WorldWideScience

Sample records for astronomical instrumentation

  1. Astronomical Instruments in India

    Science.gov (United States)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  2. Astronomical Instrumentation System Markup Language

    Science.gov (United States)

    Goldbaum, Jesse M.

    2016-05-01

    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  3. Planetary imaging with amateur astronomical instruments

    Science.gov (United States)

    Papathanasopoulos, k.; Giannaris, G.

    2017-09-01

    Planetary imaging can be varied by the types and size of instruments and processing. With basic amateur telescopes and software, can be captured images of our planetary system, mainly Jupiter, Saturn and Mars, but also solar eclipses, solar flares, and many more. Planetary photos can be useful for professional astronomers, and how amateur astronomers can play a role on that field.

  4. Astronomical Polarimetry : new concepts, new instruments, new measurements & observations

    NARCIS (Netherlands)

    Snik, F.

    2009-01-01

    All astronomical sources are polarized to some degree. Polarimetry is therefore a powerful astronomical technique. It furnishes unique diagnostics of e.g. magnetic fields and scattering media. This thesis presents new polarimetric concepts, instruments, and measurements targeting astronomical

  5. Instrument Remote Control via the Astronomical Instrument Markup Language

    Science.gov (United States)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  6. Astronomical Instrumentation Systems Quality Management Planning: AISQMP

    Science.gov (United States)

    Goldbaum, Jesse

    2017-06-01

    The capability of small aperture astronomical instrumentation systems (AIS) to make meaningful scientific contributions has never been better. The purpose of AIS quality management planning (AISQMP) is to ensure the quality of these contributions such that they are both valid and reliable. The first step involved with AISQMP is to specify objective quality measures not just for the AIS final product, but also for the instrumentation used in its production. The next step is to set up a process to track these measures and control for any unwanted variation. The final step is continual effort applied to reducing variation and obtaining measured values near optimal theoretical performance. This paper provides an overview of AISQMP while focusing on objective quality measures applied to astronomical imaging systems.

  7. Radio-Astronomical Instruments Observations (Selected Articles),

    Science.gov (United States)

    1982-08-02

    etc. merged into this translation were extracted from the best quality copy available. iii DOC = 82056401 PAGE 1 RADIO-ASTRONOMICAL INSTRUMENTS...itself the series/row of the positive qualities : the possibility of tracking the observed object and the accumulation of signal, the possibility of...L-intoduc ;j~i.a~r DC 82056409 PAGE the installation of quasi-zero mode/conditions this attenuator has remote contril . I’ DOC =82056409 PAGE NA 4 ly

  8. Astrophotonics: a new era for astronomical instruments.

    Science.gov (United States)

    Bland-Hawthorn, Joss; Kern, Pierre

    2009-02-02

    Astrophotonics lies at the interface of astronomy and photonics. This burgeoning field has emerged over the past decade in response to the increasing demands of astronomical instrumentation. Early successes include: (i) planar waveguides to combine signals from widely spaced telescopes in stellar interferometry; (ii) frequency combs for ultra-high precision spectroscopy to detect planets around nearby stars; (iii) ultra-broadband fibre Bragg gratings to suppress unwanted background; (iv) photonic lanterns that allow single-mode behaviour within a multimode fibre; (v) planar waveguides to miniaturize astronomical spectrographs; (vi) large mode area fibres to generate artificial stars in the upper atmosphere for adaptive optics correction; (vii) liquid crystal polymers in optical vortex coronographs and adaptive optics systems. Astrophotonics, a field that has already created new photonic capabilities, is now extending its reach down to the Rayleigh scattering limit at ultraviolet wavelengths, and out to mid infrared wavelengths beyond 2500 nm.

  9. Harvey Butcher: a passion for astronomical instrumentation

    Science.gov (United States)

    Bhathal, Ragbir

    2014-11-01

    This paper covers some aspects of the scientific life of Harvey Butcher who was the Director of the Research School for Astronomy and Astrophysics at the Australian National University in Canberra from September 2007 to January 2013. He has made significant contributions to research on the evolution of galaxies, nucleosynthesis, and on the design and implementation of advanced astronomical instrumentation including LOFAR (Low Frequency Array Radio telescope). He is well known for his discovery of the Butcher-Oemler effect. Before coming to Australia he was the Director of the Netherlands Foundation for Research in Astronomy from September 1991 to January 2007. In 2005 he was awarded a Knighthood in the Order of the Netherlands Lion for contributions to interdisciplinary science, innovation and public outreach.This paper is based on an interview conducted by the author with Harvey Butcher for the National Project on Significant Australian Astronomers sponsored by the National Library of Australia. Except otherwise stated, all quotations used in this paper are from the Butcher interview which has been deposited in the Oral History Archives of the National Library.

  10. An embeddable control system for astronomical instrumentation

    Science.gov (United States)

    Cirami, Roberto; Comari, Maurizio; Corte, Claudio; Golob, Damjan; Di Marcantonio, Paolo; Plesko, Mark; Pucillo, Mauro; Santin, Paolo; Sekoranja, Matej; Vuerli, Claudio

    2004-09-01

    Large experimental facilities, like telescopes and focal plane instrumentation in the astronomical domain, are becoming more and more complex and expensive, as well as control systems for managing such instruments. The general trend, as can be learned by realizations carried out in the most recent years, clearly drives to most cost-effective solutions: widespread, stable standards in the software field, COTS (commercial off-the-shelf) components and industry standards in the hardware field. Therefore a new generation of control system products needs to be developed, in order to help the scientific community to minimize the cost and efforts required for maintenance and control of their facilities. In the spirit of the aforementioned requirements and to provide a low-cost software and hardware environment we present a working prototype of a control system, based on RTAI Linux and on ACS (Advanced Control System) framework ported to an embedded platform. The hardware has been chosen among COTS components: a PC/104+ platform equipped with a PMAC2A motion controller card and a commercial StrongARM single board controller. In this way we achieved a very powerful, inexpensive and robust real-time control system which can be used as a general purpose building block in the design of new instruments and could also be proposed as a standard in the field.

  11. Astronomical optical interferometry, I: Methods and instrumentation

    Directory of Open Access Journals (Sweden)

    Jankov S.

    2010-01-01

    Full Text Available Previous decade has seen an achievement of large interferometric projects including 8-10m telescopes and 100m class baselines. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milli-arcsecond (mas resolution and astrometry with micro-arcsecond (µas precision have thus become reality. Here, I review the methods and instrumentation corresponding to the current state in the field of astronomical optical interferometry. First, this review summarizes the development from the pioneering works of Fizeau and Michelson. Next, the fundamental observables are described, followed by the discussion of the basic design principles of modern interferometers. The basic interferometric techniques such as speckle and aperture masking interferometry, aperture synthesis and nulling interferometry are discussed as well. Using the experience of past and existing facilities to illustrate important points, I consider particularly the new generation of large interferometers that has been recently commissioned (most notably, the CHARA, Keck, VLT and LBT Interferometers. Finally, I discuss the longer-term future of optical interferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.

  12. Next VLT Instrument Ready for the Astronomers

    Science.gov (United States)

    2000-02-01

    FORS2 Commissioning Period Successfully Terminated The commissioning of the FORS2 multi-mode astronomical instrument at KUEYEN , the second FOcal Reducer/low dispersion Spectrograph at the ESO Very Large Telescope, was successfully finished today. This important work - that may be likened with the test driving of a new car model - took place during two periods, from October 22 to November 21, 1999, and January 22 to February 8, 2000. The overall goal was to thoroughly test the functioning of the new instrument, its conformity to specifications and to optimize its operation at the telescope. FORS2 is now ready to be handed over to the astronomers on April 1, 2000. Observing time for a six-month period until October 1 has already been allocated to a large number of research programmes. Two of the images that were obtained with FORS2 during the commissioning period are shown here. An early report about this instrument is available as ESO PR 17/99. The many modes of FORS2 The FORS Commissioning Team carried out a comprehensive test programme for all observing modes. These tests were done with "observation blocks (OBs)" that describe the set-up of the instrument and telescope for each exposure in all details, e.g., position in the sky of the object to be observed, filters, exposure time, etc.. Whenever an OB is "activated" from the control console, the corresponding observation is automatically performed. Additional information about the VLT Data Flow System is available in ESO PR 10/99. The FORS2 observing modes include direct imaging, long-slit and multi-object spectroscopy, exactly as in its twin, FORS1 at ANTU . In addition, FORS2 contains the "Mask Exchange Unit" , a motorized magazine that holds 10 masks made of thin metal plates into which the slits are cut by means of a laser. The advantage of this particular observing method is that more spectra (of more objects) can be taken with a single exposure (up to approximately 80) and that the shape of the slits can be

  13. Spectroscopic instrumentation fundamentals and guidelines for astronomers

    CERN Document Server

    Eversberg, Thomas

    2015-01-01

    In order to analyze the light of cosmic objects, particularly at extremely great distances, spectroscopy is the workhorse of astronomy. In the era of very large telescopes, long-term investigations are mainly performed with small professional instruments. Today they can be done using self-designed spectrographs and highly efficient CCD cameras, without the need for large financial investments.   This book explains the basic principles of spectroscopy, including the fundamental optical constraints and all mathematical aspects needed to understand the working principles in detail. It covers the complete theoretical and practical design of standard and Echelle spectrographs. Readers are guided through all necessary calculations, enabling them to engage in spectrograph design. The book also examines data acquisition with CCD cameras and fiber optics, as well as the constraints of specific data reduction and possible sources of error. In closing it briefly highlights some main aspects of the research on massive s...

  14. A component based astronomical visualization tool for instrument control

    Science.gov (United States)

    Briegel, Florian; Berwein, Jürgen; Kittmann, Frank; Pavlov, Alexey

    2008-07-01

    For various astronomical instruments developed at the Max-Planck-Institute-Heidelberg there was a need for a highly flexible display and control tool. Many display tools (ximtool, DS9, skycat,...) are available for astronomy, but all this applications are monolitic and can't be easily enriched by plugins for interaction with the graphical display, and other functionalities for remote access and control of the instrument and data pipepline. It was developed on top of Trolltechs Cross-Platform Rich Client Development Framework Qt,1 the modern middleware Internet Communications Engine 2 from ZeroC and the template based SOA developer framework for astronomical instrumentation - NICE.3 The display tool is used on the Calar Alto Observatory, Spain) as a guider, for a wide field imager and guider at the Wise Observatory (Israel; for the LBT interferometer Linc-Nirvana, USA).

  15. Astronomical Instrumentation Systems Quality Management Planning: AISQMP (Abstract)

    Science.gov (United States)

    Goldbaum, J.

    2017-12-01

    (Abstract only) The capability of small aperture astronomical instrumentation systems (AIS) to make meaningful scientific contributions has never been better. The purpose of AIS quality management planning (AISQMP) is to ensure the quality of these contributions such that they are both valid and reliable. The first step involved with AISQMP is to specify objective quality measures not just for the AIS final product, but also for the instrumentation used in its production. The next step is to set up a process to track these measures and control for any unwanted variation. The final step is continual effort applied to reducing variation and obtaining measured values near optimal theoretical performance. This paper provides an overview of AISQMP while focusing on objective quality measures applied to astronomical imaging systems.

  16. Temperature control system for optical elements in astronomical instrumentation

    Science.gov (United States)

    Verducci, Orlando; de Oliveira, Antonio C.; Ribeiro, Flávio F.; Vital de Arruda, Márcio; Gneiding, Clemens D.; Fraga, Luciano

    2014-07-01

    Extremely low temperatures may damage the optical components assembled inside of an astronomical instrument due to the crack in the resin or glue used to attach lenses and mirrors. The environment, very cold and dry, in most of the astronomical observatories contributes to this problem. This paper describes the solution implemented at SOAR for remotely monitoring and controlling temperatures inside of a spectrograph, in order to prevent a possible damage of the optical parts. The system automatically switches on and off some heat dissipation elements, located near the optics, as the measured temperature reaches a trigger value. This value is set to a temperature at which the instrument is not operational to prevent malfunction and only to protect the optics. The software was developed with LabVIEWTM and based on an object-oriented design that offers flexibility and ease of maintenance. As result, the system is able to keep the internal temperature of the instrument above a chosen limit, except perhaps during the response time, due to inertia of the temperature. This inertia can be controlled and even avoided by choosing the correct amount of heat dissipation and location of the thermal elements. A log file records the measured temperature values by the system for operation analysis.

  17. ING Papers for SPIE's Astronomical Telescopes & Instrumentation Conference

    Science.gov (United States)

    Talbot, G.

    2004-09-01

    Isaac Newton Group staff from both the astronomy and engineering groups had several papers accepted by SPIE (The International Society for Optical Engineering) for their conference 'Astronomical Telescopes and Instrumentation - The Industrial Revolution in Astronomy' held from 21 to 25 June 2004, at the Scottish Exhibition and Convention Centre in Glasgow. The range of topics reflected the range of development interests at ING, many of the papers being about various aspects of adaptive optics. The full list of papers featuring ING staff is below, all but one of them having ING staff as principal author. At the conference Chris Benn and Simon Tulloch gave oral presentations, while the remaining papers were poster presentations.

  18. Advances in infrared and imaging fibres for astronomical instrumentation

    Science.gov (United States)

    Haynes, Roger; McNamara, Pam; Marcel, Jackie; Jovanovic, Nemanja

    2006-06-01

    Optical fibres have already played a huge part in ground based astronomical instrumentation, however, with the revolution in photonics currently taking place new fibre technologies and integrated optical devices are likely to have a profound impact on the way we manipulate light in the future. The Anglo Australian Observatory, along with partners at the Optical Fibre Technology Centre of the University of Sydney, is investigating some of the developing technologies as part of our Astrophotonics programme2. In this paper we discuss the advances that have been made with infrared transmitting fibre, both conventional and microstructured, in particular those based on fluoride glasses. Fluoride glasses have a particularly wide transparent region from the UV through to around 7μm, whereas silica fibres, commonly used in astronomy, only transmit out to about 2μm. We discuss the impact of advances in fibre manufacture that have greatly improved the optical, chemical resistance and physical properties of the fluoride fibres. We also present some encouraging initial test results for a modern imaging fibre bundle and imaging fibre taper.

  19. Novel gratings for next-generation instruments of astronomical observations

    Science.gov (United States)

    Ebizuka, N.; Okamoto, T.; Takeda, M.; Hosobata, T.; Yamagata, Y.; Sasaki, M.; Uomoto, M.; Shimatsu, T.; Sato, S.; Hashimoto, N.; Tanaka, I.; Hattori, T.; Ozaki, S.; Aoki, W.

    2017-05-01

    We will introduce current status of development of a birefringence volume phase holographic (B-VPH) grating, volume binary (VB) grating and reflector facet transmission (RFT) grating developing as the novel dispersive optical element for astronomical instruments for the 8.2m Subaru Telescope, for next generation 30 m class huge ground-based telescopes and for next generation large space-bone telescopes. We will also introduce a hybrid grism developed for MOIRCS (Multi-Object InfraRed Camera and Spectrograph) of the Subaru Telescope and a quasi-Bragg (QB) immersion grating. Test fabrication of B-VPH gratings with a liquid crystal (LC) of UV curable and normal LCs or a resin of visible light curable are performed. We successfully fabricated VB gratings of silicon as a mold with ridges of a high aspect ratio by means of the cycle etching process, oxidation and removal of silicon oxide. The RFT grating which is a surface-relief (SR) transmission grating with sawtooth shaped ridges of an acute vertex angle. The hybrid grism, as a prototype of the RFT grating, combines a high-index prism and SR transmission grating with sawtooth shape ridges of an acute vertex angle. The mold of the SR grating for the hybrid grism on to a work of Ni-P alloy of non-electrolysic plating successfully fabricated by using our ultra-precision machine and a single-crystal diamond bite. The QB immersion grating was fabricated by a combination of an inclined QB grating, Littrow prism and surface reflection mirror.

  20. Using XML and Java Technologies for Astronomical Instrument Control

    Science.gov (United States)

    Ames, Troy; Case, Lynne; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests, increasing software maintenance costs. Instrument description is too tightly coupled with details of implementation. NASA Goddard Space Flight Center, under the Instrument Remote Control (IRC) project, is developing a general and highly extensible framework that applies to any kind of instrument that can be controlled by a computer. The software architecture combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML), a human readable and machine understandable way to describe structured data. A key aspect of the object-oriented architecture is that the software is driven by an instrument description, written using the Instrument Markup Language (IML), a dialect of XML. IML is used to describe the command sets and command formats of the instrument, communication mechanisms, format of the data coming from the instrument, and characteristics of the graphical user interface to control and monitor the instrument. The IRC framework allows the users to define a data analysis pipeline which converts data coming out of the instrument. The data can be used in visualizations in order for the user to assess the data in real-time, if necessary. The data analysis pipeline algorithms can be supplied by the user in a variety of forms or programming languages. Although the current integration effort is targeted for the High-resolution Airborne Wideband Camera (HAWC) and the Submillimeter and Far Infrared Experiment (SAFIRE), first-light instruments of the Stratospheric Observatory for Infrared Astronomy (SOFIA), the framework is designed to be generic and extensible so that it can be applied to any instrument. Plans are underway to test the framework

  1. Using XML and Java for Astronomical Instrumentation Control

    Science.gov (United States)

    Ames, Troy; Koons, Lisa; Sall, Ken; Warsaw, Craig

    2000-01-01

    Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests, increasing software maintenance costs. Instrument description is too tightly coupled with details of implementation. NASA Goddard Space Flight Center is developing a general and highly extensible framework that applies to any kind of instrument that can be controlled by a computer. The software architecture combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML), a human readable and machine understandable way to describe structured data. A key aspect of the object-oriented architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). ]ML is used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, and communication mechanisms. Although the current effort is targeted for the High-resolution Airborne Wideband Camera, a first-light instrument of the Stratospheric Observatory for Infrared Astronomy, the framework is designed to be generic and extensible so that it can be applied to any instrument.

  2. Rocket instrument for far-UV spectrophotometry of faint astronomical objects

    Science.gov (United States)

    Hartig, G. F.; Fastie, W. G.; Davidsen, A. F.

    1980-01-01

    A sensitive sounding rocket instrument for moderate (about 10-A) resolution far-UV (1160-1750-A) spectrophotometry of faint astronomical objects has been developed. The instrument employes a photon-counting microchannel plate imaging detector and a concave grating spectrograph behind a 40-cm Dall-Kirkham telescope. A unique remote-control pointing system, incorporating an SIT vidicon aspect camera, two star trackers, and a tone-encoded command telemetry link, permits the telescope to be oriented to within 5 arc sec of any target for which suitable guide stars can be found. The design, construction, calibration, and flight performance of the instrument are discussed.

  3. The Astronomical Observatory of the University of Coimbra (1772--1799): its Instruments and Scientific Activity

    Science.gov (United States)

    Figueiredo, Fernando B.

    2012-09-01

    The establishment of scientific education at the University of Coimbra was one of the most important features of the Reform of the University in 1772. One of the best examples is the creation of the Faculty Mathematics and of the Astronomical Observatory (OAUC) - it was here that Alexandre Gouveia (1731--1808), who would be bishop of Beijing (1785--1808), obtained his degree in Mathematics. The foundation of the OAUC was fundamental in the institutionalization of astronomical science in Portugal, during a period when astronomy, supported by the great theoretical advances of the celestial mechanics and applied mathematics, could finally provide some important solutions to the most prominent scientific problems since Newton (questions about celestial mechanics, navigation, geodesy, etc.). Such questions were also central in the conception and planning of OAUC - the first Portuguese university-based astronomical observatory, although with aspects of a National Observatory. Jose Monteiro da Rocha (1734--1819) was the central personality in the conception, planning and construction of OAUC, as well in its instrument's provision (purchased and assembled throughout the 1780s) and posterior scientific activity. The construction of the OAUC was originally planned for the site of the Castle of the city of Coimbra. In 1775, when only the first floor of the Observatory was built, the construction stopped. However, to fulfill the teaching needs a small provisional Observatory was built inside the courtyard of the University. This provisional Observatory would eventually run for about 15 years! The definitive OAUC was built between the years 1790--99. In this communication we pretend to study the establishment of the OAUC and its primary astronomical collection (a transit instrument, a portable quadrant, a sector, several telescopes, etc.) and how that collection was responsible for the construction plan of the OAUC and the establishment of its Astronomical Ephemeris (1803).

  4. Astronomical Instruments with Two Scales Drawn on Their Common Circumference of Rings in the Joseon Dynasty

    Directory of Open Access Journals (Sweden)

    Byeong-Hee Mihn

    2017-03-01

    Full Text Available This study examines the scale unique instruments used for astronomical observation during the Joseon dynasty. The Small Simplified Armillary Sphere (小簡儀, So-ganui and the Sun-and-Stars Time-Determining Instrument (日星定時儀, Ilseong-jeongsi-ui are minimized astronomical instruments, which can be characterized, respectively, as an observational instrument and a clock, and were influenced by the Simplified Armilla (簡儀, Jianyi of the Yuan dynasty. These two instruments were equipped with several rings, and the rings of one were similar both in size and in scale to those of the other. Using the classic method of drawing the scale on the circumference of a ring, we analyze the scales of the Small Simplified Armillary Sphere and the Sun-and-Stars Time-Determining Instrument. Like the scale feature of the Simplified Armilla, we find that these two instruments selected the specific circumference which can be drawn by two kinds of scales. If Joseon’s astronomical instruments is applied by the dual scale drawing on one circumference, we suggest that 3.14 was used as the ratio of the circumference of circle, not 3 like China, when the ring’s size was calculated in that time. From the size of Hundred-interval disk of the extant Simplified Sundial in Korea, we make a conclusion that the three rings’ diameter of the Sun-and-Stars Time-Determining Instrument described in the Sejiong Sillok (世宗實錄, Veritable Records of the King Sejong refers to that of the middle circle of every ring, not the outer circle. As analyzing the degree of 28 lunar lodges (lunar mansions in the equator written by Chiljeongsan-naepyeon (七政算內篇, the Inner Volume of Calculation of the Motions of the Seven Celestial Determinants, we also obtain the result that the scale of the Celestial-circumference-degree in the Small Simplified Armillary Sphere was made with a scale error about 0.1 du in root mean square (RMS.

  5. A Component Based Astronomical Visualization Tool for Instrument Control and Data Pipeline

    Science.gov (United States)

    Briegel, F.; Berwein, J.; Kittmann, F.

    2008-08-01

    For various instruments developed at the Max-Planck-Institute-Heidelberg there was a need for a highly flexible display and control tool. Many display tools (ximtool, DS9, skycat,..) are available for astronomy, but all this applications are monolitic and can't be easily enriched by plugins for interaction with the graphical display, and other functionality for remote access and control of the instrument and data pipepline. It was developed on top of Trolltechs Cross-Platform Rich Client Development Framework Qt, the modern middleware Internet Communications Engine (ICE) from ZeroC and the template based SOA developer framework for astronomical instrumentation (NICE - see Abstract Juergen Berwein). The display tool is used on the Calar Alto Observatory (Spain) as a guider, for an wide field imager and guider at the Wise Observatory (Israel) and for LBTs interferometer Linc-Nirvana (USA).

  6. New Platforms for Suborbital Astronomical Observations and In Situ Atmospheric Measurements: Spacecraft, Instruments, and Facilities

    Science.gov (United States)

    Rodway, K.; DeForest, C. E.; Diller, J.; Vilas, F.; Sollitt, L. S.; Reyes, M. F.; Filo, A. S.; Anderson, E.

    2014-12-01

    Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. The new commercial space industry is developing suborbital reusable launch vehicles (sRLV's) to provide low-cost, flexible, and frequent access to space at ~100 km altitude. In the case of XCOR Aerospace's Lynx spacecraft, the vehicle design and capabilities work well for hosting specially designed experiments that can be flown with a human-tended researcher or alone with the pilot on a customized mission. Some of the first-generation instruments and facilities that will conduct solar observations on dedicated Lynx science missions include the SwRI Solar Instrument Pointing Platform (SSIPP) and Atsa Suborbital Observatory, as well as KickSat sprites, which are picosatellites for in situ atmospheric and solar phenomena measurements. The SSIPP is a demonstration two-stage pointed solar observatory that operates inside the Lynx cockpit. The coarse pointing stage includes the pilot in the feedback loop, and the fine stage stabilizes the solar image to achieve arcsecond class pointing. SSIPP is a stepping-stone to future external instruments that can operate with larger apertures and shorter wavelengths in the solar atmosphere. The Planetary Science Institute's Atsa Suborbital Observatory combines the strengths of ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with either in-house facility instruments or user-provided instruments. The Atsa prototype is a proof of concept, hand-guided camera that mounts on the interior of the Lynx cockpit to test target acquisition and tracking for human-operated suborbital astronomy. KickSat sprites are mass-producible, one inch printed circuit boards (PCBs) populated by programmable off the shelf microprocessors and radios for real time data transmission. The sprite PCBs can integrate chip-based radiometers, magnetometers

  7. Experiences with the Design and Construction of Astronomical Instrumentation using CASPER: The Digital Backend System

    Science.gov (United States)

    Prestage, Richard M.; Bloss, M.; Brandt, J.; Creager, R.; Demorest, P.; Ford, J.; Jones, G.; Luo, J.; McCullough, R.; Ransom, S. M.; Ray, J.; Watts, G.; Whitehead, M.

