potential to evaluate complex kinematics of a single particle in a simulated N-body gravitational system. However, to introduce this method as a GNU software further improvements and investigations are necessary. Then, the mapping techniques for the N-body problem incorporating radiation pressure and fluid characteristics by means of smoothed particle hydrodynamics (SPH) are discussed. Finally, we focus on the all-pairs computational kernel and its future GPU implementation using the NVIDIA CUDA programming model. (author)
Comparison of simulations and theory of low-frequency plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
LoDestro, L L; Cohen, B I; Cohen, R H; Dimits, A M; Matsuda, Y; Nevins, W M; Newcomb, W A; Williams, T J; Koniges, A E; Dannevik, W P; Crotinger, J A; Amala, P A.K. [Lawrence Livermore National Lab., CA (USA); Sydora, R D; Dawson, J M; Ma, S; Decyk, V K [California Univ., Los Angeles, CA (USA). Dept. of Physics; Lee, W W; Hahm, T S [Princeton Univ., NJ (USA). Plasma Physics Lab.; Naitou, H
1990-08-15
We use a combination of computational and analytic methods to study low-frequency turbulence and turbulent transport in a strongly magnetized plasma. We describe two major computational efforts, one based on gyrokinetic-particle simulation and the second on numerical solution of closure approximations to fluid equations. These codes are used to study instabilities on the drift timescale, and to assess the validity of qualitative predictions of energy-transport scalings based on dimensional analysis and on analytic versions of closure approximations. 27 refs., 2 figs.
International Nuclear Information System (INIS)
Brochard, F.; Gravier, E.; Bonhomme, G.
2006-01-01
The spatiotemporal transition scenario of flute instabilities from a regular to a turbulent state is experimentally investigated in the low-β plasma column of a thermionic discharge. The same transition scenario, i.e., the Ruelle-Takens route to turbulence, is found for both the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities. It is demonstrated that the transition can be more or less smooth, according to the discharge mode. In both cases, a strong radial dependence is observed, which is linked to the velocity shear layer in the case of the Kelvin-Helmholtz instability
Interaction of supra-thermal ions with turbulence in a magnetized toroidal plasma
International Nuclear Information System (INIS)
Plyushchev, G.
2009-01-01
This thesis addresses the interaction of a supra-thermal ion beam with turbulence in the simple magnetized toroidal plasma of TORPEX. The first part of the Thesis deals with the ohmic assisted discharges on TORPEX. The aim of these discharges is the investigation of the open to closed magnetic field line transition. The relevant magnetic diagnostics were developed. Ohmic assisted discharges with a maximum plasma current up to 1 kA are routinely obtained. The equilibrium conditions on the vacuum magnetic field configuration were investigated. In the second part of the Thesis, the design of the fast ion source and detector are discussed. The accelerating electric field needed for the fast ion source was optimized. The fast ion source was constructed and commissioned. To detect the fast ions a specially designed gridded energy analyzer was used. The electron energy distribution function was obtained to demonstrate the efficiency of the detector. The experiments with the fast ion beam were conducted in different plasma regions of TORPEX. In the third part of the Thesis, numerical simulations are used to interpret the measured fast ion beam behavior. It is shown that a simple single particle equation of motion explains the beam behavior in the experiments in the absence of plasma. To explain the fast ion beam experiments with the plasma a turbulent electric field must be used. The model that takes into account this turbulent electrical field qualitatively explains the shape of the fast ion current density profile in the different plasma regions of TORPEX. The vertically elongated fast ion current density profiles are explained by a spread in the fast ion velocity distribution. The theoretically predicted radial fast ion beam spreading due to the turbulent electric field was observed in the experiment. (author)
Hydrodynamic Instability, Integrated Code, Laboratory Astrophysics, and Astrophysics
Takabe, Hideaki
2016-10-01
This is an article for the memorial lecture of Edward Teller Medal and is presented as memorial lecture at the IFSA03 conference held on September 12th, 2003, at Monterey, CA. The author focuses on his main contributions to fusion science and its extension to astrophysics in the field of theory and computation by picking up five topics. The first one is the anomalous resisitivity to hot electrons penetrating over-dense region through the ion wave turbulence driven by the return current compensating the current flow by the hot electrons. It is concluded that almost the same value of potential as the average kinetic energy of the hot electrons is realized to prevent the penetration of the hot electrons. The second is the ablative stabilization of Rayleigh-Taylor instability at ablation front and its dispersion relation so-called Takabe formula. This formula gave a principal guideline for stable target design. The author has developed an integrated code ILESTA (ID & 2D) for analyses and design of laser produced plasma including implosion dynamics. It is also applied to design high gain targets. The third is the development of the integrated code ILESTA. The forth is on Laboratory Astrophysics with intense lasers. This consists of two parts; one is review on its historical background and the other is on how we relate laser plasma to wide-ranging astrophysics and the purposes for promoting such research. In relation to one purpose, I gave a comment on anomalous transport of relativistic electrons in Fast Ignition laser fusion scheme. Finally, I briefly summarize recent activity in relation to application of the author's experience to the development of an integrated code for studying extreme phenomena in astrophysics.
Compact radio sources as a plasma turbulent reactor
International Nuclear Information System (INIS)
Atoyan, A.M.; Nagapetyan, A.
1987-01-01
The electromagnetic raiation spectra of a homogeneous cosmic radio source (CRS) wherein the relativistic electron acceleration on the langmuir waves leads to the formation of Maxwell-like spectra with characteristic value of the Lorentz-factor γ 0 ∼ 10 3 are considered. It has been shown that due to synchrotron radiation of relativistic electrons, usually observed from CRSs flat radiosepctra, gradually steepening at submillimeter wavelengths are naturally formed in the optically thin range of frequencies. The electromagnetic radiation at the scattering of the electron on the turbulence produces significant nonthermal infrared radiation. Inverse compton scattering of the relativistic electrons on the radio-infrared photons leads the production of X-rays. The characteristic of the electromagnetic radiation spectra obtained in the model are compared with the observational ones
Finite beta effects on turbulent transport in tokamak plasmas
International Nuclear Information System (INIS)
Hein, Tobias
2011-01-01
The research on the transport properties of magnetically confined plasmas plays an essential role towards the achievement of practical nuclear fusion energy. An economically viable fusion reactor is expected to operate at high plasma pressure. This implies that the detailed study of the impact of electromagnetic effects, whose strength increases with increasing pressure, is of critical importance. In the present work, the electromagnetic effects on the particle, momentum and heat transport channels have been investigated, with both analytical and numerical calculations. Transport processes due to a finite plasma pressure have been identified, their physical mechanisms have been explained, and their contributions have been quantified, showing that they can be significant under experimentally relevant conditions.
Energy Technology Data Exchange (ETDEWEB)
Shi, Mijie; Xiao, Chijie; Wang, Xiaogang [State Key Laboratory of Nuclear Physics and Technology, Fusion Simulation Center, School of Physics, Peking University, Beijing 100871 (China); Li, Hui, E-mail: cjxiao@pku.edu.cn [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2017-06-10
We perform three-dimensional ideal magnetohydrodynamic (MHD) simulations to study the parametric decay instability (PDI) of Alfvén waves in turbulent plasmas and explore its possible applications in the solar wind. We find that, over a broad range of parameters in background turbulence amplitudes, the PDI of an Alfvén wave with various amplitudes can still occur, though its growth rate in turbulent plasmas tends to be lower than both the theoretical linear theory prediction and that in the non-turbulent situations. Spatial–temporal FFT analyses of density fluctuations produced by the PDI match well with the dispersion relation of the slow MHD waves. This result may provide an explanation of the generation mechanism of slow waves in the solar wind observed at 1 au. It further highlights the need to explore the effects of density variations in modifying the turbulence properties as well as in heating the solar wind plasmas.
International Nuclear Information System (INIS)
Loupias, B.
2008-10-01
Plasma jets are often observed in the polar regions of Young Stellar Objects (YSO). For a better understanding of the whole processes at the origin of their formation and evolution, this research thesis aims at demonstrating the feasibility of a plasma jet generation by a power laser, and at investigating its characteristics. After a detailed description of Young Stellar Objects jets and an overview of theoretical models, the author describes some experiments performed with gas guns, pulsed machines and power lasers. He describes means of generation of a jet by laser interaction via strong shock propagation. He reports experimental work, describing the target, laser operating conditions and the determination of jet parameters: speed, temperature, density. Then, he introduces results obtained for plasma jet propagation in vacuum, describes their evolution with respect to initial conditions (target type, laser operating conditions), and identifies optimal conditions for generating a jet similar to that in astrophysical conditions. He considers their propagation in ambient medium like for YSO jets in interstellar medium. Two distinct cases are investigated: collision of two successive shocks in a gaseous medium, and propagation of a plasma jet in a gas jet
Chaplin, Vernon H; Bellan, Paul M
2015-07-01
An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.
Mean and oscillating plasma flows and turbulence interactions across the L-H confinement transition.
Conway, G D; Angioni, C; Ryter, F; Sauter, P; Vicente, J
2011-02-11
A complex interaction between turbulence driven E × B zonal flow oscillations, i.e., geodesic acoustic modes (GAMs), the turbulence, and mean equilibrium flows is observed during the low to high (L-H) plasma confinement mode transition in the ASDEX Upgrade tokamak. Below the L-H threshold at low densities a limit-cycle oscillation forms with competition between the turbulence level and the GAM flow shearing. At higher densities the cycle is diminished, while in the H mode the cycle duration becomes too short to sustain the GAM, which is replaced by large amplitude broadband flow perturbations. Initially GAM amplitude increases as the H-mode transition is approached, but is then suppressed in the H mode by enhanced mean flow shear.
Turbulence in Wendelstein 7-AS plasmas measured by collective light scattering
Energy Technology Data Exchange (ETDEWEB)
Basse, Nils Plesner
2002-08-01
This Ph.D. thesis contains theoretical and experimental work on plasma turbulence measurements using collective light scattering. The motivation for measuring turbulence in hot fusion plasmas is, along with the method used and results obtained, the subject of chapter 1. The theoretical part is divided into three chapters. Chapter 2 contains a full analytical derivation of the expected dependency of the detected signal on plasma parameters. Thereafter, spatial resolution of the measurements using different methods is treated in chapter 3. Finally, the spectral analysis tools used later in the thesis are described and illustrated in chapter 4. The experimental part is divided into four chapters. In chapter 5 transport concepts relevant to the thesis are outlined. Main parameters of the Wendelstein 7-AS (W7-AS) stellarator in which measurements were made are collected in chapter 6. The setup used to study fluctuations in the electron density of W7-AS plasmas is covered in chapter 7. This localised turbulence scattering (LOTUS) diagnostic is based on a CO{sub 2} laser radiating at a wavelength of 10.59 {mu}m. Fast, heterodyne, dual volume detection at variable wavenumbers between 14 and 62 cm{sup -1} is performed. The central chapter of the thesis, chapter 8, contains an analysis of the measured density fluctuations before, during and after several confinement transition types. The aim was to achieve a better understanding of the connection between turbulence and the confinement quality of the plasma. Conclusions and suggestions for further work are summarised in chapter 9. (au)
Plasma turbulence driven by transversely large-scale standing shear Alfvén waves
International Nuclear Information System (INIS)
Singh, Nagendra; Rao, Sathyanarayan
2012-01-01
Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfvén and electrostatic waves when plasma is driven by a large-scale standing shear Alfvén wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k ⊥ ) lying in the range d e −1 -6d e −1 , d e being the electron inertial length, suggesting non-local parametric decay from small to large k ⊥ . The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k || ). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k ⊥ ) = |E ⊥ (k ⊥ )/|B ⊥ (k ⊥ )| ≪ V A for k ⊥ d e A is the Alfvén velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.
Spectral analysis of turbulence propagation mechanisms in solar wind and tokamaks plasmas
International Nuclear Information System (INIS)
Dong, Yue
2014-01-01
This thesis takes part in the study of spectral transfers in the turbulence of magnetized plasmas. We will be interested in turbulence in solar wind and tokamaks. Spacecraft measures, first principle simulations and simple dynamical systems will be used to understand the mechanisms behind spectral anisotropy and spectral transfers in these plasmas. The first part of this manuscript will introduce the common context of solar wind and tokamaks, what is specific to each of them and present some notions needed to understand the work presented here. The second part deals with turbulence in the solar wind. We will present first an observational study on the spectral variability of solar wind turbulence. Starting from the study of Grappin et al. (1990, 1991) on Helios mission data, we bring a new analysis taking into account a correct evaluation of large scale spectral break, provided by the higher frequency data of the Wind mission. This considerably modifies the result on the spectral index distribution of the magnetic and kinetic energy. A second observational study is presented on solar wind turbulence anisotropy using autocorrelation functions. Following the work of Matthaeus et al. (1990); Dasso et al. (2005), we bring a new insight on this statistical, in particular the question of normalisation choices used to build the autocorrelation function, and its consequence on the measured anisotropy. This allows us to bring a new element in the debate on the measured anisotropy depending on the choice of the referential either based on local or global mean magnetic field. Finally, we study for the first time in 3D the effects of the transverse expansion of solar wind on its turbulence. This work is based on a theoretical and numerical scheme developed by Grappin et al. (1993); Grappin and Velli (1996), but never used in 3D. Our main results deal with the evolution of spectral and polarization anisotropy due to the competition between non-linear and linear (Alfven coupling
Coherent structures and turbulence evolution in magnetized non-neutral plasmas
Romé, M.; Chen, S.; Maero, G.
2018-01-01
The evolution of turbulence of a magnetized pure electron plasma confined in a Penning-Malmberg trap is investigated by means of a two-dimensional particle-in-cell numerical code. The transverse plasma dynamics is studied both in the case of free evolution and under the influence of non-axisymmetric, multipolar radio-frequency drives applied on the circular conducting boundary. In the latter case the radio-frequency fields are chosen in the frequency range of the low-order azimuthal (diocotron) modes of the plasma in order to investigate their effect on the insurgence of azimuthal instabilities and the formation and evolution of coherent structures, possibly preventing the relaxation to a fully-developed turbulent state. Different initial density distributions (rings and spirals) are considered, so that evolutions characterized by different levels of turbulence and intermittency are obtained. The time evolution of integral and spectral quantities of interest are computed using a multiresolution analysis based on a wavelet decomposition of density maps. Qualitative features of turbulent relaxation are found to be similar in conditions of both free and forced evolution, but the analysis allows one to highlight fine details of the flow beyond the self-similarity turbulence properties, so that the influence of the initial conditions and the effect of the external forcing can be distinguished. In particular, the presence of small inhomogeneities in the initial density configuration turns out to lead to quite different final states, especially in the presence of competing unstable diocotron modes characterized by similar growth rates.
Energy Technology Data Exchange (ETDEWEB)
Leconte, M.
2008-11-15
The H confinement regime is set when the heating power reaches a threshold value P{sub c} and is linked to the formation of a transport barrier in the edge region of the plasma. Such a barrier is characterized by a high pressure gradient and is submitted to ELM (edge localized mode) instabilities. ELM instabilities trigger violent quasi-periodical ejections of matter and heat that induce quasi-periodical relaxations of the transport barrier called relaxation oscillations. In this work we studied the interaction between sheared flows and turbulence in fusion plasmas. In particular, we studied the complex dynamics of a transport barrier and we show through a simulation that resonant magnetic perturbations could control relaxation oscillations without a significant loss of confinement
Energy Technology Data Exchange (ETDEWEB)
Colas, L
1996-09-23
Internal small-scale magnetic turbulence is a serious candidate to explain the anomalous heat transport in tokamaks. This turbulence is badly known in the gradient region of large machines. In this work internal magnetic fluctuations are measured on Tore Supra with an original diagnostic : Cross Polarization Scattering (CPS). This experimental tool relies on the Eigenmode change of a probing polarised microwave beam scattered by magnetic fluctuations, close to a cut-off layer for the incident wave. In this work, the diagnostic is first qualified to assess its sensitivity to magnetic fluctuations, and the spatial localisation for its measurements. The magnetic fluctuation behaviour is then analysed over a wide range of plasma current, density and additional power, and interpreted with a simple 1-D scattering model. A scan of the plasma density or magnetic field is used to move the CPS measurement location from r/a = 0.3 to r/a = 0.75. A fluctuation radial profile is obtained by two means. In L-mode discharges, the relation between magnetic fluctuations, temperature profiles and local heat diffusivities is investigated. With all measurements, it is also possible to look for a local parameter correlated to the turbulence in a large domain of plasma conditions. The fluctuation-induced local heat diffusivity expected from the measured fluctuations is estimated using the non-collisional quasi-linear formula: X{sup mag}{sub e} = {pi}qRV{sub te}({delta}B / B){sup 2}. Both the absolute values and the parametric dependence of calculated X{sup mag}{sub e} are close to the electron thermal diffusivities Xe determined by transport analysis. In particular, a threshold is evidenced in the dependence of fluctuation-induced heat fluxes on local {nabla}T{sub e}, which is analogous to the critical gradient for measured heat fluxes. The experimental setup is also sensitive to the Thomson scattering of the probing wave by density fluctuations. Its measurements are analysed as the
Self-similar regimes of turbulence in weakly coupled plasmas under compression
Viciconte, Giovanni; Gréa, Benoît-Joseph; Godeferd, Fabien S.
