WorldWideScience

Sample records for astrophysical gyrokinetics kinetic

  1. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades In Magentized Weakly Collisional Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.

    2009-04-23

    This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations

  2. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades In Magnetized Weakly Collisional Plasmas

    International Nuclear Information System (INIS)

    This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the 'inertial range' above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-field strength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations

  3. Kinetic electrons in global electromagnetic gyrokinetic particle simulations

    Science.gov (United States)

    Nishimura, Y.; Wang, W.

    2005-10-01

    Employing an electromagnetic gyrokinetic simulation model,ootnotetextZ. Lin and L. Chen, Phys. Plasmas 8, 1447 (2001). kinetic electron dynamics in global tokamak geometry is investigated. The massless fluid electron model is developed as a base. We further evolve gyrokinetic equations for non-adiabatic kinetic electrons. To obtain the magnetic perturbation, the fluid-kinetic hybrid electron model^1 employs the inverse of the Faraday's law. Instead, the Ampere's law is used as a closure relation to avoid uncertainties in estimating ue|, the moment of the electron velocities. The physics goal is to investigate the finite beta effects on the turbulent transport, as well as α particle driven turbulence.ootnotetextI. Holod, Z. Lin, et al., this conference. This work is supported by Department of Energy (DOE) Cooperative Agreement No. DE-FC02-03ER54695 (UCI), DOE Contract No. DE-AC02-76CH03073 (PPPL).

  4. Comparative study of gyrokinetic, hybrid-kinetic and fully kinetic wave physics for space plasmas

    CERN Document Server

    Told, Daniel; Muller, Florian; Astfalk, Patrick; Jenko, Frank

    2016-01-01

    A set of numerical solvers for the linear dispersion relations of the gyrokinetic, the hybrid-kinetic, and the fully kinetic model is employed to study the physics of the kinetic Alfv\\'en wave and the fast magnetosonic mode in these models. In particular, we focus on parameters that are relevant for solar wind oriented applications (using a homogeneous, isotropic background), which are characterized by wave propagation angles averaging close to 90{\\deg}. It is found that the gyrokinetic model, while lacking high-frequency solutions and cyclotron effects, faithfully reproduces the fully kinetic Alfv\\'en wave physics close to, and sometimes significantly beyond, the boundaries of its range of validity. The hybrid-kinetic model, on the other hand, is much more complete in terms of high-frequency waves, but owing to its simple electron model it is found to severely underpredict wave damping rates even on ion spatial scales across a large range of parameters, despite containing full kinetic ion physics.

  5. A new hybrid kinetic electron model for full-f gyrokinetic simulations

    Science.gov (United States)

    Idomura, Y.

    2016-05-01

    A new hybrid kinetic electron model is developed for electrostatic full-f gyrokinetic simulations of the ion temperature gradient driven trapped electron mode (ITG-TEM) turbulence at the ion scale. In the model, a full kinetic electron model is applied to the full-f gyrokinetic equation, the multi-species linear Fokker-Planck collision operator, and an axisymmetric part of the gyrokinetic Poisson equation, while in a non-axisymmetric part of the gyrokinetic Poisson equation, turbulent fluctuations are determined only by kinetic trapped electrons responses. By using this approach, the so-called ωH mode is avoided with keeping important physics such as the ITG-TEM, the neoclassical transport, the ambipolar condition, and particle trapping and detrapping processes. The model enables full-f gyrokinetic simulations of ITG-TEM turbulence with a reasonable computational cost. Comparisons between flux driven ITG turbulence simulations with kinetic and adiabatic electrons are presented. Although the similar ion temperature gradients with nonlinear upshift from linear critical gradients are sustained in quasi-steady states, parallel flows and radial electric fields are qualitatively different with kinetic electrons.

  6. Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection

    Science.gov (United States)

    Munoz Sepulveda, Patricio Alejandro; Büchner, Jörg; Kilian, Patrick; Told, Daniel; Jenko, Frank

    2016-07-01

    Fully kinetic Particle-in-Cell (PIC) simulations of (strong) guide-field reconnection can be computationally very demanding, due to the intrinsic stability and accuracy conditions required by this numerical method. One convenient approach to circumvent this issue is using gyrokinetic theory, an approximation of the Vlasov-Maxwell equations for strongly magnetized plasmas that eliminates the fast gyromotion, and thus reduces the computational cost. Although previous works have started to compare the features of reconnection between both approaches, a complete understanding of the differences is far from being complete. This knowledge is essential to discern the limitations of the gyrokinetic simulations of magnetic reconnection when applied to scenarios with moderate guide fields, such as the Solar corona, in contrast to most of the fusion/laboratory plasmas. We extend a previous work by our group, focused in the differences in the macroscopic flows, by analyzing the heating processes and non-thermal features developed by reconnection between both plasma approximations. We relate these processes by identifying some high-frequency cross-streaming instabilities appearing only in the fully kinetic approach. We characterize the effects of these phenonema such as anisotropic electron heating, beam formation and turbulence under different parameter regimes. And finally, we identify the conditions under which these instabilities tends to become negligible in the fully kinetic model, and thus a comparison with gyrokinetic theory becomes more reliable.

  7. Energy conserving continuum algorithms for kinetic & gyrokinetic simulations of plasmas

    Science.gov (United States)

    Hakim, A.; Hammett, G. W.; Shi, E.; Stoltzfus-Dueck, T.

    2015-11-01

    We present high-order, energy conserving, continuum algorithms for the solution of gyrokinetic equations for use in edge turbulence simulations. The distribution function is evolved with a discontinuous Galerkin scheme, while the fields are evolved with a continuous finite-element method. These algorithms work for a general, possibly non-canonical, Poisson bracket operator and conserve energy exactly. Benchmark simulations with ETG turbulence in 3X/2V are shown, as well as initial applications of the algorithms to turbulence in a simplified SOL geometry. Sheath boundary conditions with recycling and secondary electron emission are implemented, and a Lenard-Bernstein collision operator is included. Extension of these algorithms to full Vlasov-Maxwell equations are presented. It is shown that with a particular choice of numerical fluxes the total (particle+field) energy is conserved. Algorithms are implemented in a flexible and open-source framework, Gkeyll, which also includes fluid models, allowing potential hybrid simulations of various plasma problems. Supported by the Max-Planck/Princeton Center for Plasma Physics, and DOE Contract DE-AC02-09CH11466.

  8. Energetically consistent collisional gyrokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Burby, J. W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA; Brizard, A. J. [Department of Physics, Saint Michael' s College, Colchester, Vermont 05439, USA; Qin, H. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA; Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

    2015-10-01

    We present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory. (C) 2015 AIP Publishing LLC.

  9. Simulations of 4D edge transport and dynamics using the TEMPEST gyro-kinetic code

    Science.gov (United States)

    Rognlien, T. D.; Cohen, B. I.; Cohen, R. H.; Dorr, M. R.; Hittinger, J. A. F.; Kerbel, G. D.; Nevins, W. M.; Xiong, Z.; Xu, X. Q.

    2006-10-01

    Simulation results are presented for tokamak edge plasmas with a focus on the 4D (2r,2v) option of the TEMPEST continuum gyro-kinetic code. A detailed description of a variety of kinetic simulations is reported, including neoclassical radial transport from Coulomb collisions, electric field generation, dynamic response to perturbations by geodesic acoustic modes, and parallel transport on open magnetic-field lines. Comparison is made between the characteristics of the plasma solutions on closed and open magnetic-field line regions separated by a magnetic separatrix, and simple physical models are used to qualitatively explain the differences observed in mean flow and electric-field generation. The status of extending the simulations to 5D turbulence will be summarized. The code structure used in this ongoing project is also briefly described, together with future plans.

  10. Fully Nonlinear Edge Gyrokinetic Simulations of Kinetic Geodesic-Acoustic Modes and Boundary Flows

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X Q; Belli, E; Bodi, K; Candy, J; Chang, C S; Cohen, B I; Cohen, R H; Colella, P; Dimits, A M; Dorr, M R; Gao, Z; Hittinger, J A; Ko, S; Krasheninnikov, S; McKee, G R; Nevins, W M; Rognlien, T D; Snyder, P B; Suh, J; Umansky, M V

    2008-09-18

    We present edge gyrokinetic neoclassical simulations of tokamak plasmas using the fully nonlinear (full-f) continuum code TEMPEST. A nonlinear Boltzmann model is used for the electrons. The electric field is obtained by solving the 2D gyrokinetic Poisson Equation. We demonstrate the following: (1) High harmonic resonances (n > 2) significantly enhance geodesic-acoustic mode (GAM) damping at high-q (tokamak safety factor), and are necessary to explain both the damping observed in our TEMPEST q-scans and experimental measurements of the scaling of the GAM amplitude with edge q{sub 95} in the absence of obvious evidence that there is a strong q dependence of the turbulent drive and damping of the GAM. (2) The kinetic GAM exists in the edge for steep density and temperature gradients in the form of outgoing waves, its radial scale is set by the ion temperature profile, and ion temperature inhomogeneity is necessary for GAM radial propagation. (3) The development of the neoclassical electric field evolves through different phases of relaxation, including GAMs, their radial propagation, and their long-time collisional decay. (4) Natural consequences of orbits in the pedestal and scrape-off layer region in divertor geometry are substantial non-Maxwellian ion distributions and flow characteristics qualitatively like those observed in experiments.

  11. Benchmark Simulations of Gyro-Kinetic Electron and Fully-Kinetic Ion Model for Lower Hybrid Waves in Linear Region

    International Nuclear Information System (INIS)

    Particle-in-cell (PIC) simulation method has been proved to be a good candidate to study the interactions between plasmas and radio-frequency waves. However, for waves in the lower hybrid range of frequencies, a full PIC simulation is not efficient due to its high computational cost. In this work, a gyro-kinetic electron and fully-kinetic ion (GeFi) particle simulation model is applied to study the propagations and mode conversion processes of lower hybrid waves (LHWs) in plasmas. With this method, the computational efficiency of LHW simulations is greatly increased by using a larger grid size and time step. The simulation results in the linear regime are validated by comparison with the linear theory. (magnetically confined plasma)

  12. Benchmark studies of the gyro-Landau-fluid code and gyro-kinetic codes on kinetic ballooning modes

    Science.gov (United States)

    Tang, T. F.; Xu, X. Q.; Ma, C. H.; Bass, E. M.; Holland, C.; Candy, J.

    2016-03-01

    A Gyro-Landau-Fluid (GLF) 3 + 1 model has been recently implemented in BOUT++ framework, which contains full Finite-Larmor-Radius effects, Landau damping, and toroidal resonance [Ma et al., Phys. Plasmas 22, 055903 (2015)]. A linear global beta scan has been conducted using the JET-like circular equilibria (cbm18 series), showing that the unstable modes are kinetic ballooning modes (KBMs). In this work, we use the GYRO code, which is a gyrokinetic continuum code widely used for simulation of the plasma microturbulence, to benchmark with GLF 3 + 1 code on KBMs. To verify our code on the KBM case, we first perform the beta scan based on "Cyclone base case parameter set." We find that the growth rate is almost the same for two codes, and the KBM mode is further destabilized as beta increases. For JET-like global circular equilibria, as the modes localize in peak pressure gradient region, a linear local beta scan using the same set of equilibria has been performed at this position for comparison. With the drift kinetic electron module in the GYRO code by including small electron-electron collision to damp electron modes, GYRO generated mode structures and parity suggest that they are kinetic ballooning modes, and the growth rate is comparable to the GLF results. However, a radial scan of the pedestal for a particular set of cbm18 equilibria, using GYRO code, shows different trends for the low-n and high-n modes. The low-n modes show that the linear growth rate peaks at peak pressure gradient position as GLF results. However, for high-n modes, the growth rate of the most unstable mode shifts outward to the bottom of pedestal and the real frequency of what was originally the KBMs in ion diamagnetic drift direction steadily approaches and crosses over to the electron diamagnetic drift direction.

  13. On seed island generation and the non-linear interaction of the tearing mode with electromagnetic gyro-kinetic turbulence

    CERN Document Server

    Hornsby, William; Buchholz, Rico; Zarzoso, David; Casson, Francis; Poli, Emanuele; Peeters, Arthur

    2014-01-01

    The multi-scale interaction of self-consistently driven magnetic islands with electromagnetic turbulence is studied within the three dimensional, toroidal gyro-kinetic framework. It can be seen that, even in the presence of electromagnetic turbulence the linear structure of the mode is retained. Turbulent fluctuations do not destroy the growing island early in its development, which then maintains a coherent form as it grows. The island grows at the linear rate even though the island is significantly wider than the resonant layer width. The island is also seeded by the electromagnetic turbulence fluctuations, which provide an initial island structure that is approximately $\\rho_{i}$ in size. This process allows a magnetic island to rapidly reach a large size. A large degree of stochastisation around the separatrix, and an almost complete break down of the X-point is seen. This significantly reduces the effective island width.

  14. Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. I. Macroscopic effects of the electron flows

    International Nuclear Information System (INIS)

    In this work, we compare gyrokinetic (GK) with fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field. In particular, we analyze the limits of applicability of the GK plasma model compared to a fully kinetic description of force free current sheets for finite guide fields (bg). Here, we report the first part of an extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (βi = 0.01), it is shown that both plasma models develop magnetic reconnection with similar features in the secondary magnetic islands if a sufficiently high guide field (bg ≳ 30) is imposed in the kinetic PIC simulations. Outside of these regions, in the separatrices close to the X points, the convergence between both plasma descriptions is less restrictive (bg ≳ 5). Kinetic PIC simulations using guide fields bg ≲ 30 reveal secondary magnetic islands with a core magnetic field and less energetic flows inside of them in comparison to the GK or kinetic PIC runs with stronger guide fields. We find that these processes are mostly due to an initial shear flow absent in the GK initialization and negligible in the kinetic PIC high guide field regime, in addition to fast outflows on the order of the ion thermal speed that violate the GK ordering. Since secondary magnetic islands appear after the reconnection peak time, a kinetic PIC/GK comparison is more accurate in the linear phase of magnetic reconnection. For a high beta plasma (βi = 1.0) where reconnection rates and fluctuations levels are reduced, similar processes happen in the secondary magnetic islands in the fully kinetic description, but requiring much lower guide fields (bg ≲ 3)

  15. Verification of a magnetic island in gyro-kinetics by comparison with analytic theory

    International Nuclear Information System (INIS)

    A rotating magnetic island is imposed in the gyrokinetic code GKW, when finite differences are used for the radial direction, in order to develop the predictions of analytic tearing mode theory and understand its limitations. The implementation is verified against analytics in sheared slab geometry with three numerical tests that are suggested as benchmark cases for every code that imposes a magnetic island. The convergence requirements to properly resolve physics around the island separatrix are investigated. In the slab geometry, at low magnetic shear, binormal flows inside the island can drive Kelvin-Helmholtz instabilities which prevent the formation of the steady state for which the analytic theory is formulated

  16. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    Science.gov (United States)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2016-07-01

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me . In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me . The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location where k →.B → =0 , consistent with previous analytical and simulation studies. Here, B → is the equilibrium magnetic field and k → is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at k →.B → ≠0 . In addition, the simulation results indicate that varying mi/me , the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.

  17. Second order Gyrokinetic theory for Particle-In-Cell codes

    CERN Document Server

    Tronko, Natalia; Sonnendruecker, Eric

    2016-01-01

    The main idea of Gyrokinetic dynamical reduction consists in systematical removing of fastest scale of motion (the gyro motion) from plasma's dynamics, resulting in a considerable model simplification and gain of computing time. Gyrokinetic Maxwell-Vlasov system is broadly implemented in nowadays numerical experiments for modeling strongly magnetized plasma (both laboratory and astrophysical). Different versions of reduced set of equations exist depending on the construction of the Gyrokinetic reduction procedure and approximations assumed while their derivation. The purpose of this paper is to explicitly show the connection between the general second order gyrokinetic Maxwell-Vlasov system issued from the Modern Gyrokinetic theory derivation and the model currently implemented in global electromagnetic Particle in Cell code ORB5. Strictly necessary information about the Modern Gyrokinetic formalism is given together with the consistent derivation of the gyrokinetic Maxwell-Vlasov equations from the first pri...

  18. Astrophysics

    International Nuclear Information System (INIS)

    Volume 5 of the proceedings contains 62 papers of which 61 have been incorporated in INIS. They are divided by subject into several groups: early-type stars, late-type stars, binaries and multiple systems, theoretical considerations, ultraviolet stellar spectra, high energy astrophysics and binary stars. Many papers dealt with variable stars, star development and star models. (M.D.). 200 figs., 38 tabs., 1189 refs

  19. Second order gyrokinetic theory for particle-in-cell codes

    Science.gov (United States)

    Tronko, Natalia; Bottino, Alberto; Sonnendrücker, Eric

    2016-08-01

    The main idea of the gyrokinetic dynamical reduction consists in a systematical removal of the fast scale motion (the gyromotion) from the dynamics of the plasma, resulting in a considerable simplification and a significant gain of computational time. The gyrokinetic Maxwell-Vlasov equations are nowadays implemented in for modeling (both laboratory and astrophysical) strongly magnetized plasmas. Different versions of the reduced set of equations exist, depending on the construction of the gyrokinetic reduction procedure and the approximations performed in the derivation. The purpose of this article is to explicitly show the connection between the general second order gyrokinetic Maxwell-Vlasov system issued from the modern gyrokinetic theory and the model currently implemented in the global electromagnetic Particle-in-Cell code ORB5. Necessary information about the modern gyrokinetic formalism is given together with the consistent derivation of the gyrokinetic Maxwell-Vlasov equations from first principles. The variational formulation of the dynamics is used to obtain the corresponding energy conservation law, which in turn is used for the verification of energy conservation diagnostics currently implemented in ORB5. This work fits within the context of the code verification project VeriGyro currently run at IPP Max-Planck Institut in collaboration with others European institutions.

  20. Inertial-Range Kinetic Turbulence in Pressure-Anisotropic Astrophysical Plasmas

    CERN Document Server

    Kunz, M W; Chen, C H K; Abel, I G; Cowley, S C

    2015-01-01

    A theoretical framework for low-frequency electromagnetic (drift-)kinetic turbulence in a collisionless, multi-species plasma is presented. The result generalises reduced magnetohydrodynamics (RMHD) and kinetic RMHD (Schekochihin et al. 2009) for pressure-anisotropic plasmas, allowing for species drifts---a situation routinely encountered in the solar wind and presumably ubiquitous in hot dilute astrophysical plasmas (e.g. intracluster medium). Two main objectives are achieved. First, in a non-Maxwellian plasma, the relationships between fluctuating fields (e.g., the Alfven ratio) are order-unity modified compared to the more commonly considered Maxwellian case, and so a quantitative theory is developed to support quantitative measurements now possible in the solar wind. The main physical feature of low-frequency plasma turbulence survives the generalisation to non-Maxwellian distributions: Alfvenic and compressive fluctuations are energetically decoupled, with the latter passively advected by the former; the...

  1. Gyrokinetic linearized Landau collision operator

    DEFF Research Database (Denmark)

    Madsen, Jens

    2013-01-01

    The full gyrokinetic electrostatic linearized Landau collision operator is calculated including the equilibrium operator, which represents the effect of collisions between gyrokinetic Maxwellian particles. First, the equilibrium operator describes energy exchange between different plasma species...

  2. Generalized Covariant Gyrokinetic Dynamics of Magnetoplasmas

    International Nuclear Information System (INIS)

    A basic prerequisite for the investigation of relativistic astrophysical magnetoplasmas, occurring typically in the vicinity of massive stellar objects (black holes, neutron stars, active galactic nuclei, etc.), is the accurate description of single-particle covariant dynamics, based on gyrokinetic theory (Beklemishev et al., 1999-2005). Provided radiation-reaction effects are negligible, this is usually based on the assumption that both the space-time metric and the EM fields (in particular the magnetic field) are suitably prescribed and are considered independent of single-particle dynamics, while allowing for the possible presence of gravitational/EM perturbations driven by plasma collective interactions which may naturally arise in such systems. The purpose of this work is the formulation of a generalized gyrokinetic theory based on the synchronous variational principle recently pointed out (Tessarotto et al., 2007) which permits to satisfy exactly the physical realizability condition for the four-velocity. The theory here developed includes the treatment of nonlinear perturbations (gravitational and/or EM) characterized locally, i.e., in the rest frame of a test particle, by short wavelength and high frequency. Basic feature of the approach is to ensure the validity of the theory both for large and vanishing parallel electric field. It is shown that the correct treatment of EM perturbations occurring in the presence of an intense background magnetic field generally implies the appearance of appropriate four-velocity corrections, which are essential for the description of single-particle gyrokinetic dynamics.

  3. A very general electromagnetic gyrokinetic formalism

    CERN Document Server

    McMillan, Ben F

    2015-01-01

    We derive a gyrokinetic formalism which is very generally valid: the ordering allows both large inhomogeneities in plasma flow and magnetic field at long wavelength, like typical drift-kinetic theories, as well as fluctuations at the gyro-scale. The underlying approach is to order the vorticity to be small, and to assert that the timescales in the local plasma frame are long compared to the gyrofrequency. Unlike most other derivations, we do not treat the long and short wavelength components of the fluctuating fields separately; the single-field description permits a direct evaluation of the gyrokinetic Ampere and Poisson equations across the full range of length scales, and enables intermediate-scale phenomena to be consistently handled.

  4. A very general electromagnetic gyrokinetic formalism

    Science.gov (United States)

    McMillan, B. F.; Sharma, A.

    2016-09-01

    We derive a gyrokinetic formalism which is very generally valid: the ordering allows both large inhomogeneities in plasma flow and magnetic field at long wavelength, such as typical drift-kinetic theories, as well as fluctuations at the gyro-scale. The underlying approach is to order the vorticity to be small, and to assert that the timescales in the local plasma frame are long compared to the gyrofrequency. Unlike most other derivations, we do not treat the long and short wavelength components of the fluctuating fields separately; the single-field description defines the particle motion and their interaction with the electromagnetic field at small-scale, the system-scale, and intermediate length scales in a unified fashion. As in earlier literature, the work consists of identifying a coordinate system where the gyroangle-dependent terms are small, and using a near-unity transform to systematically find a set of coordinates where the gyroangle dependence vanishes. We derive a gyrokinetic Lagrangian which is valid where the vorticity | ∇ × ( E × B / B ) | is small compared to the gyrofrequency Ω, and the magnetic field scale length is long compared to the gyroradius; we also require that time variation be slow in an appropriately chosen reference frame. This appears to be a minimum set of constraints on a gyrokinetic theory and is substantially more general than earlier approaches. It is the general-geometry electromagnetic extension of Dimits, Phys. Plasmas 17, 055901 (2010) (which is an electrostatic formalism with a homogeneous background magnetic field). This approach also does not require a separate treatment of fluctuating and background components of the magnetic field, unlike much of the previous literature. As a consequence, the "cross terms" due to a combination of long- and short-wavelength variation, which were ignored in the earlier work (but derived in a more restrictive ordering in Parra and Calvo, Plasma Phys. Controlled Fusion 53, 045001 (2011

  5. Gyrokinetic Simulation of Low-n Tearing Modes

    Science.gov (United States)

    Chen, Yang

    2015-11-01

    Direct gyrokinetic simulation of the low-n tearing mode in a tokamak plasma has been a great computational challenge, for two reasons. First, low-n tearing modes, unlike the micro-tearing modes, have very small growth rates and very fine mode structure in the tearing layer, which requires a large number of radial grid cells and fine control of numerical dissipation. Second, kinetic electron effects are needed in the tearing layer. Here, we first present linear gyrokinetic simulation of the low-n tearing mode in cylindrical geometry. Ions are gyrokinetic and electrons are either drift kinetic or fluid. New field solvers have been developed in the gyrokinetic code GEM [Chen and Parker, J. Comput. Phys. 220, 839 (2007)] to simulate low-n modes. For the fluid electron model, an eigenmode analysis with finite Larmor radius effects has been developed to study the linear resistive tearing mode. Excellent agreement between eigenmode analysis and initial value gyrokinetic simulation is obtained. The mode growth rate is shown to scale with resistivity as η 1 / 3, the same as the semi-collisional regime in previous kinetic treatments. Simulation of the collisionless and semi-collisional tearing mode with drift kinetic electrons has been carried out with GEM's direct split-weight control-variate algorithm. It is found that a full torus simulation of the m=2, n=1 tearing mode in a present day large tokamak is still difficult with kinetic electrons, but a generalized matching technique can be used to ameliorate the problem. The radial dimension is divided into an external region and the tearing region, with the external region described by a reduced model that gives the boundary condition for the tearing region. The size of the tearing region is small compared with the minor radius, but not arbitrarily small as done in the standard asymptotic matching approach. Gyrokinetic simulation verifies the collisionless tearing mode growth rate with finite electron mass, the semi

  6. An extended hybrid magnetohydrodynamics gyrokinetic model for numerical simulation of shear Alfv\\'en waves in burning plasmas

    OpenAIRE

    Wang, X.; Briguglio, S.; Chen, L.; Di Troia, C; Fogaccia, G.; Vlad, G.; Zonca, F.

    2010-01-01

    Adopting the theoretical framework for the generalized fishbonelike dispersion relation, an extended hybrid magnetohydrodynamics gyrokinetic simulation model has been derived analytically by taking into account both thermal ion compressibility and diamagnetic effects in addition to energetic particle kinetic behaviors. The extended model has been used for implementing an eXtended version of Hybrid Magnetohydrodynamics Gyrokinetic Code (XHMGC) to study thermal ion kinetic effects on Alfv\\'enic...

  7. The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence

    CERN Document Server

    Howes, Gregory G

    2016-01-01

    Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here we present evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfven waves, or strong Alfven wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear...

  8. Fundamental Performance Improvement of Microwave Kinetic Inductance Detectors for UVOIR Astrophysics

    Science.gov (United States)

    Mazin, Benjamin

    Ultraviolet, Optical, and near-Infrared Microwave Kinetic Inductance Detectors (UVOIR MKIDs) are one of the most powerful new technologies to emerge out of the NASA APRA detectors program in the last decade. This proposal seeks to build on previous APRA grants to drastically improve the performance of UVOIR MKIDs. Like an X-ray microcalorimeter ultraviolet, optical, and near-IR (UVOIR) MKIDs are cryogenic detectors capable of detecting single photons and measuring their energy without filters or gratings. Our team has created this technology from the ground up, and fielded a 2024-pixel UVOIR MKID array on five separate observing runs at 5-m class telescopes. With 34 observing nights successfully completed and two astronomy papers published using MKID data (the first astronomy papers published using MKID data at any wavelength), UVOIR MKIDs are at TRL 5-6 for ground-based astronomy, and TRL 3 for space-based astronomy. The outstanding potential of these detectors was recognized in the recent NASA long term vision, "Enduring Quests, Daring Visions'', which recognized on page 88 that MKIDs have tremendous potential for future NASA UVOIR space missions, especially for finding Earth twins around nearby stars: "..microwave kinetic inductance detectors (MKIDs) would be a game-changing capability..''. Current UVOIR MKIDs feature array sizes in the 10-30 kpix range, energy resolution R=16 at 254 nm, ~70% pixel yield, and quantum efficiency that goes from 70% in the UV to 25% in the near-IR. These arrays, fabricated out of Titanium Nitride (TiN) on a high resistivity silicon substrate, are fully functional for ground-based science. However, our current MKIDs are far away from their theoretical limits, especially in yield (70% vs. 100%) and energy resolution (R=10 vs. R=100 at 400 nm). The yield is of especially urgent concern as missing pixels make accurate photometry difficult, especially for rapidly time variable sources like compact binaries that we have been studying

  9. Numerical Solution of the Gyrokinetic Poisson Equation in TEMPEST

    Science.gov (United States)

    Dorr, Milo; Cohen, Bruce; Cohen, Ronald; Dimits, Andris; Hittinger, Jeffrey; Kerbel, Gary; Nevins, William; Rognlien, Thomas; Umansky, Maxim; Xiong, Andrew; Xu, Xueqiao

    2006-10-01

    The gyrokinetic Poisson (GKP) model in the TEMPEST continuum gyrokinetic edge plasma code yields the electrostatic potential due to the charge density of electrons and an arbitrary number of ion species including the effects of gyroaveraging in the limit kρ1. The TEMPEST equations are integrated as a differential algebraic system involving a nonlinear system solve via Newton-Krylov iteration. The GKP preconditioner block is inverted using a multigrid preconditioned conjugate gradient (CG) algorithm. Electrons are treated as kinetic or adiabatic. The Boltzmann relation in the adiabatic option employs flux surface averaging to maintain neutrality within field lines and is solved self-consistently with the GKP equation. A decomposition procedure circumvents the near singularity of the GKP Jacobian block that otherwise degrades CG convergence.

  10. Extension of gyrokinetics to transport time scales

    CERN Document Server

    Parra, Felix I

    2013-01-01

    Gyrokinetic simulations have greatly improved our theoretical understanding of turbulent transport in fusion devices. Most gyrokinetic models in use are delta-f simulations in which the slowly varying radial profiles of density and temperature are assumed to be constant for turbulence saturation times, and only the turbulent electromagnetic fluctuations are calculated. New massive simulations are being built to self-consistently determine the radial profiles of density and temperature. However, these new codes have failed to realize that modern gyrokinetic formulations, composed of a gyrokinetic Fokker-Planck equation and a gyrokinetic quasineutrality equation, are only valid for delta-f simulations that do not reach the longer transport time scales necessary to evolve radial profiles. In tokamaks, due to axisymmetry, the evolution of the axisymmetric radial electric field is a challenging problem requiring substantial modifications to gyrokinetic treatments. In this thesis, I study the effect of turbulence o...

  11. Electromagnetic Gyrokinetic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wan, W

    2003-11-19

    A new electromagnetic kinetic electron {delta} particle simulation model has been demonstrated to work well at large values of plasma {beta} times the ion-to-electron mass ratio. The simulation is three-dimensional using toroidal flux-tube geometry and includes electron-ion collisions. The model shows accurate shear Alfven wave damping and microtearing physics. Zonal flows with kinetic electrons are found to be turbulent with the spectrum peaking at zero and having a width in the frequency range of the driving turbulence. This is in contrast with adiabatic electron cases where the zonal flows are near stationary, even though the linear behavior of the zonal flow is not significantly affected by kinetic electrons. zonal fields are found to be very weak, consistent with theoretical predictions for {beta} below the kinetic ballooning limit. Detailed spectral analysis of the turbulence data is presented in the various limits.

  12. New variables for gyrokinetic electromagnetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Alexey, E-mail: alexey.mishchenko@ipp.mpg.de; Cole, Michael; Kleiber, Ralf; Könies, Axel [Max Planck Institute for Plasma Physics, D-17491 Greifswald (Germany)

    2014-05-15

    A new approach to electromagnetic gyrokinetic simulations based on modified gyrokinetic theory is described. The method is validated using a particle-in-cell code. The Toroidal Alfvén Eigenmode at low perpendicular mode numbers, the so-called “magnetohydrodynamical limit,” has been successfully simulated using this method.

  13. Turbulence spreading in gyro-kinetic theory

    Science.gov (United States)

    Migliano, P.; Buchholz, R.; Grosshauser, S. R.; Hornsby, W. A.; Peeters, A. G.; Stauffert, O.

    2016-01-01

    In this letter a new operative definition for the turbulence intensity in connection with magnetized plasmas is given. In contrast to previous definitions the new definition satisfies a Fisher-Kolmogorov-Petrovskii-Piskunov type equation. Furthermore, explicit expressions for the turbulence intensity and the turbulence intensity flux, that allow for the first time direct numerical evaluation, are derived. A carefully designed numerical experiment for the case of a tokamak is performed to study the impact of turbulence spreading. The effective turbulence diffusion coefficient is measured to be smaller than the heat conduction coefficient and the turbulence spreading length is found to be of the order of the turbulence correlation length. The results show that turbulence spreading can play a role in the non-local flux gradient relation, or in the scaling of transport coefficients with the normalized Larmor radius, only over lengths scale of the order of the turbulence correlation length. A new turbulence convection mechanism, due to the drift connected with the magnetic field inhomogeneities, is described. The convective flux integrates to zero under the flux surface average unless there is an up-down asymmetry in the tubulence intensity. The latter asymmetry can be generated through a radial inhomogeneity or plasma rotation. It is shown that the turbulence convection can lead to a spreading of the order of the correlation length.

  14. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. I. Internal kink mode

    Energy Technology Data Exchange (ETDEWEB)

    McClenaghan, J.; Lin, Z.; Holod, I.; Deng, W.; Wang, Z. [University of California, Irvine, California 92697 (United States)

    2014-12-15

    The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.

  15. Hamiltonian gyrokinetic Vlasov–Maxwell system

    Energy Technology Data Exchange (ETDEWEB)

    Burby, J.W., E-mail: jburby@princeton.edu [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Brizard, A.J. [Department of Physics, Saint Michael' s College, Colchester, VT 05439 (United States); Morrison, P.J. [Department of Physics and Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712 (United States); Qin, H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Dept. of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-09-25

    A new formulation of electromagnetic gyrokinetics that possesses Hamiltonian form is constructed. The new formulation replaces Poisson-like equations by hyperbolic equations for the electromagnetic field with the speed of light slowed to that of the gyrokinetic vacuum, thereby significantly reducing computational cost. An energy principle is derived using the field-theoretic noncanonical Poisson bracket formulation of the theory. The energy principle is used to prove stability of the thermal equilibrium state in a uniform background magnetic field.

  16. Gyrokinetic theory for arbitrary wavelength electromagnetic modes in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Qin, H.; Tang, W.M.; Rewoldt, G.

    1997-10-15

    A linear gyrokinetic system for arbitrary wavelength electromagnetic modes is developed. A wide range of modes in inhomogeneous plasmas, such as the internal kink modes, the toroidal Alfven eigenmode (TAE) modes, and the drift modes, can be recovered from this system. The inclusion of most of the interesting physical factors into a single framework enables one to look at many familiar modes simultaneously and thus to study the modifications of and the interactions between them in a systematic way. Especially, the authors are able to investigate self-consistently the kinetic MHD phenomena entirely from the kinetic side. Phase space Lagrangian Lie perturbation methods and a newly developed computer algebra package for vector analysis in general coordinate system are utilized in the analytical derivation. In tokamak geometries, a 2D finite element code has been developed and tested. In this paper, they present the basic theoretical formalism and some of the preliminary results.

  17. Linear signatures in nonlinear gyrokinetics: interpreting turbulence with pseudospectra

    Science.gov (United States)

    Hatch, D. R.; Jenko, F.; Bañón Navarro, A.; Bratanov, V.; Terry, P. W.; Pueschel, M. J.

    2016-07-01

    A notable feature of plasma turbulence is its propensity to retain features of the underlying linear eigenmodes in a strongly turbulent state—a property that can be exploited to predict various aspects of the turbulence using only linear information. In this context, this work examines gradient-driven gyrokinetic plasma turbulence through three lenses—linear eigenvalue spectra, pseudospectra, and singular value decomposition (SVD). We study a reduced gyrokinetic model whose linear eigenvalue spectra include ion temperature gradient driven modes, stable drift waves, and kinetic modes representing Landau damping. The goal is to characterize in which ways, if any, these familiar ingredients are manifest in the nonlinear turbulent state. This pursuit is aided by the use of pseudospectra, which provide a more nuanced view of the linear operator by characterizing its response to perturbations. We introduce a new technique whereby the nonlinearly evolved phase space structures extracted with SVD are linked to the linear operator using concepts motivated by pseudospectra. Using this technique, we identify nonlinear structures that have connections to not only the most unstable eigenmode but also subdominant modes that are nonlinearly excited. The general picture that emerges is a system in which signatures of the linear physics persist in the turbulence, albeit in ways that cannot be fully explained by the linear eigenvalue approach; a non-modal treatment is necessary to understand key features of the turbulence.

  18. Dynamic Procedure for Filtered Gyrokinetic Simulations

    CERN Document Server

    Morel, Pierre; Albrecht-Marc, Michel; Carati, Daniele; Merz, Florian; Görler, Tobias; Jenko, Frank

    2011-01-01

    Large Eddy Simulations (LES) of gyrokinetic plasma turbulence are investigated as interesting candidates to decrease the computational cost. A dynamic procedure is implemented in the GENE code, allowing for dynamic optimization of the free parameters of the LES models (setting the amplitudes of dissipative terms). Employing such LES methods, one recovers the free energy and heat flux spectra obtained from highly resolved Direct Numerical Simulations (DNS). Systematic comparisons are performed for different values of the temperature gradient and magnetic shear, parameters which are of prime importance in Ion Temperature Gradient (ITG) driven turbulence. Moreover, the degree of anisotropy of the problem, that can vary with parameters, can be adapted dynamically by the method that shows Gyrokinetic Large Eddy Simulation (GyroLES) to be a serious candidate to reduce numerical cost of gyrokinetic solvers.

  19. The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence

    Science.gov (United States)

    Howes, Gregory G.

    2016-08-01

    Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here, we present evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfvén waves, or strong Alfvén wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear dynamics of Alfvén wave collisions, showing that these current sheets arise through constructive interference among the initial Alfvén waves and nonlinearly generated modes. The properties of current sheets generated by strong Alfvén wave collisions are compared to published observations of current sheets in the Earth's magnetosheath and the solar wind, and the nature of these current sheets leads to the expectation that Landau damping of the constituent Alfvén waves plays a dominant role in the damping of turbulently generated current sheets.

  20. Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.X.; Lin, Z.; Tang, W.M.; Lee, W.W.; Ethier, S.; Lewandowski, J.L.V.; Rewoldt, G.; Hahm, T.S.; Manickam, J.

    2006-01-01

    A general geometry gyro-kinetic model for particle simulation of plasma turbulence in tokamak experiments is described. It incorporates the comprehensive influence of noncircular cross section, realistic plasma profiles, plasma rotation, neoclassical (equilibrium) electric fields, and Coulomb collisions. An interesting result of global turbulence development in a shaped tokamak plasma is presented with regard to nonlinear turbulence spreading into the linearly stable region. The mutual interaction between turbulence and zonal flows in collisionless plasmas is studied with a focus on identifying possible nonlinear saturation mechanisms for zonal flows. A bursting temporal behavior with a period longer than the geodesic acoustic oscillation period is observed even in a collisionless system. Our simulation results suggest that the zonal flows can drive turbulence. However, this process is too weak to be an effective zonal flow saturation mechanism.

  1. Fluid electron, gyrokinetic ion simulations of linear internal kink and energetic particle modes

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Michael, E-mail: michael.cole@ipp.mpg.de; Mishchenko, Alexey; Könies, Axel; Kleiber, Ralf; Borchardt, Matthias [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2014-07-15

    The internal kink mode is an important plasma instability responsible for a broad class of undesirable phenomena in tokamaks, including the sawtooth cycle and fishbones. To predict and discover ways to mitigate this behaviour in current and future devices, numerical simulations are necessary. The internal kink mode can be modelled by reduced magnetohydrodynamics (MHD). Fishbone modes are an inherently kinetic and non-linear phenomenon based on the n = 1 Energetic Particle Mode (EPM), and have been studied using hybrid codes that combine a reduced MHD bulk plasma model with a kinetic treatment of fast ions. In this work, linear simulations are presented using a hybrid model which couples a fluid treatment of electrons with a gyrokinetic treatment of both bulk and fast ions. Studies of the internal kink mode in geometry relevant to large tokamak experiments are presented and the effect of gyrokinetic ions is considered. Interaction of the kink with gyrokinetic fast ions is also considered, including the destabilisation of the linear n = 1 EPM underlying the fishbone.

  2. Essential astrophysics

    CERN Document Server

    Lang, Kenneth R

    2013-01-01

    Essential Astrophysics is a book to learn or teach from, as well as a fundamental reference volume for anyone interested in astronomy and astrophysics. It presents astrophysics from basic principles without requiring any previous study of astronomy or astrophysics. It serves as a comprehensive introductory text, which takes the student through the field of astrophysics in lecture-sized chapters of basic physical principles applied to the cosmos. This one-semester overview will be enjoyed by undergraduate students with an interest in the physical sciences, such as astronomy, chemistry, engineering or physics, as well as by any curious student interested in learning about our celestial science. The mathematics required for understanding the text is on the level of simple algebra, for that is all that is needed to describe the fundamental principles. The text is of sufficient breadth and depth to prepare the interested student for more advanced specialized courses in the future. Astronomical examples are provide...

  3. Free energy cascade in gyrokinetic turbulence

    CERN Document Server

    Navarro, A Bañón; Albrecht-Marc, M; Merz, F; Görler, T; Jenko, F; Carati, D

    2010-01-01

    In gyrokinetic theory, the quadratic nonlinearity is known to play an important role in the dynamics by redistributing (in a conservative fashion) the free energy between the various active scales. In the present study, the free energy transfer is analyzed for the case of ion temperature gradient driven turbulence. It is shown that it shares many properties with the energy transfer in fluid turbulence. In particular, one finds a forward (from large to small scales), extremely local, and self-similar cascade of free energy in the plane perpendicular to the background magnetic field. These findings shed light on some fundamental properties of plasma turbulence, and encourage the development of large eddy simulation techniques for gyrokinetics.

  4. Chasing Hamiltonian structure in gyrokinetic theory

    CERN Document Server

    Burby, J W

    2015-01-01

    Hamiltonian structure is pursued and uncovered in collisional and collisionless gyrokinetic theory. A new Hamiltonian formulation of collisionless electromagnetic theory is presented that is ideally suited to implementation on modern supercomputers. The method used to uncover this structure is described in detail and applied to a number of examples, where several well-known plasma models are endowed with a Hamiltonian structure for the first time. The first energy- and momentum-conserving formulation of full-F collisional gyrokinetics is presented. In an effort to understand the theoretical underpinnings of this result at a deeper level, a \\emph{stochastic} Hamiltonian modeling approach is presented and applied to pitch angle scattering. Interestingly, the collision operator produced by the Hamiltonian approach is equal to the Lorentz operator plus higher-order terms, but does not exactly conserve energy. Conversely, the classical Lorentz collision operator is provably not Hamiltonian in the stochastic sense.

  5. Neutrino Astrophysics

    CERN Document Server

    Volpe, Cristina

    2016-01-01

    We summarize the progress in neutrino astrophysics and emphasize open issues in our understanding of neutrino flavor conversion in media. We discuss solar neutrinos, core-collapse supernova neutrinos and conclude with ultra-high energy neutrinos.

  6. Nuclear astrophysics

    CERN Document Server

    Arnould, M

    1999-01-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding some of the many facets of the Universe through the knowledge of the microcosm of the atomic nucleus. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other sub-fields of physics and chemistry have also contributed to that advance. Many long-standing problems remain to be solved, however, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endanger old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experime...

  7. Nuclear astrophysics

    International Nuclear Information System (INIS)

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized

  8. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  9. Continuum Edge Gyrokinetic Theory and Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X Q; Xiong, Z; Dorr, M R; Hittinger, J A; Bodi, K; Candy, J; Cohen, B I; Cohen, R H; Colella, P; Kerbel, G D; Krasheninnikov, S; Nevins, W M; Qin, H; Rognlien, T D; Snyder, P B; Umansky, M V

    2007-01-09

    The following results are presented from the development and application of TEMPEST, a fully nonlinear (full-f) five dimensional (3d2v) gyrokinetic continuum edge-plasma code. (1) As a test of the interaction of collisions and parallel streaming, TEMPEST is compared with published analytic and numerical results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential, and mirror ratio; and the required velocity space resolution is modest. (2) In a large-aspect-ratio circular geometry, excellent agreement is found for a neoclassical equilibrium with parallel ion flow in the banana regime with zero temperature gradient and radial electric field. (3) The four-dimensional (2d2v) version of the code produces the first self-consistent simulation results of collisionless damping of geodesic acoustic modes and zonal flow (Rosenbluth-Hinton residual) with Boltzmann electrons using a full-f code. The electric field is also found to agree with the standard neoclassical expression for steep density and ion temperature gradients in the banana regime. In divertor geometry, it is found that the endloss of particles and energy induces parallel flow stronger than the core neoclassical predictions in the SOL. (5) Our 5D gyrokinetic formulation yields a set of nonlinear electrostatic gyrokinetic equations that are for both neoclassical and turbulence simulations.

  10. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  11. Astrophysical Concepts

    CERN Document Server

    Harwit, Martin

    2006-01-01

    This classic text, aimed at senior undergraduates and beginning graduate students in physics and astronomy, presents a wide range of astrophysical concepts in sufficient depth to give the reader a quantitative understanding of the subject. Emphasizing physical concepts, the book outlines cosmic events but does not portray them in detail: it provides a series of astrophysical sketches. For this fourth edition, nearly every part of the text has been reconsidered and rewritten, new sections have been added to cover recent developments, and others have been extensively revised and brought up to date. The book begins with an outline of the scope of modern astrophysics and enumerates some of the outstanding problems faced in the field today. The basic physics needed to tackle these questions are developed in the next few chapters using specific astronomical processes as examples. The second half of the book enlarges on these topics and shows how we can obtain quantitative insight into the structure and evolution of...

  12. Nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Bruxelles (Belgium); Takahashi, K. [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1999-03-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding of the Universe, or at least some of its many faces, through the knowledge of the microcosm of the atomic nucleus. It attempts to find as many nuclear physics imprints as possible in the macrocosm, and to decipher what those messages are telling us about the varied constituent objects in the Universe at present and in the past. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress made in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other subfields of physics and chemistry have also contributed to that advance. Notwithstanding the accomplishment, many long-standing problems remain to be solved, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endangering old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experimental and theoretical components. On top of the fact that large varieties of nuclei have to be dealt with, these nuclei are immersed in highly unusual environments which may have a significant impact on their static properties, the diversity of their transmutation modes, and on the probabilities of these modes. In order to have a chance of solving some of the problems nuclear astrophysics is facing, the astrophysicists and nuclear physicists are obviously bound to put their competence in common, and have sometimes to benefit from the help of other fields of physics, like particle physics, plasma physics or solid-state physics. Given the highly varied and complex aspects, we pick here some specific nuclear

  13. Nuclear astrophysics

    Science.gov (United States)

    Arnould, M.; Takahashi, K.

    1999-03-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding of the Universe, or at least some of its many faces, through the knowledge of the microcosm of the atomic nucleus. It attempts to find as many nuclear physics imprints as possible in the macrocosm, and to decipher what those messages are telling us about the varied constituent objects in the Universe at present and in the past. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress made in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other subfields of physics and chemistry have also contributed to that advance. Notwithstanding the accomplishment, many long-standing problems remain to be solved, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endangering old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experimental and theoretical components. On top of the fact that large varieties of nuclei have to be dealt with, these nuclei are immersed in highly unusual environments which may have a significant impact on their static properties, the diversity of their transmutation modes, and on the probabilities of these modes. In order to have a chance of solving some of the problems nuclear astrophysics is facing, the astrophysicists and nuclear physicists are obviously bound to put their competence in common, and have sometimes to benefit from the help of other fields of physics, like particle physics, plasma physics or solid-state physics. Given the highly varied and complex aspects, we pick here some specific nuclear

  14. Neutrino astrophysics

    International Nuclear Information System (INIS)

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric and solar neutrinos. The major role that neutrinos play in astrophysics and cosmology is illustrated. (author)

  15. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  16. Nuclear Astrophysics

    Science.gov (United States)

    Drago, Alessandro

    2005-04-01

    The activity of the Italian nuclear physicists community in the field of Nuclear Astrophysics is reported. The researches here described have been performed within the project "Fisica teorica del nucleo e dei sistemi a multi corpi", supported by the Ministero dell'Istruzione, dell'Università e della Ricerca.

  17. Nonlinear Gyrokinetic Theory With Polarization Drift

    Energy Technology Data Exchange (ETDEWEB)

    L. Wang and T.S. Hahm

    2010-03-25

    A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equation, which explicitly includes the polarization drift, is derived systematically by using Lie-transform method. The polarization drift is introduced in the gyrocenter equations of motion, and the corresponding polarization density is derived. Contrary to the wide-spread expectation, the inclusion of the polarization drift in the gyrocenter equations of motion does not affect the expression for the polarization density significantly. This is due to modification of the gyrocenter phase-space volume caused by the electrostatic potential [T. S. Hahm, Phys. Plasmas 3, 4658 (1996)] .