    2014-01-01

    NRAO recently designed and built a state-of-the-art backend system for the Shanghai Astronomical Observatory's (SHAO) 65 meter radio telescope. The machine, called the Digital Backend System (DIBAS), was created from the design of the VErsatile GBT Astronomical Spectrometer (VEGAS) by adding nine incoherent pulsar search modes and eight coherent dedispersion timing modes to complement the 29 VEGAS spectral line modes. Together these modes cover all of the anticipated science requirements for the 65 meter except for VLBI. The VEGAS multi-beam spectrometer was recently designed and built for the Green Bank Telescope (GBT) through a partnership between the National Radio Astronomy Observatory (NRAO) and the University of California at Berkeley. The VEGAS spectrometer is based on a Field Programmable Gate Array (FPGA) frontend and a heterogeneous computing backend comprised of Graphical Processing Units (GPUs) and x86-64 CPUs. Working together, the hardware in this system provides processing power to analyze up to 8 dual-polarization or 16 single-polarization inputs, at bandwidths of up to 1.25 GHz per input. An aggregate of up to 10 GHz of bandwidth, dual polarization, may be simultaneously processed with the VEGAS spectrometer. As capable as this spectrometer is, it has no advanced pulsar capabilities such as were needed for DIBAS. To create DIBAS, VEGAS was augmented with new FPGA designs based on those built for the Green Bank Ultimate Pulsar Processing Instrument (GUPPI) some five years ago. GUPPI was built on earlier generations of FPGA hardware designed by the CASPER project at Berkeley. Porting the old GUPPI designs to modern hardware and wider bandwidths was a good test case to determine the portability of the FPGA designs and the utility of the toolset to help move designs between generations of FPGA chips, as well as the degree of reuse that could be obtained from the VEGAS project. This paper will explore the unique aspects of the DIBAS project, including

  8. Scale Marking Method on the Circumference of Circle Elements for Astronomical Instruments in the Early Joseon Dynasty

    Directory of Open Access Journals (Sweden)

    Byeong-Hee Mihn

    2015-03-01

    Full Text Available During the reign of King Sejong (世宗, 1418-1450 in the Joseon Dynasty, there were lots of astronomical instruments, including miniaturized ones. Those instruments utilized the technical know-how acquired through building contemporary astronomical instruments previously developed in the Song(宋, Jin(金, and Yuan(元 dynasties of China. In those days, many astronomical instruments had circles, rings, and spheres carved with a scale of 365.25, 100, and 24 parts, respectively, on their circumference. These were called the celestial-circumference degree, hundred-interval (Baekgak, and 24 direction, respectively. These scales are marked by the angular distance, not by the angle. Therefore, these circles, rings, and spheres had to be optimized in size to accomodate proper scales. Assuming that the scale system is composed of integer multiples of unit length, we studied the sizes of circles by referring to old articles and investigating existing artifacts. We discovered that the star chart of Cheonsang yeolcha bunyajido was drawn with a royal standard ruler (周尺 based on the unit length of 207 mm. Interestingly, its circumference was marked by the unit scale of 3 puns per 1 du (or degree like Honsang (a celestial globe. We also found that Hyeonju ilgu (a equatorial sundial has a Baekgak disk on a scale of 1 pun per 1 gak (that is an interval of time similar to a quarter. This study contributes to the analysis of specifications of numerous circular elements from old Korean astronomical instruments.

  9. Design, analysis, and testing of kinematic mount for astronomical observation instrument used in space camera

    Science.gov (United States)

    An, Mingxin; Zhang, Lihao; Xu, Shuyan; Dong, Jihong

    2016-11-01

    A statically determinate kinematic mount structure is designed for an astronomical observation instrument. The basic principle of the proposed kinematic mount is introduced in detail, including the design principle, its structure, and its degrees of freedom. The compliance equations for the single-axis right circle flexure hinge are deduced, and mathematical models of the compliances of the bipod in the X-axis and Z-axis directions are established. Based on the index requirements, the range of one design parameter (the hinge groove depth, R) for the kinematic mount is determined. Parametric design is performed, with the entire structure being the design object and the first three eigenfrequencies as the design objective; the final design parameter for the kinematic mount is 1.9 mm. The first three eigenfrequencies of the final structure are 36.49 Hz, 38.65 Hz, and 72.41 Hz, which meet the frequency requirements. The Z-direction deformation and the bipod compliances in the X-axis and Z-axis directions are analyzed through simulations and experiments. The results show that (1) the Z-direction deformation of the bipod meets the displacement requirement; (2) the deviations between the finite element results and the compliance equation Cx results, and between the finite element results and the compliance equation Cz results are 8.8% and 3.92%, respectively; (3) the deviation between the experimental results and the compliance equation Cz results is 10.3%. It is concluded that the bipod compliance equations in the X-axis and Z-axis directions are valid, and that the kinematic mount thus meets the design requirements.

  10. Design, analysis, and testing of kinematic mount for astronomical observation instrument used in space camera.

    Science.gov (United States)

    An, Mingxin; Zhang, Lihao; Xu, Shuyan; Dong, Jihong

    2016-11-01

    A statically determinate kinematic mount structure is designed for an astronomical observation instrument. The basic principle of the proposed kinematic mount is introduced in detail, including the design principle, its structure, and its degrees of freedom. The compliance equations for the single-axis right circle flexure hinge are deduced, and mathematical models of the compliances of the bipod in the X-axis and Z-axis directions are established. Based on the index requirements, the range of one design parameter (the hinge groove depth, R) for the kinematic mount is determined. Parametric design is performed, with the entire structure being the design object and the first three eigenfrequencies as the design objective; the final design parameter for the kinematic mount is 1.9 mm. The first three eigenfrequencies of the final structure are 36.49 Hz, 38.65 Hz, and 72.41 Hz, which meet the frequency requirements. The Z-direction deformation and the bipod compliances in the X-axis and Z-axis directions are analyzed through simulations and experiments. The results show that (1) the Z-direction deformation of the bipod meets the displacement requirement; (2) the deviations between the finite element results and the compliance equation Cx results, and between the finite element results and the compliance equation Cz results are 8.8% and 3.92%, respectively; (3) the deviation between the experimental results and the compliance equation Cz results is 10.3%. It is concluded that the bipod compliance equations in the X-axis and Z-axis directions are valid, and that the kinematic mount thus meets the design requirements.

  11. Searching for remains of a observation platform (pavimentum) of Nicolas Copernicus's astronomical instruments

    Science.gov (United States)

    Lamparski, Piotr

    2014-05-01

    St. Stanislas's canonry in Frombork (northern Poland) was the last place of residence of the famous astronomer Nicolas Copernicus (1473-1543). It is very probable that he conducted his astronomical observations from the garden using so-called pavimentum to arrange his instruments. Copernicus's pavimentum was a 2 by 1.5m pedestal, probably a floor based on a brick foundation with a rail. Ground penetrating radar examinations were carried out in the canonry's garden in January 2009 to obtain 3-D model of the 2 meter thick upper part of sediments and resulted in recognition of stratigraphy of the site and allowed to find some anomalies which are suspected to be a human origin. The analysis of historical sources enabled the researchers to limit the study area to a plot of land at the back of the St. Stanislaw's canonry building. As a result, the GPR probing was undertaken on the rectangular plot of ground of 43 m by 95 m, located to the south west of the canonry building. The searched object was a kind of a pavement, possibly made of bricks or stone and bricks, and the size from 1.5 m by 2 m, to 4 m by 4 m, or even 7 m by 3 m. During the field research the impulse GPR SIR SYSTEM-2000 GSSI™ was used. For the profiling a monostatic 400MHz central frequency antenna was used. The selected value of the dielectric constant was 15, which represents the velocity of 7.7 cm/ns of the electromagnetic wave propagation in the deposit. In practice this means that in the study area the vertical scale of the returning electromagnetic wave includes about 2.3 m (60 ns) of the deposit of diverse graining with a large content of humus and debris. The horizontal scale was measured in the real time with the use of the GSSI survey wheel. The construction of the three-dimensional block of the deposit was based on 95 vertical cross-sections at one-meter spaces and the SE-NW course. As a result, the 3-D model showed the horizontal extends of the geophysical anomalies. The GPR studies have

  12. Operational challenges for astronomical instrumentation in Antarctica: results from five years of environmental monitoring of AMICA at Dome C

    Science.gov (United States)

    Dolci, Mauro; Valentini, Angelo; Tavagnacco, Daniele; Di Cianno, Amico; Straniero, Oscar

    2016-08-01

    The Antarctic Plateau is one of the best observing sites on Earth, especially for infrared astronomy. The extremely low temperatures (down to -80°C), the low pressure (around 650 mbar) and the very dry atmosphere (PWV less than 1 mm) allow for a very clear and dark sky, as well as for a very low instrumental background. These unique properties, however, make it also very difficult to install and operate astronomical instrumentation. AMICA (Antarctic Multiband Infrared CAmera) is an instrument especially designed for Antarctic operation, whose installation at Dome C has been completed in 2013. Since then it has been continuously working over the last five years, monitoring and controlling in particular the environmental and operating conditions through a dedicated application, its Environmental Control System (ECS). The recorded behavior of AMICA highlighted a set of peculiar aspects of the site that are hard to consider a priori. Although mechanical and electronic COTS components can reliably work in thermally insulated and controlled boxes, simple insulation causes their overheating because of the air dryness and rarefaction which make the heat transfer extremely inefficient. Heat removal is also a real problem when managing heavy-duty devices like cryocoolers, whose excess power removal needs to be fast and efficient. Finally, the lack of an electrical ground generates a wide variety of transient electrical and electromagnetic phenomena which often make electronic instrumentation very unstable. A list of new recommendations is therefore presented, as a guideline for future astronomical instruments operating in Antarctica.

  13. Blind Astronomers

    Science.gov (United States)

    Hockey, Thomas A.

    2011-01-01

    The phrase "blind astronomer” is used as an allegorical oxymoron. However, there were and are blind astronomers. What of famous blind astronomers? First, it must be stated that these astronomers were not martyrs to their craft. It is a myth that astronomers blind themselves by observing the Sun. As early as France's William of Saint-Cloud (circa 1290) astronomers knew that staring at the Sun was ill-advised and avoided it. Galileo Galilei did not invent the astronomical telescope and then proceed to blind himself with one. Galileo observed the Sun near sunrise and sunset or through projection. More than two decades later he became blind, as many septuagenarians do, unrelated to their profession. Even Isaac Newton temporarily blinded himself, staring at the reflection of the Sun when he was a twentysomething. But permanent Sun-induced blindness? No, it did not happen. For instance, it was a stroke that left Scotland's James Gregory (1638-1675) blind. (You will remember the Gregorian telescope.) However, he died days later. Thus, blindness little interfered with his occupation. English Abbot Richard of Wallingford (circa 1291 - circa 1335) wrote astronomical works and designed astronomical instruments. He was also blind in one eye. Yet as he further suffered from leprosy, his blindness seems the lesser of Richard's maladies. Perhaps the most famous professionally active, blind astronomer (or almost blind astronomer) is Dominique-Francois Arago (1786-1853), director until his death of the powerful nineteenth-century Paris Observatory. I will share other _ some poignant _ examples such as: William Campbell, whose blindness drove him to suicide; Leonhard Euler, astronomy's Beethoven, who did nearly half of his life's work while almost totally blind; and Edwin Frost, who "observed” a total solar eclipse while completely sightless.

  14. Instrumentations in x-ray plasma polarization spectroscopy. Crystal spectrometer, polarimeter and detectors for astronomical observations

    Energy Technology Data Exchange (ETDEWEB)

    Baronova, Elena O.; Stepanenko, Mikhail M. [RRC Kurchatov Institute, Nuclear Fusion Institute, Moscow (Russian Federation); Jakubowski, Lech [Soltan Institute for Nuclear Studies, Swierk-Otwock (Poland); Tsunemi, Hiroshi [Osaka Univ., Graduate School of Science, Osaka (Japan)

    2002-08-01

    This report discusses the various problems which are encountered when a crystal spectrometer is used for the purpose of observing polarized x-ray lines. A polarimeter is proposed based on the novel idea of using two series of equivalent atomic planes in a single crystal. The present status of the astronomical x-ray detection techniques are described with emphasis on two dimensional detectors which are polarization sensitive. (author)

  15. Ancient astronomical instrument from Srubna burial of kurgan field Tavriya-1 (Northern Black Sea Coast)

    CERN Document Server

    Vodolazhskaya, Larisa; Nevskiy, Mikhail

    2014-01-01

    The article presents the results of analysis of the spatial arrangement of the wells on the unique slab from Srubna burial of kurgan field Tavriya-1 (Rostov region, Russia) by astronomical methods. At the slab revealed two interrelated groups of wells, one of which - in the form of a circle, is proposed to interpret how analemmatic sundial, and second group, consisting of disparate wells, as auxiliary astronomical markers of rising luminaries directions, to correct the position of the gnomon. Simultaneous location of both groups of wells on the same slab is a possible indication of one of the stages of development of the design features analemmatic sundial - setting movable gnomon and technology of measuring time with it. It may point to local origin, as the very idea of analemmatic sundial as well technology measurement of time with them. The article also describes the model analemmatic sundial, hour marks which in many cases coincide with the wells arranged in a circle, particularly in a working range from ...

  16. Improved mirror coatings for use in the Lyman Ultraviolet to enhance astronomical instrument capabilities

    Science.gov (United States)

    Quijada, Manuel A.; del Hoyo, Javier; Boris, David R.; Walton, Scott G.

    2017-09-01

    This paper will describe efforts at developing broadband mirror coatings with high performance that will extend from infrared wavelengths down to the Far-Ultraviolet (FUV) spectral region. These mirror coatings would be realized by passivating the surface of freshly made aluminum coatings with fluorine ions in order to form a thin AlF3 overcoat that will protect the aluminum from oxidation and, hence, realize the high-reflectance of this material down to its intrinsic cut-off wavelength of 90 nm. Improved reflective coatings for optics, particularly in the FUV region (90-120 nm), could yield dramatically more sensitive instruments and permit more instrument design freedom.

  17. Astronomical optics

    CERN Document Server

    Schroeder, Daniel J

    1988-01-01

    Written by a recognized expert in the field, this clearly presented, well-illustrated book provides both advanced level students and professionals with an authoritative, thorough presentation of the characteristics, including advantages and limitations, of telescopes and spectrographic instruments used by astronomers of today.Key Features* Written by a recognized expert in the field* Provides both advanced level students and professionals with an authoritative, thorough presentation of the characteristics, including advantages and limitations, of telescopes and spectrographic i

  18. Improved Mirror Coatings for Use in the Lyman Ultraviolet to Enhance Astronomical Instrument Capabilities

    Science.gov (United States)

    Quijada, Manuel A.; Del Hoyo, Javier; Boris, David R.; Walton, Scott

    2017-01-01

    This paper will describe efforts at developing broadband mirror coatings with high performance that will extend from infrared wavelengths down to the Far-Ultraviolet (FUV) spectral region. These mirror coatings would be realized by passivating the surface of freshly made aluminum coatings with XeF2 gas in order to form a thin AlF3 overcoat that will protect the aluminum from oxidation and, hence, realize the high-reflectance of this material down to its intrinsic cut-off wavelength of 90 nm. Improved reflective coatings for optics, particularly in the FUV region (90-120 nm), could yield dramatically more sensitive instruments and permit more instrument design freedom.

  19. Development of non-hybridised HgCdTe detectors for the next generation of astronomical instrumentation

    Science.gov (United States)

    Dalton, Gavin B.; Dennis, Peter N.; Lees, David J.; Hall, David J.; Cairns, John W.; Gordon, Neil T.; Hails, Janet E.; Giess, Jean

    2008-07-01

    The superb image quality that is predicted, and even demanded, for the next generation of Extremely Large Telescopes (ELT) presents a potential crisis in terms of the sheer number of detectors that may be required. Developments in infrared technology have progressed dramatically in recent years, but a substantial reduction in the cost per pixel of these IR arrays will be necessary to permit full exploitation of the capabilities of these telescopes. Here we present an outline and progress report of an initiative to develop a new generation of astronomical grade Cadmium Mercury Telluride (HgCdTe) array detectors using a novel technique which enables direct growth of the sensor diodes onto the Read Out Integrated Circuit (ROIC). This technique removes the need to hybridise the detector material to a separate Silicon readout circuit and provides a route to very large monolithic arrays. We present preliminary growth and design simulation results for devices based on this technique, and discuss the prospects for deployment of this technology in the era of extremely large telescopes.

  20. Korean Astronomical Calendar, Chiljeongsan

    Science.gov (United States)

    Lee, Eun Hee

    In fifteenth century Korea, there was a grand project for the astronomical calendar and instrument making by the order of King Sejong 世宗 (1418-1450). During this period, many astronomical and calendrical books including Islamic sources in Chinese versions were imported from Ming 明 China, and corrected and researched by the court astronomers of Joseon 朝鮮 (1392-1910). Moreover, the astronomers and technicians of Korea frequently visited China to study astronomy and instrument making, and they brought back useful information in the form of new published books or specifications of instruments. As a result, a royal observatory equipped with 15 types of instrument was completed in 1438. Two types of calendar, Chiljeongsan Naepyeon 七政算內篇 and Chiljeongsan Oepyeon 七政算外篇, based on the Chinese and Islamic calendar systems, respectively, were published in 1444 with a number of calendrical editions such as corrections and example supplements (假令) including calculation methods and results for solar and lunar eclipses.

  1. Astronomical Cybersketching

    CERN Document Server

    Grego, Peter

    2009-01-01

    Outlines the techniques involved in making observational sketches and more detailed 'scientific' drawings of a wide variety of astronomical subjects using modern digital equipment; primarily PDAs and tablet PCs. This book also discusses about choosing hardware and software

  2. Astronomical Ecosystems

    Science.gov (United States)

    Neuenschwander, D. E.; Finkenbinder, L. R.

    2004-05-01

    Just as quetzals and jaguars require specific ecological habitats to survive, so too must planets occupy a tightly constrained astronomical habitat to support life as we know it. With this theme in mind we relate the transferable features of our elementary astronomy course, "The Astronomical Basis of Life on Earth." Over the last five years, in a team-taught course that features a spring break field trip to Costa Rica, we have introduced astronomy through "astronomical ecosystems," emphasizing astronomical constraints on the prospects for life on Earth. Life requires energy, chemical elements, and long timescales, and we emphasize how cosmological, astrophysical, and geological realities, through stabilities and catastrophes, create and eliminate niches for biological life. The linkage between astronomy and biology gets immediate and personal: for example, studies in solar energy production are followed by hikes in the forest to examine the light-gathering strategies of photosynthetic organisms; a lesson on tides is conducted while standing up to our necks in one on a Pacific beach. Further linkages between astronomy and the human timescale concerns of biological diversity, cultural diversity, and environmental sustainability are natural and direct. Our experience of teaching "astronomy as habitat" strongly influences our "Astronomy 101" course in Oklahoma as well. This "inverted astrobiology" seems to transform our student's outlook, from the universe being something "out there" into something "we're in!" We thank the SNU Science Alumni support group "The Catalysts," and the SNU Quetzal Education and Research Center, San Gerardo de Dota, Costa Rica, for their support.

  3. Astronomical Spectroscopy for Amateurs

    CERN Document Server

    Harrison, Ken M

    2011-01-01

    Astronomical Spectroscopy for Amateurs is a complete guide for amateur astronomers who are looking for a new challenge beyond astrophotography. The book provides a brief overview of the history and development of the spectroscope, then a short introduction to the theory of stellar spectra, including details on the necessary reference spectra required for instrument testing and spectral comparison. The various types of spectroscopes available to the amateur are then described. Later sections cover all aspects of setting up and using various types of commercially available and home-built spectroscopes, starting with basic transmission gratings and going through more complex models, all the way to the sophisticated Littrow design. The final part of the text is about practical spectroscope design and construction. This book uniquely brings together a collection of observing, analyzing, and processing hints and tips that will allow the amateur to build skills in preparing scientifically acceptable spectra data. It...

  4. La Plata Astronomical Observatory

    Science.gov (United States)

    Forte, Juan Carlos; Cora, Sofia A.

    La Plata, the current capital city of the province of Buenos Aires, was founded on 19 November 1882 by governor Dardo Rocha, and built on an innovative design giving emphasis to the quality of the public space, official and educational buildings. The Astronomical Observatory was one of the first inhabitants of the main park of the city; its construction started in 1883 including two telescopes that ranked among the largest in the southern hemisphere at that time and also several instruments devoted to positional astronomy (e.g. a meridian circle and a zenith telescope). A dedicated effort has being invested during the last 15 years in order to recover some of the original instrumentation (kept in a small museum) as well as the distinctive architectural values. In 1905, the Observatory, the School of Agriculture and the Museum of Natural Sciences (one of the most important museums in South America) became part of the backbone of La Plata National University, an institution with a strong and distinctive profile in exact and natural sciences. The First School for Astronomy and Related Sciences had been harboured by the Observatory since 1935, and became the current Faculty of Astronomical and Geophysical Sciences in 1983. This last institution carries PhD programs and also a number of teaching activities at different levels. These activities are the roots of a strong connection of the Observatory with the city.

  5. « The Activities of Iranian Astronomers in Mongol China », in : N. Pourjavady & Ž. Vesel, éds., Sciences, techniques et instruments dans le monde iranien (Xe-XIXe siècle). Téhéran, Presses Universitaires d'Iran / Institut Français d

    OpenAIRE

    Rédaction,

    2007-01-01

    This article deals with two specifically Iranian aspects of the works that were used by the Muslim astronomers who had been brought to Beijing by the Mongols in the last third of the 13th century. Two of these works, an astronomical handbook (zīj) compiled in China on the basis of new observations and the popular astrology by Kūshyār ibn Labbān (ca. 1000), were translated into Chinese in 1383. Transliterations of the titles of some other works and of various astronomical instruments were list...

  6. Biographical encyclopedia of astronomers

    CERN Document Server

    Trimble, Virginia; Williams, Thomas; Bracher, Katherine; Jarrell, Richard; Marché, Jordan; Palmeri, JoAnn; Green, Daniel

    2014-01-01

    The Biographical Encyclopedia of Astronomers is a unique and valuable resource for historians and astronomers alike. It includes approx. 1850 biographical sketches on astronomers from antiquity to modern times. It is the collective work of 430 authors edited by an editorial board of 8 historians and astronomers. This reference provides biographical information on astronomers and cosmologists by utilizing contemporary historical scholarship. The fully corrected and updated second edition adds approximately 300 biographical sketches. Based on ongoing research and feedback from the community, the new entries will fill gaps and provide expansions. In addition, greater emphasis on Russo phone astronomers and radio astronomers is given. Individual entries vary from 100 to 1500 words, including the likes of the super luminaries such as Newton and Einstein, as well as lesser-known astronomers like Galileo's acolyte, Mario Guiducci.

  7. Recent Development in Astronomic Position Determinations.

    Science.gov (United States)

    1984-10-25

    community. The comparison of astronomic position determinations using the DanJon and the VUGTK astrolabes published by the German Geodetic Commission...these tests indicated that astrolabes were capable of precision and accuracy surpassing those obtainable with astronomic theodolites, even though some...the urgent need to replace the base instrument with a precise astrolable designed for.maximum optical efficiency with the CID eyepiece. An astrolabe

  8. Basic Optics for the Astronomical Sciences

    CERN Document Server

    Breckinridge, James

    2012-01-01

    This text was written to provide students of astronomy and engineers an understanding of optical science - the study of the generation, propagation, control, and measurement of optical radiation - as it applies to telescopes and instruments for astronomical research in the areas of astrophysics, astrometry, exoplanet characterization, and planetary science. The book provides an overview of the elements of optical design and physical optics within the framework of the needs of the astronomical community.

  9. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  10. The Pisgah Astronomical Research Institute

    Science.gov (United States)

    Cline, J. Donald; Castelaz, M.

    2009-01-01

    Pisgah Astronomical Research Institute is a not-for-profit foundation located at a former NASA tracking station in the Pisgah National Forest in western North Carolina. PARI is celebrating its 10th year. During its ten years, PARI has developed and implemented innovative science education programs. The science education programs are hands-on experimentally based, mixing disciplines in astronomy, computer science, earth and atmospheric science, engineering, and multimedia. The basic tools for the educational programs include a 4.6-m radio telescope accessible via the Internet, a StarLab planetarium, the Astronomical Photographic Data Archive (APDA), a distributed computing online environment to classify stars called SCOPE, and remotely accessible optical telescopes. The PARI 200 acre campus has a 4.6-m, a 12-m and two 26-m radio telescopes, optical solar telescopes, a Polaris monitoring telescope, 0.4-m and 0.35-m optical research telescopes, and earth and atmospheric science instruments. PARI is also the home of APDA, a repository for astronomical photographic plate collections which will eventually be digitized and made available online. PARI has collaborated with visiting scientists who have developed their research with PARI telescopes and lab facilities. Current experiments include: the Dedicated Interferometer for Rapid Variability (Dennison et al. 2007, Astronomical and Astrophysical Transactions, 26, 557); the Plate Boundary Observatory operated by UNAVCO; the Clemson University Fabry-Perot Interferometers (Meriwether 2008, Journal of Geophysical Research, submitted) measuring high velocity winds and temperatures in the Thermosphere, and the Western Carolina University - PARI variable star program. Current status of the education and research programs and instruments will be presented. Also, development plans will be reviewed. Development plans include the greening of PARI with the installation of solar panels to power the optical telescopes, a new distance

  11. How to achieve ultra-clean detectors and cryostats at astronomical instruments: measures to avoid contamination and dust on CCD detectors

    Science.gov (United States)

    Deiries, S.; Lizon, Jean Louis; Iwert, Olaf

    2016-07-01

    ESO developed in its detector laboratory a complete routine to achieve ultra-clean detectors with lasting effect with special materials and surface treatments. All components of the detector cryostats are washed in ultrasonic baths, then baked to its maximum temperature in vacuum ovens. As final step plasma cleaning is used of individual and integrated systems. All handlings and the complete integrations are done in the clean room before its integration the detectors are dust cleaned with new methods e.g.: vapor cleaning. At observatory operation the detectors can be monitored by new methods (e.g.: pseudo FF dust evaluation, UV QE test) as a long term contamination control. The always unavoidable moisture in the ready installed instrument can even be cured by UV flashing in dry synthetic air without removing anything from the telescope. Such ESO provides ultra-clean detectors and instruments, which also do not degrade even after years of operation at their telescope sites.

  12. Astronomical optics and elasticity theory

    CERN Document Server

    Lemaitre, Gerard Rene

    2008-01-01

    Astronomical Optics and Elasticity Theory provides a very thorough and comprehensive account of what is known in this field. After an extensive introduction to optics and elasticity, the book discusses variable curvature and multimode deformable mirrors, as well as, in depth, active optics, its theory and applications. Further, optical design utilizing the Schmidt concept and various types of Schmidt correctors, as well as the elasticity theory of thin plates and shells are elaborated upon. Several active optics methods are developed for obtaining aberration corrected diffraction gratings. Further, a weakly conical shell theory of elasticity is elaborated for the aspherization of grazing incidence telescope mirrors. The very didactic and fairly easy-to-read presentation of the topic will enable PhD students and young researchers to actively participate in challenging astronomical optics and instrumentation projects.