2018-02-01
Turbulence in weakly coupled plasmas under compression can experience a sudden dissipation of kinetic energy due to the abrupt growth of the viscosity coefficient governed by the temperature increase. We investigate in detail this phenomenon by considering a turbulent velocity field obeying the incompressible Navier-Stokes equations with a source term resulting from the mean velocity. The system can be simplified by a nonlinear change of variable, and then solved using both highly resolved direct numerical simulations and a spectral model based on the eddy-damped quasinormal Markovian closure. The model allows us to explore a wide range of initial Reynolds and compression numbers, beyond the reach of simulations, and thus permits us to evidence the presence of a nonlinear cascade phase. We find self-similarity of intermediate regimes as well as of the final decay of turbulence, and we demonstrate the importance of initial distribution of energy at large scales. This effect can explain the global sensitivity of the flow dynamics to initial conditions, which we also illustrate with simulations of compressed homogeneous isotropic turbulence and of imploding spherical turbulent layers relevant to inertial confinement fusion.
Gary, S. Peter; Zhao, Yinjian; Hughes, R. Scott; Wang, Joseph; Parashar, Tulasi N.
2018-06-01
Three-dimensional particle-in-cell simulations of the forward cascade of decaying turbulence in the relatively short-wavelength kinetic range have been carried out as initial-value problems on collisionless, homogeneous, magnetized electron-ion plasma models. The simulations have addressed both whistler turbulence at β i = β e = 0.25 and kinetic Alfvén turbulence at β i = β e = 0.50, computing the species energy dissipation rates as well as the increase of the Boltzmann entropies for both ions and electrons as functions of the initial dimensionless fluctuating magnetic field energy density ε o in the range 0 ≤ ε o ≤ 0.50. This study shows that electron and ion entropies display similar rates of increase and that all four entropy rates increase approximately as ε o , consistent with the assumption that the quasilinear premise is valid for the initial conditions assumed for these simulations. The simulations further predict that the time rates of ion entropy increase should be substantially greater for kinetic Alfvén turbulence than for whistler turbulence.
The Uncertainty of Local Background Magnetic Field Orientation in Anisotropic Plasma Turbulence
Energy Technology Data Exchange (ETDEWEB)
Gerick, F.; Saur, J.; Papen, M. von, E-mail: felix.gerick@uni-koeln.de [Institute of Geophysics and Meteorology, University of Cologne, Cologne (Germany)
2017-07-01
In order to resolve and characterize anisotropy in turbulent plasma flows, a proper estimation of the background magnetic field is crucially important. Various approaches to calculating the background magnetic field, ranging from local to globally averaged fields, are commonly used in the analysis of turbulent data. We investigate how the uncertainty in the orientation of a scale-dependent background magnetic field influences the ability to resolve anisotropy. Therefore, we introduce a quantitative measure, the angle uncertainty, that characterizes the uncertainty of the orientation of the background magnetic field that turbulent structures are exposed to. The angle uncertainty can be used as a condition to estimate the ability to resolve anisotropy with certain accuracy. We apply our description to resolve the spectral anisotropy in fast solar wind data. We show that, if the angle uncertainty grows too large, the power of the turbulent fluctuations is attributed to false local magnetic field angles, which may lead to an incorrect estimation of the spectral indices. In our results, an apparent robustness of the spectral anisotropy to false local magnetic field angles is observed, which can be explained by a stronger increase of power for lower frequencies when the scale of the local magnetic field is increased. The frequency-dependent angle uncertainty is a measure that can be applied to any turbulent system.
The Uncertainty of Local Background Magnetic Field Orientation in Anisotropic Plasma Turbulence
International Nuclear Information System (INIS)
Gerick, F.; Saur, J.; Papen, M. von
2017-01-01
In order to resolve and characterize anisotropy in turbulent plasma flows, a proper estimation of the background magnetic field is crucially important. Various approaches to calculating the background magnetic field, ranging from local to globally averaged fields, are commonly used in the analysis of turbulent data. We investigate how the uncertainty in the orientation of a scale-dependent background magnetic field influences the ability to resolve anisotropy. Therefore, we introduce a quantitative measure, the angle uncertainty, that characterizes the uncertainty of the orientation of the background magnetic field that turbulent structures are exposed to. The angle uncertainty can be used as a condition to estimate the ability to resolve anisotropy with certain accuracy. We apply our description to resolve the spectral anisotropy in fast solar wind data. We show that, if the angle uncertainty grows too large, the power of the turbulent fluctuations is attributed to false local magnetic field angles, which may lead to an incorrect estimation of the spectral indices. In our results, an apparent robustness of the spectral anisotropy to false local magnetic field angles is observed, which can be explained by a stronger increase of power for lower frequencies when the scale of the local magnetic field is increased. The frequency-dependent angle uncertainty is a measure that can be applied to any turbulent system.
Energy balance in turbulent weakly ionized ionospheric plasma
International Nuclear Information System (INIS)
Dyatko, N.A.; Mishin, E.V.; Telegin, V.A.
1994-01-01
On the base of numerical solution of the Boltzmann equation are determined the electron distribution function and energy balance in the case if the longitudinal current exceeds the critical one and the resistance becames anomalously high one. In the equation are accounted for both electron scattering by plasma density fluctuations and electron elastic and inelastic collisions with atoms and molecules and electron-electron collisions
Steady State Turbulent Transport in Magnetic Fusion Plasmas
International Nuclear Information System (INIS)
Lee, W.W.; Ethier, S.; Kolesnikov, R.; Wang, W.X.; Tang, W.M.
2007-01-01
For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers
Characterization of intermittency of impurity turbulent transport in tokamak edge plasmas
International Nuclear Information System (INIS)
Futatani, S.; Benkadda, S.; Nakamura, Y.; Kondo, K.
2008-01-01
The statistical properties of impurity transport of a tokamak edge plasma embedded in a dissipative drift-wave turbulence are investigated using structure function analysis. The impurities are considered as a passive scalar advected by the plasma flow. Two cases of impurity advection are studied and compared: A decaying impurities case (given by a diffusion-advection equation) and a driven case (forced by a mean scalar gradient). The use of extended self-similarity enables us to show that the relative scaling exponent of structure functions of impurity density and vorticity exhibit similar multifractal scaling in the decaying case and follows the She-Leveque model. However, this property is invalidated for the impurity driven advection case. For both cases, potential fluctuations are self-similar and exhibit a monofractal scaling in agreement with Kolmogorov-Kraichnan theory for two-dimensional turbulence. These results obtained with a passive scalar model agree also with test-particle simulations.
MMS Observations of Ion-Scale Magnetic Island in the Magnetosheath Turbulent Plasma
Huang, S. Y.; Sahraoui, F.; Retino, A.; Contel, O. Le; Yuan, Z. G.; Chasapis, A.; Aunai, N.; Breuillard, H.; Deng, X. H.; Zhou, M.;
2016-01-01
In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion, and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8 di, where di is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island and bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves, and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma..
Plasma turbulence calculations on the Intel iPSC/860 (rx) hypercube
International Nuclear Information System (INIS)
Lynch, V.E.; Ruiter, J.R.
1990-01-01
One approach to improving the real-time efficiency of plasma turbulence calculations is to use a parallel algorithm. A serial algorithm used for plasma turbulence calculations was modified to allocate a radial region in each node. In this way, convolutions at a fixed radius are performed in parallel, and communication is limited to boundary values for each radial region. For a semi-implicity numerical scheme (tridiagonal matrix solver), there is a factor of 3 improvement in efficiency with the Intel iPSC/860 machine using 64 processors over a single-processor Cray-II. For block-tridiagonal matrix cases (fully implicit code), a second parallelization takes place. The Fourier components are distributed in nodes. In each node, the block-tridiagonal matrix is inverted for each of allocated Fourier components. The algorithm for this second case has not yet been optimized. 10 refs., 4 figs
Non-diffusive transport in 3-D pressure driven plasma turbulence
International Nuclear Information System (INIS)
Del-Castillo-Negrete, D.; Carreras, B.A.; Lynch, V.
2005-01-01
Numerical evidence of non-diffusive transport in 3-dimensional, resistive, pressure-gradient-driven plasma turbulence is presented. It is shown that the probability density function (pdf) of tracers is strongly non-Gaussian and exhibits algebraic decaying tails. To describe these results, a transport model using fractional derivative operators in proposed. The model incorporates in a unified way non-locality (i.e., non-Fickian transport), memory effects (i.e., non-Markovian transport), and non-diffusive scaling features known to be present in fusion plasmas. There is quantitative agreement between the model and the turbulent transport numerical calculations. In particular, the model reproduces the shape and space-time scaling of the pdf, and the super-diffusive scaling of the moments. (author)
Convective growth of broadband turbulence in the plasma sheet boundary layer
International Nuclear Information System (INIS)
Dusenbery, P.B.
1987-01-01
Convective growth of slow and fast beam acoustic waves in the plasma sheet boundary layer (PSBL) is investigated. It has been shown previously that a could ion population must be present in order to excite beam acoustic waves in the PSBL. However, growth rates are significantly enhanced when warm plasma sheet boundary layer ions are present. Net wave growth along a ray path is determined by convective growth. This quantity is calculated for particle distribution models consistent with the PSBL where the intensity of broadband turbulence is observed to peak. Total number density dependence on beam acoustic convective growth is evaluated, and it is found that even for low density conditions of ∼0.01 cm -3 , a measurable level of broadband turbulence is expected. Relative drift effects between cold and warm ion populations are also considered. In particular, it is found that slow mode convective growth can be enhanced when slowly streaming cold ions are present, compared to fast ion streams
Time behaviours of visible lines in turbulently heated TRIAM-1 plasma
Energy Technology Data Exchange (ETDEWEB)
Hiraki, N; Nakamura, K; Nakamura, Y; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
1981-08-01
Spectroscopic studies were carried out on turbulently heated TRIAM-1 tokamak plasma. The temporal evolutions of the line radiance of visible lines were measured and two types of time behaviours of the line radiance were identified. The observed remarkable reduction of the line radiance of visible lines which have low ionization potential and are localized in the skin-layer due to the application of a pulsed electric-field for turbulent heating is attributed to the strong plasma heating in the peripherical region. Spatial profiles of neutrals and ions which are related to these lines are calculated, and the temporal variations of these profiles caused by the application of the heating pulse are discussed.
Liang, Gui-Yun; Wei, Hui-Gang; Yuan, Da-Wei; Wang, Fei-Lu; Peng, Ji-Min; Zhong, Jia-Yong; Zhu, Xiao-Long; Schmidt, Mike; Zschornack, Günter; Ma, Xin-Wen; Zhao, Gang
2018-01-01
Spectra are fundamental observation data used for astronomical research, but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations. Different models give different insights for understanding a specific object. Hence, laboratory benchmarks for these theoretical models become necessary. An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae, supernova remnants and so on. In this paper, we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories, Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission, ion production, the ionization process of trapped ions as well as the effects of charge exchange on the ionization.
International Nuclear Information System (INIS)
Arnold, R.C.
1977-06-01
The formalism of Martin, Siggia and Rose is utilized to write a functional-integral representation for generating functionals in plasma transport theory, following Nakayama and Dawson. Parallel treatments of Navier-Stokes turbulence (attempted by Rosen) and of critical dynamics, by Kawasaki, are compared to illustrate the application of common field-theory techniques, such as the effective action. Quasi-classical methods for functional integrals are discussed
Edge transport and fluctuation induced turbulence characteristics in early SST-1 plasma
Energy Technology Data Exchange (ETDEWEB)
Kakati, B., E-mail: bharat.kakati@ipr.res.in; Pradhan, S., E-mail: pradhan@ipr.res.in; Dhongde, J.; Semwal, P.; Yohan, K.; Banaudha, M.
2017-02-15
Highlights: • Anomalous particle transport during the high MHD activity at SST-1. • Electrostatic turbulence is modulated by MHD activity at SST-1 tokamak. • Edge floating potential fluctuations shows poloidal long-range cross correlation. - Abstract: Plasma edge transport characteristics are known to be heavily influenced by the edge fluctuation induced turbulences. These characteristics play a critical role towards the confinement of plasma column in a Tokamak. The edge magnetic fluctuations and its subsequent effect on electrostatic fluctuations have been experimentally investigated for the first time at the edge of the SST-1 plasma column. This paper reports the correlations that exist and is experimentally been observed between the edge densities and floating potential fluctuations with the magnetic fluctuations. The edge density and floating potential fluctuations have been measured with the help of poloidally separated Langmuir probes, whereas the magnetic fluctuations have been measured with poloidally spaced Mirnov coils. Increase in magnetic fluctuations associated with enhanced MHD activities has been found to increase the floating potential and ion saturation current. These observations indicate electrostatic turbulence getting influenced with the MHD activities and reveal the edge anomalous particle transport during SST-1 tokamak discharge. Large-scale coherent structures have been observed in the floating potential fluctuations, indicating long-distance cross correlation in the poloidal directions. From bispectral analysis, a strong nonlinear coupling among the floating potential fluctuations is observed in the low-frequency range about 0–15 kHz.
Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.
2016-01-01
Near the Sun (plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.
Energy Technology Data Exchange (ETDEWEB)
Ofman, Leon, E-mail: Leon.Ofman@nasa.gov [Department of Physics, The Catholic University of America, Washington, DC (United States); NASA Goddard Space Flight Center, Greenbelt, MD (United States); Visiting, Department of Geosciences, Tel Aviv University, Tel Aviv (Israel); Ozak, Nataly [Centre for mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)
2016-03-25
Near the Sun (< 10R{sub s}) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.
Turbulence in tokamak plasmas. Effect of a radial electric field shear
International Nuclear Information System (INIS)
Payan, J.
1994-05-01
After a review of turbulence and transport phenomena in tokamak plasmas and the radial electric field shear effect in various tokamaks, experimental measurements obtained at Tore Supra by the means of the ALTAIR plasma diagnostic technique, are presented. Electronic drift waves destabilization mechanisms, which are the main features that could describe the experimentally observed microturbulence, are then examined. The effect of a radial electric field shear on electronic drift waves is then introduced, and results with ohmic heating are studied together with relations between turbulence and transport. The possible existence of ionic waves is rejected, and a spectral frequency modelization is presented, based on the existence of an electric field sheared radial profile. The position of the inversion point of this field is calculated for different values of the mean density and the plasma current, and the modelization is applied to the TEXT tokamak. The radial electric field at Tore Supra is then estimated. The effect of the ergodic divertor on turbulence and abnormal transport is then described and the density fluctuation radial profile in presence of the ergodic divertor is modelled. 80 figs., 120 refs
International Nuclear Information System (INIS)
Ricci, Paolo; Theiler, C.; Fasoli, A.; Furno, I.; Labit, B.; Mueller, S. H.; Podesta, M.; Poli, F. M.
2009-01-01
The methodology for plasma-turbulence code validation is discussed, with focus on the quantities to use for the simulation-experiment comparison, i.e., the validation observables, and application to the TORPEX basic plasma physics experiment [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)]. The considered validation observables are deduced from Langmuir probe measurements and are ordered into a primacy hierarchy, according to the number of model assumptions and to the combinations of measurements needed to form each of them. The lowest levels of the primacy hierarchy correspond to observables that require the lowest number of model assumptions and measurement combinations, such as the statistical and spectral properties of the ion saturation current time trace, while at the highest levels, quantities such as particle transport are considered. The comparison of the observables at the lowest levels in the hierarchy is more stringent than at the highest levels. Examples of the use of the proposed observables are applied to a specific TORPEX plasma configuration characterized by interchange-driven turbulence.
Energy Technology Data Exchange (ETDEWEB)
Hiraki, N; Nakamura, K; Nakamura, Y; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
1981-04-01
The temporal evolution of the electron temperature and density are measured in a turbulent heating experiment in TRIAM-1. Skin-like profiles of the electron temperature and density are clearly observed. The anomality in the electrical resistivity of the plasma in this skin-layer is estimated, and the plasma heating in this skin-layer is regarded as being due to anomalous joule heating arising from this anomalous resistivity. The ratio of drift velocity to electron thermal velocity in the layer is also calculated, and it is shown that the conditions needed to make the current-driven ion-acoustic instability triggerable are satisfied.