  18. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    Science.gov (United States)

    Hager, Robert; Chang, C. S.

    2016-04-01

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steep edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. A new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.

  19. Gyrokinetic simulation of driftwave instability in field-reversed configuration

    Science.gov (United States)

    Fulton, D. P.; Lau, C. K.; Schmitz, L.; Holod, I.; Lin, Z.; Tajima, T.; Binderbauer, M. W.

    2016-05-01

    Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realistic pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.

  20. Observational astrophysics

    CERN Document Server

    Smith, Robert C

    1995-01-01

    Combining a critical account of observational methods (telescopes and instrumentation) with a lucid description of the Universe, including stars, galaxies and cosmology, Smith provides a comprehensive introduction to the whole of modern astrophysics beyond the solar system. The first half describes the techniques used by astronomers to observe the Universe: optical telescopes and instruments are discussed in detail, but observations at all wavelengths are covered, from radio to gamma-rays. After a short interlude describing the appearance of the sky at all wavelengths, the role of positional astronomy is highlighted. In the second half, a clear description is given of the contents of the Universe, including accounts of stellar evolution and cosmological models. Fully illustrated throughout, with exercises given in each chapter, this textbook provides a thorough introduction to astrophysics for all physics undergraduates, and a valuable background for physics graduates turning to research in astronomy.

  1. astrophysical significance

    Directory of Open Access Journals (Sweden)

    Dartois E.

    2014-02-01

    Full Text Available Clathrate hydrates, ice inclusion compounds, are of major importance for the Earth’s permafrost regions and may control the stability of gases in many astrophysical bodies such as the planets, comets and possibly interstellar grains. Their physical behavior may provide a trapping mechanism to modify the absolute and relative composition of icy bodies that could be the source of late-time injection of gaseous species in planetary atmospheres or hot cores. In this study, we provide and discuss laboratory-recorded infrared signatures of clathrate hydrates in the near to mid-infrared and the implications for space-based astrophysical tele-detection in order to constrain their possible presence.

  2. Neutrino Astrophysics

    OpenAIRE

    Haxton, W. C.

    2000-01-01

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric an...

  3. Towards optimal explicit time-stepping schemes for the gyrokinetic equations

    CERN Document Server

    Doerk, H

    2014-01-01

    The nonlinear gyrokinetic equations describe plasma turbulence in laboratory and astrophysical plasmas. To solve these equations, massively parallel codes have been developed and run on present-day supercomputers. This paper describes measures to improve the efficiency of such computations, thereby making them more realistic. Explicit Runge-Kutta schemes are considered to be well suited for time-stepping. Although the numerical algorithms are often highly optimized, performance can still be improved by a suitable choice of the time-stepping scheme, based on spectral analysis of the underlying operator. Here, an operator splitting technique is introduced to combine first-order Runge-Kutta-Chebychev schemes for the collision term with fourth-order schemes for the remaining terms. In the nonlinear regime, based on the observation of eigenvalue shifts due to the (generalized) $E\\times B$ advection term, an accurate and robust estimate for the nonlinear timestep is developed. The presented techniques can reduce si...

  4. The theory of gyrokinetic turbulence: A multiple-scales approach

    CERN Document Server

    Plunk, Gabriel G

    2009-01-01

    Gyrokinetics is a rich and rewarding playground to study some of the mysteries of modern physics. In this thesis I present work, motivated by the quest for fusion energy, which seeks to uncover some of the inner workings of turbulence in magnetized plasmas. I begin with the fundamental theory of gyrokinetics, and a novel formulation of its extension to the equations for mean-scale transport -- the equations which must be solved to determine the performance of magnetically confined fusion devices. The second project presents gyrokinetic secondary instability theory as a mechanism to bring about saturation of the basic instabilities that drive gyrokinetic turbulence. Emphasis is put on the ability for this analytic theory to predict basic properties of the nonlinear state, which can be applied to a mixing length phenomenology of transport. The final project is an application of the methods from inertial range understanding of fluid turbulence, to describe the stationary state of fully developed two-dimensional ...

  5. Gyrokinetic simulation of finite-β plasmas on parallel architectures

    International Nuclear Information System (INIS)

    Much research exists on the linear and non-linear properties of plasma microinstabilities induced by density and temperature gradients. There has been an interest in the electromagnetic or finite-β effects on these microinstabilities. This thesis focuses on the finite-β modification of an ion temperature gradient (ITG) driven microinstability in a two-dimensional shearless and sheared-slab geometries. A gyrokinetic model is employed in the numerical and analytic studies of this instability. Chapter 1 introduces the electromagnetic gyrokinetic model employed in the numerical and analytic studies of the ITG instability. Some discussion of the Klimontovich particle representation of the gyrokinetic Vlasov equation and a multiple scale model of the background plasma gradient is presented. Chapter 2 details the computational issues facing an electromagnetic gyrokinetic particle simulation of the ITG mode. An electromagnetic extension of the partially linearized algorithm is presented with a comparison of quiet particle initialization routines. Chapter 3 presents and compares algorithms for the gyrokinetic particle simulation technique on SIMD and MIMD computing platforms. Chapter 4 discusses electromagnetic gyrokinetic fluctuation theory and provides a comparison of analytic and numerical results. Chapter 5 contains a linear and a non-linear three-wave coupling analysis of the finite-β modified ITG mode in a shearless slab geometry. Comparisons are made with linear and partially linearized gyrokinetic simulation results. Chapter 6 presents results from a finite-β modified ITG mode in a sheared slab geometry. The linear dispersion relation is derived and results from an integral eigenvalue code are presented. Comparisons are made with the gyrokinetic particle code in a variety of limits with both adiabatic and non-adiabatic electrons. Evidence of ITG driven microtearing is presented

  6. Modelling the turbulent transport of angular momentum in tokamak plasmas - A quasi-linear gyrokinetic approach

    International Nuclear Information System (INIS)

    The magnetic confinement in tokamaks is for now the most advanced way towards energy production by nuclear fusion. Both theoretical and experimental studies showed that rotation generation can increase its performance by reducing the turbulent transport in tokamak plasmas. The rotation influence on the heat and particle fluxes is studied along with the angular momentum transport with the quasi-linear gyro-kinetic eigenvalue code QuaLiKiz. For this purpose, the QuaLiKiz code is modified in order to take the plasma rotation into account and compute the angular momentum flux. It is shown that QuaLiKiz framework is able to correctly predict the angular momentum flux including the E*B shear induced residual stress as well as the influence of rotation on the heat and particle fluxes. The major approximations of QuaLiKiz formalisms are reviewed, in particular the ballooning representation at its lowest order and the eigenfunctions calculated in the hydrodynamic limit. The construction of the quasi-linear fluxes is also reviewed in details and the quasi-linear angular momentum flux is derived. The different contributions to the turbulent momentum flux are studied and successfully compared both against non-linear gyro-kinetic simulations and experimental data. (author)

  7. Astrophysical cosmology

    Science.gov (United States)

    Bardeen, J. M.

    The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe.

  8. Computational Astrophysics

    Science.gov (United States)

    Mickaelian, A. M.; Astsatryan, H. V.

    2015-07-01

    Present astronomical archives that contain billions of objects, both Galactic and extragalactic, and the vast amount of data on them allow new studies and discoveries. Astrophysical Virtual Observatories (VO) use available databases and current observing material as a collection of interoperating data archives and software tools to form a research environment in which complex research programs can be conducted. Most of the modern databases give at present VO access to the stored information, which makes possible also a fast analysis and managing of these data. Cross-correlations result in revealing new objects and new samples. Very often dozens of thousands of sources hide a few very interesting ones that are needed to be discovered by comparison of various physical characteristics. VO is a prototype of Grid technologies that allows distributed data computation, analysis and imaging. Particularly important are data reduction and analysis systems: spectral analysis, SED building and fitting, modelling, variability studies, cross correlations, etc. Computational astrophysics has become an indissoluble part of astronomy and most of modern research is being done by means of it.

  9. Verification of Gyrokinetic Particle of Turbulent Simulation of Device Size Scaling Transport

    Institute of Scientific and Technical Information of China (English)

    LIN Zhihong; S. ETHIER; T. S. HAHM; W. M. TANG

    2012-01-01

    Verification and historical perspective are presented on the gyrokinetic particle simulations that discovered the device size scaling of turbulent transport and indentified the geometry model as the source of the long-standing disagreement between gyrokinetic particle and continuum simulations.

  10. Recent advances in gyrokinetic full-f particle simulation of medium sized Tokamaks with ELMFIRE

    Energy Technology Data Exchange (ETDEWEB)

    Janhunen, S.J.; Kiviniemi, T.P.; Korpio, T.; Leerink, S.; Nora, M. [Helsinki University of Technology, Euratom-Tekes Association, Espoo (Finland); Heikkinen, J.A. [VTT, Euratom-Tekes Association, Espoo (Finland); Ogando, F. [Helsinki University of Technology, Euratom-Tekes Association, Espoo (Finland); Universidad Nacional de Educacion a Distancia, Madrid (Spain)

    2010-05-15

    Large-scale kinetic simulations of toroidal plasmas based on first principles are called for in studies of transition from low to high confinement mode and internal transport barrier formation in the core plasma. Such processes are best observed and diagnosed in detached plasma conditions in mid-sized tokamaks, so gyrokinetic simulations for these conditions are warranted. A first principles test-particle based kinetic model ELMFIRE[1] has been developed and used in interpretation[1,2] of FT-2 and DIII-D experiments. In this work we summarize progress in Cyclone (DIII-D core) and ASDEX Upgrade pedestal region simulations, and show that in simulations the choice of adiabatic electrons results in quenching of turbulence (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Including collisions in gyrokinetic tokamak and stellarator simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kauffmann, Karla

    2012-04-10

    Particle and heat transport in fusion devices often exceed the neoclassical prediction. This anomalous transport is thought to be produced by turbulence caused by microinstabilities such as ion and electron-temperature-gradient (ITG/ETG) and trapped-electron-mode (TEM) instabilities, the latter ones known for being strongly influenced by collisions. Additionally, in stellarators, the neoclassical transport can be important in the core, and therefore investigation of the effects of collisions is an important field of study. Prior to this thesis, however, no gyrokinetic simulations retaining collisions had been performed in stellarator geometry. In this work, collisional effects were added to EUTERPE, a previously collisionless gyrokinetic code which utilizes the {delta}f method. To simulate the collisions, a pitch-angle scattering operator was employed, and its implementation was carried out following the methods proposed in [Takizuka and Abe 1977, Vernay Master's thesis 2008]. To test this implementation, the evolution of the distribution function in a homogeneous plasma was first simulated, where Legendre polynomials constitute eigenfunctions of the collision operator. Also, the solution of the Spitzer problem was reproduced for a cylinder and a tokamak. Both these tests showed that collisions were correctly implemented and that the code is suited for more complex simulations. As a next step, the code was used to calculate the neoclassical radial particle flux by neglecting any turbulent fluctuations in the distribution function and the electric field. Particle fluxes in the neoclassical analytical regimes were simulated for tokamak and stellarator (LHD) configurations. In addition to the comparison with analytical fluxes, a successful benchmark with the DKES code was presented for the tokamak case, which further validates the code for neoclassical simulations. In the final part of the work, the effects of collisions were investigated for slab and toroidal

  12. Nonequilibrium Gyrokinetic Fluctuation Theory and Sampling Noise in Gyrokinetic Particle-in-cell Simulations

    Energy Technology Data Exchange (ETDEWEB)

    John A. Krommes

    2007-10-09

    The present state of the theory of fluctuations in gyrokinetic GK plasmas and especially its application to sampling noise in GK particle-in-cell PIC simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism.

  13. Nonequilibrium Gyrokinetic Fluctuation Theory and Sampling Noise in Gyrokinetic Particle-in-cell Simulations

    International Nuclear Information System (INIS)

    The present state of the theory of fluctuations in gyrokinetic (GK) plasmas and especially its application to sampling noise in GK particle-in-cell (PIC) simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism

  14. Profile stiffness measurements in the Helically Symmetric experiment and comparison to nonlinear gyrokinetic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Weir, G. M.; Faber, B. J.; Likin, K. M.; Talmadge, J. N.; Anderson, D. T.; Anderson, F. S. B. [HSX Plasma Laboratory, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States)

    2015-05-15

    Stiffness measurements are presented in the quasi-helically symmetric experiment (HSX), in which the neoclassical transport is comparable to that in a tokamak and turbulent transport dominates throughout the plasma. Electron cyclotron emission is used to measure the local electron temperature response to modulated electron cyclotron resonant heating. The amplitude and phase of the heat wave through the steep electron temperature gradient (ETG) region of the plasma are used to determine a transient electron thermal diffusivity that is close to the steady-state diffusivity. The low stiffness in the region between 0.2 ≤ r/a ≤ 0.4 agrees with the scaling of the steady-state heat flux with temperature gradient in this region. These experimental results are compared to gyrokinetic calculations in a flux-tube geometry using the gyrokinetic electromagnetic numerical experiment code with two kinetic species. Linear simulations show that the ETG mode may be experimentally relevant within r/a ≤ 0.2, while the Trapped Electron Mode (TEM) is the dominant long-wavelength microturbulence instability across most of the plasma. The TEM is primarily driven by the density gradient. Non-linear calculations of the saturated heat flux driven by the TEM and ETG bracket the experimental heat flux.

  15. Introduction to Gyrokinetic Theory with Applications in Magnetic Confinement Research in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    W.M. Tang

    2005-01-03

    The present lecture provides an introduction to the subject of gyrokinetic theory with applications in the area of magnetic confinement research in plasma physics--the research arena from which this formalism was originally developed. It was presented as a component of the ''Short Course in Kinetic Theory within the Thematic Program in Partial Differential Equations'' held at the Fields Institute for Research in Mathematical Science (24 March 2004). This lecture also discusses the connection between the gyrokinetic formalism and powerful modern numerical simulations. Indeed, simulation, which provides a natural bridge between theory and experiment, is an essential modern tool for understanding complex plasma behavior. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modeling. This was enabled by two key factors: (i) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (ii) access to powerful new computational resources.

  16. First-principle description of collisional gyrokinetic turbulence in tokamak plasmas

    International Nuclear Information System (INIS)

    This dissertation starts in chapter 1 with a comprehensive introduction to nuclear fusion, its basic physics, goals and means. It especially defines the concept of a fusion plasma and some of its essential physical properties. The following chapter 2 discusses some fundamental concepts of statistical physics. It introduces the kinetic and the fluid frameworks, compares them and highlights their respective strengths and limitations. The end of the chapter is dedicated to the fluid theory. It presents two new sets of closure relations for fluid equations which retain important pieces of physics, relevant in the weakly collisional tokamak regimes: collective resonances which lead to Landau damping and entropy production. Nonetheless, since the evolution of the turbulence is intrinsically nonlinear and deeply influenced by velocity space effects, a kinetic collisional description is most relevant. First focusing on the kinetic aspect, chapter 3 introduces the so-called gyrokinetic framework along with the numerical solver - the GYSELA code - which will be used throughout this dissertation. Very generically, code solving is an initial value problem. The impact on turbulent nonlinear evolution of out of equilibrium initial conditions is discussed while studying transient flows, self-organizing dynamics and memory effects due to initial conditions. This dissertation introduces an operational definition, now of routine use in the GYSELA code, for the initial state and concludes on the special importance of the accurate calculation of the radial electric field. The GYSELA framework is further extended in chapter 4 to describe Coulomb collisions. The implementation of a collision operator acting on the full distribution function is presented. Its successful confrontation to collisional theory (neoclassical theory) is also shown. GYSELA is now part of the few gyrokinetic codes which can self-consistently address the interplay between turbulence and collisions. While

  17. Gyrokinetic Equations for Strong-Gradient Regions

    CERN Document Server

    Dimits, Andris M

    2011-01-01

    The gyrokinetic derivation of [A.M. Dimits, L.L. LoDestro, D.H.E. Dubin, Phys. Fluids B4, 274 (1992).] is extended to general equilibrium magnetic fields. The result is a practical set equations that is valid for large perturbation amplitudes [q*psi/T=O(1), where psi=phi-v*A_||/c] but which is much simpler, easier to implement, and has more straightforward expressions for its conservation properties than the equation sets derived in the large-flow orderings. Here, phi and A_|| are the perturbed electrostatic and parallel magnetic potentials, v is the particle velocity, c is the speed of light, and T is the temperature. The derivation is based on the quantity epsilon=(rho/lambda)*q*psi/T as the small expansion parameter, where rho is the gyroradius and lambda is the perpendicular wavelength. Physically, this means that the ExB velocity and the component of the parallel velocity perpendicular to the equilibrium magnetic field are small compared to the thermal velocity. For nonlinear fluctuations saturated at mi...

  18. Visual interrogation of gyrokinetic particle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Chad [Department of Computer Science, University of California at Davis (United States); Ma, K-L [Department of Computer Science, University of California at Davis (United States); Sanderson, Allen [SCI Institute, University of Utah (United States); Myers, Lee Roy Jr [SCI Institute, University of Utah (United States)

    2007-07-15

    Gyrokinetic particle simulations are critical to the study of anomalous energy transport associated with plasma microturbulence in magnetic confinement fusion experiments. The simulations are conducted on massively parallel computers and produce large quantities of particles, variables, and time steps, thus presenting a formidable challenge to data analysis tasks. We present two new visualization techniques for scientists to improve their understanding of the time-varying, multivariate particle data. One technique allows scientists to examine correlations in multivariate particle data with tightly coupled views of the data in both physical space and variable space, and to visually identify and track features of interest. The second technique, built into SCIRun, allows scientists to perform range-based queries over a series of time slices and visualize the resulting particles using glyphs. The ability to navigate the multiple dimensions of the particle data, as well as query individual or a collection of particles, enables scientists to not only validate their simulations but also discover new phenomena in their data.

  19. Visual interrogation of gyrokinetic particle simulations

    International Nuclear Information System (INIS)

    Gyrokinetic particle simulations are critical to the study of anomalous energy transport associated with plasma microturbulence in magnetic confinement fusion experiments. The simulations are conducted on massively parallel computers and produce large quantities of particles, variables, and time steps, thus presenting a formidable challenge to data analysis tasks. We present two new visualization techniques for scientists to improve their understanding of the time-varying, multivariate particle data. One technique allows scientists to examine correlations in multivariate particle data with tightly coupled views of the data in both physical space and variable space, and to visually identify and track features of interest. The second technique, built into SCIRun, allows scientists to perform range-based queries over a series of time slices and visualize the resulting particles using glyphs. The ability to navigate the multiple dimensions of the particle data, as well as query individual or a collection of particles, enables scientists to not only validate their simulations but also discover new phenomena in their data

  20. Gyrokinetic particle simulation of a field reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, D. P., E-mail: dfulton@uci.edu; Lau, C. K.; Holod, I.; Lin, Z., E-mail: zhihongl@uci.edu [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Dettrick, S. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2016-01-15

    Gyrokinetic particle simulation of the field-reversed configuration (FRC) has been developed using the gyrokinetic toroidal code (GTC). The magnetohydrodynamic equilibrium is mapped from cylindrical coordinates to Boozer coordinates for the FRC core and scrape-off layer (SOL), respectively. A field-aligned mesh is constructed for solving self-consistent electric fields using a semi-spectral solver in a partial torus FRC geometry. This new simulation capability has been successfully verified and driftwave instability in the FRC has been studied using the gyrokinetic simulation for the first time. Initial GTC simulations find that in the FRC core, the ion-scale driftwave is stabilized by the large ion gyroradius. In the SOL, the driftwave is unstable on both ion and electron scales.

  1. Nonlinear Gyrokinetics: A Powerful Tool for the Description of Microturbulence in Magnetized Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    John E. Krommes

    2010-09-27

    Gyrokinetics is the description of low-frequency dynamics in magnetized plasmas. In magnetic-confinement fusion, it provides the most fundamental basis for numerical simulations of microturbulence; there are astrophysical applications as well. In this tutorial, a sketch of the derivation of the novel dynamical system comprising the nonlinear gyrokinetic (GK) equation (GKE) and the coupled electrostatic GK Poisson equation will be given by using modern Lagrangian and Lie perturbation methods. No background in plasma physics is required in order to appreciate the logical development. The GKE describes the evolution of an ensemble of gyrocenters moving in a weakly inhomogeneous background magnetic field and in the presence of electromagnetic perturbations with wavelength of the order of the ion gyroradius. Gyrocenters move with effective drifts, which may be obtained by an averaging procedure that systematically, order by order, removes gyrophase dependence. To that end, the use of the Lagrangian differential one-form as well as the content and advantages of Lie perturbation theory will be explained. The electromagnetic fields follow via Maxwell's equations from the charge and current density of the particles. Particle and gyrocenter densities differ by an important polarization effect. That is calculated formally by a "pull-back" (a concept from differential geometry) of the gyrocenter distribution to the laboratory coordinate system. A natural truncation then leads to the closed GK dynamical system. Important properties such as GK energy conservation and fluctuation noise will be mentioned briefly, as will the possibility (and diffculties) of deriving nonlinear gyro fluid equations suitable for rapid numerical solution -- although it is probably best to directly simulate the GKE. By the end of the tutorial, students should appreciate the GKE as an extremely powerful tool and will be prepared for later lectures describing its applications to physical problems.

  2. Astrophysical Mechanisms for Pulsar Spindown

    OpenAIRE

    Addison, Eric

    2011-01-01

    Pulsars are astrophysical sources of pulsed electromagnetic radiation. The pulses have a variety of shapes in the time-domain, and the pulse energy generally peaks in the radio spectrum. The accepted models theorize that pulsars are rapidly rotating neutron stars with strong dipolar magnetic fields. Current models predict that rotational kinetic energy is extracted from the pulsar in the form of electromagnetic and gravitational radiation, causing it to slowly lose rotational speed, or “spin ...

  3. Trends in Nuclear Astrophysics

    CERN Document Server

    Schatz, Hendrik

    2016-01-01

    Nuclear Astrophysics is a vibrant field at the intersection of nuclear physics and astrophysics that encompasses research in nuclear physics, astrophysics, astronomy, and computational science. This paper is not a review. It is intended to provide an incomplete personal perspective on current trends in nuclear astrophysics and the specific role of nuclear physics in this field.

  4. Fluid and gyrokinetic simulations of impurity transport at JET

    DEFF Research Database (Denmark)

    Nordman, H; Skyman, A; Strand, P;

    2011-01-01

    Impurity transport coefficients due to ion-temperature-gradient (ITG) mode and trapped-electron mode turbulence are calculated using profile data from dedicated impurity injection experiments at JET. Results obtained with a multi-fluid model are compared with quasi-linear and nonlinear gyrokinetic...... temperature gradient, collisionality, E × B shearing, and charge fraction are investigated. It is found that for the studied ITG dominated JET discharges, both the fluid and gyrokinetic results show an increase in the impurity peaking factor for low Z-values followed by a saturation at moderate values...

  5. The theory of gyrokinetic turbulence: A multiple-scales approach

    Science.gov (United States)

    Plunk, Gabriel Galad

    Gyrokinetics is a rich and rewarding playground to study some of the mysteries of modern physics -- such as turbulence, universality, self-organization and dynamic criticality -- which are found in physical systems that are driven far from thermodynamic equilibrium. One such system is of particular importance, as it is central in the development of fusion energy -- this system is the turbulent plasma found in magnetically confined fusion device. In this thesis I present work, motivated by the quest for fusion energy, which seeks to uncover some of the inner workings of turbulence in magnetized plasmas. I present three projects, based on the work of me and my collaborators, which take a tour of different aspects and approaches to the gyrokinetic turbulence problem. I begin with the fundamental theory of gyrokinetics, and a novel formulation of its extension to the equations for mean-scale transport -- the equations which must be solved to determine the performance of Magnetically confined fusion devices. The results of this work include (1) the equations of evolution for the mean scale (equilibrium) density, temperature and magnetic field of the plasma, (2) a detailed Poynting's theorem for the energy balance and (3) the entropy balance equations. The second project presents gyrokinetic secondary instability theory as a mechanism to bring about saturation of the basic instabilities that drive gyrokinetic turbulence. Emphasis is put on the ability for this analytic theory to predict basic properties of the nonlinear state, which can be applied to a mixing length phenomenology of transport. The results of this work include (1) an integral equation for the calculation of the growth rate of the fully gyrokinetic secondary instability with finite Larmor radius (FLR) affects included exactly, (2) the demonstration of the robustness of the secondary instability at fine scales (krhoi for ion temperature gradient (ITG) turbulence and krhoe ≪ 1 for electron temperature

  6. The Structure of Plasma Heating in Gyrokinetic Alfv\\'enic Turbulence

    CERN Document Server

    Navarro, A B; Told, D; Groselj, D; Crandall, P; Jenko, F

    2016-01-01

    We analyze plasma heating in weakly collisional kinetic Alfv\\'en wave (KAW) turbulence using high resolution gyrokinetic simulations spanning the range of scales between the ion and the electron gyroradii. Real space structures that have a higher than average heating rate are shown not to be confined to current sheets. This novel result is at odds with previous studies, which use the electromagnetic work in the local electron fluid frame, i.e. $\\mathbf{J} \\!\\cdot\\! (\\mathbf{E} + \\mathbf{v}_e\\times\\mathbf{B})$, as a proxy for turbulent dissipation to argue that heating follows the intermittent spatial structure of the electric current. Furthermore, we show that electrons are dominated by parallel heating while the ions prefer the perpendicular heating route. We comment on the implications of the results presented here.

  7. Fully electromagnetic nonlinear gyrokinetic equations for tokamak edge turbulence

    DEFF Research Database (Denmark)

    Hahm, T.S.; Wang, Lu; Madsen, Jens

    2009-01-01

    An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high ExB shear has been derived. The phase-space action variational Lie...

  8. Nuclear Astrophysics: CIPANP 2006

    OpenAIRE

    Haxton, W. C.

    2006-01-01

    I review progress that has been made in nuclear astrophysics over the past few years and summarize some of the questions that remain. Topics selected include solar neutrinos, supernovae (the explosion and associated nucleosynthesis), laboratory astrophysics, and neutron star structure.

  9. Collisional tests and an extension of the TEMPEST continuum gyrokinetic code

    Science.gov (United States)

    Cohen, R. H.; Dorr, M.; Hittinger, J.; Kerbel, G.; Nevins, W. M.; Rognlien, T.; Xiong, Z.; Xu, X. Q.

    2006-04-01

    An important requirement of a kinetic code for edge plasmas is the ability to accurately treat the effect of colllisions over a broad range of collisionalities. To test the interaction of collisions and parallel streaming, TEMPEST has been compared with published analytic and numerical (Monte Carlo, bounce-averaged Fokker-Planck) results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential and mirror ratio, and the required velocity space resolution is modest. We also describe progress toward extension of (4-dimensional) TEMPEST into a ``kinetic edge transport code'' (a kinetic counterpart of UEDGE). The extension includes averaging of the gyrokinetic equations over fast timescales and approximating the averaged quadratic terms by diffusion terms which respect the boundaries of inaccessable regions in phase space. F. Najmabadi, R.W. Conn and R.H. Cohen, Nucl. Fusion 24, 75 (1984); T.D. Rognlien and T.A. Cutler, Nucl. Fusion 20, 1003 (1980).

  10. An analytical solution of the gyrokinetic equation for the calculation of neoclassical effects

    CERN Document Server

    Casolari, Andrea

    2016-01-01

    The purpose of this document is to find an analytical solution for the gyrokinetic equation under specific, simplificative hypotheses. The case I am considering is that of a collisional plasma in the presence of a chain of magnetic islands. The presence of the magnetic islands causes the onset of perturbative fields, in particular an electrostatic field, with a gradient length-scale comparable with the island's width. When the island's width w becomes comparable with the ion Larmor radius rho_i , the drift-kinetic equation is inadequate to treat the transport and the calculation of the neoclassical effects. Nevertheless, I'm going to solve the equation with the methods described by S. P. Hirshman and D. J. Sigmar in the review paper "Neoclassical transport of impurities in tokamak plasmas", which was developed to solve the drift-kinetic equation in different regimes of collisionality. I'm going to remind first the drift-kinetic theory, which was largely used to study classical and neoclassical transport in ma...

  11. Comparison of Measurements of Profile Stiffness in HSX to Nonlinear Gyrokinetic Calculations

    Science.gov (United States)

    Weir, Gavin

    2014-10-01

    Tokamaks and stellarators have observed significant differences in profile stiffness, defined as the ratio of the transient thermal diffusivity obtained from heat pulse propagation to the diffusivity obtained from steady-state power balance. Typically, stellarators have measured stiffness values below 2 and tokamaks have observed stiffness greater than 4. In this paper we present the first results on stiffness measurements in the quasihelically symmetric experiment HSX in which the neoclassical transport is comparable to that in a tokamak and turbulent transport dominates throughout the plasma. Electron Cyclotron Emission (ECE) is used to measure the local electron temperature perturbation from modulating the ECRH system on HSX. Spectral analysis of the ECE data yields a profile of the perturbed amplitude and a resulting transient electron thermal diffusivity that is close to the steady-state diffusivity. This evidence of a lack of stiffness in HSX agrees with the scaling of the steady-state heat flux with temperature gradient. The experimental data is compared to gyrokinetic calculations using the GENE code with two kinetic species. Linear calculations demonstrate that the Trapped Electron Mode (TEM) is the dominant long-wavelength microturbulence instability with growth rates that scale linearly with electron temperature gradient. Nonlinear gyrokinetic flux tube simulations indicate that the TEM contributes significantly to the saturated heat fluxes in HSX, shifting the transport-carrying wavenumbers to larger values than in typical Ion Temperature Gradient (ITG) turbulence. A set of nonlinear simulations are being executed, examining the saturated nonlinear heat flux as a function of the electron temperature gradient, to obtain a stiffness value from the simulations to compare with experimental results. This work is supported by DOE Grant DE-FG02-93ER54222.

  12. Gyrokinetic stability theory of electron-positron plasmas

    CERN Document Server

    Helander, Per

    2016-01-01

    The linear gyrokinetic stability properties of magnetically confined electron-positron plasmas are investigated in the parameter regime most likely to be relevant for the first laboratory experiments involving such plasmas, where the density is small enough that collisions can be ignored and the Debye length substantially exceeds the gyroradius. Although the plasma beta is very small, electromagnetic effects are retained, but magnetic compressibility can be neglected. The work of a previous publication (Helander, 2014) is thus extended to include electromagnetic instabilities, which are of importance in closed-field-line configurations, where such instabilities can occur at arbitrarily low pressure. It is found that gyrokinetic instabilities are completely absent if the magnetic field is homogeneous: any instability must involve magnetic curvature or shear. Furthermore, in dipole magnetic fields, the stability threshold for interchange modes with wavelengths exceeding the Debye radius coincides with that in i...

  13. Nonlinear electromagnetic gyrokinetic particle simulations with the electron hybrid model

    Science.gov (United States)

    Nishimura, Y.; Lin, Z.; Chen, L.; Hahm, T.; Wang, W.; Lee, W.

    2006-10-01

    The electromagnetic model with fluid electrons is successfully implemented into the global gyrokinetic code GTC. In the ideal MHD limit, shear Alfven wave oscillation and continuum damping is demonstrated. Nonlinear electromagnetic simulation is further pursued in the presence of finite ηi. Turbulence transport in the AITG unstable β regime is studied. This work is supported by Department of Energy (DOE) Grant DE-FG02-03ER54724, Cooperative Agreement No. DE-FC02-04ER54796 (UCI), DOE Contract No. DE-AC02-76CH03073 (PPPL), and in part by SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas. Z. Lin, et al., Science 281, 1835 (1998). F. Zonca and L. Chen, Plasma Phys. Controlled Fusion 30, 2240 (1998); G. Zhao and L. Chen, Phys. Plasmas 9, 861 (2002).

  14. The energetic coupling of scales in gyrokinetic plasma turbulence

    International Nuclear Information System (INIS)

    In magnetized plasma turbulence, the couplings of perpendicular spatial scales that arise due to the nonlinear interactions are analyzed from the perspective of the free-energy exchanges. The plasmas considered here, with appropriate ion or electron adiabatic electro-neutrality responses, are described by the gyrokinetic formalism in a toroidal magnetic geometry. Turbulence develops due to the electrostatic fluctuations driven by temperature gradient instabilities, either ion temperature gradient (ITG) or electron temperature gradient (ETG). The analysis consists in decomposing the system into a series of scale structures, while accounting separately for contributions made by modes possessing special symmetries (e.g., the zonal flow modes). The interaction of these scales is analyzed using the energy transfer functions, including a forward and backward decomposition, scale fluxes, and locality functions. The comparison between the ITG and ETG cases shows that ETG turbulence has a more pronounced classical turbulent behavior, exhibiting a stronger energy cascade, with implications for gyrokinetic turbulence modeling

  15. Comparison of BES measurements of ion-scale turbulence with direct, gyrokinetic simulations of MAST L-mode plasmas

    CERN Document Server

    Field, A R; Ghim, Y-c; Hill, P; McMillan, B; Roach, C M; Saarelma, S; Schekochihin, A A; Zoletnik, S

    2013-01-01

    Observations of ion-scale (k_y*rho_i <= 1) density turbulence of relative amplitude dn_e/n_e <= 0.2% are available on the Mega Amp Spherical Tokamak (MAST) using a 2D (8 radial x 4 poloidal channel) imaging Beam Emission Spectroscopy (BES) diagnostic. Spatial and temporal characteristics of this turbulence, i.e., amplitudes, correlation times, radial and perpendicular correlation lengths and apparent phase velocities of the density contours, are determined by means of correlation analysis. For a low-density, L-mode discharge with strong equilibrium flow shear exhibiting an internal transport barrier (ITB) in the ion channel, the observed turbulence characteristics are compared with synthetic density turbulence data generated from global, non-linear, gyro-kinetic simulations using the particle-in-cell (PIC) code NEMORB. This validation exercise highlights the need to include increasingly sophisticated physics, e.g., kinetic treatment of trapped electrons, equilibrium flow shear and collisions, to reprodu...

  16. A fully nonlinear characteristic method for gyrokinetic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Parker, S.E.; Lee, W.W.

    1992-07-01

    We present a new scheme which evolves the perturbed part of the distribution function along a set of characteristics that solves the fully nonlinear gyrokinetic equations. This nonlinear characteristic method for particle simulation is an extension of the partially linear weighting scheme, and may be considered an improvement of existing {delta} f methods. Some of the features of this new method are: the ability to keep all of the nonlinearities, particularly those associated with parallel acceleration; the loading of the physical equilibrium distribution function f{sub o} (e.g., a Maxwellian), with or without the multiple spatial scale approximation; the use of a single of trajectories for the particles; and also, the retention of the conservation properties of the original gyrokinetic system in the numerically converged limit. Therefore, one can take advantage of the low noise property of the weighting scheme together with the quiet start techniques to simulate weak instabilities, with a substantially reduced number of particles than required for a conventional simulation. The new method is used to study a one dimensional drift wave model which isolates the parallel velocity nonlinearity. A mode coupling calculation of the saturation mechanism is given, which is in good agreement with the simulation results and predicts a considerably lower saturation level then the estimate of Sagdeev and Galeev. Finally, we extend the nonlinear characteristic method to the electromagnetic gyrokinetic equations in general geometry.

  17. Effects of collisions on conservation laws in gyrokinetic field theory

    International Nuclear Information System (INIS)

    Effects of collisions on conservation laws for toroidal plasmas are investigated based on the gyrokinetic field theory. Associating the collisional system with a corresponding collisionless system at a given time such that the two systems have the same distribution functions and electromagnetic fields instantaneously, it is shown how the collisionless conservation laws derived from Noether's theorem are modified by the collision term. Effects of the external source term added into the gyrokinetic equation can be formulated similarly with the collisional effects. Particle, energy, and toroidal momentum balance equations including collisional and turbulent transport fluxes are systematically derived using a novel gyrokinetic collision operator, by which the collisional change rates of energy and canonical toroidal angular momentum per unit volume in the gyrocenter space can be given in the conservative forms. The ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work are shown to include classical, neoclassical, and turbulent transport fluxes which agree with those derived from conventional recursive formulations

  18. Verification of gyrokinetic microstability codes with an LHD configuration

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, D. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Nunami, M. [National Inst. for Fusion Science (Japan); Watanabe, T. -H. [Nagoya Univ. (Japan); Sugama, H. [National Inst. for Fusion Science (Japan); Tanaka, K. [National Inst. for Fusion Science (Japan)

    2014-11-01

    We extend previous benchmarks of the GS2 and GKV-X codes to verify their algorithms for solving the gyrokinetic Vlasov-Poisson equations for plasma microturbulence. Code benchmarks are the most complete way of verifying the correctness of implementations for the solution of mathematical models for complex physical processes such as those studied here. The linear stability calculations reported here are based on the plasma conditions of an ion-ITB plasma in the LHD configuration. The plasma parameters and the magnetic geometry differ from previous benchmarks involving these codes. We find excellent agreement between the independently written pre-processors that calculate the geometrical coefficients used in the gyrokinetic equations. Grid convergence tests are used to establish the resolution and domain size needed to obtain converged linear stability results. The agreement of the frequencies, growth rates and eigenfunctions in the benchmarks reported here provides additional verification that the algorithms used by the GS2 and GKV-X codes are correctly finding the linear eigenvalues and eigenfunctions of the gyrokinetic Vlasov-Poisson equations.

  19. Hydrodynamic Instability, Integrated Code, Laboratory Astrophysics, and Astrophysics

    Science.gov (United States)

    Takabe, Hideaki

    2016-10-01

    This is an article for the memorial lecture of Edward Teller Medal and is presented as memorial lecture at the IFSA03 conference held on September 12th, 2003, at Monterey, CA. The author focuses on his main contributions to fusion science and its extension to astrophysics in the field of theory and computation by picking up five topics. The first one is the anomalous resisitivity to hot electrons penetrating over-dense region through the ion wave turbulence driven by the return current compensating the current flow by the hot electrons. It is concluded that almost the same value of potential as the average kinetic energy of the hot electrons is realized to prevent the penetration of the hot electrons. The second is the ablative stabilization of Rayleigh-Taylor instability at ablation front and its dispersion relation so-called Takabe formula. This formula gave a principal guideline for stable target design. The author has developed an integrated code ILESTA (ID & 2D) for analyses and design of laser produced plasma including implosion dynamics. It is also applied to design high gain targets. The third is the development of the integrated code ILESTA. The forth is on Laboratory Astrophysics with intense lasers. This consists of two parts; one is review on its historical background and the other is on how we relate laser plasma to wide-ranging astrophysics and the purposes for promoting such research. In relation to one purpose, I gave a comment on anomalous transport of relativistic electrons in Fast Ignition laser fusion scheme. Finally, I briefly summarize recent activity in relation to application of the author's experience to the development of an integrated code for studying extreme phenomena in astrophysics.

  20. Astrophysical Hydrodynamics An Introduction

    CERN Document Server

    Shore, Steven N

    2007-01-01

    This latest edition of the proven and comprehensive treatment on the topic -- from the bestselling author of ""Tapestry of Modern Astrophysics"" -- has been updated and revised to reflect the newest research results. Suitable for AS0000 and AS0200 courses, as well as advanced astrophysics and astronomy lectures, this is an indispensable theoretical backup for studies on celestial body formation and astrophysics. Includes exercises with solutions.

  1. Astrophysics and Space Science

    Science.gov (United States)

    Mould, Jeremy; Brinks, Elias; Khanna, Ramon

    2015-08-01

    Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science, and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis, and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will not longer be considered.The journal also publishes topical collections consisting of invited reviews and original research papers selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers.Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.Astrophysics and Space Science has an Impact Factor of 2.4 and features short editorial turnaround times as well as short publication times after acceptance, and colour printing free of charge. Published by Springer the journal has a very wide online dissemination and can be accessed by researchers at a very large number of institutes worldwide.

  2. Astrophysical Quark Matter

    OpenAIRE

    Xu, R. X.

    2004-01-01

    The quark matter may have great implications in astrophysical studies, which could appear in the early Universe, in compact stars, and/or as cosmic rays. After a general review of astrophysical quark matter, the density-dominated quark matter is focused.

  3. Relativistic Astrophysics; Astrofisica Relativista

    Energy Technology Data Exchange (ETDEWEB)

    Font, J. A.

    2015-07-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  4. Gyrokinetic particle simulation of ion temperature gradient drift instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.W.; Tang, W.M.

    1987-04-01

    Ion temperature gradient drift instabilities have been investigated using gyrokinetic particle simulation techniques for the purpose of identifying the mechanisms responsible for their nonlinear saturation as well as the associated anomalous transport. For simplicity, the simulation has been carried out in a shear-free slab geometry, where the background pressure gradient is held fixed in time to represent quasistatic profiles typical of tokamak discharges. It is found that the nonlinearly generated zero-frequency responses for the ion parallel momentum and pressure are the dominant mechanisms giving rise to saturation. This is supported by the excellent agreement between the simulation results and those obtained from mode coupling calculations.

  5. Astrophysics in a nutshell

    CERN Document Server

    Maoz, Dan

    2007-01-01

    A concise but thorough introduction to the observational data and theoretical concepts underlying modern astronomy, Astrophysics in a Nutshell is designed for advanced undergraduate science majors taking a one-semester course. This well-balanced and up-to-date textbook covers the essentials of modern astrophysics--from stars to cosmology--emphasizing the common, familiar physical principles that govern astronomical phenomena, and the interplay between theory and observation. In addition to traditional topics such as stellar remnants, galaxies, and the interstellar medium, Astrophysics in a N

  6. An invitation to astrophysics

    CERN Document Server

    Padmanabhan, Thanu

    2006-01-01

    This unique book provides a clear and lucid description of several aspects of astrophysics and cosmology in a language understandable to a physicist or beginner in astrophysics. It presents the key topics in all branches of astrophysics and cosmology in a simple and concise language. The emphasis is on currently active research areas and exciting new frontiers rather than on more pedantic topics. Many complicated results are introduced with simple, novel derivations which strengthen the conceptual understanding of the subject. The book also contains over one hundred exercises which will help s

  7. A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ku, S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hager, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Chang, C. S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kwon, J. M. [National Fusion Research Institute, Republic of Korea; Parker, S. E. [University of Colorado Boulder, USA

    2016-06-01

    In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles provide scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.

  8. A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma

    Science.gov (United States)

    Ku, S.; Hager, R.; Chang, C. S.; Kwon, J. M.; Parker, S. E.

    2016-06-01

    In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles provide scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation - e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others - can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function - driven by ionization, charge exchange and wall loss - is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.

  9. Multi-code benchmark of global gyrokinetic electromagnetic instabilities

    Science.gov (United States)

    Goerler, Tobias; Bottino, Alberto; Hornsby, William A.; Kleiber, Ralf; Tronko, Natalia; Grandgirard, Virginie; Norscini, Claudia; Sonnendruecker, Eric

    2015-11-01

    Considering the recent major extensions of global gyrokinetic codes towards a comprehensive and self-consistent treatment of electromagnetic (EM) effects, corresponding verification tests are obvious and necessary steps to be taken. While a number of (semi-)analytic test cases and benchmarks exist in the axisymmetric limit, microinstabilities and particularly EM turbulence are rarely addressed. In order to remedy this problem, a hierarchical linear gyrokinetic benchmark study is presented starting with electrostatic ion temperature gradient microinstabilities with adiabatic electron response and progressing finally to the characterization of fully EM instabilities as a function of β. The inter-code comparison involves contributions from Eulerian Vlasov, Lagrangian PIC, and Semi-Lagrange codes at least in one level of this verification exercise, thus confirming a high degree of reliability for the implementations that has rarely been achieved before in this context. Additionally, possible extensions of this benchmark into the physically more relevant nonlinear turbulence regime will be discussed, e.g., relaxation problems or gradient-driven setups. This work has been carried out within the framework of the EUROfusion Consortium.

  10. Fully Electromagnetic Nonlinear Gyrokinetic Equations for Tokamak Edge Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, T. S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wang, Lu [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Madsen, J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2008-08-01

    An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high E Χ B shear has been derived. The phase-space action variational Lie perturbation method ensures the preservation of the conservation laws of the underlying Vlasov-Maxwell system. Our generalized ordering takes ρi<< ρθ¡ ~ LE ~ Lp << R (here ρi is the thermal ion Larmor radius and ρθ¡ = B/Bθ] ρi), as typically observed in the tokamak H-mode edge, with LE and Lp being the radial electric field and pressure gradient lengths. We take κ perpendicular to ρi ~ 1 for generality, and keep the relative fluctuation amplitudes eδφ /Τi ~ δΒ / Β up to the second order. Extending the electrostatic theory in the presence of high E Χ B shear [Hahm, Phys. Plasmas 3, 4658 (1996)], contributions of electromagnetic fluctuations to the particle charge density and current are explicitly evaluated via pull-back transformation from the gyrocenter distribution function in the gyrokinetic Maxwell's equation.

  11. Transport and discrete particle noise in gyrokinetic simulations

    Science.gov (United States)

    Jenkins, Thomas; Lee, W. W.

    2006-10-01

    We present results from our recent investigations regarding the effects of discrete particle noise on the long-time behavior and transport properties of gyrokinetic particle-in-cell simulations. It is found that the amplitude of nonlinearly saturated drift waves is unaffected by discreteness-induced noise in plasmas whose behavior is dominated by a single mode in the saturated state. We further show that the scaling of this noise amplitude with particle count is correctly predicted by the fluctuation-dissipation theorem, even though the drift waves have driven the plasma from thermal equilibrium. As well, we find that the long-term behavior of the saturated system is unaffected by discreteness-induced noise even when multiple modes are included. Additional work utilizing a code with both total-f and δf capabilities is also presented, as part of our efforts to better understand the long- time balance between entropy production, collisional dissipation, and particle/heat flux in gyrokinetic plasmas.

  12. Direct identification of predator-prey dynamics in gyrokinetic simulations

    Science.gov (United States)

    Kobayashi, Sumire; Gürcan, Özgür D.; Diamond, Patrick H.

    2015-09-01

    The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varying level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.

  13. Direct identification of predator-prey dynamics in gyrokinetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Sumire, E-mail: sumire.kobayashi@lpp.polytechnique.fr; Gürcan, Özgür D [Laboratoire de Physique des Plasmas, CNRS, Paris-Sud, Ecole Polytechnique, UMR7648, F-91128 Palaiseau (France); Diamond, Patrick H. [University of California, San Diego, La Jolla, California 92093-0319 (United States)

    2015-09-15

    The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varying level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.

  14. Graphics Processing Unit Acceleration of Gyrokinetic Turbulence Simulations

    Science.gov (United States)

    Hause, Benjamin; Parker, Scott; Chen, Yang

    2013-10-01

    We find a substantial increase in on-node performance using Graphics Processing Unit (GPU) acceleration in gyrokinetic delta-f particle-in-cell simulation. Optimization is performed on a two-dimensional slab gyrokinetic particle simulation using the Portland Group Fortran compiler with the OpenACC compiler directives and Fortran CUDA. Mixed implementation of both Open-ACC and CUDA is demonstrated. CUDA is required for optimizing the particle deposition algorithm. We have implemented the GPU acceleration on a third generation Core I7 gaming PC with two NVIDIA GTX 680 GPUs. We find comparable, or better, acceleration relative to the NERSC DIRAC cluster with the NVIDIA Tesla C2050 computing processor. The Tesla C 2050 is about 2.6 times more expensive than the GTX 580 gaming GPU. We also see enormous speedups (10 or more) on the Titan supercomputer at Oak Ridge with Kepler K20 GPUs. Results show speed-ups comparable or better than that of OpenMP models utilizing multiple cores. The use of hybrid OpenACC, CUDA Fortran, and MPI models across many nodes will also be discussed. Optimization strategies will be presented. We will discuss progress on optimizing the comprehensive three dimensional general geometry GEM code.