  13. Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Buehrer, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-12-31

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs.

  14. Nicolaus Copernicus Astronomical Center

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Nicolaus Copernicus Astronomical Center is the largest astronomical institution in Poland, located in Warsaw and founded in 1956. At present it is a government-funded research institute supervised by the Polish Academy of Sciences and licensed by the government of Poland to award PhD and doctor habilitatus degrees in astronomy and astrophysics. In September 1999 staff included 21 senior scientist...

  15. The amateur astronomer

    CERN Document Server

    Moore, Patrick

    2006-01-01

    Introduces astronomy and amateur observing together. This edition includes photographs and illustrations. The comprehensive appendices provide hints and tips, as well as data for every aspect of amateur astronomy. This work is useful for amateur astronomers

  16. Astronomical Optical Interferometry. I. Methods and Instrumentation

    Directory of Open Access Journals (Sweden)

    Jankov, S.

    2010-12-01

    Full Text Available Previous decade has seen an achievement of large interferometricprojects including 8-10m telescopes and 100m class baselines. Modern computerand control technology has enabled the interferometric combination of lightfrom separate telescopes also in the visible and infrared regimes. Imagingwith milli-arcsecond (mas resolution and astrometry with micro-arcsecond($mu$as precision have thus become reality. Here, I review the methods andinstrumentation corresponding to the current state in the field ofastronomical optical interferometry. First, this review summarizes thedevelopment from the pioneering works of Fizeau and Michelson. Next, thefundamental observables are described, followed by the discussion of the basicdesign principles of modern interferometers. The basic interferometrictechniques such as speckle and aperture masking interferometry, aperture synthesisand nulling interferometry are disscused as well. Using the experience ofpast and existing facilities to illustrate important points, I considerparticularly the new generation of large interferometers that has beenrecently commissioned (most notably, the CHARA, Keck, VLT and LBTInterferometers. Finally, I discuss the longer-term future of opticalinterferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.

  17. Astronomical Orientation in the Ancient Dacian Sanctuaries of Romania

    Science.gov (United States)

    Stănescu, Florin

    Sarmizegetusa Regia, the former capital city of the Dacians' kingdom, is situated in the Şureanu (Orăştie) Mountains in the Southern Carpathians, Romania. This chapter reviews, from the astronomical point of view, two of the monuments located on its Sacred Terrace - the altar known as the "Andesite Sun" and the Central Apse of the Great Round Sanctuary - as well as sanctuaries at the nearby site of Costeşti. Astronomical analyses taking into consideration (a) the astronomical-geometrical methods of the time (the analemma of a sundial after Vitruvius and the stereographical projection in the sense of Hipparchus), (b) astronomical instruments of the time (the gnomon, the sundial and the astrolabe), and (c) other instruments known to the Dacians (the compass), have concluded that these monuments may have enabled the Dacians to carry out a number of astronomical observations. This would confirm several reports by contemporary historians regarding the Dacians' knowledge of astronomy.

  18. Decoding the mechanisms of Antikythera astronomical device

    CERN Document Server

    Lin, Jian-Liang

    2016-01-01

    This book presents a systematic design methodology for decoding the interior structure of the Antikythera mechanism, an astronomical device from ancient Greece. The historical background, surviving evidence and reconstructions of the mechanism are introduced, and the historical development of astronomical achievements and various astronomical instruments are investigated. Pursuing an approach based on the conceptual design of modern mechanisms and bearing in mind the standards of science and technology at the time, all feasible designs of the six lost/incomplete/unclear subsystems are synthesized as illustrated examples, and 48 feasible designs of the complete interior structure are presented. This approach provides not only a logical tool for applying modern mechanical engineering knowledge to the reconstruction of the Antikythera mechanism, but also an innovative research direction for identifying the original structures of the mechanism in the future. In short, the book offers valuable new insights for all...

  19. Romanian Astronomical Activity in the Middle Ages

    Science.gov (United States)

    Stavinschi, Magdalena; Mioc, Vasile

    The authors describe the main astronomical events and personalities in Romania since th Middle Ages, which begun aproximately at the threeshold between the first and second milleniums of ours era and ends only at the beggining of the 19-th century. The contributions by Ioan Vitez, Ioan Honterus, Conrad Haas, Sevastos Kymnitis, Israel Hubner, Constantin Cantacuzino, Hrisant Notara, Nicolae Mavrocordat, Maximilian Hell, Ignatius Bathyanni, Iosif Bede are underlined. The main contacts of Romanian astronomers with foreigners in such areas as teaching and observations are mentioned. The existing today museums of astronomical instruments are also mentioned. Bibliography: 4. The authors ommit to mention in the bibliography the outstanding book by George Stefan Andonie, concerning the History of Mathematics in Romania as well as few other sources.

  20. Thirteenth Joint European and National Astronomical Meeting

    CERN Document Server

    Iniesta, J C

    2006-01-01

    The book gathers the invited talks to the XIII JENAM conference, organized this time by the European Astronomical Society (EAS) and the Spanish Astronomical Society (SEA), and hosted by the Instituto de Astrofísica de Andalucía (CSIC). All branches of astrophysics are encompassed from the largest scales and cosmology to the solar system and the Sun, through the galaxies and the stars, including a section on astronomical instrumentation. Very relevant experts from all over the world speak in a single book about the most recent, exciting results from their fields in a way which is useful for both researchers in these fields and colleagues working in other disciplines. The book is accompanied by a CD-ROM including the remaining contributions of the meeting in PDF format, hence opening a wide panorama of what is going on in astrophysics nowadays.

  1. Atlas of Astronomical Discoveries

    CERN Document Server

    Schilling, Govert

    2011-01-01

    Four hundred years ago in Middelburg, in the Netherlands, the telescope was invented. The invention unleashed a revolution in the exploration of the universe. Galileo Galilei discovered mountains on the Moon, spots on the Sun, and moons around Jupiter. Christiaan Huygens saw details on Mars and rings around Saturn. William Herschel discovered a new planet and mapped binary stars and nebulae. Other astronomers determined the distances to stars, unraveled the structure of the Milky Way, and discovered the expansion of the universe. And, as telescopes became bigger and more powerful, astronomers delved deeper into the mysteries of the cosmos. In his Atlas of Astronomical Discoveries, astronomy journalist Govert Schilling tells the story of 400 years of telescopic astronomy. He looks at the 100 most important discoveries since the invention of the telescope. In his direct and accessible style, the author takes his readers on an exciting journey encompassing the highlights of four centuries of astronomy. Spectacul...

  2. Ancient Astronomical Monuments of Athens

    Science.gov (United States)

    Theodossiou, E.; Manimanis, V. N.

    2010-07-01

    In this work, four ancient monuments of astronomical significance found in Athens and still kept in the same city in good condition are presented. The first one is the conical sundial on the southern slope of the Acropolis. The second one is the Tower of the Winds and its vertical sundials in the Roman Forum of Athens, a small octagonal marble tower with sundials on all 8 of its sides, plus a water-clock inside the tower. The third monument-instrument is the ancient clepsydra of Athens, one of the findings from the Ancient Agora of Athens, a unique water-clock dated from 400 B.C. Finally, the fourth one is the carved ancient Athenian calendar over the main entrance of the small Byzantine temple of the 8th Century, St. Eleftherios, located to the south of the temple of the Annunciation of Virgin Mary, the modern Cathedral of the city of Athens.

  3. Ancient Egyptian Astronomical Calander

    Science.gov (United States)

    Marshall, Patrice; Lodhi, M. A. K.

    2001-03-01

    In this paper, we discuss how certain astronomical concepts are related to the ancient Egyptian culture and their daily life. One of them is different ways of creating their calendar systems. The ancient Egyptian calendar seems to have quite a bit of its origin in astronomy and its development over the course of history. There is an important role played by events, as determined in the heavens, in developing their calendar system. Along with astronomical observations by the ancient people of Egypt, there were several outside cultures that helped develop their calendar system and Egyptian idea of how life was created on this planet, most notably the inclusion of the star Sirius in the constellation of Canis Major. We give a brief discussion of these influences. For the ancient Egyptians, the cycle of life and death is a concept that ties in with a calendar system used to determine daily events.

  4. Astronomical Research Using Virtual Observatories

    Directory of Open Access Journals (Sweden)

    M Tanaka

    2010-01-01

    Full Text Available The Virtual Observatory (VO for Astronomy is a framework that empowers astronomical research by providing standard methods to find, access, and utilize astronomical data archives distributed around the world. VO projects in the world have been strenuously developing VO software tools and/or portal systems. Interoperability among VO projects has been achieved with the VO standard protocols defined by the International Virtual Observatory Alliance (IVOA. As a result, VO technologies are now used in obtaining astronomical research results from a huge amount of data. We describe typical examples of astronomical research enabled by the astronomical VO, and describe how the VO technologies are used in the research.

  5. On Tokugawa Bakufu's astronomical officials

    Science.gov (United States)

    Yamada, Keiji

    2005-06-01

    Tokugawa Bakufu's astronomical office, established in 1684, is the post for calendar reform. The reform was conducted when the calendar did not predict peculiar celestial phenomena, such as solar or lunar eclipses. It was, so to speak, the theme of the ancient astronomy. From removal of the embargo on importing western science books in 1720, Japanese astronomers studied European astronomy and attempted to apply its knowledge to calendar making. Moreover, they knew the Copernican system and also faced several modern astronomical subjects. The French astronomer Lalande's work "ASTRONOMY" exerted particularly strong influence on astronomers. This paper overviews the activities of Paris observatory and French astronomers in the 17th and 18th centuries, and survey what modern astronomical subjects were. Finally, it sketches a role of the Edo observatory played in the Japanese cultural history.

  6. Far-infrared spectrophotometer for astronomical observations

    Science.gov (United States)

    Moseley, H.; Silverberg, R. F.

    1981-01-01

    A liquid-helium-cooled far infrared spectrophotometer was built and used to make low resolution observations of the continua of several kinds of astronomical objects using the Kuiper Airborne Observatory. This instrument fills a gap in both sensitivity to continuum sources and spectral resolution between the broadband photometers with lambda/Delta lambda approximately 1 and spectrometers with lambda/Delta lambda greater than 50. While designed primarily to study planetary nebulae, the instrument permits study of the shape of the continua of many weak sources which cannot easily be observed with high resolution systems.

  7. Digitizer of astronomical plates at Shanghai Astronomical Observatory and its performance test

    Science.gov (United States)

    Yu, Yong; Zhao, Jian-Hai; Tang, Zheng-Hong; Shang, Zheng-Jun

    2017-02-01

    Before CCD detectors were widely employed in observational astronomy, the main method of detection was the use of glass astrophotographic plates. Astronomical plates have been used to record information on the position and activity of celestial bodies for more than 100 years. There are about 30 000 astronomical plates in China, and the digitization of astronomical plates is of great significance for permanent preservation and to make full use of these valuable observation data. A digitizer with high precision and high measuring speed is a key piece of equipment for carrying out the task of digitizing these astronomical plates. A digitizer for glass astrophotographic plates was developed jointly by Shanghai Astronomical Observatory and Nishimura Co., Ltd of Japan. The digitizer’s hardware was manufactured by Nishimura Co., Ltd, and the performance test, error corrections as well as image processing of the digitizer were carried out by Shanghai Astronomical Observatory. The main structure and working mode of the digitizer are introduced in this paper. A performance test shows that brightness uniformity of illumination within the measuring area is better than 0.15%, the repeatability of digitized positions is better than 0.2 µm and the repeatability of digitized brightness is better than 0.01 instrumental magnitude. The systematic factors affecting digitized positions, such as lens distortion, the actual optical resolution, non-linearity of guide rails, non-uniformity of linear motors in the mobile platform, deviation of the image mosaic, and non-orthogonality between the direction of scanning and camera linear array, are calibrated and evaluated. Based on an astronomical plate with a size of 300mm × 300mm, which was digitized at different angles, the conversion residuals of positions of common stars on different images were investigated. The results show that the standard deviations of the residuals are better than 0.9 µm and the residual distribution is almost

  8. Grigor Narekatsi's astronomical insights

    Science.gov (United States)

    Poghosyan, Samvel

    2015-07-01

    What stand out in the solid system of Gr. Narekatsi's naturalistic views are his astronomical insights on the material nature of light, its high speed and the Sun being composed of "material air". Especially surprising and fascinating are his views on stars and their clusters. What astronomers, including great Armenian academician V. Ambartsumian (scattering of stellar associations), would understand and prove with much difficulty thousand years later, Narekatsi predicted in the 10th century: "Stars appear and disappear untimely", "You who gather and scatter the speechless constellations, like a flock of sheep". Gr. Narekatsti's reformative views were manifested in all the spheres of the 10th century social life; he is a reformer of church life, great language constructor, innovator in literature and music, freethinker in philosophy and science. His ideology is the reflection of the 10th century Armenian Renaissance. During the 9th-10th centuries, great masses of Armenians, forced to migrate to the Balkans, took with them and spread reformative ideas. The forefather of the western science, which originated in the period of Reformation, is considered to be the great philosopher Nicholas of Cusa. The study of Gr. Narekatsti's logic and naturalistic views enables us to claim that Gr. Narekatsti is the great grandfather of European science.

  9. East Asian astronomical records

    Science.gov (United States)

    Stephenson, F. Richard

    Chinese, Japanese and Korean celestial observations have made major contributions to Applied Historical Astronomy, especially in the study of supernovae, comets, Earth's rotation (using eclipses) and solar variability (via sunspots and aurorae). Few original texts now survive; almost all extant records exist only in printed versions, often with the loss of much detail. The earliest Chinese astronomical observations extend back to before 1000 BC. However, fairly systematic records are only available since 200 BC - and even these have suffered losses through wars, etc. By around AD 800, many independent observations are available from Japan and Korea and these provide a valuable supplement to the Chinese data. Throughout East Asia dates were expressed in terms of a luni-solar calendar and conversion to the Julian or Gregorian calendar can be readily effected.

  10. pwkit: Astronomical utilities in Python

    Science.gov (United States)

    Williams, Peter K. G.; Clavel, Maïca; Newton, Elisabeth; Ryzhkov, Denis

    2017-04-01

    pwkit is a collection of miscellaneous astronomical utilities in Python, with an emphasis on radio astronomy, reading and writing various data formats, and convenient command-line utilities. Utilities include basic astronomical calculations, data visualization tools such as mapping arbitrary data to color scales and tracing contours, and data input and output utilities such as streaming output from other programs.

  11. Photonic ring resonator filters for astronomical OH suppression

    Science.gov (United States)

    Ellis, S. C.; Kuhlmann, S.; Kuehn, K.; Spinka, H.; Underwood, D.; Gupta, R. R.; Ocola, L. E.; Liu, P.; Wei, G.; Stern, N. P.; Bland-Hawthorn, J.; Tuthill, P.

    2017-07-01

    Ring resonators provide a means of filtering specific wavelengths from a waveguide, and optionally dropping the filtered wavelengths into a second waveguide. Both of these features are potentially useful for astronomical instruments. In this paper we focus on their use as notch filters to remove the signal from atmospheric OH emission lines from astronomical spectra, however we also briefly discuss their use as frequency combs for wavelength calibration and as drop filters for Doppler planet searches. We derive the design requirements for ring resonators for OH suppression from theory and finite difference time domain simulations. We find that rings with small radii (0.9), but further optimisation is required to achieve higher Q and deeper notches, with current devices having $Q \\approx 4000$ and $\\approx 10$ dB suppression. The overall prospects for the use of ring resonators in astronomical instruments is promising, provided efficient fibre-chip coupling can be achieved.

  12. The Sensitization of French Observatory Directors to Astronomical Heritage

    Science.gov (United States)

    Le Guet Tully, Françoise; Davoigneau, Jean

    2012-09-01

    An inventory of the heritage of historical astronomical observatories was launched in the mid 1990s as part of a collaboration between the Ministry of Research and the Ministry of Culture. This has produced a significant body of knowledge not only on astronomical instruments, but also on the specificities of astronomical sites and on the architecture of observatories. Other major results of this operation are (i) the development of numerous works on the institutional history of observatories and (ii), at the request of a few directors, the protection as "historical monuments" of some buildings and of collections of instruments. Given that knowledge about astronomical heritage is a prerequisite for proper conservation and intelligent outreach, and given also that the protection of such heritage (as historical monuments) is a major asset that bolsters its cultural value, the long term sustainability of such heritage depends on political decisions and the search for financial support. We shall describe the complex administrative situation of French observatories and outline the various actions undertaken recently to sensitize their directors to astronomical heritage issues.

  13. An Astronomical Glossary.

    Science.gov (United States)

    1980-02-12

    the e-terms of aberration. Astrolabe - A device for determining the positions of stars by observing their transits at a fixed altitude, usually 600...object is in the west. Sextant - An instrument for the determination of geographical position (usually by measuring altitudes) from a moving platform

  14. Using commercial amateur astronomical spectrographs

    CERN Document Server

    Hopkins, Jeffrey L

    2014-01-01

    Amateur astronomers interested in learning more about astronomical spectroscopy now have the guide they need. It provides detailed information about how to get started inexpensively with low-resolution spectroscopy, and then how to move on to more advanced  high-resolution spectroscopy. Uniquely, the instructions concentrate very much on the practical aspects of using commercially-available spectroscopes, rather than simply explaining how spectroscopes work. The book includes a clear explanation of the laboratory theory behind astronomical spectrographs, and goes on to extensively cover the practical application of astronomical spectroscopy in detail. Four popular and reasonably-priced commercially available diffraction grating spectrographs are used as examples. The first is a low-resolution transmission diffraction grating, the Star Analyser spectrograph. The second is an inexpensive fiber optic coupled bench spectrograph that can be used to learn more about spectroscopy. The third is a newcomer, the ALPY ...

  15. Astronomical Significance of Ancient Monuments

    Science.gov (United States)

    Simonia, I.

    2011-06-01

    Astronomical significance of Gokhnari megalithic monument (eastern Georgia) is considered. Possible connection of Amirani ancient legend with Gokhnari monument is discussed. Concepts of starry practicality and solar stations are proposed.

  16. Annotations of a Public Astronomer

    Science.gov (United States)

    Adamo, A.

    2011-06-01

    Angelo Adamo is an Italian astronomer and artist interested in inspiring people with scientifically-based tales. He has recently published two illustrated books exploring the relationships between mankind and cosmos through physics, art, literature, music, cartoons, and movies.

  17. Thirty years of astronomical discovery with UKIRT

    CERN Document Server

    Davies, John; Robson, Ian; The Scientific Achievement of the United Kingdom InfraRed Telescope

    2013-01-01

    These are the proceedings of an international meeting hosted by the Royal Observatory, Edinburgh, to commemorate the 30th anniversary of the dedication of the UKIRT, the United Kingdom InfraRed Telescope. The volume comprises 31 professional level papers. The first part of the book has 10 thorough reviews of the conception, design and build of the telescope, as well as accounts of some its key instruments such as IRCAM (the common-user infrared camera), CGS4 (the fourth Cooled Grating Spectrometer) and the Wide Field Camera. The second part of the book comprises 14 reviews of scientific achievements during its twenty years of visitor mode operations. The final part of the book is a series of 7 reviews of the results from the multiple surveys being done as part of UKIDSS (UKIRT Infrared Deep Sky Survey). The authors are all experts in their respective fields, for example instrument scientists, operations staff and leading astronomers.

  18. The New Amateur Astronomer

    Science.gov (United States)

    Mobberley, Martin

    Amateur astronomy has changed beyond recognition in less than two decades. The reason is, of course, technology. Affordable high-quality telescopes, computer-controlled 'go to' mountings, autoguiders, CCD cameras, video, and (as always) computers and the Internet, are just a few of the advances that have revolutionized astronomy for the twenty-first century. Martin Mobberley first looks at the basics before going into an in-depth study of what’s available commercially. He then moves on to the revolutionary possibilities that are open to amateurs, from imaging, through spectroscopy and photometry, to patrolling for near-earth objects - the search for comets and asteroids that may come close to, or even hit, the earth. The New Amateur Astronomer is a road map of the new astronomy, equally suitable for newcomers who want an introduction, or old hands who need to keep abreast of innovations. From the reviews: "This is one of several dozen books in Patrick Moore's "Practical Astronomy" series. Amid this large family, Mobberley finds his niche: the beginning high-tech amateur. The book's first half discusses equipment: computer-driven telescopes, CCD cameras, imaging processing software, etc. This market is changing every bit as rapidly as the computer world, so these details will be current for only a year or two. The rest of the book offers an overview of scientific projects that serious amateurs are carrying out these days. Throughout, basic formulas and technical terms are provided as needed, without formal derivations. An appendix with useful references and Web sites is also included. Readers will need more than this book if they are considering a plunge into high-tech amateur astronomy, but it certainly will whet their appetites. Mobberley's most valuable advice will save the book's owner many times its cover price: buy a quality telescope from a reputable dealer and install it in a simple shelter so it can be used with as little set-up time as possible. A poor

  19. Enthusiastic Little Astronomers

    Science.gov (United States)

    Novak, Ines

    2016-04-01

    Younger primary school students often show great interest in the vast Universe hiding behind the starry night's sky, but don't have a way of learning about it and exploring it in regular classes. Some of them would search children's books, Internet or encyclopedias for information or facts they are interested in, but there are those whose hunger for knowledge would go unfulfilled. Such students were the real initiators of our extracurricular activity called Little Astronomers. With great enthusiasm they would name everything that interests them about the Universe that we live in and I would provide the information in a fun and interactive yet acceptable way for their level of understanding. In our class we learn about Earth and its place in the Solar System, we learn about the planets and other objects of our Solar System and about the Sun itself. We also explore the night sky using programs such as Stellarium, learning to recognize constellations and name them. Most of our activities are done using a PowerPoint presentation, YouTube videos, and Internet simulations followed by some practical work the students do themselves. Because of the lack of available materials and funds, most of materials are hand made by the teacher leading the class. We also use the school's galileoscope as often as possible. Every year the students are given the opportunity to go to an observatory in a town 90 km away so that they could gaze at the sky through the real telescope for the first time. Our goal is to start stepping into the world of astronomy by exploring the secrets of the Universe and understanding the process of rotation and revolution of our planet and its effects on our everyday lives and also to become more aware of our own role in our part of the Universe. The hunger for knowledge and enthusiasm these students have is contagious. They are becoming more aware of their surroundings and also understanding their place in the Universe that helps them remain humble and helps

  20. GPU accelerated processing of astronomical high frame-rate videosequences

    Science.gov (United States)

    Vítek, Stanislav; Švihlík, Jan; Krasula, Lukáš; Fliegel, Karel; Páta, Petr

    2015-09-01

    Astronomical instruments located around the world are producing an incredibly large amount of possibly interesting scientific data. Astronomical research is expanding into large and highly sensitive telescopes. Total volume of data rates per night of operations also increases with the quality and resolution of state-of-the-art CCD/CMOS detectors. Since many of the ground-based astronomical experiments are placed in remote locations with limited access to the Internet, it is necessary to solve the problem of the data storage. It mostly means that current data acquistion, processing and analyses algorithm require review. Decision about importance of the data has to be taken in very short time. This work deals with GPU accelerated processing of high frame-rate astronomical video-sequences, mostly originating from experiment MAIA (Meteor Automatic Imager and Analyser), an instrument primarily focused to observing of faint meteoric events with a high time resolution. The instrument with price bellow 2000 euro consists of image intensifier and gigabite ethernet camera running at 61 fps. With resolution better than VGA the system produces up to 2TB of scientifically valuable video data per night. Main goal of the paper is not to optimize any GPU algorithm, but to propose and evaluate parallel GPU algorithms able to process huge amount of video-sequences in order to delete all uninteresting data.

  1. Optical studies conducted by Shogunal astronomers of Edo-period

    Science.gov (United States)

    Nakamura, Tsuko

    2005-05-01

    Although basic duty for astronomical officers of the Tokugawa Shogunal government had been to compile yearly and sometimes improve luni-solar calendars, they were obliged from necessity, toward the 19th century, to learn the astronomical navigation and optical instruments as well. This paper discusses why and how they coped with the fundamental optics. We also shed light on that Cornelis Douwes (1712-1773), the principal of the Amsterdam Naval Academy, made an important contribution to the Japanese astronomy of the Edo-period, through both the booklet on the octant written by him and his Dutch-translation enterprise of the four-volume books "Astronomie" authored by the famed French astronomer J. J. F. Lalande.

  2. Choosing and using astronomical eyepieces

    CERN Document Server

    Paolini, William

    2013-01-01

    This valuable reference fills a number of needs in the field of astronomical eyepieces, including that of a buyer's guide, observer's field guide and technical desk reference. It documents the past market for eyepieces and its evolution right up to the present day. In addition to appealing to practical astronomers - and potentially saving them money - it is useful both as a historical reference and as a detailed review of the current market place for this bustling astronomical consumer product. What distinguishes this book from other publications on astronomy is the involvement of observers from all aspects of the astronomical community, and also the major manufacturers of equipment. It not only catalogs the technical aspects of the many modern eyepieces but also documents amateur observer reactions and impressions of their utility over the years, using many different eyepieces. Eyepieces are the most talked-about accessories and collectible items available to the amateur astronomer. No other item of equi...

  3. Astronomical Image and Data Analysis

    CERN Document Server

    Starck, J.-L

    2006-01-01

    With information and scale as central themes, this comprehensive survey explains how to handle real problems in astronomical data analysis using a modern arsenal of powerful techniques. It treats those innovative methods of image, signal, and data processing that are proving to be both effective and widely relevant. The authors are leaders in this rapidly developing field and draw upon decades of experience. They have been playing leading roles in international projects such as the Virtual Observatory and the Grid. The book addresses not only students and professional astronomers and astrophysicists, but also serious amateur astronomers and specialists in earth observation, medical imaging, and data mining. The coverage includes chapters or appendices on: detection and filtering; image compression; multichannel, multiscale, and catalog data analytical methods; wavelets transforms, Picard iteration, and software tools. This second edition of Starck and Murtagh's highly appreciated reference again deals with to...