Towards a collisionless fluid closure in plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Dif Pradalier, G
2005-07-01
In this work 2 generic possible descriptions of a plasma have been compared namely the kinetic and the fluid approaches. The latter focuses on the successive moments (n, u, p, q,...) of the distribution function, whereas the former describes the time-evolution in phase space of this distribution function, both being based on the Vlasov equation. The fluid description is attractive for the Vlasov equation is tractable with great difficulties. Nevertheless it rests on a major difficulty: as the set of fluid equations constitute an infinite hierarchy, a closure equation must be chosen. The first chapter details physical characteristics of a fundamental kinetic interaction mechanism between waves and particles. In chapter 2 we propose a fluid closure that allows analytic comparison with a linear fully kinetic result, near an homogeneous, electrostatic, Maxwellian equilibrium. This approach consists in adjusting chosen parameters in order to minimize the discrepancies between fluid and kinetic linear response functions. In chapter 3 we present a general frame for a fluid closure in a magnetized plasma. This is attempted in a linear, simplified model with low dimensionality.
International Nuclear Information System (INIS)
Banerjee, Santanu; Manchanda, R.; Chowdhuri, M.B.
2015-01-01
Study of discharge evolution through the different phases of a tokamak plasma shot viz., the discharge initiation, current ramp-up, current flat-top and discharge termination, is essential to address many inherent issues of the operation of a Tokamak. Fast visible imaging of the tokamak plasma can provide valuable insight in this regard. Further, edge turbulence is considered to be one of the quintessential areas of tokamak research as the edge plasma is at the immediate vicinity of the plasma core and plays vital role in the core plasma confinement. The edge plasma also bridges the core and the scrape off layer (SOL) of the tokamak and hence has a bearing on the particle and heat flux escaping the plasma column. Two fast visible imaging systems are installed on the Aditya tokamak. One of the system is for imaging the plasma evolution with a wide angle lens covering a major portion of the vacuum vessel. The imaging fiber bundle along with the objective lens is installed inside a radial re-entrant viewport, specially designed for the purpose. Another system is intended for tangential imaging of the plasma column. Formation of the plasma column and its evolution are studied with the fast visible imaging in Aditya. Features of the ECRH and LHCD operations on Aditya will be discussed. 3D filaments can, be seen at the plasma edge all along the discharge and they get amplified in intensity at the plasma termination phase. Statistical analysis of these filaments, which are essentially plasma blobs will be presented. (author)
International Nuclear Information System (INIS)
Roberts, T. M.; Mauel, M. E.; Worstell, M. W.
2015-01-01
Turbulence in plasma confined by a magnetic dipole is dominated by interchange fluctuations with complex dynamics and short spatial coherence. We report the first use of local current-collection feedback to modify, amplify, and suppress these fluctuations. The spatial extent of turbulence regulation is limited to a correlation length near the collector. Changing the gain and phase of collection results in power either extracted from or injected into the turbulence. The measured plasma response shows some agreement with calculations of the linear response of global interchange-like MHD and entropy modes to current-collection feedback
International Nuclear Information System (INIS)
Yoshimura, H.; Wang, Z.; Wu, F.
1984-01-01
Differential rotation dependence of the selection mechanism for magnetic parity of solar and stellar cycles is studied by assuming various differential rotation profiles inn the dynamo equation. The parity selection depends on propagation direction of oscillating magnetic fields in the form of dynamo waves which propagate along isorotation surfaces. When there is any radial gradient in the differential rotation, dynamo waves propagate either equatorward or poleward. In the former case, field systems of the two hemispheres approach each other and collide at the equator. Then, odd parity is selected. In the latter case, field systems of the two hemispheres recede from each other and do not collide at the equator, an even parity is selected. Thus the equatorial migration of wings of the butterfly iagram of the solar cycle and its odd parity are intrinsically related. In the case of purely latitudibnal differential rotation, dynamo waves propagate purely radially and growth rates of odd and even modes are nearly the same even when dynamo strength is weak when the parity selection mechanism should work most efficiently. In this case, anisotropy of turbulent diffusivity is a decisive factor to separate odd and even modes. Unlike in the case of radial-gradient-dominated differential rotation in which any difference between diffusivities for poloidal and toroidal fields enhancess the parity selection without changing the parity, the parity selection in the case of latitudinal-gradient-dominated differential rotation depends on the difference of diffusivities for poloidal and toroidal fields. When diffusivity for poloidal fields iss larger than that for toroidal fields, odd parity is selected; and when diffusivity for toroidal fields is larger, even parity is selected
Statistical theory and transition in multiple-scale-lengths turbulence in plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)
2001-06-01
The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Nonlinear interactions in the same kind of fluctuations as well as nonlinear interplay between different classes of fluctuations are kept in the analysis. Nonlinear interactions are modelled as turbulent drag, nonlinear noise and nonlinear drive, and a set of Langevin equations is formulated. With the help of an Ansatz of a large number of degrees of freedom with positive Lyapunov number, Langevin equations are solved and the fluctuation dissipation theorem in the presence of strong plasma turbulence has been derived. A case where two driving mechanisms (one for micro mode and the other for semi-micro mode) coexist is investigated. It is found that there are several states of fluctuations: in one state, the micro mode is excited and the semi-micro mode is quenched; in the other state, the semi-micro mode is excited, and the micro mode remains at finite but suppressed level. New type of turbulence transition is obtained, and a cusp type catastrophe is revealed. A phase diagram is drawn for turbulence which is composed of multiple classes of fluctuations. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. Finally, the nonlocal heat transport due to the long-wave-length fluctuations, which are noise-pumped by shorter-wave-length ones, is analyzed and the impact on transient transport problems is discussed. (author)
Comprehensive ab initio simulations of turbulence in ITER-relevant fusion plasmas
International Nuclear Information System (INIS)
Jenko, Frank
2014-01-01
The astonishing improvements achieved in supercomputing capabilities over the past two decades have allowed groundbreaking new insights into the physics of plasma turbulence. Even though much has been learned already, fundamental challenges related to predicting the performance of future fusion reactors still remain. In particular, today's fusion experiments routinely achieve a transition to a high-confinement mode (H-mode) with a strong transport barrier at the plasma boundary. Understanding the formation conditions of this barrier and its characteristic size and height are crucial to predicting the efficiency of future fusion reactors, but a fully consistent numerical treatment has still been lacking up to now. A main challenge in the treatment of such barriers is their extreme profile variation, implying their susceptibility to finite-size effects. Global simulation capabilities such as demonstrated within the framework of the present project are thus essential in order to understand the dynamics of the edge transport barrier. Both present and future projects employing the GENE code will build on the experience established within this SuperMUC project and tackle this challenging issue. Another increasingly important field relates to turbulence studies in stellarators, which represent an alternative machine design for future fusion applications. With its newly developed capability of studying turbulence in stellarator geometry (i.e. retaining magnetic geometry variations within a magnetic surface), the GENE code is uniquely suited for this problem. With the new German stellarator experiment Wendelstein 7-X nearing completion, existing predictions already made with GENE for stellarator turbulence will be put to the test, and possibilities for validation will emerge. Due to the complex magnetic geometry, stellarator turbulence simulations have extreme computational requirements and will thus continue to challenge the available supercomputing capabilities also in
SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas
Energy Technology Data Exchange (ETDEWEB)
Lin, Zhihong [Univ. of California, Irvine, CA (United States)
2013-12-18
During the first year of the SciDAC gyrokinetic particle simulation (GPS) project, the GPS team (Zhihong Lin, Liu Chen, Yasutaro Nishimura, and Igor Holod) at the University of California, Irvine (UCI) studied the tokamak electron transport driven by electron temperature gradient (ETG) turbulence, and by trapped electron mode (TEM) turbulence and ion temperature gradient (ITG) turbulence with kinetic electron effects, extended our studies of ITG turbulence spreading to core-edge coupling. We have developed and optimized an elliptic solver using finite element method (FEM), which enables the implementation of advanced kinetic electron models (split-weight scheme and hybrid model) in the SciDAC GPS production code GTC. The GTC code has been ported and optimized on both scalar and vector parallel computer architectures, and is being transformed into objected-oriented style to facilitate collaborative code development. During this period, the UCI team members presented 11 invited talks at major national and international conferences, published 22 papers in peer-reviewed journals and 10 papers in conference proceedings. The UCI hosted the annual SciDAC Workshop on Plasma Turbulence sponsored by the GPS Center, 2005-2007. The workshop was attended by about fifties US and foreign researchers and financially sponsored several gradual students from MIT, Princeton University, Germany, Switzerland, and Finland. A new SciDAC postdoc, Igor Holod, has arrived at UCI to initiate global particle simulation of magnetohydrodynamics turbulence driven by energetic particle modes. The PI, Z. Lin, has been promoted to the Associate Professor with tenure at UCI.
Energy partitioning constraints at kinetic scales in low-β turbulence
Gershman, Daniel J.; F.-Viñas, Adolfo; Dorelli, John C.; Goldstein, Melvyn L.; Shuster, Jason; Avanov, Levon A.; Boardsen, Scott A.; Stawarz, Julia E.; Schwartz, Steven J.; Schiff, Conrad; Lavraud, Benoit; Saito, Yoshifumi; Paterson, William R.; Giles, Barbara L.; Pollock, Craig J.; Strangeway, Robert J.; Russell, Christopher T.; Torbert, Roy B.; Moore, Thomas E.; Burch, James L.
2018-02-01
Turbulence is a fundamental physical process through which energy injected into a system at large scales cascades to smaller scales. In collisionless plasmas, turbulence provides a critical mechanism for dissipating electromagnetic energy. Here, we present observations of plasma fluctuations in low-β turbulence using data from NASA's Magnetospheric Multiscale mission in Earth's magnetosheath. We provide constraints on the partitioning of turbulent energy density in the fluid, ion-kinetic, and electron-kinetic ranges. Magnetic field fluctuations dominated the energy density spectrum throughout the fluid and ion-kinetic ranges, consistent with previous observations of turbulence in similar plasma regimes. However, at scales shorter than the electron inertial length, fluctuation power in electron kinetic energy significantly exceeded that of the magnetic field, resulting in an electron-motion-regulated cascade at small scales. This dominance is highly relevant for the study of turbulence in highly magnetized laboratory and astrophysical plasmas.
Kosciesza, M.; Blecki, J. S.; Parrot, M.
2014-12-01
We report the structure function analysis of changes found in electric field in the ELF range plasma turbulence registered in the ionosphere over epicenter region of major earthquakes with depth less than 40 km that took place during 6.5 years of the scientific mission of the DEMETER satellite. We compare the data for the earthquakes for which we found turbulence with events without any turbulent changes. The structure functions were calculated also for the Polar CUSP region and equatorial spread F region. Basic studies of the turbulent processes were conducted with use of higher order spectra and higher order statistics. The structure function analysis was performed to locate and check if there are intermittent behaviors in the ionospheres plasma over epicenter region of the earthquakes. These registrations are correlated with the plasma parameters measured onboard DEMETER satellite and with geomagnetic indices.
Tchang-Brillet, Wad Lydia; Wyart, Jean-François; Zeippen, Claude
1996-01-01
The 5th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas was held in Meudon, France, from August 28 to 31 1995. It was the fifth in a series started by the Atomic Spectroscopic Group at the University of Lund, Sweden, in 1983. Then followed the meetings in Toledo, USA, Amsterdam, The Nether- lands and Gaithersburg, USA, with a three year period. The original title of the series ended with "... for Astrophysics and Fusion Research" and became more general with the 4th colloquium in Gaithersburg. The purpose of the present meeting was, in line with tradition, to bring together "producers" and "users" of atomic data so as to ensure optimal coordination. Atomic physicists who study the structure of atoms and their radiative and collisional properties were invited to explain the development of their work, emphasizing the possibilities of producing precise transition wavelengths and relative line intensities. Astrophysicists and laboratory plasma physicists were invited to review their present research interests and the context in which atomic data are needed. The number of participants was about 70 for the first three meetings, then exploded to 170 at Gaithersburg. About 140 participants, coming from 13 countries, attended the colloquium in Meudon. This large gathering was partly due to a number of participants from Eastern Europe larger than in the past, and it certainly showed a steady interest for interdisciplinary exchanges between different communities of scientists. This volume includes all the invited papers given at the conference and, in the appendix, practical information on access to some databases. All invited speakers presented their talks aiming at good communication between scientists from different backgrounds. A separate bound volume containing extended abstracts of the poster papers has been published by the Publications de l'Observatoire de Paris, (Meudon 1996), under the responsibility of
Space-time statistics of the turbulence in the PRETEXT and TEXT tokamak edge plasmas
International Nuclear Information System (INIS)
Levinson, S.J.
1986-01-01
A study of the statistical space-time properties of the turbulence observed in the edge regions of the PRETEXT and the TEXT tokamaks are reported. Computer estimates of the particle-transport spectrum T(omega), and of the local wavenumber-frequency spectra S(K,omega) for poloidal (k/sub y/) and toroidal (k/sub z/) wavenumbers was determined. A conventional fast-Fourier-transform technique is used initially for the analyses of the potential and density fluctuations obtained from spatially fixed Langmuir-probe pairs. Measurements of the fluctuation-induced particle transport revealed that the particle flux is outward for both PRETEXT and TEXT, and it results primarily from the low-frequency, long-wavelength components of the turbulence. The S(K/sub y/, omega) spectra are dominated by low frequencies ( -1 ) and appear broadened about an approximately linear statistical dispersion relation, anti k(omega). The broadening is characterized by a spectral width sigma/sub k/(omega) (rms deviation about anti k(omega)). In PRETEXT, sigma/sub k/(omega) is of the order of anti k(omega), and the turbulence appears to propagate poloidally with an apparent mean phase velocity of 1-2 x 10 5 cm/s in the ion diamagnetic drift direction. In TEXT, a reversal in the phase velocity of the turbulence in the edge plasma was observed
International Nuclear Information System (INIS)
Kaufmann, P.
1977-01-01
A qualitative discussion of physical conditions at neutral sheets was developed in an attempt to explain the repetitive pulsed energy-production mechanism, which has been suggested for solar flares. A characteristic energy per pulse appears to depend critically on the magnetic field strength and dipole length applied to a high temperature plasma, and seem to be regulated by discrete characteristic relative changes in the magnetic moment, following Syrovatskii's model. Discrete energy pulses are produced when neutral sheet thickness approaches to critical values, proportional to the characteristic relative changes in the magnetic moment. Repetition of pulses may occur in multi-sheet configurations as magnetically complex active centres, or at a single sheet where the total system energy change exceeds the critical conditions. The time-scale of the pulsed energy release may be explained by the tearing mode instability, and the repetition time-scale might be understood by the Sweet mechanism in limit conditions. The mechanism might have attractive applications in other high temperature astrophysical plasmas. An empirical relation is derived for pulses' energy prediction, in orders of magnitude, and some possible tests were suggested. An attempt was made to interpret soft γ-ray events of cosmic origin. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Kaufmann, P [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia e Astrofisica
1977-06-01
A qualitative discussion of physical conditions at neutral sheets was developed in an attempt to explain the repetitive pulsed energy-production mechanism, which has been suggested for solar flares. A characteristic energy per pulse appears to depend critically on the magnetic field strength and dipole length applied to a high temperature plasma, and seem to be regulated by discrete characteristic relative changes in the magnetic moment, following Syrovatskii's model. Discrete energy pulses are produced when neutral sheet thickness approaches to critical values, proportional to the characteristic relative changes in the magnetic moment. Repetition of pulses may occur in multi-sheet configurations as magnetically complex active centres, or at a single sheet where the total system energy change exceeds the critical conditions. The time-scale of the pulsed energy release may be explained by the tearing mode instability, and the repetition time-scale might be understood by the Sweet mechanism in limit conditions. The mechanism might have attractive applications in other high temperature astrophysical plasmas. An empirical relation is derived for pulses' energy prediction, in orders of magnitude, and some possible tests were suggested. An attempt was made to interpret soft ..gamma..-ray events of cosmic origin.
Energy Technology Data Exchange (ETDEWEB)
Rosato, J., E-mail: joel.rosato@univ-provence.fr [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Capes, H.; Catoire, F. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Kadomtsev, M.B.; Levashova, M.G.; Lisitsa, V.S. [ITP, Russian Research Center ' Kurchatov Institute' , Moscow (Russian Federation); Marandet, Y. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Rosmej, F.B. [LULI, UMR 7605, Universite Pierre et Marie Curie/CNRS, 4 Place Jussieu, Case 128, F-75252 Paris Cedex 05 (France); Stamm, R. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France)
2011-08-01
In lithium-wall-conditioned tokamaks, the line radiation due to the intrinsic impurities (Li/Li{sup +}/Li{sup ++}) plays a significant role on the power balance. Calculations of the radiation losses are usually performed using a stationary collisional-radiative model, assuming constant values for the plasma parameters (N{sub e}, T{sub e},...). Such an approach is not suitable for turbulent plasmas where the various parameters are time-dependent. This is critical especially for the edge region, where the fluctuation rates can reach several tens of percents [e.g. J.A. Boedo, J. Nucl. Mater. 390-391 (2009) 29-37]. In this work, the role of turbulence on the radiated power is investigated with a statistical formalism. A special emphasis is devoted to the role of temperature fluctuations, successively for low-frequency fluctuations and in the general case where the characteristic turbulence frequencies can be comparable to the collisional and radiative rates.