  15. Neutrino physics and astrophysics

    International Nuclear Information System (INIS)

    The plenary reports of Neutrino '80 are presented by experts in neutrino physics and astrophysics. Their International Conference on Neutrino Physics and Astrophysics was held in Erice (Italy), June 23 through 28, 1980. The proceedings include reviews of part research, the history of neutrino research and coverage of recent results and theoretical speculations. Topics include high- and low-energy neutrino astrophysics, weak charged and neutral currents, low and intermediate weak interactions, neutrino oscillations, and parity violation in atoms and nuclei conservation laws. Weak interactions in lepton-lepton and lepton-nucleon collisions, beam dump experiments, new theoretical ideas, and future developments in accelerators and detectors are also included. The topics are introduced by a historical perspective section and then grouped under the headings of neutrino astrophysics, weak charged currents, weak neutral currents, low and intermediate energy interactions, conservation laws, weak interactions in electron and hadron experiments, and a final section on future accelerator, new neutrino detection technology and concluding remarks

  16. Topics in Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Some topics in nuclear astrophysics are discussed, e.g.: highly evolved stellar cores, stellar evolution (through the temperature analysis of stellar surface), nucleosynthesis and finally the solar neutrino problem. (L.C.)

  17. Astrophysics Decoding the cosmos

    CERN Document Server

    Irwin, Judith A

    2007-01-01

    Astrophysics: Decoding the Cosmos is an accessible introduction to the key principles and theories underlying astrophysics. This text takes a close look at the radiation and particles that we receive from astronomical objects, providing a thorough understanding of what this tells us, drawing the information together using examples to illustrate the process of astrophysics. Chapters dedicated to objects showing complex processes are written in an accessible manner and pull relevant background information together to put the subject firmly into context. The intention of the author is that the book will be a 'tool chest' for undergraduate astronomers wanting to know the how of astrophysics. Students will gain a thorough grasp of the key principles, ensuring that this often-difficult subject becomes more accessible.

  18. The anisotropic redistribution of free energy for gyrokinetic plasma turbulence in a Z-pinch

    CERN Document Server

    Navarro, Alejandro Banon; Jenko, Frank

    2015-01-01

    For a Z-pinch geometry, we report on the nonlinear redistribution of free energy across scales perpendicular to the magnetic guide field, for a turbulent plasma described in the framework of gyrokinetics. The analysis is performed using a local flux-surface approximation, in a regime dominated by electrostatic fluctuations driven by the entropy mode, with both ion and electron species being treated kinetically. To explore the anisotropic nature of the free energy redistribution caused by the emergence of zonal flows, we use a polar coordinate representation for the field-perpendicular directions and define an angular density for the scale flux. Positive values for the classically defined (angle integrated) scale flux, which denote a direct energy cascade, are shown to be also composed of negative angular sections, a fact that impacts our understanding of the backscatter of energy and the way in which it enters the modeling of sub-grid scales for turbulence. A definition for the flux of free energy across each...

  19. Gyrokinetic Particle Simulation of Compressible Electromagnetic Turbulence in High-β Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhihong

    2014-03-13

    Supported by this award, the PI and his research group at the University of California, Irvine (UCI) have carried out computational and theoretical studies of instability, turbulence, and transport in laboratory and space plasmas. Several massively parallel, gyrokinetic particle simulation codes have been developed to study electromagnetic turbulence in space and laboratory plasmas. In space plasma projects, the simulation codes have been successfully applied to study the spectral cascade and plasma heating in kinetic Alfven wave turbulence, the linear and nonlinear properties of compressible modes including mirror instability and drift compressional mode, and the stability of the current sheet instabilities with finite guide field in the context of collisionless magnetic reconnection. The research results have been published in 25 journal papers and presented at many national and international conferences. Reprints of publications, source codes, and other research-related information are also available to general public on the PI’s webpage (http://phoenix.ps.uci.edu/zlin/). Two PhD theses in space plasma physics are highlighted in this report.

  20. The anisotropic redistribution of free energy for gyrokinetic plasma turbulence in a Z-pinch

    Science.gov (United States)

    Navarro, Alejandro Bañón; Teaca, Bogdan; Jenko, Frank

    2016-04-01

    For a Z-pinch geometry, we report on the nonlinear redistribution of free energy across scales perpendicular to the magnetic guide field, for a turbulent plasma described in the framework of gyrokinetics. The analysis is performed using a local flux-surface approximation, in a regime dominated by electrostatic fluctuations driven by the entropy mode, with both ion and electron species being treated kinetically. To explore the anisotropic nature of the free energy redistribution caused by the emergence of zonal flows, we use a polar coordinate representation for the field-perpendicular directions and define an angular density for the scale flux. Positive values for the classically defined (angle integrated) scale flux, which denote a direct energy cascade, are shown to be also composed of negative angular sections, a fact that impacts our understanding of the backscatter of energy and the way in which it enters the modeling of sub-grid scales for turbulence. A definition for the flux of free energy across each perpendicular direction is introduced as well, which shows that the redistribution of energy in the presence of zonal flows is highly anisotropic.

  1. The non-linear evolution of the tearing mode in electromagnetic turbulence using gyrokinetic simulations

    Science.gov (United States)

    Hornsby, W. A.; Migliano, P.; Buchholz, R.; Grosshauser, S.; Weikl, A.; Zarzoso, D.; Casson, F. J.; Poli, E.; Peeters, A. G.

    2016-01-01

    The non-linear evolution of a magnetic island is studied using the Vlasov gyro-kinetic code GKW. The interaction of electromagnetic turbulence with a self-consistently growing magnetic island, generated by a tearing unstable {{Δ }\\prime}>0 current profile, is considered. The turbulence is able to seed the magnetic island and bypass the linear growth phase by generating structures that are approximately an ion gyro-radius in width. The non-linear evolution of the island width and its rotation frequency, after this seeding phase, is found to be modified and is dependent on the value of the plasma beta and equilibrium pressure gradients. At low values of beta the island evolves largely independent of the turbulence, while at higher values the interaction has a dramatic effect on island growth, causing the island to grow exponentially at the growth rate of its linear phase, even though the island is larger than linear theory validity. The turbulence forces the island to rotate in the ion-diamagnetic direction as opposed to the electron diamagnetic direction in which it rotates when no turbulence is present. In addition, it is found that the mode rotation slows as the island grows in size.

  2. The non-linear evolution of the tearing mode in electromagnetic turbulence using gyrokinetic simulations

    CERN Document Server

    Hornsby, William A; Buchholz, Rico; Grosshauser, Stefan; Weikl, Arne; Zarzoso, David; Casson, Francis J; Poli, Emanuele; Peeters, Artur G

    2015-01-01

    The non-linear evolution of a magnetic island is studied using the Vlasov gyro-kinetic code GKW. The interaction of electromagnetic turbulence with a self-consistently growing magnetic island, generated by a tearing unstable $\\Delta' > 0$ current profile, is considered. The turbulence is able to seed the magnetic island and bypass the linear growth phase by generating structures that are approximately an ion gyro-radius in width. The non-linear evolution of the island width and its rotation frequency, after this seeding phase, is found to be modified and is dependent on the value of the plasma beta and equilibrium pressure gradients. At low values of beta the island evolves largely independent of the turbulence, while at higher values the interaction has a dramatic effect on island growth, causing the island to grow exponentially at the growth rate of its linear phase, even though the island is larger than linear theory validity. The turbulence forces the island to rotate in the ion-diamagnetic direction as o...

  3. Accelerator Experiments for Astrophysics

    OpenAIRE

    Ng, Johnny S. T.

    2003-01-01

    Many recent discoveries in astrophysics involve phenomena that are highly complex. Carefully designed experiments, together with sophisticated computer simulations, are required to gain insights into the underlying physics. We show that particle accelerators are unique tools in this area of research, by providing precision calibration data and by creating extreme experimental conditions relevant for astrophysics. In this paper we discuss laboratory experiments that can be carried out at the S...

  4. Theoretical physics and astrophysics

    CERN Document Server

    Ginzburg, VL

    1979-01-01

    The aim of this book is to present, on the one hand various topics in theoretical physics in depth - especially topics related to electrodynamics - and on the other hand to show how these topics find applications in various aspects of astrophysics. The first text on theoretical physics and astrophysical applications, it covers many recent advances including those in X-ray, &ggr;-ray and radio-astronomy, with comprehensive coverage of the literature

  5. Analytic studies in nuclear astrophysics

    Science.gov (United States)

    Pizzochero, Pierre

    Five studies are presented in nuclear astrophysics, which deal with different stages of stellar evolution and which use analytic techniques as opposed to numerical ones. Two problems are described in neutrino astrophysics: the solar-neutrino puzzle is analyzed in the framework of the MSW mechanism for the enhancement of neutrino oscillations in matter; and the cooling of neutron stars is studied by calculating the neutrino emissivity from strangeness condensation. Radiative transfer is then examined as applied to SN1987A: its early spectrum and bolometric corrections are calculated by developing an analytic model which can describe both the extended nature of the envelope and the non-LTE state of the radiation field in the scattering-dominated early atmosphere; and a model-independent relation is derived between mass and kinetic energy for the hydrogen envelope of SN1987A, using only direct observations of its luminosity and photospheric velocity. Finally, an analytic approach is presented to relate the softness of the EOS of dense nuclear matter in the core of a supernova, the hydrostatic structure of such core and the initial strength of the shock wave.

  6. Laboratory Astrophysics White Paper

    Science.gov (United States)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  7. Gyrokinetic particle simulation of microturbulence for general magnetic geometry and experimental profiles

    International Nuclear Information System (INIS)

    Developments in gyrokinetic particle simulation enable the gyrokinetic toroidal code (GTC) to simulate turbulent transport in tokamaks with realistic equilibrium profiles and plasma geometry, which is a critical step in the code–experiment validation process. These new developments include numerical equilibrium representation using B-splines, a new Poisson solver based on finite difference using field-aligned mesh and magnetic flux coordinates, a new zonal flow solver for general geometry, and improvements on the conventional four-point gyroaverage with nonuniform background marker loading. The gyrokinetic Poisson equation is solved in the perpendicular plane instead of the poloidal plane. Exploiting these new features, GTC is able to simulate a typical DIII-D discharge with experimental magnetic geometry and profiles. The simulated turbulent heat diffusivity and its radial profile show good agreement with other gyrokinetic codes. The newly developed nonuniform loading method provides a modified radial transport profile to that of the conventional uniform loading method

  8. The isotope effect in turbulent transport control by GAMs. Observation and gyrokinetic modeling

    Science.gov (United States)

    Gurchenko, A. D.; Gusakov, E. Z.; Niskala, P.; Altukhov, A. B.; Esipov, L. A.; Kiviniemi, T. P.; Korpilo, T.; Kouprienko, D. V.; Lashkul, S. I.; Leerink, S.; Perevalov, A. A.; Irzak, M. A.

    2016-04-01

    A comparative investigation of the isotope effect in multi-scale anomalous transport phenomena is performed both experimentally by highly localized turbulence diagnostics in comparable hydrogen and deuterium FT-2 tokamak discharges and theoretically with the help of global gyrokinetic modeling. Substantial excess of the geodesic acoustic mode (GAM) amplitude, radial wavelength and correlation length in a wide spatial region of deuterium discharge resulting in stronger modulation of drift-wave turbulence level is demonstrated by both approaches. A larger turbulence radial correlation length is found at LFS in D-discharge in experiment and a stronger modulation of gyrokinetic particles and energy fluxes is shown there by the gyrokinetic code. The gyrokinetic modeling demonstrated comparable levels of drift wave density and electric field fluctuations in hydrogen and deuterium discharges. Nevertheless, the mean value of the ion energy and particle anomalous flux provided by modeling shows the systematic isotope effect at all radii.

  9. SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhihong

    2013-12-18

    During the first year of the SciDAC gyrokinetic particle simulation (GPS) project, the GPS team (Zhihong Lin, Liu Chen, Yasutaro Nishimura, and Igor Holod) at the University of California, Irvine (UCI) studied the tokamak electron transport driven by electron temperature gradient (ETG) turbulence, and by trapped electron mode (TEM) turbulence and ion temperature gradient (ITG) turbulence with kinetic electron effects, extended our studies of ITG turbulence spreading to core-edge coupling. We have developed and optimized an elliptic solver using finite element method (FEM), which enables the implementation of advanced kinetic electron models (split-weight scheme and hybrid model) in the SciDAC GPS production code GTC. The GTC code has been ported and optimized on both scalar and vector parallel computer architectures, and is being transformed into objected-oriented style to facilitate collaborative code development. During this period, the UCI team members presented 11 invited talks at major national and international conferences, published 22 papers in peer-reviewed journals and 10 papers in conference proceedings. The UCI hosted the annual SciDAC Workshop on Plasma Turbulence sponsored by the GPS Center, 2005-2007. The workshop was attended by about fifties US and foreign researchers and financially sponsored several gradual students from MIT, Princeton University, Germany, Switzerland, and Finland. A new SciDAC postdoc, Igor Holod, has arrived at UCI to initiate global particle simulation of magnetohydrodynamics turbulence driven by energetic particle modes. The PI, Z. Lin, has been promoted to the Associate Professor with tenure at UCI.

  10. Global full-f gyrokinetic simulations of plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Grandgirard, V [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Sarazin, Y [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Angelino, P [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Bottino, A [Max Plank Institut fr Plasmaphysik, IPP-EURATOM AssociationGarching (Germany); Crouseilles, N [IRMA, Universite Louis Pasteur, 7, rue Rene Descartes, 67084 Strasbourg Cedex (France); Darmet, G [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Dif-Pradalier, G [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Garbet, X [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Ghendrih, Ph [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Jolliet, S [CRPP, Association Euratom-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Latu, G [LaBRI, 341 Cours Liberation, 33405 Talence Cedex (France); Sonnendruecker, E [IRMA, Universite Louis Pasteur, 7, rue Rene Descartes, 67084 Strasbourg Cedex (France); Villard, L [CRPP, Association Euratom-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland)

    2007-12-15

    Critical physical issues can be specifically tackled with the global full-f gyrokinetic code GYSELA. Three main results are presented. First, the self-consistent treatment of equilibrium and fluctuations highlights the competition between two compensation mechanisms for the curvature driven vertical charge separation, namely, parallel flow and polarization. The impact of the latter on the turbulent transport is discussed. In the non-linear regime, the benchmark with the Particle-In-Cell code ORB5 looks satisfactory. Second, the transport scaling with {rho}{sub *} is found to depend both on {rho}{sub *} itself and on the distance to the linear threshold. Finally, a statistical steady-state turbulent regime is achieved in a reduced version of GYSELA by prescribing a constant heat source.

  11. The energetic coupling of scales in gyrokinetic plasma turbulence

    CERN Document Server

    Teaca, Bogdan; Jenko, Frank

    2014-01-01

    In magnetised plasma turbulence, the couplings of perpendicular spatial scales that arise due to the nonlinear interactions are analysed from the perspective of the free-energy exchanges. The plasmas considered here, with appropriate ion or electron adiabatic electro-neutrality responses, are described by a gyrokinetic formalism in a toroidal magnetic geometry. Turbulence develops due to the electrostatic fluctuations driven by temperature gradient instabilities, respectively, ion temperature gradient (ITG) or electron temperature gradient (ETG). The analysis consists in decomposing the system into a series of scale structures, while accounting separately for contributions made by modes possessing special symmetries (e.g. the zonal flow modes). The interaction of these scales is analysed using the energy transfer functions, including a forward and backward decomposition, scale fluxes and locality functions. The comparison between the ITG and ETG cases shows that ETG turbulence has a more pronounce classical t...

  12. A quasi-linear gyrokinetic transport model for tokamak plasmas

    CERN Document Server

    Casati, Alessandro

    2012-01-01

    The development of a quasi-linear gyrokinetic transport model for tokamak plasmas, ultimately designed to provide physically comprehensive predictions of the time evolution of the thermodynamic relevant quantities, is a task that requires tight links among theoretical, experimental and numerical studies. The framework of the model here proposed, which operates a reduction of complexity on the nonlinear self-organizing plasma dynamics, allows in fact multiple validations of the current understanding of the tokamak micro-turbulence. The main outcomes of this work stem from the fundamental steps involved by the formulation of such a reduced transport model, namely: (1) the verification of the quasi-linear plasma response against the nonlinearly computed solution, (2) the improvement of the turbulent saturation model through an accurate validation of the nonlinear codes against the turbulence measurements, (3) the integration of the quasi-linear model within an integrated transport solver.

  13. Astrophysics Source Code Library

    CERN Document Server

    Allen, Alice; Berriman, Bruce; Hanisch, Robert J; Mink, Jessica; Teuben, Peter J

    2012-01-01

    The Astrophysics Source Code Library (ASCL), founded in 1999, is a free on-line registry for source codes of interest to astronomers and astrophysicists. The library is housed on the discussion forum for Astronomy Picture of the Day (APOD) and can be accessed at http://ascl.net. The ASCL has a comprehensive listing that covers a significant number of the astrophysics source codes used to generate results published in or submitted to refereed journals and continues to grow. The ASCL currently has entries for over 500 codes; its records are citable and are indexed by ADS. The editors of the ASCL and members of its Advisory Committee were on hand at a demonstration table in the ADASS poster room to present the ASCL, accept code submissions, show how the ASCL is starting to be used by the astrophysics community, and take questions on and suggestions for improving the resource.

  14. Surprises in astrophysical gasdynamics

    CERN Document Server

    Balbus, Steven A

    2016-01-01

    Much of astrophysics consists of the study of ionised gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetised fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one's a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosynchratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out import...

  15. Augmented Reality in Astrophysics

    CERN Document Server

    Vogt, Frédéric P A

    2013-01-01

    Augmented Reality consists of merging live images with virtual layers of information. The rapid growth in the popularity of smartphones and tablets over recent years has provided a large base of potential users of Augmented Reality technology, and virtual layers of information can now be attached to a wide variety of physical objects. In this article, we explore the potential of Augmented Reality for astrophysical research with two distinct experiments: (1) Augmented Posters and (2) Augmented Articles. We demonstrate that the emerging technology of Augmented Reality can already be used and implemented without expert knowledge using currently available apps. Our experiments highlight the potential of Augmented Reality to improve the communication of scientific results in the field of astrophysics. We also present feedback gathered from the Australian astrophysics community that reveals evidence of some interest in this technology by astronomers who experimented with Augmented Posters. In addition, we discuss p...

  16. Nuclear reactions in astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M.; Rayet, M. (Universite Libre de Bruxelles (BE))

    1990-06-01

    At all times and at all astrophysical scales, nuclear reactions have played and continue to play a key role. This concerns the energetics as well as the production of nuclides (nucleosynthesis). After a brief review of the observed composition of various objects in the universe, and especially of the solar system, the basic ingredients that are required in order to build up models for the chemical evolution of galaxies are sketched. Special attention is paid to the evaluation of the stellar yields through an overview of the important burning episodes and nucleosynthetic processes that can develop in non-exploding or exploding stars. Emphasis is put on the remaining astrophysical and nuclear physics uncertainties that hamper a clear understanding of the observed characteristics, and especially compositions, of a large variety of astrophysical objects.

  17. Challenges of Relativistic Astrophysics

    CERN Document Server

    Opher, Reuven

    2013-01-01

    I discuss some of the most outstanding challenges in relativistic astrophysics in the subjects of: compact objects (Black Holes and Neutron Stars); dark sector (Dark Matter and Dark Energy); plasma astrophysics (Origin of Jets, Cosmic Rays and Magnetic Fields) and the primordial universe (Physics at the beginning of the Universe). In these four subjects, I discuss twelve of the most important challenges. These challenges give us insight into new physics that can only be studied in the large scale Universe. The near future possibilities, in observations and theory, for addressing these challenges, are also discussed.

  18. Introduction to Nuclear Astrophysics

    International Nuclear Information System (INIS)

    In the first lecture of this volume, we will present the basic fundamental ideas regarding nuclear processes occurring in stars. We start from stellar observations, will then elaborate on some important quantum-mechanical phenomena governing nuclear reactions, continue with how nuclear reactions proceed in a hot stellar plasma and, finally, we will provide an overview of stellar burning stages. At the end, the current knowledge regarding the origin of the elements is briefly summarized. This lecture is directed towards the student of nuclear astrophysics. Our intention is to present seemingly unrelated phenomena of nuclear physics and astrophysics in a coherent framework.

  19. Theoretical astrophysics an introduction

    CERN Document Server

    Bartelmann, Matthias

    2013-01-01

    A concise yet comprehensive introduction to the central theoretical concepts of modern astrophysics, presenting hydrodynamics, radiation, and stellar dynamics all in one textbook. Adopting a modular structure, the author illustrates a small number of fundamental physical methods and principles, which are sufficient to describe and understand a wide range of seemingly very diverse astrophysical phenomena and processes. For example, the formulae that define the macroscopic behavior of stellar systems are all derived in the same way from the microscopic distribution function. This function it

  20. Astrophysics in a nutshell

    CERN Document Server

    Maoz, Dan

    2016-01-01

    Winner of the American Astronomical Society's Chambliss Award, Astrophysics in a Nutshell has become the text of choice in astrophysics courses for science majors at top universities in North America and beyond. In this expanded and fully updated second edition, the book gets even better, with a new chapter on extrasolar planets; a greatly expanded chapter on the interstellar medium; fully updated facts and figures on all subjects, from the observed properties of white dwarfs to the latest results from precision cosmology; and additional instructive problem sets. Throughout, the text features the same focused, concise style and emphasis on physics intuition that have made the book a favorite of students and teachers.

  1. Surprises in astrophysical gasdynamics.

    Science.gov (United States)

    Balbus, Steven A; Potter, William J

    2016-06-01

    Much of astrophysics consists of the study of ionized gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetized fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one's a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosyncratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out important assumptions, and to describe carefully whatever novel techniques may be appropriate to the problem at hand. By beginning at the beginning, and analysing a wide variety of astrophysical settings, we seek not only to make this review suitable for fluid dynamic veterans, but to engage novice recruits as well with what we hope will be an unusual and instructive introduction to the subject. PMID:27116247

  2. Astrophysics: An Integrative Course

    Science.gov (United States)

    Gutsche, Graham D.

    1975-01-01

    Describes a one semester course in introductory stellar astrophysics at the advanced undergraduate level. The course aims to integrate all previously learned physics by applying it to the study of stars. After a brief introductory section on basic astronomical measurements, the main topics covered are stellar atmospheres, stellar structure, and…

  3. The NASA Astrophysics Program

    Science.gov (United States)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  4. Surprises in astrophysical gasdynamics

    Science.gov (United States)

    Balbus, Steven A.; Potter, William J.

    2016-06-01

    Much of astrophysics consists of the study of ionized gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetized fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one’s a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosyncratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out important assumptions, and to describe carefully whatever novel techniques may be appropriate to the problem at hand. By beginning at the beginning, and analysing a wide variety of astrophysical settings, we seek not only to make this review suitable for fluid dynamic veterans, but to engage novice recruits as well with what we hope will be an unusual and instructive introduction to the subject.

  5. Problems and Progress in Astrophysical Dynamos

    CERN Document Server

    Vishniac, E T; Cho, J

    2002-01-01

    Astrophysical objects with negligible resistivity are often threaded by large scale magnetic fields. The generation of these fields is somewhat mysterious, since a magnetic field in a perfectly conducting fluid cannot change the flux threading a fluid element, or the field topology. Classical dynamo theory evades this limit by assuming that magnetic reconnection is fast, even for vanishing resistivity, and that the large scale field can be generated by the action of kinetic helicity. Both these claims have been severely criticized, and the latter appears to conflict with strong theoretical arguments based on magnetic helicity conservation and a series of numerical simulations. Here we discuss recent efforts to explain fast magnetic reconnection through the topological effects of a weak stochastic magnetic field component. We also show how mean-field dynamo theory can be recast in a form which respects magnetic helicity conservation, and how this changes our understanding of astrophysical dynamos. Finally, we ...

  6. Laboratory Astrophysics and the State of Astronomy and Astrophysics

    CERN Document Server

    Brickhouse, AAS WGLA: Nancy; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Haxton, Wick; Herbst, Eric; Olive, Keith; Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The impact of laboratory astrophysics ranges from the scientific conception stage for ground-based, airborne, and space-based observatories, all the way through to the scientific return of these projects and missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters that allows us to address fundamental questions in astronomy and astrophysics. In this regard, laboratory astrophysics is much like detector and instrument development at NASA, NSF, and DOE. These efforts are necessary for the success of astronomical research being funded by the agencies. Without concomitant efforts in all three directions (observational facilities, detector/instrument development, and laboratory astrophysics) the future progress of astronomy and astrophysics is imperiled. In addition, new developments i...

  7. LUNA: Nuclear astrophysics underground

    International Nuclear Information System (INIS)

    Underground nuclear astrophysics with LUNA at the Laboratori Nazionali del Gran Sasso spans a history of 20 years. By using the rock overburden of the Gran Sasso mountain chain as a natural cosmic-ray shield very low signal rates compared to an experiment on the surface can be tolerated. The cross sectons of important astrophysical reactions directly in the stellar energy range have been successfully measured. In this proceeding we give an overview over the key accomplishments of the experiment and an outlook on its future with the expected addition of an additional accelerator to the underground facilities, enabling the coverage of a wider energy range and the measurement of previously inaccessible reactions

  8. Nuclear astrophysics at DRAGON

    Energy Technology Data Exchange (ETDEWEB)

    Hager, U. [Colorado School of Mines, Golden, Colorado (United States)

    2014-05-02

    The DRAGON recoil separator is located at the ISAC facility at TRIUMF, Vancouver. It is designed to measure radiative alpha and proton capture reactions of astrophysical importance. Over the last years, the DRAGON collaboration has measured several reactions using both radioactive and high-intensity stable beams. For example, the 160(a, g) cross section was recently measured. The reaction plays a role in steady-state helium burning in massive stars, where it follows the 12C(a, g) reaction. At astrophysically relevant energies, the reaction proceeds exclusively via direct capture, resulting in a low rate. In this measurement, the unique capabilities of DRAGON enabled determination not only of the total reaction rates, but also of decay branching ratios. In addition, results from other recent measurements will be presented.

  9. Nuclear Astrophysics with LUNA

    Science.gov (United States)

    Broggini, Carlo

    2016-04-01

    One of the main ingredients of nuclear astrophysics is the knowledge of the thermonuclear reactions which power the stars and synthesize the chemical elements. Deep underground in the Gran Sasso Laboratory the cross section of the key reactions of the proton-proton chain and of the Carbon-Nitrogen-Oxygen (CNO) cycle have been measured right down to the energies of astrophysical interest. The main results obtained during the 'solar' phase of LUNA are reviewed and their influence on our understanding of the properties of the neutrino and of the Sun is discussed. We then describe the current LUNA program mainly devoted to the study of the nucleosynthesis of the light elements in AGB stars and Classical Novae. Finally, the future of LUNA towards the study of helium and carbon burning with a new 3.5 MV accelerator is outlined.

  10. Astrophysics a new approach

    CERN Document Server

    Kundt, Wolfgang

    2005-01-01

    For a quantitative understanding of the physics of the universe - from the solar system through the milky way to clusters of galaxies all the way to cosmology - these edited lecture notes are perhaps among the most concise and also among the most critical ones: Astrophysics has not yet stood the redundancy test of laboratory physics, hence should be wary of early interpretations. Special chapters are devoted to magnetic and radiation processes, supernovae, disks, black-hole candidacy, bipolar flows, cosmic rays, gamma-ray bursts, image distortions, and special sources. At the same time, planet earth is viewed as the arena for life, with plants and animals having evolved to homo sapiens during cosmic time. -- This text is unique in covering the basic qualitative and quantitative tools, formulae as well as numbers, needed for the precise interpretation of frontline phenomena in astrophysical research. The author compares mainstream interpretations with new and even controversial ones he wishes to emphasize. The...

  11. LUNA: Nuclear astrophysics underground

    Energy Technology Data Exchange (ETDEWEB)

    Best, A. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Gran Sasso, Assergi (Italy)

    2015-02-24

    Underground nuclear astrophysics with LUNA at the Laboratori Nazionali del Gran Sasso spans a history of 20 years. By using the rock overburden of the Gran Sasso mountain chain as a natural cosmic-ray shield very low signal rates compared to an experiment on the surface can be tolerated. The cross sectons of important astrophysical reactions directly in the stellar energy range have been successfully measured. In this proceeding we give an overview over the key accomplishments of the experiment and an outlook on its future with the expected addition of an additional accelerator to the underground facilities, enabling the coverage of a wider energy range and the measurement of previously inaccessible reactions.

  12. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  13. Numerical Relativity Beyond Astrophysics

    OpenAIRE

    Garfinkle, David

    2016-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black...

  14. Astrophysics in 2006

    CERN Document Server

    Trimble, Virginia; Hansen, Carl J

    2007-01-01

    The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the universe) and others of which there are always many, like meteors and molecules, black holes and binaries.

  15. Augmented Reality in Astrophysics

    OpenAIRE

    Vogt, Frédéric P. A.; Shingles, Luke J.

    2013-01-01

    Augmented Reality consists of merging live images with virtual layers of information. The rapid growth in the popularity of smartphones and tablets over recent years has provided a large base of potential users of Augmented Reality technology, and virtual layers of information can now be attached to a wide variety of physical objects. In this article, we explore the potential of Augmented Reality for astrophysical research with two distinct experiments: (1) Augmented Posters and (2) Augmented...

  16. Astrophysical fluid dynamics

    Science.gov (United States)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  17. Optics in Astrophysics

    CERN Document Server

    Foy, Renaud

    2005-01-01

    Astrophysics is facing challenging aims such as deep cosmology at redshift higher than 10 to constrain cosmology models, or the detection of exoplanets, and possibly terrestrial exoplanets, and several others. It requires unprecedented ambitious R&D programs, which have definitely to rely on a tight cooperation between astrophysics and optics communities. The book addresses most of the most critical interdisciplinary domains where they interact, or where they will do. A first need is to collect more light, i.e. telescopes still larger than the current 8-10 meter class ones. Decametric, and even hectometric, optical (from UV to IR wavelengths) telescopes are being studied. Whereas up to now the light collecting surface of new telescopes was approximately 4 times that of the previous generation, now this factor is growing to 10 to 100. This quantum leap urges to implement new methods or technologies developed in the optics community, both in academic labs and in the industry. Given the astrophysical goals a...

  18. Integrating Out Astrophysical Uncertainties

    CERN Document Server

    Fox, Patrick J; Weiner, Neal

    2010-01-01

    Underground searches for dark matter involve a complicated interplay of particle physics, nuclear physics, atomic physics and astrophysics. We attempt to remove the uncertainties associated with astrophysics by developing the means to map the observed signal in one experiment directly into a predicted rate at another. We argue that it is possible to make experimental comparisons that are completely free of astrophysical uncertainties by focusing on {\\em integral} quantities, such as $g(v_{min})=\\int_{v_{min}} dv\\, f(v)/v $ and $\\int_{v_{thresh}} dv\\, v g(v)$. Direct comparisons are possible when the $v_{min}$ space probed by different experiments overlap. As examples, we consider the possible dark matter signals at CoGeNT, DAMA and CRESST-Oxygen. We find that expected rate from CoGeNT in the XENON10 experiment is higher than observed, unless scintillation light output is low. Moreover, we determine that S2-only analyses are constraining, unless the charge yield $Q_y< 2.4 {\\, \\rm electrons/keV}$. For DAMA t...

  19. Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Belli, E. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hammett, G. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Dorland, W. [Univ. of Maryland, College Park, MD (United States)

    2008-08-01

    The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ~ κ-1.5 or κ-2.0, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.

  20. Gyrokinetic treatment of a grazing angle magnetic field

    CERN Document Server

    Geraldini, Alessandro; Militello, Fulvio

    2016-01-01

    We develop a gyrokinetic treatment for ions in the magnetic presheath, close to the plasma-wall boundary. We focus on magnetic presheaths with a small magnetic field to wall angle, $\\alpha \\ll 1$. Characteristic lengths perpendicular to the wall in such a magnetic presheath scale with the typical ion Larmor orbit size, $\\rho_{\\text{i}}$. The smallest scale length associated with variations parallel to the wall is taken to be across the magnetic field, and ordered $l = \\rho_{\\text{i}} / \\delta$, where $ \\delta \\ll 1$ is assumed. The scale lengths along the magnetic field line are assumed so long that variations associated with this direction are neglected. These orderings are consistent with what we expect close to the divertor target of a tokamak. We allow for a strong electric field $\\vec{E}$ in the direction normal to the electron repelling wall, with strong variation in the same direction. The large change of the electric field over an ion Larmor radius distorts the orbit so that it is not circular. We sol...

  1. HPC parallel programming model for gyrokinetic MHD simulation

    International Nuclear Information System (INIS)

    The 3-dimensional gyrokinetic PIC (particle-in-cell) code for MHD simulation, Gpic-MHD, was installed on SR16000 (“Plasma Simulator”), which is a scalar cluster system consisting of 8,192 logical cores. The Gpic-MHD code advances particle and field quantities in time. In order to distribute calculations over large number of logical cores, the total simulation domain in cylindrical geometry was broken up into NDD-r × NDD-z (number of radial decomposition times number of axial decomposition) small domains including approximately the same number of particles. The axial direction was uniformly decomposed, while the radial direction was non-uniformly decomposed. NRP replicas (copies) of each decomposed domain were used (“particle decomposition”). The hybrid parallelization model of multi-threads and multi-processes was employed: threads were parallelized by the auto-parallelization and NDD-r × NDD-z × NRP processes were parallelized by MPI (message-passing interface). The parallelization performance of Gpic-MHD was investigated for the medium size system of Nr × Nθ × Nz = 1025 × 128 × 128 mesh with 4.196 or 8.192 billion particles. The highest speed for the fixed number of logical cores was obtained for two threads, the maximum number of NDD-z, and optimum combination of NDD-r and NRP. The observed optimum speeds demonstrated good scaling up to 8,192 logical cores. (author)

  2. Database-driven web interface automating gyrokinetic simulations for validation

    Science.gov (United States)

    Ernst, D. R.

    2010-11-01

    We are developing a web interface to connect plasma microturbulence simulation codes with experimental data. The website automates the preparation of gyrokinetic simulations utilizing plasma profile and magnetic equilibrium data from TRANSP analysis of experiments, read from MDSPLUS over the internet. This database-driven tool saves user sessions, allowing searches of previous simulations, which can be restored to repeat the same analysis for a new discharge. The website includes a multi-tab, multi-frame, publication quality java plotter Webgraph, developed as part of this project. Input files can be uploaded as templates and edited with context-sensitive help. The website creates inputs for GS2 and GYRO using a well-tested and verified back-end, in use for several years for the GS2 code [D. R. Ernst et al., Phys. Plasmas 11(5) 2637 (2004)]. A centralized web site has the advantage that users receive bug fixes instantaneously, while avoiding the duplicated effort of local compilations. Possible extensions to the database to manage run outputs, toward prototyping for the Fusion Simulation Project, are envisioned. Much of the web development utilized support from the DoE National Undergraduate Fellowship program [e.g., A. Suarez and D. R. Ernst, http://meetings.aps.org/link/BAPS.2005.DPP.GP1.57.

  3. Gyrokinetic Studies of Microturbulence in the Madison Symmetric Torus

    Science.gov (United States)

    Williams, Zachary; Duff, James; Pueschel, M. J.; Terry, Paul

    2015-11-01

    Reversed-field pinches operating with Pulsed Poloidal Current Drive (PPCD) exhibit microturbulence that contributes to heat and particle transport. This work focuses on the analysis of high-frequency fluctuations in a recent 200 kA PPCD discharge in the Madison Symmetric Torus, for which strong experimental evidence of microturbulence exists. Local gyrokinetic simulations were performed at multiple radial positions outside the reversal surface using the Gene code. Linear analysis identifies the dominant instability at all positions to be a density-gradient-driven trapped electron mode. An accurate description of turbulence requires the inclusion of residual tearing mode fluctuations: though reduced in PPCD, large-scale tearing modes introduce non-negligible levels of magnetic perturbations. In simulations, they can be seen to weaken zonal flows and degrade confinement, increasing transport to experimentally observed levels. Importantly, imposed fluctuations appear to be self-consistently reinforced, contrary to the usual island-healing picture in tokamaks. Simulations also include B∥ fluctuations, which provide finite contributions to transport, particularly when artificially zeroing out tearing modes entirely.

  4. Long-wavelength limit of gyrokinetics in a turbulent tokamak and its intrinsic ambipolarity

    CERN Document Server

    Calvo, Ivan

    2012-01-01

    Recently, the electrostatic gyrokinetic Hamiltonian and change of coordinates have been computed to order $\\epsilon^2$ in general magnetic geometry. Here $\\epsilon$ is the gyrokinetic expansion parameter, the gyroradius over the macroscopic scale length. Starting from these results, the long-wavelength limit of the gyrokinetic Fokker-Planck and quasineutrality equations is taken for tokamak geometry. Employing the set of equations derived in the present article, it is possible to calculate the long-wavelength components of the distribution functions and of the poloidal electric field to order $\\epsilon^2$. These higher-order pieces contain both neoclassical and turbulent contributions, and constitute one of the necessary ingredients (the other is given by the short-wavelength components up to second order) that will eventually enter a complete model for the radial transport of toroidal angular momentum in a tokamak in the low flow ordering. Finally, we provide an explicit and detailed proof that the system co...

  5. Laboratory Astrophysics and the State of Astronomy and Astrophysics

    OpenAIRE

    WGLA, AAS; :; Brickhouse, Nancy; Cowan, John; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Haxton, Wick; Herbst, Eric; Olive, Keith(School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, U.S.A.); Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The impact of laboratory astrophysics ranges from the scientific conception stage for ground-based, airborne, and space-based observatories, all the way through to the scientific return of these projects and missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters...

  6. Nuclear astrophysics with neutrons

    Science.gov (United States)

    Dillmann, I.; Reifarth, R.

    2012-04-01

    Neutrons play a crucial role in astrophysics during the heavy element nucleosynthesis. The largest fraction of isotopes heavier than iron is produced by neutron capture processes on short (r process) and long timescales (s process). During the ``slow neutron capture process'' (s process) heavier elements are produced by successive captures of in-situ produced neutrons from the reactions 13C(α,n)16O and 22Ne(α,n)25Mg (with densities of 106-1010 cm-3) in the interior of stars and following β-decays. With this scenario the reaction path runs along the valley of stability up to 209Bi and produces about 50% of the solar abundances of the heavy elements. Important nuclear physics parameters for s-process nucleosynthesis are neutron capture cross sections (for En = 0.3-300 keV, corresponding to stellar temperatures between kT= 8 and 90 keV) and β-decay half-lives. Neutron capture measurements can be performed via activation in a quasi-stellar neutron spectrum utilizing several (p,n) reactions, or by the time-of-flight technique. The ``rapid neutron capture process'' (r process) is responsible for the remaining 50% of the solar abundances. Here neutrons with densities of 1020-1030 cm-3 are captured on a very fast timescale (ms) during a Core Collapse Supernova in a region close to the forming neutron star. The r-process nuclei are thus very short-lived, neutron-rich isotopes up to the actinides, which can only be produced and investigated at large-scale radioactive-beam facilities. Here the most important nuclear physics parameters are masses, half-lives, and at later stages also β-delayed neutrons. This paper will summarize the role of neutrons in nuclear astrophysics and give a short overview about the related astrophysics programs at the GSI Helmholtz research center and the FRANZ facility in Germany.

  7. General relativity and relativistic astrophysics

    CERN Document Server

    Mukhopadhyay, Banibrata

    2016-01-01

    Einstein established the theory of general relativity and the corresponding field equation in 1915 and its vacuum solutions were obtained by Schwarzschild and Kerr for, respectively, static and rotating black holes, in 1916 and 1963, respectively. They are, however, still playing an indispensable role, even after 100 years of their original discovery, to explain high energy astrophysical phenomena. Application of the solutions of Einstein's equation to resolve astrophysical phenomena has formed an important branch, namely relativistic astrophysics. I devote this article to enlightening some of the current astrophysical problems based on general relativity. However, there seem to be some issues with regard to explaining certain astrophysical phenomena based on Einstein's theory alone. I show that Einstein's theory and its modified form, both are necessary to explain modern astrophysical processes, in particular, those related to compact objects.

  8. Plasma physics of extreme astrophysical environments.

    Science.gov (United States)

    Uzdensky, Dmitri A; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)--the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in

  9. LUNA: Nuclear Astrophysics Deep Underground

    OpenAIRE

    Broggini, Carlo; Bemmerer, Daniel; Guglielmetti, Alessandra; Menegazzo, Roberto

    2010-01-01

    Nuclear astrophysics strives for a comprehensive picture of the nuclear reactions responsible for synthesizing the chemical elements and for powering the stellar evolution engine. Deep underground in the Gran Sasso laboratory the cross sections of the key reactions of the proton-proton chain and of the Carbon-Nitrogen-Oxygen (CNO) cycle have been measured right down to the energies of astrophysical interest. The salient features of underground nuclear astrophysics are summarized here. The mai...

  10. Laboratory Mesurements in Nuclear Astrophysics

    OpenAIRE

    Gai, Moshe

    1994-01-01

    After reviewing some of the basic concepts, nomenclatures and parametrizations of Astronomy, Astrophysics and Cosmology, we introduce a few central problems in Nuclear Astrophysics, including the hot-CNO cycle, helium burning in massive stars, and solar neutrino's. We demonstarte that SECONDARY (RADIOACTIVE) NUCLEAR BEAMS allow for considerable progress on these problems.

  11. Relativistic Astrophysics Explorer

    CERN Document Server

    Kaaret, P E

    2003-01-01

    The great success of the Rossi X-Ray Timing Explorer (RXTE) has shown that X-ray timing is an excellent tool for the study of strong gravitational fields and the measurement of fundamental physical properties of black holes and neutron stars. Here, we describe a next-generation X-ray timing mission, the Relativistic Astrophysics Explorer (RAE), designed to fit within the envelope of a medium-sized mission. The instruments will be a narrow-field X-ray detector array with an area of 6 m^2 equal to ten times that of RXTE and a wide-field X-ray monitor. We describe the science made possible with this mission, the design of the instruments, and results on prototype large-area X-ray detectors.

  12. The Relativistic Astrophysics Explorer

    Science.gov (United States)

    Kaaret, P.

    The great success of the Rossi X-Ray Timing Explorer (RXTE) has shown that X-ray timing is an excellent tool for the study of strong gravitational fields and the measurement of fundamental physical properties of black holes and neutron stars. Here, we describe a next-generation X-ray timing mission, the Relativistic Astrophysics Explorer (RAE), designed to fit within the envelope of a medium-sized mission. The instruments will be a narrow-field X-ray detector array with an area of 60,000 cm2 equal to ten times that of RXTE and a wide-field X-ray monitor. We describe the science made possible with this mission, the design of the instruments, and results on prototype large-area X-ray detectors.

  13. Exotic nuclei and astrophysics

    Directory of Open Access Journals (Sweden)

    Penionzhkevich Yu.

    2012-12-01

    Full Text Available In recent years, nuclear physics investigations of the laws of the microscopic world contributed significantly to extension of our knowledge of phenomena occurring in the macroscopic world (Universe and made a formidable contribution to the development of astrophysical and cosmological theories. First of all, this concerns the expanding universe model, the evolution of stars, and the abundances of elements, as well as the properties of various stars and cosmic objects, including “cold” and neutron stars, black holes, and pulsars. Without claiming to give a full account of all cosmological problems, we will dwell upon those of them that, in my opinion, have much in common with nuclear-matter properties manifesting themselves in nuclear interactions.

  14. Black-hole astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others

    1995-07-01

    Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.

  15. Instabilities in astrophysical jets

    International Nuclear Information System (INIS)

    Instabilities in astrophysical jets are studied in the nonlinear regime by performing 2D numerical classical gasdynamical calculations. The instabilities which arise from unsteadiness in output from the central engine feeding the jets, and those which arise from a beam in a turbulent surrounding are studied. An extra power output an order of magnitude higher than is normally delivered by the engine over a time equal to (nozzle length)/(sound velocity at centre) causes a nonlinear Kelvin-Helmholtz instability in the jet walls. Constrictions move outwards, but the jet structure is left untouched. A beam in turbulent surroundings produces internal shocks over distances of a few beam widths. If viscosity is present the throughput of material is hampered on time scales of a few beam radius sound travel times. The implications are discussed. (Auth.)

  16. NASA's Astrophysics Data Archives

    Science.gov (United States)

    Hasan, H.; Hanisch, R.; Bredekamp, J.

    2000-09-01

    The NASA Office of Space Science has established a series of archival centers where science data acquired through its space science missions is deposited. The availability of high quality data to the general public through these open archives enables the maximization of science return of the flight missions. The Astrophysics Data Centers Coordinating Council, an informal collaboration of archival centers, coordinates data from five archival centers distiguished primarily by the wavelength range of the data deposited there. Data are available in FITS format. An overview of NASA's data centers and services is presented in this paper. A standard front-end modifyer called `Astrowbrowse' is described. Other catalog browsers and tools include WISARD and AMASE supported by the National Space Scince Data Center, as well as ISAIA, a follow on to Astrobrowse.

  17. Beauty and Astrophysics

    Science.gov (United States)

    Bessell, Michael S.

    2000-08-01

    Spectacular colour images have been made by combining CCD images in three different passbands using Adobe Photoshop. These beautiful images highlight a variety of astrophysical phenomena and should be a valuable resource for science education and public awareness of science. The wide field images were obtained at the Siding Spring Observatory (SSO) by mounting a Hasselblad or Nikkor telephoto lens in front of a 2K × 2K CCD. Options of more than 30 degrees or 6 degrees square coverage are produced in a single exposure in this way. Narrow band or broad band filters were placed between lens and CCD enabling deep, linear images in a variety of passbands to be obtained. We have mapped the LMC and SMC and are mapping the Galactic Plane for comparison with the Molonglo Radio Survey. Higher resolution images have also been made with the 40 inch telescope of galaxies and star forming regions in the Milky Way.

  18. Essential Magnetohydrodynamics for Astrophysics

    CERN Document Server

    Spruit, H C

    2013-01-01

    This text is intended as an introduction to magnetohydrodynamics in astrophysics, emphasizing a fast path to the elements essential for physical understanding. It assumes experience with concepts from fluid mechanics: the fluid equation of motion and the Lagrangian and Eulerian descriptions of fluid flow. In addition, the basics of vector calculus and elementary special relativity are needed. Not much knowledge of electromagnetic theory is required. In fact, since MHD is much closer in spirit to fluid mechanics than to electromagnetism, an important part of the learning curve is to overcome intuitions based on the vacuum electrodynamics of one's high school days. The first chapter (only 36 pp) is meant as a practical introduction including exercises. This is the `essential' part. The exercises are important as illustrations of the points made in the text (especially the less intuitive ones). Almost all are mathematically unchallenging. The supplement in chapter 2 contains further explanations, more specialize...

  19. Numerical Relativity Beyond Astrophysics

    CERN Document Server

    Garfinkle, David

    2016-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  20. Photoneutron reactions in astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Varlamov, V. V., E-mail: Varlamov@depni.sinp.msu.ru; Ishkhanov, B. S.; Orlin, V. N.; Peskov, N. N.; Stopani, K. A. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2014-12-15

    Among key problems in nuclear astrophysics, that of obtaining deeper insight into the mechanism of synthesis of chemical elements is of paramount importance. The majority of heavy elements existing in nature are produced in stars via radiative neutron capture in so-called s- and r processes, which are, respectively, slow and fast, in relation to competing β{sup −}-decay processes. At the same time, we know 35 neutron-deficient so-called bypassed p-nuclei that lie between {sup 74}Se and {sup 196}Hg and which cannot originate from the aforementioned s- and r-processes. Their production is possible in (γ, n), (γ, p), or (γ, α) photonuclear reactions. In view of this, data on photoneutron reactions play an important role in predicting and describing processes leading to the production of p-nuclei. Interest in determining cross sections for photoneutron reactions in the threshold energy region, which is of particular importance for astrophysics, has grown substantially in recent years. The use of modern sources of quasimonoenergetic photons obtained in processes of inverse Compton laser-radiation scattering on relativistic electronsmakes it possible to reveal rather interesting special features of respective cross sections, manifestations of pygmy E1 and M1 resonances, or the production of nuclei in isomeric states, on one hand, and to revisit the problem of systematic discrepancies between data on reaction cross sections from experiments of different types, on the other hand. Data obtained on the basis of our new experimental-theoretical approach to evaluating cross sections for partial photoneutron reactions are invoked in considering these problems.