  4. Astronomical Observations by Speckle Interferometry.

    Science.gov (United States)

    1986-06-12

    NUMBER ORGANIZATION O osf appi)81-061 %A mc’S z &I -- St ADRES (ft, Stat. &WCode) 10. SOURCE OF FUNDING NUMBERS C1X1’Z"/A~N ~ ~rf.. PROGRAM IPROJECT...34Masses and Luminosities of the Giant Spectroscopic/Speckle Interferometric Binaries Gamma Persei and Phi Cygni" H.A. McAlister, THE ASTRONOMICAL JOURNAL...Topical Meeting on Information Processing in Astronomy and Optics sponsored by the American Astronomical Society and the Optical Society of America, St

  5. Choosing and using astronomical filters

    CERN Document Server

    Griffiths, Martin

    2014-01-01

    As a casual read through any of the major amateur astronomical magazines will demonstrate, there are filters available for all aspects of optical astronomy. This book provides a ready resource on the use of the following filters, among others, for observational astronomy or for imaging: Light pollution filters Planetary filters Solar filters Neutral density filters for Moon observation Deep-sky filters, for such objects as galaxies, nebulae and more Deep-sky objects can be imaged in much greater detail than was possible many years ago. Amateur astronomers can take

  6. Multinational History of Strasbourg Astronomical Observatory

    CERN Document Server

    Heck, André

    2005-01-01

    Strasbourg Astronomical Observatory is quite an interesting place for historians: several changes of nationality between France and Germany, high-profile scientists having been based there, big projects born or installed in its walls, and so on. Most of the documents circulating on the history of the Observatory and on related matters have however been so far poorly referenced, if at all. This made necessary the compilation of a volume such as this one, offering fully-documented historical facts and references on the first decades of the Observatory history, authored by both French and German specialists. The experts contributing to this book have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy nor in the details of European history. After an introductory chapter by the Editor, contributions by Wolfschmidt and by Duerbeck respectively deal extensively with the German periods and review people and instrumentation, while another paper by Duerbeck is more...

  7. Integral Programme of Basic Astronomic Literacy Development

    Science.gov (United States)

    Tignanelli, H.

    2009-05-01

    We discuss the development and optimization of an ongoing educational project involving the whole population of the province of San Luis, Argentina. The core of the project includes activities and resources that capture formal curricular aspects directed towards all levels of teaching. The educational activities related to this project have been benefited by the acquisition of two planetariums made in Argentina, a MEADE 16'' telescope to be operated by remote control from any school-room in San Luis, and a naked-eye observatory with more than 30 pre-telescopic instruments, and other didactic tools specially designed for the teaching of Astronomy. Furthermore, an Internet site to upload all the astronomical activities suggested that has been developed along with a number of didactic and general-interest publications.

  8. Focus on astronomical predictable events

    DEFF Research Database (Denmark)

    Jacobsen, Aase Roland

    2006-01-01

    At the Steno Museum Planetarium we have for many occasions used a countdown clock to get focus om astronomical events. A countdown clock can provide actuality to predictable events, for example The Venus Transit, Opportunity landing on Mars and The Solar Eclipse. The movement of the clock attracs...

  9. Orbit Modeller - Virtual Astronomical Laboratory

    Science.gov (United States)

    Avdyushev, V. A.; Banshchikova, M. A.; Bordovitsyna, T. V.; Chuvashov, I. N.; Ryabova, G. O.

    2017-09-01

    We present a virtual astronomical laboratory project - "Orbit Modeller" (OM). This should be an interactive web-tool enabling one to simulate numerically the orbital motion of any celestial body within or beyond the solar system. Another function of OM is a repository of old observations and documents.

  10. Astronomical Spectroscopy A Short History

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Astronomical Spectroscopy A Short History. J C Bhattacharyya. General Article Volume 3 Issue 5 May 1998 pp 24-29. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/003/05/0024-0029 ...

  11. Astronomical phenomena in Dresden codex

    Directory of Open Access Journals (Sweden)

    Böhm V.

    2013-01-01

    Full Text Available The relationship between Maya and our calendar is expressed by a coefficient known as ‘correlation’ which is a number of days that we have to add to the Mayan Long Count date to get Julian Date used in astronomy. There is surprisingly large uncertainty in the value of the correlation, yielding a shift between both calendars (and thus between the history of Maya and of our world to typically several hundred years. There are more than 50 diverse values of the correlation, some of them derived from historical, other by astronomical data. We test here (among others the well established Goodman-Martínez-Thompson correlation (GMT, based on historical data, and the Böhms’ one (B&B, based on astronomical data decoded from the Dresden Codex (DC; this correlation differs by about +104 years from the GMT. In our previous works we used several astronomical phenomena as recorded in the DC for a check. We clearly demonstrated that (i the GMT was not capable to predict these phenomena that really happened in nature and (ii that the GMT predicts them on the days when they did not occur. The phenomena used till now in the test are, however, short-periodic and the test then may suffer from ambiguity. Therefore, we add long-periodic astronomical phenomena, decoded successfully from the DC, to the testing. These are (i a synchrony of Venusian heliacal risings with the solar eclipses, (ii a synchrony of Venus and Mars conjunctions with the eclipses, (iii conjunctions of Jupiter and Saturn repeated in a rare way, and (iv a synchrony of synodic and sideric periods of Mercury with the tropical year. Based on our analysis, we find that the B&B correlation yields the best agreement with the astronomical phenomena observed by the Maya. Therefore we recommend to reject the GMT and support the B&B correlation.

  12. Latin American astronomers and the International Astronomical Union

    Science.gov (United States)

    Torres-Peimbert, S.

    2017-07-01

    Selected aspects of the participation of the Latin American astronomers in the International Astronomical Union are presented: Membership, Governing bodies, IAU meetings, and other activities. The Union was founded in 1919 with 7 initial member states, soon to be followed by Brazil. In 1921 Mexico joined, and in 1928 Argentina also formed part of the Union, while Chile joined in 1947. In 1961 Argentina, Brazil, Chile, Mexico and Venezuela were already member countries. At present (October 2016) 72 countries contribute financially to the Union. The Union lists 12,391 professional astronomers as individual members; of those, 692 astronomers work in Latin America and the Caribbean, from 13 member states (Argentina, Bolivia , Brazil, Chile, Colombia, Costa Rica, Cuba, Honduras, Mexico, Panamá, Perú, Uruguay and Venezuela) as well as from Ecuador and Puerto Rico. This group comprises 5.58% of the total membership, a figure somewhat lower than the fraction of the population in the region, which is 8.6% of the world population. Of the Latin American members, 23.4% are women and 76.6% are men; slightly higher than the whole membership of Union, which is of 16.9%. In the governing bodies it can be mentioned that there have been 2 Presidents of the Union (Jorge Sahade and Silvia Torres-Peimbert), 7 VicePresidents (Guillermo Haro, Jorge Sahade, Manuel Peimbert Claudio Anguita, Silvia Torres-Peimbert, Beatriz Barbuy, and Marta G. Rovira). The IAU meetings held in the region, include 2 General Assemblies (the 1991 XXI GA took place in Buenos Aires, Argentina and the 2009 XXVIII GA, in Rio de Janeiro, Brazil), 15 Regional Meetings (in Argentina, Brazil, Chile, Colombia, Mexico, Venezuela and Uruguay), 29 Symposia (in Argentina, Brazil, Chile, Colombia, Costa Rica, Ecuador, Peru and Mexico), 5 Colloquia (in Argentina and Mexico), 8 International Schools for Young Astronomers (in Argentina, Brazil, Cuba, Honduras and Mexico), and 11 projects sponsored by the Office of Astronomy

  13. Engaging Students through Astronomically Inspired Music

    Science.gov (United States)

    Whitehouse, M.

    2011-09-01

    This paper describes a lesson outline in which astronomically inspired musical compositions are used to teach astronomical concepts via an introductory activity, close listening, and critical/creative reflection.

  14. The astronomical tables of Giovanni Bianchini

    CERN Document Server

    Chabas, Jose

    2009-01-01

    This book describes and analyses, for the first time, the astronomical tables of Giovanni Bianchini of Ferrara (d. after 1469), explains their context, inserts them into an astronomical tradition that began in Toledo, and addresses their diffusion.

  15. Eighth Scientific Meeting of the Spanish Astronomical Society

    CERN Document Server

    Diego, Jose M; González-Serrano, J. Ignacio; Gorgas, Javier; Highlights of Spanish Astrophysics V

    2010-01-01

    This volume collects the invited contributions and plenary sessions presented at the Eighth Scientific Meeting of the Spanish Astronomical Society (Sociedad Española de Astronomía, SEA) held on July 7-11, 2008 in Santander. These contributions cover all fields of astronomy and astrophysics, i.e., the Sun and solar system, the galaxy and its components, galaxies and cosmology, observatories and instrumentation, as well as astronomy teaching and dissemination. Further plenary sessions were devoted to selected hot topics, including the exploration of the solar system, gravitational lensing, exoplanets, X-ray binaries, solar magnetism, gravitational waves, the ALHAMBRA collaboration, and the OSIRIS instrument on the new 10-m GTC. Abstracts of the contributions presented at the parallels sessions and posters are also included in the book. Complete versions of those papers are available online.

  16. A Further Survey of Multiple Authorship in the Astronomical Literature

    Science.gov (United States)

    Smith, Graeme H.

    2017-11-01

    Authorship trends within the astronomical community have been studied using data drawn from the publication records of 12 refereed journals. The period covered by the study is 1991-2015. Across all journals, the annual fraction of papers with one or two authors has decreased with time, typically accompanied by an increased propensity for papers to have six or more co-authors. There is considerable variability in the behavior of three-to-five author papers. Reports on instrumentation developments within Publications of the Astronomical Society of the Pacific (PASP), a journal that places specific emphasis on publishing instrumentation papers, have a higher number of authors than average. The trends away from one-to-two author papers and toward papers with six or more authors show no correlation with either the annual number of papers per journal or the geographical diversity of the contributing author pools.

  17. World's fastest and most sensitive astronomical camera

    Science.gov (United States)

    2009-06-01

    The next generation of instruments for ground-based telescopes took a leap forward with the development of a new ultra-fast camera that can take 1500 finely exposed images per second even when observing extremely faint objects. The first 240x240 pixel images with the world's fastest high precision faint light camera were obtained through a collaborative effort between ESO and three French laboratories from the French Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers (CNRS/INSU). Cameras such as this are key components of the next generation of adaptive optics instruments of Europe's ground-based astronomy flagship facility, the ESO Very Large Telescope (VLT). ESO PR Photo 22a/09 The CCD220 detector ESO PR Photo 22b/09 The OCam camera ESO PR Video 22a/09 OCam images "The performance of this breakthrough camera is without an equivalent anywhere in the world. The camera will enable great leaps forward in many areas of the study of the Universe," says Norbert Hubin, head of the Adaptive Optics department at ESO. OCam will be part of the second-generation VLT instrument SPHERE. To be installed in 2011, SPHERE will take images of giant exoplanets orbiting nearby stars. A fast camera such as this is needed as an essential component for the modern adaptive optics instruments used on the largest ground-based telescopes. Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets, but frustrates astronomers, since it blurs the finest details of the images. Adaptive optics techniques overcome this major drawback, so that ground-based telescopes can produce images that are as sharp as if taken from space. Adaptive optics is based on real-time corrections computed from images obtained by a special camera working at very high speeds. Nowadays, this means many hundreds of times each second. The new generation instruments require these

  18. Representations of astronomers in literature.

    Science.gov (United States)

    Haynes, R. D.

    The depiction of astronomers as characters in fiction during the last four centuries provides a useful historical indication of the changing popular perception of astronomy and its practitioners. It is apparent that lay attitudes to astronomy, even in any given period, are complex. On the one hand there is the continuing, innate attraction which the spectacle of the night sky has for people of all ages, the sense of wonder it generates and the preception of astronomy as a "pure" science, free from military and environmentally damaging spin-offs. But, on the other hand, astronomy poses particular and radical challenges to the humanist tradition and these have elicited from many writers not only expressions of anguish and confusion but, at times, a personal attack on the astronomers who were considered responsible for the unwelcome views.

  19. National Astronomical Observatory of Japan

    CERN Document Server

    Haubold, Hans J; UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan

    2010-01-01

    This book represents Volume II of the Proceedings of the UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan, Tokyo, 18 - 22 June, 2007. It covers two programme topics explored in this and past workshops of this nature: (i) non-extensive statistical mechanics as applicable to astrophysics, addressing q-distribution, fractional reaction and diffusion, and the reaction coefficient, as well as the Mittag-Leffler function and (ii) the TRIPOD concept, developed for astronomical telescope facilities. The companion publication, Volume I of the proceedings of this workshop, is a special issue in the journal Earth, Moon, and Planets, Volume 104, Numbers 1-4, April 2009.

  20. Observatory Sponsoring Astronomical Image Contest

    Science.gov (United States)

    2005-05-01

    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery

  1. Heavens Open Up for UK Astronomers

    Science.gov (United States)

    2002-07-01

    A significant milestone for British and European science occurred today (July 8, 2002) when the Council of the European Southern Observatory (ESO) met in London. At this historical meeting, the United Kingdom was formally welcomed into ESO by the nine other member states. The UK, one of the leading nations in astronomical research, now joins one of the world's major astronomical organisations. UK astronomers will now be able to use the four 8.2-metre and several 1.8-metre telescopes that comprise the Very Large Telescope (VLT) facility located at the Paranal Observatory in the northern part of the Atacama desert in Chile, as well as two 4-m class telescopes and several smaller ones at the ESO La Silla Observatory further south. The UK will also benefit from increased involvement in the design and construction of the Atacama Large Millimetre Array (ALMA), a network of 64 twelve-metre telescopes also sited in Chile, and play a defining role in ESO's 100-metre Overwhelmingly Large Telescope (OWL). Sir Martin Rees , The Astronomer Royal, said, "Joining ESO is good for UK science, and I think good for Europe as well. It offers us access to the VLT's 8-m class telescopes and restores the UK's full competitiveness in optical astronomy. We're now guaranteed full involvement in ALMA and in the next generation of giant optical instruments - projects that will be at the forefront of the research in the next decade and beyond. Moreover, our commitment to ESO should enhance its chances of forging ahead of the US in these technically challenging and high profile scientific projects. UK membership of ESO is a significant and welcome outcome of this government's increasing investment in science". Prof. Ian Halliday , Chief Executive of the Particle Physics and Astronomy Research Council (PPARC), the UK's strategic science investment agency said, "The United Kingdom already participates in Europe's flagship particle physics research and the space science research programmes through

  2. Euler: Genius Blind Astronomer Mathematician

    OpenAIRE

    Musielak, Dora

    2014-01-01

    Leonhard Euler, the most prolific mathematician in history, contributed to advance a wide spectrum of topics in celestial mechanics. At the Saint Petersburg Observatory, Euler observed sunspots and tracked the movements of the Moon. Combining astronomical observations with his own mathematical genius, he determined the orbits of planets and comets. Euler laid the foundations of the methods of planetary perturbations and solved many of the Newtonian mechanics problems of the eighteenth century...

  3. Anaximandro : astronomía

    OpenAIRE

    Alonso Bernal, Sonsoles

    2009-01-01

    Anaximander successfully speculated about the origin of the cosmos: an initial explosion which condensated fragments form the stars. He also worked as an empirical astronomer who observed with a helioscope the Sun’s gaseous surface and its protuberances. He observed Solar and Lunar expectrums of light, probably working with certain set of pinhole cameras that he could optimize with fitted mirrors. Anaximandro especuló acertadamente sobre el origen del cosmos: describe una explosión inicial...

  4. Random Numbers from Astronomical Imaging

    OpenAIRE

    Pimbblet, Kevin A.; Bulmer, Michael

    2004-01-01

    This article describes a method to turn astronomical imaging into a random number generator by using the positions of incident cosmic rays and hot pixels to generate bit streams. We subject the resultant bit streams to a battery of standard benchmark statistical tests for randomness and show that these bit streams are statistically the same as a perfect random bit stream. Strategies for improving and building upon this method are outlined.

  5. Astronomical calibration of the Maastrichtian (Late Cretaceous)

    DEFF Research Database (Denmark)

    Husson, Dorothée; Galbrun, Bruno; Laskar, Jacques

    2011-01-01

    Recent improvements to astronomical modeling of the Solar System have contributed to important refinements of the Cenozoic time scale through astronomical calibration of sedimentary series. We extend this astronomical calibration into the Cretaceous, on the base of the 405 ka orbital eccentricity...... of each magnetochron from C32r.2r to C29n are inferred by cycle counting. Astronomical calibrations of Maastrichtian sedimentary series are proposed, based on the 405 ka eccentricity variation according to the most recent astronomical solution La2010a. Two different ages are suggested for the K...

  6. Powerful Radio Burst Indicates New Astronomical Phenomenon

    Science.gov (United States)

    2007-09-01

    . "It was a bit of luck that the survey included some observations of the sky surrounding the clouds," Narkevic said. It was from those "flanking" observations that the mysterious radio burst appeared in the data. The burst of radio waves was strong by astronomical standards, but lasted less than five milliseconds. The signal was spread out, with higher frequencies arriving at the telescope before the lower frequencies. This effect, called dispersion, is caused by the signal passing through ionized gas in interstellar and intergalactic space. The amount of this dispersion, the astronomers said, indicates that the signal likely originated about three billion light-years from Earth. No previously-detected cosmic radio burst has the same set of characteristics. "This burst represents an entirely new astronomical phenomenon," Bailes said. The astronomers estimate on the basis of their results that hundreds of similar events should occur over the sky each day. "Few radio surveys have the necessary sensitivity to such short-duration bursts, which makes them notoriously difficult to detect with current instruments," added Crawford. The next generation of radio telescopes currently under development should be able to detect many of these bursts across the sky. Although the nature of the mysterious new object is unclear, the astronomers have some ideas of what may cause such a burst. One idea is that it may be part of the energy released when a pair of superdense neutron stars collide and merge. Such an event is thought by some scientists to be the cause of one type of gamma-ray burst, but the only radio emission seen so far from these has been from the long-lived "afterglow" that follows the original burst. Another, more exotic, candidate is a burst of energy from an evaporating black hole. Black holes, concentrations of mass so dense that not even light can escape their powerful gravity, can lose mass and energy through a process proposed by famed British physicist Stephen

  7. Different Categories of Astronomical Heritage: Issues and Challenges

    Science.gov (United States)

    Ruggles, Clive

    2012-09-01

    Since 2008 the AWHWG has, on behalf of the IAU, been working with UNESCO and its advisory bodies to help identify, safeguard and promote cultural properties relating to astronomy and, where possible, to try to facilitate the eventual nomination of key astronomical heritage sites onto the World Heritage List. Unfortunately, the World Heritage Convention only covers fixed sites (i.e., the tangible immovable heritage of astronomy), and a key question for the UNESCO-IAU Astronomy and World Heritage Initiative (AWHI) is the extent to which the tangible moveable and intangible heritage of astronomy (e.g. moveable instruments; ideas and theories) influence the assessment of the tangible immovable heritage. Clearly, in an ideal world we should be concerned not only with tangible immovable heritage but, to quote the AWHWG's own Terms of Reference, ``to help ensure that cultural properties and artefacts significant in the development of astronomy, together with the intangible heritage of astronomy, are duly studied, protected and maintained, both for the greater benefit of humankind and to the potential benefit of future historical research''. With this in mind, the IAU/INAF symposium on ``Astronomy and its Instruments before and after Galileo'' held in Venice in Sep-Oct 2009 recommended that urgent steps should be taken 1. to sensitise astronomers and the general public, and particularly observatory directors and others with direct influence and control over astronomical resources, to the importance of identifying, protecting and preserving the various material products of astronomical research and discovery that already have, or have significant potential to acquire, universal value; (N.B. National or regional interests and concerns have no relevance in the assessment of ``universal value'', which, by definition, extends beyond cultural boundaries and, by reasonable expectation, down the generations into the future. 2. to identify modes of interconnectivity between

  8. Astronomical database and VO-tools of Nikolaev Astronomical Observatory

    Science.gov (United States)

    Mazhaev, A. E.; Protsyuk, Yu. I.

    2010-05-01

    Results of work in 2006-2009 on creation of astronomical databases aiming at development of Nikolaev Virtual Observatory (NVO) are presented in this abstract. Results of observations and theirreduction, which were obtained during the whole history of Nikolaev Astronomical Observatory (NAO), are included in the databases. The databases may be considered as a basis for construction of a data centre. Images of different regions of the celestial sphere have been stored in NAO since 1929. About 8000 photo plates were obtained during observations in the 20th century. Observations with CCD have been started since 1996. Annually, telescopes of NAO, using CCD cameras, create data volume of several tens of gigabytes (GB) in the form of CCD images and up to 100 GB of video records. At the end of 2008, the volume of accumulated data in the form of CCD images was about 300 GB. Problems of data volume growth are common in astronomy, nuclear physics and bioinformatics. Therefore, the astronomical community needs to use archives, databases and distributed grid computing to cope with this problem in astronomy. The International Virtual Observatory Alliance (IVOA) was formed in June 2002 with a mission to "enable the international utilization of astronomical archives..." The NVO was created at the NAO website in 2008, and consists of three main parts. The first part contains 27 astrometric stellar catalogues with short descriptions. The files of catalogues were compiled in the standard VOTable format using eXtensible Markup Language (XML), and they are available for downloading. This is an example of the so-called science-ready product. The VOTable format was developed by the International Virtual Observatory Alliance (IVOA) for exchange of tabular data. A user may download these catalogues and open them using any standalone application that supports standards of the IVOA. There are several directions of development for such applications, for example, search of catalogues and images

  9. Photonic ring resonator filters for astronomical OH suppression.

    Science.gov (United States)

    Ellis, S C; Kuhlmann, S; Kuehn, K; Spinka, H; Underwood, D; Gupta, R R; Ocola, L E; Liu, P; Wei, G; Stern, N P; Bland-Hawthorn, J; Tuthill, P

    2017-07-10

    Ring resonators provide a means of filtering specific wavelengths from a waveguide, and optionally dropping the filtered wavelengths into a second waveguide. Both of these features are potentially useful for astronomical instruments. In this paper we focus on their use as notch filters to remove the signal from atmospheric OH emission lines from astronomical spectra. We derive the design requirements for ring resonators for OH suppression from theory and finite difference time domain simulations. We find that rings with small radii (< 10 μm) are required to provide an adequate free spectral range, leading to high index contrast materials such as Si and Si3N4. Critically coupled rings with high self-coupling coefficients should provide the necessary Q factors, suppression depth, and throughput for efficient OH suppression, but will require post-inscription tuning of the coupling and the resonant wavelengths. The overall prospects for the use of ring resonators in astronomical instruments is promising, provided efficient fibre-chip coupling can be achieved.

  10. An Astronomer In The Classroom: Observatoire de Paris's Partnership Between Teachers and Astronomers

    Science.gov (United States)

    Doressoundiram, A.; Barban, C.

    2006-08-01

    The Observatoire de Paris is offering a partnership between teachers and astronomers. The principle is simple: any teacher wishing to undertake a pedagogical project in astronomy, in the classroom or involving the entire school, can request the help of a mentor. An astronomer from the Observatoire de Paris will then follow the teacher's project progress and offer advice and scientific support throughout the school year. The projects may take different forms: construction projects (models, instruments), lectures, posters, exhibitions, etc. The type of assistance offered is as varied as the projects: lecture(s) in class, telephone and e-mail exchanges, visits to the Observatoire; an almost made-to-measure approach that delighted the thirty or so groups that benefited such partnership in the 2005-2006 academic year. And this number is continuously growing. There was a rich variety of projects undertaken, from mounting a show and building a solar clock to visiting a high altitude observatory, or resolving the mystery of Jupiter's great red spot. The Universe and its mysteries fascinate the young (and the not so- young) and provide a multitude of scientific topics that can be exploited in class. Astronomy offers the added advantage of being a multidisciplinary field. Thus, if most projects are generally initiated by a motivated teacher, they are often taken over by teachers in other subjects: Life and Earth Sciences (SVT), history, mathematics, French, and so forth. The project may consist in an astronomy workshop or be part of the school curriculum. Whatever the case, the astronomer's task is not to replace the teacher or the textbooks, but to propose activities or experiments that are easy to implement. Representing the Solar system on a school-yard scale, for instance, is a perfect way to make youngsters realize that the Universe consists mostly of empty space. There is no shortage of topics, and the students' enthusiasm, seldom absent, is the best reward for the

  11. Astronomical measurement a concise guide

    CERN Document Server

    Lawrence, Andy

    2014-01-01

    This book on astronomical measurement takes a fresh approach to teaching the subject. After discussing some general principles, it follows the chain of measurement through atmosphere, imaging, detection, spectroscopy, timing, and hypothesis testing. The various wavelength regimes are covered in each section, emphasising what is the same, and what is different. The author concentrates on the physics of detection and the principles of measurement, aiming to make this logically coherent. The book is based on a short self contained lecture course for advanced undergraduate students developed and taught by the author over several years.

  12. Explanatory supplement to the astronomical almanac

    CERN Document Server

    Urban, Sean E

    2013-01-01

    The Explanatory Supplement to the Astronomical Almanac offers explanatory material, supplemental information and detailed descriptions of the computational models and algorithms used to produce The Astronomical Almanac, which is an annual publication prepared jointly by the US Naval Observatory and Her Majesty's Nautical Almanac Office in the UK. Like The Astronomical Almanac, The Explanatory Supplement provides detailed coverage of modern positional astronomy. Chapters are devoted to the celestial and terrestrial reference frames, orbital ephemerides, precession, nutation, Earth rotation, and coordinate transformations. These topics have undergone substantial revisions since the last edition was published. Astronomical positions are intertwined with timescales and relativity in The Astronomical Almanac, so related chapters are provided in The Explanatory Supplement. The Astronomical Almanac also includes information on lunar and solar eclipses, physical ephemerides of solar system bodies, and calendars, so T...