Structure function analysis of long-range correlations in plasma turbulence
International Nuclear Information System (INIS)
Yu, C.X.; Gilmore, M.; Peebles, W.A.; Rhodes, T.L.
2003-01-01
Long-range correlations (temporal and spatial) have been predicted in a number of different turbulence models, both analytical and numerical. These long-range correlations are thought to significantly affect cross-field turbulent transport in magnetically confined plasmas. The Hurst exponent, H - one of a number of methods to identify the existence of long-range correlations in experimental data - can be used to quantify self-similarity scalings and correlations in the mesoscale temporal range. The Hurst exponent can be calculated by several different algorithms, each of which has particular advantages and disadvantages. One method for calculating H is via structure functions (SFs). The SF method is a robust technique for determining H with several inherent advantages that has not yet been widely used in plasma turbulence research. In this article, the SF method and its advantages are discussed in detail, using both simulated and measured fluctuation data from the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)]. In addition, it is shown that SFs used in conjunction with rescaled range analysis (another method for calculating H) can be used to mitigate the effects of coherent modes in some cases
Nonlinear physics of plasmas. Spatiotemporal structures in strong turbulence. Lecture notes
International Nuclear Information System (INIS)
Skoric, Milos M.
2008-05-01
This material has been prepared and partly delivered in a series of lectures given at NIFS to Doctor course students of the SOKENDAI (Graduate University of Advanced Studies, Japan) in academic 2007/08 year. Special gratitude is due to colleagues for fruitful collaboration: Profs. K. Mima, Lj. Hadzievski, S. Ishiguro, A. Maluckov, M. Rajkovic and Dr Li Baiwen and Dr Lj. Nikolic, in particular, and to Prof. Mitsuo Kono for motivating the work on this text. I wish to pay unique tribute to close friends and longtime collaborators, Prof. Dik ter Haar and Prof. Moma Jovanovic who are no longer with us. This report contains Chapter 1 (Strong Langmur Turbulence), Chapter 2 (Wave Collapse in Plasmas), Chapter 3 (Spatiotemporal Complexity in Plasmas), Chapter 4 (Relativistic Plasma Interactions) and Chapter 5 (Ponderomotive Potential and Magnetization). (J.P.N.)
Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models
Rodriguez-Fernandez, P.; White, A. E.; Howard, N. T.; Grierson, B. A.; Staebler, G. M.; Rice, J. E.; Yuan, X.; Cao, N. M.; Creely, A. J.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Irby, J. H.; Sciortino, F.
2018-02-01
A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. This Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.
Influence of the inhomogeniety on the turbulence spectra of a magnetoactive plasma
International Nuclear Information System (INIS)
Ochirov, B.D.; Rubenchik, A.M.
1981-01-01
Derivation is given of the spectra of high-frequency turbulence of an inhomogeneous magnetoactive plasma when these spectra are due to the stimulated scattering by ions. It is shown that even a very smooth inhomogeniety results in a considerable turbulence anisotropy: the number of waves traveling along the direction of a gradient is considerably less the number traveling in the opposite direction. In the case of oscillations traveling in the direction of decreasing concentration an inhomogeniety increases considerably the Landau damping. Consequently, a considerable part of the absorbed energy is transferred to fast electrons and a current appears along the magnetic field. A study is made of the influence of a stochastic inhomogeneity, which also gives rise to fast electrons. The role of decay processes is discussed
Isotope and fast ions turbulence suppression effects: Consequences for high-β ITER plasmas
Garcia, J.; Görler, T.; Jenko, F.
2018-05-01
The impact of isotope effects and fast ions on microturbulence is analyzed by means of non-linear gyrokinetic simulations for an ITER hybrid scenario at high beta obtained from previous integrated modelling simulations with simplified assumptions. Simulations show that ITER might work very close to threshold, and in these conditions, significant turbulence suppression is found from DD to DT plasmas. Electromagnetic effects are shown to play an important role in the onset of this isotope effect. Additionally, even external ExB flow shear, which is expected to be low in ITER, has a stronger impact on DT than on DD. The fast ions generated by fusion reactions can additionally reduce turbulence even more although the impact in ITER seems weaker than in present-day tokamaks.
Energy Technology Data Exchange (ETDEWEB)
Futtersack, R., E-mail: romain.futtersack@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Universite Paul Sabatier Toulouse, LAPLACE, 118 Route de Narbonne, F-31062 Toulouse Cedex 9 (France); Tamain, P. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Hagelaar, G. [Universite Paul Sabatier Toulouse, LAPLACE, 118 Route de Narbonne, F-31062 Toulouse Cedex 9 (France); Ghendrih, Ph.; Simonin, A. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)
2013-07-15
We investigate the impact of both parallel and transverse boundary conditions on the current and charge transport in open field line systems using the TOKAM2D code, which solves a minimal model for interchange turbulence. Various limit test cases are discussed and analyzed. In the parallel direction, the sheath conductivity is found to play an essential role in the stabilization of large-scale potential structures, leading to the formation of transport channel or transport barrier respectively for an insulating end wall or a wall with an enhanced sheath conductivity. On another hand, the addition of transverse boundary conditions intrinsically changes the transport characteristics, influencing both radial profiles and probability density functions. It underlines that in some cases a detailed description of the plasma-wall interaction process is required to get a proper description of the current loop pattern that determines electrostatic turbulent transport.
Metamorphosis of plasma turbulence-shear-flow dynamics through a transcritical bifurcation
International Nuclear Information System (INIS)
Ball, R.; Dewar, R.L.; Sugama, H.
2002-01-01
The structural properties of an economical model for a confined plasma turbulence governor are investigated through bifurcation and stability analyses. A close relationship is demonstrated between the underlying bifurcation framework of the model and typical behavior associated with low- to high-confinement transitions such as shear-flow stabilization of turbulence and oscillatory collective action. In particular, the analysis evinces two types of discontinuous transition that are qualitatively distinct. One involves classical hysteresis, governed by viscous dissipation. The other is intrinsically oscillatory and nonhysteretic, and thus provides a model for the so-called dithering transitions that are frequently observed. This metamorphosis, or transformation, of the system dynamics is an important late side-effect of symmetry breaking, which manifests as an unusual nonsymmetric transcritical bifurcation induced by a significant shear-flow drive
International Nuclear Information System (INIS)
Saito, T.; Hamada, Y.; Yamashita, T.; Ikeda, M.; Nakamura, M.
1980-01-01
The SMM wave laser scattering apparatus has been developed for the measurement of the waves and turbulences in the plasma. This apparatus will help greatly to clarify the physics of RF heating of the tokamak plasma. The present status of main parts of the apparatus, the SMM wave laser and the Schottky barrier diode mixer for the heterodyne receiver, are described. (author)
International Nuclear Information System (INIS)
Dwivedi, C.B.; Bhattacharjee, M.
1998-01-01
A simple but reasonable physical model has been developed to find out the correlation potential in a turbulent non-ideal plasma. It is assumed that the turbulent plasma state comprises of weakly interacting pseudo particles i.e. nonlinear coherent structures like solitons with random distribution in space and time. The calculation is based on the lowest order binary interacting model of the nonlinear normal modes (pseudo particles) of the weakly correlated plasmas. Its implication in the phase transition of the correlated Coulomb gas is discussed. (author)
Disruption of Alfvénic turbulence by magnetic reconnection in a collisionless plasma
Mallet, Alfred; Schekochihin, Alexander A.; Chandran, Benjamin D. G.
2017-12-01
We calculate the disruption scale \\text{D}$ at which sheet-like structures in dynamically aligned Alfvénic turbulence are destroyed by the onset of magnetic reconnection in a low- collisionless plasma. The scaling of \\text{D}$ depends on the order of the statistics being considered, with more intense structures being disrupted at larger scales. The disruption scale for the structures that dominate the energy spectrum is \\text{D}\\sim L\\bot 1/9(de\\unicode[STIX]{x1D70C}s)4/9$ , where e$ is the electron inertial scale, s$ is the ion sound scale and \\bot $ is the outer scale of the turbulence. When e$ and s/L\\bot $ are sufficiently small, the scale \\text{D}$ is larger than s$ and there is a break in the energy spectrum at \\text{D}$ , rather than at s$ . We propose that the fluctuations produced by the disruption are circularised flux ropes, which may have already been observed in the solar wind. We predict the relationship between the amplitude and radius of these structures and quantify the importance of the disruption process to the cascade in terms of the filling fraction of undisrupted structures and the fractional reduction of the energy contained in them at the ion sound scale s$ . Both of these fractions depend strongly on e$ , with the disrupted structures becoming more important at lower e$ . Finally, we predict that the energy spectrum between \\text{D}$ and s$ is steeper than \\bot -3$ , when this range exists. Such a steep `transition range' is sometimes observed in short intervals of solar-wind turbulence. The onset of collisionless magnetic reconnection may therefore significantly affect the nature of plasma turbulence around the ion gyroscale.
Energy Technology Data Exchange (ETDEWEB)
Falceta-Gonçalves, D. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Kowal, G. [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Bettio, 1000, São Paulo, SP 03828-000 (Brazil)
2015-07-20
In this work we report on a numerical study of the cosmic magnetic field amplification due to collisionless plasma instabilities. The collisionless magnetohydrodynamic equations derived account for the pressure anisotropy that leads, in specific conditions, to the firehose and mirror instabilities. We study the time evolution of seed fields in turbulence under the influence of such instabilities. An approximate analytical time evolution of the magnetic field is provided. The numerical simulations and the analytical predictions are compared. We found that (i) amplification of the magnetic field was efficient in firehose-unstable turbulent regimes, but not in the mirror-unstable models; (ii) the growth rate of the magnetic energy density is much faster than the turbulent dynamo; and (iii) the efficient amplification occurs at small scales. The analytical prediction for the correlation between the growth timescales and pressure anisotropy is confirmed by the numerical simulations. These results reinforce the idea that pressure anisotropies—driven naturally in a turbulent collisionless medium, e.g., the intergalactic medium, could efficiently amplify the magnetic field in the early universe (post-recombination era), previous to the collapse of the first large-scale gravitational structures. This mechanism, though fast for the small-scale fields (∼kpc scales), is unable to provide relatively strong magnetic fields at large scales. Other mechanisms that were not accounted for here (e.g., collisional turbulence once instabilities are quenched, velocity shear, or gravitationally induced inflows of gas into galaxies and clusters) could operate afterward to build up large-scale coherent field structures in the long time evolution.
Chen, B.; Xu, X. Q.; Xia, T. Y.; Li, N. M.; Porkolab, M.; Edlund, E.; LaBombard, B.; Terry, J.; Hughes, J. W.; Ye, M. Y.; Wan, Y. X.
2018-05-01
The heat flux distributions on divertor targets in H-mode plasmas are serious concerns for future devices. We seek to simulate the tokamak boundary plasma turbulence and heat transport in the edge localized mode-suppressed regimes. The improved BOUT++ model shows that not only Ip but also the radial electric field Er plays an important role on the turbulence behavior and sets the heat flux width. Instead of calculating Er from the pressure gradient term (diamagnetic Er), it is calculated from the plasma transport equations with the sheath potential in the scrape-off layer and the plasma density and temperature profiles inside the separatrix from the experiment. The simulation results with the new Er model have better agreement with the experiment than using the diamagnetic Er model: (1) The electromagnetic turbulence in enhanced Dα H-mode shows the characteristics of quasi-coherent modes (QCMs) and broadband turbulence. The mode spectra are in agreement with the phase contrast imaging data and almost has no change in comparison to the cases which use the diamagnetic Er model; (2) the self-consistent boundary Er is needed for the turbulence simulations to get the consistent heat flux width with the experiment; (3) the frequencies of the QCMs are proportional to Er, while the divertor heat flux widths are inversely proportional to Er; and (4) the BOUT++ turbulence simulations yield a similar heat flux width to the experimental Eich scaling law and the prediction from the Goldston heuristic drift model.
A primer on complex systems with applications to astrophysical and laboratory plasmas
Sánchez, Raúl
2018-01-01
The purpose of this book is to illustrate the fundamental concepts of complexity and complex behavior and the best methods to characterize this behavior by means of their applications to some current research topics from within the fields of fusion, earth and solar plasmas. In this sense, it is a departure from the many books already available that discuss general features of complexity. The book is divided in two parts. In the first part the most important properties and features of complex systems are introduced, discussed and illustrated. The second part discusses several instances of possible complex phenomena in magnetized plasmas and some of the analysis tools that were introduced in the first part are used to characterize the dynamics in these systems. A list of problems is proposed at the end of each chapter. This book is intended for graduate and post-graduate students with a solid college background in mathematics and classical physics, who intend to work in the field of plasma physics and, in parti...
Nonlinear wave collapse and strong turbulence
International Nuclear Information System (INIS)
Robinson, P.A.
1997-01-01
The theory and applications of wave self-focusing, collapse, and strongly nonlinear wave turbulence are reviewed. In the last decade, the theory of these phenomena and experimental realizations have progressed rapidly. Various nonlinear wave systems are discussed, but the simplest case of collapse and strong turbulence of Langmuir waves in an unmagnetized plasma is primarily used in explaining the theory and illustrating the main ideas. First, an overview of the basic physics of linear waves and nonlinear wave-wave interactions is given from an introductory perspective. Wave-wave processes are then considered in more detail. Next, an introductory overview of the physics of wave collapse and strong turbulence is provided, followed by a more detailed theoretical treatment. Later sections cover numerical simulations of Langmuir collapse and strong turbulence and experimental applications to space, ionospheric, and laboratory plasmas, including laser-plasma and beam-plasma interactions. Generalizations to self-focusing, collapse, and strong turbulence of waves in other systems are also discussed, including nonlinear optics, solid-state systems, magnetized auroral and astrophysical plasmas, and deep-water waves. The review ends with a summary of the main ideas of wave collapse and strong-turbulence theory, a collection of open questions in the field, and a brief discussion of possible future research directions. copyright 1997 The American Physical Society
Generation of compressible modes in MHD turbulence
Energy Technology Data Exchange (ETDEWEB)
Cho, Jungyeon [Chungnam National Univ., Daejeon (Korea); Lazarian, A. [Univ. of Wisconsin, Madison, WI (United States)
2005-05-01
Astrophysical turbulence is magnetohydrodynamic (MHD) in nature. We discuss fundamental properties of MHD turbulence and in particular the generation of compressible MHD waves by Alfvenic turbulence and show that this process is inefficient. This allows us to study the evolution of different types of MHD perturbations separately. We describe how to separate MHD fluctuations into three distinct families: Alfven, slow, and fast modes. We find that the degree of suppression of slow and fast modes production by Alfvenic turbulence depends on the strength of the mean field. We review the scaling relations of the modes in strong MHD turbulence. We show that Alfven modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfven modes. However, fast modes exhibit isotropy and a scaling similar to that of acoustic turbulence both in high and low {beta} plasmas. We show that our findings entail important consequences for star formation theories, cosmic ray propagation, dust dynamics, and gamma ray bursts. We anticipate many more applications of the new insight to MHD turbulence and expect more revisions of the existing paradigms of astrophysical processes as the field matures. (orig.)
Analysis of the flow structure of a turbulent thermal plasma jet
International Nuclear Information System (INIS)
Spores, R.A.
1989-01-01
The goal of this research project is to attain a better understanding of the fluid mechanics associated with the high temperature jet of a thermal plasma torch. The analysis of a plasma, which has the ability to vaporize anything placed inside it without proper cooling, presents a unique research challenge. Several types of non-intrusive diagnostic techniques has been used to examine the jet from different perspectives. To actually map out the mean gas velocities and turbulence intensities throughout the jet, laser Doppler anemometry has been employed. The plasma gas and entrained air him been seeded separately in order to conditionally sample the two fluids and attain information about the gas mixing process. Both radial and axial turbulence levels have been measured in order to analyze the non-isotropic nature of the jet. A parabolic numerical code has been modified and compared with the obtained experimental results. A new diagnostic technique for plasma torches, which involves the spectral analysis of voltage, optical (temperature), and acoustical (pressure) fluctuations, has been implemented. The acoustical spectrum can provide information about the existence of coherent structures in the flow while the cross correlation of the acoustical signal with the voltage fluctuations can tell one to what extent perturbations of the internal arc affect the external flow. Since temperature is a scalar that is dependent on the flow field, observing temperature fluctuations can likewise help one to understand the mechanics of the flow. Flow visualization of the plasma jet using a high speed video camera has also been undertaken in order to better understand the entrainment process
Plasma Wave Turbulence and Particle Heating Caused by Electron Beams, Radiation, and Pinches.