  1. Theoretical Astrophysics at Fermilab

    Science.gov (United States)

    2004-01-01

    The Theoretical Astrophysics Group works on a broad range of topics ranging from string theory to data analysis in the Sloan Digital Sky Survey. The group is motivated by the belief that a deep understanding of fundamental physics is necessary to explain a wide variety of phenomena in the universe. During the three years 2001-2003 of our previous NASA grant, over 120 papers were written; ten of our postdocs went on to faculty positions; and we hosted or organized many workshops and conferences. Kolb and collaborators focused on the early universe, in particular and models and ramifications of the theory of inflation. They also studied models with extra dimensions, new types of dark matter, and the second order effects of super-horizon perturbations. S tebbins, Frieman, Hui, and Dodelson worked on phenomenological cosmology, extracting cosmological constraints from surveys such as the Sloan Digital Sky Survey. They also worked on theoretical topics such as weak lensing, reionization, and dark energy. This work has proved important to a number of experimental groups [including those at Fermilab] planning future observations. In general, the work of the Theoretical Astrophysics Group has served as a catalyst for experimental projects at Fennilab. An example of this is the Joint Dark Energy Mission. Fennilab is now a member of SNAP, and much of the work done here is by people formerly working on the accelerator. We have created an environment where many of these people made transition from physics to astronomy. We also worked on many other topics related to NASA s focus: cosmic rays, dark matter, the Sunyaev-Zel dovich effect, the galaxy distribution in the universe, and the Lyman alpha forest. The group organized and hosted a number of conferences and workshop over the years covered by the grant. Among them were:

  2. Astrophysical components from Planck maps

    CERN Document Server

    Burigana, Carlo; Paoletti, Daniela; Mandolesi, Nazzareno; Natoli, Paolo

    2016-01-01

    The Planck Collaboration has recently released maps of the microwave sky in both temperature and polarization. Diffuse astrophysical components (including Galactic emissions, cosmic far infrared (IR) background, y-maps of the thermal Sunyaev-Zeldovich (SZ) effect) and catalogs of many thousands of Galactic and extragalactic radio and far-IR sources, and galaxy clusters detected through the SZ effect are the main astrophysical products of the mission. A concise overview of these results and of astrophysical studies based on Planck data is presented.

  3. Astrophysical Smooth Particle Hydrodynamics

    CERN Document Server

    Rosswog, Stephan

    2009-01-01

    In this review the basic principles of smooth particle hydrodynamics (SPH) are outlined in a pedagogical fashion. To start, a basic set of SPH equations that is used in many codes throughout the astrophysics community is derived explicitly. Much of SPH's success relies on its excellent conservation properties and therefore the numerical conservation of physical invariants receives much attention throughout this review. The self-consistent derivation of the SPH equations from the Lagrangian of an ideal fluid is the common theme of the remainder of the text. Such a variational approach is applied to derive a modern SPH version of Newtonian hydrodynamics. It accounts for gradients in the local resolution lengths which result in corrective, so-called "grad-h-terms". This strategy naturally carries over to the special-relativistic case for which we derive the corresponding grad-h set of equations. This approach is further generalized to the case of a fluid that evolves on a curved, but fixed background space-time.

  4. Atoms in astrophysics

    CERN Document Server

    Eissner, W; Hummer, D; Percival, I

    1983-01-01

    It is hard to appreciate but nevertheless true that Michael John Seaton, known internationally for the enthusiasm and skill with which he pursues his research in atomic physics and astrophysics, will be sixty years old on the 16th of January 1983. To mark this occasion some of his colleagues and former students have prepared this volume. It contains articles that de­ scribe some of the topics that have attracted his attention since he first started his research work at University College London so many years ago. Seaton's association with University College London has now stretched over a period of some 37 years, first as an undergraduate student, then as a research student, and then, successively, as Assistant Lecturer, Lecturer, Reader, and Professor. Seaton arrived at University College London in 1946 to become an undergraduate in the Physics Department, having just left the Royal Air Force in which he had served as a navigator in the Pathfinder Force of Bomber Command. There are a number of stories of ho...

  5. Byurakan Astrophysical Observatory

    Science.gov (United States)

    Mickaelian, A. M.

    2016-09-01

    This booklet is devoted to NAS RA V. Ambartsumian Byurakan Astrophysical Observatory and is aimed at people interested in astronomy and BAO, pupils and students, BAO visitors and others. The booklet is made as a visiting card and presents concise and full information about BAO. A brief history of BAO, the biography of the great scientist Viktor Ambartsumian, brief biographies of 13 other deserved scientists formerly working at BAO (B.E. Markarian, G.A. Gurzadyan, L.V. Mirzoyan, M.A. Arakelian, et al.), information on BAO telescopes (2.6m, 1m Schmidt, etc.) and other scientific instruments, scientific library and photographic plate archive, Byurakan surveys (including the famous Markarian Survey included in the UNESCO Memory of the World International Register), all scientific meetings held in Byurakan, international scientific collaboration, data on full research staff of the Observatory, as well as former BAO researchers, who have moved to foreign institutions are given in the booklet. At the end, the list of the most important books published by Armenian astronomers and about them is given.

  6. Simulating the effects of stellarator geometry on gyrokinetic drift-wave turbulence

    Science.gov (United States)

    Baumgaertel, Jessica Ann

    Nuclear fusion is a clean, safe form of energy with abundant fuel. In magnetic fusion energy (MFE) experiments, the plasma fuel is confined by magnetic fields at very high temperatures and densities. One fusion reactor design is the non-axisymmetric, torus-shaped stellarator. Its fully-3D fields have advantages over the simpler, better-understood axisymmetric tokamak, including the ability to optimize magnetic configurations for desired properties, such as lower transport (longer confinement time). Turbulence in the plasma can break MFE confinement. While turbulent transport is known to cause a significant amount of heat loss in tokamaks, it is a new area of research in stellarators. Gyrokinetics is a good mathematical model of the drift-wave instabilities that cause turbulence. Multiple gyrokinetic turbulence codes that had great success comparing to tokamak experiments are being converted for use with stellarator geometry. This thesis describes such adaptations of the gyrokinetic turbulence code, GS2. Herein a new computational grid generator and upgrades to GS2 itself are described, tested, and benchmarked against three other gyrokinetic codes. Using GS2, detailed linear studies using the National Compact Stellarator Experiment (NCSX) geometry were conducted. The first compares stability in two equilibria with different β=(plasma pressure)/(magnetic pressure). Overall, the higher β case was more stable than the lower β case. As high β is important for MFE experiments, this is encouraging. The second compares NCSX linear stability to a tokamak case. NCSX was more stable with a 20% higher critical temperature gradient normalized by the minor radius, suggesting that the fusion power might be enhanced by ˜ 50%. In addition, the first nonlinear, non-axisymmetric GS2 simulations are presented. Finally, linear stability of two locations in a W7-AS plasma were compared. The experimentally-measured parameters used were from a W7-AS shot in which measured heat fluxes

  7. The Wisconsin Plasma Astrophysics Laboratory

    CERN Document Server

    Forest, C B; Brookhart, M; Cooper, C M; Clark, M; Desangles, V; Egedal, J; Endrizzi, D; Miesch, M; Khalzov, I V; Li, H; Milhone, J; Nornberg, M; Olson, J; Peterson, E; Roesler, F; Schekochihin, A; Schmitz, O; Siller, R; Spitkovsky, A; Stemo, A; Wallace, J; Weisberg, D; Zweibel, E

    2015-01-01

    The Wisconsin Plasma Astrophysics Laboratory (WiPAL) is a flexible user facility designed to study a range of astrophysically relevant plasma processes as well as novel geometries which mimic astrophysical systems. A multi-cusp magnetic bucket constructed from strong samarium cobalt permanent magnets now confines a 10 m$^3$, fully ionized, magnetic-field free plasma in a spherical geometry. Plasma parameters of $ T_{e}\\approx5-20$ eV and $n_{e}\\approx10^{11}-5\\times10^{12}$ cm$^{-3}$ provide an ideal testbed for a range of astrophysical experiments including self-exciting dynamos, collisionless magnetic reconnection, jet stability, stellar winds, and more. This article describes the capabilities of WiPAL along with several experiments, in both operating and planning stages, that illustrate the range of possibilities for future users.

  8. An introduction to observational astrophysics

    CERN Document Server

    Gallaway, Mark

    2016-01-01

    Observational Astrophysics follows the general outline of an astrophysics undergraduate curriculum targeting practical observing information to what will be covered at the university level. This includes the basics of optics and coordinate systems to the technical details of CCD imaging, photometry, spectography and radio astronomy.  General enough to be used by students at a variety of institutions and advanced enough to be far more useful than observing guides targeted at amateurs, the author provides a comprehensive and up-to-date treatment of observational astrophysics at undergraduate level to be used with a university’s teaching telescope.  The practical approach takes the reader from basic first year techniques to those required for a final year project. Using this textbook as a resource, students can easily become conversant in the practical aspects of astrophysics in the field as opposed to the classroom.

  9. LUNA: Nuclear Astrophysics Deep Underground

    CERN Document Server

    Broggini, Carlo; Guglielmetti, Alessandra; Menegazzo, Roberto

    2010-01-01

    Nuclear astrophysics strives for a comprehensive picture of the nuclear reactions responsible for synthesizing the chemical elements and for powering the stellar evolution engine. Deep underground in the Gran Sasso laboratory the cross sections of the key reactions of the proton-proton chain and of the Carbon-Nitrogen-Oxygen (CNO) cycle have been measured right down to the energies of astrophysical interest. The salient features of underground nuclear astrophysics are summarized here. The main results obtained by LUNA in the last twenty years are reviewed, and their influence on the comprehension of the properties of the neutrino, of the Sun and of the Universe itself are discussed. Future directions of underground nuclear astrophysics towards the study of helium and carbon burning and of stellar neutron sources in stars are pointed out.

  10. Three Puzzles from Nuclear Astrophysics

    OpenAIRE

    Haxton, W. C.

    2012-01-01

    I discuss three open problems in astrophysics where nuclear physics can make important contributions: the solar abundance problem, dark matter particle detection, and the origin of the r-process elements.

  11. Recent results in nuclear astrophysics

    CERN Document Server

    Coc, Alain; Kiener, Juergen

    2016-01-01

    In this review, we emphasize the interplay between astrophysical observations, modeling, and nuclear physics laboratory experiments. Several important nuclear cross sections for astrophysics have long been identified e.g. 12C(alpha,gamma)16O for stellar evolution, or 13C(alpha,n)16O and 22Ne(alpha,n)25Mg as neutron sources for the s-process. More recently, observations of lithium abundances in the oldest stars, or of nuclear gamma-ray lines from space, have required new laboratory experiments. New evaluation of thermonuclear reaction rates now includes the associated rate uncertainties that are used in astrophysical models to i) estimate final uncertainties on nucleosynthesis yields and ii) identify those reactions that require further experimental investigation. Sometimes direct cross section measurements are possible, but more generally the use of indirect methods is compulsory in view of the very low cross sections. Non-thermal processes are often overlooked but are also important for nuclear astrophysics,...

  12. Nuclear Data for Astrophysical Modeling

    CERN Document Server

    Pritychenko, Boris

    2016-01-01

    Nuclear physics has been playing an important role in modern astrophysics and cosmology. Since the early 1950's it has been successfully applied for the interpretation and prediction of astrophysical phenomena. Nuclear physics models helped to explain the observed elemental and isotopic abundances and star evolution and provided valuable insights on the Big Bang theory. Today, the variety of elements observed in stellar surfaces, solar system and cosmic rays, and isotope abundances are calculated and compared with the observed values. Consequently, the overall success of the modeling critically depends on the quality of underlying nuclear data that helps to bring physics of macro and micro scales together. To broaden the scope of traditional nuclear astrophysics activities and produce additional complementary information, I will investigate applicability of the U.S. Nuclear Data Program (USNDP) databases for astrophysical applications. EXFOR (Experimental Nuclear Reaction Data) and ENDF (Evaluated Nuclear Dat...

  13. The Fermilab Particle Astrophysics Center

    Energy Technology Data Exchange (ETDEWEB)

    2004-11-01

    The Particle Astrophysics Center was established in fall of 2004. Fermilab director Michael S. Witherell has named Fermilab cosmologist Edward ''Rocky'' Kolb as its first director. The Center will function as an intellectual focus for particle astrophysics at Fermilab, bringing together the Theoretical and Experimental Astrophysics Groups. It also encompasses existing astrophysics projects, including the Sloan Digital Sky Survey, the Cryogenic Dark Matter Search, and the Pierre Auger Cosmic Ray Observatory, as well as proposed projects, including the SuperNova Acceleration Probe to study dark energy as part of the Joint Dark Energy Mission, and the ground-based Dark Energy Survey aimed at measuring the dark energy equation of state.

  14. Neutrinos in astrophysics and cosmology

    Science.gov (United States)

    Balantekin, A. B.

    2016-06-01

    Neutrinos play a crucial role in many aspects of astrophysics and cosmology. Since they control the electron fraction, or equivalently neutron-to-proton ratio, neutrino properties impact yields of r-process nucleosynthesis. Similarly the weak decoupling temperature in the Big Bang Nucleosynthesis epoch is exponentially dependent on the neutron-to-proton ratio. In these conference proceedings, I briefly summarize some of the recent work exploring the role of neutrinos in astrophysics and cosmology.

  15. Some aspects of neutrino astrophysics

    CERN Document Server

    Athar, H

    2002-01-01

    Selected topics in neutrino astrophysics are reviewed. These include the production of low energy neutrino flux from cores of collapsing stars and the expected high energy neutrino flux from some other astrophysical sites such as the galactic plane as well as the center of some distant galaxies. The expected changes in these neutrino fluxes because of neutrino oscillations during their propagation to us are described. Observational signatures for these neutrino fluxes with and without neutrino oscillations are discussed.

  16. An introduction to astrophysical hydrodynamics

    CERN Document Server

    Shore, Steven N

    1992-01-01

    This book is an introduction to astrophysical hydrodynamics for both astronomy and physics students. It provides a comprehensive and unified view of the general problems associated with fluids in a cosmic context, with a discussion of fluid dynamics and plasma physics. It is the only book on hydrodynamics that addresses the astrophysical context. Researchers and students will find this work to be an exceptional reference. Contents include chapters on irrotational and rotational flows, turbulence, magnetohydrodynamics, and instabilities.

  17. Nuclear astrophysics from direct reactions

    OpenAIRE

    2008-01-01

    Accurate nuclear reaction rates are needed for primordial nucleosynthesis and hydrostatic burning in stars. The relevant reactions are extremely difficult to measure directly in the laboratory at the small astrophysical energies. In recent years direct reactions have been developed and applied to extract low-energy astrophysical S-factors. These methods require a combination of new experimental techniques and theoretical efforts, which are the subject of this presentation.

  18. Neutrinos in Astrophysics and Cosmology

    CERN Document Server

    Balantekin, A B

    2016-01-01

    Neutrinos play a crucial role in many aspects of astrophysics and cosmology. Since they control the electron fraction, or equivalently neutron-to-proton ratio, neutrino properties impact yields of r-process nucleosynthesis. Similarly the weak decoupling temperature in the Big Bang Nucleosynthesis epoch is exponentially dependent on the neutron-to-proton ratio. In these conference proceedings, I briefly summarize some of the recent work exploring the role of neutrinos in astrophysics and cosmology.

  19. Minicourses in Astrophysics, Modular Approach, Vol. I.

    Science.gov (United States)

    Illinois Univ., Chicago.

    This is the first volume of a two-volume minicourse in astrophysics. It contains chapters on the following topics: planetary atmospheres; X-ray astronomy; radio astrophysics; molecular astrophysics; and gamma-ray astrophysics. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are included with…

  20. Simulations of astrophysical dynamos

    CERN Document Server

    Brandenburg, Axel

    2010-01-01

    Numerical aspects of dynamos in periodic domains are discussed. Modifications of the solutions by numerically motivated alterations of the equations are being reviewed using the examples of magnetic hyperdiffusion and artificial diffusion when advancing the magnetic field in its Euler potential representation. The importance of using integral kernel formulations in mean-field dynamo theory is emphasized in cases where the dynamo growth rate becomes comparable with the inverse turnover time. Finally, the significance of microscopic magnetic Prandtl number in controlling the conversion from kinetic to magnetic energy is highlighted.

  1. Gyrokinetic studies of core turbulence features in ASDEX Upgrade H-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, A. Bañón, E-mail: banon@physics.ucla.edu; Told, D. [Max-Planck-Institut für Plasmaphysik, Boltzmannstrase 2, 85748 Garching (Germany); Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Happel, T.; Görler, T.; Abiteboul, J.; Bustos, A.; Doerk, H. [Max-Planck-Institut für Plasmaphysik, Boltzmannstrase 2, 85748 Garching (Germany); Jenko, F. [Max-Planck-Institut für Plasmaphysik, Boltzmannstrase 2, 85748 Garching (Germany); Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Max-Planck/Princeton Center for Plasma Physics (United States)

    2015-04-15

    Gyrokinetic validation studies are crucial for developing confidence in the model incorporated in numerical simulations and thus improving their predictive capabilities. As one step in this direction, we simulate an ASDEX Upgrade discharge with the GENE code, and analyze various fluctuating quantities and compare them to experimental measurements. The approach taken is the following. First, linear simulations are performed in order to determine the turbulence regime. Second, the heat fluxes in nonlinear simulations are matched to experimental fluxes by varying the logarithmic ion temperature gradient within the expected experimental error bars. Finally, the dependence of various quantities with respect to the ion temperature gradient is analyzed in detail. It is found that density and temperature fluctuations can vary significantly with small changes in this parameter, thus making comparisons with experiments very sensitive to uncertainties in the experimental profiles. However, cross-phases are more robust, indicating that they are better observables for comparisons between gyrokinetic simulations and experimental measurements.

  2. Gyrokinetic simulations of fusion plasmas using a spectral velocity space representation

    CERN Document Server

    Parker, Joseph Thomas

    2016-01-01

    Magnetic confinement fusion reactors suffer severely from heat and particle losses through turbulent transport, which has inspired the construction of ever larger and more expensive reactors. Numerical simulations are vital to their design and operation, but particle collisions are too infrequent for fluid descriptions to be valid. Instead, strongly magnetised fusion plasmas are described by the gyrokinetic equations, a nonlinear integro-differential system for evolving the particle distribution functions in a five-dimensional position and velocity space, and the consequent electromagnetic field. Due to the high dimensionality, simulations of small reactor sections require hundreds of thousands of CPU hours on High Performance Computing platforms. We develop a Hankel-Hermite spectral representation for velocity space that exploits structural features of the gyrokinetic system. The representation exactly conserves discrete free energy in the absence of explicit dissipation, while our Hermite hypercollision ope...

  3. Renormalized perturbation theory: Vlasov-Poisson System, weak turbulence limit and gyrokinetics

    International Nuclear Information System (INIS)

    The Self-consistency of the renormalized perturbation theory is demonstrated by applying it to the Vlasov-Poisson System and showing that the theory has the correct weak turbulence limit. Energy conservation is proved to arbitrary high order for the electrostatic drift waves. The theory is applied to derive renormalized equations for a low-β gyrokinetic system. Comparison of our theory with other current theories is presented. 22 refs

  4. Final Report: SciDAC Computational Astrophysics Consortium (at Princeton University)

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, Adam

    2012-12-03

    Supernova explosions are the central events in astrophysics. They are the major agencies of change in the interstellar medium, driving star formation and the evolution of galaxies. Their gas remnants are the birthplaces of the cosmic rays. Such is their brightness that they can be used as standard candles to measure the size and geometry of the universe and their investigation draws on particle and nuclear physics, radiative transfer, kinetic theory, gravitational physics, thermodynamics, and the numerical arts. Hence, supernovae are unrivaled astrophysical laboratories. We will develop new state-of-the-art multi-dimensional radiation hydrodynamic codes to address this and other related astrophysical phenomena.

  5. High energy astrophysics. An introduction

    International Nuclear Information System (INIS)

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  6. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  7. Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST

    Science.gov (United States)

    Xu, X. Q.

    2008-07-01

    We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (ψ,θ,γ,μ) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.

  8. A flux-matched gyrokinetic analysis of DIII-D L-mode turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Görler, T., E-mail: tobias.goerler@ipp.mpg.de; Told, D. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); White, A. E. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Jenko, F. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Holland, C. [Center for Energy Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Rhodes, T. L. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States)

    2014-12-15

    Previous nonlinear gyrokinetic simulations of specific DIII-D L-mode cases have been found to significantly underpredict the ion heat transport and associated density and temperature fluctuation levels by up to almost one of order of magnitude in the outer-core domain, i.e., roughly in the last third of the minor radius. Since then, this so-called shortfall issue has been subject to various speculations on possible reasons and furthermore motivation for a number of dedicated comparisons for L-mode plasmas in comparable machines. However, only a rather limited number of simulations and gyrokinetic codes has been applied to the original scenario, thus calling for further dedicated investigations in order to broaden the scientific basis. The present work contributes along these lines by employing another well-established gyrokinetic code in a numerically and physically comprehensive manner. Contrary to the previous studies, only a mild underprediction is observed at the outer radial positions which can furthermore be overcome by varying the ion temperature gradient within the error bars associated with the experimental measurement. The significance and reliability of these simulations are demonstrated by benchmarks, numerical convergence tests, and furthermore by extensive validation studies. The latter involve cross-phase and cross-power spectra analyses of various fluctuating quantities and confirm a high degree of realism. The code discrepancies come as a surprise since the involved software packages had been benchmarked repeatedly and very successfully in the past. Further collaborative effort in identifying the underlying difference is hence required.

  9. White Paper on Nuclear Astrophysics

    CERN Document Server

    Arcones, Almudena; Beers, Timothy; Berstein, Lee; Blackmon, Jeff; Bronson, Messer; Brown, Alex; Brown, Edward; Brune, Carl; Champagne, Art; Chieffi, Alessandro; Couture, Aaron; Danielewicz, Pawel; Diehl, Roland; El-Eid, Mounib; Escher, Jutta; Fields, Brian; Frohlich, Carla; Herwig, Falk; Hix, William Raphael; Iliadis, Christian; Lynch, William; McLaughlin, Gail; Meyer, Bradley; Mezzacappa, Anthony; Nunes, Filomena; O'Shea, Brian; Prakash, Madappa; Pritychenko, Boris; Reddy, Sanjay; Rehm, Ernst; Rogachev, Grigory; Rutledge, Robert; Schatz, Hendrik; Smith, Michael; Stairs, Ingrid; Steiner, Andrew; Strohmayer, Tod; Timmes, Frank; Townsley, Dean; Wiescher, Michael; Zegers, Remco; Zingale, Michael

    2016-01-01

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21-23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9- 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12-13, 2014. In summ...

  10. Astrophysics a very short introduction

    CERN Document Server

    Binney, James

    2016-01-01

    Astrophysics is the physics of the stars, and more widely the physics of the Universe. It enables us to understand the structure and evolution of planetary systems, stars, galaxies, interstellar gas, and the cosmos as a whole. In this Very Short Introduction, the leading astrophysicist James Binney shows how the field of astrophysics has expanded rapidly in the past century, with vast quantities of data gathered by telescopes exploiting all parts of the electromagnetic spectrum, combined with the rapid advance of computing power, which has allowed increasingly effective mathematical modelling. He illustrates how the application of fundamental principles of physics - the consideration of energy and mass, and momentum - and the two pillars of relativity and quantum mechanics, has provided insights into phenomena ranging from rapidly spinning millisecond pulsars to the collision of giant spiral galaxies. This is a clear, rigorous introduction to astrophysics for those keen to cut their teeth on a conceptual trea...

  11. Radiative Magnetic Reconnection in Astrophysics

    CERN Document Server

    Uzdensky, Dmitri A

    2015-01-01

    I review a new rapidly growing area of high-energy plasma astrophysics --- radiative magnetic reconnection, i.e., a reconnection regime where radiation reaction influences reconnection dynamics, energetics, and nonthermal particle acceleration. This influence be may be manifested via a number of astrophysically important radiative effects, such as radiation-reaction limits on particle acceleration, radiative cooling, radiative resistivity, braking of reconnection outflows by radiation drag, radiation pressure, viscosity, and even pair creation at highest energy densities. Self-consistent inclusion of these effects in magnetic reconnection theory and modeling calls for serious modifications to our overall theoretical approach to the problem. In addition, prompt reconnection-powered radiation often represents our only observational diagnostic tool for studying remote astrophysical systems; this underscores the importance of developing predictive modeling capabilities to connect the underlying physical condition...

  12. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  13. The Astrophysical Multipurpose Software Environment

    CERN Document Server

    Pelupessy, F I; de Vries, N; McMillan, S L W; Drost, N; Zwart, S F Portegies

    2013-01-01

    We present the open source Astrophysical Multi-purpose Software Environment (AMUSE, www.amusecode.org), a component library for performing astrophysical simulations involving different physical domains and scales. It couples existing codes within a Python framework based on a communication layer using MPI. The interfaces are standardized for each domain and their implementation based on MPI guarantees that the whole framework is well-suited for distributed computation. It includes facilities for unit handling and data storage. Currently it includes codes for gravitational dynamics, stellar evolution, hydrodynamics and radiative transfer. Within each domain the interfaces to the codes are as similar as possible. We describe the design and implementation of AMUSE, as well as the main components and community codes currently supported and we discuss the code interactions facilitated by the framework. Additionally, we demonstrate how AMUSE can be used to resolve complex astrophysical problems by presenting exampl...

  14. Smoothed Particle Hydrodynamics in Astrophysics

    CERN Document Server

    Springel, Volker

    2011-01-01

    This review discusses Smoothed Particle Hydrodynamics (SPH) in the astrophysical context, with a focus on inviscid gas dynamics. The particle-based SPH technique allows an intuitive and simple formulation of hydrodynamics that has excellent conservation properties and can be coupled to self-gravity easily and highly accurately. The Lagrangian character of SPH allows it to automatically adjust its resolution to the clumping of matter, a property that makes the scheme ideal for many applications in astrophysics, where often a large dynamic range in density is encountered. We discuss the derivation of the basic SPH equations in their modern formulation, and give an overview about extensions of SPH developed to treat physics such as radiative transfer, thermal conduction, relativistic dynamics or magnetic fields. We also briefly describe some of the most important applications areas of SPH in astrophysical research. Finally, we provide a critical discussion of the accuracy of SPH for different hydrodynamical prob...

  15. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1963-01-01

    Advances in Astronomy and Astrophysics, Volume 2 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of six chapters and begins with a summary of observational record on twilight extensions of the Venus cusps. The next chapter deals with the common and related properties of binary stars, with emphasis on the evaluation of their cataclysmic variables. Cataclysmic variables refer to an object in one of three classes: dwarf nova, nova, or supernova. These topics are followed by discussions on the eclipse phenomena and the eclipses i

  16. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1962-01-01

    Advances in Astronomy and Astrophysics, Volume 1 brings together numerous research works on different aspects of astronomy and astrophysics. This book is divided into five chapters and begins with an observational summary of the shock-wave theory of novae. The subsequent chapter provides the properties and problems of T tauri stars and related objects. These topics are followed by discussions on the structure and origin of meteorites and cosmic dust, as well as the models for evaluation of mass distribution in oblate stellar systems. The final chapter describes the methods of polarization mea

  17. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1966-01-01

    Advances in Astronomy and Astrophysics, Volume 4 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of five chapters, and starts with a description of objective prism and its application in space observations. The next chapter deals with the possibilities of deriving reliable models of the figure, density distribution, and gravity field of the Moon based on data obtained through Earth-bound telescopes. These topics are followed by a discussion on the ideal partially relativistic, partially degenerate gas in an exact manner. A ch

  18. Nuclear astrophysics lessons from INTEGRAL.

    Science.gov (United States)

    Diehl, Roland

    2013-02-01

    Measurements of high-energy photons from cosmic sources of nuclear radiation through ESA's INTEGRAL mission have advanced our knowledge: new data with high spectral resolution showed that characteristic gamma-ray lines from radioactive decays occur throughout the Galaxy in its interstellar medium. Although the number of detected sources and often the significance of the astrophysical results remain modest, conclusions derived from this unique astronomical window of radiation originating from nuclear processes are important, complementing the widely-employed atomic-line based spectroscopy. We review the results and insights obtained in the past decade from gamma-ray line measurements of cosmic sources in the context of their astrophysical questions.

  19. Recent advances in neutrino astrophysics

    CERN Document Server

    Volpe, Cristina

    2014-01-01

    Neutrinos are produced by a variety of sources that comprise our Sun, explosive environments such as core-collapse supernovae, the Earth and the Early Universe. The precise origin of the recently discovered ultra-high energy neutrinos is to be determined yet. These weakly interacting particles give us information on their sources, although the neutrino fluxes can be modified when neutrinos traverse an astrophysical environment. Here we highlight recent advances in neutrino astrophysics and emphasise the important progress in our understanding of neutrino flavour conversion in media.

  20. Nuclear astrophysics data at ORNL

    International Nuclear Information System (INIS)

    There is a new program of evaluation and dissemination of nuclear data of critical importance for nuclear astrophysics within the Physics Division of Oak Ridge National Laboratory. Recent activities include determining the rates of the important 14O(α,p)17 F and 17F(p,γ) 18Ne reactions, disseminating the Caughlan and Fowler reaction rate compilation on the World Wide Web, and evaluating the 17O(p,α)14N reaction rate. These projects, which are closely coupled to current ORNL nuclear astrophysics research, are briefly discussed along with future plans

  1. Astrophysics at very high energies

    International Nuclear Information System (INIS)

    Presents three complementary lectures on very-high-energy astrophysics given by worldwide leaders in the field. Reviews the recent advances in and prospects of gamma-ray astrophysics and of multi-messenger astronomy. Prepares readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors. With the success of Cherenkov Astronomy and more recently with the launch of NASA's Fermi mission, very-high-energy astrophysics has undergone a revolution in the last years. This book provides three comprehensive and up-to-date reviews of the recent advances in gamma-ray astrophysics and of multi-messenger astronomy. Felix Aharonian and Charles Dermer address our current knowledge on the sources of GeV and TeV photons, gleaned from the precise measurements made by the new instrumentation. Lars Bergstroem presents the challenges and prospects of astro-particle physics with a particular emphasis on the detection of dark matter candidates. The topics covered by the 40th Saas-Fee Course present the capabilities of current instrumentation and the physics at play in sources of very-high-energy radiation to students and researchers alike. This book will encourage and prepare readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors.

  2. Chaos and complexity in astrophysics

    CERN Document Server

    Regev, Oded

    2007-01-01

    Methods and techniques of the theory of nonlinear dynamical systems and patterns can be useful in astrophysical applications. Some works on the subjects of dynamical astronomy, stellar pulsation and variability, as well as spatial complexity in extended systems, in which such approaches have already been utilized, are reviewed. Prospects for future directions in applications of this kind are outlined.

  3. Indirect methods in nuclear astrophysics

    CERN Document Server

    Bertulani, C A; Mukhamedzhanov, A; Kadyrov, A S; Kruppa, A; Pang, D Y

    2015-01-01

    We discuss recent developments in indirect methods used in nuclear astrophysics to determine the capture cross sections and subsequent rates of various stellar burning processes, when it is difficult to perform the corresponding direct measurements. We discuss in brief, the basic concepts of Asymptotic Normalization Coefficients, the Trojan Horse Method, the Coulomb Dissociation Method, (d,p), and charge-exchange reactions.

  4. Recent Progress in Nuclear Astrophysics

    OpenAIRE

    Langanke, K

    1999-01-01

    The manuscript reviews progress achieved in recent years in various aspects of nuclear astrophysics, including stellar nucleosynthesis, nuclear aspects of supernova collapse and explosion, neutrino-induced reactions and their possible role in the supernova mechanism and nucleosynthesis, explosive hydrogen burning in binary systems, and finally the observation of $\\gamma$-rays from supernova remnants.

  5. Neutrino in Astrophysics and Cosmology

    OpenAIRE

    Dai, Zuxiang

    2003-01-01

    At first we introduce the Neutrino in the standard Model, then the Dirac and Majorana Masses. After introducing the See-Saw Mechanism, we discuss the neutrino oscillations and the neutrino in astrophysics and cosmology. We finish this paper with a brief summary of the neutrino experiments.

  6. Astronomy & Astrophysics: an international journal

    Science.gov (United States)

    Bertout, C.

    2011-07-01

    After a brief historical introduction, we review the scope, editorial process, and production organization of A&A, one of the leading journals worldwide dedicated to publishing the results of astrophysical research. We then briefly discuss the economic model of the Journal and some current issues in scientific publishing.

  7. Astronomy and Astrophysics in India

    Science.gov (United States)

    Narlikar, J.; Murdin, P.

    2001-07-01

    The growth in astronomy and astrophysics (A&A) in India has been mostly since the country achieved independence in 1947. The present work is carried out in a few select research institutes and in some university departments. The Astronomical Society of India has around 300 working A&A scientists as members, with another 50-60 graduate students....

  8. Astrophysics on the Lab Bench

    Science.gov (United States)

    Hughes, Stephen W.

    2010-01-01

    In this article some basic laboratory bench experiments are described that are useful for teaching high school students some of the basic principles of stellar astrophysics. For example, in one experiment, students slam a plastic water-filled bottle down onto a bench, ejecting water towards the ceiling, illustrating the physics associated with a…

  9. Nuclear astrophysics of light nuclei

    DEFF Research Database (Denmark)

    Fynbo, Hans Otto Uldall

    2013-01-01

    A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...

  10. An introduction to nuclear astrophysics

    International Nuclear Information System (INIS)

    The role of nuclear reactions in astrophysics is described. Stellar energy generation and heavy element nucleosynthesis is explained in terms of specific sequences of charged-particle and neutron induced reactions. The evolution and final states of stars are examined. 20 refs. 11 figs., 2 tabs

  11. Indirect methods in nuclear astrophysics

    Science.gov (United States)

    Bertulani, C. A.; Shubhchintak; Mukhamedzhanov, A.; Kadyrov, A. S.; Kruppa, A.; Pang, D. Y.

    2016-04-01

    We discuss recent developments in indirect methods used in nuclear astrophysics to determine the capture cross sections and subsequent rates of various stellar burning processes, when it is difficult to perform the corresponding direct measurements. We discuss in brief, the basic concepts of Asymptotic Normalization Coefficients, the Trojan Horse Method, the Coulomb Dissociation Method, (d,p), and charge-exchange reactions.

  12. Introducing Astrophysics Research to High School Students.

    Science.gov (United States)

    Etkina, Eugenia; Lawrence, Michael; Charney, Jeff

    1999-01-01

    Presents an analysis of an astrophysics institute designed for high school students. Investigates how students respond cognitively in an active science-learning environment in which they serve as apprentices to university astrophysics professors. (Author/CCM)

  13. International Olympiad on Astronomy and Astrophysics

    Science.gov (United States)

    Soonthornthum, B.; Kunjaya, C.

    2011-01-01

    The International Olympiad on Astronomy and Astrophysics, an annual astronomy and astrophysics competition for high school students, is described. Examples of problems and solutions from the competition are also given. (Contains 3 figures.)

  14. Precision laboratory measurements in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Gai, M. [Connecticut Univ., Storrs, CT (United States). Dept. of Physics

    2000-07-01

    After reviewing some of the basic concepts, nomenclatures and parametrizations of astronomy, astrophysics, cosmology, and nuclear physics, we introduce a few central problems in nuclear astrophysics, including the hot-CNO cycle, helium burning and solar neutrinos. We demonstrate that in this new era of precision nuclear astrophysics secondary or radioactive nuclear beams allow for progress. (orig.)

  15. A 5D gyrokinetic full- f global semi-Lagrangian code for flux-driven ion turbulence simulations

    Science.gov (United States)

    Grandgirard, V.; Abiteboul, J.; Bigot, J.; Cartier-Michaud, T.; Crouseilles, N.; Dif-Pradalier, G.; Ehrlacher, Ch.; Esteve, D.; Garbet, X.; Ghendrih, Ph.; Latu, G.; Mehrenberger, M.; Norscini, C.; Passeron, Ch.; Rozar, F.; Sarazin, Y.; Sonnendrücker, E.; Strugarek, A.; Zarzoso, D.

    2016-10-01

    This paper addresses non-linear gyrokinetic simulations of ion temperature gradient (ITG) turbulence in tokamak plasmas. The electrostatic GYSELA code is one of the few international 5D gyrokinetic codes able to perform global, full- f and flux-driven simulations. Its has also the numerical originality of being based on a semi-Lagrangian (SL) method. This reference paper for the GYSELA code presents a complete description of its multi-ion species version including: (i) numerical scheme, (ii) high level of parallelism up to 500k cores and (iii) conservation law properties.

  16. Space and Astrophysical Plasmas : Space and astrophysical plasmas: Pervasive problems

    Indian Academy of Sciences (India)

    Chanchal Uberoi

    2000-11-01

    The observations and measurements given by Earth orbiting satellites, deep space probes, sub-orbital systems and orbiting astronomical observatories point out that there are important physical processes which are responsible for a wide variety of phenomena in solar-terrestrial, solar-system and astrophysical plasmas. In this review these topics are exemplified both from an observational and a theoretical point of view.

  17. Asymptotic and spectral analysis of the gyrokinetic-waterbag integro-differential operator in toroidal geometry

    Science.gov (United States)

    Besse, Nicolas; Coulette, David

    2016-08-01

    Achieving plasmas with good stability and confinement properties is a key research goal for magnetic fusion devices. The underlying equations are the Vlasov-Poisson and Vlasov-Maxwell (VPM) equations in three space variables, three velocity variables, and one time variable. Even in those somewhat academic cases where global equilibrium solutions are known, studying their stability requires the analysis of the spectral properties of the linearized operator, a daunting task. We have identified a model, for which not only equilibrium solutions can be constructed, but many of their stability properties are amenable to rigorous analysis. It uses a class of solution to the VPM equations (or to their gyrokinetic approximations) known as waterbag solutions which, in particular, are piecewise constant in phase-space. It also uses, not only the gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but also an asymptotic approximation regarding the magnetic-field-induced anisotropy: the spatial variation along the field lines is taken much slower than across them. Together, these assumptions result in a drastic reduction in the dimensionality of the linearized problem, which becomes a set of two nested one-dimensional problems: an integral equation in the poloidal variable, followed by a one-dimensional complex Schrödinger equation in the radial variable. We show here that the operator associated to the poloidal variable is meromorphic in the eigenparameter, the pulsation frequency. We also prove that, for all but a countable set of real pulsation frequencies, the operator is compact and thus behaves mostly as a finite-dimensional one. The numerical algorithms based on such ideas have been implemented in a companion paper [D. Coulette and N. Besse, "Numerical resolution of the global eigenvalue problem for gyrokinetic-waterbag model in toroidal geometry" (submitted)] and were found to be surprisingly close to those for the original gyrokinetic

  18. Gyrokinetic full-torus simulations of ohmic tokamak plasmas in circular limiter configuration

    Science.gov (United States)

    Korpilo, T.; Gurchenko, A. D.; Gusakov, E. Z.; Heikkinen, J. A.; Janhunen, S. J.; Kiviniemi, T. P.; Leerink, S.; Niskala, P.; Perevalov, A. A.

    2016-06-01

    The gyrokinetic full 5D particle distribution code ELMFIRE has been extended to simulate circular tokamak plasmas from the magnetic axis to the limiter scrape-off-layer. The predictive power of the code in the full-torus configuration is tested via its ability to reproduce experimental steady-state profiles in FT-2 ohmic L-mode plasmas. The results show that the experimental profile solution is not reproduced numerically due to the difficulty of obtaining global power balance. This is verified by cross-comparison of ELMFIRE code versions, which shows also the impact of boundary conditions and grid resolution on turbulent transport.

  19. Effects of the magnetic equilibrium on gyrokinetic simulations of tokamak microinstabilities

    International Nuclear Information System (INIS)

    The general geometry of the experimental tokamak magnetic equilibrium is implemented in the global gyrokinetic simulation code GEM. Compared to the general geometry, the well used Miller parameterization of the magnetic equilibrium is a good approximation in the core region and up to the top of the pedestal. Linear simulations indicate that results with the two geometries agree for r/a ≤ 0.9. However, in the edge region, the instabilities are sensitive to the magnetic equilibrium in both the L-mode and the H-mode plasmas. A small variation of the plasma shaping parameters leads to large changes to the edge instability

  20. Linear gyrokinetic particle-in-cell simulations for small to large toroidal wavenumbers

    Energy Technology Data Exchange (ETDEWEB)

    Fivaz, M.; Tran, T.M.; Villard, L.; Appert, K.; Brunner, S.; Vaclavik, J. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Parker, S.E. [Colorado Univ., Boulder, CO (United States). Dept. of Physics

    1996-09-01

    We study here low frequency electrostatic microinstabilities driven by ion temperature gradients (ITG instabilities) relevant to anomalous ion heat transport in tokamaks. The plasma is modelled with gyrokinetic ions and adiabatic electrons. An axisymmetric equilibrium magnetic structure is provided by the MHD equilibrium code CHEASE. The full plasma cross-section is considered in the simulation. We follow the time-evolution of electrostatic, quasineutral perturbations of a local Maxwellian equilibrium distribution function, using two different particle-in-cell (PIC) codes running on a massively parallel CRAY-T3D. (author) 4 figs., 9 refs.

  1. A gyrokinetic continuum code based on the numerical Lie transform (NLT) method

    Science.gov (United States)

    Ye, Lei; Xu, Yingfeng; Xiao, Xiaotao; Dai, Zongliang; Wang, Shaojie

    2016-07-01

    In this work, we report a novel gyrokinetic simulation method named numerical Lie transform (NLT), which depends on a new physical model derived from the I-transform theory. In this model, the perturbed motion of a particle is decoupled from the unperturbed motion. Due to this property, the unperturbed orbit can be computed in advance and saved as numerical tables for real-time computation. A 4D tensor B-spline interpolation module is developed and applied with the semi-Lagrangian scheme to avoid operator splitting. The NLT code is verified by the Rosenbluth-Hinton test and the linear ITG Cyclone test.

  2. Indirect techniques in nuclear astrophysics. Asymptotic Normalization Coefficient and Trojan Horse

    CERN Document Server

    Mukhamedzhanov, A M; Brown, B A; Burjan, V; Cherubini, S; Gagliardi, C A; Irgaziev, B F; Kroha, V; Nunes, F M; Pirlepesov, F; Pizzone, R G; Romano, S; Spitaleri, C; Tang, X D; Trache, L; Tribble, R E; Tumino, A

    2005-01-01

    Owing to the presence of the Coulomb barrier at astrophysically relevant kinetic energies it is very difficult, or sometimes impossible, to measure astrophysical reaction rates in the laboratory. That is why different indirect techniques are being used along with direct measurements. Here we address two important indirect techniques, the asymptotic normalization coefficient (ANC) and the Trojan Horse (TH) methods. We discuss the application of the ANC technique for calculation of the astrophysical processes in the presence of subthreshold bound states, in particular, two different mechanisms are discussed: direct capture to the subthreshold state and capture to the low-lying bound states through the subthreshold state, which plays the role of the subthreshold resonance. The ANC technique can also be used to determine the interference sign of the resonant and nonresonant (direct) terms of the reaction amplitude. The TH method is unique indirect technique allowing one to measure astrophysical rearrangement reac...

  3. Astrophysical Applications of Fractional Calculus

    Science.gov (United States)

    Stanislavsky, Aleksander A.

    The paradigm of fractional calculus occupies an important place for the macroscopic description of subdiffusion. Its advance in theoretical astrophysics is expected to be very attractive too. In this report we discuss a recent development of the idea to some astrophysical problems. One of them is connected with a random migration of bright points associated with magnetic fields at the solar photosphere. The transport of the bright points has subdiffusive features that require the fractional generalization of the Leighton's model. Another problem is related to the angular distribution of radio beams, being propagated through a medium with random inhomogeneities. The peculiarity of this medium is that radio beams are trapped because of random wave localization. This idea can be useful for the diagnostics of interplanetary and interstellar turbulent media.

  4. Focusing Telescopes in Nuclear Astrophysics

    CERN Document Server

    Ballmoos, Peter von

    2007-01-01

    This volume is the first of its kind on focusing gamma-ray telescopes. Forty-eight refereed papers provide a comprehensive overview of the scientific potential and technical challenges of this nascent tool for nuclear astrophysics. The book features articles dealing with pivotal technologies such as grazing incident mirrors, multilayer coatings, Laue- and Fresnel-lenses - and even an optic using the curvature of space-time. The volume also presents an overview of detectors matching the ambitious objectives of gamma ray optics, and facilities for operating such systems on the ground and in space. The extraordinary scientific potential of focusing gamma-ray telescopes for the study of the most powerful sources and the most violent events in the Universe is emphasized in a series of introductory articles. Practicing professionals, and students interested in experimental high-energy astrophysics, will find this book a useful reference

  5. Lecture notes: Astrophysical fluid dynamics

    CERN Document Server

    Ogilvie, Gordon I

    2016-01-01

    These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes, and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is 'frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, includin...

  6. Large Eddy Simulations in Astrophysics

    CERN Document Server

    Schmidt, Wolfram

    2014-01-01

    In this review, the methodology of large eddy simulations (LES) is introduced and applications in astrophysics are discussed. As theoretical framework, the scale decomposition of the dynamical equations for neutral fluids by means of spatial filtering is explained. For cosmological applications, the filtered equations in comoving coordinates are also presented. To obtain a closed set of equations that can be evolved in LES, several subgrid scale models for the interactions between numerically resolved and unresolved scales are discussed, in particular the subgrid scale turbulence energy equation model. It is then shown how model coefficients can be calculated, either by dynamical procedures or, a priori, from high-resolution data. For astrophysical applications, adaptive mesh refinement is often indispensable. It is shown that the subgrid scale turbulence energy model allows for a particularly elegant and physically well motivated way of preserving momentum and energy conservation in AMR simulations. Moreover...

  7. Particle Acceleration in Astrophysical Sources

    CERN Document Server

    Amato, Elena

    2015-01-01

    Astrophysical sources are extremely efficient accelerators. Some sources emit photons up to multi-TeV energies, a signature of the presence, within them, of particles with energies much higher than those achievable with the largest accelerators on Earth. Even more compelling evidence comes from the study of Cosmic Rays, charged relativistic particles that reach the Earth with incredibly high energies: at the highest energy end of their spectrum, these subatomic particles are carrying a macroscopic energy, up to a few Joules. Here I will address the best candidate sources and mechanisms as cosmic particle accelerators. I will mainly focus on Galactic sources such as Supernova Remnants and Pulsar Wind Nebulae, which being close and bright, are the best studied among astrophysical accelerators. These sources are held responsible for most of the energy that is put in relativistic particles in the Universe, but they are not thought to accelerate particles up to the highest individual energies, $\\approx 10^{20}$ eV...

  8. Astrophysical aspects of Weyl gravity

    Science.gov (United States)

    Kazanas, Demosthenes

    1991-01-01

    This paper discusses the astrophysical implications and applications of Weyl gravity, which is the theory resulting from the unique action allowed under the principle of local scale invariance in Einstein gravity. These applications include galactic dynamics, the mass-radius relation, the cosmological constant, and the 'Modified Newtonian Dynamics' proposed by Milgrom (1983). The relation of Weyl gravity to other scale-invariant theories is addressed.

  9. High energy astrophysics an introduction

    CERN Document Server

    Courvoisier, Thierry J -L

    2013-01-01

    High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad...

  10. Astrophysics with Microarcsecond Accuracy Astrometry

    Science.gov (United States)

    Unwin, Stephen C.

    2008-01-01

    Space-based astrometry promises to provide a powerful new tool for astrophysics. At a precision level of a few microarcsonds, a wide range of phenomena are opened up for study. In this paper we discuss the capabilities of the SIM Lite mission, the first space-based long-baseline optical interferometer, which will deliver parallaxes to 4 microarcsec. A companion paper in this volume will cover the development and operation of this instrument. At the level that SIM Lite will reach, better than 1 microarcsec in a single measurement, planets as small as one Earth can be detected around many dozen of the nearest stars. Not only can planet masses be definitely measured, but also the full orbital parameters determined, allowing study of system stability in multiple planet systems. This capability to survey our nearby stellar neighbors for terrestrial planets will be a unique contribution to our understanding of the local universe. SIM Lite will be able to tackle a wide range of interesting problems in stellar and Galactic astrophysics. By tracing the motions of stars in dwarf spheroidal galaxies orbiting our Milky Way, SIM Lite will probe the shape of the galactic potential history of the formation of the galaxy, and the nature of dark matter. Because it is flexibly scheduled, the instrument can dwell on faint targets, maintaining its full accuracy on objects as faint as V=19. This paper is a brief survey of the diverse problems in modern astrophysics that SIM Lite will be able to address.