  13. C++, objected-oriented programming, and astronomical data models

    Science.gov (United States)

    Farris, A.

    1992-01-01

    Contemporary astronomy is characterized by increasingly complex instruments and observational techniques, higher data collection rates, and large data archives, placing severe stress on software analysis systems. The object-oriented paradigm represents a significant new approach to software design and implementation that holds great promise for dealing with this increased complexity. The basic concepts of this approach will be characterized in contrast to more traditional procedure-oriented approaches. The fundamental features of objected-oriented programming will be discussed from a C++ programming language perspective, using examples familiar to astronomers. This discussion will focus on objects, classes and their relevance to the data type system; the principle of information hiding; and the use of inheritance to implement generalization/specialization relationships. Drawing on the object-oriented approach, features of a new database model to support astronomical data analysis will be presented.

  14. LGBT Workplace Issues for Astronomers

    Science.gov (United States)

    Kay, Laura E.; Danner, R.; Sellgren, K.; Dixon, V.; GLBTQastro

    2011-01-01

    Federal Equal Employment Opportunity laws and regulations do not provide protection from discrimination on the basis of sexual orientation or gender identity or gender expression. Sexual minority astronomers (including lesbian, gay, bisexual and transgender people; LGBT) can face additional challenges at school and work. Studies show that LGBT students on many campuses report experiences of harassment. Cities, counties, and states may or may not have statutes to protect against such discrimination. There is wide variation in how states and insurance plans handle legal and medical issues for transgender people. Federal law does not acknowledge same-sex partners, including those legally married in the U.S. or in other countries. Immigration rules in the U.S. (and many other, but not all) countries do not recognize same-sex partners for visas, employment, etc. State `defense of marriage act' laws have been used to remove existing domestic partner benefits at some institutions, or benefits can disappear with a change in governor. LGBT astronomers who change schools, institutions, or countries during their career may experience significant differences in their legal, medical, and marital status.

  15. Astronomical Signatures of Dark Matter

    Directory of Open Access Journals (Sweden)

    Paul Gorenstein

    2014-01-01

    Full Text Available Several independent astronomical observations in different wavelength bands reveal the existence of much larger quantities of matter than what we would deduce from assuming a solar mass to light ratio. They are very high velocities of individual galaxies within clusters of galaxies, higher than expected rotation rates of stars in the outer regions of galaxies, 21 cm line studies indicative of increasing mass to light ratios with radius in the halos of spiral galaxies, hot gaseous X-ray emitting halos around many elliptical galaxies, and clusters of galaxies requiring a much larger component of unseen mass for the hot gas to be bound. The level of gravitational attraction needed for the spatial distribution of galaxies to evolve from the small perturbations implied by the very slightly anisotropic cosmic microwave background radiation to its current web-like configuration requires much more mass than is observed across the entire electromagnetic spectrum. Distorted shapes of galaxies and other features created by gravitational lensing in the images of many astronomical objects require an amount of dark matter consistent with other estimates. The unambiguous detection of dark matter and more recently evidence for dark energy has positioned astronomy at the frontier of fundamental physics as it was in the 17th century.

  16. Database-Driven Analyses of Astronomical Spectra

    Science.gov (United States)

    Cami, Jan

    2012-03-01

    Spectroscopy is one of the most powerful tools to study the physical properties and chemical composition of very diverse astrophysical environments. In principle, each nuclide has a unique set of spectral features; thus, establishing the presence of a specific material at astronomical distances requires no more than finding a laboratory spectrum of the right material that perfectly matches the astronomical observations. Once the presence of a substance is established, a careful analysis of the observational characteristics (wavelengths or frequencies, intensities, and line profiles) allows one to determine many physical parameters of the environment in which the substance resides, such as temperature, density, velocity, and so on. Because of this great diagnostic potential, ground-based and space-borne astronomical observatories often include instruments to carry out spectroscopic analyses of various celestial objects and events. Of particular interest is molecular spectroscopy at infrared wavelengths. From the spectroscopic point of view, molecules differ from atoms in their ability to vibrate and rotate, and quantum physics inevitably causes those motions to be quantized. The energies required to excite vibrations or rotations are such that vibrational transitions generally occur at infrared wavelengths, whereas pure rotational transitions typically occur at sub-mm wavelengths. Molecular vibration and rotation are coupled though, and thus at infrared wavelengths, one commonly observes a multitude of ro-vibrational transitions (see Figure 13.1). At lower spectral resolution, all transitions blend into one broad ro-vibrational molecular band. The isotope. Molecular spectroscopy thus allows us to see a difference of one neutron in an atomic nucleus that is located at astronomical distances! Since the detection of the first interstellar molecules (the CH [21] and CN [14] radicals), more than 150 species have been detected in space, ranging in size from diatomic

  17. Storing Astronomical Information on the Romanian Territory

    Science.gov (United States)

    Stavinschi, M.; Mioc, V.

    2004-12-01

    Romanian astronomy has a more than 2000-year old tradition, which is, however, little known abroad. The first known archive of astronomical information is the Dacian sanctuary at Sarmizegetusa Regia, erected in the first century AD, having similarities with that of Stonehenge. After a gap of more than 1000 years, more sources of astronomical information become available, mainly records of astronomical events. Monasteries were the safest storage places of these genuine archives. We present a classification of the ways of storing astronomical information, along with characteristic examples.

  18. Astronomical Symbolism in Australian Aboriginal Rock Art

    CERN Document Server

    Norris, Ray P

    2010-01-01

    Traditional Aboriginal Australian cultures include a significant astronomical component, perpetuated through oral tradition and ceremony. This knowledge has practical navigational and calendrical functions, and sometimes extends to a deep understanding of the motion of objects in the sky. Here we explore whether this astronomical tradition is reflected in the rock art of Aboriginal Australians. We find several plausible examples of depictions of astronomical figures and symbols, and also evidence that astronomical observations were used to set out stone arrangements. However, we recognise that the case is not yet strong enough to make an unequivocal statement, and describe our plans for further research.

  19. The National Astronomical Observatory of Japan and Post-war Japanese Optical Astronomy

    Science.gov (United States)

    Tajima, Toshiyuki

    This paper depicts some aspects of the formative process of the Japanese optical and infrared astronomical community in the post-war period, featuring the transition of the National Astronomical Observatory of Japan(NAOJ). We take up three cases of telescope construction, examining their background and their contribution to the Japanese astronomical community. Through these cases, the characteristics of traditions and cultures of optical and infrared astronomy in Japan are considered. Although the Tokyo Astronomical Observatory (TAO) of the University of Tokyo, the predecessor of NAOJ, was originally founded as an agency for practical astronomical observation such as time and almanac service, it has become an international centre for all types of astrophysical research. Research and development of telescopes and observational instruments have become an important part of the astronomers' practice. Now, however, a number of Japanese universities are planning to have their own large to middle-sized telescopes, and a new style of astronomical research is emerging involving astrophysical studies utilising data acquired from the Virtual Observatory, so there is a distinct possibility that the status of the NAOJ will change even further in the future.

  20. Model based systems engineering for astronomical projects

    Science.gov (United States)

    Karban, R.; Andolfato, L.; Bristow, P.; Chiozzi, G.; Esselborn, M.; Schilling, M.; Schmid, C.; Sommer, H.; Zamparelli, M.

    2014-08-01

    Model Based Systems Engineering (MBSE) is an emerging field of systems engineering for which the System Modeling Language (SysML) is a key enabler for descriptive, prescriptive and predictive models. This paper surveys some of the capabilities, expectations and peculiarities of tools-assisted MBSE experienced in real-life astronomical projects. The examples range in depth and scope across a wide spectrum of applications (for example documentation, requirements, analysis, trade studies) and purposes (addressing a particular development need, or accompanying a project throughout many - if not all - its lifecycle phases, fostering reuse and minimizing ambiguity). From the beginnings of the Active Phasing Experiment, through VLT instrumentation, VLTI infrastructure, Telescope Control System for the E-ELT, until Wavefront Control for the E-ELT, we show how stepwise refinements of tools, processes and methods have provided tangible benefits to customary system engineering activities like requirement flow-down, design trade studies, interfaces definition, and validation, by means of a variety of approaches (like Model Checking, Simulation, Model Transformation) and methodologies (like OOSEM, State Analysis)

  1. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    Science.gov (United States)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the

  2. Asteroids astronomical and geological bodies

    CERN Document Server

    Burbine, Thomas H

    2016-01-01

    Asteroid science is a fundamental topic in planetary science and is key to furthering our understanding of planetary formation and the evolution of the Solar System. Ground-based observations and missions have provided a wealth of new data in recent years, and forthcoming missions promise further exciting results. This accessible book presents a comprehensive introduction to asteroid science, summarising the astronomical and geological characteristics of asteroids. The interdisciplinary nature of asteroid science is reflected in the broad range of topics covered, including asteroid and meteorite classification, chemical and physical properties of asteroids, observational techniques, cratering, and the discovery of asteroids and how they are named. Other chapters discuss past, present and future space missions and the threat that these bodies pose for Earth. Based on an upper-level course on asteroids and meteorites taught by the author, this book is ideal for students, researchers and professional scientists ...

  3. Christopher Clavius astronomer and mathematician

    CERN Document Server

    Sigismondi, Costantino

    2012-01-01

    The Jesuit scientist Christopher Clavius (1538-1612) has been the most influential teacher of the renaissance. His contributions to algebra, geometry, astronomy and cartography are enormous. He paved the way, with his texts and his teaching for 40 years in the the Collegio Romano, to the development of these sciences and their fruitful spread all around the World, along the commercial paths of Portugal, which become also the missionary paths for the Jesuits. The books of Clavius were translated into Chinese, by one of his students Matteo Ricci "Li Madou" (1562-1610), and his influence for the development of science in China was crucial. The Jesuits become skilled astronomers, cartographers and mathematicians thanks to the example and the impulse given by Clavius. This success was possible also thanks to the contribution of Clavius in the definition of the Ratio Studiorum, the program of studies, in the Jesuit colleges, so influential for the whole history of modern Europe and all western World.

  4. An astronomical observatory for Peru

    Science.gov (United States)

    del Mar, Juan Quintanilla; Sicardy, Bruno; Giraldo, Víctor Ayma; Callo, Víctor Raúl Aguilar

    2011-06-01

    Peru and France are to conclude an agreement to provide Peru with an astronomical observatory equipped with a 60-cm diameter telescope. The principal aims of this project are to establish and develop research and teaching in astronomy. Since 2004, a team of researchers from Paris Observatory has been working with the University of Cusco (UNSAAC) on the educational, technical and financial aspects of implementing this venture. During an international astronomy conference in Cusco in July 2009, the foundation stone of the future Peruvian Observatory was laid at the top of Pachatusan Mountain. UNSAAC, represented by its Rector, together with the town of Oropesa and the Cusco regional authority, undertook to make the sum of 300,000€ available to the project. An agreement between Paris Observatory and UNSAAC now enables Peruvian students to study astronomy through online teaching.

  5. Astronomical Data in Undergraduate courses

    Science.gov (United States)

    Clarkson, William I.; Swift, Carrie; Hughes, Kelli; Burke, Christopher J. F.; Burgess, Colin C.; Elrod, Aunna V.; Howard, Brittany; Stahl, Lucas; Matzke, David; Bord, Donald J.

    2016-06-01

    We present status and plans for our ongoing efforts to develop data analysis and problem-solving skills through Undergraduate Astronomy instruction. While our initiatives were developed with UM-Dearborn’s student body primarily in mind, they should be applicable for a wide range of institution and of student demographics. We focus here on two strands of our effort.Firstly, students in our Introductory Astronomy (ASTR 130) general-education course now perform several “Data Investigations”, in which they interrogate the Hubble Legacy Archive to illustrate important course concepts. This was motivated in part by the realization that typical public data archives now include tools to interrogate the observations that are sufficiently accessible that introductory astronomy students can use them to perform real science, albeit mostly at a descriptive level. We are continuing to refine these investigations, and, most importantly, to critically assess their effectiveness in terms of the student learning outcomes we wish to achieve. This work is supported by grant HST-EO-13758, provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.Secondly, at the advanced-undergraduate level, students taking courses in our Astronomy minor are encouraged to gain early experience in techniques of astronomical observation and analysis that are used by professionals. We present two example projects from the Fall 2015 iteration of our upper-division course ASTR330 (The Cosmic Distance Ladder), one involving Solar System measurements, the second producing calibrated aperture photometry. For both projects students conducted, analysed, and interpreted observations using our 0.4m campus telescope, and used many of the same analysis tools as professional astronomers. This work is supported partly from a Research Initiation and Seed grant from the

  6. Novel Algorithms for Astronomical Plate Analyses

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Powerful computers and dedicated software allow effective data mining and scientific analyses in astronomical plate archives. We give and discuss examples of newly developed algorithms for astronomical plate analyses, e.g., searches for optical transients, as well as for major spectral and brightness ...

  7. The University of Jaén Astronomical Observatory

    Science.gov (United States)

    Martí, Josep; Luque-Escamilla, Pedro L.; García-Hernández, María T.

    2017-01-01

    We present a description and instrumental characterization of the photometric equipment of the Astronomical Observatory of the University of Jaén. The observatory hosts a 41 cm automated telescope inside a 4 m dome located at the university main campus, in the outskirts of the city of Jaén (Spain). This facility is used for educational, outreach and occasional scientific research on bright stellar objects. Despite the observatory location in a light polluted urban area, its performance for differential photometry studies has proven to be very acceptable. The discovery of the Be star LS I +5979 as a peculiar eclipsing binary system is so far the most relevant achievement.

  8. A SURVEY OF ASTRONOMICAL RESEARCH: A BASELINE FOR ASTRONOMICAL DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, V. A. R. M. [Astrophysics, Cosmology and Gravity Centre, Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Russo, P. [EU Universe Awareness, Leiden Observatory, Leiden University, PO 9513 Leiden, 2300 RA (Netherlands); Cárdenas-Avendaño, A., E-mail: vribeiro@ast.uct.ac.za, E-mail: russo@strw.leidenuniv.nl [Departamento de Física, Universidad Nacional de Colombia, Carrera 45 No 26-85, Edificio Gutierréz, Bogotá, DC (Colombia)

    2013-12-01

    Measuring scientific development is a difficult task. Different metrics have been put forward to evaluate scientific development; in this paper we explore a metric that uses the number of peer-reviewed, and when available non-peer-reviewed, research articles as an indicator of development in the field of astronomy. We analyzed the available publication record, using the Smithsonian Astrophysical Observatory/NASA Astrophysics Database System, by country affiliation in the time span between 1950 and 2011 for countries with a gross national income of less than 14,365 USD in 2010. This represents 149 countries. We propose that this metric identifies countries in ''astronomical development'' with a culture of research publishing. We also propose that for a country to develop in astronomy, it should invest in outside expert visits, send its staff abroad to study, and establish a culture of scientific publishing. Furthermore, we propose that this paper may be used as a baseline to measure the success of major international projects, such as the International Year of Astronomy 2009.

  9. Astronomers Discover Six-Image Gravitational Lens

    Science.gov (United States)

    2001-08-01

    galaxies and the relationships of the individual cluster galaxies to the 'halo' of dark matter in which they are embedded," he added. Clusters of galaxies are known to produce gravitational lenses with up to eight images of a single background object. However, the number of galaxies in such a cluster makes it difficult for astronomers to decipher just how their gravitational effects have combined to produce the multiple images. Researchers hope to be able to understand the lensing effect well enough to use the lenses to show them how galaxies, gas and unseen dark matter in clusters are distributed. A system such as B1359+154, with only three galaxies involved in the lensing, can help astronomers learn how complex gravitational lenses work. "The next big step is to use HST to see the pattern of rings produced by the galaxy surrounding the black hole. We already see hints of them, but with the upgrades to HST in the next servicing mission we should be able to trace it completely both to pin down the structure of the lens and to have an enormously magnified image for studying the distant host galaxy," Kochanek said. In addition to Rusin, Kochanek and Norbury, the researchers are: Emilio Falco of the CfA; Chris Impey of Steward Observatory at the University of Arizona; Joseph Lehar of the CfA; Brian McLeod of the CfA; Hans-Walter Rix of the Max Planck Institute for Astronomy in Germany; Chuck Keeton of Steward Observatory; Jose Munoz of the Astrophysical Institute of the Canaries in Tenerife, Spain; and Chien Peng of Steward Observatory. The team published its results in the Astrophysical Journal. The VLBA is a system of 10 radio-telescope antennas that work together as a single astronomical instrument. The antennas are spread across the United States, from Hawaii in the west to the U.S. Virgin Islands in the east. A radio telescope system more than 5,000 miles across, the VLBA produces extremely detailed images. The National Radio Astronomy Observatory is a facility of the

  10. A Mythological, Philosophical and Astronomical approach of our solar system

    Science.gov (United States)

    Drivas, Sotirios; Kastanidou, Sofia

    2016-04-01

    Teaching Geography in the first Class of Gymnasium - secondary education we will focus in Solar System: Astronomical approach: Students will look and find the astronomical data of the planets, they will make comparisons between the sizes of their radius, they will find the distance from the Sun, they will search the relative motion, they will calculate the gravity on each planet, etc. Mythological approach: We will search the names and meanings of the planets based on Greek mythological origin. Philosophical approach: Regarding the philosophical approach of the "solar system" we will look and find: • Why planets are called so? • How did planets get their names? • What are the periods of Greek astronomy? • What were the astronomical instruments of ancient Greeks and who did built them? • What were the Greek philosophers and astronomers? When did they live and what did they discover? • Which method did Eratosthenes of Cyrene apply about 206B.C. to serve a real measurement of the earth's radius? • What was the relationship between science and religion in ancient Greece? Literature approach: At the end of the program students will write their opinion in subject "Having a friend from another planet" based on the book of Antoine de Saint - Exupéry "The little prince". Law approach: A jurist working in Secondary Education will visits our school and engages students in the Space Law. Artistic approach: Students will create their own posters of our planetary system. The best posters will be posted on the school bulletin board to display their work. Visit: Students and teachers will visit the Observatory of Larissa where they will see how observatory works and talk with scientists about their job. They will look through telescopes and observe the sun.

  11. Astronomical background of global huge earthquakes

    Science.gov (United States)

    Hu, Hui; Han, Yan-Ben

    2006-03-01

    This paper analyzes the astronomical background of the global huge earthquakes with M≥8.5. The result shows that most of the earthquakes has occurred in the seismic belts (regions) where is being corresponding seismic active period with the lunar path, solar active falling period and accelerating period of earth rotation. This is as for the variation of long period of astronomical factors. For the variation of short period of astronomical factors, whether for local time or local sidereal time and lunar phase there is the phenomenon of occurrence of concentrating a interval time for the earthquakes. For the short variation of earth rotation this phenomenon is clear; either the earthquakes occur in most fast or in lowest of earth rotation. The above-mentioned results indicate that the eartquakes occurrence is affected by astronomical factors. The astronomical factors are one of motive force causing earthquake from external world. The astronomical factors with long period may act as modulation for the earthquake-pregnant process. And the astronomical factors with short period will causing huge fluctuations of the system and earthquake occur when it act on seismic structure of away from balance state.

  12. Astronomical Knowledge in Holy Books

    Science.gov (United States)

    Farmanyan, Sona V.; Mickaelian, Areg M.

    2015-08-01

    We investigate religious myths related to astronomy from different cultures in an attempt to identify common subjects and characteristics. The paper focuses on astronomy in religion. The initial review covers records from Holy books about sky related superstitious beliefs and cosmological understanding. The purpose of this study is to introduce sky related religious and national traditions (particularly based on different calendars; Solar or Lunar). We carried out a comparative study of astronomical issues contained in a number of Holy books: Ancient Egyptian Religion (Pyramid Texts), Zoroastrianism (Avesta), Hinduism (Vedas), Buddhism (Tipitaka), Confucianism (Five Classics), Sikhism (Guru Granth Sahib), Christianity (Bible), Islam (Quran), Druidism (Mabinogion) and Maya Religion (Popol Vuh). These books include various information on the creation of the Universe, Sun and Moon, the age of the Universe, Cosmic sizes, understanding about the planets, stars, Milky Way and description of the Heavens in different religions. We come to the conclusion that the perception of celestial objects varies from culture to culture, and from religion to religion and preastronomical views had a significant impact on humankind, particularly on religious diversities. We prove that Astronomy is the basis of cultures, and that national identity and mythology and religion were formed due to the special understanding of celestial objects.

  13. Lunar astronomical observatories - Design studies

    Science.gov (United States)

    Johnson, Stewart W.; Burns, Jack O.; Chua, Koon Meng; Duric, Nebojsa; Gerstle, Walter H.

    1990-01-01

    The best location in the inner solar system for the grand observatories of the 21st century may be the moon. A multidisciplinary team including university students and faculty in engineering, astronomy, physics, and geology, and engineers from industry is investigating the moon as a site for astronomical observatories and is doing conceptual and preliminary designs for these future observatories. Studies encompass lunar facilities for radio astronomy and astronomy at optical, ultraviolet, and infrared wavelengths of the electromagnetic spectrum. Although there are significant engineering challenges in design and construction on the moon, the rewards for astronomy can be great, such as detection and study of earth-like planets orbiting nearby stars, and the task for engineers promises to stimulate advances in analysis and design, materials and structures, automation and robotics, foundations, and controls. Fabricating structures in the reduced-gravity environment of the moon will be easier than in the zero-gravity environment of earth orbit, as Apollo and space-shuttle missions have revealed. Construction of observatories on the moon can be adapted from techniques developed on the earth, with the advantage that the moon's weaker gravitational pull makes it possible to build larger devices than are practical on earth.

  14. Astronomical problems an introductory course in astronomy

    CERN Document Server

    Vorontsov-Vel'Yaminov, B A

    1969-01-01

    Astronomical Problems: An Introductory Course in Astronomy covers astronomical problems, together with a summary of the theory and the formula to be exercised. The book discusses the types of problems solved with the help of the celestial globe and how to solve astronomical problems. The text tackles problems on interpolation, the celestial sphere, systems of celestial coordinates, and culmination. Problems about the rising and setting of a heavenly body, precession, planetary movement, and parallax and aberration are also considered. The book presents problems about refraction, the apparent m

  15. Reliability centered maintenance in astronomical infrastructure facilities

    Science.gov (United States)

    Ansorge, W. R.

    2006-06-01

    Hundreds of mirror segment, thousands of high precision actuators, highly complex mechanical, hydraulic, electrical and other technology subsystems, and highly sophisticated control systems: an ELT system consists of millions of individual parts and components, each of them may fail and lead to a partial or complete system breakdown. The traditional maintenance concepts characterized by predefined preventive maintenance activities and rigid schedules are not suitable for handling this large number of potential failures and malfunctions and the extreme maintenance workload. New maintenance strategies have to be found suitable to increase reliability while reducing the cost of needless maintenance services. The Reliability Centred Maintenance (RCM) methodology is already used extensively by airlines, and in industrial and marine facilities and even by scientific institutions like NASA. Its application increases the operational reliability while reducing the cost of unnecessary maintenance activities and is certainly also a solution for current and future ELT facilities. RCM is a concept of developing a maintenance scheme based on the reliability of the various components of a system by using "feedback loops between instrument / system performance monitoring and preventive/corrective maintenance cycles." Ideally RCM has to be designed within a system and should be located in the requirement definition, the preliminary and final design phases of new equipment and complicated systems. However, under certain conditions, an implementation of RCM into the maintenance management strategy of already existing astronomical infrastructure facilities is also possible. This presentation outlines the principles of the RCM methodology, explains the advantages, and highlights necessary changes in the observatory development, operation and maintenance philosophies. Presently, it is the right time to implement RCM into current and future ELT projects and to save up to 50% maintenance

  16. Longwave Imaging for Astronomical Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact portable longwave camera for astronomical applications. In Phase 1, we will develop and deliver the focal plane array (FPA) - a...

  17. Longwave Imaging for Astronomical Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact portable longwave camera for astronomical applications. In Phase 1, we successfully developed the eye of the camera, i.e. the focal...

  18. Astronomers no longer in the dark

    CERN Multimedia

    MacMillan, L

    2002-01-01

    In a significant breakthrough, British and US astronomers have begun to pin down the most elusive material in the universe. They have made a map of dark matter - the heavy, invisible stuff that gives the galaxies their shape (1 page).

  19. Astronomers find distant planet like Jupiter

    CERN Multimedia

    2003-01-01

    Astronomers searching for planetary systems like our solar system have found a planet similar to Jupiter orbiting a nearby star similar to our Sun, about 90 light-years from Earth, according to researchers (1/2 page).

  20. Astronomers Unveiling Life's Cosmic Origins

    Science.gov (United States)

    2009-02-01

    Processes that laid the foundation for life on Earth -- star and planet formation and the production of complex organic molecules in interstellar space -- are yielding their secrets to astronomers armed with powerful new research tools, and even better tools soon will be available. Astronomers described three important developments at a symposium on the "Cosmic Cradle of Life" at the annual meeting of the American Association for the Advancement of Science in Chicago, IL. Chemistry Cycle The Cosmic Chemistry Cycle CREDIT: Bill Saxton, NRAO/AUI/NSF Full Size Image Files Chemical Cycle Graphic (above image, JPEG, 129K) Graphic With Text Blocks (JPEG, 165K) High-Res TIFF (44.2M) High-Res TIFF With Text Blocks (44.2M) In one development, a team of astrochemists released a major new resource for seeking complex interstellar molecules that are the precursors to life. The chemical data released by Anthony Remijan of the National Radio Astronomy Observatory (NRAO) and his university colleagues is part of the Prebiotic Interstellar Molecule Survey, or PRIMOS, a project studying a star-forming region near the center of our Milky Way Galaxy. PRIMOS is an effort of the National Science Foundation's Center for Chemistry of the Universe, started at the University of Virginia (UVa) in October 2008, and led by UVa Professor Brooks H. Pate. The data, produced by the NSF's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia, came from more than 45 individual observations totalling more than nine GigaBytes of data and over 1.4 million individual frequency channels. Scientists can search the GBT data for specific radio frequencies, called spectral lines -- telltale "fingerprints" -- naturally emitted by molecules in interstellar space. "We've identified more than 720 spectral lines in this collection, and about 240 of those are from unknown molecules," Remijan said. He added, "We're making available to all scientists the best collection of data below 50 GHz ever produced for

  1. Astronomical technology - the past and the future

    OpenAIRE

    Appenzeller, Immo

    2017-01-01

    The past fifty years have been an epoch of impressive progress in the field of astronomical technology. Practically all the technical tools, which we use today, have been developed during that time span. While the first half of this period has been dominated by advances in the detector technologies, during the past two decades innovative telescope concepts have been developed for practically all wavelength ranges where astronomical observations are possible. Further important advances can be ...