1983-01-01
34Vlasov turbulence, this means that Poisson’s equation for F(k;t )m dr exp(- k-r)(g (r,t)-’(0,t)) the field fluctuations must be taken into account ...effect can work in principle for a narrow band cm -. , and therefore an electron plasma frequency off, = 35 width spectrum. In Sec. IV, we discuss some...sufficiently intense to saturate the beam-unstable modes. Such levels appear to produce either fundmental or harmonic emission." 1 Both have been
International Nuclear Information System (INIS)
Brandt, H.E.
1983-01-01
A new exact symmetry is proved for the complete second-order nonlinear conductivity tensor of an unmagnetized relativistic turbulent plasma. The symmetry is not limited to principal parts. If Cerenkov resonance is ignored, the new symmetry reduces to the well-known symmetry related to the Manley--Rowe relations, crossing symmetry, and nondissipation of the principal part of the nonlinear current. Also, a new utilitarian representation for the complete tensor is obtained in which all derivatives are removed and the pole structure is clearly exhibited
CERN. Geneva. Audiovisual Unit
2005-01-01
Understanding turbulence is vital in astrophysics, geophysics and many engineering applications, with thermal convection playing a central role. I shall describe progress that has recently been made in understanding this ubiquitous phenomenon by making controlled experiments using low-temperature helium, and a brief account of the frontier topic of superfluid turbulence will also be given. CERN might be able to play a unique role in experiments to probe these two problems.
Imaging of turbulent structures and tomographic reconstruction of TORPEX plasma emissivity
International Nuclear Information System (INIS)
Iraji, D.; Furno, I.; Fasoli, A.; Theiler, C.
2010-01-01
In the TORPEX [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], a simple magnetized plasma device, low frequency electrostatic fluctuations associated with interchange waves, are routinely measured by means of extensive sets of Langmuir probes. To complement the electrostatic probe measurements of plasma turbulence and study of plasma structures smaller than the spatial resolution of probes array, a nonperturbative direct imaging system has been developed on TORPEX, including a fast framing Photron-APX-RS camera and an image intensifier unit. From the line-integrated camera images, we compute the poloidal emissivity profile of the plasma by applying a tomographic reconstruction technique using a pixel method and solving an overdetermined set of equations by singular value decomposition. This allows comparing statistical, spectral, and spatial properties of visible light radiation with electrostatic fluctuations. The shape and position of the time-averaged reconstructed plasma emissivity are observed to be similar to those of the ion saturation current profile. In the core plasma, excluding the electron cyclotron and upper hybrid resonant layers, the mean value of the plasma emissivity is observed to vary with (T e ) α (n e ) β , in which α=0.25-0.7 and β=0.8-1.4, in agreement with collisional radiative model. The tomographic reconstruction is applied to the fast camera movie acquired with 50 kframes/s rate and 2 μs of exposure time to obtain the temporal evolutions of the emissivity fluctuations. Conditional average sampling is also applied to visualize and measure sizes of structures associated with the interchange mode. The ω-time and the two-dimensional k-space Fourier analysis of the reconstructed emissivity fluctuations show the same interchange mode that is detected in the ω and k spectra of the ion saturation current fluctuations measured by probes. Small scale turbulent plasma structures can be detected and tracked in the reconstructed emissivity
Experimental plasma astrophysics using a T3 (Table-top Terawatt) laser
International Nuclear Information System (INIS)
Tajima, T.
1996-11-01
Lasers that can deliver immense power of Terawatt (10 12 W) and can still compactly sit on a Table-Top (T 3 lasers) emerged in the 1990s. The advent of these lasers allows us to access to regimes of astronomical physical conditions that once thought impossible to realize in a terrestrial laboratory. We touch on examples that include superhigh pressure materials that may resemble the interior of giant planets and white dwarfs and of relativistic temperature plasmas that may exist in the early cosmological epoch and in the neighborhood of the blackhole event horizon
Nezlin, Mikhail V
1993-01-01
This book can be looked upon in more ways than one. On the one hand, it describes strikingly interesting and lucid hydrodynamic experiments done in the style of the "good old days" when the physicist needed little more than a piece of string and some sealing wax. On the other hand, it demonstrates how a profound physical analogy can help to get a synoptic view on a broad range of nonlinear phenomena involving self-organization of vortical structures in planetary atmo spheres and oceans, in galaxies and in plasmas. In particular, this approach has elucidated the nature and the mechanism of such grand phenomena as the Great of galaxies. A number of our Red Spot vortex on Jupiter and the spiral arms predictions concerning the dynamics of spiral galaxies are now being confirmed by astronomical observations stimulated by our experiments. This book is based on the material most of which was accumulated during 1981-88 in close cooperation with our colleagues, experimenters from the Plasma Physics Department of the...
Energy Technology Data Exchange (ETDEWEB)
Lu, Z. X.; Tynan, G. [Center for Energy Research and Department of Mechanical and Aerospace Engineering, University of California at San Diego, San Diego, California 92093 (United States); Center for Momentum Transport and Flow Organization and Center for Astrophysics and Space Science, University of California, San Diego, California 92093 (United States); Wang, W. X.; Ethier, S. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Diamond, P. H. [Center for Momentum Transport and Flow Organization and Center for Astrophysics and Space Science, University of California, San Diego, California 92093 (United States); Gao, C.; Rice, J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2015-05-15
Intrinsic torque, which can be generated by turbulent stresses, can induce toroidal rotation in a tokamak plasma at rest without direct momentum injection. Reversals in intrinsic torque have been inferred from the observation of toroidal velocity changes in recent lower hybrid current drive (LHCD) experiments. This work focuses on understanding the cause of LHCD-induced intrinsic torque reversal using gyrokinetic simulations and theoretical analyses. A new mechanism for the intrinsic torque reversal linked to magnetic shear (s{sup ^}) effects on the turbulence spectrum is identified. This reversal is a consequence of the ballooning structure at weak s{sup ^}. Based on realistic profiles from the Alcator C-Mod LHCD experiments, simulations demonstrate that the intrinsic torque reverses for weak s{sup ^} discharges and that the value of s{sup ^}{sub crit} is consistent with the experimental results s{sup ^}{sub crit}{sup exp}≈0.2∼0.3 [Rice et al., Phys. Rev. Lett. 111, 125003 (2013)]. The consideration of this intrinsic torque feature in our work is important for the understanding of rotation profile generation at weak s{sup ^} and its consequent impact on macro-instability stabilization and micro-turbulence reduction, which is crucial for ITER. It is also relevant to internal transport barrier formation at negative or weakly positive s{sup ^}.
Impact of magnetic shear modification on confinement and turbulent fluctuations in LHD plasmas
International Nuclear Information System (INIS)
Fukuda, T.; Tamura, N.; Ida, K.
2008-10-01
For the comprehensive understandings of transport phenomena in toroidal confinement systems and improvement of the predictive capability of burning plasmas in ITER, the impact of magnetic shear has been extensively investigated in the Large Helical Device (LHD) for comparison with tokamaks. Consequently, it was heuristically documented that the pronounced effect of magnetic shear, which has been hitherto considered to be ubiquitous and strongly impacts the core transport in the tokamak experiments, is not quite obvious. Namely, the kinetic profiles respond little under extensive modification of the magnetic shear in the core, although the local transport analysis indicates the sign of improvement in confinement transiently when the magnetic shear is reduced. It was thereby concluded that the magnetic shear in the core strongly influences the MHD activity, but it may only be one of the necessary conditions for the transport reduction, and some other crucial knobs, such as the density gradient or T e /T i ratio, would have to be simultaneously controlled. The low wavenumber turbulence seems to be suppressed under the weak shear, and the turbulent fluctuation intensity behaves in a consistent manner as a whole, following the conventional paradigm accumulated in the negative shear experiments in tokamaks. However, vigorous dynamics of turbulent fluctuations have occasionally been observed under the magnetic shear modification, which respond in much faster time scale than the characteristic time scale for either the magnetic diffusion or the profile evolution. (author)
International Nuclear Information System (INIS)
Uckan, T.; Hidalgo, C.; Bell, J.D.; Harris, J.H.; Dunlap, J.L.; Dyer, G.R.; Mioduszewski, P.K.; Wilgen, J.B.; Ritz, C.P.; Wootton, A.J.; Rhodes, T.L.; Carter, K.
1990-01-01
Electrostatic turbulence on the edge of the Advanced Torodial Facility (ATF) torsatron is investigated experimentally with a fast reciprocating Langmuir probe (FRLP) array. Initial measurements of plasma electron density n e and temperature T e and fluctuations in density (n e ) and plasma floating potential (φ f ) are made in ECH plasmas at 1 T. At the last closed flux surface (LCFS, r/bar a ∼1), T e ∼ 20--40 eV and n e ∼ 10 12 cm -3 for a line-averaged electron density bar n e = (3--6) x 10 12 cm -3 . Relative fluctuation levels, as the FRLP is moved into core plasma where T e > 20 eV, are n e /n e ∼ 5%, and e φ f /T e ∼ 2n e /n e about 2 cm inside the LCFS. The observed fluctuation spectra are broadband (40--300 kHz) with bar kρ s ≤ 0.1, where bar k is the wavenumber of the fluctuations and ρ s is the ion Larmor radius at the sound speed. The propagation direction of the fluctuations reverses to the electron diamagnetic direction around r/bar a ph ∼ v de ). The fluctuation-induced particle flux is comparable to fluxes estimated from the particle balance using the H α spectroscopic measurements. Many of the features seen in these experiments resemble the features of ohmically heated plasmas in the Texas Experimental Tokamak (TEXT). 17 refs., 10 figs
Accretion growth of water-ice grains in astrophysically-relevant dusty plasma experiment
Chai, Kil-Byoung; Marshall, Ryan; Bellan, Paul
2016-10-01
The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera equipped with a long-distance microscope lens. It is found that (i) the ice grain number density decreases four-fold as the average grain length increases from 20 to 80 um, (ii) the ice grain length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge so the agglomeration growth is prevented by their strong mutual repulsion. It is concluded that direct accretion of water molecules is in good agreement with the observed ice grain growth. The volumetric packing factor of the ice grains must be less than 0.25 in order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains; this conclusion is consistent with ice grain images showing a fractal character.
Development of beam instability in a plasma in the presence of ion-acoustic turbulence
International Nuclear Information System (INIS)
Popel', S.I.
1993-01-01
Effect of radiation-resonance interactions (RRI) of ion-acoustic waves and electrons is accounted for in consideration of the beam instability in a plasma in the presence of ion-acoustic turbulences. It is shown that variation of the superthermal part of the electron distribution function due to fast particle generation, conditioned by RRI of ion-acoustic waves and plasma electrons, leads to decreasing the increment of Langmuir wave swinging and may lead to beam instability stabilization. Conditions are obtained for excess of electron energy increase rate due to RRI over their energy increase rate due to nonlinear and quasi-linear interactions of resonant and nonresonant interactions with wave beam
International Nuclear Information System (INIS)
Tirsky, V.V.; Ledenev, V.G.; Tomozov, V.M.
2001-01-01
We consider the process of generation of electromagnetic waves as a consequence of the merging of two Langmuir plasmons. The case of a hot plasma in a magnetic field is investigated. It is shown that under such conditions the frequency of Langmuir plasmons can vary over the range from 0.8 to 1.1 of the Langmuir frequency of electrons. The spectrum and polarization of electromagnetic radiation are analyzed. It is shown that allowance for the thermal motion of plasma particles under the conditions involved permits electromagnetic waves in the range from 1.6 to 2.2 of the Langmuir frequency of electrons to be generated. The degree of circular polarization of the radiation can reach 50% even in the case of an isotropic spectrum of Langmuir turbulence. (orig.)
Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar.
Hankins, T H; Kern, J S; Weatherall, J C; Eilek, J A
2003-03-13
The Crab pulsar was discovered by the occasional exceptionally bright radio pulses it emits, subsequently dubbed 'giant' pulses. Only two other pulsars are known to emit giant pulses. There is no satisfactory explanation for the occurrence of giant pulses, nor is there a complete theory of the pulsar emission mechanism in general. Competing models for the radio emission mechanism can be distinguished by the temporal structure of their coherent emission. Here we report the discovery of isolated, highly polarized, two-nanosecond subpulses within the giant radio pulses from the Crab pulsar. The plasma structures responsible for these emissions must be smaller than one metre in size, making them by far the smallest objects ever detected and resolved outside the Solar System, and the brightest transient radio sources in the sky. Only one of the current models--the collapse of plasma-turbulent wave packets in the pulsar magnetosphere--can account for the nanopulses we observe.
Avino, Fabio; Bovet, Alexandre; Fasoli, Ambrogio; Furno, Ivo; Gustafson, Kyle; Loizu, Joaquim; Ricci, Paolo; Theiler, Christian
2012-10-01
TORPEX is a basic plasma physics toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. We review recent advances in the understanding and control of electrostatic interchange turbulence, associated structures and their effect on suprathermal ions. These advances are obtained using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Furthermore, we discuss future developments including the possibility of generating closed field line configurations with rotational transform using an internal toroidal wire carrying a current. This system will also allow the study of innovative fusion-relevant configurations, such as the snowflake divertor.
Magnetic field profiles during turbulent heating in a toroidal hydrogen plasma
International Nuclear Information System (INIS)
Kalfsbeek, H.W.
1978-12-01
A description is given of the measurements of both poloidal and toroidal magnetic field components as functions of radius and time in a small turbulently heated tokamak. These measurements have been carried out with an array of miniature pick-up coils, enclosed in a quartz tube which is inserted into the plasma. The electric fields inside the plasma, as well as the parallel resistivity profiles are deduced from the measured magnetic fields. The ohmically dissipated energy is determined from the field distributions and compared with the total input energy. The experimental results are compared with the outcome of a numerical model. The consistency with information obtained from other diagnostic measurements is checked. (Auth.)
International Nuclear Information System (INIS)
Mikhajlenko, V.S.; Stepanov, K.N.
1981-01-01
Ion cyclotron instability saturation is considered in terms of the turbulence theory when there is a beam of heavy ions with large thermal longitudinal velocity spread. The instability excitation is due to a cyclotron interaction with ions of the beam under the anomalous Doppler effect. The instability is shown to be saturated due to an induced plasma ion scattering of ion cyclotron waves when the beam ion charge number Zsub(b) is approximately 1. Decay processes, wave scattering by virtual wave polarization clouds and resonance broadening due to random walk of plasma ions in turbulent instability fields appear to be unimportant. For Zsub(b)>>1 the induced wave scattering by the beam ions is the main process determining the nonlinear stage of the instability. Estimates are given for the oscillation energy density in the instability saturation state and for the turbulent heating rate of plasma and beam ions [ru
Turbulent transport stabilization by ICRH minority fast ions in low rotating JET ILW L-mode plasmas
Bonanomi, N.; Mantica, P.; Di Siena, A.; Delabie, E.; Giroud, C.; Johnson, T.; Lerche, E.; Menmuir, S.; Tsalas, M.; Van Eester, D.; Contributors, JET
2018-05-01
The first experimental demonstration that fast ion induced stabilization of thermal turbulent transport takes place also at low values of plasma toroidal rotation has been obtained in JET ILW (ITER-like wall) L-mode plasmas with high (3He)-D ICRH (ion cyclotron resonance heating) power. A reduction of the gyro-Bohm normalized ion heat flux and higher values of the normalized ion temperature gradient have been observed at high ICRH power and low NBI (neutral beam injection) power and plasma rotation. Gyrokinetic simulations indicate that ITG (ion temperature gradient) turbulence stabilization induced by the presence of high-energetic 3He ions is the key mechanism in order to explain the experimental observations. Two main mechanisms have been identified to be responsible for the turbulence stabilization: a linear electrostatic wave-fast particle resonance mechanism and a nonlinear electromagnetic mechanism. The dependence of the stabilization on the 3He distribution function has also been studied.
Fu, X.; Li, H.; Guo, F.; Li, X.; Roytershteyn, V.
2017-12-01
The solar wind is a turbulent magnetized plasma extending from the upper atmosphere of the sun to the edge of the heliosphere. It carries charged particles and magnetic fields originated from the Sun, which have great impact on the geomagnetic environment and human activities in space. In such a magnetized plasma, Alfven waves play a crucial role in carrying energy from the surface of the Sun, injecting into the solar wind and establishing power-law spectra through turbulent energy cascades. On the other hand, in compressible plasmas large amplitude Alfven waves are subject to a parametric decay instability (PDI) which converts an Alfven wave to another counter-propagating Alfven wave and an ion acoustic wave (slow mode). The counter-propagating Alfven wave provides an important ingredient for turbulent cascade, and the slow-mode wave provides a channel for solar wind heating in a spatial scale much larger than ion kinetic scales. Growth and saturation of PDI in quiet plasma have been intensively studied using linear theory and nonlinear simulations in the past. Here using 3D hybrid simulations, we show that PDI is still effective in turbulent low-beta plasmas, generating slow modes and causing ion heating. Selected events in WIND data are analyzed to identify slow modes in the solar wind and the role of PDI, and compared with our simulation results. We also investigate the validity of linear Vlasov theory regarding PDI growth and slow mode damping in turbulent plasmas. Since PDI favors low plasma beta, we expect to see more evidence of PDI in the solar wind close to the Sun, especially from the upcoming NASA's Parker Solar Probe mission which will provide unprecedented wave and plasma data as close as 8.5 solar radii from the Sun.