  11. Astrophysical Constraints on Singlet Scalars at LHC

    CERN Document Server

    Hertzberg, Mark P

    2016-01-01

    We consider the viability of new heavy gauge singlet scalar particles at the LHC. Our motivation for this study comes from the possibility of a new particle with mass ~ 750 GeV decaying significantly into two photons at LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such a particle and its associated collider signal. The simplest and most obvious UV complete model that incorporates the signal is that it arises from a new singlet scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states ...

  12. Astrophysical constraints on millicharged atomic dark matter

    CERN Document Server

    Kvam, Audrey K

    2014-01-01

    Some models of inelastic dark matter posit the existence of bound states under some new $U(1)'$ gauge symmetry. If this new dark photon kinetically mixes with the standard model photon, then the constituent particles in these bound states can acquire a fractional electric charge. This electric charge renders a dark-matter medium dispersive. We compute this frequency-dependent index of refraction for such a medium and use the frequency-dependent arrival time of light from astrophysical sources to constrain the properties of dark atoms in the medium. Using optical-wavelength observations from the Crab Pulsar, we find the electric millicharge of dark (electrons) protons to be smaller than the electric charge $e$ for dark atom masses below 100 keV, assuming a dark fine structure constant $\\boldsymbol{\\alpha}=1$. We estimate that future broadband observations of gamma-ray bursts can produce constraints on the millicharge of dark atoms with masses in the keV range that are competitive with existing collider constra...

  13. Laboratory astrophysical collisionless shock experiments on Omega and NIF

    Science.gov (United States)

    Park, Hye-Sook; Ross, J. S.; Huntington, C. M.; Fiuza, F.; Ryutov, D.; Casey, D.; Drake, R. P.; Fiksel, G.; Froula, D.; Gregori, G.; Kugland, N. L.; Kuranz, C.; Levy, M. C.; Li, C. K.; Meinecke, J.; Morita, T.; Petrasso, R.; Plechaty, C.; Remington, B.; Sakawa, Y.; Spitkovsky, A.; Takabe, H.; Zylstra, A. B.

    2016-03-01

    We are performing scaled astrophysics experiments on Omega and on NIF. Laser driven counter-streaming interpenetrating supersonic plasma flows can be studied to understand astrophysical electromagnetic plasma phenomena in a controlled laboratory setting. In our Omega experiments, the counter-streaming flow plasma state is measured using Thomson scattering diagnostics, demonstrating the plasma flows are indeed super-sonic and in the collisionless regime. We observe a surprising additional electron and ion heating from ion drag force in the double flow experiments that are attributed to the ion drag force and electrostatic instabilities. [1] A proton probe is used to image the electric and magnetic fields. We observe unexpected large, stable and reproducible electromagnetic field structures that arise in the counter-streaming flows [2]. The Biermann battery magnetic field generated near the target plane, advected along the flows, and recompressed near the midplane explains the cause of such self-organizing field structures [3]. A D3He implosion proton probe image showed very clear filamentary structures; three-dimensional Particle-In-Cell simulations and simulated proton radiography images indicate that these filamentary structures are generated by Weibel instabilities and that the magnetization level (ratio of magnetic energy over kinetic energy in the system) is ∼0.01 [4]. These findings have very high astrophysical relevance and significant implications. We expect to observe true collisionless shock formation when we use >100 kJ laser energy on NIF.

  14. Kinetic intermittency in magnetized plasma turbulence

    CERN Document Server

    Teaca, Bogdan; Told, Daniel; Jenko, Frank

    2016-01-01

    We employ magnetized plasma turbulence, described by a gyrokinetic formalism in an interval ranging from the end of the fluid scales to the electron gyroradius, to introduce the first study of kinetic intermittency, in which nonlinear structures formed directly in the distribution functions are analyzed by accounting for velocity space correlations generated by linear (Landau resonance) and nonlinear phase mixing. Electron structures are found to be strongly intermittent and dominated by linear phase mixing, while nonlinear phase mixing dominates the weakly intermittent ions. This is the first time spatial intermittency and linear phase mixing are shown to be self-consistently linked for the electrons and, as the magnetic field follows the intermittency of the electrons at small scales, explain why magnetic islands are places dominated by Landau damping in steady state turbulence.

  15. Einstein Toolkit for Relativistic Astrophysics

    Science.gov (United States)

    Collaborative Effort

    2011-02-01

    The Einstein Toolkit is a collection of software components and tools for simulating and analyzing general relativistic astrophysical systems. Such systems include gravitational wave space-times, collisions of compact objects such as black holes or neutron stars, accretion onto compact objects, core collapse supernovae and Gamma-Ray Bursts. The Einstein Toolkit builds on numerous software efforts in the numerical relativity community including CactusEinstein, Whisky, and Carpet. The Einstein Toolkit currently uses the Cactus Framework as the underlying computational infrastructure that provides large-scale parallelization, general computational components, and a model for collaborative, portable code development.

  16. Astrophysics Source Code Library Enhancements

    CERN Document Server

    Hanisch, Robert J; Berriman, G Bruce; DuPrie, Kimberly; Mink, Jessica; Nemiroff, Robert J; Schmidt, Judy; Shamir, Lior; Shortridge, Keith; Taylor, Mark; Teuben, Peter J; Wallin, John

    2014-01-01

    The Astrophysics Source Code Library (ASCL; ascl.net) is a free online registry of codes used in astronomy research; it currently contains over 900 codes and is indexed by ADS. The ASCL has recently moved a new infrastructure into production. The new site provides a true database for the code entries and integrates the WordPress news and information pages and the discussion forum into one site. Previous capabilities are retained and permalinks to ascl.net continue to work. This improvement offers more functionality and flexibility than the previous site, is easier to maintain, and offers new possibilities for collaboration. This presentation covers these recent changes to the ASCL.

  17. Laboratory Studies of Astrophysical Jets

    CERN Document Server

    Ciardi, Andrea

    2009-01-01

    Jets and outflows produced during star-formation are observed on many scales: from the "micro-jets" extending a few hundred Astronomical Units to the "super-jets" propagating to parsecs distances. Recently, a new "class" of short-lived (hundreds of nano-seconds) centimetre-long jets has emerged in the laboratory as a complementary tool to study these complex astrophysical flows. Here I will discuss and review the recent work done on "simulating" protostellar jets in the laboratory using z-pinch machines.

  18. Astrophysics and Cosmology: International Partnerships

    Science.gov (United States)

    Blandford, Roger

    2016-03-01

    Most large projects in astrophysics and cosmology are international. This raises many challenges including: --Aligning the sequence of: proposal, planning, selection, funding, construction, deployment, operation, data mining in different countries --Managing to minimize cost growth through reconciling different practices --Communicating at all levels to ensure a successful outcome --Stabilizing long term career opportunities. There has been considerable progress in confronting these challenges. Lessons learned from past collaborations are influencing current facilities but much remains to be done if we are to optimize the scientific and public return on the expenditure of financial and human resources.

  19. Astrophysical constraints on dark energy

    Science.gov (United States)

    Ho, Chiu Man; Hsu, Stephen D. H.

    2016-02-01

    Dark energy (i.e., a cosmological constant) leads, in the Newtonian approximation, to a repulsive force which grows linearly with distance and which can have astrophysical consequences. For example, the dark energy force overcomes the gravitational attraction from an isolated object (e.g., dwarf galaxy) of mass 107M⊙ at a distance of 23 kpc. Observable velocities of bound satellites (rotation curves) could be significantly affected, and therefore used to measure or constrain the dark energy density. Here, isolated means that the gravitational effect of large nearby galaxies (specifically, of their dark matter halos) is negligible; examples of isolated dwarf galaxies include Antlia or DDO 190.

  20. Astrophysics on the lab bench

    Science.gov (United States)

    Hughes, Stephen W.

    2010-05-01

    In this article some basic laboratory bench experiments are described that are useful for teaching high school students some of the basic principles of stellar astrophysics. For example, in one experiment, students slam a plastic water-filled bottle down onto a bench, ejecting water towards the ceiling, illustrating the physics associated with a type II supernova explosion. In another experiment, students roll marbles up and down a double ramp in an attempt to get a marble to enter a tube halfway up the slope, which illustrates quantum tunnelling in stellar cores. The experiments are reasonably low cost to either purchase or manufacture.

  1. Solar astrophysics. 3. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Foukal, Peter V. [CRI, Nahant, MA (United States)

    2013-06-01

    This third, revised edition describes our current understanding of the sun - from its deepest interior, via the layers of the directly observable atmosphere to the solar wind, right up to its farthest extension into interstellar space. It includes a comprehensive account of the history of solar astrophysics, and the evolution of solar instruments. This account now includes the most up- to-date implementation of modern solar instruments in facilities on the ground and in space. The revised book now also provides an overview of recent results on ''space weather'' and on sun-climate relations, both of which are fields of increasing societal importance.

  2. Multimessenger Astronomy and Astrophysics Synergies

    CERN Document Server

    van Putten, Maurice H P M

    2012-01-01

    A budget neutral strategy is proposed for NSF to lead the implementation of multimessenger astronomy and astrophysics, as outlined in the Astro2010 Decadal Survey. The emerging capabilities for simultaneous measurements of physical and astronomical data through the different windows of electromagnetic, hadronic and gravitational radiation processes call for a vigorous pursuit of new synergies. The proposed approach is aimed at the formation of new collaborations and multimessenger data-analysis, to transcend the scientific inquiries made within a single window of observations. In view of budgetary constraints, we propose to include the multimessenger dimension in the ranking of proposals submitted under existing NSF programs.

  3. Astrophysical Observations: Lensing and Eclipsing Einstein's Theories

    OpenAIRE

    Bennett, Charles L.

    2005-01-01

    Albert Einstein postulated the equivalence of energy and mass, developed the theory of special relativity, explained the photoelectric effect, and described Brownian motion in five papers, all published in 1905, 100 years ago. With these papers, Einstein provided the framework for understanding modern astrophysical phenomena. Conversely, astrophysical observations provide one of the most effective means for testing Einstein's theories. Here, I review astrophysical advances precipitated by Ein...

  4. Nuclear physics in astrophysics. Part 2. Abstracts

    International Nuclear Information System (INIS)

    The proceedings of the 20. International Nuclear Physics Divisional Conference of the European Physical Society covers a wide range of topics in nuclear astrophysics. The topics addressed are big bang nucleosynthesis, stellar nucleosynthesis, measurements and nuclear data for astrophysics, nuclear structure far from stability, neutrino physics, and rare-ion-beam facilities and experiments. The perspectives of nuclear physics and astrophysics are also overviewed. 77 items are indexed separately for the INIS database. (K.A.)

  5. Progresses of Laboratory Astrophysics in China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Gang; ZHANG Jie

    2011-01-01

    The exciting discoveries in astronomy such as the accelerating expansion of the universe, the atmospheric composition of exoplanets, and the abundance trends of various types of stars rely upon advances in laboratory astrophysics. These new discoveries have occurred along with dramatic improvements in measurements by ground- based and space-based instruments of astrophysical processes under extreme physical conditions. Laboratory astrophysics is an exciting and rapidly growing field emerging since the beginning of this century, which covers a wide range of scientific areas such as astrophysics,

  6. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  7. High-Energy Astrophysics: An Overview

    Science.gov (United States)

    Fishman, Gerald J.

    2007-01-01

    High-energy astrophysics is the study of objects and phenomena in space with energy densities much greater than that found in normal stars and galaxies. These include black holes, neutron stars, cosmic rays, hypernovae and gamma-ray bursts. A history and an overview of high-energy astrophysics will be presented, including a description of the objects that are observed. Observing techniques, space-borne missions in high-energy astrophysics and some recent discoveries will also be described. Several entirely new types of astronomy are being employed in high-energy astrophysics. These will be briefly described, along with some NASA missions currently under development.

  8. A chemical reaction network solver for the astrophysics code NIRVANA

    Science.gov (United States)

    Ziegler, U.

    2016-02-01

    Context. Chemistry often plays an important role in astrophysical gases. It regulates thermal properties by changing species abundances and via ionization processes. This way, time-dependent cooling mechanisms and other chemistry-related energy sources can have a profound influence on the dynamical evolution of an astrophysical system. Modeling those effects with the underlying chemical kinetics in realistic magneto-gasdynamical simulations provide the basis for a better link to observations. Aims: The present work describes the implementation of a chemical reaction network solver into the magneto-gasdynamical code NIRVANA. For this purpose a multispecies structure is installed, and a new module for evolving the rate equations of chemical kinetics is developed and coupled to the dynamical part of the code. A small chemical network for a hydrogen-helium plasma was constructed including associated thermal processes which is used in test problems. Methods: Evolving a chemical network within time-dependent simulations requires the additional solution of a set of coupled advection-reaction equations for species and gas temperature. Second-order Strang-splitting is used to separate the advection part from the reaction part. The ordinary differential equation (ODE) system representing the reaction part is solved with a fourth-order generalized Runge-Kutta method applicable for stiff systems inherent to astrochemistry. Results: A series of tests was performed in order to check the correctness of numerical and technical implementation. Tests include well-known stiff ODE problems from the mathematical literature in order to confirm accuracy properties of the solver used as well as problems combining gasdynamics and chemistry. Overall, very satisfactory results are achieved. Conclusions: The NIRVANA code is now ready to handle astrochemical processes in time-dependent simulations. An easy-to-use interface allows implementation of complex networks including thermal processes

  9. A kinetic-MHD model for low frequency phenomena

    International Nuclear Information System (INIS)

    A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter τ and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented

  10. A kinetic-MHD model for low frequency phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Z.

    1991-07-01

    A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter {tau} and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented.

  11. Gyrokinetic turbulence cascade via predator-prey interactions between different scales

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Sumire, E-mail: sumire.kobayashi@lpp.polytechnique.fr; Gurcan, Ozgur D., E-mail: ozgur.gurcan@lpp.polytechnique.fr [Laboratoire de Physique des Plasmas, CNRS, Paris-Sud, Ecole Polytechnique, UMR7648, F-91128 Palaiseau (France)

    2015-05-15

    Gyrokinetic simulations in a closed fieldline geometry are presented to explore the physics of nonlinear transfer in plasma turbulence. As spontaneously formed zonal flows and small-scale turbulence demonstrate “predator-prey” dynamics, a particular cascade spectrum emerges. The electrostatic potential and the density spectra appear to be in good agreement with the simple theoretical prediction based on Charney-Hasegawa-Mima equation | ϕ{sup ~}{sub k} |{sup 2}∼| n{sup ~}{sub k} |{sup 2}∝k{sup −3}/(1+k{sup 2}){sup 2}, with the spectra becoming anisotropic at small scales. The results indicate that the disparate scale interactions, in particular, the refraction and shearing of larger scale eddies by the self-consistent zonal flows, dominate over local interactions, and contrary to the common wisdom, the comprehensive scaling relation is created even within the energy injection region.

  12. Validation of gyrokinetic modelling of light impurity transport including rotation in ASDEX Upgrade

    CERN Document Server

    Casson, F J; Angioni, C; Camenen, Y; Dux, R; Fable, E; Fischer, R; Geiger, B; Manas, P; Menchero, L; Tardini, G

    2013-01-01

    Upgraded spectroscopic hardware and an improved impurity concentration calculation allow accurate determination of boron density in the ASDEX Upgrade tokamak. A database of boron measurements is compared to quasilinear and nonlinear gyrokinetic simulations including Coriolis and centrifugal rotational effects over a range of H-mode plasma regimes. The peaking of the measured boron profiles shows a strong anti-correlation with the plasma rotation gradient, via a relationship explained and reproduced by the theory. It is demonstrated that the rotodiffusive impurity flux driven by the rotation gradient is required for the modelling to reproduce the hollow boron profiles at higher rotation gradients. The nonlinear simulations validate the quasilinear approach, and, with the addition of perpendicular flow shear, demonstrate that each symmetry breaking mechanism that causes momentum transport also couples to rotodiffusion. At lower rotation gradients, the parallel compressive convection is required to match the mos...

  13. Modern Gyrokinetic Particle-In-Cell Simulation of Fusion Plasmas on Top Supercomputers

    CERN Document Server

    Wang, Bei; Tang, William; Ibrahim, Khaled; Madduri, Kamesh; Williams, Samuel; Oliker, Leonid

    2015-01-01

    The Gyrokinetic Toroidal Code at Princeton (GTC-P) is a highly scalable and portable particle-in-cell (PIC) code. It solves the 5D Vlasov-Poisson equation featuring efficient utilization of modern parallel computer architectures at the petascale and beyond. Motivated by the goal of developing a modern code capable of dealing with the physics challenge of increasing problem size with sufficient resolution, new thread-level optimizations have been introduced as well as a key additional domain decomposition. GTC-P's multiple levels of parallelism, including inter-node 2D domain decomposition and particle decomposition, as well as intra-node shared memory partition and vectorization have enabled pushing the scalability of the PIC method to extreme computational scales. In this paper, we describe the methods developed to build a highly parallelized PIC code across a broad range of supercomputer designs. This particularly includes implementations on heterogeneous systems using NVIDIA GPU accelerators and Intel Xeon...

  14. Gyrokinetic studies of trapped electron mode turbulence in the Helically Symmetric eXperiment stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Faber, B. J. [HSX Plasma Lab, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Pueschel, M. J.; Terry, P. W. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Proll, J. H. E. [Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald (Germany); Max-Planck/Princeton Research Center for Plasma Physics, 17491 Greifswald (Germany); Xanthopoulos, P. [Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald (Germany); Hegna, C. C. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Weir, G. M.; Likin, K. M.; Talmadge, J. N. [HSX Plasma Lab, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-07-15

    Gyrokinetic simulations of plasma microturbulence in the Helically Symmetric eXperiment are presented. Using plasma profiles relevant to experimental operation, four dominant drift wave regimes are observed in the ion wavenumber range, which are identified as different flavors of density-gradient-driven trapped electron modes. For the most part, the heat transport exhibits properties associated with turbulence driven by these types of modes. Additionally, long-wavelength, radially localized, nonlinearly excited coherent structures near the resonant central flux surface, not predicted by linear simulations, can further enhance flux levels. Integrated heat fluxes are compatible with experimental observations in the corresponding density gradient range. Despite low shearing rates, zonal flows are observed to regulate turbulence but can be overwhelmed at higher density gradients by the long-wavelength coherent structures.

  15. Comprehensive comparisons of geodesic acoustic mode characteristics and dynamics between Tore Supra experiments and gyrokinetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Storelli, A., E-mail: alexandre.storelli@lpp.polytechnique.fr; Vermare, L.; Hennequin, P.; Gürcan, Ö. D.; Singh, Rameswar; Morel, P. [Laboratoire de Physique des Plasmas, École Polytechnique, CNRS, UPMC, UPSud, 91128 Palaiseau (France); Dif-Pradalier, G.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Ghendrih, P. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Görler, T. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-06-15

    In a dedicated collisionality scan in Tore Supra, the geodesic acoustic mode (GAM) is detected and identified with the Doppler backscattering technique. Observations are compared to the results of a simulation with the gyrokinetic code GYSELA. We found that the GAM frequency in experiments is lower than predicted by simulation and theory. Moreover, the disagreement is higher in the low collisionality scenario. Bursts of non harmonic GAM oscillations have been characterized with filtering techniques, such as the Hilbert-Huang transform. When comparing this dynamical behaviour between experiments and simulation, the probability density function of GAM amplitude and the burst autocorrelation time are found to be remarkably similar. In the simulation, where the radial profile of GAM frequency is continuous, we observed a phenomenon of radial phase mixing of the GAM oscillations, which could influence the burst autocorrelation time.

  16. The implementation of a toroidal limiter model into the gyrokinetic code ELMFIRE

    Energy Technology Data Exchange (ETDEWEB)

    Leerink, S.; Janhunen, S.J.; Kiviniemi, T.P.; Nora, M. [Euratom-Tekes Association, Helsinki University of Technology (Finland); Heikkinen, J.A. [Euratom-Tekes Association, VTT, P.O. Box 1000, FI-02044 VTT (Finland); Ogando, F. [Universidad Nacional de Educacion a Distancia, Madrid (Spain)

    2008-03-15

    The ELMFIRE full nonlinear gyrokinetic simulation code has been developed for calculations of plasma evolution and dynamics of turbulence in tokamak geometry. The code is applicable for calculations of strong perturbations in particle distribution function, rapid transients and steep gradients in plasma. Benchmarking against experimental reflectometry data from the FT2 tokamak is being discussed and in this paper a model for comparison and studying poloidal velocity is presented. To make the ELMFIRE code suitable for scrape-off layer simulations a simplified toroidal limiter model has been implemented. The model is be discussed and first results are presented. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Continuum kinetic methods for analyzing wave physics and distribution function dynamics in the turbulence dissipation challenge

    Science.gov (United States)

    Juno, J.; Hakim, A.; TenBarge, J.; Dorland, W.

    2015-12-01

    We present for the first time results for the turbulence dissipation challenge, with specific focus on the linear wave portion of the challenge, using a variety of continuum kinetic models: hybrid Vlasov-Maxwell, gyrokinetic, and full Vlasov-Maxwell. As one of the goals of the wave problem as it is outlined is to identify how well various models capture linear physics, we compare our results to linear Vlasov and gyrokinetic theory. Preliminary gyrokinetic results match linear theory extremely well due to the geometry of the problem, which eliminates the dominant nonlinearity. With the non-reduced models, we explore how the subdominant nonlinearities manifest and affect the evolution of the turbulence and the energy budget. We also take advantage of employing continuum methods to study the dynamics of the distribution function, with particular emphasis on the full Vlasov results where a basic collision operator has been implemented. As the community prepares for the next stage of the turbulence dissipation challenge, where we hope to do large 3D simulations to inform the next generation of observational missions such as THOR (Turbulence Heating ObserveR), we argue for the consideration of hybrid Vlasov and full Vlasov as candidate models for these critical simulations. With the use of modern numerical algorithms, we demonstrate the competitiveness of our code with traditional particle-in-cell algorithms, with a clear plan for continued improvements and optimizations to further strengthen the code's viability as an option for the next stage of the challenge.

  18. Nuclear Astrophysics with the Trojan Horse Method

    Science.gov (United States)

    Tumino, A.; Spitaleri, C.; Lamia, L.; Pizzone, R. G.; Cherubini, S.; Gulino, M.; La Cognata, M.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Spartá, R.

    2016-01-01

    The Trojan Horse Method (THM) represents the indirect path to determine the bare nucleus astrophysical S(E) factor for reactions between charged particles at astrophysical energies. This is done by measuring the quasi free cross section of a suitable three body process. The basic features of the THM will be presented together with some applications to demonstrate its practical use.

  19. Nonperturbative Quantum Field Theory in Astrophysics

    OpenAIRE

    Mazur, Dan

    2012-01-01

    The extreme electromagnetic or gravitational fields associated with some astrophysical objects can give rise to macroscopic effects arising from the physics of the quantum vacuum. Therefore, these objects are incredible laboratories for exploring the physics of quantum field theories. In this dissertation, we explore this idea in three astrophysical scenarios.

  20. Proceedings of the NASA Laboratory Astrophysics Workshop

    Science.gov (United States)

    Weck, Phillippe F. (Editor); Kwong, Victor H. S. (Editor); Salama, Farid (Editor)

    2006-01-01

    This report is a collection of papers presented at the 2006 NASA Workshop on Laboratory Astrophysics held in the University of Nevada, Las Vegas (UNLV) from February 14 to 16, 2006. This workshop brings together producers and users of laboratory astrophysics data so that they can understand each other's needs and limitations in the context of the needs for NASA's missions. The last NASA-sponsored workshop was held in 2002 at Ames Research Center. Recent related meetings include the Topical Session at the AAS meeting and the European workshop at Pillnitz, Germany, both of which were held in June 2005. The former showcased the importance of laboratory astrophysics to the community at large, while the European workshop highlighted a multi-laboratory approach to providing the needed data. The 2006 NASA Workshop on Laboratory Astrophysics, sponsored by the NASA Astrophysics Division, focused on the current status of the field and its relevance to NASA. This workshop attracted 105 participants and 82 papers of which 19 were invited. A White Paper identifying the key issues in laboratory astrophysics during the break-out sessions was prepared by the Scientific Organizing Committee, and has been forwarded to the Universe Working Group (UWG) at NASA Headquarters. This White Paper, which represented the collective inputs and opinions from experts and stakeholders in the field of astrophysics, should serve as the working document for the future development of NASA's R&A program in laboratory astrophysics.

  1. Flexible, Mastery-Oriented Astrophysics Sequence.

    Science.gov (United States)

    Zeilik, Michael, II

    1981-01-01

    Describes the implementation and impact of a two-semester mastery-oriented astrophysics sequence for upper-level physics/astrophysics majors designed to handle flexibly a wide range of student backgrounds. A Personalized System of Instruction (PSI) format was used fostering frequent student-instructor interaction and role-modeling behavior in…

  2. Astrophysics at the Highest Energy Frontiers

    OpenAIRE

    Stecker, F. W.

    2002-01-01

    I discuss recent advances being made in the physics and astrophysics of cosmic rays and cosmic gamma-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. I also discuss the connections between these topics.

  3. Astrophysics with small satellites in Scandinavia

    DEFF Research Database (Denmark)

    Lund, Niels

    2003-01-01

    The small-satellites activities in the Scandinavian countries are briefly surveyed with emphasis on astrophysics research. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.......The small-satellites activities in the Scandinavian countries are briefly surveyed with emphasis on astrophysics research. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved....

  4. Focusing telescopes in nuclear astrophysics

    International Nuclear Information System (INIS)

    The objective of this workshop is to consider the next generation of instrumentation to be required within the domain of nuclear astrophysics. A small, but growing community has been pursuing various techniques for the focusing of hard X-rays and gamma-rays with the aim of achieving a factor of up to 100 improvement in sensitivity over present technologies. Balloon flight tests of both multilayer mirrors and a Laue lens have been performed and ideas abound. At present, implementation scenarios for space missions are being studied at Esa, CNES, and elsewhere. The workshop will provide a first opportunity for this new community to meet, exchange technological know-how, discuss scientific objectives and synergies, and consolidate implementation approaches within National and European Space Science programs. This document gathers the slides of all the presentations

  5. Focusing telescopes in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Von Ballmoos, P.; Knodlseder, R.; Sazonov, S.; Griffiths, R.; Bastie, P.; Halloin, H.; Pareschi, G.; Ramsey, B.; Jensen, C.; Buis, E.J.; Ulmer, M.; Giommi, P.; Colafrancesco, S.; Comastri, A.; Barret, D.; Leising, M.; Hernanz, M.; Smith, D.; Abrosimov, N.; Smither, B.; Ubertini, P.; Olive, J.F.; Lund, N.; Pisa, A.; Courtois, P.; Roa, D.; Harrison, F.; Pareschi, G.; Frontera, F.; Von Ballmoos, P.; Barriere, N.; Rando, N.; Borde, J.; Hinglais, E.; Cledassou, R.; Duchon, P.; Sghedoni, M.; Huet, B.; Takahashi, T.; Caroli, E.; Quadrinin, L.; Buis, E.J.; Skinner, G.; Krizmanic, J.; Pareschi, G.; Loffredo, G.; Wunderer, C.; Weidenspointner, G.; Wunderer, C.; Koechlin, L.; Bignami, G.; Von Ballmoos, P.; Tueller, J.; Andritschke, T.; Laurens, A.; Evrard, J

    2005-07-01

    The objective of this workshop is to consider the next generation of instrumentation to be required within the domain of nuclear astrophysics. A small, but growing community has been pursuing various techniques for the focusing of hard X-rays and gamma-rays with the aim of achieving a factor of up to 100 improvement in sensitivity over present technologies. Balloon flight tests of both multilayer mirrors and a Laue lens have been performed and ideas abound. At present, implementation scenarios for space missions are being studied at Esa, CNES, and elsewhere. The workshop will provide a first opportunity for this new community to meet, exchange technological know-how, discuss scientific objectives and synergies, and consolidate implementation approaches within National and European Space Science programs. This document gathers the slides of all the presentations.

  6. Silica aerogel and space astrophysics

    International Nuclear Information System (INIS)

    Silica aerogels have been produced in large and transparent blocks for space astrophysics experiments since the beginning of the 1970's. They were used in cosmic ray experiments on board balloons by the Saclay group. A new space venture where aerogel Cerenkov radiators will play a decisive role is currently being prepared by a large collaboration of European and US Institutes. It will be part of the so-called International Solar Polar Mission (ISPM) which will explore the heliosphere over the full range of solar latitudes from the ecliptic (equatorial) plane to the magnetic poles of the sun. Comments on properties and long term behaviour of silica aerogel cerenkov radiators in space environment are given

  7. Astrophysical Conditions for Planetary Habitability

    CERN Document Server

    Guedel, M; Erkaev, N; Kasting, J; Khodachenko, M; Lammer, H; Pilat-Lohinger, E; Rauer, H; Ribas, I; Wood, B E

    2014-01-01

    With the discovery of hundreds of exoplanets and a potentially huge number of Earth-like planets waiting to be discovered, the conditions for their habitability have become a focal point in exoplanetary research. The classical picture of habitable zones primarily relies on the stellar flux allowing liquid water to exist on the surface of an Earth-like planet with a suitable atmosphere. However, numerous further stellar and planetary properties constrain habitability. Apart from "geophysical" processes depending on the internal structure and composition of a planet, a complex array of astrophysical factors additionally determine habitability. Among these, variable stellar UV, EUV, and X-ray radiation, stellar and interplanetary magnetic fields, ionized winds, and energetic particles control the constitution of upper planetary atmospheres and their physical and chemical evolution. Short- and long-term stellar variability necessitates full time-dependent studies to understand planetary habitability at any point ...

  8. Dust alignment in astrophysical environments

    Science.gov (United States)

    Lazarian, Alex; Thiem Hoang, Chi

    Dust is known to be aligned in interstellar medium and the arising polarization is extensively used to trace magnetic fields. What process aligns dust grains was one of the most long-standing problems of astrophysics in spite of the persistent efforts to solve it. For years the Davis-Greenstein paramagnetic alignment was the primary candidate for explaining grain alignment. However, the situation is different now and the most promising mechanism is associated with radiative torques (RATs) acting on irregular grains. I shall present the analytical theory of RAT alignment, discuss the observational tests that support this theory. I shall also discuss in what situations we expect to see the dominance of paramagnetic alignment.

  9. Transfer reactions in nuclear astrophysics

    Science.gov (United States)

    Bardayan, D. W.

    2016-08-01

    To a high degree many aspects of the large-scale behavior of objects in the Universe are governed by the underlying nuclear physics. In fact the shell structure of nuclear physics is directly imprinted into the chemical abundances of the elements. The tranquility of the night sky is a direct result of the relatively slow rate of nuclear reactions that control and determines a star’s fate. Understanding the nuclear structure and reaction rates between nuclei is vital to understanding our Universe. Nuclear-transfer reactions make accessible a wealth of knowledge from which we can extract much of the required nuclear physics information. A review of transfer reactions for nuclear astrophysics is presented with an emphasis on the experimental challenges and opportunities for future development.

  10. Large-Scale Astrophysical Visualization on Smartphones

    Science.gov (United States)

    Becciani, U.; Massimino, P.; Costa, A.; Gheller, C.; Grillo, A.; Krokos, M.; Petta, C.

    2011-07-01

    Nowadays digital sky surveys and long-duration, high-resolution numerical simulations using high performance computing and grid systems produce multidimensional astrophysical datasets in the order of several Petabytes. Sharing visualizations of such datasets within communities and collaborating research groups is of paramount importance for disseminating results and advancing astrophysical research. Moreover educational and public outreach programs can benefit greatly from novel ways of presenting these datasets by promoting understanding of complex astrophysical processes, e.g., formation of stars and galaxies. We have previously developed VisIVO Server, a grid-enabled platform for high-performance large-scale astrophysical visualization. This article reviews the latest developments on VisIVO Web, a custom designed web portal wrapped around VisIVO Server, then introduces VisIVO Smartphone, a gateway connecting VisIVO Web and data repositories for mobile astrophysical visualization. We discuss current work and summarize future developments.

  11. Graduate Program in Astrophysics in Split

    CERN Document Server

    Krajnovic, D

    2006-01-01

    Beginning in autumn 2008 the first generation of astronomy master students will start a 2 year course in Astrophysics offered by the Physics department of the University of Split, Croatia (http://fizika.pmfst.hr/astro/english/index.html). This unique master course in South-Eastern Europe, following the Bologna convention and given by astronomers from international institutions, offers a series of comprehensive lectures designed to greatly enhance students' knowledge and skills in astrophysics, and prepare them for a scientific career. An equally important aim of the course is to recognise the areas in which astronomy and astrophysics can serve as a national asset and to use them to prepare young people for real life challenges, enabling graduates to enter the modern society as a skilled and attractive work-force. In this contribution, I present an example of a successful organisation of international astrophysics studies in a developing country, which aims to become a leading graduate program in astrophysics ...

  12. Plasma Astrophysics, Part I Fundamentals and Practice

    CERN Document Server

    Somov, Boris V

    2012-01-01

    This two-part book is devoted to classic fundamentals and current practices and perspectives of modern plasma astrophysics. This first part uniquely covers all the basic principles and practical tools required for understanding and work in plasma astrophysics. More than 25% of the text is updated from the first edition, including new figures, equations and entire sections on topics such as magnetic reconnection and the Grad-Shafranov equation. The book is aimed at professional researchers in astrophysics, but it will also be useful to graduate students in space sciences, geophysics, applied physics and mathematics, especially those seeking a unified view of plasma physics and fluid mechanics.

  13. Indirect techniques in nuclear astrophysics. Asymptotic normalization coefficient and trojan horse

    Energy Technology Data Exchange (ETDEWEB)

    Mukhamedzhanov, A.M.; Gagliardi, C.A.; Pirlepesov, F.; Trache, L.; Tribble, R.E. [Texas A and M University, Cyclotron Institute, College Station, TX (United States); Blokhintsev, L.D. [Moscow State University, Institute of Nuclear Physics, Moscow (Russian Federation); Brown, B.A.; Nunes, F.M. [Michigan State University, N.S.C.L. and Department of Physics and Astronomy, East Lansing, MI (United States); Burjan, V.; Kroha, V. [Nuclear Physics Institute of Czech Academy of Sciences, Prague-Rez (Czech Republic); Cherubini, S.; Pizzone, R.G.; Romano, S.; Spitaleri, C.; Tumino, A. [DMFCI, Universita di Catania, Catania, Italy and INFN, Laboratori Nazionali del Sud, Catania (Italy); Irgaziev, B.F. [National University, Physics Department, Tashkent (Uzbekistan); Tang, X.D. [Argonne National Laboratory, Physics Division, Argonne, IL (United States)

    2006-03-15

    Owing to the presence of the Coulomb barrier at astrophysically relevant kinetic energies it is very difficult, or sometimes impossible, to measure astrophysical reaction rates in the laboratory. That is why different indirect techniques are being used along with direct measurements. Here we address two important indirect techniques, the asymptotic normalization coefficient (ANC) and the Trojan Horse (TH) methods. We discuss the application of the ANC technique for calculation of the astrophysical processes in the presence of subthreshold bound states, in particular, two different mechanisms are discussed: direct capture to the subthreshold state and capture to the low-lying bound states through the subthreshold state, which plays the role of the subthreshold resonance. The ANC technique can also be used to determine the interference sign of the resonant and nonresonant (direct) terms of the reaction amplitude. The TH method is unique indirect technique allowing one to measure astrophysical rearrangement reactions down to astrophysically relevant energies. We explain why there is no Coulomb barrier in the sub-process amplitudes extracted from the TH reaction. The expressions for the TH amplitude for direct and resonant cases are presented. (orig.)

  14. Two LANL laboratory astrophysics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-24

    Two laboratory experiments are described that have been built at Los Alamos (LANL) to gain access to a wide range of fundamental plasma physics issues germane to astro, space, and fusion plasmas. The overarching theme is magnetized plasma dynamics which includes significant currents, MHD forces and instabilities, magnetic field creation and annihilation, sheared flows and shocks. The Relaxation Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, and can kink, bounce, merge and reconnect, shred, and reform in complicated ways. Recent movies from a large data set describe the 3D magnetic structure of a driven and dissipative single flux rope that spontaneously self-saturates a kink instability. Examples of a coherent shear flow dynamo driven by colliding flux ropes will also be shown. The Magnetized Shock Experiment (MSX) uses Field reversed configuration (FRC) experimental hardware that forms and ejects FRCs at 150km/sec. This is sufficient to drive a collision less magnetized shock when stagnated into a mirror stopping field region with Alfven Mach number MA=3 so that super critical shocks can be studied. We are building a plasmoid accelerator to drive Mach numbers MA >> 3 to access solar wind and more exotic astrophysical regimes. Unique features of this experiment include access to parallel, oblique and perpendicular shocks, shock region much larger than ion gyro radii and ion inertial length, room for turbulence, and large magnetic and fluid Reynolds numbers.

  15. Parallelization of Kinetic Theory Simulations

    CERN Document Server

    Howell, Jim; Colbry, Dirk; Pickett, Rodney; Staber, Alec; Sagert, Irina; Strother, Terrance

    2013-01-01

    Numerical studies of shock waves in large scale systems via kinetic simulations with millions of particles are too computationally demanding to be processed in serial. In this work we focus on optimizing the parallel performance of a kinetic Monte Carlo code for astrophysical simulations such as core-collapse supernovae. Our goal is to attain a flexible program that scales well with the architecture of modern supercomputers. This approach requires a hybrid model of programming that combines a message passing interface (MPI) with a multithreading model (OpenMP) in C++. We report on our approach to implement the hybrid design into the kinetic code and show first results which demonstrate a significant gain in performance when many processors are applied.

  16. Problem-based learning in astrophysics

    International Nuclear Information System (INIS)

    Problem-based learning (PBL) can be integrated into the curriculum in many different ways. We compare three examples of PBL in undergraduate astrophysics programmes, and discuss the strengths and weaknesses of the various approaches

  17. The molecular astrophysics of stars and galaxies.

    Science.gov (United States)

    Hartquist, T. W.; Williams, D. A.

    This book provides a comprehensive survey of modern molecular astrophysics. It gives an introduction to molecular spectroscopy and then addresses the main areas of current molecular astrophysics, including galaxy formation, star forming regions, mass loss from young as well as highly evolved stars and supernovae, starburst galaxies plus the tori and discs near the central engines of active galactic nuclei. With chapters written by leading experts, the book is unique in giving a detailed view of this wide-ranging subject. It will provide the standard introduction for research students in molecular astrophysics; it will also enable chemists to learn the astrophysics most related to chemistry as well as instruct physicists about the molecular processes most important in astronomy. This volume is dedicated to Alexander Dalgarno.

  18. Cosmological and Astrophysical Neutrino Mass Measurements

    CERN Document Server

    Abazajian, K N; Cooray, A; De Bernardis, F; Dodelson, S; Friedland, A; Fuller, G M; Hannestad, S; Keating, B G; Linder, E V; Lunardini, C; Melchiorri, A; Miquel, R; Pierpaoli, E; Pritchard, J; Serra, P; Takada, M; Wong, Y Y Y

    2011-01-01

    Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.

  19. Advances in instrumentation for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    S. D. Pain

    2014-04-01

    Full Text Available The study of the nuclear physics properties which govern energy generation and nucleosynthesis in the astrophysical phenomena we observe in the universe is crucial to understanding how these objects behave and how the chemical history of the universe evolved to its present state. The low cross sections and short nuclear lifetimes involved in many of these reactions make their experimental determination challenging, requiring developments in beams and instrumentation. A selection of developments in nuclear astrophysics instrumentation is discussed, using as examples projects involving the nuclear astrophysics group at Oak Ridge National Laboratory. These developments will be key to the instrumentation necessary to fully exploit nuclear astrophysics opportunities at the Facility for Rare Isotope Beams which is currently under construction.

  20. Underground nuclear astrophysics: Why and how

    Energy Technology Data Exchange (ETDEWEB)

    Best, A.; Laubenstein, M. [Laboratori Nazionali del Gran Sasso, INFN, Assergi (AQ) (Italy); Caciolli, A. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); INFN, Padova (Italy); Fueloep, Zs.; Gyuerky, Gy. [Institute for Nuclear Research (MTA Atomki), Debrecen (Hungary); Napolitani, E. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); Laboratori Nazionali di Legnaro, INFN, Legnaro (Italy); Rigato, V. [Laboratori Nazionali di Legnaro, INFN, Legnaro (Italy); Roca, V. [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica, Napoli (Italy); INFN, Napoli (Italy); Szuecs, T. [Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden (Germany)

    2016-04-15

    The goal of nuclear astrophysics is to measure cross-sections of nuclear physics reactions of interest in astrophysics. At stars temperatures, these cross-sections are very low due to the suppression of the Coulomb barrier. Cosmic-ray-induced background can seriously limit the determination of reaction cross-sections at energies relevant to astrophysical processes and experimental setups should be arranged in order to improve the signal-to-noise ratio. Placing experiments in underground sites, however, reduces this background opening the way towards ultra low cross-section determination. LUNA (Laboratory for Underground Nuclear Astrophysics) was pioneer in this sense. Two accelerators were mounted at the INFN National Laboratories of Gran Sasso (LNGS) allowing to study nuclear reactions close to stellar energies. A summary of the relevant technology used, including accelerators, target production and characterisation, and background treatment is given. (orig.)

  1. Astrophysics: Unexpected X-ray flares

    Science.gov (United States)

    Campana, Sergio

    2016-10-01

    Two sources of highly energetic flares have been discovered in archival X-ray data of 70 nearby galaxies. These flares have an undetermined origin and might represent previously unknown astrophysical phenomena. See Letter p.356

  2. Underground nuclear astrophysics: why and how

    CERN Document Server

    Best, A; Fülöp, Zs; Gyürky, Gy; Laubenstein, M; Napolitani, E; Rigato, V; Roca, V; Szücs, T

    2016-01-01

    The goal of nuclear astrophysics is to measure cross sections of nuclear physics reactions of interest in astrophysics. At stars temperatures, these cross sections are very low due to the suppression of the Coulomb barrier. Cosmic ray induced background can seriously limit the determination of reaction cross sections at energies relevant to astrophysical processes and experimental setups should be arranged in order to improve the signal-to-noise ratio. Placing experiments in underground sites, however, reduces this background opening the way towards ultra low cross section determination. LUNA (Laboratory for Underground Nuclear Astrophysics) was pioneer in this sense. Two accelerators were mounted at the INFN National Laboratories of Gran Sasso (LNGS) allowing to study nuclear reactions close to stellar energies. A summary of the relevant technology used, including accelerators, target production and characterisation, and background treatment is given.

  3. Link between laboratory and astrophysical radiative shocks

    CERN Document Server

    Michaut, Claire; Cavet, Cécile; Bouquet, Serge; Koenig, Michel; Vinci, Tommaso; Loupias, Bérénice

    2008-01-01

    This work provides analytical solutions describing the post-shock structure of radiative shocks growing in astrophysics and in laboratory. The equations including a cooling function $\\Lambda \\propto \\rho^{\\epsilon} P^{\\zeta} x^{\\theta}$ are solved for any values of the exponents $\\epsilon$, $\\zeta$ and $\\theta$. This modeling is appropriate to astrophysics as the observed radiative shocks arise in optically thin media. In contrast, in laboratory, radiative shocks performed using high-power lasers present a radiative precursor because the plasma is more or less optically thick. We study the post-shock region in the laboratory case and compare with astrophysical shock structure. In addition, we attempt to use the same equations to describe the radiative precursor, but the cooling function is slightly modified. In future experiments we will probe the PSR using X-ray diagnostics. These new experimental results will allow to validate our astrophysical numerical codes.

  4. Dictionary of geophysics, astrophysics, and astronomy

    CERN Document Server

    Matzner, Richard A

    2001-01-01

    The Dictionary of Geophysics, Astrophysics, and Astronomy provides a lexicon of terminology covering fields such as astronomy, astrophysics, cosmology, relativity, geophysics, meteorology, Newtonian physics, and oceanography. Authors and editors often assume - incorrectly - that readers are familiar with all the terms in professional literature. With over 4,000 definitions and 50 contributing authors, this unique comprehensive dictionary helps scientists to use terminology correctly and to understand papers, articles, and books in which physics-related terms appear.

  5. Graduate Program in Astrophysics in Split

    OpenAIRE

    Krajnovic, Davor

    2006-01-01

    Beginning in autumn 2008 the first generation of astronomy master students will start a 2 year course in Astrophysics offered by the Physics department of the University of Split, Croatia (http://fizika.pmfst.hr/astro/english/index.html). This unique master course in South-Eastern Europe, following the Bologna convention and given by astronomers from international institutions, offers a series of comprehensive lectures designed to greatly enhance students' knowledge and skills in astrophysics...

  6. The data sharing advantage in astrophysics

    CERN Document Server

    Dorch, S B F; Ellegaard, O

    2015-01-01

    We present here evidence for the existence of a citation advantage within astrophysics for papers that link to data. Using simple measures based on publication data from NASA Astrophysics Data System we find a citation advantage for papers with links to data receiving on the average significantly more citations per paper than papers without links to data. Furthermore, using INSPEC and Web of Science databases we investigate whether either papers of an experimental or theoretical nature display different citation behavior.

  7. Indirect techniques for astrophysical reaction rates determinations

    Science.gov (United States)

    Hammache, F.; Oulebsir, N.; Benamara, S.; De Séréville, N.; Coc, A.; Laird, A.; Stefan, I.; Roussel, P.

    2016-05-01

    Direct measurements of nuclear reactions of astrophysical interest can be challenging. Alternative experimental techniques such as transfer reactions and inelastic scattering reactions offer the possibility to study these reactions by using stable beams. In this context, I will present recent results that were obtained in Orsay using indirect techniques. The examples will concern various astrophysical sites, from the Big-Bang nucleo synthesis to the production of radioisotopes in massive stars.

  8. Cosmological and astrophysical neutrino mass measurements

    DEFF Research Database (Denmark)

    Abazajian, K.N.; Calabrese, E.; Cooray, A.;

    2011-01-01

    Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.......Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach....

  9. Technology Development for a Neutrino Astrophysical Observatory

    International Nuclear Information System (INIS)

    We propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory

  10. Nuclear Physics and Astrophysics of Neutrino Oscillations

    CERN Document Server

    Balantekin, A B

    2016-01-01

    For a long time very little experimental information was available about neutrino properties, even though a minute neutrino mass has intriguing cosmological and astrophysical implications. This situation has changed in recent decades: intense experimental activity to measure many neutrino properties took place. Some of these developments and their implications for astrophysics and cosmology are briefly reviewed with a particular emphasis on neutrino magnetic moments and collective neutrino oscillations

  11. Bubble Chambers for Experiments in Nuclear Astrophysics

    OpenAIRE

    DiGiovine, B.; Henderson, D.; Holt, R. J.; Rehm, K. E.; Raut, R.; Robinson, A.; Sonnenschein, A.; Rusev, G.; A.P. Tonchev; Ugalde, C.

    2015-01-01

    A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with gamma-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning...

  12. KROME - a package to embed chemistry in astrophysical simulations

    Science.gov (United States)

    Grassi, T.; Bovino, S.; Schleicher, D. R. G.; Prieto, J.; Seifried, D.; Simoncini, E.; Gianturco, F. A.