  2. John Flamsteed and the turn of the screw: mechanical uncertainty, the skilful astronomer and the burden of seeing correctly at the Royal Observatory, Greenwich.

    Science.gov (United States)

    Spiegel, Richard J

    2015-03-01

    Centring on John Flamsteed (1646-1719), the first Astronomer Royal, this paper investigates the ways in which astronomers of the late seventeenth century worked to build and maintain their reputations by demonstrating, for their peers and for posterity, their proficiency in managing visual technologies. By looking at his correspondence and by offering a graphic and textual analysis of the preface to his posthumous Historia Coelestis Britannica (1725), I argue that Flamsteed based the legitimacy of his life's work on his capacity to serve as a skilful astronomer who could coordinate the production and proper use of astronomical sighting instruments. Technological advances in astrometry were, for Flamsteed, a necessary but not a sufficient condition for the advancement of astronomy. Technological resources needed to be used by the right person. The work of the skilful astronomer was a necessary precondition for the mobilization and proper management of astronomical technologies. Flamsteed's understanding of the astronomer as a skilled actor importantly shifted the emphasis in precision astronomical work away from the individual observer's ability to see well and toward the astronomer's ability to ensure that instruments guaranteed accurate vision.

  3. Astronomers celebrate a year of new Hubble results

    Science.gov (United States)

    1995-02-01

    "We are beginning to understand that because of these observations we are going to have to change the way we look at the Universe," said ESA's Dr Duccio Macchetto, Associate Director for Science Programs at the Space Telescope Science Institute (STScI), Baltimore, Maryland, USA. The European Space Agency plays a major role in the Hubble Space Telescope programme. The Agency provided one of the telescope's four major instruments, called the Faint Object Camera, and two sets of electricity-generating solar arrays. In addition, 15 ESA scientific and technical staff work at the STScI. In return for this contribution, European astronomers are entitled to 15 percent of the telescope's observing time, although currently they account for 20 percent of all observations. "This is a testimony to the quality of the European science community", said Dr Roger Bonnet, Director of Science at ESA. "We are only guaranteed 15 percent of the telescope's use, but consistently receive much more than that." Astronomers from universities, observatories and research institutes across Europe lead more than 60 investigations planned for the telescope's fifth observing cycle, which begins this summer. Many more Europeans contribute to teams led by other astronomers. Looking back to the very start of time European astronomer Dr Peter Jakobsen used ESA's Faint Object Camera to confirm that helium was present in the early Universe. Astronomers had long predicted that 90 percent of the newly born Universe consisted of hydrogen, with helium making up the remainder. Before the refurbished Hubble came along, it was easy to detect the hydrogen, but the primordial helium remained elusive. The ultraviolet capabilities of the telescope, combined with the improvement in spatial resolution following the repair, made it possible for Dr Jakobsen to obtain an image of a quasar close to the edge of the known Universe. A spectral analysis of this picture revealed the quasar's light, which took 13 billion years

  4. Advances in Exoplanet Observing by Amateur Astronomers (Abstract)

    Science.gov (United States)

    Conti, D. M.

    2017-06-01

    (Abstract only) This past year has seen a marked increase in amateur astronomer participation in exoplanet research. This has ranged from amateur astronomers helping professional astronomers confirm candidate exoplanets, to helping refine the ephemeris of known exoplanets. In addition, amateur astronomers have been involved in characterizing such exotic objects as disintegrating planetesimals. However, the involvement in such pro/am collaborations has also required that amateur astronomers follow a more disciplined approach to exoplanet observing.

  5. Tycho Brahe and Egnazio Danti. Observations and astronomical research at Prague and Florence at the end of the 16th century

    Science.gov (United States)

    Triarico, Carlo

    The paper aims at pointing out the similarities between the astronomical research of Tycho Brahe and Egnazio Danti. The main issue is the comparison between the researches of the two astronomers about the measurement of the ecliptic's obliquity and its possible variation. The books published by the two scientists about the use and building up of the astronomical instruments will be also compared. Finally, will be given some examples of instruments of the Medici Family collection in the Istituto e Museo di Storia della Scienza in Florence, which come from Praha and were built by the technicians who worked for Tycho.

  6. Zach's instruments and their characteristics

    Science.gov (United States)

    Wolfschmidt, Gudrun

    The astronomically interested Duke Ernst II von Sachsen-Gotha-Altenburg (1745-1804) hired Baron Franz Xaver von Zach (1754-1832) as court astronomer in 1786. Immediatedly Zach started to make plans for instrumentation for a new observatory. But first they travelled with their instruments (a 2-foot Ramsden transit instrument, the Sisson quadrant, three Hadley sextants, two achromatic refractors and chronometers) to southern France. In Hyàres a tower of the wall around the town was converted into an observatory in 1787. For the building of the new observatory Zach had chosen a place outside of Gotha on the top of the Seeberg. The three main instruments were an 8-foot transit instrument made by Ramsden, a northern and southern mural quadrant made by Sisson and a zenith sector made by Cary, in addition an 8-foot circle made by Ramsden. By analysing the whole instrumentation of Gotha observatory, we can see a change around 1800 in the kind of instruments, from quadrants and sextants to the full circles and from the transit instrument to the meridian circle. The decline of the Gotha observatory started with the early death of the Duke in 1804 and the subsequent departure of Zach in 1806.

  7. Astronomers Get New Tools for Gravitational-Wave Detection

    Science.gov (United States)

    2010-01-01

    Teamwork between gamma-ray and radio astronomers has produced a breakthrough in finding natural cosmic tools needed to make the first direct detections of the long-elusive gravitational waves predicted by Albert Einstein nearly a century ago. An orbiting gamma-ray telescope has pointed radio astronomers to specific locations in the sky where they can discover new millisecond pulsars. Millisecond pulsars, rapidly-spinning superdense neutron stars, can serve as extremely precise and stable natural clocks. Astronomers hope to detect gravitational waves by measuring tiny changes in the pulsars' rotation caused by the passage of the gravitational waves. To do this, they need a multitude of millisecond pulsars dispersed widely throughout the sky. However, nearly three decades after the discovery of the first millisecond pulsar, only about 150 of them had been found, some 90 of those clumped tightly in globular star clusters and thus unusable for detecting gravitational waves. The problem was that millisecond pulsars could only be discovered through arduous, computing-intensive searches of small portions of sky. "We've probably found far less than one percent of the millisecond pulsars in the Milky Way Galaxy," said Scott Ransom of the National Radio Astronomy Observatory (NRAO). The breakthrough came when an instrument aboard NASA's Fermi Gamma-Ray Space Telescope began surveying the sky in 2008. This instrument located hundreds of gamma-ray-emitting objects throughout our Galaxy, and astronomers suspected many of these could be millisecond pulsars. Paul Ray of the Naval Research Laboratory initiated an international collaboration to use radio telescopes to confirm the identity of these objects as millisecond pulsars. "The data from Fermi were like a buried-treasure map," Ransom said. "Using our radio telescopes to study the objects located by Fermi, we found 17 millisecond pulsars in three months. Large-scale searches had taken 10-15 years to find that many," Ransom

  8. Electronic Imaging in Astronomy Detectors and Instrumentation

    CERN Document Server

    McLean, Ian

    2008-01-01

    The second edition of Electronic Imaging in Astronomy: Detectors and Instrumentation describes the remarkable developments that have taken place in astronomical detectors and instrumentation in recent years – from the invention of the charge-coupled device (CCD) in 1970 to the current era of very large telescopes, such as the Keck 10-meter telescopes in Hawaii with their laser guide-star adaptive optics which rival the image quality of the Hubble Space Telescope. Authored by one of the world’s foremost experts on the design and development of electronic imaging systems for astronomy, this book has been written on several levels to appeal to a broad readership. Mathematical expositions are designed to encourage a wider audience, especially among the growing community of amateur astronomers with small telescopes with CCD cameras. The book can be used at the college level for an introductory course on modern astronomical detectors and instruments, and as a supplement for a practical or laboratory class.

  9. The Galway astronomical Stokes polarimeter: optical development

    Directory of Open Access Journals (Sweden)

    Sheehan B.

    2010-06-01

    Full Text Available The acquisition time of astronomical polarimeters has in the past been restricted to by the use of polarimeters utilizing modulated or rotating components [1]. If the polarisation state being measured is changing in the order of nanoseconds, how does one measure this? The Galway Astronomical Stokes Polarimeter (GASP is an instantaneous full Stokes Division Of Amplitude Polarimeter (DOAP that has been developed for astronomical imaging polarimetry. It also uses just one camera thus restricting the acquisition time to photon statistics. Following the work of Compain and Drévillon [2], the main component - the Retarding Beam-Splitter, was redesigned and enhanced for imaging use. We present how the polarization and imaging optics were developed to create a broadband imaging instantaneous polarimeter.

  10. Design of a multifunction astronomical CCD camera

    Science.gov (United States)

    Yao, Dalei; Wen, Desheng; Xue, Jianru; Chen, Zhi; Wen, Yan; Jiang, Baotan; Xi, Jiangbo

    2015-07-01

    To satisfy the requirement of the astronomical observation, a novel timing sequence of frame transfer CCD is proposed. The multiple functions such as the adjustments of work pattern, exposure time and frame frequency are achieved. There are four work patterns: normal, standby, zero exposure and test. The adjustment of exposure time can set multiple exposure time according to the astronomical observation. The fame frequency can be adjusted when dark target is imaged and the maximum exposure time cannot satisfy the requirement. On the design of the video processing, offset correction and adjustment of multiple gains are proposed. Offset correction is used for eliminating the fixed pattern noise of CCD. Three gains pattern can improve the signal to noise ratio of astronomical observation. Finally, the images in different situations are collected and the system readout noise is calculated. The calculation results show that the designs in this paper are practicable.

  11. Astronomical Polarimeters and Features of Polarimetric Observations

    Science.gov (United States)

    Morozhenko, A. V.; Vid'machenko, A. P.

    2005-01-01

    We present a general description of ground-based astronomical polarimeters, and provide a detailed description of the spectropolarimeter of the Main astronomical observatory (MAO) of a National Academy of Sciences of Ukraine (NASU). Using a polarization modulator of a rotating quarter-wave phase plate (FP) allows us to measure the parameters of linear and circular polarization simultaneously. In 1983 O. I. Bugaenko with the colleagues from MAO of NASU produced an automatic astronomical spectropolarimeter (ASP), which used a continuous rotation of polarizer with frequency of 61 Hz. Observations in two beam modes allowed it to accommodate changes of transparency of the Earth's atmosphere, air mass the of observational object, inexactness of guiding and displacement from an optical axis because of atmospheric turbulence. In 1995 the spectropolarimeter was upgraded and its spectral interval expanded to 1 micron. Sources of errors and methods of their elimination are described.

  12. Ancient Maya astronomical tables from Xultun, Guatemala.

    Science.gov (United States)

    Saturno, William A; Stuart, David; Aveni, Anthony F; Rossi, Franco

    2012-05-11

    Maya astronomical tables are recognized in bark-paper books from the Late Postclassic period (1300 to 1521 C.E.), but Classic period (200 to 900 C.E.) precursors have not been found. In 2011, a small painted room was excavated at the extensive ancient Maya ruins of Xultun, Guatemala, dating to the early 9th century C.E. The walls and ceiling of the room are painted with several human figures. Two walls also display a large number of delicate black, red, and incised hieroglyphs. Many of these hieroglyphs are calendrical in nature and relate astronomical computations, including at least two tables concerning the movement of the Moon, and perhaps Mars and Venus. These apparently represent early astronomical tables and may shed light on the later books.

  13. 16 years of airglow measurement with astronomical facilities

    Science.gov (United States)

    Kausch, Wolfgang; Noll, Stefan; Kimeswenger, Stefan; Unterguggenberger, Stefanie; Jones, Amy; Proxauf, Bastian

    2017-04-01

    Observations taken with ground-based astronomical telescopes are affected by various airglow emission processes in the Earth's upper atmosphere. This chemiluminescent emission can be used to investigate the physical state of the meso- and the thermosphere. By applying a modified approach of techniques originally developed to characterise and remove these features from the astronomical spectra, which are not primarily taken for airglow studies, these spectra are suitable for airglow research. For our studies, we currently use data from two observing sites on both hemispheres for our studies: The European Southern Observatory operates four 8m telescopes at the Very Large Telescope (VLT) in the Chilean Atacama desert (24.6°S, 70.4°W). The 2.5m Sloan Digital Sky Survey telescope (SDSS) located in New Mexico/USA (32.8°N, 105.8°W) provides observations from the northern hemisphere. Each of these telescopes is equipped with several astronomical instruments. Among them are several spectrographs operating in the optical and near-IR regime with medium to high spectral resolution. Currently, we work on data from the following three spectrographs (1) UVES@VLT (Ultraviolet and Visual Echelle Spectrograph): This instrument provides spectra in the wavelength regime from 0.3 to 1.1μm in small spectral ranges. Its high resolving power (up to R˜110 000) allows a detailed study of oxygen (OI@557nm, OI@630nm), sodium (NaD@589nm), nitrogen (NI@520nm), and many OH bands. UVES has been in operation since 1999 providing the longest time series. (2) X-Shooter@VLT: This spectrograph is unique as it provides the whole wavelength range from 0.3 to 2.5μm at once with medium resolving power (R˜3 300 to 18 000, depending on the setup). This enables us to study the dependency of optical and near-IR airglow processes simultaneously, e.g. the OH bands. In addition, weak airglow continuum emission, e.g. arising from FeO and NiO can be studied. In operation since 2009, the data cover half a

  14. The Astronomical Society of New York

    Science.gov (United States)

    Philip, A. G. D.

    2000-05-01

    The New York Astronomical Corporation was formed in 1968 by astronomers at New York State universities, colleges and observatories with the aim of building a large telescope for the use of astronomers in the state. Hawaii was selected as a possible site for a 150-in telescope and for a period of five years a vigorous effort was made at fund raising. A grant was received from the New York State Science and Technology Foundation to help in the organization of the group. By 1973 it was decided to stop plans for a New York Telescope since we had no success in the fund raising. However our group was already involved in holding meetings at the member institutions and staff and students would give reports on their work. In 1973 we formally set up the Astronomical Society of New York. Meetings are held twice a year. The Fall meeting is held at Union College or RPI and at this time the business meeting of NYAC is held. The Spring meeting is held at the other member institutions, from Alfred University in the west and the State University of New York at Stony Brook, in the east. The proceedings of the meetings are published in the News Letter of the Astronomical Society of New York. Prizes are awarded for the best graduate and the best undergraduate papers submitted to the Prize Committee. The winners give invited talks at a meeting following the award. Travel grants are awarded to both graduate and undergraduate students who are granted time to observe on optical or radio telescopes. ASNY has provided a good platform for students to give their first papers and by awarding the prizes and travel grants ASNY has been able to support student research. The meetings help to maintain good contacts among New York astronomers.

  15. A buyer's and user's guide to astronomical telescopes and binoculars

    CERN Document Server

    Mullaney, James

    2014-01-01

    Amateur astronomers of all skill levels are always contemplating their next telescope, and this book points the way to the most suitable instruments. Similarly, those who are buying their first telescopes – and these days not necessarily a low-cost one – will be able to compare and contrast different types and manufacturers. This revised new guide provides an extensive overview of binoculars and telescopes. It includes detailed up-to-date information on sources, selection and use of virtually every major type, brand, and model on today’s market, a truly invaluable treasure-trove of information and helpful advice for all amateur astronomers. Originally written in 2006, much of the first edition is inevitably now out of date, as equipment advances and manufacturers come and go. This second edition not only updates all the existing sections but adds two new ones: Astro-imaging and Professional-Amateur collaboration. Thanks to the rapid and amazing developments that have been made in digital cameras it is...

  16. The Astronomical Tables of Moses Farissol Botarel

    OpenAIRE

    Goldstein, Bernard R.; Chabás, José

    2017-01-01

    Moses Farissol Botarel (Avignon, late fifteenth century) was an astronomer who wrote in Hebrew and continued various traditions that depended on astronomy in al-Andalus which, in turn, derived in large part from the zij of al-Battānī (Raqqa, d. 929). His astronomical tables are unusual in that they combine elements from the Parisian Alfonsine Tables with elements from the tables of Levi ben Gerson (Orange, France, d. 1344), Immanuel ben Jacob Bonfils (Tarascon, France, fl. 1350), and Jacob be...

  17. Novel Algorithms for Astronomical Plate Analyses

    Czech Academy of Sciences Publication Activity Database

    Hudec, René; Hudec, L.

    2011-01-01

    Roč. 32, 1-2 (2011), s. 121-123 ISSN 0250-6335. [Conference on Multiwavelength Variability of Blazars. Guangzhou, 22,09,2010-24,09,2010] R&D Projects: GA ČR GA205/08/1207 Grant - others:GA ČR(CZ) GA102/09/0997; MŠMT(CZ) ME09027 Institutional research plan: CEZ:AV0Z10030501 Keywords : astronomical plates * plate archives archives * astronomical algorithms Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.400, year: 2011

  18. Astronomical Network for Teachers in Thailand

    Science.gov (United States)

    Kramer (Hutawarakorn), Busaba; Soonthornthum, Boonraksar; Poshyachinda, Saran

    We report the latest development of a pilot project in establishing the astronomical network for teachers in Thailand. The project has been recently granted by the Institute for the Promotion of Teaching Science and Technology Thailand and operated by Sirindhorn Observatory Chiangmai University. The objectives of the project are (1) to establish a16-inch semi-robotic telescope which can be accessed from schools nationwide; and (2) to establish an educational website in Thai language which contains electronic textbook of astronomy online encyclopedia of astronomy observing projects astronomical database and links to other educational websites worldwide. The network will play important role in the development of teaching and learning astronomy in Thailand.

  19. Management of Astronomical Software Projects with Open Source Tools

    Science.gov (United States)

    Briegel, F.; Bertram, T.; Berwein, J.; Kittmann, F.

    2010-12-01

    In this paper we will offer an innovative approach to managing the software development process with free open source tools, for building and automated testing, a system to automate the compile/test cycle on a variety of platforms to validate code changes, using virtualization to compile in parallel on various operating system platforms, version control and change management, enhanced wiki and issue tracking system for online documentation and reporting and groupware tools as they are: blog, discussion and calendar. Initially starting with the Linc-Nirvana instrument a new project and configuration management tool for developing astronomical software was looked for. After evaluation of various systems of this kind, we are satisfied with the selection we are using now. Following the lead of Linc-Nirvana most of the other software projects at the MPIA are using it now.

  20. The Virtual Astronomical Observatory Users Forum

    Science.gov (United States)

    Muench, August A.; Emery Bunn, S.; Astronomical Observatory, Virtual

    2013-01-01

    We present the online forum astrobabel.com, which has the goal of being a gathering place for the collective community intelligence about astronomical computing. The audience for this forum is anyone engaged in the analysis of astronomical or planetary data, whether that data be observational or theoretical. It is a free, community driven site where discussions are formulated primarily around the "question and answer" format. Current topics on the forum range from “Is there a photometry package in Python?” to “Where are the support forums for astronomy software packages?” and “Why is my SDSS SkyQuery query missing galaxies?” The poster will detail the full scope of discussions in the forum, and provide some basic guidelines for ensuring high quality forum posts. We will highlight the ways astronomers can discover and participate in discussions. Further, we view this as an excellent opportunity to gather feedback and feature requests from AAS221 attendees. Acknowledgement: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  1. Astronomía en la cultura

    Science.gov (United States)

    López, A.; Giménez Benitez, S.; Fernández, L.

    La Astronomía en la Cultura es el estudio interdisciplinario a nivel global de la astronomía prehistórica, antigua y tradicional, en el marco de su contexto cultural. Esta disciplina abarca cualquier tipo de estudios o líneas de investigación en que se relacione a la astronomía con las ciencias humanas o sociales. En ella se incluyen tanto fuentes escritas, relatos orales como fuentes arqueológicas, abarcando entre otros, los siguientes temas: calendarios, observación práctica, cultos y mitos, representación simbólica de eventos, conceptos y objetos astronómicos, orientación astronómica de tumbas, templos, santuarios y centros urbanos, cosmología tradicional y la aplicación ceremonial de tradiciones astronómicas, la propia historia de la astronomía y la etnoastronomía (Krupp, 1989) (Iwaniszewski, 1994). En nuestro trabajo abordamos la historia y situación actual de esta disciplina, sus métodos y sus relaciones con otras áreas de investigación.

  2. Astronomical Plate Archives and Binary Blazars Studies

    Indian Academy of Sciences (India)

    There are about 3 million astronomical photographic plates around the globe, representing an important data source for various aspects of astrophysics. The main advantage is the large time coverage of 100 years or even more. Recent digitization efforts, together with the development of dedicated software, enables for the ...

  3. The Undergraduate Research Resources at the Pisgah Astronomical Research Institute

    Science.gov (United States)

    Cline, J. Donald; Castelaz, Michael W.

    2016-01-01

    Pisgah Astronomical Research Institute (PARI), a former NASA tracking station located in western North Carolina, has been offering programs, campus, and instrument use for undergraduate research and learning experiences since 2000. Over these years, PARI has collaborated with universities and colleges in the Southeastern U.S. Sharing its campus with institutions of higher learning is a priority for PARI as part of its mission to "to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines."PARI is a 200 acre campus for environmental, earth, geological, physical, and astronomical sciences. For example, the PARI 26-m and 4.6-m radio telescopes are excellent for teaching electromagnetic theory, spectroscopy, atomic and molecular emission processes, and general physics and astronomy concepts. The PARI campus has lab and office space, data centers with high speed internet, distance learning capabilities, radio and optical telescopes, earth science sensors, housing and cafeteria.Also, the campus is in an excellent spot for environmental and biological sciences lab and classroom experiences for students. The campus has the capability to put power and Internet access almost anywhere on its 200 acre campus so experiments can be set up in a protected area of a national forest. For example, Earthscope operates a Plate Boundary Observatory sensor on campus to measure plate tectonic motion. And, Clemson University has an instrument measuring winds and temperatures in the Thermsophere. The use of thePARI campus is limited only by the creativity faculty to provide a rich educational environment for their students. An overview of PARI will be presented along with a summary of programs, and a summary of undergraduate research experiences over the past 15 years. Access to PARI and collaboration possibilities will be presented.

  4. Sociological Profile of Astronomers in Spain

    Science.gov (United States)

    Iglesias de Ussel, Julio; Trinidad, Antonio; Ruiz, Diego; Battaner, Eduardo; Delgado, Antonio J.; Rodriguez-Espinosa, José M.; Salvador-Solé, Eduard; Torrelles, José M.

    In this paper the main findings are presented of a recent study made by a team of sociologists from the University of Granada on the professional astronomers currently working in Spain. Despite the peculiarities of this group - its youth, twentyfold increase in size over the last 20 years, and extremely high rate of specialization abroad - in comparison with other Spanish professionals, this is the first time that the sociological characteristics of the group have been studied discretely. The most significant results of the study are presented in the following sections. Section 1 gives a brief historical background of the development of Astronomy in Spain. Section 2 analyzes the socio-demographic profile of Spanish Astronomy professionals (sex, age, marital status, etc.). Sections 3-5 are devoted to the college education and study programs followed by Spanish astronomers, focusing on the features and evaluations of the training received, and pre- and postdoctoral study trips made to research centers abroad. The results for the latter clearly show the importance that Spanish astronomers place on having experience abroad. Special attention is paid to scientific papers published as a result of joint research projects carried out with colleagues from centers abroad as a result of these study trips. Section 6 describes the situation of Astronomy professionals within the Spanish job market, the different positions available and the time taken to find a job after graduation. Section 7 examines Astronomy as a discipline in Spain, including the astronomers' own opinions of the social status of the discipline within Spanish society. Particular attention is paid to how Spanish astronomers view the status of Astronomy in Spain in comparison with that of other European countries.

  5. Finding Hidden Treasures: Investigations in US Astronomical Plate Archives

    Directory of Open Access Journals (Sweden)

    René Hudec

    2013-01-01

    Full Text Available We report here on an ongoing investigation of US astronomical plate archives and tests of the suitability of transportable scanning devices for in situ digitization of archival astronomical plates.

  6. The Virtual Astronomical Observatory: Re-engineering access to astronomical data

    OpenAIRE

    Hanisch, R. J.; Berriman, G. B.; Lazio, T. J. W.; Emery Bunn, S.; Evans, J; McGlynn, T. A.; Plante, R.

    2015-01-01

    The US Virtual Astronomical Observatory was a software infrastructure and development project designed both to begin the establishment of an operational Virtual Observatory (VO) and to provide the US coordination with the international VO effort. The concept of the VO is to provide the means by which an astronomer is able to discover, access, and process data seamlessly, regardless of its physical location. This paper describes the origins of the VAO, including the predecessor efforts within ...

  7. Revista Mexicana de Astronomía y Astrofísica, a real option for astronomical publication

    Science.gov (United States)

    Torres-Peimbert, S.; Allen, C.

    2011-10-01

    We present statistical data about the Revista Mexicana de Astronomía y Astrofísica. We consider that this journal is well positioned in the international astronomical literature. Similarly we present information about the Serie de Conferencias, which also has a wide level of acceptance by the astronomical community.