Li-BES detection system for plasma turbulence measurements on the COMPASS tokamak
Energy Technology Data Exchange (ETDEWEB)
Berta, M. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Széchenyi István University, Győr (Hungary); Anda, G.; Bencze, A.; Dunai, D. [Wigner – RCP, HAS, Budapest (Hungary); Háček, P., E-mail: hacek@ipp.cas.cz [Institute of Plasma Physics AS CR, Prague (Czech Republic); Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Hron, M. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Kovácsik, A. [Wigner – RCP, HAS, Budapest (Hungary); Department of Nuclear Techniques, Budapest University of Technology and Economics, Budapest (Hungary); Krbec, J. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Pánek, R. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Réfy, D.; Veres, G. [Wigner – RCP, HAS, Budapest (Hungary); Weinzettl, V. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Zoletnik, S. [Wigner – RCP, HAS, Budapest (Hungary)
2015-10-15
Highlights: • Li-BES detection system on the COMPASS tokamak is optimized observation system with high temporal resolution. • High sensitivity to low level light fluctuations. • Optics and detectors with electronics are placed in thermally stabilized compact box. • Fast deflection system allows us to measure background corrected electron density profiles on microsecond time-scale. - Abstract: A new Li beam emission spectroscopy (Li-BES) diagnostic system with a ∼ cm spatial resolution, and with beam energy ranging from 10 keV up to 120 keV and a 18 channel Avalanche photo diode (APD) detector system sampled at 2 MHz has been recently installed and tested on the COMPASS tokamak. This diagnostic allows to reconstruct density profile based on directly measured light profiles, and to follow turbulent behaviour of the edge plasma. The paper reports technical capabilities of this new system designed for fine spatio-temporal measurements of plasma electron density. Focusing on turbulence-induced fluctuation measurements, we demonstrate how physically relevant information can be extracted using the COMPASS Li-BES system.
Energy Technology Data Exchange (ETDEWEB)
Huang, S. Y.; Yuan, Z. G.; Wang, D. D.; Yu, X. D. [School of Electronic Information, Wuhan University, Wuhan (China); Sahraoui, F.; Contel, O. Le [Laboratoire de Physique des Plasmas, CNRS-Ecole Polytechnique-UPMC, Palaiseau (France); He, J. S. [School of Earth and Space Sciences, Peking University, Beijing (China); Zhao, J. S. [Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); Deng, X. H.; Pang, Y.; Li, H. M. [Institute of Space Science and Technology, Nanchang University, Nanchang (China); Zhou, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA (United States); Fu, H. S.; Yang, J. [School of Space and Environment, Beihang University, Beijing (China); Shi, Q. Q. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai (China); Lavraud, B. [Institut de Recherche and Astrophysique et Planétologie, Université de Toulouse (UPS), Toulouse (France); Pollock, C. J.; Giles, B. L. [NASA, Goddard Space Flight Center, Greenbelt, MD (United States); Torbert, R. B. [University of New Hampshire, Durham, NH (United States); Russell, C. T., E-mail: shiyonghuang@whu.edu.cn [Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA (United States); and others
2017-02-20
We report on the observations of an electron vortex magnetic hole corresponding to a new type of coherent structure in the turbulent magnetosheath plasma using the Magnetospheric Multiscale mission data. The magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region and a peak in the outer region of the magnetic hole. The estimated size of the magnetic hole is about 0.23 ρ {sub i} (∼30 ρ {sub e}) in the quasi-circular cross-section perpendicular to its axis, where ρ {sub i} and ρ {sub e} are respectively the proton and electron gyroradius. There are no clear enhancements seen in high-energy electron fluxes. However, there is an enhancement in the perpendicular electron fluxes at 90° pitch angle inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components V {sub em} and V {sub en} suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the cross-section in the M – N plane. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations.
International Nuclear Information System (INIS)
Alinejad, H.; Robinson, P. A.; Cairns, I. H.; Skjaeraasen, O.; Sobhanian, S.
2007-01-01
Nucleating and collapsing wave packets relevant to electromagnetic strong plasma turbulence are studied theoretically in two dimensions. Model collapsing Langmuir and transverse potentials are constructed as superpositions of approximate eigenstates of a spherically symmetric density well. Electrostatic and electromagnetic potentials containing only components with azimuthal quantum numbers m=0, 1, 2 are found to give a good representation of the electric fields of nucleating collapsing wave packets in turbulence simulations. The length scales of these trapped states are related to the electron thermal speed v e and the length scale of the density well. It is shown analytically that the electromagnetic trapped states change with v e and that for v e e > or approx. 0.17c, the Langmuir and transverse modes remain coupled during collapse, with autocorrelation lengths in a constant ratio. An investigation of energy transfer to packets localized in density wells shows that the strongest power transfer to the nucleating state occurs for Langmuir waves. Energy transitions between different trapped and free states for collapsing wave packets are studied, and the transition rate from trapped Langmuir to free plane electromagnetic waves is calculated and related to the emission of electromagnetic waves at the plasma frequency
Confinement of ohmically heated plasmas and turbulent heating in high-magnetic field tokamak TRIAM-1
Energy Technology Data Exchange (ETDEWEB)
Hiraki, N; Itoh, S; Kawai, Y; Toi, K; Nakamura, K [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
1979-12-01
TRIAM-1, the tokamak device with high toroidal magnetic field, has been constructed to establish the scaling laws of advanced tokamak devices such as Alcator, and to study the possibility of the turbulent heating as a further economical heating method of the fusion oriented plasmas. The plasma parameters obtained by ohmic heating alone are as follows; central electron temperature T sub(e0) = 640 eV, central ion temperature T sub(i0) = 280 eV and line-average electron density n average sub(e) = 2.2 x 10/sup 14/ cm/sup -3/. The empirical scaling laws are investigated concerning T sub(e0), T sub(i0) and n average sub(e). The turbulent heating has been carried out by applying the high electric field in the toroidal direction to the typical tokamak discharge with T sub(i0) asymptotically equals 200 eV. The efficient ion heating is observed and T sub(i0) attains to about 600 eV.
International Nuclear Information System (INIS)
Cottier, Pierre
2013-01-01
The magnetic confinement in tokamaks is for now the most advanced way towards energy production by nuclear fusion. Both theoretical and experimental studies showed that rotation generation can increase its performance by reducing the turbulent transport in tokamak plasmas. The rotation influence on the heat and particle fluxes is studied along with the angular momentum transport with the quasi-linear gyro-kinetic eigenvalue code QuaLiKiz. For this purpose, the QuaLiKiz code is modified in order to take the plasma rotation into account and compute the angular momentum flux. It is shown that QuaLiKiz framework is able to correctly predict the angular momentum flux including the E*B shear induced residual stress as well as the influence of rotation on the heat and particle fluxes. The major approximations of QuaLiKiz formalisms are reviewed, in particular the ballooning representation at its lowest order and the eigenfunctions calculated in the hydrodynamic limit. The construction of the quasi-linear fluxes is also reviewed in details and the quasi-linear angular momentum flux is derived. The different contributions to the turbulent momentum flux are studied and successfully compared both against non-linear gyro-kinetic simulations and experimental data. (author) [fr
Fluid simulations of ∇Te-driven turbulence and transport in boundary plasmas
International Nuclear Information System (INIS)
Xu, X.Q.; Cohen, R.H.
1993-01-01
This paper is a report on simulations of a new drift wave type instability driven by the electron temperature gradient in tokamak scrapeoff-layers (SOL). A 2D(x,y) fluid code has been developed in order to explore the anomalous transport in the boundary plasmas. The simulation consists of a set of fluid equations (in the electrostatic limit) for the vorticity ∇ perpendicular 2 φ, the electron density n e and the temperature T e in a shearless plasma slab confined by a uniform, straight magnetic field B z with two diverter (or limiter) plates intercepting the magnetic field. The model has two regions separated by a magnetic separatrix: in the edge region inside the separatrix, the model is periodic along the magnetic field while in the SOL region outside the separatrix, the magnetic field is taken to be of finite length with model (logical sheath) boundary conditions at diverter (or limiter) plates. The simulation results show that the observed linear instability agrees well with theory, and that a saturated state of turbulence is reached. In saturated turbulence, clear evidence of the expected long-wavelength mode penetration into the edge is seen, an inverse cascade of wave energy (toward both long wavelengths and low frequencies) is observed. The simulation results also show that amplitudes of potential and the electron temperature fluctuations are somewhat above and the heat flux are somewhat below those of the simplest mixing-length estimates. The results from the self-consistent simulations to determine the microturbulent SOL electron temperature profile agree reasonably with the experimental measurements. The effects on the mode of neutral gas collisions at the divertor sheath and comparisons with the ionization driven turbulence are discussed
Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M.
2017-03-01
The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (I) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μm, (II) the major axis length has a log-normal distribution rather than a power-law dependence, and (III) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (I.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ˜0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.
Energy Technology Data Exchange (ETDEWEB)
Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M. [Applied Physics and Materials Science, Caltech, Pasadena, CA 91125 (United States)
2017-03-01
The grain growth process in the Caltech water–ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (i) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μ m, (ii) the major axis length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (i.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ∼0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.
Collisionless Reconnection in Magnetohydrodynamic and Kinetic Turbulence
Loureiro, Nuno F.; Boldyrev, Stanislav
2017-12-01
It has recently been proposed that the inertial interval in magnetohydrodynamic (MHD) turbulence is terminated at small scales not by a Kolmogorov-like dissipation region, but rather by a new sub-inertial interval mediated by tearing instability. However, many astrophysical plasmas are nearly collisionless so the MHD approximation is not applicable to turbulence at small scales. In this paper, we propose an extension of the theory of reconnection-mediated turbulence to plasmas which are so weakly collisional that the reconnection occurring in the turbulent eddies is caused by electron inertia rather than by resistivity. We find that the transition scale to reconnection-mediated turbulence depends on the plasma beta and on the assumptions of the plasma turbulence model. However, in all of the cases analyzed, the energy spectra in the reconnection-mediated interval range from E({k}\\perp ){{dk}}\\perp \\propto {k}\\perp -8/3{{dk}}\\perp to E({k}\\perp ){{dk}}\\perp \\propto {k}\\perp -3{{dk}}\\perp .
International Nuclear Information System (INIS)
Uckan, T.; Richards, B.; Bengtson, R.D.
1993-08-01
A novel experiment is under way on the Texas Experimental Tokamak (TEXT) to actively modify the turbulence at the plasma edge by launching waves using electrostatic probes in the shadow of the limiter. The experiments are carried out with a wave launching system consisting of two Langmuir probes, which are about 1.8 cm apart in the poloidal direction, with respect to the magnetic field. These probes are operated in the electron side of the (I,V) characteristic. The probe tips are fed separately by independent ac power supplies. Measurements indicate that the wave, launched with a typical frequency image of 15--50 kHz from the edge of the machine top, is received by sensing probes located halfway around the torus. The detected signal strength depends on the frequency of the wave, the plasma current, and the phasing of the applied ac signal between the launching probes. Modifications to the spectra of the density and potential fluctuations are observed. These experiments have been extended to control of the edge plasma fluctuation level using feedback to explore its effects on confinement. When the launcher is driven by the floating potential of the fluctuating plasma at the location of the launching probes, then the fluctuations are suppressed or excited, depending on the phasing between the probe tips, both locally and at the downstream sensing probes. The fluctuation-induced particle flux also varies with the feedback phasing
Parashar, T.; Yang, Y.; Chasapis, A.; Matthaeus, W. H.
2017-12-01
High resolution Magnetospheric Multiscale (MMS) plasma and magnetic field data obtained in the inhomogeneous turbulent magnetosheath directly reveals the exchanges of energy between electromagnetic, flow and random kinetic energy. The parameters that quantify these exchanges are based on standard manipulations of the collisionless Vlasov model of plasma dynamics [1], without appeal to viscous or other closures. No analysis of heat transport or heat conduction is carried out. Several intervals of burst mode data in the magnetosheath are considered. Time series of the work done by the electromagnetic field, and the pressure-stress interaction enable description of the pathways to dissipation in this low collisionality plasma. Using these examples we demonstrate that the pressure-stress interaction provides important information not readily revealed in other diagnostics concerning the physical processes that are observed. This method does not require any specific mechanism for its application such as reconnection or a selected mode, although with increased experience it will be useful in distinguishing among proposed possibilities. [1] Y. Yang et al, Phys. Plasmas 24, 072306 (2017); doi: 10.1063/1.4990421.
Energy Technology Data Exchange (ETDEWEB)
Mikkelsen, D. R., E-mail: dmikkelsen@pppl.gov; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); Reinke, M. L. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Podpaly, Y. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); AAAS S and T Fellow placed in the Directorate for Engineering, NSF, 4201 Wilson Blvd., Arlington, Virginia 22230 (United States); Ma, Y. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Candy, J.; Waltz, R. E. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)
2015-06-15
Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.
Validation study of a drift-wave turbulence model for CSDX linear plasma device
Vaezi, P.; Holland, C.; Thakur, S. C.; Tynan, G. R.
2017-09-01
A validation study of self-regulating drift-wave turbulence/zonal flow dynamics in the Controlled Shear Decorrelation Experiment linear plasma device using Langmuir probe synthetic diagnostics is presented in this paper. We use a set of nonlocal 3D equations, which evolve density, vorticity, and electron temperature fluctuations, and include proper sheath boundary conditions. Nonlinear simulations of these equations are carried out using BOUndary Turbulence (BOUT++) framework. To identify the dominant parametric dependencies of the model, a linear growth rate sensitivity analysis is performed using input parameter uncertainties, which are taken from the experimental measurements. For the direct comparison of nonlinear simulation results to experiment, we use synthetic Langmuir probe diagnostics to generate a set of synthetic ion saturation current and floating potential fluctuations. In addition, comparisons of azimuthal velocities determined via time-delay estimation, and nonlinear energy transfer are shown. We observe a significant improvement of model-experiment agreement relative to the previous 2D simulations. An essential component of this improved agreement is found to be the effect of electron temperature fluctuations on floating potential measurements, which introduces clear amplitude and phase shifts relative to the plasma potential fluctuations in synthetically measured quantities, where the simulations capture the experimental measurements in the core of plasma. However, the simulations overpredict the fluctuation levels at larger radii. Moreover, systematic simulation scans show that the self-generated E × B zonal flows profile is very sensitive to the steepening of density equilibrium profile. This suggests that evolving both fluctuations and equilibrium profiles, along with the inclusion of modest axial variation of radial profiles in the model are needed for further improvement of simulation results against the experimental measurements.
Fluid simulations of ∇Te-driven turbulence and transport in boundary plasmas
International Nuclear Information System (INIS)
Xu, X.Q.
1992-01-01
It is clear that the edge plasma plays a crucial role in global tokamak confinement. This paper is a report on simulations of a new drift wave type instability driven by the electron temperature gradient in tokamak scrapeoff-layers (SOL). A 2d fluid code has been developed in order to explore the anomalous transport in the boundary plasmas. The simulation consists of a set of fluid equations for the vorticity ∇ perpendicular 2 φ, the electron density n c and the temperature T c in a shearless plasma slab confined by a uniform, straight magnetic field B z with two divertor (or limiter) plates intercepting the magnetic field. The model has two regions separated by a magnetic separatrix: in the edge region inside the separatrix, the model is periodic along the magnetic field while in the SOL region outside the separatrix, the magnetic field is taken to be of finite length with model boundary conditions at diverter plates. The simulation results show that the observed linear instability agrees well with theory, and that a saturated state of turbulence is reached. In saturated turbulence, clear evidence of the expected long-wavelength mode penetration into the edge is seen, an inverse cascade of wave energy is observed. The simulation results also show that amplitudes of potential and the electron temperature fluctuations are somewhat above and the heat flux are somewhat below those of the simplest mixing-length estimates, and furthermore the large-scale radial structures of fluctuation quantities indicate that the cross-field transport is not diffusive. After saturation, the electron density and temperature profiles are flattened. A self-consistent simulation to determine the microturbulent SOL electron temperature profile has been done, the results of which reasonably agree with the experimental measurements
International Nuclear Information System (INIS)
Diamond, P.H.; Shapiro, V.; Schevchenko, V.; Kim, Y.B.; Rosenbluth, M.N.; Carreras, B.A.; Sidikman, K.; Lynch, V.E.; Garcia, L.; Terry, P.W.; Sagdeev, R.Z.