    2014-04-01

    Chemistry plays a key role in many astrophysical situations regulating the cooling and the thermal properties of the gas, which are relevant during gravitational collapse, the evolution of discs and the fragmentation process. In order to simplify the usage of chemical networks in large numerical simulations, we present the chemistry package KROME, consisting of a PYTHON pre-processor which generates a subroutine for the solution of chemical networks which can be embedded in any numerical code. For the solution of the rate equations, we make use of the high-order solver DLSODES, which was shown to be both accurate and efficient for sparse networks, which are typical in astrophysical applications. KROME also provides a large set of physical processes connected to chemistry, including photochemistry, cooling, heating, dust treatment and reverse kinetics. The package presented here already contains a network for primordial chemistry, a small metal network appropriate for the modelling of low metallicities environments, a detailed network for the modelling of molecular clouds, a network for planetary atmospheres, as well as a framework for the modelling of the dust grain population. In this paper, we present an extended test suite ranging from one-zone and 1D models to first applications including cosmological simulations with ENZO and RAMSES and 3D collapse simulations with the FLASH code. The package presented here is publicly available at http://kromepackage.org/ and https://bitbucket.org/krome/krome_stable.

  13. Astrophysical applications of gravitational microlensing

    Institute of Scientific and Technical Information of China (English)

    Shude Mao

    2012-01-01

    Since the first discovery of microlensing events nearly two decades ago,gravitational microlensing has accumulated tens of TBytes of data and developed into a powerful astrophysical technique with diverse applications.The review starts with a theoretical overview of the field and then proceeds to discuss the scientific highlights.(1) Microlensing observations toward the Magellanic Clouds rule out the Milky Way halo being dominated by MAssive Compact Halo Objects (MACHOs).This confirms most dark matter is non-baryonic,consistent with other observations.(2) Microlensing has discovered about 20 extrasolar planets (16 published),including the first two Jupiter-Saturn like systems and the only five "cold Neptunes" yet detected.They probe a different part of the parameter space and will likely provide the most stringent test of core accretion theory of planet formation.(3) Microlensing provides a unique way to measure the mass of isolated stars,including brown dwarfs and normal stars.Half a dozen or so stellar mass black hole candidates have also been proposed.(4) High-resolution,target-of-opportunity spectra of highly-magnified dwarf stars provide intriguing "age" determinations which may either hint at enhanced helium enrichment or unusual bulge formation theories.(5) Microlensing also measured limb-darkening profiles for close to ten giant stars,which challenges stellar atmosphere models.(6) Data from surveys also provide strong constraints on the geometry and kinematics of the Milky Way bar (through proper motions); the latter indicates predictions from current models appear to be too anisotropic compared with observations.The future of microlensing is bright given the new capabilities of current surveys and forthcoming new telescope networks from the ground and from space.Some open issues in the field are identified and briefly discussed.

  14. Nuclear astrophysics: a new era

    Energy Technology Data Exchange (ETDEWEB)

    Wiescher, Michael; Aprahamian, Ani [Department of Physics, University of Notre Dame (United States); Regan, Paddy [Department of Physics, University of Surrey (United Kingdom)

    2002-02-01

    The latest generation of radioactive-ion-beam facilities promises to shed light on the complex nuclear processes that control the evolution of stars and stellar explosions. The most fundamental question in nature is where do we come from, or, put another way, what are we made of? The late Carl Sagan poetically said that we are all made of stardust, but the origin of the elements has fascinated scientists for thousands of years. Many of the greatest medieval and renaissance scientists dabbled in alchemy, trying to create the elements that make up the cosmos, but we had to wait until the early 20th century to recognize that elements are really defined by the number of protons in the nucleus. According to our current understanding, after the big bang most of the normal or baryonic material in the universe consisted of the lightest two elements, hydrogen and helium, with only trace amounts of lithium and beryllium. All the heavier elements that occur naturally on Earth were created from this original material via a series of nuclear reactions in the cores of stars or in stellar explosions. Over the last decade, ground-based telescopes and satellite-based Observatories have opened new windows on the stars across the electromagnetic spectrum, from infrared to gamma radiation. New technology now makes it possible to observe and analyse short-lived stellar explosions. Indeed, the distribution of elements in 'planetary nebula' and in the ejecta of supernovae and novae give a direct glimpse of individual nucleosynthesis processes. In the February issue of Physics World, Michael Wiescher, Paddy Regan and Ani Aprahamian describe how sate-of-the-art facilities are set to plug many of the gaps in our understanding of nuclear astrophysics. (U.K.)

  15. Nuclear astrophysics: a new era

    International Nuclear Information System (INIS)

    The latest generation of radioactive-ion-beam facilities promises to shed light on the complex nuclear processes that control the evolution of stars and stellar explosions. The most fundamental question in nature is where do we come from, or, put another way, what are we made of? The late Carl Sagan poetically said that we are all made of stardust, but the origin of the elements has fascinated scientists for thousands of years. Many of the greatest medieval and renaissance scientists dabbled in alchemy, trying to create the elements that make up the cosmos, but we had to wait until the early 20th century to recognize that elements are really defined by the number of protons in the nucleus. According to our current understanding, after the big bang most of the normal or baryonic material in the universe consisted of the lightest two elements, hydrogen and helium, with only trace amounts of lithium and beryllium. All the heavier elements that occur naturally on Earth were created from this original material via a series of nuclear reactions in the cores of stars or in stellar explosions. Over the last decade, ground-based telescopes and satellite-based Observatories have opened new windows on the stars across the electromagnetic spectrum, from infrared to gamma radiation. New technology now makes it possible to observe and analyse short-lived stellar explosions. Indeed, the distribution of elements in 'planetary nebula' and in the ejecta of supernovae and novae give a direct glimpse of individual nucleosynthesis processes. In the February issue of Physics World, Michael Wiescher, Paddy Regan and Ani Aprahamian describe how sate-of-the-art facilities are set to plug many of the gaps in our understanding of nuclear astrophysics. (U.K.)

  16. Scrape-Off Layer Turbulence in Tokamaks Simulated with a Continuum Gyrokinetic Code

    CERN Document Server

    Hakim, A; Abel, I G; Hammett, G W; Stoltzfus-Dueck, T

    2016-01-01

    We are developing a new continuum gyrokinetic code, Gkeyll, for use in edge plasma simulations, and here present initial simulations of turbulence on open field lines with model sheath boundary conditions. The code implements an energy conserving discontinuous Galerkin scheme, applicable to a general class of Hamiltonian equations. Several applications to test problems have been done, including a calculation of the parallel heat-flux on divertor plates resulting from an ELM crash in JET, for a 1x/1v SOL scenario explored previously, where the ELM is modeled as a time-dependent intense upstream source. Here we present initial simulations of turbulence on open field lines in the LAPD linear plasma device. We have also done simulations in a helical open-field-line geometry. While various simplifications have been made at present, this still includes some of the key physics of SOL turbulence, such as bad-curvature drive for instabilities and rapid parallel losses with sheath boundary conditions. This is useful fo...

  17. A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Mavridis, M.; Isliker, H.; Vlahos, L. [Section of Astrophysics, Astronomy and Mechanics, Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Görler, T.; Jenko, F.; Told, D. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany)

    2014-10-15

    An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties of radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.

  18. Verification and validation of linear gyrokinetic simulation of Alfven eigenmodes in the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Spong, D. A. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Bass, E. M. [Department of Physics, University of California, San Diego, California 192093 (United States); Deng, W.; Heidbrink, W. W.; Lin, Z. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Tobias, B. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 085430 (United States); Van Zeeland, M. A. [General Atomics, San Diego, California 92121 (United States); Austin, M. E. [Institute for Fusion Studies, University of Texas, Austin, Texas 78712 (United States); Domier, C. W.; Luhmann, N. C. Jr. [Department of Electrical and Computer Engineering and Department of Applied Science, University of California, Davis, California 95616 (United States)

    2012-08-15

    A verification and validation study is carried out for a sequence of reversed shear Alfven instability time slices. The mode frequency increases in time as the minimum (q{sub min}) in the safety factor profile decreases. Profiles and equilibria are based upon reconstructions of DIII-D discharge (no. 142111) in which many such frequency up-sweeping modes were observed. Calculations of the frequency and mode structure evolution from two gyrokinetic codes, GTC and GYRO, and a gyro-Landau fluid code TAEFL are compared. The experimental mode structure of the instability was measured using time-resolved two-dimensional electron cyclotron emission imaging. The three models reproduce the frequency upsweep event within {+-}10% of each other, and the average of the code predictions is within {+-}8% of the measurements; growth rates are predicted that are consistent with the observed spectral line widths. The mode structures qualitatively agree with respect to radial location and width, dominant poloidal mode number, ballooning structure, and the up-down asymmetry, with some remaining differences in the details. Such similarities and differences between the predictions of the different models and the experimental results are a valuable part of the verification/validation process and help to guide future development of the modeling efforts.

  19. Distance Measurement Solves Astrophysical Mysteries

    Science.gov (United States)

    2003-08-01

    Location, location, and location. The old real-estate adage about what's really important proved applicable to astrophysics as astronomers used the sharp radio "vision" of the National Science Foundation's Very Long Baseline Array (VLBA) to pinpoint the distance to a pulsar. Their accurate distance measurement then resolved a dispute over the pulsar's birthplace, allowed the astronomers to determine the size of its neutron star and possibly solve a mystery about cosmic rays. "Getting an accurate distance to this pulsar gave us a real bonanza," said Walter Brisken, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Monogem Ring The Monogem Ring, in X-Ray Image by ROSAT satellite CREDIT: Max-Planck Institute, American Astronomical Society (Click on Image for Larger Version) The pulsar, called PSR B0656+14, is in the constellation Gemini, and appears to be near the center of a circular supernova remnant that straddles Gemini and its neighboring constellation, Monoceros, and is thus called the Monogem Ring. Since pulsars are superdense, spinning neutron stars left over when a massive star explodes as a supernova, it was logical to assume that the Monogem Ring, the shell of debris from a supernova explosion, was the remnant of the blast that created the pulsar. However, astronomers using indirect methods of determining the distance to the pulsar had concluded that it was nearly 2500 light-years from Earth. On the other hand, the supernova remnant was determined to be only about 1000 light-years from Earth. It seemed unlikely that the two were related, but instead appeared nearby in the sky purely by a chance juxtaposition. Brisken and his colleagues used the VLBA to make precise measurements of the sky position of PSR B0656+14 from 2000 to 2002. They were able to detect the slight offset in the object's apparent position when viewed from opposite sides of Earth's orbit around the Sun. This effect, called parallax, provides a direct measurement of

  20. Using the Astrophysics Source Code Library

    Science.gov (United States)

    Allen, Alice; Teuben, P. J.; Berriman, G. B.; DuPrie, K.; Hanisch, R. J.; Mink, J. D.; Nemiroff, R. J.; Shamir, L.; Wallin, J. F.

    2013-01-01

    The Astrophysics Source Code Library (ASCL) is a free on-line registry of source codes that are of interest to astrophysicists; with over 500 codes, it is the largest collection of scientist-written astrophysics programs in existence. All ASCL source codes have been used to generate results published in or submitted to a refereed journal and are available either via a download site or from an identified source. An advisory committee formed in 2011 provides input and guides the development and expansion of the ASCL, and since January 2012, all accepted ASCL entries are indexed by ADS. Though software is increasingly important for the advancement of science in astrophysics, these methods are still often hidden from view or difficult to find. The ASCL (ascl.net/) seeks to improve the transparency and reproducibility of research by making these vital methods discoverable, and to provide recognition and incentive to those who write and release programs useful for astrophysics research. This poster provides a description of the ASCL, an update on recent additions, and the changes in the astrophysics community we are starting to see because of the ASCL.

  1. NASA Astrophysics EPO Community: Enhancing STEM Instruction

    Science.gov (United States)

    Bartolone, L.; Manning, J.; Lawton, B.; Meinke, B. K.; Smith, D. A.; Schultz, G.; NASA Astrophysics EPO community

    2015-11-01

    The NASA Science Mission Directorate (SMD) Astrophysics Education and Public Outreach (EPO) community and Forum work together to capitalize on the cutting-edge discoveries of NASA Astrophysics missions to enhance Science, Technology, Engineering, and Math (STEM) instruction. In 2010, the Astrophysics EPO community identified online professional development for classroom educators and multiwavelength resources as a common interest and priority for collaborative efforts. The result is NASA's Multiwavelength Universe, a 2-3 week online professional development experience for classroom educators. The course uses a mix of synchronous sessions (live WebEx teleconferences) and asynchronous activities (readings and activities that educators complete on their own on the Moodle, and moderated by course facilitators). The NASA SMD Astrophysics EPO community has proven expertise in providing both professional development and resources to K-12 Educators. These mission- and grant-based EPO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present examples of how the NASA Astrophysics EPO community and Forum engage the K-12 education community in these ways, including associated metrics and evaluation findings.

  2. Gyrokinetic Studies of Turbulence in Steep Gradient Region: Role of Turbulence Spreading and E x B Shear

    Energy Technology Data Exchange (ETDEWEB)

    T.S. Hahm; Z. Lin; P.H. Diamond; G. Rewoldt; W.X. Wang; S. Ethier; O. Gurcan; W.W. Lee; W.M. Tang

    2004-12-21

    An integrated program of gyrokinetic particle simulation and theory has been developed to investigate several outstanding issues in both turbulence and neoclassical physics. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the GTC code and its related dynamical model have been extended to the case with radially increasing ion temperature gradient, to study the inward spreading of edge turbulence toward the core. Due to turbulence spreading from the edge, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only. Even when the core gradient is within the Dimits shift regime (i.e., self-generated zonal flows reduce the transport to a negligible value), a significant level of turbulence and transport is observed in the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from our nonlinear diffusion model than one based on linear toroidal coupling. A calculation of ion poloidal rotation in the presence of sharp density and toroidal angular rotation frequency gradients from the GTC-Neo particle simulation code shows that the results are significantly different from the conventional neoclassical theory predictions. An energy conserving set of a fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to edge turbulence, is being derived via the phase-space action variational Lie perturbation method. Our generalized ordering takes the ion poloidal gyroradius to be on the order of the radial electric field gradient length.

  3. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. III. Collisionless tearing mode

    International Nuclear Information System (INIS)

    A finite-mass electron fluid model for low frequency electromagnetic fluctuations, particularly the collisionless tearing mode, has been implemented in the gyrokinetic toroidal code. Using this fluid model, linear properties of the collisionless tearing mode have been verified. Simulations verify that the linear growth rate of the single collisionless tearing mode is proportional to De2, where De is the electron skin depth. On the other hand, the growth rate of a double tearing mode is proportional to De in the parameter regime of fusion plasmas

  4. Gyrokinetic study of the impact of the electron to ion heating ratio on the turbulent diffusion of highly charged impurities

    Energy Technology Data Exchange (ETDEWEB)

    Angioni, C. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany)

    2015-10-15

    A gyrokinetic study based on numerical and analytical calculations is presented, which computes the dependence of the turbulent diffusion of highly charged impurities on the ratio of the electron to the ion heat flux of the plasma. Nonlinear simulations show that the size of the turbulent diffusion of heavy impurities can vary by one order of magnitude with fixed total heat flux and is an extremely sensitive function of the electron to ion heat flux ratio. Numerical linear calculations are found to reproduce the nonlinear results. Thereby, a quasi-linear analytical approach is used to explain the origin of this dependence.

  5. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. III. Collisionless tearing mode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongjian [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Southwestern Institution of Physics, Chengdu 610041 (China); Bao, Jian [Fusion Simulation Center, Peking University, Beijing 100871 (China); Han, Tao; Wang, Jiaqi [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Lin, Zhihong, E-mail: zhihongl@uci.edu [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)

    2016-02-15

    A finite-mass electron fluid model for low frequency electromagnetic fluctuations, particularly the collisionless tearing mode, has been implemented in the gyrokinetic toroidal code. Using this fluid model, linear properties of the collisionless tearing mode have been verified. Simulations verify that the linear growth rate of the single collisionless tearing mode is proportional to D{sub e}{sup 2}, where D{sub e} is the electron skin depth. On the other hand, the growth rate of a double tearing mode is proportional to D{sub e} in the parameter regime of fusion plasmas.

  6. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G

    2006-01-01

    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.

  7. Astrophysical Fluid Dynamics via Direct Statistical Simulation

    CERN Document Server

    Tobias, S M; Marston, J B

    2010-01-01

    In this paper we introduce the concept of Direct Statistical Simulation (DSS) for astrophysical flows. This technique may be appropriate for problems in astrophysical fluids where the instantaneous dynamics of the flows are of secondary importance to their statistical properties. We give examples of such problems including mixing and transport in planets, stars and disks. The method is described for a general set of evolution equations, before we consider the specific case of a spectral method optimised for problems on a spherical surface. The method is illustrated for the simplest non-trivial example of hydrodynamics and MHD on a rotating spherical surface. We then discuss possible extensions of the method both in terms of computational methods and the range of astrophysical problems that are of interest.

  8. Astrophysics Source Code Library: Incite to Cite!

    CERN Document Server

    DuPrie, Kimberly; Berriman, Bruce; Hanisch, Robert J; Mink, Jessica; Nemiroff, Robert J; Shamir, Lior; Shortridge, Keith; Taylor, Mark B; Teuben, Peter; Wallin, John F

    2013-01-01

    The Astrophysics Source Code Library (ASCL, http://ascl.net/) is an online registry of over 700 source codes that are of interest to astrophysicists, with more being added regularly. The ASCL actively seeks out codes as well as accepting submissions from the code authors, and all entries are citable and indexed by ADS. All codes have been used to generate results published in or submitted to a refereed journal and are available either via a download site or froman identified source. In addition to being the largest directory of scientist-written astrophysics programs available, the ASCL is also an active participant in the reproducible research movement with presentations at various conferences, numerous blog posts and a journal article. This poster provides a description of the ASCL and the changes that we are starting to see in the astrophysics community as a result of the work we are doing.

  9. Strange quark matter in explosive astrophysical systems

    CERN Document Server

    Sagert, I; Hempel, M; Pagliara, G; Schaffner-Bielich, J; Thielemann, F -K; Liebendörfer, M

    2010-01-01

    Explosive astrophysical systems, such as supernovae or compact star binary mergers, provide conditions where strange quark matter can appear. The high degree of isospin asymmetry and temperatures of several MeV in such systems may cause a transition to the quark phase already around saturation density. Observable signals from the appearance of quark matter can be predicted and studied in astrophysical simulations. As input in such simulations, an equation of state with an integrated quark matter phase transition for a large temperature, density and proton fraction range is required. Additionally, restrictions from heavy ion data and pulsar observation must be considered. In this work we present such an approach. We implement a quark matter phase transition in a hadronic equation of state widely used for astrophysical simulations and discuss its compatibility with heavy ion collisions and pulsar data. Furthermore, we review the recently studied implications of the QCD phase transition during the early post-bou...

  10. Doppler tomography in fusion plasmas and astrophysics

    CERN Document Server

    Salewski, Mirko; Heidbrink, Bill; Jacobsen, Asger Schou; Korsholm, Soren Bang; Leipold, Frank; Madsen, Jens; Moseev, Dmitry; Nielsen, Stefan Kragh; Rasmussen, Jesper; Stagner, Luke; Steeghs, Danny; Stejner, Morten; Tardini, Giovani; Weiland, Markus

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion D-alpha (FIDA) spectroscopy measurements in magnetically confined plasma, the D-alpha-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright spots, spiral structures, and flow patterns. Fusion plasma Doppler tomography has lead to an image of the fast-ion velocity distribution function in the tokamak ASDEX Upgrade. This image matched numerical simulations very well. Here we discuss achievements of the Doppler tomography approach, its promise and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography, and what ...

  11. Doppler tomography in fusion plasmas and astrophysics

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Heidbrink, W. W.;

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plasma......, the Dα-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright...... and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography and what can be learned by comparison of these applications....

  12. The Astrophysics Science Division Annual Report 2008

    Science.gov (United States)

    Oegerle, William; Reddy, Francis; Tyler, Pat

    2009-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.

  13. The Cosmic Battery in Astrophysical Accretion Disks

    CERN Document Server

    Contopoulos, Ioannis; Katsanikas, Matthaios

    2015-01-01

    The aberrated radiation pressure at the inner edge of the accretion disk around an astrophysical black hole imparts a relative azimuthal velocity on the electrons with respect to the ions which gives rise to a ring electric current that generates large scale poloidal magnetic field loops. This is the Cosmic Battery established by Contopoulos and Kazanas in 1998. In the present work we perform realistic numerical simulations of this important astrophysical mechanism in advection-dominated accretion flows-ADAF. We confirm the original prediction that the inner parts of the loops are continuously advected toward the central black hole and contribute to the growth of the large scale magnetic field, whereas the outer parts of the loops are continuously diffusing outward through the turbulent accretion flow. This process of inward advection of the axial field and outward diffusion of the return field proceeds all the way to equipartition, thus generating astrophysically significant magnetic fields on astrophysicall...

  14. Laboratory Astrophysics Division of the AAS (LAD)

    Science.gov (United States)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-01-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  15. News and Views: Challenges of Relativistic Astrophysics

    Science.gov (United States)

    Opher, Reuven

    2013-12-01

    I discuss some of the most outstanding challenges in relativistic astrophysics in the subjects of compact objects (black holes and neutron stars), dark sector (dark matter and dark energy), plasma astrophysics (origin of jets, cosmic rays, and magnetic fields), and the primordial universe (physics at the beginning of the Universe). In these four subjects, I discuss 12 of the most important challenges. These challenges give us insight into new physics that can only be studied in the large scale universe. The near-future possibilities, in observations and theory, for addressing these challenges are also discussed.

  16. The astrophysical gravitational wave stochastic background

    Institute of Scientific and Technical Information of China (English)

    Tania Regimbau

    2011-01-01

    A stochastic background of gravitational waves with astrophysical origins may have resulted from the superposition of a large number of unresolved sources since the beginning of stellar activity.Its detection would put very strong constraints on the physical properties of compact objects, the initial mass function and star formarion history.On the other hand, it could be a ‘noise' that would mask the stochastic background of its cosmological origin.We review the main astrophysical processes which are able to produce a stochastic background and discuss how they may differ from the primordial contribution in terms of statistical properties.Current detection methods are also presented.

  17. Advances in astronomy and astrophysics 9

    CERN Document Server

    Kopal, Zdenek

    1972-01-01

    Advances in Astronomy and Astrophysics, Volume 9 covers reviews on the advances in astronomy and astrophysics. The book presents reviews on the Roche model and its applications to close binary systems. The text then describes the part played by lunar eclipses in the evolution of astronomy; the classical theory of lunar eclipses; deviations from geometrical theory; and the methods of photometric observations of eclipses. The problems of other phenomena related in one way or another to lunar eclipses are also considered. The book further tackles the infrared observation on the eclipsed moon, as

  18. On the saturation of astrophysical dynamos

    DEFF Research Database (Denmark)

    Dorch, Bertil; Archontis, Vasilis

    2004-01-01

    In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate in the li......In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate...

  19. Bibliometric indicators of young authors in astrophysics

    DEFF Research Database (Denmark)

    Havemann, Frank; Larsen, Birger

    2015-01-01

    We test 16 bibliometric indicators with respect to their validity at the level of the individual researcher by estimating their power to predict later successful researchers. We compare the indicators of a sample of astrophysics researchers who later co-authored highly cited papers before...... their first landmark paper with the distributions of these indicators over a random control group of young authors in astronomy and astrophysics. We find that field and citation-window normalisation substantially improves the predicting power of citation indicators. The sum of citation numbers normalised...

  20. Magnetic processes in astrophysics theory, simulations, experiments

    CERN Document Server

    Rüdiger, Günther; Hollerbach, Rainer

    2013-01-01

    In this work the authors draw upon their expertise in geophysical and astrophysical MHD to explore the motion of electrically conducting fluids, the so-called dynamo effect, and describe the similarities and differences between different magnetized objects. They also explain why magnetic fields are crucial to the formation of the stars, and discuss promising experiments currently being designed to investigate some of the relevant physics in the laboratory. This interdisciplinary approach will appeal to a wide audience in physics, astrophysics and geophysics. This second edition covers such add

  1. Advances in astronomy and astrophysics 7

    CERN Document Server

    Kopal, Zdenek

    2013-01-01

    Advances in Astronomy and Astrophysics, Volume 7 covers reviews about the advances in astronomy and astrophysics. The book presents reviews on the scattering of electrons by diatomic molecules and on Babcock's theory of the 22-year solar cycle and the latitude drift of the sunspot zone. The text then describes reviews on the structures of the terrestrial planets (Earth, Venus, Mars, Mercury) and on type III solar radio bursts. The compact and dispersed cosmic matter is also considered with regard to the search for new cosmic objects and phenomena and on the nature of the ref shift from compact

  2. Transient Astrophysics with the Square Kilometre Array

    CERN Document Server

    Fender, Rob; Macquart, Jean-Pierre; Donnarumma, Immacolata; Murphy, Tara; Deller, Adam; Paragi, Zsolt; Chatterjee, Shami

    2015-01-01

    This chapter provides an overview of the possibilities for transient and variable-source astrophysics with the Square Kilometre Array. While subsequent chapters focus on the astrophysics of individual events, we focus on the broader picture, and how to maximise the science coming from the telescope. The SKA as currently designed will be a fantastic and ground-breaking facility for radio transient studies, but the scientifc yield will be dramatically increased by the addition of (i) near-real-time commensal searches of data streams for events, and (ii) on occasion, rapid robotic response to Target-of-Opprtunity style triggers.

  3. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arcones, Almudena [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, Jutta E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Others, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-04

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21 - 23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9 - 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12 - 13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.

  4. Quasi-linear gyrokinetic predictions of the Coriolis momentum pinch in National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Guttenfelder, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA; Kaye, S. M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA; Ren, Y. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA; Solomon, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA; Bell, R. E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA; Candy, J. [General Atomics, San Diego, California 92186, USA; Gerhardt, S. P. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA; LeBlanc, B. P. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA; Yuh, H. [Nova Photonics Inc., Princeton, New Jersey 08540, USA

    2016-05-01

    This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio National Spherical Torus Experiment (NSTX) H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostaticballooning modes are also unstable, which are effective at transporting energy, particles, and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes in a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at a finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. As the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.

  5. Quasi-linear gyrokinetic predictions of the Coriolis momentum pinch in National Spherical Torus Experiment

    Science.gov (United States)

    Guttenfelder, W.; Kaye, S. M.; Ren, Y.; Solomon, W.; Bell, R. E.; Candy, J.; Gerhardt, S. P.; LeBlanc, B. P.; Yuh, H.

    2016-05-01

    This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio National Spherical Torus Experiment (NSTX) H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostatic ballooning modes are also unstable, which are effective at transporting energy, particles, and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes in a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at a finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. As the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.

  6. Multispecies density peaking in gyrokinetic turbulence simulations of low collisionality Alcator C-Mod plasmas

    Science.gov (United States)

    Mikkelsen, D. R.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Ma, Y.; Candy, J.; Waltz, R. E.

    2015-06-01

    Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.

  7. Physics and astrophysics with dark matter particles

    International Nuclear Information System (INIS)

    The DAMA/Nal set-up has investigated the annual modulation signature over seven annual cycles achieving 6.3 σ C.L. model independent evidence for the presence of a Dark Matter particle component in the galactic halo. Some of the Physics and Astrophysics topics which can be addressed by DAMA/LIBRA are also introduced

  8. Astrophysics, cosmology and high energy physics

    International Nuclear Information System (INIS)

    A brief survey is given of some topics in astrophysics and cosmology, with special emphasis on the inter-relation between the properties of the early Universe and recent ideas in high energy physics, and on simple order-of-magnitude arguments showing how the scales and dimensions of cosmic phenomena are related to basic physical constants. (orig.)

  9. Nuclear astrophysics experiments with radioactive beams

    International Nuclear Information System (INIS)

    In Nuclear Astrophysics, experiments with radioactive beams present particular problems (e.g. low beam intensity, large background) to which specific solutions (i.e. non-standard detection setup) can be brought. Selected reactions measured in Louvain-la-Neuve are treated as practical examples. (author)

  10. Nuclear astrophysics and the Trojan Horse Method

    Science.gov (United States)

    Spitaleri, C.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A. M.; Pizzone, R. G.

    2016-04-01

    In this review, we discuss the new recent results of the Trojan Horse Method that is used to determine reaction rates for nuclear processes in several astrophysical scenarios. The theory behind this technique is shortly presented. This is followed by an overview of some new experiments that have been carried out using this indirect approach.

  11. The Trojan Horse Method in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, C.; Cherubini, S.; Del Zoppo, A.; Di Pietrob, A.; Figuerab, P.; Gulino, M.; Lattuadab, M.; Miljanic, Dstroke; Musumarra, A.; Pellegriti, M.G.; Pizzone, R.G.; Rolfs, C.; Romano, S.; Tudisco, S.; Tumino, A

    2003-05-19

    The basic features of the Trojan Horse Method are discussed together with a review of recent applications, aimed to extract the bare astrophysical S(E)-factor for several two-body processes. In this framework information on electron screening potential U{sub e} was obtained from the comparison with direct experiments.

  12. Workshop on gravitational waves and relativistic astrophysics

    Indian Academy of Sciences (India)

    Patrick Das Gupta

    2004-10-01

    Discussions related to gravitational wave experiments viz. LIGO and LISA as well as to observations of supermassive black holes dominated the workshop sessions on gravitational waves and relativistic astrophysics in the ICGC-2004. A summary of seven papers that were presented in these workshop sessions has been provided in this article.

  13. New Directions in Black Hole Astrophysics

    Science.gov (United States)

    Reynolds, C. S.

    2002-12-01

    The astrophysics of accreting black holes has been a scientific focus of most major future X-ray missions. In this presentation, I will describe how our science goals and expectations have been effected by new data from Chandra and XMM-Newton as well as new theoretical work. I will argue on the basis of XMM-Newton data that black hole spin does not manifest itself through subtle effects but may have dramatic astrophysical consequences. If this is correct, the exotic astrophysics of black hole spin, including astrophysical realizations of the Penrose and Blandford-Znajek processes, will be a principal focus of Constellation-X, XEUS and MAXIM. On the other hand, data from the late stages of the RXTE/ASCA missions as well as XMM-Newton suggest that the simple technique of relativistic X-ray iron line reverberation mapping, which was originally touted as a good method for studying the inner accretion disk, may be hard to realize. Finally, I will discuss recent theoretical/simulation work on the appearance of a MHD turbulent accretion disk around a black hole. Such simulations may be a good framework to understand future timing observations of Galactic Black Hole Candidates and their quasi-periodic oscillations. They also suggest a quantitative way of measuring the space-time geometry around supermassive black holes in AGN.

  14. Radioactive ion beams in nuclear astrophysics

    Science.gov (United States)

    Gialanella, L.

    2016-09-01

    Unstable nuclei play a crucial role in the Universe. In this lecture, after a short introduction to the field of Nuclear Astrophysics, few selected cases in stellar evolution and nucleosynthesis are discussed to illustrate the importance and peculiarities of processes involving unstable species. Finally, some experimental techniques useful for measurements using radioactive ion beams and the perspectives in this field are presented.

  15. Astronomical optical interferometry, II: Astrophysical results

    Directory of Open Access Journals (Sweden)

    Jankov S.

    2011-01-01

    Full Text Available Optical interferometry is entering a new age with several ground- based long-baseline observatories now making observations of unprecedented spatial resolution. Based on a great leap forward in the quality and quantity of interferometric data, the astrophysical applications are not limited anymore to classical subjects, such as determination of fundamental properties of stars; namely, their effective temperatures, radii, luminosities and masses, but the present rapid development in this field allowed to move to a situation where optical interferometry is a general tool in studies of many astrophysical phenomena. Particularly, the advent of long-baseline interferometers making use of very large pupils has opened the way to faint objects science and first results on extragalactic objects have made it a reality. The first decade of XXI century is also remarkable for aperture synthesis in the visual and near-infrared wavelength regimes, which provided image reconstructions from stellar surfaces to Active Galactic Nuclei. Here I review the numerous astrophysical results obtained up to date, except for binary and multiple stars milliarcsecond astrometry, which should be a subject of an independent detailed review, taking into account its importance and expected results at microarcsecond precision level. To the results obtained with currently available interferometers, I associate the adopted instrumental settings in order to provide a guide for potential users concerning the appropriate instruments which can be used to obtain the desired astrophysical information.

  16. Neutron cross sections of importance to astrophysics

    International Nuclear Information System (INIS)

    Neutron reactions of importance to the various stellar burning cycles are discussed. The role of isomeric states in the branched s-process is considered for particular cases. Neutron cross section needs for the 187Re-187Os, 87Rb-87Sr clocks for nuclear cosmochronology are discussed. Other reactions of interest to astrophysical processes are presented. 35 references

  17. Minicourses in Astrophysics, Modular Approach, Vol. II.

    Science.gov (United States)

    Illinois Univ., Chicago.

    This is the second of a two-volume minicourse in astrophysics. It contains chapters on the following topics: stellar nuclear energy sources and nucleosynthesis; stellar evolution; stellar structure and its determination; and pulsars. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are…

  18. Recent Status of Astrophysical S17

    Science.gov (United States)

    Motobayashi, T.

    2002-12-01

    The present status of the astrophysical S factor for the 7Be(p, γ)8B reaction is reviewed. Because of its importance for the solar neutrino problem, the reaction has been extensively studied. Three independent methods, the direct capture, the Coulomb dissociation and the ANC method, give almost consistent results within 10-20% accuracy.

  19. Photon Orbital Angular Momentum in Astrophysics

    OpenAIRE

    Harwit, Martin

    2003-01-01

    Astronomical observations of the orbital angular momentum of photons, a property of electromagnetic radiation that has come to the fore in recent years, have apparently never been attempted. Here, I show that measurements of this property of photons have a number of astrophysical applications.

  20. Neutron shielding for particle astrophysics experiments

    CERN Document Server

    McMillan, J E

    2005-01-01

    Particle astrophysics experiments often require large volume neutron shields which are formed from hydrogenous material. This note reviews some of the available materials in an attempt to find the most cost effective solution. Raw polymer pellets and Water Extended Polyester (WEP) ae discussed in detail. Suppliers for some materials are given.

  1. Virtually Lossless Compression of Astrophysical Images

    Directory of Open Access Journals (Sweden)

    Stefano Baronti

    2005-09-01

    Full Text Available We describe an image compression strategy potentially capable of preserving the scientific quality of astrophysical data, simultaneously allowing a consistent bandwidth reduction to be achieved. Unlike strictly lossless techniques, by which moderate compression ratios are attainable, and conventional lossy techniques, in which the mean square error of the decoded data is globally controlled by users, near-lossless methods are capable of locally constraining the maximum absolute error, based on user's requirements. An advanced lossless/near-lossless differential pulse code modulation (DPCM scheme, recently introduced by the authors and relying on a causal spatial prediction, is adjusted to the specific characteristics of astrophysical image data (high radiometric resolution, generally low noise, etc.. The background noise is preliminarily estimated to drive the quantization stage for high quality, which is the primary concern in most of astrophysical applications. Extensive experimental results of lossless, near-lossless, and lossy compression of astrophysical images acquired by the Hubble space telescope show the advantages of the proposed method compared to standard techniques like JPEG-LS and JPEG2000. Eventually, the rationale of virtually lossless compression, that is, a noise-adjusted lossles/near-lossless compression, is highlighted and found to be in accordance with concepts well established for the astronomers' community.

  2. Nuclear astrophysics and the Trojan Horse Method

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, C. [University of Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); Laboratori Nazionali del Sud - INFN, Catania (Italy); La Cognata, M.; Pizzone, R.G. [Laboratori Nazionali del Sud - INFN, Catania (Italy); Lamia, L. [University of Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); Mukhamedzhanov, A.M. [Texas A and M University, Cyclotron Institute, College Station, TX (United States)

    2016-04-15

    In this review, we discuss the new recent results of the Trojan Horse Method that is used to determine reaction rates for nuclear processes in several astrophysical scenarios. The theory behind this technique is shortly presented. This is followed by an overview of some new experiments that have been carried out using this indirect approach. (orig.)

  3. Heparin kinetics

    International Nuclear Information System (INIS)

    The author has studied the kinetics of heparin and heparin fractions after intravenous administration in humans and in this thesis the results of this study are reported. Basic knowledge about the physico-chemical properties of heparin and its interactions with proteins resulting in anticoagulant and lipolytic effects are discussed in a review (chapter II), which also comprises some clinical aspects of heparin therapy. In chapter III the kinetics of the anticoagulant effect are described after intravenous administration of five commercial heparin preparations. A mathematical model is presented that fits best to these kinetics. The kinetics of the anticoagulant and lipolytic effects after intravenous injection of various 35S-radiolabelled heparin fractions and their relationship with the disappearance of the radiolabel are described in chapter IV. Chapter V gives a description of the kinetics of two radiolabels after injection of in vitro formed complexes consisting of purified, 125I-radiolabelled antithrombin III and various 35S-radiolabelled heparin fractions. (Auth.)

  4. Generalized fluid theory including non-Maxwellian kinetic effects

    CERN Document Server

    Izacard, Olivier

    2016-01-01

    The results obtained by the plasma physics community for the validation and the prediction of turbulence and transport in magnetized plasma come mainly from the use of very CPU-consuming particle-in-cell or (gyro)kinetic codes which naturally include non-Maxwellian kinetic effects. To date, fluid codes are not considered to be relevant for the description of these kinetic effects. Here, after revisiting the limitations of the current fluid theory developed in the 19th century, we generalize the fluid theory including kinetic effects such as non-Maxwellian super-thermal tails with as few fluid equations as possible. The collisionless and collisional fluid closures from the nonlinear Landau Fokker-Planck collision operator are shown for an arbitrary collisionality. Indeed, the first fluid models associated with two examples of collisionless fluid closures are obtained by assuming an analytic non-Maxwellian distribution function (e.g., the INMDF [O. Izacard, Phys. Plasmas 23, 082504 (2016)]). One of the main dif...

  5. Steady-State Gyrokinetics Transport Code (SSGKT), A Scientific Application Partnership with the Framework Application for Core-Edge Transport Simulations, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fahey, Mark R. [Oak Ridge National Laboratory; Candy, Jeff [General Atomics

    2013-11-07

    This project initiated the development of TGYRO ? a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale GYRO turbulence simulations into a framework for practical multi-scale simulation of conventional tokamaks as well as future reactors. Using a lightweight master transport code, multiple independent (each massively parallel) gyrokinetic simulations are coordinated. The capability to evolve profiles using the TGLF model was also added to TGYRO and represents a more typical use-case for TGYRO. The goal of the project was to develop a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale gyrokinetic turbulence simulations into a framework for practical multi-scale simulation of a burning plasma core ? the International Thermonuclear Experimental Reactor (ITER) in particular. This multi-scale simulation capability will be used to predict the performance (the fusion energy gain, Q) given the H-mode pedestal temperature and density. At present, projections of this type rely on transport models like GLF23, which are based on rather approximate fits to the results of linear and nonlinear simulations. Our goal is to make these performance projections with precise nonlinear gyrokinetic simulations. The method of approach is to use a lightweight master transport code to coordinate multiple independent (each massively parallel) gyrokinetic simulations using the GYRO code. This project targets the practical multi-scale simulation of a reactor core plasma in order to predict the core temperature and density profiles given the H-mode pedestal temperature and density. A master transport code will provide feedback to O(16) independent gyrokinetic simulations (each massively parallel). A successful feedback scheme offers a novel approach to predictive modeling of an important national and international problem. Success in this area of fusion simulations will allow US scientists to direct the research path of ITER over the next two

  6. The trojan horse method as indirect technique in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Tumino, A; Spitaleri, C; Cherubini, S; Crucilla, V; Fu, C; Gulino, M; La Cognata, M; Lamia, L; Pizzone, R G; Puglia, S M R; Rapisarda, G G; Romano, S; Sergi, M L [Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria - Universita di Catania, Catania (Italy); Elekes, Z; Fueloep, Z; Gyuerky, G; Kiss, G; Mukhamedzhanov, A [ATOMKI - Debrecen (Hungary); Goldberg, V [Cyclotron Institute, Texas A and M University, College Station (United States); Rolfs, C [Ruhr-Universitaet, Bochum (Germany)], E-mail: tumino@lns.infn.it (and others)

    2008-05-15

    The Trojan Horse Method is a successful indirect technique for nuclear astrophysics. It allows one to measure astrophysical rearrangement reactions down to the relevant energies, providing a successful alternative path to measure the astrophysical S(E) factor. The basic features will be discussed and some recent results will be presented.

  7. 3rd Session of the Sant Cugat Forum on Astrophysics

    CERN Document Server

    Gravitational wave astrophysics

    2015-01-01

    This book offers review chapters written by invited speakers of the 3rd Session of the Sant Cugat Forum on Astrophysics — Gravitational Waves Astrophysics. All chapters have been peer reviewed. The book goes beyond normal conference proceedings in that it provides a wide panorama of the astrophysics of gravitational waves and serves as a reference work for researchers in the field.

  8. 76 FR 66998 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting.

    Science.gov (United States)

    2011-10-28

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting... Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory... following topic: --Astrophysics Division Update --Results from Acting Astrophysics Division...

  9. 78 FR 20356 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2013-04-04

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... following topics: --Astrophysics Division Update --Report from Astrophysics Roadmap Team --James Webb...

  10. Astrophysics Conducted by the Lunar University Network for Astrophysics Research (LUNAR) and the Center for Lunar Origins (CLOE)

    OpenAIRE

    Burns, Jack O.; Lazio, T. Joseph W.; Bottke, William

    2012-01-01

    [Abridged] The Moon is a unique platform from and on which to conduct astrophysical measurements. The Lunar University Network for Astrophysics Research (LUNAR) and the Center for Lunar Origins and Evolution (CLOE) teams within the NASA Lunar Science Institute (NLSI) are illustrating how the Moon can be used as a platform to advance important goals in astrophysics. Of relevance to Astrophysics and aligned with NASA strategic goals, all three of the primary research themes articulated by New W...

  11. NASA Astrophysics Funds Strategic Technology Development

    Science.gov (United States)

    Seery, Bernard D.; Ganel, Opher; Pham, Bruce

    2016-01-01

    The COR and PCOS Program Offices (POs) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions. For example, the SAT program is expected to fund key technology developments needed to close gaps identified by Science and Technology Definition Teams (STDTs) planned to study several large mission concept studies in preparation for the 2020 Decadal Survey.The POs are guided by the National Research Council's "New Worlds, New Horizons in Astronomy and Astrophysics" Decadal Survey report, NASA's Astrophysics Implementation Plan, and the visionary Astrophysics Roadmap, "Enduring Quests, Daring Visions." Strategic goals include dark energy, gravitational waves, and X-ray observatories. Future missions pursuing these goals include, e.g., US participation in ESA's Euclid, Athena, and L3 missions; Inflation probe; and a large UV/Optical/IR (LUVOIR) telescope.To date, 65 COR and 71 PCOS SAT proposals have been received, of which 15 COR and 22 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2/BICEP3/Keck to measure polarization in the CMB signal; advanced UV reflective coatings implemented on the optics of GOLD and ICON, two heliophysics Explorers; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and

  12. Kinetic simulation

    Institute of Scientific and Technical Information of China (English)

    C.S. Chang

    2007-01-01

    @@ The ITER relevant edge plasmas in the present day experiments are in the kinetic regime,with the pedestalions in the long-mean-free-path banans collisionality regime and the pedestal electrons in the banana-plateau regime.

  13. Kinetic Interface

    DEFF Research Database (Denmark)

    2009-01-01

    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  14. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics

    International Nuclear Information System (INIS)

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21-23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9-10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12-13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.

  15. The Astrophysics of Ultrahigh Energy Cosmic Rays

    CERN Document Server

    Kotera, Kumiko

    2011-01-01

    The origin of the highest energy cosmic rays is still unknown. The discovery of their sources will reveal the workings of the most energetic astrophysical accelerators in the universe. Current observations show a spectrum consistent with an origin in extragalactic astrophysical sources. Candidate sources range from the birth of compact objects to explosions related to gamma-ray bursts or to events in active galaxies. We discuss the main effects of propagation from cosmologically distant sources including interactions with cosmic background radiation and magnetic fields. We examine possible acceleration mechanisms leading to a survey of candidate sources and their signatures. New questions arise from an observed hint of sky anisotropies and an unexpected evolution of composition indicators. Future observations may reach the necessary sensitivity to achieve charged particle astronomy and to observe ultrahigh energy photons and neutrinos, which will further illuminate the workings of the universe at these extrem...

  16. Unique Astrophysics in the Lyman Ultraviolet

    CERN Document Server

    Tumlinson, Jason; Kriss, Gerard; France, Kevin; McCandliss, Stephan; Sembach, Ken; Fox, Andrew; Tripp, Todd; Jenkins, Edward; Beasley, Matthew; Danforth, Charles; Shull, Michael; Stocke, John; Lehner, Nicolas; Howk, Christopher; Froning, Cynthia; Green, James; Oliveira, Cristina; Fullerton, Alex; Blair, Bill; Kruk, Jeff; Sonneborn, George; Penton, Steven; Wakker, Bart; Prochaska, Xavier; Vallerga, John; Scowen, Paul

    2012-01-01

    There is unique and groundbreaking science to be done with a new generation of UV spectrographs that cover wavelengths in the "Lyman Ultraviolet" (LUV; 912 - 1216 Ang). There is no astrophysical basis for truncating spectroscopic wavelength coverage anywhere between the atmospheric cutoff (3100 Ang) and the Lyman limit (912 Ang); the usual reasons this happens are all technical. The unique science available in the LUV includes critical problems in astrophysics ranging from the habitability of exoplanets to the reionization of the IGM. Crucially, the local Universe (z <= 0.1) is entirely closed to many key physical diagnostics without access to the LUV. These compelling scientific problems require overcoming these technical barriers so that future UV spectrographs can extend coverage to the Lyman limit at 912 Ang.

  17. Electrodynamics and spacetime geometry: Astrophysical applications

    CERN Document Server

    Cabral, Francisco

    2016-01-01

    After a brief review of the foundations of (pre-metric) electromagnetism in differential forms, we proceed with the tensor formulation and explore physical consequences of Maxwell's equations in curved spacetime. The generalized Gauss and Maxwell-Amp\\`ere laws, as well as the wave equations, reveal potentially interesting astrophysical applications. The physical implications of these equations are explored and some solutions are obtained. In all cases new electromagnetic couplings and related phenomena are induced by the spacetime curvature. The applications of astrophysical interest considered here correspond essentially to the following geometries: the Schwarzschild spacetime and the spacetime around a rotating spherical mass in the weak field and slow rotation regime. In the latter, we use the Parameterised Post-Newtonian (PPN) formalism. In general, new electromagnetic effects induced by spacetime curvature include the following: Gravitational contributions for the decay of electric and magnetic fields in...

  18. Critical ionisation velocity effects in astrophysical plasmas

    International Nuclear Information System (INIS)

    Critical ionisation velocity effects are relevant to astrophysical situations where neutral gas moves through a magnetised plasma. The experimental significance of the critical velocity is well established and the physical basis is now becoming clear. The underlying mechanism depends on the combined effects of electron impact ionisation and electron energisation by collective plasma interactions. For low density plasmas a theory based on a circular process involving electron heating through a modified two stream instability has been developed. Several applications of critical velocity effects to astrophysical plasmas have been discussed in the literature. The importance of the effect in any particular case may be determined from a detailed consideration of energy and momentum balance, using appropriate atomic rate coefficients and taking full account of collective plasma processes. (Auth.)

  19. Magnetic field amplification in turbulent astrophysical plasmas

    CERN Document Server

    Federrath, Christoph

    2016-01-01

    Magnetic fields play an important role in astrophysical accretion discs, and in the interstellar and intergalactic medium. They drive jets, suppress fragmentation in star-forming clouds and can have a significant impact on the accretion rate of stars. However, the exact amplification mechanisms of cosmic magnetic fields remain relatively poorly understood. Here I start by reviewing recent advances in the numerical and theoretical modelling of the 'turbulent dynamo', which may explain the origin of galactic and inter-galactic magnetic fields. While dynamo action was previously investigated in great detail for incompressible plasmas, I here place particular emphasis on highly compressible astrophysical plasmas, which are characterised by strong density fluctuations and shocks, such as the interstellar medium. I find that dynamo action works not only in subsonic plasmas, but also in highly supersonic, compressible plasmas, as well as for low and high magnetic Prandtl numbers. I further present new numerical simu...