  8. Young Astronomers' Observe with ESO Telescopes

    Science.gov (United States)

    1995-11-01

    Today, forty 16-18 year old students and their teachers are concluding a one-week, educational `working visit' to the ESO Headquarters in Garching (See ESO Press Release 14/95 of 8 November 1995). They are the winners of the Europe-wide contest `Europe Towards the Stars', organised by ESO with the support of the European Union, under the auspices of the Third European Week for Scientific and Technological Culture. From November 14-20, they have worked with professional ESO astronomers in order to get insight into the methods and principles of modern astronomy and astrophysics, as carried out at one of the world's foremost international centres. This included very successful remote observations with the ESO 3.5-m New Technology Telescope (NTT) and the 1.4-m Coude Auxiliary Telescope (CAT) via a satellite link between the ESO Headquarters and the La Silla observatory in Chile, 12,000 kilometres away. After a general introduction to modern astronomy on the first day of the visit, the participants divided into six teams, according to their interests. Some chose to observe distant galaxies, others prefered to have a closer look on binary stars, and one team decided to investigate a star which is thought to be surrounded by a proto-planetary system. Each team was supported by an experienced ESO astronomer. Then followed the observations at the remote consoles during three nights, the first at the NTT and the following at the CAT. Each team had access to the telescope during half a night. Although the work schedule - exactly as in `real' science - was quite hard, especially during the following data reduction and interpretative phase, all teams managed extremely well and in high spirits. The young astronomers' observations were favoured by excellent atmospheric conditions. At the NTT, the seeing was better than 0.5 arcsecond during several hours, an exceptional value that allows very good images to be obtained. All observations represent solid and interesting science, and

  9. Astronomical context coder for image compression

    Science.gov (United States)

    Pata, Petr; Schindler, Jaromir

    2015-10-01

    Recent lossless still image compression formats are powerful tools for compression of all kind of common images (pictures, text, schemes, etc.). Generally, the performance of a compression algorithm depends on its ability to anticipate the image function of the processed image. In other words, a compression algorithm to be successful, it has to take perfectly the advantage of coded image properties. Astronomical data form a special class of images and they have, among general image properties, also some specific characteristics which are unique. If a new coder is able to correctly use the knowledge of these special properties it should lead to its superior performance on this specific class of images at least in terms of the compression ratio. In this work, the novel lossless astronomical image data compression method will be presented. The achievable compression ratio of this new coder will be compared to theoretical lossless compression limit and also to the recent compression standards of the astronomy and general multimedia.

  10. Astronomical Photometry Past, Present, and Future

    CERN Document Server

    Milone, Eugene F

    2011-01-01

    This book brings together experts in the field of astronomical photometry to discuss how their subfields provide the precision and accuracy in astronomical energy flux measurements that are needed to permit tests of astrophysical theories. Differential photometers and photometry, improvements in infrared precision, the improvements in precision and accuracy of CCD photometry, the absolute calibration of flux, the development of the Johnson UBVRI photometric system and other passband systems to measure and precisely classify specific types of stars and astrophysical quantities, and the current capabilities of spectrophotometry and polarimetry to provide precise and accurate data, are all discussed in this volume. The discussion of `differential’ or `two-star’ photometers ranges from early experiments in visual photometry through the Harvard and Princeton polarizing photometers to the pioneering work of Walraven and differential photometers designed to minimize effects of atmospheric extinction and to count...

  11. Astronomía Mocoví

    Science.gov (United States)

    López, A.; Giménez Benitez, S.; Fernández, L.

    El presente trabajo, es una revisión crítica de la astronomía en la cultura Mocoví, aportando a lo realizado previamente por Lehmann Nistche (Lehmann Nistche, 1924 y 1927) el resultado de nuestro trabajo de campo. Un mayor conocimiento de las cosmovisiones de las etnias de esta área es fundamental para una mejor comprensión de la dispersión de las ideas cosmológicas entre los pueblos aborígenes americanos, dada la importancia del corredor chaqueño como conexión entre las altas culturas andinas, la mesopotamia y la región pampeana (Susnik, 1972). Para ello se realiza una comparación con otras cosmovisiones del área americana. Nuestro aporte se enmarca dentro de las actuales líneas de trabajo mundialmente en desarrollo en Astronomía en la Cultura.

  12. The origins of Ptolemy's astronomical tables.

    Science.gov (United States)

    Newton, R. R.

    Following the line set by his earlier book 'The crime of Claudius Ptolemy' the author discusses here the numerous astronomical tables in Ptolemy's work that have been calculated with the aid of trigonometric tables, as well as a few that are nonlinear but that do not involve trigonometry. The purpose in this study is to determine, if possible, whether Ptolemy calculated these tables or whether he copied them from now-lost original works. The conclusion isthat Ptolemy made few if any original contributions to astronomy, either observational or computational.Contents: 1. Introduction; thetable of chords. 2. The tables of the latitude and of gnomon shadows.3. Tables of the Sun. 4. Astronomical geography. 5. The tables of theMoon. 6. Eclipse tables. 7. Tables of the planets. 8. The empirical basis for Hipparchus's mean motions of the Moon. 9. Summary and conclusions.

  13. WWW Access to Astronomical Archives and Databases

    Science.gov (United States)

    Pasian, Fabio; Smareglia, Riccardo

    In this document, an approach to the development of WWW-accessible astronomical archives and databases is described, which can easily be extended also to other disciplines. The architecture is based on a set of servers running at the archive site, each performing a specialized task: accessing an SQL-based DBMS, retrieving and downlinking 1-D or 2-D data (measurements), displaying quicklook data, or plotting the results of a query to the database. All of the information on the user interface is dynamically stored in the database, allowing the pages to be prepared on-the-fly; no additional software needs to be run on the user’s computer. A WWW-accessible test astronomical archive, containing both 2-D (images) and 1-D (spectra) data, and having NCSA/Mosaic as an interface is described as an example of successful application of the above concepts.

  14. Isaac Newton and the astronomical refraction.

    Science.gov (United States)

    Lehn, Waldemar H

    2008-12-01

    In a short interval toward the end of 1694, Isaac Newton developed two mathematical models for the theory of the astronomical refraction and calculated two refraction tables, but did not publish his theory. Much effort has been expended, starting with Biot in 1836, in the attempt to identify the methods and equations that Newton used. In contrast to previous work, a closed form solution is identified for the refraction integral that reproduces the table for his first model (in which density decays linearly with elevation). The parameters of his second model, which includes the exponential variation of pressure in an isothermal atmosphere, have also been identified by reproducing his results. The implication is clear that in each case Newton had derived exactly the correct equations for the astronomical refraction; furthermore, he was the first to do so.

  15. Statistical methods for astronomical data analysis

    CERN Document Server

    Chattopadhyay, Asis Kumar

    2014-01-01

    This book introduces “Astrostatistics” as a subject in its own right with rewarding examples, including work by the authors with galaxy and Gamma Ray Burst data to engage the reader. This includes a comprehensive blending of Astrophysics and Statistics. The first chapter’s coverage of preliminary concepts and terminologies for astronomical phenomenon will appeal to both Statistics and Astrophysics readers as helpful context. Statistics concepts covered in the book provide a methodological framework. A unique feature is the inclusion of different possible sources of astronomical data, as well as software packages for converting the raw data into appropriate forms for data analysis. Readers can then use the appropriate statistical packages for their particular data analysis needs. The ideas of statistical inference discussed in the book help readers determine how to apply statistical tests. The authors cover different applications of statistical techniques already developed or specifically introduced for ...

  16. Recruitment and Retention of LGBTIQ Astronomers

    Science.gov (United States)

    Dixon, William Van Dyke

    2012-01-01

    While lesbian, gay, bisexual, transgender, intersex, or questioning (LGBTIQ) astronomers face many of the same workplace challenges as women and racial/ethnic minorities, from implicit bias to overt discrimination, other challenges are unique to this group. An obvious example is the absence at many institutions of health insurance and other benefits for the same-sex domestic partners of their employees. More subtle is the psychological toll paid by LGBTIQ astronomers who remain "in the closet," self-censoring every statement about their personal lives. Paradoxically, the culture of the physical sciences, in which sexuality, gender identity, and gender expression are considered irrelevant, can discourage their discussion, further isolating LGBTIQ researchers. Addressing these challenges is not just a matter of fairness; it is an essential tool in the recruitment and retention of the brightest researchers and in assuring their productivity. We will discuss these issues and what individuals and departments can to make their institutions more welcoming to their LGBTIQ colleagues.

  17. International Astronomical Union Sympoisum No.50

    CERN Document Server

    Westerlund, B

    1973-01-01

    Dr J. Landi Dessy, Director of the Astronomical Observatory, Cordoba, Argentina, invited the International Astronomical Union to hold a Symposium in Cordoba in connection with the celebration of the Centennial of the Cordoba Observatory; the date of foundation is October 24, 1871. He proposed that the Symposium should deal with Spectral Classification and Multicolour Photometry as seven years had elapsed since the Symposium No. 24 in Saltsj6baden, and much development had occurred in the field. The invitation and the proposal were accepted by the IAU, and the Symposium was held in Villa Carlos Paz, near Cordoba, between October 18 and October 24, 1971. It was attended by about 50 scientists representing Argentina, Canada, Chile, Den­ mark, France, Germany, Italy, Mexico, Sweden, Switzerland, U.K., U.S.A., Vatican City State and Venezuela. The Symposium was divided into four sessions: 1. Classification of slit spectra, 2. Classification of objective-prism spectra, 3. Photometric classification, 4. Catalogues ...

  18. EDUCATIONAL ASTRONOMICAL OBSERVATIONS ON REMOTE ACCESS TELESCOPES

    Directory of Open Access Journals (Sweden)

    Ivan P. Kriachko

    2016-01-01

    Full Text Available The purpose of this article is to show the way of overcoming one of the major problems of astronomy teaching methods in upper secondary school – organization of educational astronomical observations. Nowadays it became possible to perform such observations on remote access telescopes. By using up-to-date informational and communicational technologies, having an opportunity to work with robotic telescopes allows us to organize a unique cognitive and research oriented activities for students while conducting their specialized astronomical studies. Below here is given a brief description of the most significant robotic telescopes and the way of the usage of open remote access telescopic network which was created by professors and scientists of Harvard-Smithsonian Center for Astrophysics, USA.

  19. Astronomic Bioethics: Terraforming X Planetary protection

    OpenAIRE

    Palhares, Dario; Santos, Íris Almeida dos

    2017-01-01

    A hard difficulty in Astrobiology is the precise definition of what life is. All living beings have a cellular structure, so it is not possible to have a broader concept of life hence the search for extraterrestrial life is restricted to extraterrestrial cells. Earth is an astronomical rarity because it is difficult for a planet to present liquid water on the surface. Two antagonistic bioethical principles arise: planetary protection and terraforming. Planetary protection is based on the fear...

  20. The Astronomical Pulse of Global Extinction Events

    Directory of Open Access Journals (Sweden)

    David F.V. Lewis

    2006-01-01

    Full Text Available The linkage between astronomical cycles and the periodicity of mass extinctions is reviewed and discussed. In particular, the apparent 26 million year cycle of global extinctions may be related to the motion of the solar system around the galaxy, especially perpendicular to the galactic plane. The potential relevance of Milankovitch cycles is also explored in the light of current evidence for the possible causes of extinction events over a geological timescale.

  1. The Astronomical Code of the Rgveda

    Science.gov (United States)

    Kak, Subhash

    This is the extensively revised edition of the classic book that presented the author's discovery of an astronomical code in the organization of the Rgveda. This code has changed our understanding of the Vedic system of knowledge, rise of earliest astronomy, history of science, and the chronology of ancient India. The work was first reported in a series of journal articles; this book brings together these discoveries between the same two covers for the first time.

  2. A website for astronomical news in Spanish

    Science.gov (United States)

    Ortiz-Gil, A.

    2008-06-01

    Noticias del Cosmos is a collection of web pages within the Astronomical Observatory of the University of Valencia's website where we publish short daily summaries of astronomical press releases. Most, if not all of, the releases are originally written in English, and often Spanish readers may find them difficult to understand because not many people are familiar with the scientific language employed in these releases. Noticias del Cosmos has two principal aims. First, we want to communicate the latest astronomical news on a daily basis to a wide Spanish-speaking public who would otherwise not be able to read them because of the language barrier. Second, daily news can be used as a tool to introduce the astronomical topics of the school curriculum in a more immediate and relevant way. Most of the students at school have not yet reached a good enough level in their knowledge of English to fully understand a press release, and Noticias del Cosmos offers them and their teachers this news in their mother tongue. During the regular programme of school visits at the Observatory we use the news as a means of showing that there is still a lot to be discovered. So far the visits to the website have been growing steadily. Between June 2003 and June 2007 we had more than 30,000 visits (excluding 2006). More than 50% of the visits come from Spain, followed by visitors from South and Central America. The feedback we have received from teachers so far has been very positive, showing the usefulness of news items in the classroom when teaching astronomy.

  3. Preserving Dark Skies: Do Astronomers Care?

    Science.gov (United States)

    Davis, D. R.; Crawford, D. L.

    2001-12-01

    Ground based telescopes are, even in this era of planetary missions and space telescopes, the dominant source of data on solar system objects. Yet many of the premier observing sites in the world are threatened by increasing artificial light that is scattered into the sky - light pollution. World class observing sites such as Mt. Wilson have long since lost the ability to do cutting edge faint object science and observatories in Southern Arizona have been recently threatened - the Canoa Ranch development being the most recent example. Yet there are actions that can be taken to preserve dark skies, not only for astronomy, but also for the benefit of all humanity. Lead by astronomers, effective outdoor lighting codes have been produced and adopted by many jurisdictional authorities. Advocacy organizations such as the International Dark-sky Association (IDA) distribute educational material on how to preserve dark skies through good outdoor lighting practices. Other institutions, such as the National Park Service, are realizing that dark skies are an integral part of the wilderness experience and are taking steps to preserve the quality of their skies. However, the primary beneficaries of dark sky preservation efforts, namely the ground based astronomical community, have largely failed to become involved in efforts to preserve dark skies. For example, only a few percent of the membership of the American Astronomical Society is active in light pollution work or is even a member of IDA. In this presentation, Iwe will outline what is being done locally to preserve dark skies througout the world. In addition, some observations on the level of support from the astronomical community will be offered.

  4. Astronomical random numbers for quantum foundations experiments

    OpenAIRE

    Leung, Calvin; Brown, Amy; Nguyen, Hien; Friedman, Andrew S.; Kaiser, David I.; Gallicchio, Jason

    2017-01-01

    Photons from distant astronomical sources can be used as a classical source of randomness to improve fundamental tests of quantum nonlocality, wave-particle duality, and local realism through Bell's inequality and delayed-choice quantum eraser tests inspired by Wheeler's cosmic-scale Mach-Zehnder interferometer gedankenexperiment. Such sources of random numbers may also be useful for information-theoretic applications such as key distribution for quantum cryptography. Building on the design o...

  5. The la Plata Astronomical Data Center

    Science.gov (United States)

    Marraco, H. G.

    1990-11-01

    RESUMEN. El Centro de Datos Astron6micos tiene su sede en la Facuitad de Ciencias Astron6micas y Geofisicas d la Universidad Nacional de La Plata y funciona por convenio entre esta facultad y el Centre des Stellaires de la Universite' Louis Pasteur en Estrasburgo (CDS), Francia. La finalidad de este centro es la de proveer a los astr6nomos del area con copias de los alrededor de 500 acumulados y/o preparados por el CDS a la vez que promover la producci6n y/o acumulaci6n de en el rea. Para la realizaci6n de esta tarea se cuenta con el apoyo del Centro Superior para el Procesamiento de la Informaci6n (CESPI) de la UNLP cuyos equipos se describen. Las tareas que se estan realizando incluyen la distribuci6n de SIMBAD a los astr6nomos argentinos y se efectuan ensayos de distribuci6n en linea de CD-ROM TEST DISK del Astronomical Data Center (ADC) de la NASA que contiene los 31 mas solicitados por los astr6nomos de todo el mundo. ABSTRACl The La Plata Astronomical Data Center operates by an agreement between the Facultad de Ciencias Astron6micas y Geofisicas at La Plata University and the Centre des Donnees Stellaires of Louis Pasteur University at Strasbourg (CDS), France. The purpose of the Center is to provide to the area astronomers with copies of the catalogs they need amongst those stored and/or prepared at CDS. At the same time the center will act of the astronomical data produced within its area. K words: DATA ANALYSIS

  6. Astronomical Orientations in Sanctuaries of Daunia

    Science.gov (United States)

    Antonello, E.; Polcaro, V. F.; Sisto, A. M. Tunzi; Zupone, M. Lo

    2015-05-01

    Prehistoric sanctuaries of Daunia date back several thousand years. During the Neolithic and Bronze Ages the farmers in that region dug hypogea and holes whose characteristics suggest a ritual use. In the present article we summarize the results of the astronomical analysis of the orientation of the rows of holes in three different sites, and we point out the possible use of the setting of the stars of Centaurus. An interesting archaeological confirmation of an archaeoastronomical prediction is also reported.

  7. GASP-Galway astronomical Stokes polarimeter

    Directory of Open Access Journals (Sweden)

    Shearer A.

    2010-06-01

    Full Text Available The Galway Astronomical Stokes Polarimeter (GASP is an ultra-high-speed, full Stokes, astronomical imaging polarimeter based upon a Division of Amplitude Polarimeter. It has been developed to resolve extremely rapid stochastic (~ms variations in objects such as optical pulsars, magnetars and magnetic cataclysmic variables. The polarimeter has no moving parts or modulated components so the complete Stokes vector can be measured from just one exposure - making it unique to astronomy. The time required for the determination of the full Stokes vector is limited only by detector efficiency and photon fluxes. The polarimeter utilizes a modified Fresnel rhomb that acts as a highly achromatic quarter wave plate and a beamsplitter (referred to as an RBS. We present a description of how the DOAP works, some of the optical design for the polarimeter. Calibration is an important and difficult issue with all polarimeters, but particularly in astronomical polarimeters. We give a description of calibration techniques appropriate to this type of polarimeter.

  8. Astronomical Virtual Observatories Through International Collaboration

    Directory of Open Access Journals (Sweden)

    Masatoshi Ohishi

    2010-03-01

    Full Text Available Astronomical Virtual Observatories (VOs are emerging research environment for astronomy, and 16 countries and a region have funded to develop their VOs based on international standard protocols for interoperability. The 16 funded VO projects have established the International Virtual Observatory Alliance (http://www.ivoa.net/ to develop the standard interoperable interfaces such as registry (meta data, data access, query languages, output format (VOTable, data model, application interface, and so on. The IVOA members have constructed each VO environment through the IVOA interfaces. National Astronomical Observatory of Japan (NAOJ started its VO project (Japanese Virtual Observatory - JVO in 2002, and developed its VO system. We have succeeded to interoperate the latest JVO system with other VOs in the USA and Europe since December 2004. Observed data by the Subaru telescope, satellite data taken by the JAXA/ISAS, etc. are connected to the JVO system. Successful interoperation of the JVO system with other VOs means that astronomers in the world will be able to utilize top-level data obtained by these telescopes from anywhere in the world at anytime. System design of the JVO system, experiences during our development including problems of current standard protocols defined in the IVOA, and proposals to resolve these problems in the near future are described.

  9. AAS Publishing News: Astronomical Software Citation Workshop

    Science.gov (United States)

    Kohler, Susanna

    2015-07-01

    Do you write code for your research? Use astronomical software? Do you wish there were a better way of citing, sharing, archiving, or discovering software for astronomy research? You're not alone! In April 2015, AAS's publishing team joined other leaders in the astronomical software community in a meeting funded by the Sloan Foundation, with the purpose of discussing these issues and potential solutions. In attendance were representatives from academic astronomy, publishing, libraries, for-profit software sharing platforms, telescope facilities, and grantmaking institutions. The goal of the group was to establish “protocols, policies, and platforms for astronomical software citation, sharing, and archiving,” in the hopes of encouraging a set of normalized standards across the field. The AAS is now collaborating with leaders at GitHub to write grant proposals for a project to develop strategies for software discoverability and citation, in astronomy and beyond. If this topic interests you, you can find more details in this document released by the group after the meeting: http://astronomy-software-index.github.io/2015-workshop/ The group hopes to move this project forward with input and support from the broader community. Please share the above document, discuss it on social media using the hashtag #astroware (so that your conversations can be found!), or send private comments to julie.steffen@aas.org.

  10. GalileoMobile: Astronomical activities in schools

    Science.gov (United States)

    Dasi Espuig, Maria; Vasquez, Mayte; Kobel, Philippe

    GalileoMobile is an itinerant science education initiative run on a voluntary basis by an international team of astronomers, educators, and science communicators. Our team's main goal is to make astronomy accessible to schools and communities around the globe that have little or no access to outreach actions. We do this by performing teacher workshops, activities with students, and donating educational material. Since the creation of GalileoMobile in 2008, we have travelled to Chile, Bolivia, Peru, India, and Uganda, and worked with 56 schools in total. Our activities are centred on the GalileoMobile Handbook of Activities that comprises around 20 astronomical activities which we adapted from many different sources, and translated into 4 languages. The experience we gained in Chile, Bolivia, Peru, India, and Uganda taught us that (1) bringing experts from other countries was very stimulating for children as they are naturally curious about other cultures and encourages a collaboration beyond borders; (2) high-school students who were already interested in science were always very eager to interact with real astronomers doing research to ask for career advice; (3) inquiry-based methods are important to make the learning process more effective and we have therefore, re-adapted the activities in our Handbook according to these; (4) local teachers and university students involved in our activities have the potential to carry out follow-up activities, and examples are those from Uganda and India.

  11. Philosophy for the Creation of Astronomical Images

    Science.gov (United States)

    Rector, T.; Levay, Z. G.; Frattare, L. M.; English, J.; Pu'Uohau-Pummill, K.

    2005-12-01

    The quality of modern astronomical data, the power of modern computers and the agility of current image-processing software enable the creation of high-quality images in a purely digital form. The combination of these technological advancements has created a new ability to make colour astronomical images. These programs use a layering metaphor that allows for an unlimited number of astronomical datasets to be combined in any desired colour scheme, creating an immense parameter space to be explored. A philosophy is presented on how to use scaling, colour and composition to create images that simultaneously highlight scientific detail and are aesthetically appealing. This philosophy is necessary because most datasets do not correspond to the wavelength range of sensitivity of the human eye. The use of visual grammar, defined as the elements that affect the interpretation of an image, can maximize the richness and detail in an image while maintaining scientific accuracy. By properly using visual grammar, one can imply qualities that a two-dimensional image cannot show intrinsically, such as depth, motion and energy. In addition, composition can be used to engage viewers and keep them interested for a longer period of time. The use of these techniques can result in a striking image that will effectively convey the science within the image to scientists and to the public. Details of the pictorial examples used are presented in the conference web-proceedings and webcast.

  12. Astronomical photonics in the context of infrared interferometry and high-resolution spectroscopy

    Science.gov (United States)

    Labadie, Lucas; Berger, Jean-Philippe; Cvetojevic, Nick; Haynes, Roger; Harris, Robert; Jovanovic, Nemanja; Lacour, Sylvestre; Martin, Guillermo; Minardi, Stefano; Perrin, Guy; Roth, Martin; Thomson, Robert R.

    2016-08-01

    We review the potential of Astrophotonics, a relatively young field at the interface between photonics and astronomical instrumentation, for spectro-interferometry. We review some fundamental aspects of photonic science that drove the emergence of astrophotonics, and highlight the achievements in observational astrophysics. We analyze the prospects for further technological development also considering the potential synergies with other fields of physics (e.g. non-linear optics in condensed matter physics). We also stress the central role of fiber optics in routing and transporting light, delivering complex filters, or interfacing instruments and telescopes, more specifically in the context of a growing usage of adaptive optics.

  13. Amateur astronomers in support of observing campaigns

    Science.gov (United States)

    Yanamandra-Fisher, P.

    2014-07-01

    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON. The success of the paradigm shift in scientific research is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access, and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: - the establishment of a network of astronomers and related professionals that can be galvanized into action on short notice to support observing campaigns; - assist in various science investigations pertinent to the campaign; - provide an alert-sounding mechanism should the need arise; - immediate outreach and dissemination of results via our media/blogger members; - provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. In 2014, two new comet observing campaigns involving pro-am collaborations have been identified: (1) C/2013 A1 (C/Siding Spring) and (2) 67P/Churyumov-Gerasimenko (CG). The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA (Pro-Am Collaborative Astronomy) portal that currently is focused on comets: from supporting observing campaigns for current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers. The recent observation of comet 67P, at a magnitude of 21.2, from Siding

  14. Historical Examples of Lobbying: The Case of Strasbourg Astronomical Observatories

    Science.gov (United States)

    Heck, Andre

    2012-08-01

    Several astronomical observatories have been established in Strasbourg in very differing contexts. In the late 17th century, an observing post (scientifically sterile) was put on top of a tower, the Hospital Gate, essentially for the prestige of the city and the notoriety of the university. In the 19th century, the observatory built on the Académie hosting the French university was the first attempt to set up in the city a real observatory equipped with genuine instrumentation with the purpose of carrying out serious research, but the succession of political regimes in France and the continual bidding for moving the university to other locations, together with the faltering of later scholars, torpedoed any significant scientific usage of the place. After the 1870-1871 Franco-Prussian war, the German authorities set up a prestigious university campus with a whole range of institutes together with a modern observatory consisting of several buildings and hosting a flotilla of excellent instruments, including the then largest refractor of the country. This paper illustrates various types of lobbying used in the steps above while detailing, from archive documents largely unexploited so far, original research on the two first observatories.

  15. Education and Outreach Opportunities in New Astronomical Facilities

    Science.gov (United States)

    Mould, J. R.; Pompea, S.