1992-01-01
This paper describes developments in the theory of edge plasma turbulence in a differentially rotating plasma. The thesis that such systems are dynamically self-regulating is presented. Results indicate that relevant fluctuations will generate a predominantly curved flow. Similar, curvature is shown to be the predominant flow profile effect on fluctuations. A system fixed point is identified, the eigenfrequencies for small oscillations around it are calculated, and an over-all stability criterion is determined
First-principle description of collisional gyrokinetic turbulence in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Dif-Pradalier, G
2008-10-15
This dissertation starts in chapter 1 with a comprehensive introduction to nuclear fusion, its basic physics, goals and means. It especially defines the concept of a fusion plasma and some of its essential physical properties. The following chapter 2 discusses some fundamental concepts of statistical physics. It introduces the kinetic and the fluid frameworks, compares them and highlights their respective strengths and limitations. The end of the chapter is dedicated to the fluid theory. It presents two new sets of closure relations for fluid equations which retain important pieces of physics, relevant in the weakly collisional tokamak regimes: collective resonances which lead to Landau damping and entropy production. Nonetheless, since the evolution of the turbulence is intrinsically nonlinear and deeply influenced by velocity space effects, a kinetic collisional description is most relevant. First focusing on the kinetic aspect, chapter 3 introduces the so-called gyrokinetic framework along with the numerical solver - the GYSELA code - which will be used throughout this dissertation. Very generically, code solving is an initial value problem. The impact on turbulent nonlinear evolution of out of equilibrium initial conditions is discussed while studying transient flows, self-organizing dynamics and memory effects due to initial conditions. This dissertation introduces an operational definition, now of routine use in the GYSELA code, for the initial state and concludes on the special importance of the accurate calculation of the radial electric field. The GYSELA framework is further extended in chapter 4 to describe Coulomb collisions. The implementation of a collision operator acting on the full distribution function is presented. Its successful confrontation to collisional theory (neoclassical theory) is also shown. GYSELA is now part of the few gyrokinetic codes which can self-consistently address the interplay between turbulence and collisions. While
First-principle description of collisional gyrokinetic turbulence in tokamak plasmas
International Nuclear Information System (INIS)
Dif-Pradalier, G.
2008-10-01
This dissertation starts in chapter 1 with a comprehensive introduction to nuclear fusion, its basic physics, goals and means. It especially defines the concept of a fusion plasma and some of its essential physical properties. The following chapter 2 discusses some fundamental concepts of statistical physics. It introduces the kinetic and the fluid frameworks, compares them and highlights their respective strengths and limitations. The end of the chapter is dedicated to the fluid theory. It presents two new sets of closure relations for fluid equations which retain important pieces of physics, relevant in the weakly collisional tokamak regimes: collective resonances which lead to Landau damping and entropy production. Nonetheless, since the evolution of the turbulence is intrinsically nonlinear and deeply influenced by velocity space effects, a kinetic collisional description is most relevant. First focusing on the kinetic aspect, chapter 3 introduces the so-called gyrokinetic framework along with the numerical solver - the GYSELA code - which will be used throughout this dissertation. Very generically, code solving is an initial value problem. The impact on turbulent nonlinear evolution of out of equilibrium initial conditions is discussed while studying transient flows, self-organizing dynamics and memory effects due to initial conditions. This dissertation introduces an operational definition, now of routine use in the GYSELA code, for the initial state and concludes on the special importance of the accurate calculation of the radial electric field. The GYSELA framework is further extended in chapter 4 to describe Coulomb collisions. The implementation of a collision operator acting on the full distribution function is presented. Its successful confrontation to collisional theory (neoclassical theory) is also shown. GYSELA is now part of the few gyrokinetic codes which can self-consistently address the interplay between turbulence and collisions. While
Energy Technology Data Exchange (ETDEWEB)
Mitarai, O; Watanabe, T; Nakamura, Y; Nakamura, K; Hiraki, N; Toi, K; Kawai, Y; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
1980-12-01
Density fluctuations in the frequency range of several MHz are observed in the turbulently heated TRIAM-1 tokamak plasma by means of a 4 mm microwave scattering method. It is found from the measurement of the dispersion relation that this instability is considered to be the low-frequency ion acoustic instability propagating nearly perpendicular to the toroidal magnetic field.
Self-sustained turbulence and L-mode confinement in toroidal plasmas
International Nuclear Information System (INIS)
Itoh, K.; Itoh, S.; Fukuyama, A.; Yagi, M.; Azumi, M.
1993-04-01
Theory of the L-mode confinement in toroidal plasmas is developed. The quantitative effect of the anomalous transport, which is caused by microscopic fluctuations, on the pressure-gradient- driven modes is analyzed. The ExB nonlinearity is renormalized in a form of the transport coefficient such as the thermal diffusivity, the ion viscosity and the current diffusivity. The destabilization by the current-diffusivity and the stabilization by the thermal transport and ion viscosity are analyzed. By use of the mean-field approximations, the nonlinear dispersion relation is solved. Growth rate and stability condition are expressed in terms of the renormalized transport coefficients. The transport coefficients in the steady state are obtained by the marginal stability condition for the least stable mode. This method is applied to the microscopic ballooning mode for the toroidal plasma with the magnetic well (such as tokamak). The comparison with experimental observations are made. A good agreement is found in a various aspects of the L-mode plasmas; The typical wavenumber and level of the fluctuations for the self-sustained turbulence is also obtained. The analysis is also made for the plasma with magnetic hill and shear (such as torsatron/Heliotron devices). This method is applied to the interchange modes. Formula of the anomalous transport is obtained. Also investigated is the case of the magnetic well and low magnetic shear (conventional stellarator). The roles of the pressure gradient and the collisionless skin depth in determining the anomalous transport are found to be generic in toroidal plasmas. The difference in the magnetic configuration affects the transport coefficient. These formula explain major experimental observations. (J.P.N.)
ATF edge plasma turbulence studies using a fast reciprocating Langmuir probe
International Nuclear Information System (INIS)
Uckan, T.; Hidalgo, C.; Bell, J.D.; Harris, J.H.; Dunlap, J.L.; Dyer, G.R.; Mioduszewski, P.K.; Wilgen, J.B.; Ritz, C.P.; Wootton, A.J.; Rhodes, T.L.; Carter, K.
1991-01-01
Electrostatic turbulence on the edge of the Advanced Toroidal Facility (ATF) torsatron is investigated experimentally with a fast reciprocating Langmuir probe (FRLP) array. Initial measurements of plasma electron density n e and temperature T e and fluctuations in density (n e ) and plasma floating potential (φ f ) are made in electron cyclotron heated plasmas at 1 T. At the last closed flux surface (LCFS, r√a ∼ 1), T e ∼ 20--40 eV and n e ∼ 10 12 cm -3 for a line-averaged electron density bar n e = (3--6) x 10 12 cm -3 . Relative fluctuation levels, as the FRLP is moved into core plasma where T e > 20 eV, are n e /n e ∼ 5% and eφ f /T e ∼ 2n e /n e about 2 cm inside the LCFS. The observed fluctuation spectra are broadband (40--300 kHz) with bar kρ s ≤ 0.1, where bar k is the wavenumber of the fluctuations and ρ s is the ion Larmor radius at the sound speed. The propagation direction of the fluctuations reverses to the electron diamagnetic direction around r√a ph ∼ v de ). The fluctuation-induced particle flux is comparable to fluxes estimated from the particle balance using the H α spectroscopic measurements. Many of the features seen in these experiments resemble the features of ohmically heated plasmas in the Texas Experimental Tokamak (TEXT). 18 refs., 10 figs
Investigation of flame structure in plasma-assisted turbulent premixed methane-air flame
Hualei, ZHANG; Liming, HE; Jinlu, YU; Wentao, QI; Gaocheng, CHEN
2018-02-01
The mechanism of plasma-assisted combustion at increasing discharge voltage is investigated in detail at two distinctive system schemes (pretreatment of reactants and direct in situ discharge). OH-planar laser-induced fluorescence (PLIF) technique is used to diagnose the turbulent structure methane-air flame, and the experimental apparatus consists of dump burner, plasma-generating system, gas supply system and OH-PLIF system. Results have shown that the effect of pretreatment of reactants on flame can be categorized into three regimes: regime I for voltage lower than 6.6 kV; regime II for voltage between 6.6 and 11.1 kV; and regime III for voltage between 11.1 and 12.5 kV. In regime I, aerodynamic effect and slower oxidation of higher hydrocarbons generated around the inner electrode tip plays a dominate role, while in regime III, the temperature rising effect will probably superimpose on the chemical effect and amplify it. For wire-cylinder dielectric barrier discharge reactor with spatially uneven electric field, the amount of radicals and hydrocarbons are decreased monotonically in radial direction which affects the flame shape. With regard to in situ plasma discharge in flames, the discharge pattern changes from streamer type to glow type. Compared with the case of reactants pretreatment, the flame propagates further in the upstream direction. In the discharge region, the OH intensity is highest for in situ plasma assisted combustion, indicating that the plasma energy is coupled into flame reaction zone.
International Nuclear Information System (INIS)
Rhodes, T.L.; Leboeuf, J.-N.; Sydora, R.D.; Groebner, R.J.; Doyle, E.J.; McKee, G.R.; Peebles, W.A.; Rettig, C.L.; Zeng, L.; Wang, G.
2002-01-01
Measured turbulence characteristics (correlation lengths, spectra, etc.) in low-confinement (L-mode) and high-performance plasmas in the DIII-D tokamak [Luxon et al., Proceedings Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] show many similarities with the characteristics determined from turbulence simulations. Radial correlation lengths Δr of density fluctuations from L-mode discharges are found to be numerically similar to the ion poloidal gyroradius ρ θ,s , or 5-10 times the ion gyroradius ρ s over the radial region 0.2 θ,s or 5-10 times ρ s , an experiment was performed which modified ρ θs while keeping other plasma parameters approximately fixed. It was found that the experimental Δr did not scale as ρ θ,s , which was similar to low-resolution UCAN simulations. Finally, both experimental measurements and gyrokinetic simulations indicate a significant reduction in the radial correlation length from high-performance quiescent double barrier discharges, as compared to normal L-mode, consistent with reduced transport in these high-performance plasmas
Weak turbulence theory of ion temperature gradient modes for inverted density plasmas
International Nuclear Information System (INIS)
Hahm, T.S.; Tang, W.M.
1989-09-01
Typical profiles measured in H-mode (''high confinement'') discharges from tokamaks such as JET and DIII-D suggest that the ion temperature gradient instability threshold parameter η i (≡dlnT i /dlnn i ) could be negative in many cases. Previous linear theoretical calculations have established the onset conditions for these negative η i -modes and the fact that their growth rate is much smaller than their real frequency over a wide range of negative η i values. This has motivated the present nonlinear weak turbulence analysis to assess the relevance of such instabilities for confinement in H-mode plasmas. The nonlinear eigenmode equation indicates that the 3-wave coupling to shorter wavelength modes is the dominant nonlinear saturation mechanism. It is found that both the saturation level for these fluctuations and the magnitude of the associated ion thermal diffusivity are considerably smaller than the strong turbulence mixing length type estimates for the more conventional positive-η i -instabilities. 19 refs., 3 figs
KINETIC PLASMA TURBULENCE IN THE FAST SOLAR WIND MEASURED BY CLUSTER
International Nuclear Information System (INIS)
Roberts, O. W.; Li, X.; Li, B.
2013-01-01
The k-filtering technique and wave polarization analysis are applied to Cluster magnetic field data to study plasma turbulence at the scale of the ion gyroradius in the fast solar wind. Waves are found propagating in directions nearly perpendicular to the background magnetic field at such scales. The frequencies of these waves in the solar wind frame are much smaller than the proton gyrofrequency. After the wavevector k is determined at each spacecraft frequency f sc , wave polarization property is analyzed in the plane perpendicular to k. Magnetic fluctuations have δB > δB ∥ (here the ∥ and refer to the background magnetic field B 0 ). The wave magnetic field has right-handed polarization at propagation angles θ kB 90°. The magnetic field in the plane perpendicular to B 0 , however, has no clear sense of a dominant polarization but local rotations. We discuss the merits and limitations of linear kinetic Alfvén waves (KAWs) and coherent Alfvén vortices in the interpretation of the data. We suggest that the fast solar wind turbulence may be populated with KAWs, small-scale current sheets, and Alfvén vortices at ion kinetic scales.
Multi-CPU plasma fluid turbulence calculations on a CRAY Y-MP C90
International Nuclear Information System (INIS)
Lynch, V.E.; Carreras, B.A.; Leboeuf, J.N.; Curtis, B.C.; Troutman, R.L.
1993-01-01
Significant improvements in real-time efficiency have been obtained for plasma fluid turbulence calculations by microtasking the nonlinear fluid code KITE in which they are implemented on the CRAY Y-MP C90 at the National Energy Research Supercomputer Center (NERSC). The number of processors accessed concurrently scales linearly with problem size. Close to six concurrent processors have so far been obtained with a three-dimensional nonlinear production calculation at the currently allowed memory size of 80 Mword. With a calculation size corresponding to the maximum allowed memory of 200 Mword in the next system configuration, they expect to be able to access close to ten processors of the C90 concurrently with a commensurate improvement in real-time efficiency. These improvements in performance are comparable to those expected from a massively parallel implementation of the same calculations on the Intel Paragon
Final Report for Grant DE-FG03-99ER54551. [Turbulent plasma transport
International Nuclear Information System (INIS)
David Newman
2003-01-01
The approach to treating plasma transport based on the paradigm of self-organized criticality (SOC) is largely due to the success of this paradigm as an explanation for some of the discrepancies between theoretical predictions of turbulent transport and the experimental observations. Characteristics of SOC systems are that they maintain average profiles that are linearly stable and yet are able to sustain active transport dynamics (as often observed in experiment). The dominant transport scales in SOC systems are not the underlying local fluctuation scales but are the scales of the system (again as often observed). Finally, in the presence of sheared flow, the transport can exhibit a large reduction in system sized transport. This reduction is accompanied by an increase in fluctuation (bursty) events needed to maintain the constant flux, this too is something that has been observed
Multi-CPU plasma fluid turbulence calculations on a CRAY Y-MP C90
International Nuclear Information System (INIS)
Lynch, V.E.; Carreras, B.A.; Leboeuf, J.N.; Curtis, B.C.; Troutman, R.L.
1993-01-01
Significant improvements in real-time efficiency have been obtained for plasma fluid turbulence calculations by microtasking the nonlinear fluid code KITE in which they are implemented on the CRAY Y-MP C90 at the National Energy Research Supercomputer Center (NERSC). The number of processors accessed concurrently scales linearly with problem size. Close to six concurrent processors have so far been obtained with a three-dimensional nonlinear production calculation at the currently allowed memory size of 80 Mword. With a calculation size corresponding to the maximum allowed memory of 200 Mword in the next system configuration, we expect to be able to access close to nine processors of the C90 concurrently with a commensurate improvement in real-time efficiency. These improvements in performance are comparable to those expected from a massively parallel implementation of the same calculations on the Intel Paragon
Mapping closure for probability distribution function in low frequency magnetized plasma turbulence
International Nuclear Information System (INIS)
Das, A.; Kaw, P.
1995-01-01
Recent numerical studies on the Hasegawa--Mima equation and its variants describing low frequency magnetized plasma turbulence indicate that the potential fluctuations have a Gaussian character whereas the vorticity exhibits non-Gaussian features. A theoretical interpretation for this observation using the recently developed mapping closure technique [Chen, Chen, and Kraichnan, Phys. Rev. Lett. 63, 2657 (1989)] has been provided here. It has been shown that non-Gaussian statistics for the vorticity arises because of a competition between nonlinear straining and diffusive damping whereas the Gaussianity of the statistics of φ arises because the only significant nonlinearity is associated with divergence free convection, which produces no strain terms. copyright 1995 American Institute of Physics
Coherent Structures and Spectral Energy Transfer in Turbulent Plasma: A Space-Filter Approach
Camporeale, E.; Sorriso-Valvo, L.; Califano, F.; Retinò, A.
2018-03-01
Plasma turbulence at scales of the order of the ion inertial length is mediated by several mechanisms, including linear wave damping, magnetic reconnection, the formation and dissipation of thin current sheets, and stochastic heating. It is now understood that the presence of localized coherent structures enhances the dissipation channels and the kinetic features of the plasma. However, no formal way of quantifying the relationship between scale-to-scale energy transfer and the presence of spatial structures has been presented so far. In the Letter we quantify such a relationship analyzing the results of a two-dimensional high-resolution Hall magnetohydrodynamic simulation. In particular, we employ the technique of space filtering to derive a spectral energy flux term which defines, in any point of the computational domain, the signed flux of spectral energy across a given wave number. The characterization of coherent structures is performed by means of a traditional two-dimensional wavelet transformation. By studying the correlation between the spectral energy flux and the wavelet amplitude, we demonstrate the strong relationship between scale-to-scale transfer and coherent structures. Furthermore, by conditioning one quantity with respect to the other, we are able for the first time to quantify the inhomogeneity of the turbulence cascade induced by topological structures in the magnetic field. Taking into account the low space-filling factor of coherent structures (i.e., they cover a small portion of space), it emerges that 80% of the spectral energy transfer (both in the direct and inverse cascade directions) is localized in about 50% of space, and 50% of the energy transfer is localized in only 25% of space.