  20. Neutrino particle astrophysics: status and outlook

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The discovery of astrophysical neutrinos at high energy by IceCube raises a host of questions: What are the sources? Is there a Galactic as well as an extragalactic component? How does the astrophysical spectrum continue to lower energy where the dominant signal is from atmospheric neutrinos? Is there a measureable flux of cosmogenic neutrinos at higher energy? What is the connection to cosmic rays? At what level and in what energy region should we expect to see evidence of the π0 decay photons that must accompany the neutrinos at production? Such questions are stimulating much theoretical activity and many multi-wavelength follow-up observations as well as driving plans for new detectors. My goal in this presentation will be to connect the neutrino data and their possible interpretations to ongoing multi-messenger observations and to the design of future detectors.

  1. Exploring Astrophysical Magnetohydrodynamics in the Laboratory

    Science.gov (United States)

    Manuel, Mario

    2014-10-01

    Plasma evolution in many astrophysical systems is dominated by magnetohydrodynamics. Specifically of interest to this talk are collimated outflows from accretion systems. Away from the central object, the Euler equations can represent the plasma dynamics well and may be scaled to a laboratory system. We have performed experiments to investigate the effects of a background magnetic field on an otherwise hydrodynamically collimated plasma. Laser-irradiated, cone targets produce hydrodynamically collimated plasma jets and a pulse-powered solenoid provides a constant background magnetic field. The application of this field is shown to completely disrupt the original flow and a new magnetically-collimated, hollow envelope is produced. Results from these experiments and potential implications for their astrophysical analogs will be discussed.

  2. Optimizing Laboratory Experiments for Dynamic Astrophysical Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D; Remington, B

    2005-09-13

    To make a laboratory experiment an efficient tool for the studying the dynamical astrophysical phenomena, it is desirable to perform them in such a way as to observe the scaling invariance with respect to the astrophysical system under study. Several examples are presented of such scalings in the area of magnetohydrodynamic phenomena, where a number of scaled experiments have been performed. A difficult issue of the effect of fine-scale dissipative structures on the global scale dissipation-free flow is discussed. The second part of the paper is concerned with much less developed area of the scalings relevant to the interaction of an ultra-intense laser pulse with a pre-formed plasma. The use of the symmetry arguments in such experiments is also considered.

  3. Laboratory Astrophysics: Enabling Scientific Discovery and Understanding

    Science.gov (United States)

    Kirby, K.

    2006-01-01

    NASA's Science Strategic Roadmap for Universe Exploration lays out a series of science objectives on a grand scale and discusses the various missions, over a wide range of wavelengths, which will enable discovery. Astronomical spectroscopy is arguably the most powerful tool we have for exploring the Universe. Experimental and theoretical studies in Laboratory Astrophysics convert "hard-won data into scientific understanding". However, the development of instruments with increasingly high spectroscopic resolution demands atomic and molecular data of unprecedented accuracy and completeness. How to meet these needs, in a time of severe budgetary constraints, poses a significant challenge both to NASA, the astronomical observers and model-builders, and the laboratory astrophysics community. I will discuss these issues, together with some recent examples of productive astronomy/lab astro collaborations.

  4. Status reports of supercomputing astrophysics in Japan

    International Nuclear Information System (INIS)

    The Workshop on Supercomputing Astrophysics was held at National Laboratory for High Energy Physics (KEK, Tsukuba) from August 31 to September 2, 1989. More than 40 participants of physicists, astronomers were attendant and discussed many topics in the informal atmosphere. The main purpose of this workshop was focused on the theoretical activities in computational astrophysics in Japan. It was also aimed to promote effective collaboration between the numerical experimentists working on supercomputing technique. The various subjects of the presented papers of hydrodynamics, plasma physics, gravitating systems, radiative transfer and general relativity are all stimulating. In fact, these numerical calculations become possible now in Japan owing to the power of Japanese supercomputer such as HITAC S820, Fujitsu VP400E and NEC SX-2. (J.P.N.)

  5. Astrophysical data analysis with information field theory

    Energy Technology Data Exchange (ETDEWEB)

    Enßlin, Torsten, E-mail: ensslin@mpa-garching.mpg.de [Max Planck Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching, Germany and Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 München (Germany)

    2014-12-05

    Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.

  6. Numerical MHD Codes for Modeling Astrophysical Flows

    CERN Document Server

    Koldoba, A V; Lii, P S; Comins, M L; Dyda, S; Romanova, M M; Lovelace, R V E

    2015-01-01

    We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.

  7. The Future of Gamma Ray Astrophysics

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Over the past decade, gamma ray astrophysics has entered the astrophysical mainstream. Extremely successful space-borne (GeV) and ground-based (TeV) detectors, combined with a multitude of partner telescopes, have revealed a fascinating “astroscape" of active galactic nuclei, pulsars, gamma ray bursts, supernova remnants, binary stars, star-forming galaxies, novae much more, exhibiting major pathways along which large energy releases can flow. From  a basic physics perspective, exquisitely sensitive measurements have constrained the nature of dark matter, the cosmological origin of magnetic field and the properties of black holes. These advances have motivated the development of new facilities, including HAWC, DAMPE, CTA and SVOM, which will further our understanding of the high energy universe. Topics that will receive special attention include merging neutron star binaries, clusters of galaxies, galactic cosmic rays and putative, TeV dark matter.

  8. Vision Forward for NASA's Astrophysics Education Program

    Science.gov (United States)

    Hasan, Hashima; Sheth, Kartik J.

    2016-01-01

    NASA has recently re-structured its Science Education program with the competitive selection of twenty-seven programs. Of these, ~60% are relevant to Astrophysics, and three have primarily Astrophysics content. A brief overview of the rationale for re-structuring will be presented. We have taken a strategic approach, building on our science-discipline based legacy and looking at new approaches given Stakeholder priorities. We plan to achieve our education goals with the selection of organizations that utilize NASA data, products, or processes to meet NASA's education objectives; and by enabling our scientists and engineers with education professionals, tools, and processes to better meet user needs. Highlights of the selected programs will be presented, and how they enable the vision going forward of achieving the goal of enabling NASA scientists and engineers to engage more effectively with learners of all ages.

  9. Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R I; Stone, J M

    2007-11-20

    We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.

  10. Clustering with phylogenetic tools in astrophysics

    CERN Document Server

    Fraix-Burnet, Didier

    2016-01-01

    Phylogenetic approaches are finding more and more applications outside the field of biology. Astrophysics is no exception since an overwhelming amount of multivariate data has appeared in the last twenty years or so. In particular, the diversification of galaxies throughout the evolution of the Universe quite naturally invokes phylogenetic approaches. We have demonstrated that Maximum Parsimony brings useful astrophysical results, and we now proceed toward the analyses of large datasets for galaxies. In this talk I present how we solve the major difficulties for this goal: the choice of the parameters, their discretization, and the analysis of a high number of objects with an unsupervised NP-hard classification technique like cladistics. 1. Introduction How do the galaxy form, and when? How did the galaxy evolve and transform themselves to create the diversity we observe? What are the progenitors to present-day galaxies? To answer these big questions, observations throughout the Universe and the physical mode...

  11. Modern fluid dynamics for physics and astrophysics

    CERN Document Server

    Regev, Oded; Yecko, Philip A

    2016-01-01

    This book grew out of the need to provide students with a solid introduction to modern fluid dynamics. It offers a broad grounding in the underlying principles and techniques used, with some emphasis on applications in astrophysics and planetary science. The book comprehensively covers recent developments, methods and techniques, including, for example, new ideas on transitions to turbulence (via transiently growing stable linear modes), new approaches to turbulence (which remains the enigma of fluid dynamics), and the use of asymptotic approximation methods, which can give analytical or semi-analytical results and complement fully numerical treatments. The authors also briefly discuss some important considerations to be taken into account when developing a numerical code for computer simulation of fluid flows. Although the text is populated throughout with examples and problems from the field of astrophysics and planetary science, the text is eminently suitable as a general introduction to fluid dynamics. It...

  12. TeV Gamma-Ray Astrophysics

    CERN Document Server

    Ribó, M

    2008-01-01

    The window of TeV Gamma-Ray Astrophysics was opened less than two decades ago, when the Crab Nebula was detected for the first time. After several years of development, the technique used by imaging atmospheric Cherenkov telescopes like HESS, MAGIC or VERITAS, is now allowing to conduct sensitive observations in the TeV regime. Water Cherenkov instruments like Milagro are also providing the first results after years of integration time. Different types of extragalactic and galactic sources have been detected, showing a variety of interesting phenomena that are boosting theory in very high energy gamma-ray astrophysics. Here I review some of the most interesting results obtained up to now, making special emphasis in the field of X-ray/gamma-ray binaries.

  13. Bubble Chambers for Experiments in Nuclear Astrophysics

    CERN Document Server

    DiGiovine, B; Holt, R J; Rehm, K E; Raut, R; Robinson, A; Sonnenschein, A; Rusev, G; Tonchev, A P; Ugalde, C

    2015-01-01

    A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with gamma-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning temperatures are dominated by radiative captures, in this experimental scheme we measure the time-reversed processes. Such photodisintegrations allow us to compute the radiative capture cross sections when transitions to excited states of the reaction products are negligible. Due to the transformation of phase space, the photodisintegration cross sections are up to two orders of magnitude higher. The main advantage of the new target-detector system is a density several orders of magnitude higher than conventional gas tar...

  14. Astrophysical Effects of Scalar Dark Matter Miniclusters

    OpenAIRE

    Zurek, Kathryn M.; Hogan, Craig J.; Quinn, Thomas R.

    2006-01-01

    We model the formation, evolution and astrophysical effects of dark compact Scalar Miniclusters (``ScaMs''). These objects arise when a scalar field, with an axion-like or Higgs-like potential, undergoes a second order phase transition below the QCD scale. Such a scalar field may couple too weakly to the standard model to be detectable directly through particle interactions, but may still be detectable by gravitational effects, such as lensing and baryon accretion by large, gravitationally bo...

  15. Neutrino masses in astrophysics and cosmology

    International Nuclear Information System (INIS)

    Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs

  16. Astrophysical Constraints on Singlet Scalars at LHC

    OpenAIRE

    Hertzberg, Mark P.(Center for Theoretical Physics and Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA); Masoumi, Ali

    2016-01-01

    We consider the viability of new heavy gauge singlet scalar particles at the LHC. Our motivation for this study comes from the possibility of a new particle with mass ~ 750 GeV decaying significantly into two photons at LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such a particle and its associated collider signal. The simplest and most obvious UV complete model th...

  17. Colour-Charged Quark Matter in Astrophysics?

    Institute of Scientific and Technical Information of China (English)

    QIU Cong-Xin; XU Ren-Xin

    2006-01-01

    Colour confinement is only a supposition, which has not yet been proven in QCD. Here we propose that macroscopic quark-gluon plasma in astrophysics could hardly maintain colourless because of causality. It is expected that the existence of chromatic strange quark stars as well as chromatic strangelets preserved from the QCD phase transition in the early Universe could be unavoidable if their colourless correspondents do exist.

  18. Coulomb dissociation studies for astrophysical thermonuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Motobayashi, T. [Dept. of Physics, Rikkyo Univ., Toshima, Tokyo (Japan)

    1998-06-01

    The Coulomb dissociation method was applied to several radiative capture processes of astrophysical interest. The method has an advantage of high experimental efficiency, which allow measurements with radioactive nuclear beams. The reactions {sup 13}N(p,{gamma}){sup 14}O and {sup 7}Be(p,{gamma}){sup 8}B are mainly discussed. They are the key reaction in the hot CNO cycle in massive stars and the one closely related to the solar neutrino problem, respectively. (orig.)

  19. The Planck Surveyor mission: astrophysical prospects

    OpenAIRE

    De Zotti, G.; Toffolatti, L.; Argüeso, F.; Davies, R. D.; Mazzotta, P.; Partridge, R. B.; Smoot, G. F.; Vittorio, N.

    1999-01-01

    Although the Planck Surveyor mission is optimized to map the cosmic microwave background anisotropies, it will also provide extremely valuable information on astrophysical phenomena. We review our present understanding of Galactic and extragalactic foregrounds relevant to the mission and discuss on one side, Planck's impact on the study of their properties and, on the other side, to what extent foreground contamination may affect Planck's ability to accurately determine cosmological parameter...

  20. Selected problems in astrophysics of compact objects

    OpenAIRE

    Sedrakian, Armen

    2012-01-01

    I review three problems in astrophysics of compacts stars: (i) the phase diagram of warm pair-correlated nuclear matter a sub-saturation densities at finite isospin asymmtery; (ii) the Standard Model neutrino emission from superfluid phases in neutron stars within the Landau theory of Fermi (superfluid) liquids; (iii) the beyond Standard Model physics of axionic cooling of compact stars by the Cooper pair-breaking processes.

  1. Historical perspective on astrophysical MHD simulations

    CERN Document Server

    Norman, Michael L

    2010-01-01

    This contribution contains the introductory remarks that I presented at IAU Symposium 270 on ``Computational Star Formation" held in Barcelona, Spain, May 31 -- June 4, 2010. I discuss the historical development of numerical MHD methods in astrophysics from a personal perspective. The recent advent of robust, higher order-accurate MHD algorithms and adaptive mesh refinement numerical simulations promises to greatly improve our understanding of the role of magnetic fields in star formation.

  2. Astrophysical and terrestrial neutrinos in Supernova detectors

    International Nuclear Information System (INIS)

    Supernova (SN) explosions are the place of very fundamental phenomena, whose privileged messengers are neutrinos. But such events are very rare. Then, SN detection has to be combined with other purposes. The recent developments of SN detectors have been associated with developments of underground particle physics (proton decay, monopoles ...). But here, I will restrict myself to discuss the possibilities for a supernova detector to be sensitive to other sources of neutrinos, astrophysical or terrestrial

  3. Large Format Detector Arrays for Astrophysics

    Science.gov (United States)

    Moseley, Harvey

    2006-01-01

    Improvements in detector design and advances in fabrication techniques has resulted in devices which can reach fundamental sensitivity limits in many cases. Many pressing astrophysical questions require large arrays of such sensitive detectors. I will describe the state of far infrared through millimeter detector development at NASA/GSFC, the design and production of large format arrays, and the initial deployment of these powerful new tools.

  4. Neutrino masses in astrophysics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Raffelt, G.G. [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    1996-11-01

    Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs.

  5. Statistical Learning in High Energy and Astrophysics

    OpenAIRE

    Zimmermann, J.

    2005-01-01

    This thesis studies the performance of statistical learning methods in high energy and astrophysics where they have become a standard tool in physics analysis. They are used to perform complex classification or regression by intelligent pattern recognition. This kind of artificial intelligence is achieved by the principle ``learning from examples'': The examples describe the relationship between detector events and their classification. The application of statistical learning ...

  6. CPT violations in Astrophysics and Cosmology

    CERN Document Server

    Auriemma, G

    2007-01-01

    In this paper it is given a brief review of the current limits on the magnitude of CPT and Lorentz Invariance violations, currently predicted in connection with quantum gravity and string/M-theory, that can be derived from astrophysical and cosmological data. Even if not completely unambiguous, these observational tests of fundamental physics are complementary to the ones obtained by accelerator experiments and by ground or space based direct experiments, because potentially can access very high energies and large distances.

  7. Impact of THM reaction rates for astrophysics

    Science.gov (United States)

    Lamia, L.; Spitaleri, C.; Tognelli, E.; Degl'Innocenti, S.; Pizzone, R. G.; Moroni, P. G. Prada; Puglia, S. M. R.; Romano, S.; Sergi, M. L.

    2015-10-01

    Burning reaction S(E)-factor determinations are among the key ingredients for stellar models when one has to deal with energy generation evaluation and the genesis of the elements at stellar conditions. To by pass the still present uncertainties in extrapolating low-energies values, S(E)-factor measurements for charged-particle induced reactions involving light elements have been made available by devote Trojan Horse Method (THM) experiments. The recent results are here discussed together with their impact in astrophysics.

  8. Acceleration of Astrophysical Simulations with Special Hardware

    OpenAIRE

    Marcus Martinez, Guillermo Anibal

    2011-01-01

    This work presents the raceSPH and raceGRAV accelerator libraries, designed to interface astrophysical simulations with special-purpose hardware. The raceSPH focuses on the acceleration of Smoothed Particle Hydrodynamics (SPH), a method for approximating force interactions in fluid dynamics. Accelerators used range from vectorizing units on the microprocessors to Field Programmable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs), and speed-ups range from 1.2x to 28x when measured in ...

  9. The Astrophysics Source Code Library: An Update

    Science.gov (United States)

    Allen, Alice; Nemiroff, R. J.; Shamir, L.; Teuben, P. J.

    2012-01-01

    The Astrophysics Source Code Library (ASCL), founded in 1999, takes an active approach to sharing astrophysical source code. ASCL's editor seeks out both new and old peer-reviewed papers that describe methods or experiments that involve the development or use of source code, and adds entries for the found codes to the library. This approach ensures that source codes are added without requiring authors to actively submit them, resulting in a comprehensive listing that covers a significant number of the astrophysics source codes used in peer-reviewed studies. The ASCL moved to a new location in 2010, and has over 300 codes in it and continues to grow. In 2011, the ASCL (http://asterisk.apod.com/viewforum.php?f=35) has on average added 19 new codes per month; we encourage scientists to submit their codes for inclusion. An advisory committee has been established to provide input and guide the development and expansion of its new site, and a marketing plan has been developed and is being executed. All ASCL source codes have been used to generate results published in or submitted to a refereed journal and are freely available either via a download site or from an identified source. This presentation covers the history of the ASCL and examines the current state and benefits of the ASCL, the means of and requirements for including codes, and outlines its future plans.

  10. Cosmology and particle astrophysics. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, L.; Goobar, A. [Stockholm Univ. (Sweden). Dept. of Physics

    2006-07-01

    Beginning with some basic facts about the observable universe the authors consider in successive chapters the complete range of topics that make up a degree course in cosmology and particle astrophysics. The outstanding feature of this book is that it is self-contained, in that no specialised knowledge is required on the part of the reader, apart from basic undergraduate mathematics and physics. This paperback edition will again target students of physics, astrophysics and cosmology at the advanced undergraduate level or early graduate level. One of the book's biggest strong points is that the authors rapidly involve students in the most exciting of today's developments in the field in a simple and self-contained manner, relegating the more technical aspects to appendices. The worked examples throughout the book, and summaries at the end of each chapter, which were expanded in the second edition, have been very well received by students. This book offers advanced undergraduate level and beginning graduate level students a highly readable, yet comprehensive review of particle astrophysics. Competing books cover this topic at too advanced a level for this readership. (orig.)

  11. The Astrophysics Science Division Annual Report 2009

    Science.gov (United States)

    Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2010-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  12. Goddard's Astrophysics Science Division Annual Report 2011

    Science.gov (United States)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  13. Goddard's Astrophysics Science Division Annual Report 2013

    Science.gov (United States)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  14. Goddard's Astrophysics Science Divsion Annual Report 2014

    Science.gov (United States)

    Weaver, Kimberly (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2015-01-01

    The Astrophysics Science Division (ASD, Code 660) is one of the world's largest and most diverse astronomical organizations. Space flight missions are conceived, built and launched to observe the entire range of the electromagnetic spectrum, from gamma rays to centimeter waves. In addition, experiments are flown to gather data on high-energy cosmic rays, and plans are being made to detect gravitational radiation from space-borne missions. To enable these missions, we have vigorous programs of instrument and detector development. Division scientists also carry out preparatory theoretical work and subsequent data analysis and modeling. In addition to space flight missions, we have a vibrant suborbital program with numerous sounding rocket and balloon payloads in development or operation. The ASD is organized into five labs: the Astroparticle Physics Lab, the X-ray Astrophysics Lab, the Gravitational Astrophysics Lab, the Observational Cosmology Lab, and the Exoplanets and Stellar Astrophysics Lab. The High Energy Astrophysics Science Archive Research Center (HEASARC) is an Office at the Division level. Approximately 400 scientists and engineers work in ASD. Of these, 80 are civil servant scientists, while the rest are resident university-based scientists, contractors, postdoctoral fellows, graduate students, and administrative staff. We currently operate the Swift Explorer mission and the Fermi Gamma-ray Space Telescope. In addition, we provide data archiving and operational support for the XMM mission (jointly with ESA) and the Suzaku mission (with JAXA). We are also a partner with Caltech on the NuSTAR mission. The Hubble Space Telescope Project is headquartered at Goddard, and ASD provides Project Scientists to oversee operations at the Space Telescope Science Institute. Projects in development include the Neutron Interior Composition Explorer (NICER) mission, an X-ray timing experiment for the International Space Station; the Transiting Exoplanet Sky Survey (TESS

  15. Gyrokinetic study of impurity transport from neoclassical and turbulent mechanisms in and across H-mode pedestal

    Science.gov (United States)

    Kim, Kyuho; Chang, C. S.; Ku, Seunghoe; Hager, Robert

    2015-11-01

    The edge gyrokinetic code XGC1 has been used to study impurity transport from combined neoclassical and turbulent mechanisms in and across a steep H-mode pedestal, in realistic magnetic separatrix geometry. Both low-Z and high-Z impurity transport are studied.. The effect on the turbulence and transport is found to be different whether the impurity radial profile gradient is in the same or opposite direction to the main ion profile gradient. Co-existence of the low- and high-Z impurities also makes difference in the transport of each species. Edge impurity behavior in NSTX, JET, and DIII-D tokamak plasma will be discussed. Work funded by National Research Foundation of Korea and US DOE. Computing time was supported by NERSC.

  16. Runaway electromagnetic cascade in shear flows and high energy radiation of astrophysical jets

    CERN Document Server

    Stern, B E

    2005-01-01

    We propose a straightforward and efficient mechanism of the high energy emission of astrophysical jets associated with an exchange of interacting high energy photons between the jet and external environment and vice versa. Interactions which play the main role in this mechanism, are e^+ e^- pair production by photons and inverse Compton scattering. The process has been studied with numerical simulations demonstrating that under reasonable conditions it has a supercritical character: high energy photons breed exponentially being fed directly by the bulk kinetic energy of the jet. Eventually, there is a feedback of particles on the fluid dynamics and the jet partially decelerates.

  17. FOREWORD: Nuclear Physics in Astrophysics V

    Science.gov (United States)

    Auerbach, Naftali; Hass, Michael; Paul, Michael

    2012-02-01

    The fifth edition of the bi-annual 'Nuclear Physics in Astrophysics (NPA)' conference series was held in Eilat, Israel on April 3-8, 2011. This Conference is also designated as the 24th Nuclear Physics Divisional Conference of the EPS. The main purpose of this conference, as that of the four previous ones in this series, is to deal with those aspects of nuclear physics that are directly related to astrophysics. The concept of such a meeting was conceived by the Nuclear Physics Board of the European Physical Society in 1998. At that time, the idea of such a conference was quite new and it was decided that this meeting would be sponsored by the EPS. The first meeting, in January 2001, was planned and organized in Eilat, Israel. Due to international circumstances the conference was moved to Debrecen, Hungary. Subsequent conferences were held in Debrecen again, in Dresden, Germany, and in Frascati, Italy (moved from Gran Sasso due to the tragic earthquake that hit the L'Aquila region). After 10 years the conference finally returned to Eilat, the originally envisioned site. Eilat is a resort town located on the shore of the Gulf of Eilat, which connects Israel to the Red Sea and further south to the Indian Ocean. It commands spectacular views of the desert and mountains, offering unique touristic attractions. The local scientific backdrop of the conference is the fact that the Israeli scientific scene exhibits a wide variety of research activities in many areas of nuclear physics and astrophysics. A new accelerator, SARAF at Soreq Nuclear Research Center is presently undergoing final acceptance tests. SARAF will serve as a platform for production of radioactive ion beams and nuclear-astrophysics research in Israel. The meeting in Eilat was organized by four Israeli scientific institutions, Hebrew University, Soreq Nuclear Research Center, Tel Aviv University and the Weizmann Institute of Science. The welcome reception and lectures were held at the King Solomon hotel and

  18. Astrophysics and the exploration of the universe

    International Nuclear Information System (INIS)

    This special issue of Clefs CEA journal is entirely devoted to astrophysics and to the exploration and probing of the Universe. A first part of this dossier, described here, makes a status of our present day knowledge about stars, planets, galaxies, the Universe structure and dark matter. Content: 1 - Stars seed the Universe: What does the Sun tell us?, Probing stellar interiors, From the Sun to the stars, A tour of stellar nurseries, How heavy elements arise, How supernovae explode, Supernova remnants, High-energy objects - sources for astonishment, Focus: A Probing the Universe across the entire light spectrum; 2 - Planets: a dance of small bodies, swirling around up to the finale of their birth: How our world was born, The rings of Saturn: a magnificent research laboratory, Planetary cocoons; 3 - Galaxies: a richly paradoxical evolution: The active life of galaxies, A mysterious black hole, Elucidating the cosmic ray acceleration mechanism, Seeking out the great ancestors, The formation of galaxies: a story of paradoxes, The morphogenesis of galaxies; 4 - The Universe, a homogeneous 'soup' that has turned into a hierarchical structure: The grand thermal history of the Universe, The cosmic web, The formation of the structures of the Universe: the interplay of models, Does the Universe have a shape? Is it finite, or infinite?; 5 - Odyssey across the dark side of the Universe: The puzzle of dark matter, Astrophysics and the observation of dark matter, The theory of dark matter, Could dark matter be generated some day at LHC? A Universe dominated by dark energy, Astrophysics and the observation of dark energy, Theories of dark energy, The matter-antimatter asymmetry of the Universe; 6 - Journey into the lights of the Universe: Microwave - ESA Planck Surveyor, Submillimeter and infrared - ArTeMis, Herschel Space Observatory, VLT-VISIR, Cassini-CIRS, Visible - SoHo-GOLF, X-ray - XMM-Newton, Gamma ray - INTEGRAL, Fermi Gamma-Ray Space Telescope, HESS, EDELWEISS

  19. BOOK REVIEW: Particle Astrophysics (Second Edition)

    Science.gov (United States)

    Bell, Nicole

    2009-07-01

    Particle astrophysics, the interface of elementary particle physics with astrophysics and cosmology, is a rapidly evolving field. Perkins' book provides a nice introduction to this field, at a level appropriate for senior undergraduate students. Perkins develops the foundations underlying both the particle and astrophysics areas, and also covers some of the most recent developments in this field. The latter is an appealing feature, as students rarely encounter topics of current research in their undergraduate textbooks. Part 1 of the text introduces the elementary particle content, and interactions, of the standard model of particle physics. Relativity is addressed at the level of special relativistic kinematics, the equivalence principle and the Robertson-Walker metric. Part 2 covers cosmology, starting with the expansion of the Universe and basic thermodynamics. It then moves on to primordial nucleosynthesis, baryogenesis, dark matter, dark energy, structure formation and the cosmic microwave background. Part 3 covers cosmic rays, stellar evolution, and related topics. Cutting edge topics include the use of the cosmological large scale structure power spectrum to constrain neutrino mass, the creation of the baryon asymmetry via leptogenesis, and the equation of state for dark energy. While the treatment of many topics is quite brief, the level of depth is about right for undergraduates who are being exposed to these topics for the first time. The breadth of topics spanned is excellent. Perkins does a good job connecting theory with the experimental underpinnings, and of simplifying the theoretical presentation of complex subjects to a level that senior undergraduate students should find accessible. Each chapter includes a number of exercises. Brief solutions are provided for all the exercises, while fully worked solutions are provided for a smaller subset.

  20. A high energy photon polarimeter for astrophysics

    OpenAIRE

    Eingorn, Maxim; Fernando, Lakma; Vlahovic, Branislav; Ilie, Cosmin; Wojtsekhowski, Bogdan; Urciuoli, Guido Maria; De Persio, Fulvio; Meddi, Franco

    2015-01-01

    A high-energy photon polarimeter for astrophysics studies in the energy range from 20 MeV to 1000 MeV is considered. The proposed concept uses a stack of silicon micro-strip detectors where they play the roles of both a converter and a tracker. The purpose of this paper is to outline the parameters of such a polarimeter and to estimate the productivity of measurements. Our study supported by a Monte Carlo simulation shows that with a one-year observation period the polarimeter will provide 6%...

  1. Physics, Astrophysics and Cosmology with Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Sathyaprakash B. S.

    2009-03-01

    Full Text Available Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers, and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.

  2. Astrophysical imaging with the Darwin IR interferometer

    CERN Document Server

    Röttgering, H J A; Eiroa, C; Labbé, I; Rudnick, G

    2003-01-01

    The proposed infrared space interferometry mission Darwin has two main aims: (i) to detect and characterize exo-planets similar to the Earth, and (ii) to carry out astrophysical imaging in the wavelength range 6 - 20 micron at a sensitivity similar to JWST, but at an angular resolution up to 100 times higher. In this contribution we will first briefly discuss the imaging performance of the Darwin mission. We will then discuss how Darwin will contribute in a very significant way to our understanding of the formation and evolution of planets, stars, galaxies, and super-massive black-holes located at the centers of galaxies.

  3. Emission lines from hot astrophysical plasmas

    Science.gov (United States)

    Raymond, John C.

    The spectral lines which dominate the X-ray emission of hot, optically thin astrophysical plasmas reflect the elemental abundances, temperature distribution, and other physical parameters of the emitting gas. The accuracy and level of detail with which these parameters can be inferred are limited by the measurement uncertainties and uncertainties in atomic rates used to compute the model spectrum. This paper discusses the relative importance and the likely uncertainties in the various atomic rates and the likely uncertainties in the overall ionization balance and spectral line emissivities predicted by the computer codes currently used to fit X-ray spectral data.

  4. Astrophysical Black Holes: Evidence of a Horizon?

    Science.gov (United States)

    Colpi, Monica

    In this Lecture Note we first follow a short account of the history of the black hole hypothesis. We then review on the current status of the search for astrophysical black holes with particular attention to the black holes of stellar origin. Later, we highlight a series of observations that reveal the albeit indirect presence of supermassive black holes in galactic nuclei, with mention to forthcoming experiments aimed at testing directly the black hole hypothesis. We further focus on evidences of a black hole event horizon in cosmic sources.

  5. Theoretically palatable flavor combinations of astrophysical neutrinos

    CERN Document Server

    Bustamante, Mauricio; Winter, Walter

    2015-01-01

    The flavor composition of high-energy astrophysical neutrinos can reveal the particle physics governing their production, propagation, and interaction. The IceCube Collaboration has published the first experimental determination of the ratio of each flavor to the total flux. We present, as a theoretical counterpart, new results for the full range of received flavor ratios for arbitrary flavor ratios in the sources. With just standard neutrino mixing, this range is quite small. Even when a broad class of new-physics effects is included, it remains surprisingly small. Our results will allow IceCube to more quickly identify when their measurements imply standard, new, or truly exotic physics.

  6. Engineering considerations for large astrophysics projects

    Science.gov (United States)

    Hogg, David W.

    2014-01-01

    Modern astrophysics projects involve interactions among scientific objectives, hardware capabilities, operational constraints, and data-analysis methodologies, all mediated by complex software. I discuss trade-offs between hardware and software costs, resolve some age-old tensions between the taking of science data and calibration data, and promote some ideas about getting the most out of our data using probabilistic inference. I illustrate my points with examples taken from the SDSS, P1640, Kepler, and Euclid projects. The key idea is that we will only benefit maximally from the next generation of enormous data-taking projects if we design our operations and software with great care.

  7. Reduced MHD and Astrophysical Fluid Dynamics

    Science.gov (United States)

    Arter, Wayne

    2011-08-01

    Recent work has shown a relationship between between the equations of Reduced Magnetohydrodynamics (RMHD), used to model magnetic fusion laboratory experiments, and incompressible magnetoconvection (IMC), employed in the simulation of astrophysical fluid dynamics (AFD), which means that the two systems are mathematically equivalent in certain geometries. Limitations on the modelling of RMHD, which were found over twenty years ago, are reviewed for an AFD audience, together with hitherto unpublished material on the role of finite-time singularities in the discrete equations used to model fluid dynamical systems. Possible implications for turbulence modelling are mentioned.

  8. A quarter century of astrophysics with Japan

    OpenAIRE

    Yock, Philip

    2015-01-01

    On February 23 1987 a supernova (exploding star) was observed in the Large Cloud of Magellan, the brightest supernova in 400 years. It spurred the commencement of collaborative research in astrophysics between Japan and New Zealand that is still ongoing after 25 years. The initial aim of the two countries was to search for evidence of cosmic rays being emitted by the supernova in a project named JANZOS. A large cosmic ray detector was installed near the summit of the Black Birch range in Marl...

  9. Isometric embeddings in cosmology and astrophysics

    Indian Academy of Sciences (India)

    Gareth Amery; Jothi Moodley; James Paul Londal

    2011-09-01

    Recent interest in higher-dimensional cosmological models has prompted some signifi-cant work on the mathematical technicalities of how one goes about embedding spacetimes into some higher-dimensional space. We survey results in the literature (existence theorems and simple explicit embeddings); briefly outline our work on global embeddings as well as explicit results for more complex geometries; and provide some examples. These results are contextualized physically, so as to provide a foundation for a detailed commentary on several key issues in the field such as: the meaning of `Ricci equivalent’ embeddings; the uniqueness of local (or global) embeddings; symmetry inheritance properties; and astrophysical constraints.

  10. Dimensional analysis and group theory in astrophysics

    CERN Document Server

    Kurth, Rudolf

    2013-01-01

    Dimensional Analysis and Group Theory in Astrophysics describes how dimensional analysis, refined by mathematical regularity hypotheses, can be applied to purely qualitative physical assumptions. The book focuses on the continuous spectral of the stars and the mass-luminosity relationship. The text discusses the technique of dimensional analysis, covering both relativistic phenomena and the stellar systems. The book also explains the fundamental conclusion of dimensional analysis, wherein the unknown functions shall be given certain specified forms. The Wien and Stefan-Boltzmann Laws can be si

  11. Distance Correlation Methods for Discovering Associations in Large Astrophysical Databases

    OpenAIRE

    Martinez-Gomez, Elizabeth; Richards, Mercedes T.; Richards, Donald St. P.

    2013-01-01

    High-dimensional, large-sample astrophysical databases of galaxy clusters, such as the Chandra Deep Field South COMBO-17 database, provide measurements on many variables for thousands of galaxies and a range of redshifts. Current understanding of galaxy formation and evolution rests sensitively on relationships between different astrophysical variables; hence an ability to detect and verify associations or correlations between variables is important in astrophysical research. In this paper, w...

  12. Solar, Stellar and Galactic Connections between Particle Physics and Astrophysics

    CERN Document Server

    Carraminana, Alberto

    2007-01-01

    This book collects extended and specialized reviews on topics linking astrophysics and particle physics at a level intermediate between a graduate student and a young researcher. The book includes also three reviews on observational techniques used in forefront astrophysics and short articles on research performed in Latin America. The reviews, updated and written by specialized researchers, describe the state of the art in the related research topics. This book is a valuable complement not only for research but also for lecturers in specialized course of high energy astrophysics, cosmic ray astrophysics and particle physics.

  13. Kinetic transport in a magnetically confined and flux-constrained fusion plasma; Transport cinetique dans un plasma de fusion magnetique a flux force

    Energy Technology Data Exchange (ETDEWEB)

    Darmet, G

    2007-11-15

    This work deals with the kinetic transport in a fusion plasma magnetically confined and flux-constrained. The author proposes a new interpretation of the dynamics of zonal flows. The model that has been studied is a gyrokinetic model reduced to the transport of trapped ions. The inter-change stability that is generated allows the study of the kinetic transport of trapped ions. This model has a threshold instability and can be simulated over a few tens confining time for either thermal bath constraint or flux constraint. For thermal baths constraint, the simulation shows a metastable state where zonal flows are prevailing while turbulence is non-existent. In the case of a flux-constraint, zonal flows appear and relax by exchanging energy with system's kinetic energy and turbulence energy. The competition between zonal flows and turbulence can be then simulated by a predator-prey model. 2 regimes can be featured out: an improved confining regime where zonal flows dominate transport and a turbulent regime where zonal flows and turbulent transport are of the same magnitude order. We show that flux as well as the Reynolds tensor play an important role in the dynamics of the zonal flows and that the gyrokinetic description is relevant for all plasma regions. (A.C.)

  14. ZAPP: The Z Astrophysical Plasma Properties collaborationa)

    Science.gov (United States)

    Rochau, G. A.; Bailey, J. E.; Falcon, R. E.; Loisel, G. P.; Nagayama, T.; Mancini, R. C.; Hall, I.; Winget, D. E.; Montgomery, M. H.; Liedahl, D. A.

    2014-05-01

    The Z Facility at Sandia National Laboratories [Matzen et al., Phys. Plasmas 12, 055503 (2005)] provides MJ-class x-ray sources that can emit powers >0.3 PW. This capability enables benchmark experiments of fundamental material properties in radiation-heated matter at conditions previously unattainable in the laboratory. Experiments on Z can produce uniform, long-lived, and large plasmas with volumes up to 20 cc, temperatures from 1-200 eV, and electron densities from 1017-23 cc-1. These unique characteristics and the ability to radiatively heat multiple experiments in a single shot have led to a new effort called the Z Astrophysical Plasma Properties (ZAPP) collaboration. The focus of the ZAPP collaboration is to reproduce the radiation and material characteristics of astrophysical plasmas as closely as possible in the laboratory and use detailed spectral measurements to strengthen models for atoms in plasmas. Specific issues under investigation include the LTE opacity of iron at stellar-interior conditions, photoionization around active galactic nuclei, the efficiency of resonant Auger destruction in black-hole accretion disks, and H-Balmer line shapes in white dwarf photospheres.

  15. Black Hole Astrophysics The Engine Paradigm

    CERN Document Server

    Meier, David L

    2012-01-01

    As a result of significant research over the past 20 years, black holes are now linked to some of the most spectacular and exciting phenomena in the Universe, ranging in size from those that have the same mass as stars to the super-massive objects that lie at the heart of most galaxies, including our own Milky Way. This book first introduces the properties of simple isolated holes, then adds in complications like rotation, accretion, radiation, and magnetic fields, finally arriving at a basic understanding of how these immense engines work. Black Hole Astrophysics • reviews our current knowledge of cosmic black holes and how they generate the most powerful observed pheonomena in the Universe; • highlights the latest, most up-to-date theories and discoveries in this very active area of astrophysical research; • demonstrates why we believe that black holes are responsible for important phenomena such as quasars, microquasars and gammaray bursts; • explains to the reader the nature of the violent and spe...

  16. Highlights of the NASA particle astrophysics program

    Energy Technology Data Exchange (ETDEWEB)

    Jones, William Vernon, E-mail: w.vernon.jones@nasa.gov [Astrophysics Division DH000, Science Mission Directorate, NASA Headquarters, Washington DC (United States)

    2014-07-01

    The NASA Particle Astrophysics Program covers Origin of the Elements, Nearest Sources of Cosmic Rays, How Cosmic Particle Accelerators Work, The Nature of Dark Matter, and Neutrino Astrophysics. Progress in each of these topics has come from sophisticated instrumentation flown on long duration balloon (LDB) flights around Antarctica over the past two decades. New opportunities including Super Pressure Balloons (SPB) and International Space Station (ISS) platforms are emerging for the next major step. Stable altitudes and long durations enabled by SPB flights ensure ultra-long duration balloon (ULDB) missions that can open doors to new science opportunities. The Alpha Magnetic Spectrometer (AMS) has been operating on the ISS since May 2011. The CALorimetric Electron Telescope (CALET) and Cosmic Ray Energetics And Mass (CREAM) experiments are being developed for launch to the Japanese Experiment Module Exposed Facility (JEM-EF) in 2015. And, the Extreme Universe Space Observatory (EUSO) is planned for launch to the ISS JEM-EF after 2017. Collectively, these four complementary ISS missions covering a large portion of the cosmic ray energy spectrum serve as a cosmic ray observatory. (author)

  17. Astrophysical Boundary Layers: A New Picture

    Science.gov (United States)

    Belyaev, Mikhail; Rafikov, Roman R.; Mclellan Stone, James

    2016-04-01

    Accretion is a ubiquitous process in astrophysics. In cases when the magnetic field is not too strong and a disk is formed, accretion can proceed through the mid plane all the way to the surface of the central compact object. Unless that compact object is a black hole, a boundary layer will be formed where the accretion disk touches its surfaces. The boundary layer is both dynamically and observationally significant as up to half of the accretion energy is dissipated there.Using a combination of analytical theory and computer simulations we show that angular momentum transport and accretion in the boundary layer is mediated by waves. This breaks with the standard astrophysical paradigm of an anomalous turbulent viscosity that drives accretion. However, wave-mediated angular momentum transport is a natural consequence of "sonic instability." The sonic instability, which we describe analytically and observe in our simulations, is a close cousin of the Papaloizou-Pringle instability. However, it is very vigorous in the boundary layer due to the immense radial velocity shear present at the equator.Our results are applicable to accreting neutron stars, white dwarfs, protostars, and protoplanets.

  18. Advancing Astrophysics with the Square Kilometre Array

    CERN Document Server

    Fender, Rob; Govoni, Federica; Green, Jimi; Hoare, Melvin; Jarvis, Matt; Johnston-Hollitt, Melanie; Keane, Evan; Koopmans, Leon; Kramer, Michael; Maartens, Roy; Macquart, Jean-Pierre; Mellema, Garrelt; Oosterloo, Tom; Prandoni, Isabella; Pritchard, Jonathan; Santos, Mario; Seymour, Nick; Stappers, Ben; Staveley-Smith, Lister; Tian, Wen Wu; Umana, Grazia; Wagg, Jeff; Bourke, Tyler L; AASKA14

    2015-01-01

    In 2014 it was 10 years since the publication of the comprehensive ‘Science with the Square Kilometre Array’ book and 15 years since the first such volume appeared in 1999. In that time numerous and unexpected advances have been made in the fields of astronomy and physics relevant to the capabilities of the Square Kilometre Array (SKA). The SKA itself progressed from an idea to a developing reality with a baselined Phase 1 design (SKA1) and construction planned from 2017. To facilitate the publication of a new, updated science book, which will be relevant to the current astrophysical context, the meeting "Advancing Astrophysics with the Square Kilometre Array" was held in Giardina Naxos, Sicily. Articles were solicited from the community for that meeting to document the scientific advances enabled by the first phase of the SKA and those pertaining to future SKA deployments, with expected gains of 5 times the Phase 1 sensitivity below 350 MHz, about 10 times the Phase 1 sensitivity above 350 MHz and with f...

  19. Bubble chambers for experiments in nuclear astrophysics

    Science.gov (United States)

    DiGiovine, B.; Henderson, D.; Holt, R. J.; Raut, R.; Rehm, K. E.; Robinson, A.; Sonnenschein, A.; Rusev, G.; Tonchev, A. P.; Ugalde, C.

    2015-05-01

    A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with γ-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross-sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning temperatures are dominated by radiative captures, in this experimental scheme we measure the time-reversed processes. Such photodisintegrations allow us to compute the radiative capture cross-sections when transitions to excited states of the reaction products are negligible. Due to the transformation of phase space, the photodisintegration cross-sections are up to two orders of magnitude higher. The main advantage of the new target-detector system is a density several orders of magnitude higher than conventional gas targets. Also, the detector is virtually insensitive to the γ-ray beam itself, thus allowing us to detect only the products of the nuclear reaction of interest. The development and the operation as well as the advantages and disadvantages of the bubble chamber are discussed.

  20. Bubble chambers for experiments in nuclear astrophysics

    International Nuclear Information System (INIS)

    A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with γ-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross-sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning temperatures are dominated by radiative captures, in this experimental scheme we measure the time-reversed processes. Such photodisintegrations allow us to compute the radiative capture cross-sections when transitions to excited states of the reaction products are negligible. Due to the transformation of phase space, the photodisintegration cross-sections are up to two orders of magnitude higher. The main advantage of the new target-detector system is a density several orders of magnitude higher than conventional gas targets. Also, the detector is virtually insensitive to the γ-ray beam itself, thus allowing us to detect only the products of the nuclear reaction of interest. The development and the operation as well as the advantages and disadvantages of the bubble chamber are discussed

  1. Highlights of the NASA particle astrophysics program

    International Nuclear Information System (INIS)

    The NASA Particle Astrophysics Program covers Origin of the Elements, Nearest Sources of Cosmic Rays, How Cosmic Particle Accelerators Work, The Nature of Dark Matter, and Neutrino Astrophysics. Progress in each of these topics has come from sophisticated instrumentation flown on long duration balloon (LDB) flights around Antarctica over the past two decades. New opportunities including Super Pressure Balloons (SPB) and International Space Station (ISS) platforms are emerging for the next major step. Stable altitudes and long durations enabled by SPB flights ensure ultra-long duration balloon (ULDB) missions that can open doors to new science opportunities. The Alpha Magnetic Spectrometer (AMS) has been operating on the ISS since May 2011. The CALorimetric Electron Telescope (CALET) and Cosmic Ray Energetics And Mass (CREAM) experiments are being developed for launch to the Japanese Experiment Module Exposed Facility (JEM-EF) in 2015. And, the Extreme Universe Space Observatory (EUSO) is planned for launch to the ISS JEM-EF after 2017. Collectively, these four complementary ISS missions covering a large portion of the cosmic ray energy spectrum serve as a cosmic ray observatory. (author)

  2. Laboratory Astrophysics White Paper (based on the 2010 NASA Laboratory Astrophysics Workshop in Gatlinberg, Tennessee, 25-28 October 2010)

    OpenAIRE

    Savin, Daniel Wolf; Allamandola, Lou; Federman, Steve; Goldsmith, Paul; Kilbourne, Caroline; Oberg, Karin; Schultz, David; Weaver, Susanna Widicus; Ji, Hantao; Remington, Bruce

    2011-01-01

    The purpose of the 2010 NASA Laboratory Astrophysics Workshop (LAW) was, as given in the Charter from NASA, "to provide a forum within which the scientific community can review the current state of knowledge in the field of Laboratory Astrophysics, assess the critical data needs of NASA's current and future Space Astrophysics missions, and identify the challenges and opportunities facing the field as we begin a new decade". LAW 2010 was the fourth in a roughly quadrennial series of such works...

  3. NASA Laboratory Astrophysics Workshop 2006 Introductory Remarks

    Science.gov (United States)

    Hasan, Hashima

    2006-01-01

    NASA Laboratory Astrophysics Workshop 2006, is the fourth in a series of workshops held at four year intervals, to assess the laboratory needs of NASA's astrophysics missions - past, current and future. Investigators who need laboratory data to interpret their observations from space missions, theorists and modelers, experimentalists who produce the data, and scientists who compile databases have an opportunity to exchange ideas and understand each other's needs and limitations. The multi-wavelength character of these workshops allows cross-fertilization of ideas, raises awareness in the scientific community of the rapid advances in other fields, and the challenges it faces in prioritizing its laboratory needs in a tight budget environment. Currently, we are in the golden age of Space Astronomy, with three of NASA s Great Observatories, Hubble Space Telescope (HST), Chandra X-Ray Observatory (CXO), and Spitzer Space Telescope (SST), in operation and providing astronomers and opportunity to perform synergistic observations. In addition, the Far Ultraviolet Spectroscopic Explorer (FUSE), XMM-Newton, HETE-2, Galaxy Evolution Explorer (GALEX), INTEGRAL and Wilkinson Microwave Anisotropy Probe (WMAP), are operating in an extended phase, while Swift and Suzaku are in their prime phase of operations. The wealth of data from these missions is stretching the Laboratory Astrophysics program to its limits. Missions in the future, which also need such data include the James Webb Space Telescope (JWST), Space Interferometry Mission (SIM), Constellation-X (Con-X), Herschel, and Planck. The interpretation of spectroscopic data from these missions requires knowledge of atomic and molecular parameters such as transition probabilities, f-values, oscillator strengths, excitation cross sections, collision strengths, which have either to be measured in the laboratory by simulating space plasma and interactions therein, or by theoretical calculations and modeling. Once the laboratory

  4. Physisorption kinetics

    CERN Document Server

    Kreuzer, Hans Jürgen

    1986-01-01

    This monograph deals with the kinetics of adsorption and desorption of molecules physisorbed on solid surfaces. Although frequent and detailed reference is made to experiment, it is mainly concerned with the theory of the subject. In this, we have attempted to present a unified picture based on the master equation approach. Physisorption kinetics is by no means a closed and mature subject; rather, in writing this monograph we intended to survey a field very much in flux, to assess its achievements so far, and to give a reasonable basis from which further developments can take off. For this reason we have included many papers in the bibliography that are not referred to in the text but are of relevance to physisorption. To keep this monograph to a reasonable size, and also to allow for some unity in the presentation of the material, we had to omit a number of topics related to physisorption kinetics. We have not covered to any extent the equilibrium properties of physisorbed layers such as structures, phase tr...