Energy Technology Data Exchange (ETDEWEB)
Schuster, Eugenio
2014-05-02
The strong coupling between the different physical variables involved in the plasma transport phenomenon and the high complexity of its dynamics call for a model-based, multivariable approach to profile control where those predictive models could be exploited. The overall objective of this project has been to extend the existing body of work by investigating numerically and experimentally active control of unstable fluctuations, including fully developed turbulence and the associated cross-field particle transport, via manipulation of flow profiles in a magnetized laboratory plasma device. Fluctuations and particle transport can be monitored by an array of electrostatic probes, and Ex B flow profiles can be controlled via a set of biased concentric ring electrodes that terminate the plasma column. The goals of the proposed research have been threefold: i- to develop a predictive code to simulate plasma transport in the linear HELCAT (HELicon-CAThode) plasma device at the University of New Mexico (UNM), where the experimental component of the proposed research has been carried out; ii- to establish the feasibility of using advanced model-based control algorithms to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles, iii- to investigate the fundamental nonlinear dynamics of turbulence and transport physics. Lehigh University (LU), including Prof. Eugenio Schuster and one full-time graduate student, has been primarily responsible for control-oriented modeling and model-based control design. Undergraduate students have also participated in this project through the National Science Foundation Research Experience for Undergraduate (REU) program. The main goal of the LU Plasma Control Group has been to study the feasibility of controlling turbulence-driven transport by shaping the radial poloidal flow profile (i.e., by controlling flow shear) via biased concentric ring electrodes.
International Nuclear Information System (INIS)
Font, J. A.
2015-01-01
The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)
Lang, Kenneth R
2013-01-01
Essential Astrophysics is a book to learn or teach from, as well as a fundamental reference volume for anyone interested in astronomy and astrophysics. It presents astrophysics from basic principles without requiring any previous study of astronomy or astrophysics. It serves as a comprehensive introductory text, which takes the student through the field of astrophysics in lecture-sized chapters of basic physical principles applied to the cosmos. This one-semester overview will be enjoyed by undergraduate students with an interest in the physical sciences, such as astronomy, chemistry, engineering or physics, as well as by any curious student interested in learning about our celestial science. The mathematics required for understanding the text is on the level of simple algebra, for that is all that is needed to describe the fundamental principles. The text is of sufficient breadth and depth to prepare the interested student for more advanced specialized courses in the future. Astronomical examples are provide...
International Nuclear Information System (INIS)
Misguich, J.H.
1978-09-01
The physical meaning of perturbed trajectories in turbulent fields is analysed. Special care is devoted to the asymptotic description of average trajectories for long time intervals, as occuring in many recent plasma turbulence theories. Equivalence is proved between asymptotic average trajectories described as well (i) by the propagators V(t,t-tau) for retrodiction and Wsub(J)(t,t+tau) for prediction, and (ii) by the long time secular behavior of the solution of the equations of motion. This confirms the equivalence between perturbed orbit theories and renormalized theories, including non-Markovian contributions
Rocket studies of plasma turbulence in the equatorial and auroral electrojets
International Nuclear Information System (INIS)
Pfaff, R.F. Jr.
1986-01-01
Rocket observations of plasma turbulence in the equatorial and auroral electrojets have been studied in detail. Intense electric field and plasma density fluctuations characterize the collisional two-stream and gradient drift instabilities, showing a marked spectral differentiation with respect to height consistent with changes in the local sources of free energy. The interpretation of the frequencies and amplitudes of irregularities detected by in-situ probes travelling at comparable speeds to the waves is discussed in detail. Observations from three rockets in the daytime equatorial electrojet during strong, mild, and weak currents show that the linear theory accounts for the general height and wavelength domains of the irregularities. In the strong case, laminar two-stream waves were observed where the current was strongest and the density gradient was stable. The data suggest phase velocities that were comparable to the electron drift velocity (∼500 m/s) and peak wavelengths (2-3 m) that agree with kinetic theory. Vertically propagating waves observed here may have been generated by mode coupling. Where the gradient was unstable, large amplitude, kilometer scale waves dominated, although the linear gradient drift growth rate peaks at a few hundred meters. The amplitudes (10-15 mV/m) of these horizontal waves were strong enough to drive vertical two-stream waves
International Nuclear Information System (INIS)
Roux, A.
1989-01-01
The interaction between the supersonic and super-Alfvenic solar wind plasma and the Earth's magnetic field leads to the formation of critical layers, such as the bow shock, the magnetopause, the polar cusp, and the inner and outer edge of the plasmasheet. The mean free path between binary colisions being much larger than the transverse scale of these layers, plasma turbulence must ensure the thermalization, the magnetic diffusion, the dissipation within these critical layers. We suggest the existence of small scale, presumably 2D structures, developing within these thin layers. The unambiguous characterization of these small-scale structures is, however, beyond the capabilities of existing spacecraft, which cannot spatially resolve them, nor disentangle spatial/temporal variations. We present a new mission concept: a cluster of four relatively simple spacecraft, which will make it possible (i) to disentangle spatial from temporal variations, (ii) to evaluate, by finite differences between spacecraft measurements, the gradients, divergences, curls of MHD parameters, and )iii) to characterize small-scale structures, via inter-spacecraft correlations. (author). 10 refs.; 10 figs
Plasma-based actuators for turbulent boundary layer control in transonic flow
Budovsky, A. D.; Polivanov, P. A.; Vishnyakov, O. I.; Sidorenko, A. A.
2017-10-01
The study is devoted to development of methods for active control of flow structure typical for the aircraft wings in transonic flow with turbulent boundary layer. The control strategy accepted in the study was based on using of the effects of plasma discharges interaction with miniature geometrical obstacles of various shapes. The conceptions were studied computationally using 3D RANS, URANS approaches. The results of the computations have shown that energy deposition can significantly change the flow pattern over the obstacles increasing their influence on the flow in boundary layer region. Namely, one of the most interesting and promising data were obtained for actuators basing on combination of vertical wedge with asymmetrical plasma discharge. The wedge considered is aligned with the local streamlines and protruding in the flow by 0.4-0.8 of local boundary layer thickness. The actuator produces negligible distortion of the flow at the absence of energy deposition. Energy deposition along the one side of the wedge results in longitudinal vortex formation in the wake of the actuator providing momentum exchange in the boundary layer. The actuator was manufactured and tested in wind tunnel experiments at Mach number 1.5 using the model of flat plate. The experimental data obtained by PIV proved the availability of the actuator.
International Nuclear Information System (INIS)
Thomsen, H.; Endler, M.; Schubert, M.
2001-01-01
The fluctuations in the edge plasmas of magnetic fusion experiments are thought to play an important role in terms of anomalous energy and particle transport. Experiments on Wendelstein 7-AS were conducted with the primary goal to investigate the performance of influencing and modifying the turbulence in the plasma boundary using electrical probes. Two movable poloidal probe arrays were used for the experiments, one located on the inboard side of the vessel and the other on the outboard side. A subset of probe tips was used for actively driving the plasma by different control signals, the remaining probes collected fluctuation data in the plasma boundary. Poloidally, we find a significant cross-correlation between active and passive probes. From analysis of the coherency and phases of the passive probe tips, it can clearly be seen that the background ExB-rotation of the plasma plays a crucial role for the applied signals. In the case of externally driven waves by several phase-locked active probes, the direction of the wave propagation with respect to the plasma rotation (co- or counter-rotating) is essential for a proper coupling to the turbulence. In toroidal direction we find that the propagation of the signals along the magnetic field lines depends on co- or counter-rotation with respect to the background plasma rotation. (author)
Pringle, James E.; King, Andrew
2003-07-01
Almost all conventional matter in the Universe is fluid, and fluid dynamics plays a crucial role in astrophysics. This new graduate textbook provides a basic understanding of the fluid dynamical processes relevant to astrophysics. The mathematics used to describe these processes is simplified to bring out the underlying physics. The authors cover many topics, including wave propagation, shocks, spherical flows, stellar oscillations, the instabilities caused by effects such as magnetic fields, thermal driving, gravity, shear flows, and the basic concepts of compressible fluid dynamics and magnetohydrodynamics. The authors are Directors of the UK Astrophysical Fluids Facility (UKAFF) at the University of Leicester, and editors of the Cambridge Astrophysics Series. This book has been developed from a course in astrophysical fluid dynamics taught at the University of Cambridge. It is suitable for graduate students in astrophysics, physics and applied mathematics, and requires only a basic familiarity with fluid dynamics.• Provides coverage of the fundamental fluid dynamical processes an astrophysical theorist needs to know • Introduces new mathematical theory and techniques in a straightforward manner • Includes end-of-chapter problems to illustrate the course and introduce additional ideas
International Nuclear Information System (INIS)
Matthaeus, W.; Brown, M.
2006-01-01
This is the final technical report for a funded program to provide theoretical support to the Swarthmore Spheromak Experiment. We examined mhd relaxation, reconnecton between two spheromaks, particle acceleration by these processes, and collisonless effects, e.g., Hall effect near the reconnection zone,. Throughout the project, applications to space plasma physics and astrophysics were included. Towards the end of the project we were examining a more fully turbulent relaxation associated with unconstrained dynamics in SSX. We employed experimental, spacecraft observations, analytical and numerical methods.
Directory of Open Access Journals (Sweden)
Susmita Sarkar
2018-03-01
Full Text Available In this paper onset of turbulence has been detected from the study of non linear dust acoustic wave propagation in a complex plasma considering electrons nonthermal and equilibrium dust charge positive. Dust grains are charged by secondary electron emission process. Our analysis shows that increase in electron nonthermality makes the grain charging process faster by reducing the magnitude of the nonadiabaticity induced pseudo viscosity. Consequently nature of dust charge variation changes from nonadiabatic to adiabatic one. For further increase of electron nonthermality, this pseudo viscosity becomes negative and hence generates a turbulent grain charging behaviour. This turbulent grain charging phenomenon is exclusively the outcome of this nonlinear study which was not found in linear analysis.
Fan, Xiang
2017-10-01
Concerns central to understanding turbulence and transport include: 1) Dynamics of dual cascades in EM turbulence; 2) Understanding `negative viscosity phenomena' in drift-ZF systems; 3) The physics of blobby turbulence (re: SOL). Here, we present a study of a simple model - that of Cahn-Hilliard Navier-Stokes (CHNS) Turbulence - which sheds important new light on these issues. The CHNS equations describe the motion of binary fluid undergoing a second order phase transition and separation called spinodal decomposition. The CHNS system and 2D MHD are analogous, as they both contain a vorticity equation and a ``diffusion'' equation. The CHNS system differs from 2D MHD by the appearance of negative diffusivity, and a nonlinear dissipative flux. An analogue of the Alfven wave exists in the 2D CHNS system. DNS shows that mean square concentration spectrum Hkψ scales as k - 7 / 3 in the elastic range. This suggests an inverse cascade of Hψ . However, the kinetic energy spectrum EkK scales as k-3 , as in the direct enstrophy cascade range for a 2D fluid (not MHD!). The resolution is that the feedback of capillarity acts only at blob interfaces. Thus, as blob merger progresses, the packing fraction of interfaces decreases, thus explaining the weakened surface tension feedback and the outcome for EkK. We also examine the evolution of scalar concentration in a single eddy in the Cahn-Hilliard system. This extends the classic problem of flux expulsion in 2D MHD. The simulation results show that a target pattern is formed. Target pattern is a meta stable state, since the band merger process continues on a time scale exponentially long relative to the eddy turnover time. Band merger resembles step merger in drift-ZF staircases. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.
Czech Academy of Sciences Publication Activity Database
Skála, Jan; Baruffa, F.; Rampp, M.
2015-01-01
Roč. 580, August (2015), A48-A48 ISSN 0004-6361 R&D Projects: GA ČR GA13-24782S Institutional support: RVO:67985815 Keywords : magnetohydrodynamics * corona * magnetic fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014
International Nuclear Information System (INIS)
Huebner, W.F.; Merts, A.L.; Magee, N.H. Jr.; Argo, M.F.
1977-08-01
The astrophysical elements opacity library includes equation of state data, various mean opacities, and 2000 values of the frequency-dependent extinction coefficients in equally spaced intervals u identical with hν/kT from 0 to 20 for 41 degeneracy parameters eta from -28 (nondegenerate) to 500 and 46 temperatures kT from 1 eV to 100 keV. Among available auxiliary quantities are the free electron density, mass density, and plasma cutoff frequency. A library-associated program can produce opacities for mixtures with up to 20 astrophysically abundant constituent elements at 4 levels of utility for the user
Introduction to Nuclear Astrophysics
International Nuclear Information System (INIS)
Iliadis, Christian
2010-01-01
In the first lecture of this volume, we will present the basic fundamental ideas regarding nuclear processes occurring in stars. We start from stellar observations, will then elaborate on some important quantum-mechanical phenomena governing nuclear reactions, continue with how nuclear reactions proceed in a hot stellar plasma and, finally, we will provide an overview of stellar burning stages. At the end, the current knowledge regarding the origin of the elements is briefly summarized. This lecture is directed towards the student of nuclear astrophysics. Our intention is to present seemingly unrelated phenomena of nuclear physics and astrophysics in a coherent framework.
Effects of the location of a biased limiter on turbulent transport in the IR-T1 tokamak plasma
International Nuclear Information System (INIS)
Alipour, R.; Ghoranneviss, M.; Salar Elahi, A.; Meshkani, S.
2017-01-01
Plasma confinement plays an important role in fusion study. Applying an external voltage using limiter biasing system is proved to be an efficient approach for plasma confinement. In this study, the position of the limiter biasing system was changed to investigate the effect of applying external voltages at different places to the plasma. The external voltages of ±200 V were applied at the different positions of edge, 5 mm and 10 mm inside the plasma. Then, the main plasma parameters were measured. The results show that the poloidal turbulent transport and radial electric field increased about 25-35% and 35-45%, respectively (specially when the limiter biasing system was placed 5 mm inside the plasma). Also, the Reynolds stress has experienced its maximum reduction about 5-10% when the limiter biasing system was at 5 mm inside the plasma and the voltage of +200 V was applied to the plasma. When the limiter biasing system move 10 mm inside the plasma, the main plasma parameters experienced more instabilities and fluctuations than other positions. (authors)
International Nuclear Information System (INIS)
Zhnag, Y.Z.; Mahajan, S.M.
1994-01-01
On basis of equal-time correlation theory (a non-perturbative approach) inviscid power laws of 2D isotropic plasma turbulences with one Lagrangian inviscid constant of motion are unambiguously solved by determining the dynamical characteristics. Two distinct types of induced transport according to the divergence of the inverse correlation length in the inviscid limit are revealed. This analysis also suggests a physically reasonable closure. The self-consistent system (a set of integral equations) for plasma filaments is investigated in detail, and is found to be a nonlinear differential eigenvalue problem for diffusion coefficient D, whereon the Dyson-like (integral) equation plays a role of boundary condition. This new type of transport is non-Bohm-like, and is very much like the quasilinear formula even in the strong turbulence regime. Physically, it arises from synchronization of shrinking squared correlation length with decorrelation time, for which the ''mixing-length'' breaks down. The shrinkage of correlation length is a characteristic pertaining to the new type of turbulence; its relationship with the turbulence observed in supershot regime on TFTR is commented on. (author). 12 refs, 2 figs
International Nuclear Information System (INIS)
Haxton, W.C.
1992-01-01
The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized
Demianski, Marek
2013-01-01
Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity
International Nuclear Information System (INIS)
Saitou, Y.; Yonesu, A.; Shinohara, S.; Ignatenko, M. V.; Kasuya, N.; Kawaguchi, M.; Terasaka, K.; Nishijima, T.; Nagashima, Y.; Kawai, Y.; Yagi, M.; Itoh, S.-I.; Azumi, M.; Itoh, K.
2007-01-01
The importance of reducing the neutral density to reach strong drift wave turbulence is clarified from the results of the extended magnetohydrodynamics and Monte Carlo simulations in a linear magnetized plasma. An upper bound of the neutral density relating to the ion-neutral collision frequency for the excitation of drift wave instability is shown, and the necessary flow velocity to excite this instability is also estimated from the neutral distributions. Measurements of the Mach number and the electron density distributions using Mach probe in the large mirror device (LMD) of Kyushu University [S. Shinohara et al., Plasma Phys. Control. Fusion 37, 1015 (1995)] are reported as well. The obtained results show a controllability of the neutral density and provide the basis for neutral density reduction and a possibility to excite strong drift wave turbulence in the LMD