  5. Final Report for grant ER54958, 'Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas'

    International Nuclear Information System (INIS)

    computational complexity, such as electromagnetic or gyrokinetic codes should perform better. We therefore implemented an 2-1/2D electromagnetic, relativistic code, which used the same algorithms and data structures as the electrostatic code. Typical speedup achieved on the Tesla C1060 was about 40. The Fermi C2050, a newer GPU, achieved a speedup of 55, with a particle processing time of 2.2 nsec/particle/time step. These results were reported at the APS Division of Plasma Physics Meeting and the US-Japan Workshop on Development of Simulation Science in Plasma Physics.

  6. Gyrokinetic simulations of 2D magnetic reconnection turbulence in guide fields

    Science.gov (United States)

    Terry, P. W.; Pueschel, M. J.; Jenko, F.; Zweibel, E.; Zhdankin, V.; Told, D.

    2012-10-01

    Following the analyses in [M.J. Pueschel et al., Phys. Plasmas 18, 112102 (2011)], a study of turbulence in driven reconnection is commenced, with a sinusoidal current sheet providing the drive through a Krook-type operator in a bi-periodic box. Simulations with the Gene code cover all relevant physical parameters, allowing for encompassing comparisons with expectations from linear simulations. A central observed feature are coherent circular current structures which may be identified as plasmoids. These objects move randomly in the plane perpendicular to the guide field, and may either disappear again after some time or instead merge with one another---the setup can thus be described as turbulence driven by reconnection, but simultaneously creating its own reconnection. Such merger events are associated with large bursts in the heating rate jE, and display strong non-Maxwellian components of the distribution function in parallel velocity space. The plasmoid energetics are studied, as are their ability to produce populations of fast particles. Statistics of such populations are used to facilitate direct comparisons with astrophysical scenarios of energetic particle production.

  7. Statistical learning in high energy and astrophysics

    International Nuclear Information System (INIS)

    This thesis studies the performance of statistical learning methods in high energy and astrophysics where they have become a standard tool in physics analysis. They are used to perform complex classification or regression by intelligent pattern recognition. This kind of artificial intelligence is achieved by the principle ''learning from examples'': The examples describe the relationship between detector events and their classification. The application of statistical learning methods is either motivated by the lack of knowledge about this relationship or by tight time restrictions. In the first case learning from examples is the only possibility since no theory is available which would allow to build an algorithm in the classical way. In the second case a classical algorithm exists but is too slow to cope with the time restrictions. It is therefore replaced by a pattern recognition machine which implements a fast statistical learning method. But even in applications where some kind of classical algorithm had done a good job, statistical learning methods convinced by their remarkable performance. This thesis gives an introduction to statistical learning methods and how they are applied correctly in physics analysis. Their flexibility and high performance will be discussed by showing intriguing results from high energy and astrophysics. These include the development of highly efficient triggers, powerful purification of event samples and exact reconstruction of hidden event parameters. The presented studies also show typical problems in the application of statistical learning methods. They should be only second choice in all cases where an algorithm based on prior knowledge exists. Some examples in physics analyses are found where these methods are not used in the right way leading either to wrong predictions or bad performance. Physicists also often hesitate to profit from these methods because they fear that statistical learning methods cannot be controlled in a

  8. Trojan Horse Method: recent applications in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, C.; Cherubini, S.; La Cognata, M.; Lamia, L. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Chimiche e Fisiche per l' Ingegneria, Universita di Catania (Italy); Mukhamedzhanov, A. [Cyclotron Institute, Texas A and M University, College Station, Texas (United States); Pizzone, R.G.; Romano, S.; Sergi, M.L. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Chimiche e Fisiche per l' Ingegneria, Universita di Catania (Italy); Tumino, A. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); Universita degli Studi di Enna ' Kore' , Enna (Italy)

    2010-03-01

    The Trojan Horse Method (THM) is a powerful indirect technique to extract the bare nucleus cross section (or equivalently the bare nucleus astrophysical factor) for astrophysically relevant reactions. The theory has been discussed in many works in relation to the different types of reactions studied. Here we present the methodology to select the quasi free mechanism in order to extract this important parameter.

  9. Cosmology and Fundamental Physics and their Laboratory Astrophysics Connections

    OpenAIRE

    Haxton, W. C.

    2011-01-01

    The Decadal Survey of Astronomy and Astrophysics created five panels to identify the science themes that would define the field's research frontiers in the coming decade. I will describe the conclusions of one of these, the Panel on Cosmology and Fundamental Physics, and comment on their relevance to the discussions at this meeting of the NASA Laboratory Astrophysics community.

  10. Nuclear Astrophysics from View Point of Few-Body Problems

    International Nuclear Information System (INIS)

    Few-body systems provide very useful tools to solve different problems for nuclear astrophysics. This is the case of indirect techniques, developed to overcome some of the limits of direct measurements at astrophysical energies. Here the Coulomb dissociation, the asymptotic normalization coefficient and the Trojan Horse method are discussed. (author)

  11. Resolving astrophysical uncertainties in dark matter direct detection

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Kahlhoefer, Felix; McCabe, Christopher;

    2012-01-01

    We study the impact of the assumed velocity distribution of galactic dark matter particles on the interpretation of results from nuclear recoil detectors. By converting experimental data to variables that make the astrophysical unknowns explicit, different experiments can be compared without...... modulation fraction. However constraints from CDMS and XENON cannot be evaded by appealing to such astrophysical uncertainties alone....

  12. The MICA Experiment: Astrophysics in Virtual Worlds

    CERN Document Server

    Djorgovski, S G; Knop, Rob; Longo, Giuseppe; McMillan, Steve; Vesperini, Enrico; Donalek, Ciro; Graham, Matthew; Mahabal, Asish; Sauer, Franz; White, Charles; Lopes, Crista

    2013-01-01

    We describe the work of the Meta-Institute for Computational Astrophysics (MICA), the first professional scientific organization based in virtual worlds. MICA was an experiment in the use of this technology for science and scholarship, lasting from the early 2008 to June 2012, mainly using the Second Life and OpenSimulator as platforms. We describe its goals and activities, and our future plans. We conducted scientific collaboration meetings, professional seminars, a workshop, classroom instruction, public lectures, informal discussions and gatherings, and experiments in immersive, interactive visualization of high-dimensional scientific data. Perhaps the most successful of these was our program of popular science lectures, illustrating yet again the great potential of immersive VR as an educational and outreach platform. While the members of our research groups and some collaborators found the use of immersive VR as a professional telepresence tool to be very effective, we did not convince a broader astrophy...

  13. Astrophysical life extinctions what killed the dinosaurs?

    CERN Document Server

    Dar, Arnon

    1999-01-01

    Geological records indicate that the exponential diversification of marine and continental life on Earth in the past 500 My was interrupted by many life extinctions. They also indicate that the major mass extinctions were correlated in time with large meteoritic impacts, gigantic volcanic eruptions, sea regressions and drastic changes in global climate. Some of these catastrophes coincided in time. The astrophysical life extinction mechanisms which were proposed so far, in particular, meteoritic impacts, nearby supernova explosions, passage through molecular or dark matter clouds, and Galactic gamma/cosmic ray bursts cannot explain the time coincidences between these catastrophes. However, recent observations suggest that many planetary-mass objects may be present in the outer solar system between the Kuiper belt and the Oort cloud. Gravitational perturbations may occasionally bring them into the inner solar system. Their passage near Earth could have generated gigantic tidal waves, large volcanic eruptions, ...

  14. A high energy photon polarimeter for astrophysics

    CERN Document Server

    Eingorn, Maxim; Vlahovic, Branislav; Wojtsekhowski, Bogdan; Urciuoli, Guido Maria; De Persio, Fulvio; Meddi, Franco

    2015-01-01

    A high-energy photon polarimeter for astrophysics studies in the energy range from 20 MeV to 1000 MeV is considered. The proposed concept uses a stack of silicon micro-strip detectors where they play the roles of both a converter and a tracker. The purpose of this paper is to outline the parameters of such a polarimeter and to estimate the productivity of measurements. Our study supported by a Monte Carlo simulation shows that with a one-year observation period the polarimeter will provide 5.5 % accuracy of the polarization degree for a photon energy of 100 MeV, which would be a significant advance relative to the currently explored energy range of a few MeV. The proposed polarimeter design could easily be adjusted to the specific photon energy range to maximize efficiency if needed.

  15. General relativity with applications to astrophysics

    CERN Document Server

    Straumann, Norbert

    2004-01-01

    This text provides a comprehensive and timely introduction to general relativity The foundations of the theory in Part I are thoroughly developed together with the required mathematical background from differential geometry in Part III The six chapters in Part II are devoted to tests of general relativity and to many of its applications Binary pulsars are studied in considerable detail Much space is devoted to the study of compact objects, especially to black holes This includes a detailed derivation of the Kerr solution, Israel's proof of his uniqueness theorem, and derivations of the basic laws of black hole physics The final chapter of this part contains Witten's proof of the positive energy theorem The book addresses undergraduate and graduate students in physics, astrophysics and mathematics It is very well structured and should become a standard text for a modern treatment of gravitational physics The clear presentation of differential geometry makes it also useful for string theory and other fields of ...

  16. Practices in source code sharing in astrophysics

    CERN Document Server

    Shamir, Lior; Allen, Alice; Berriman, Bruce; Teuben, Peter; Nemiroff, Robert J; Mink, Jessica; Hanisch, Robert J; DuPrie, Kimberly

    2013-01-01

    While software and algorithms have become increasingly important in astronomy, the majority of authors who publish computational astronomy research do not share the source code they develop, making it difficult to replicate and reuse the work. In this paper we discuss the importance of sharing scientific source code with the entire astrophysics community, and propose that journals require authors to make their code publicly available when a paper is published. That is, we suggest that a paper that involves a computer program not be accepted for publication unless the source code becomes publicly available. The adoption of such a policy by editors, editorial boards, and reviewers will improve the ability to replicate scientific results, and will also make the computational astronomy methods more available to other researchers who wish to apply them to their data.

  17. Constraints of noncommutativity from Astrophysical studies

    CERN Document Server

    Garcia-Aspeitia, Miguel A; Ortiz, C; Hinojosa-Ruiz, Sinhue; Rodriguez-Meza, Mario A

    2015-01-01

    This paper is devoted to study the astrophysical consequences of noncommutativity, focusing in stellar dynamics and rotational curves of galaxies. We start exploring a star filled with an incompressible fluid and a noncommutative fluid under the Tolman-Oppenheimer-Volkoff background. We analyze the effective pressure and mass, resulting in a constraint for the noncommutative parameter. Also we explore the rotation curves of galaxies assuming that the dark matter halo is a noncommutative fluid, obtaining an average value of the noncommutative parameter through an analysis of twelve LSB galaxies; our results are compared with traditional models like Pseudoisothermal, Navarro-Frenk-White and Burkert. As a final remark, we summarize our results as: $\\sqrt{\\theta}>0.075R$, from star constraints which is strong dependent of the stellar radius and $\\langle\\sqrt{\\theta}\\rangle\\simeq2.666\\rm kpc$ with standard deviation $\\sigma\\simeq1.090\\rm kpc$ from the galactic constraints.

  18. New Prospects in High Energy Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Blandford, Roger; /KIPAC, Menlo Park

    2011-11-15

    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  19. Astrocladistics: Multivariate Evolutionary Analysis in Astrophysics

    CERN Document Server

    Fraix-Burnet, Didier

    2010-01-01

    The Hubble tuning fork diagram, based on morphology and established in the 1930s, has always been the preferred scheme for classification of galaxies. However, the current large amount of data up to higher and higher redshifts asks for more sophisticated statistical approaches like multivariate analyses. Clustering analyses are still very confidential, and do not take into account the unavoidable characteristics in our Universe: evolution. Assuming branching evolution of galaxies as a 'transmission with modification', we have shown that the concepts and tools of phylogenetic systematics (cladistics) can be heuristically transposed to the case of galaxies. This approach that we call "astrocladistics", has now successfully been applied on several samples of galaxies and globular clusters. Maximum parsimony and distance-based approaches are the most popular methods to produce phylogenetic trees and, like most other studies, we had to discretize our variables. However, since astrophysical data are intrinsically c...

  20. Environmental Effects for Gravitational-wave Astrophysics

    CERN Document Server

    Barausse, Enrico; Pani, Paolo

    2014-01-01

    The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly-dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors -the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals- and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, ...

  1. Theoretically Palatable Flavor Combinations of Astrophysical Neutrinos.

    Science.gov (United States)

    Bustamante, Mauricio; Beacom, John F; Winter, Walter

    2015-10-16

    The flavor composition of high-energy astrophysical neutrinos can reveal the physics governing their production, propagation, and interaction. The IceCube Collaboration has published the first experimental determination of the ratio of the flux in each flavor to the total. We present, as a theoretical counterpart, new results for the allowed ranges of flavor ratios at Earth for arbitrary flavor ratios in the sources. Our results will allow IceCube to more quickly identify when their data imply standard physics, a general class of new physics with arbitrary (incoherent) combinations of mass eigenstates, or new physics that goes beyond that, e.g., with terms that dominate the Hamiltonian at high energy. PMID:26550861

  2. Relativistic astrophysics and cosmology a primer

    CERN Document Server

    Hoyng, Peter

    2006-01-01

    This book offers a succinct and self-contained treatment of general relativity and its application to neutron stars, black holes, gravitational waves and cosmology, at an intermediate level. The required mathematical concepts are introduced informally, following geometrical intuition as much as possible. The approach is theoretical, but there is ample discussion of observational aspects and instrumental issues where appropriate. Topical issues such as the Gravity Probe B mission, and the physics of interferometer detectors of gravitational waves and the angular power spectrum of the Cosmic Microwave Background are included. The book is written for advanced undergraduates and beginning graduate students in (astro)physics. The reader is assumed to be familiar with linear algebra and analysis, ordinary differential equations, special relativity, and basic thermal physics, but prior knowledge of differential geometry and general relativity is not required. Containing 140 exercises with extensive hints for their s...

  3. Sc III Spectral Properties of Astrophysical Interest

    CERN Document Server

    Nandy, D K; Sahoo, B K; Li, Chengbin

    2011-01-01

    Transition properties such as oscillator strengths, transition rates, branching ratios and lifetimes of many low-lying states in the doubly ionized scandium (Sc III) are reported. A relativistic method in the coupled-cluster framework has been employed to incorporate the electron correlations due to the Coulomb interaction to all orders by considering all possible singly and doubly excited electronic configurations conjointly with the contributions from the leading order triple excitations in a perturbative approach. Present results are compared with the previously available results for the transition lines of astrophysical interest and the role of the correlation effects are also discussed concisely. Some of the transition rates, oscillator strengths and lifetimes are acquainted.

  4. Nuclear Astrophysics at IFIN-HH

    Science.gov (United States)

    Livius, Trache

    2016-04-01

    I will present the possibilities and some results of doing nuclear astrophysics research in IFIN-HH Bucharest-Magurele. There are basically two lines of experimental activities: (1) direct measurements with beams from the local accelerators, in particular with the new 3 MV Tandetron accelerator. This facility turns out to be competitive for reactions induced by a-particles and light ions. Extra capabilities are given by the ultra-low background laboratory we have in a salt mine about 2.5 hrs. driving north of Bucharest; (2) indirect measurements done with beams at international facilities, in particular at those providing Rare Ion Beams. Completely new and unique opportunities will be provided by ELI-NP, under construction in our institute.

  5. Studies of High Energy Particle Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Nitz, David F [Michigan Technological University; Fick, Brian E [Michigan Technological University

    2014-07-30

    This report covers the progress of the Michigan Technological University particle astrophysics group during the period April 15th, 2011 through April 30th, 2014. The principal investigator is Professor David Nitz. Professor Brian Fick is the Co-PI. The focus of the group is the study of the highest energy cosmic rays using the Pierre Auger Observatory. The major goals of the Pierre Auger Observatory are to discover and understand the source or sources of cosmic rays with energies exceeding 10**19 eV, to identify the particle type(s), and to investigate the interactions of those cosmic particles both in space and in the Earth's atmosphere. The Pierre Auger Observatory in Argentina was completed in June 2008 with 1660 surface detector stations and 24 fluorescence telescopes arranged in 4 stations. It has a collecting area of 3,000 square km, yielding an aperture of 7,000 km**2 sr.

  6. New isotopes of interest to astrophysics

    CERN Document Server

    Davids, C N; Pardo, R C; Parks, L A

    1976-01-01

    The beta decays of the new isotopes /sup 53/Ti and /sup 59/Mn have been studied. These neutron-rich isotopes have half-lives of 32.7+or-0.9 s and 4.75+or-0.14 s, respectively. They were produced via the /sup 48/Ca(/sup 7/Li, pn)/sup 53/Ti and /sup 48/Ca(/sup 13/C, pn) /sup 59/Mn reactions using beams from the Argonne National Laboratory FN Tandem Van de Graaff accelerator. Measurement of gamma singles, gamma - gamma coincidences, and beta - gamma coincidences were facilitated by a pneumatic target-transfer system ('rabbit'). Decay schemes are presented, and the measured masses compared with various predictions. The relevance to astrophysics will be discussed. In addition, a new 8-target multiple rabbit system will be described. (7 refs).

  7. Few-body models for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Descouvemont, P., E-mail: pdesc@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Baye, D., E-mail: dbaye@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Physique Quantique, C.P. 165/82, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Suzuki, Y., E-mail: suzuki@nt.sc.niigata-u.ac.jp [Department of Physics, Niigata University, Niigata 950-2181 (Japan); RIKEN Nishina Center, Wako 351-0198 (Japan); Aoyama, S., E-mail: aoyama@cc.niigata-u.ac.jp [Center for Academic Information Service, Niigata University, Niigata 950-2181 (Japan); Arai, K., E-mail: arai@nagaoka-ct.ac.jp [Division of General Education, Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata 940-8532 (Japan)

    2014-04-15

    We present applications of microscopic models to nuclear reactions of astrophysical interest, and we essentially focus on few-body systems. The calculation of radiative-capture and transfer cross sections is outlined, and we discuss the corresponding reaction rates. Microscopic theories are briefly presented, and we emphasize on the matrix elements of four-body systems. The microscopic extension of the R-matrix theory to nuclear reactions is described. Applications to the {sup 2}H(d, γ){sup 4}He, {sup 2}H(d, p){sup 3}H and {sup 2}H(d, n){sup 3}He reactions are presented. We show the importance of the tensor force to reproduce the low-energy behaviour of the cross sections.

  8. Few-body models for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    P. Descouvemont

    2014-02-01

    Full Text Available We present applications of microscopic models to nuclear reactions of astrophysical interest, and we essentially focus on few-body systems. The calculation of radiative-capture and transfer cross sections is outlined, and we discuss the corresponding reaction rates. Microscopic theories are briefly presented, and we emphasize on the matrix elements of four-body systems. The microscopic extension of the R-matrix theory to nuclear reactions is described. Applications to the 2H(d, γ4He, 2H(d, p3H and 2H(d, n3He reactions are presented. We show the importance of the tensor force to reproduce the low-energy behaviour of the cross sections.

  9. Nuclear astrophysics with radioactive ions at FAIR

    CERN Document Server

    Reifarth, R; Göbel, K; Heftrich, T; Heil, M; Koloczek, A; Langer, C; Plag, R; Pohl, M; Sonnabend, K; Weigand, M; Adachi, T; Aksouh, F; Al-Khalili, J; AlGarawi, M; AlGhamdi, S; Alkhazov, G; Alkhomashi, N; Alvarez-Pol, H; Alvarez-Rodriguez, R; Andreev, V; Andrei, B; Atar, L; Aumann, T; Avdeichikov, V; Bacri, C; Bagchi, S; Barbieri, C; Beceiro, S; Beck, C; Beinrucker, C; Belier, G; Bemmerer, D; Bendel, M; Benlliure, J; Benzoni, G; Berjillos, R; Bertini, D; Bertulani, C; Bishop, S; Blasi, N; Bloch, T; Blumenfeld, Y; Bonaccorso, A; Boretzky, K; Botvina, A; Boudard, A; Boutachkov, P; Boztosun, I; Bracco, A; Brambilla, S; Monago, J Briz; Caamano, M; Caesar, C; Camera, F; Casarejos, E; Catford, W; Cederkall, J; Cederwall, B; Chartier, M; Chatillon, A; Cherciu, M; Chulkov, L; Coleman-Smith, P; Cortina-Gil, D; Crespi, F; Crespo, R; Cresswell, J; Csatlós, M; Déchery, F; Davids, B; Davinson, T; Derya, V; Detistov, P; Fernandez, P Diaz; DiJulio, D; Dmitry, S; Doré, D; nas, J Due\\; Dupont, E; Egelhof, P; Egorova, I; Elekes, Z; Enders, J; Endres, J; Ershov, S; Ershova, O; Fernandez-Dominguez, B; Fetisov, A; Fiori, E; Fomichev, A; Fonseca, M; Fraile, L; Freer, M; Friese, J; Borge, M G; Redondo, D Galaviz; Gannon, S; Garg, U; Gasparic, I; Gasques, L; Gastineau, B; Geissel, H; Gernhäuser, R; Ghosh, T; Gilbert, M; Glorius, J; Golubev, P; Gorshkov, A; Gourishetty, A; Grigorenko, L; Gulyas, J; Haiduc, M; Hammache, F; Harakeh, M; Hass, M; Heine, M; Hennig, A; Henriques, A; Herzberg, R; Holl, M; Ignatov, A; Ignatyuk, A; Ilieva, S; Ivanov, M; Iwasa, N; Jakobsson, B; Johansson, H; Jonson, B; Joshi, P; Junghans, A; Jurado, B; Körner, G; Kalantar, N; Kanungo, R; Kelic-Heil, A; Kezzar, K; Khan, E; Khanzadeev, A; Kiselev, O; Kogimtzis, M; Körper, D; Kräckmann, S; Kröll, T; Krücken, R; Krasznahorkay, A; Kratz, J; Kresan, D; Krings, T; Krumbholz, A; Krupko, S; Kulessa, R; Kumar, S; Kurz, N; Kuzmin, E; Labiche, M; Langanke, K; Lazarus, I; Bleis, T Le; Lederer, C; Lemasson, A; Lemmon, R; Liberati, V; Litvinov, Y; Löher, B; Herraiz, J Lopez; Münzenberg, G; Machado, J; Maev, E; Mahata, K; Mancusi, D; Marganiec, J; Perez, M Martinez; Marusov, V; Mengoni, D; Million, B; Morcelle, V; Moreno, O; Movsesyan, A; Nacher, E; Najafi, M; Nakamura, T; Naqvi, F; Nikolski, E; Nilsson, T; Nociforo, C; Nolan, P; Novatsky, B; Nyman, G; Ornelas, A; Palit, R; Pandit, S; Panin, V; Paradela, C; Parkar, V; Paschalis, S; Paw\\lowski, P; Perea, A; Pereira, J; Petrache, C; Petri, M; Pickstone, S; Pietralla, N; Pietri, S; Pivovarov, Y; Potlog, P; Prokofiev, A; Rastrepina, G; Rauscher, T; Ribeiro, G; Ricciardi, M; Richter, A; Rigollet, C; Riisager, K; Rios, A; Ritter, C; Frutos, T Rodríguez; Vignote, J Rodriguez; Röder, M; Romig, C; Rossi, D; Roussel-Chomaz, P; Rout, P; Roy, S; Söderström, P; Sarkar, M Saha; Sakuta, S; Salsac, M; Sampson, J; Saez, J Sanchez del Rio; Rosado, J Sanchez; Sanjari, S; Sarriguren, P; Sauerwein, A; Savran, D; Scheidenberger, C; Scheit, H; Schmidt, S; Schmitt, C; Schnorrenberger, L; Schrock, P; Schwengner, R; Seddon, D; Sherrill, B; Shrivastava, A; Sidorchuk, S; Silva, J; Simon, H; Simpson, E; Singh, P; Slobodan, D; Sohler, D; Spieker, M; Stach, D; Stan, E; Stanoiu, M; Stepantsov, S; Stevenson, P; Strieder, F; Stuhl, L; Suda, T; Sümmerer, K; Streicher, B; Taieb, J; Takechi, M; Tanihata, I; Taylor, J; Tengblad, O; Ter-Akopian, G; Terashima, S; Teubig, P; Thies, R; Thoennessen, M; Thomas, T; Thornhill, J; Thungstrom, G; Timar, J; Togano, Y; Tomohiro, U; Tornyi, T; Tostevin, J; Townsley, C; Trautmann, W; Trivedi, T; Typel, S; Uberseder, E; Udias, J; Uesaka, T; Uvarov, L; Vajta, Z; Velho, P; Vikhrov, V; Volknandt, M; Volkov, V; von Neumann-Cosel, P; von Schmid, M; Wagner, A; Wamers, F; Weick, H; Wells, D; Westerberg, L; Wieland, O; Wiescher, M; Wimmer, C; Wimmer, K; Winfield, J S; Winkel, M; Woods, P; Wyss, R; Yakorev, D; Yavor, M; Cardona, J Zamora; Zartova, I; Zerguerras, T; Zgura, I; Zhdanov, A; Zhukov, M; Zieblinski, M; Zilges, A; Zuber, K

    2016-01-01

    The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process beta-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.

  10. Astrophysics and the evolution of the universe

    CERN Document Server

    Kisslinger, Leonard S

    2014-01-01

    The aim of this book is to teach undergraduate college or university students the basic physics concepts needed to understand the mathematics which describes the evolution of the universe, and based on this to teach the astrophysical theories behind evolution from very early times to the present. The book does not require students to have extensive knowledge of mathematics, like calculus, and includes material that explains concepts such as velocity, acceleration, and force. Based on this, fascinating topics such as Dark Matter, measuring Dark Energy via supernovae velocities, and the creation of mass via the Higgs mechanism are explained. All college students with an interest in science, especially astronomy, without extensive mathematical backgrounds should be able to use and learn from this book. Adults interested in topics like dark energy and the Higgs boson, which are in the news, can make use of this book as well.

  11. Relativistic Astrophysics and Cosmology: A Primer

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, Marek A [Department of Astronomy and Astrophysics, Chalmers University of Technology, 41296 Goeteborg (Sweden)

    2007-10-21

    'Relativistic Astrophysics and Cosmology: A Primer' by Peter Hoyng, was published last year by Springer. The book is based on lectures given by the author at University of Utrecht to advanced undergraduates. This is a short and scholarly book. In about 300 pages, the author has covered the most interesting and important applications of Albert Einstein's general relativity in present-day astrophysics and cosmology: black holes, neutron stars, gravitational waves, and the cosmic microwave background. The book stresses theory, but also discusses several experimental and observational topics, such as the Gravity Probe B mission, interferometer detectors of gravitational waves and the power spectrum of the cosmic microwave background. The coverage is not uniform. Some topics are discussed in depth, others are only briefly mentioned. The book obviously reflects the author's own research interests and his preferences for specific mathematical methods, and the choice of the original artwork that illustrates the book (and appears on its cover) is a very personal one. I consider this personal touch an advantage, even if I do not always agree with the author's choices. For example, I employ Killing vectors as a very useful mathematical tool not only in my research on black holes, but also in my classes. I find that my students prefer it when discussions of particle, photon and fluid motion in the Schwarzschild and Kerr spacetimes are based explicitly and directly on the Killing vectors rather than on coordinate calculations. The latter approach is, of course, the traditional one, and is used in Peter Hoyng's book. Reading the book is a stimulating experience, because the reader can almost feel the author's presence. The author's opinions, his mathematical taste, his research pleasures, and his pedagogical passion are apparent everywhere. Lecturers contemplating a new course on relativistic astrophysics could adopt Hoyng's book as

  12. Transient dynamics of perturbations in astrophysical disks

    CERN Document Server

    Razdoburdin, Dmitry N

    2015-01-01

    This paper reviews some aspects of one of the major unsolved problems in understanding astrophysical (in particular, accretion) disks: whether the disk interiors may be effectively viscous in spite of the absence of marnetorotational instability? In this case a rotational homogeneous inviscid flow with a Keplerian angular velocity profile is spectrally stable, making the transient growth of perturbations a candidate mechanism for energy transfer from the regular motion to perturbations. Transient perturbations differ qualitatively from perturbation modes and can grow substantially in shear flows due to the nonnormality of their dynamical evolution operator. Since the eigenvectors of this operator, alias perturbation modes, are mutually nonorthogonal, they can mutually interfere, resulting in the transient growth of their linear combinations. Physically, a growing transient perturbation is a leading spiral whose branches are shrunk as a result of the differential rotation of the flow. This paper discusses in d...

  13. Precision Stellar Astrophysics in the Kepler Era

    CERN Document Server

    Huber, Daniel

    2016-01-01

    The study of fundamental properties (such as temperatures, radii, masses, and ages) and interior processes (such as convection and angular momentum transport) of stars has implications on various topics in astrophysics, ranging from the evolution of galaxies to understanding exoplanets. In this contribution I will review the basic principles of two key observational methods for constraining fundamental and interior properties of single field stars: the study stellar oscillations (asteroseismology) and optical long-baseline interferometry. I will highlight recent breakthrough discoveries in asteroseismology such as the measurement of core rotation rates in red giants and the characterization of exoplanet systems. I will furthermore comment on the reliability of interferometry as a tool to calibrate indirect methods to estimate fundamental properties, and present a new angular diameter measurement for the exoplanet host star HD219134 which demonstrates that diameters for stars which are relatively well resolved...

  14. Astrophysical limits on light NMSSM neutralinos

    CERN Document Server

    Vasquez, Daniel Albornoz; Boehm, Celine

    2011-01-01

    It was recently shown that light LSP neutralinos could be found in the framework of the NMSSM. These candidates would escape known Particle Physics constraints even though they are relatively light. We now investigate the astrophysical limits which can be set on these particles. We show, in particular, that the FERMI observation of dwarf spheroidal galaxies enable to constrain the parameter space associated with these candidates and the expected radio emission in the inner Milky Way should be significant. Combined with the XENON100 experimental limits, our results illustrate the complementarity between direct and indirect searches for dark matter. Yet, our findings also suggest that probing light neutralinos in the NMSSM scenario will be very difficult because the sensitivity of both dark matter direct and indirect detection experiments would have to be improved by at least six order of magnitude compared to present values in order to explore the entire parameter space. Finally, we show that the parameter spa...

  15. Protection of the Guillermo Haro Astrophysical Observatory

    Science.gov (United States)

    Carrasco, E.; Carraminana, A. P.

    The Guillermo Haro Astrophysical Observatory, with a 2m telescope, is one of only two professional observatories in Mexico. The observatory, run by the InstitutoNacional de Astrofisica, Optica y Electronica (INAOE), is located in the north of Mexico, in Cananea, Sonora. Since 1995 the observatory has faced the potential threat of pollution by an open cast mine to be opened at 3kms from the observatory. In the absence of national or regional laws enforcing protection to astronomical sites in Mexico, considerable effort has been needed to guarantee the conditions of the site. We present the studies carried out to ensure the protection of the Guillermo Haro Observatory from pollution due to dust, light and vibrations.

  16. Astrophysics of Dust in Cold Clouds

    CERN Document Server

    Draine, B T

    2003-01-01

    Nine lectures reviewing the astrophysics of dust in interstellar clouds. Topics include: (1) Summary of observational evidence concerning interstellar dust: broadband extinction, scattering of starlight, polarization of starlight, spectroscopy of dust, IR and FIR emission, and depletions of grain-forming elements. (2) Optics of interstellar dust grains: dielectric functions of nonconducting and conducting materials, calculational techniques, formulae valid in the Rayleigh limit, Kramers-Kronig relations, microwave emission mechanisms, and X-ray scattering. (3) IR and FIR emission: heating of interstellar dust, including single-photon heating, and resulting IR emission spectrum. (4) Charging of dust grains: collisional charging, photoelectric emission, and resulting charge distribution functions. (5) Dynamics: gas drag, Lorentz force, forces due to anisotropic radiation, and resulting drift velocities. (6) Rotational dynamics: brownian rotation, suprathermal rotation, and effects of starlight torques. (7) Alig...

  17. MPI-AMRVAC for Solar and Astrophysics

    CERN Document Server

    Porth, O; Hendrix, T; Moschou, S P; Keppens, R

    2014-01-01

    In this paper we present an update on the open source MPI-AMRVAC simulation toolkit where we focus on solar- and non-relativistic astrophysical magneto-fluid dynamics. We highlight recent developments in terms of physics modules such as hydrodynamics with dust coupling and the conservative implementation of Hall magnetohydrodynamics. A simple conservative high-order finite difference scheme that works in combination with all available physics modules is introduced and demonstrated at the example of monotonicity preserving fifth order reconstruction. Strong stability preserving high order Runge-Kutta time steppers are used to obtain stable evolutions in multidimensional applications realizing up to fourth order accuracy in space and time. With the new distinction between active and passive grid cells, MPI-AMRVAC is ideally suited to simulate evolutions where parts of the solution are controlled analytically, or have a tendency to progress into or out of a stationary state. Typical test problems and representat...

  18. Foreword: Advanced Science Letters (ASL), Special Issue on Computational Astrophysics

    CERN Document Server

    ,

    2009-01-01

    Computational astrophysics has undergone unprecedented development over the last decade, becoming a field of its own. The challenge ahead of us will involve increasingly complex multi-scale simulations. These will bridge the gap between areas of astrophysics such as star and planet formation, or star formation and galaxy formation, that have evolved separately until today. A global knowledge of the physics and modeling techniques of astrophysical simulations is thus an important asset for the next generation of modelers. With the aim at fostering such a global approach, we present the Special Issue on Computational Astrophysics for the Advanced Science Letters (http://www.aspbs.com/science.htm). The Advanced Science Letters (ASL) is a new multi-disciplinary scientific journal which will cover extensively computational astrophysics and cosmology, and will act as a forum for the presentation and discussion of novel work attempting to connect different research areas. This Special Issue collects 9 reviews on 9 k...

  19. A general method of estimating stellar astrophysical parameters from photometry

    CERN Document Server

    Belikov, A N

    2008-01-01

    Applying photometric catalogs to the study of the population of the Galaxy is obscured by the impossibility to map directly photometric colors into astrophysical parameters. Most of all-sky catalogs like ASCC or 2MASS are based upon broad-band photometric systems, and the use of broad photometric bands complicates the determination of the astrophysical parameters for individual stars. This paper presents an algorithm for determining stellar astrophysical parameters (effective temperature, gravity and metallicity) from broad-band photometry even in the presence of interstellar reddening. This method suits the combination of narrow bands as well. We applied the method of interval-cluster analysis to finding stellar astrophysical parameters based on the newest Kurucz models calibrated with the use of a compiled catalog of stellar parameters. Our new method of determining astrophysical parameters allows all possible solutions to be located in the effective temperature-gravity-metallicity space for the star and se...

  20. Distance Correlation Methods for Discovering Associations in Large Astrophysical Databases

    CERN Document Server

    Martinez-Gomez, Elizabeth; Richards, Donald St P

    2013-01-01

    High-dimensional, large-sample astrophysical databases of galaxy clusters, such as the Chandra Deep Field South COMBO-17 database, provide measurements on many variables for thousands of galaxies and a range of redshifts. Current understanding of galaxy formation and evolution rests sensitively on relationships between different astrophysical variables; hence an ability to detect and verify associations or correlations between variables is important in astrophysical research. In this paper, we apply a recently defined statistical measure called the distance correlation coefficient which can be used to identify new associations and correlations between astrophysical variables. The distance correlation coefficient applies to variables of any dimension; it can be used to determine smaller sets of variables that provide equivalent astrophysical information; it is zero only when variables are independent; and it is capable of detecting nonlinear associations that are undetectable by the classical Pearson correlati...

  1. Test of Lorentz Violation with Astrophysical Neutrino Flavor

    CERN Document Server

    Katori, Teppei; Salvado, Jordi

    2016-01-01

    The high-energy astrophysical neutrinos recently discovered by IceCube opened a new way to test Lorentz and CPT violation through the astrophysical neutrino mixing properties. The flavor ratio of astrophysical neutrinos is a very powerful tool to investigate tiny effects caused by Lorentz and CPT violation. There are 3 main findings; (1) current limits on Lorentz and CPT violation in neutrino sector are not tight and they allow for any flavor ratios, (2) however, the observable flavor ratio on the Earth is tied with the flavor ratio at production, this means we can test both the presence of new physics and the astrophysical neutrino production mechanism simultaneously, and (3) the astrophysical neutrino flavor ratio is one of the most stringent tests of Lorentz and CPT violation.

  2. Investigating High Field Gravity using Astrophysical Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Elliott D.; /SLAC

    2008-02-01

    The purpose of these lectures is to introduce particle physicists to astrophysical techniques. These techniques can help us understand certain phenomena important to particle physics that are currently impossible to address using standard particle physics experimental techniques. As the subject matter is vast, compromises are necessary in order to convey the central ideas to the reader. Many general references are included for those who want to learn more. The paragraphs below elaborate on the structure of these lectures. I hope this discussion will clarify my motivation and make the lectures easier to follow. The lectures begin with a brief review of more theoretical ideas. First, elements of general relativity are reviewed, concentrating on those aspects that are needed to understand compact stellar objects (white dwarf stars, neutron stars, and black holes). I then review the equations of state of these objects, concentrating on the simplest standard models from astrophysics. After these mathematical preliminaries, Sec. 2(c) discusses 'The End State of Stars'. Most of this section also uses the simplest standard models. However, as these lectures are for particle physicists, I also discuss some of the more recent approaches to the equation of state of very dense compact objects. These particle-physics-motivated equations of state can dramatically change how we view the formation of black holes. Section 3 focuses on the properties of the objects that we want to characterize and measure. X-ray binary systems and Active Galactic Nuclei (AGN) are stressed because the lectures center on understanding very dense stellar objects, black hole candidates (BHCs), and their accompanying high gravitational fields. The use of x-ray timing and gamma-ray experiments is also introduced in this section. Sections 4 and 5 review information from x-ray and gamma-ray experiments. These sections also discuss the current state of the art in x-ray and gamma-ray satellite

  3. Double layers and circuits in astrophysics

    International Nuclear Information System (INIS)

    As the rate of energy release in a double layer with voltage DeltaV is P corresponding to IDeltaV, a double layer must be treated part of a circuit which delivers the current I. As neither double layer nor circuit can be derived from magnetofluid models of a plasma, such models are useless for treating energy transfer by menas of double layers. They must be replaced by particle models and circuit theory. A simple circuit is suggested which is applied to the energizing of auroroal particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the sun's axis which may give radiations detectable from earth. Double layers in space should be classified as a new type of celestial object (one example is the double radio sources). It is tentatively suggested in X-ray and gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). A study of how a number of the most used textbooks in astrophysics treat important concepts like double layers, critical velocity, pinch effects and circuits is made. It is found that students using these textbooks remain essentially ignorant of even the existence of these, in spite of the fact that some of them have been well known for half a centry (e.g., double layers, Langmuir, 1929: pinch effect, Bennet, 1934). The conclusion is that astrophysics is too important to be left in the hands of the astrophysicist. Earth bound and space telescope data must be treated by scientists who are familiar with laboratory and magnetospheric physics and circuit theory, and of course with modern plasma theory. At least by volume the universe consists to more than 99 percent of plasma, and electromagnetic forces are 10/sup39/ time stronger than gravitation

  4. 77 FR 4370 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2012-01-27

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... meeting includes the following topics: --Astrophysics Division Update --Update on Balloons Return...

  5. 76 FR 35481 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2011-06-17

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... meeting includes the following topics: --Astrophysics Division Update. --Research and Analysis...

  6. 75 FR 2893 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2010-01-19

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... and Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA... the room. The agenda for the meeting includes the following topics: --Astrophysics Division...

  7. 75 FR 13597 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2010-03-22

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... and Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA... following topics: --Astrophysics Division Update. --Kepler Data Release Policy. It is imperative that...

  8. 77 FR 62536 - Meeting of Astrophysics Subcommittee of the NASA Advisory Council Science Committee

    Science.gov (United States)

    2012-10-15

    ... SPACE ADMINISTRATION Meeting of Astrophysics Subcommittee of the NASA Advisory Council Science Committee... Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory... topics: --Astrophysics Division Update --Proposed Data Centers Study --Strategic Implementation for...

  9. 75 FR 51116 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2010-08-18

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... the meeting includes the following topics: --Astrophysics Division Update --2010 Astronomy...

  10. 75 FR 74089 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2010-11-30

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... meeting includes the following topics: --Astrophysics Division Update --James Webb Space Telescope...

  11. 75 FR 33837 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2010-06-15

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... and Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA... of the room. The agenda for the meeting includes the following topics: --Astrophysics Division...

  12. 76 FR 5405 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2011-01-31

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... meeting includes the following topics: --Astrophysics Division Update --Update from the James Webb...

  13. 78 FR 66384 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2013-11-05

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... INFORMATION: The agenda for the meeting includes the following topics: --Astrophysics Division...

  14. 77 FR 38090 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2012-06-26

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee (APS) of the NASA Advisory Council... the following topics: --Astrophysics Division Update --James Webb Space Telescope Update...

  15. 76 FR 14106 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2011-03-15

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... meeting includes the following topic: --Astrophysics Division Update. It is imperative that the meeting...

  16. Higher Education Resources from the NASA SMD Astrophysics Forum

    Science.gov (United States)

    Meinke, Bonnie K.; Schultz, Gregory R.; Manning, James; Smith, Denise A.; Bianchi, Luciana; Blair, William P.; Fraknoi, Andrew

    2014-06-01

    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of individual NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams into a coherent, effective, efficient, and sustainable effort. The Astrophysics Forum assists scientists and educators with becoming involved in SMD E/PO and makes SMD E/PO resources and expertise accessible to the science and education communities. Here we describe how the Astrophysics Forum and the Astrophysics E/PO community have focused efforts to support and engage the higher education community on enhancing awareness of the resources available to them. To ensure Astrophysics higher education efforts are grounded in audience needs, we held informal conversations with instructors of introductory astronomy courses, convened sessions with higher education faculty and E/PO professionals at conferences, and examined existing literature and findings of the SMD Higher Education Working Group. To address the expressed needs, the Astrophysics Forum collaborated with the Astrophysics E/PO community, researchers, and Astronomy 101 instructors to place individual science discoveries and learning resources into context for higher education audiences. Among these resources are two Resource Guides on the topics of cosmology and exoplanets. These fields are ripe with scientific developments that college instructors have told us they find challenging to stay current. Each guide includes a wide variety of sources and is available through the ASP website: http://www.astrosociety.org/education/astronomy-resource-guides/ To complement the resource guides, we are developing a series of slide sets to help Astronomy 101 instructors incorporate new discoveries from individual SMD Astrophysics missions in their classrooms. The “Astro 101 slide sets” are 5-7 slide presentations on a new development or discovery from a NASA SMD Astrophysics mission relevant to an Astronomy 101 topic. We intend for

  17. Entanglement of helicity and energy in kinetic Alfven wave/whistler turbulence

    CERN Document Server

    Galtier, S

    2014-01-01

    The role of magnetic helicity is investigated in kinetic Alfv\\'en wave and oblique whistler turbulence in presence of a relatively intense external magnetic field $b_0 {\\bf e_\\parallel}$. In this situation, turbulence is strongly anisotropic and the fluid equations describing both regimes are the reduced electron magnetohydrodynamics (REMHD) whose derivation, originally made from the gyrokinetic theory, is also obtained here from compressible Hall MHD. We use the asymptotic equations derived by Galtier \\& Bhattacharjee (2003) to study the REMHD dynamics in the weak turbulence regime. The analysis is focused on the magnetic helicity equation for which we obtain the exact solutions: they correspond to the entanglement relation, $n+\\tilde n = -6$, where $n$ and $\\tilde n$ are the power law indices of the perpendicular (to ${\\bf b_0}$) wave number magnetic energy and helicity spectra respectively. Therefore, the spectra derived in the past from the energy equation only, namely $n=-2.5$ and $\\tilde n = - 3.5$,...

  18. Gyrokinetic theory of fast-wave transmission with arbitrary parallel wave number in a non-uniformly magnetized plasma

    International Nuclear Information System (INIS)

    The gyrokinetic theory of ion cyclotron resonance is extended to include propagation at arbitrary angles to a straight equilibrium magnetic field with a linear perpendicular gradient in strength. The case of the compressional Alfven wave propagating in a D(3He) plasma is analyzed in detail, for arbitrary concentrations of the two species. A self-consistent local dispersion relation is obtained using a single mode description; this approach enables three-dimensional effects to be included and permits efficient calculation of the transmission coefficient. The dependence of this quantity on the species density ratio, minority temperature, plasma density, magnetic field and equilibrium scale length is obtained. A self-consistent treatment of the variation of the field polarization across the resonant region is included. Families of transmission curves are given as a function of the normalized parallel wave number for parameters relevant to Joint European Torus. Perpendicular absorption by the minority ions is also discussed, and shown to depend on a single parameter, the ratio of the ion thermal velocity to the Alfven speed. (author)

  19. Investigating profile stiffness and critical gradients in shaped TCV discharges using local gyrokinetic simulations of turbulent transport

    Science.gov (United States)

    Merlo, G.; Brunner, S.; Sauter, O.; Camenen, Y.; Görler, T.; Jenko, F.; Marinoni, A.; Told, D.; Villard, L.

    2015-05-01

    The experimental observation made on the TCV tokamak of a significant confinement improvement in plasmas with negative triangularity (δ Employing the Eulerian gyrokinetic code GENE (Jenko et al 2000 Phys. Plasmas 7 1904), profile stiffness and critical gradients are studied under TCV relevant conditions. For the considered experimental discharges, trapped electron modes (TEMs) and electron temperature gradient (ETG) modes are the dominant microinstabilities, with the latter providing a significant contribution to the non-linear electron heat fluxes near the plasma edge. Two series of simulations with different levels of realism are performed, addressing the question of profile stiffness at various radial locations. Retaining finite collisionality, impurities and electromagnetic effects, as well as the physical electron-to-ion mass ratio are all necessary in order to approach the experimental flux measurements. However, flux-tube simulations are unable to fully reproduce the TCV results, pointing towards the need to carry out radially nonlocal (global) simulations, i.e. retaining finite machine size effects, in a future study. Some conclusions about the effect of triangularity can nevertheless be drawn based on the flux-tube results. In particular, the importance of considering the sensitivity to both temperature and density gradient is shown. The flux tube results show an increase of the critical gradients towards the edge, further enhanced when δ appear to indicate a reduction of profile stiffness towards plasma edge.

  20. Validation studies of gyrokinetic ITG and TEM turbulence simulations in a JT-60U tokamak using multiple flux matching

    Science.gov (United States)

    Nakata, Motoki; Honda, Mitsuru; Yoshida, Maiko; Urano, Hajime; Nunami, Masanori; Maeyama, Shinya; Watanabe, Tomo-Hiko; Sugama, Hideo

    2016-08-01

    Quantitative validation studies of flux-tube gyrokinetic Vlasov simulations on ion and electron heat transport are carried out for the JT-60U tokamak experiment. The ion temperature gradient (ITG) and/or trapped electron modes (TEM) driven turbulent transport and zonal flow generations are investigated for an L-mode plasma in the local turbulence limit with a sufficiently small normalized ion thermal gyroradius and weak mean radial electric fields. Nonlinear turbulence simulations by the GKV code successfully reproduce radial profiles of the ion and electron energy fluxes in the core region. The numerical results show that the TEM-driven zonal flow generation in the outer region is more significant than that in the core region with ITG- and ITG–TEM-dominated turbulence, leading to moderate transport shortfall of the ion energy flux. Error levels in the prediction of the ion and electron temperature gradient profiles in the core region are estimated as less than +/- 30% , based on a multiple flux matching technique, where the simulated ion and electron energy fluxes are simultaneously matched to the experimental values.