    2002-12-01

    Astronomy presents extraordinary opportunities for engaging young people in science from an early age. The National Optical Astronomy Observatory (NOAO), supported by the National Science Foundation, leverages the attraction of astronomy with a suite of formal and informal education programs that engage our scientists and education and public outreach professionals in effective, strategic programs that capitalize on NOAO's role as a leader in science and in the design of new astronomical facilities. The core of the science education group at NOAO in Tucson consists of a group of Ph.D.-level scientists with experience in educational program management, curriculum and instructional materials development, teacher/scientist partnerships, and teacher professional development. This core group of scientist/educators hybrids has a strong background in earth and space science education as well as experience in working with and teaching about the technology that has enabled new astronomical discoveries. NOAO has a vigorous public affairs/media program and a history of effectively working locally, regionally, and nationally with the media, schools, science centers, and, planetaria. In particular, NOAO has created successful programs exploring how research data and tools can be used most effectively in the classroom. For example, the Teacher Leaders in Research Based Science Education explores how teachers can most effectively integrate astronomical research on novae, active galactic nuclei, and the Sun into classroom-based investigations. With immersive summer workshops at Kitt Peak National Observatory and the National Solar Observatory at Sacramento Peak, teachers learn research and instrumentation skills and how to encourage and maintain research activities in their classrooms. Some of the new facilities proposed in the recent decadal plan, Astronomy and Astrophysics in the New Millennium (National Academy Press), can provide extended opportunities for incorporating

  16. Astronomers Make First Images With Space Radio Telescope

    Science.gov (United States)

    1997-07-01

    part of the VLBA instrument, was modified over the past four years to allow it to incorporate data from the satellite. Correlation of the observational data was completed successfully on June 12, after the exact timing of the satellite recording was established. Further computer processing produced an image of PKS 1519-273 -- the first image ever produced using a radio telescope in space. For Jim Ulvestad, the NRAO astronomer who made the first image, the success ended a long quest for this new capability. Ulvestad was involved in an experiment more than a decade ago in which a NASA communications satellite, TDRSS, was used to test the idea of doing radio astronomical imaging by combining data from space and ground radio telescopes. That experiment showed that an orbiting antenna could, in fact, work in conjunction with ground-based radio observatories, and paved the way for HALCA and a planned Russian radio astronomy satellite called RadioAstron. "This first image is an important technical milestone, and demonstrates the feasibility of a much more advanced mission, ARISE, currently being considered by NASA," Ulvestad said. The first image showed no structure in the object, even at the extremely fine level of detail achievable with HALCA; it is what astronomers call a "point source." This object also appears as a point source in all-ground-based observations. In addition, the 1986 TDRSS experiment observed the object, and, while this experiment did not produce an image, it indicated that PKS 1519-273 should be a point source. "This simple point image may not appear very impressive, but its beauty to us is that it shows our entire, complex system is functioning correctly. The system includes not only the orbiting and ground-based antennas, but also the orbit determination, tracking stations, the correlator, and the image-processing software," said Jonathan Romney, the NRAO astronomer who led the development of the VLBA correlator, and its enhancement to process data

  17. Community College Class Devoted to Astronomical Research

    Science.gov (United States)

    Genet, R. M.; Genet, C. L.

    2002-05-01

    A class at a small community college, Central Arizona College, was dedicated to astronomical research. Although hands-on research is usually reserved for professionals or graduate students, and occasionally individual undergraduate seniors, we decided to introduce community college students to science by devoting an entire class to research. Nine students were formed into three closely cooperating teams. The class as a whole decided that all three teams would observe Cepheid stars photometrically using a robotic telescope at the Fairborn Observatory. Speaker-phone conference calls were made to Kenneth E. Kissell for help on Cepheid selection, Michael A. Seeds for instructions on the use of the Phoenix-10 robotic telescope, and Douglas S. Hall for assitance in selecting appropriate comparison and check stars. The students obtained critical references on past observations from Konkoly Observatory via airmail. They spent several long night sessions at our apartment compiling the data, making phase calculations, and creating graphs. Finally, the students wrote up their results for publication in a forthcoming special issue of the international journal on stellar photometry, the IAPPP Communication. We concluded that conducting team research is an excellent way to introduce community college students to science, that a class devoted to cooperation as opposed to competition was refreshing, and that group student conference calls with working astronomers were inspiring. A semester, however, is a rather short time to initiate and complete research projects. The students were Sally Baldwin, Cory Bushnell, Bryan Dehart, Pamela Frantz, Carl Fugate, Mike Grill, Jessica Harger, Klay Lapa, and Diane Wiseman. We are pleased to acknowledge the assistance provided by the astronomers mentioned above, James Stuckey (Campus Dean), and our Union Institute and University doctoral committee members Florence Pittman Matusky, Donald S. Hayes, and Karen S. Grove.

  18. The astronomical orientation of ancient Greek temples.

    Science.gov (United States)

    Salt, Alun M

    2009-11-19

    Despite its appearing to be a simple question to answer, there has been no consensus as to whether or not the alignments of ancient Greek temples reflect astronomical intentions. Here I present the results of a survey of archaic and classical Greek temples in Sicily and compare them with temples in Greece. Using a binomial test I show strong evidence that there is a preference for solar orientations. I then speculate that differences in alignment patterns between Sicily and Greece reflect differing pressures in the expression of ethnic identity.

  19. Technology advancements for future astronomical missions

    Science.gov (United States)

    Barnes, Arnold A.; Knight, J. Scott; Lightsey, Paul A.; Harwit, Alex; Coyle, Laura

    2017-09-01

    Future astronomical telescopes in space will have architectures with complex and demanding requirements in order to meet their science goals. The missions currently being studied by NASA for consideration in the next Decadal Survey range in wavelength from the X-ray to Far infrared; examining phenomenon from imaging exoplanets and characterizing their atmospheres to detecting gravitational waves. These missions have technical challenges that are near or beyond the state of the art from the telescope to the detectors. This paper describes some of these challenges and possible solutions. Promising measurements and future demonstrations are discussed that can enhance or enable these missions.

  20. Astronomical Plate Archives and Binary Blazars Studies

    Czech Academy of Sciences Publication Activity Database

    Hudec, René

    2011-01-01

    Roč. 32, 1-2 (2011), s. 91-95 ISSN 0250-6335. [Conference on Multiwavelength Variability of Blazars. Guangzhou, 22,09,2010-24,09,2010] R&D Projects: GA ČR GA205/08/1207 Grant - others:GA ČR(CZ) GA102/09/0997; MŠMT(CZ) ME09027 Institutional research plan: CEZ:AV0Z10030501 Keywords : astronomical plates * plate archives archives * binary blazars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.400, year: 2011

  1. Weizmann Fast Astronomical Survey Telescope (WFAST)

    Science.gov (United States)

    Nir, Guy; Ofek, Eran Oded; Ben-Ami, Sagi; Manulis, Ilan; Gal-Yam, Avishay; Diner, Oz; Rappaport, Michael

    2017-01-01

    The Weizmann Fast Astronomical Survey Telescope (W-FAST) is an experiment designed to explore variability on sub-second time scales. When completed it will consist of two robotic 55-cm f/2 Schmidt telescopes. The optics is capable of providing $\\sim0.5$" image quality over 23 deg$^2$. The focal plane will be equipped with fast readout, low read-noise sCMOS detectors. The first generation focal plane is expected to have 6.2 deg$^2$ field of view. WFAST is designed to study occultations by solar system objects (KBOs and Oort cloud objects), short time scale stellar variability, and high resolution imaging via proper coaddition.

  2. Le Verrier magnificent and detestable astronomer

    CERN Document Server

    Lequeux, James

    2013-01-01

    Le Verrier was a superb scientist. His discovery of Neptune in 1846 made him the most famous astronomer of his time. He produced a complete theory of the motions of the planets which served as a basis for planetary ephemeris for a full century. Doing this, he discovered an anomaly in the motion of Mercury which later became the first proof of General Relativity. He also founded European meteorology. However his arrogance and bad temper created many enemies, and he was even fired from his position of Director of the Paris Observatory.

  3. ESO's Studentship Programmes: Training Tomorrow's Astronomers Today

    Science.gov (United States)

    West, Michael; Rejkuba, Marina; Leibundgut, Bruno; Emsellem, Eric

    2009-03-01

    Students are the lifeblood of astronomy, the next generation of astronomers. While other scientific disciplines are facing declining student enrollments, the ASTRONET strategic plan for European Astronomy notes “young students have continued to enter the field at a steady level”. Indeed, with Very Large Telescope (VLT), Atacama Large Millimeter/submillimeter Array (ALMA) the European Extremely Large Telescope (E-ELT) and other exciting new facilities on the horizon, it is hard to imagine a better time to be an astronomy student.

  4. The astronomical revolution Copernicus, Kepler, Borelli

    CERN Document Server

    Koyre, Alexandre

    2013-01-01

    Originally published in English in 1973. This volume traces the development of the revolution which so drastically altered man's view of the universe in the sixteenth and seventeenth centuries. The ""astronomical revolution"" was accomplished in three stages, each linked with the work of one man. With Copernicus, the sun became the centre of the universe. With Kepler, celestial dynamics replaced the kinematics of circles and spheres used by Copernicus. With Borelli the unification of celestial and terrestrial physics was completed by abandonment of the circle in favour the straight line to inf

  5. Astronomical analysis of the taosi observatory site

    Science.gov (United States)

    Liu, C. Y.

    2009-01-01

    An ancient observatory was unearthed recently at Taosi site. This paper discussed the figure of the relic, analyzed the relationship between the 12 backsights and calendar date using astronomical method, and compared the simulated observation with theoretic computation. The investigation shows that backsight E2---E12 indicated the directions of sunrise in the whole year, which were roughly equally distributed and offered an unequal calendar system. The backsight E1 indicated the south-end of the moonrise, giving a time symbol of 18---19 years. This building must be a complex of solar observation, time service, solar worship, and sacrificial ritual

  6. Algorithms for classification of astronomical object spectra

    Science.gov (United States)

    Wasiewicz, P.; Szuppe, J.; Hryniewicz, K.

    2015-09-01

    Obtaining interesting celestial objects from tens of thousands or even millions of recorded optical-ultraviolet spectra depends not only on the data quality but also on the accuracy of spectra decomposition. Additionally rapidly growing data volumes demands higher computing power and/or more efficient algorithms implementations. In this paper we speed up the process of substracting iron transitions and fitting Gaussian functions to emission peaks utilising C++ and OpenCL methods together with the NOSQL database. In this paper we implemented typical astronomical methods of detecting peaks in comparison to our previous hybrid methods implemented with CUDA.

  7. What Lies Behind NSF Astronomer Demographics? Subjectivities of Women, Minorities and Foreign-born Astronomers within Meshworks of Big Science Astronomy

    Science.gov (United States)

    Guillen, Reynal; Gu, D.; Holbrook, J.; Murillo, L. F.; Traweek, S.

    2011-01-01

    Our current research focuses on the trajectory of scientists working with large-scale databases in astronomy, following them as they strategically build their careers, digital infrastructures, and make their epistemological commitments. We look specifically at how gender, ethnicity, nationality intersect in the process of subject formation in astronomy, as well as in the process of enrolling partners for the construction of instruments, design and implementation of large-scale databases. Work once figured as merely technical support, such assembling data catalogs, or as graphic design, generating pleasing images for public support, has been repositioned at the core of the field. Some have argued that such databases enable a new kind of scientific inquiry based on data exploration, such as the "fourth paradigm" or "data-driven" science. Our preliminary findings based on oral history interviews and ethnography provide insights into meshworks of women, African-American, "Hispanic," Asian-American and foreign-born astronomers. Our preliminary data suggest African-American men are more successful in sustaining astronomy careers than Chicano and Asian-American men. A distinctive theme in our data is the glocal character of meshworks available to and created by foreign-born women astronomers working at US facilities. Other data show that the proportion of Asian to Asian American and foreign-born Latina/o to Chicana/o astronomers is approximately equal. Futhermore, Asians and Latinas/os are represented in significantly greater numbers than Asian Americans and Chicanas/os. Among professional astronomers in the US, each ethnic minority group is numbered on the order of tens, not hundreds. Project support is provided by the NSF EAGER program to University of California, Los Angeles under award 0956589.

  8. Astronomers Reveal Extinct Extra-Terrestrial Fusion Reactor

    Science.gov (United States)

    2004-06-01

    improve our understanding of the life-cycle of stars.' The Chandra X-ray data also reveal the signatures of neon, an expected by-product of helium fusion. However, a big surprise was the presence of magnesium in similar quantities. This result may provide a key to the unique composition of H1504+65 and validate theoretical predictions that, if massive enough, some stars can extend their lives by tapping yet another energy source: the fusion of carbon into magnesium. However, as magnesium can also be produced by helium fusion, proof of the theory is not yet ironclad. The final link in the puzzle would be the detection of sodium, which will require data from yet another observatory: the Hubble Space Telescope. The team has already been awarded time on the Hubble Space Telescope to search for sodium in H1504+65 next year, and will, hopefully, discover the final answer as to the origin of this unique star. This work will be published in July in the 'Astronomy & Astrophysics' journal. The Chandra X-ray Observatory and the Far Ultraviolet Spectroscopic Explorer (FUSE) were both launched into orbit by NASA in 1999. Their instruments make use of a technique called spectroscopy, which spreads the light obtained from astronomical objects into its constituent X-ray and ultraviolet 'colours', in the same way visible light is dispersed into a rainbow naturally, by water droplets in the atmosphere, or artificially, by a prism. When studied in fine detail each spectrum is a unique 'fingerprint' which tells us what elements are present and reveals the physical conditions in the object being studied. Related Internet Address http://www.ras.org.uk/index.php?option=com_content&task=view&id=673&Itemid=2

  9. Non Relational Models for the Management of Large Amount of Astronomical Data

    Directory of Open Access Journals (Sweden)

    B. L. Martino

    2015-02-01

    Full Text Available The objective of this paper is the comparison between two different database typologies: the relational and the nonrelational architecture, in the context of the applications related to the use and distribution of astronomical data. The specific context is focused to problems quite different from those related to administrative and managerial environments within which were developed the leading technologies on which are based the modern systems of massive storage of data. The data provided by astronomical instrumentation are usually filtered out by the front-end system (trigger, anticoincidence, DSP etc., so they do not require special controls of congruence. Moreover, the related storage systems must be able to ensure an easy growth, minimizing human systemistic interventions and automating the related actions. The use of a non-relational architecture (NoSQL, offers great advantages during the insertion of informations within a data base, while the response speed of the queries is mainly tied to their type and complexity.

  10. Care of astronomical telescopes and accessories a manual for the astronomical observer and amateur telescope maker

    CERN Document Server

    Pepin, M Barlow

    2005-01-01

    Commercially-made astronomical telescopes are better and less expensive than ever before, and their optical and mechanical performance can be superb. When a good-quality telescope fails to perform as well as it might, the reason is quite probably that it needs a little care and attention! Here is a complete guide for anyone who wants to understand more than just the basics of astronomical telescopes and accessories, and how to maintain them in the peak of condition. The latest on safely adjusting, cleaning, and maintaining your equipment is combined with thoroughly updated methods from the old masters. Here, too, are details of choosing new and used optics and accessories, along with enhancements you can make to extend their versatility and useful lifetime. This book is for you. Really. Looking after an astronomical telescope isn't only for the experts - although there are some things that only an expert should attempt - and every serious amateur astronomer will find invaluable information here, gleaned from ...

  11. Developing Generic Image Search Strategies for Large Astronomical Data Sets and Archives using Convolutional Neural Networks and Transfer Learning

    Science.gov (United States)

    Peek, Joshua E. G.; Hargis, Jonathan R.; Jones, Craig R.

    2018-01-01

    Astronomical instruments produce petabytes of images every year, vastly more than can be inspected by a member of the astronomical community in search of a specific population of structures. Fortunately, the sky is mostly black and source extraction algorithms have been developed to provide searchable catalogs of unconfused sources like stars and galaxies. These tools often fail for studies of more diffuse structures like the interstellar medium and unresolved stellar structures in nearby galaxies, leaving astronomers interested in observations of photodissociation regions, stellar clusters, diffuse interstellar clouds without the crucial ability to search. In this work we present a new path forward for finding structures in large data sets similar to an input structure using convolutional neural networks, transfer learning, and machine learning clustering techniques. We show applications to archival data in the Mikulski Archive for Space Telescopes (MAST).

  12. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  13. Astronomical Alignments in a Neolithic Chinese Site?

    Science.gov (United States)

    Nelson, S.; Stencel, R. E.

    1997-12-01

    In the Manchurian province of Liaoning, near 41N19' and 119E30', exist ruins of a middle Neolithic society (2500 to 4000 BC) known as the Hongshan culture. This location, called Niuheliang, is comprised of 16 locations with monumental structures scattered over 80 square kilometers of hills. Most are stone burial structures that contain jade artifacts implying wealth and power. One structure is unique in being unusually shaped and containing oversized effigies of goddess figures. This structure also has a commanding view of the surrounding landscape. The presence of decorated pottery, jade and worked copper suggests the Hongshan people were sophisticated artisans and engaged in long-distance trading. During 1997, we've conducted a course at Denver as part of our Core Curriculum program for upper division students, that has examined the astronomical and cultural aspects of the Niuheliang site, to attempt to determine whether these contemporaries of the builders of Stonehenge may have included astronomical alignments into their constructions. The preliminary result of our studies suggests that certain monuments have potential for lunar standstill observation from the "goddess temple". For updates on these results, please see our website: www.du.edu/ rstencel/core2103.html.

  14. Astronomers Discover Spectacular Structure in Distant Galaxy

    Science.gov (United States)

    1999-01-01

    Researchers using the National Science Foundation's Very Large Array (VLA) radio telescope have imaged a "spectacular and complex structure" in a galaxy 50 million light-years away. Their work both resolves a decades-old observational mystery and revises current theories about the origin of X-ray emission coming from gas surrounding the galaxy. The new VLA image is of the galaxy M87, which harbors at its core a supermassive black hole spewing out jets of subatomic particles at nearly the speed of light and also is the central galaxy of the Virgo Cluster of galaxies. The VLA image is the first to show detail of a larger structure that originally was detected by radio astronomers more than a half-century ago. Analysis of the new image indicates that astronomers will have to revise their ideas about the physics of what causes X-ray emission in the cores of many galaxy clusters. Frazer Owen of the National Radio Astronomy Observatory (NRAO) in Socorro, NM; Jean Eilek of the New Mexico Institute of Mining and Technology (NM Tech) in Socorro, NM; and Namir Kassim of the Naval Research Laboratory in Washington, DC, announced their discovery at the American Astronomical Society's meeting today in Austin, TX. The new observations show two large, bubble-like lobes, more than 200,000 light-years across, that emit radio waves. These lobes, which are intricately detailed, apparently are powered by gravitational energy released from the black hole at the galaxy's center. "We think that material is flowing outward from the galaxy's core into these large, bright, radio-emitting 'bubbles,'" Owen said. The newly-discovered "bubbles" sit inside a region of the galaxy known to be emitting X-rays. Theorists have speculated that this X-ray emission arises when gas that originally was part of the Virgo Cluster of galaxies, cools and falls inwards onto M87 itself, at the center of the cluster. Such "cooling flows" are commonly thought to be responsible for strong X-ray emission in many

  15. Young Astronomers and Astronomy teaching in Moldavia

    Science.gov (United States)

    Gaina, Alex

    1998-09-01

    Curricular Astronomy is taught in Moldavia , except Transnistria and Gagauzia, in the final (11th class) of the secondary schools and gymnasiums, and in the 12th class of the lyceums. The program takes 35 academic hours. The basic book is by Vorontsov-Veliaminov, used in the former USSR, but the Romanian one is also used, in spite of many criticisms addressed to both by our astronomy teachers. In Transinstria (on the left of the Dniester river)astronomy is taught 17 hours. Extracurricular activities develop at the Real Lyceum, where students and amateur astronomers carry out regular observations. Particularly, photographs of the comet Hale-Bopp have been realized using a Cassegrain 450 mm telescope by young astronomers under supervision of S. Luca and D. Gorodetzky (Gorodetchi). Except the telescope from the Real Lyceum other few telescopes are in construction. Unfortunately, no planetarium exists now in Chisinau, since the old one was returned to church. Astronomy courses are taught at the physical and mathematical departments of the Pedagogical University, Transnistrian Moldavian University in Tiraspol and the State University of |Moldavia. Many efforts were made by the State University lecturers and scientists to popularize Astronomy and Astrophysics in the books and in the press, at the radio and TV. No astronomy is taught at the Gagauzian National University in Comrat. No astronomiucal departments exist in Universities of |Moldavia.

  16. Sketching the moon an astronomical artist's guide

    CERN Document Server

    Handy, Richard; McCague, Thomas; Rix, Erika; Russell, Sally

    2012-01-01

    Soon after you begin studying the sky through your small telescope or binoculars, you will probably be encouraged by others to make sketches of what you see. Sketching is a time-honored tradition in amateur astronomy and dates back to the earliest times, when telescopes were invented. Even though we have lots of new imaging technologies nowadays, including astrophotography, most observers still use sketching to keep a record of what they see, make them better observers, and in hopes of perhaps contributing something to the body of scientific knowledge about the Moon. Some even sketch because it satisfies their artistic side. The Moon presents some unique challenges to the astronomer-artist, the Moon being so fond of tricks of the light. Sketching the Moon: An Astronomical Artist’s Guide, by five of the best lunar observer-artists working today, will guide you along your way and help you to achieve really high-quality sketches. All the major types of lunar features are covered, with a variety of sketching te...

  17. Astronomy, New Instrumentation, and the News Media

    Science.gov (United States)

    Maran, Stephen P.

    2000-01-01

    Reporting of astronomical discoveries and events in the news media continues to expand to satisfy a seemingly voracious public interest. New telescopes, instruments, and facilities both up in space and on the ground, provide unique opportunities for media outreach on what scientists are accomplishing. And, new media such as website news providers, high-definition television, and video news walls help to fuel the growing activity. Ever since Tycho Brahe operated his own printing press, astronomers have striven to document their accomplishments for the wider world. In recent years, astronomers' media outreach has been successful in reaching the mass television audience through successful efforts at animation and scientific visualization, and through dramatic images acquired by some facilities, such as the solar physics satellites and ground observatories.

  18. The First Astronomical Observatory in Cluj-Napoca

    Science.gov (United States)

    Szenkovits, Ferenc

    2008-09-01

    One of the most important cities of Romania is Cluj-Napoca (Kolozsvár, Klausenburg). This is a traditional center of education, with many universities and high schools. From the second half of the 18th century the University of Cluj has its own Astronomical Observatory, serving for didactical activities and scientific researches. The famous astronomer Maximillian Hell was one of those Jesuits who put the base of this Astronomical Observatory. Our purpose is to offer a short history of the beginnings of this Astronomical Observatory.

  19. Grid-Enabled Interactive Data Language for Astronomical Data Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Grid technologies provide a valuable solution for data intensive scientific applications but are not readily available for astronomical data and Interactive Data...

  20. STEM and the Evolution of the Astronomical Star Party

    Science.gov (United States)

    Day, B. H.; Munive, P.; Franco, J.; Jones, A. P.; Shaner, A. J.; Buxner, S.; Bleacher, L.

    2015-12-01

    The astronomical star party has long been a powerful and effective way to engage the public and enhance cohesiveness within the amateur astronomy community. Early star parties tended to be strictly small, local events. But with improvements in transportation, larger regional star parties became popular. These advanced the considerable capabilities for citizen science in the amateur community, shared technology and engineering innovations in the field of telescope making, and refined numerous mathematical techniques in areas such instrument design and ephemeris generation, covering the full breadth of STEM. Advancements in astrophotography showcased at these events brought the star party from STEM to STEAM. Now, the advent of social media, web streaming, and virtual presence has facilitated the phenomenon of very large, networked star parties with international scope. These mega star parties take public engagement to a new, far greater levels, giving a vastly larger and more diverse public the opportunity to directly participate in exciting first-hand STEM activities. This presentation will recount the evolution of the star party and will focus on two examples of large, multinational, networked star parties, International Observe the Moon Night and Noche de las Estrellas. We will look at lessons learned and ways to participate.

  1. Modelling MEMS deformable mirrors for astronomical adaptive optics

    Science.gov (United States)

    Blain, Celia

    As of July 2012, 777 exoplanets have been discovered utilizing mainly indirect detection techniques. The direct imaging of exoplanets is the next goal for astronomers, because it will reveal the diversity of planets and planetary systems, and will give access to the exoplanet's chemical composition via spectroscopy. With this spectroscopic knowledge, astronomers will be able to know, if a planet is terrestrial and, possibly, even find evidence of life. With so much potential, this branch of astronomy has also captivated the general public attention. The direct imaging of exoplanets remains a challenging task, due to (i) the extremely high contrast between the parent star and the orbiting exoplanet and (ii) their small angular separation. For ground-based observatories, this task is made even more difficult, due to the presence of atmospheric turbulence. High Contrast Imaging (HCI) instruments have been designed to meet this challenge. HCI instruments are usually composed of a coronagraph coupled with the full onaxis corrective capability of an Extreme Adaptive Optics (ExAO) system. An efficient coronagraph separates the faint planet's light from the much brighter starlight, but the dynamic boiling speckles, created by the stellar image, make exoplanet detection impossible without the help of a wavefront correction device. The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system is a high performance HCI instrument developed at Subaru Telescope. The wavefront control system of SCExAO consists of three wavefront sensors (WFS) coupled with a 1024- actuator Micro-Electro-Mechanical-System (MEMS) deformable mirror (DM). MEMS DMs offer a large actuator density, allowing high count DMs to be deployed in small size beams. Therefore, MEMS DMs are an attractive technology for Adaptive Optics (AO) systems and are particularly well suited for HCI instruments employing ExAO technologies. SCExAO uses coherent light modulation in the focal plane introduced by the DM, for

  2. Young astronomer in Denmark 1946 to 1958

    CERN Document Server

    Høg, Erik

    2015-01-01

    This is a personal account of how I became an astronomer. Fascinated by the stars and planets in the dark sky over Lolland, an island 100 km south of Copenhagen, the interest in astronomy was growing. Encouraged by my teachers, I polished mirrors and built telescopes with generous help from the local blacksmith and I observed light curves of variable stars. Studies at the Copenhagen University from 1950 gradually led me deeper into astronomy, especially astrometry (the astronomy of positions), guided by professor Bengt Str\\"omgren and my mentor dr. phil. Peter Naur. I was lucky to take part in the buildup of the new observatory at Brorfelde during the first difficult years and the ideas I gathered there have contributed to the two astrometry satellites Hipparcos and Gaia launched by the European Space Agency (ESA) in respectively 1989 and 2013.

  3. Astronomical knowledge transmission through illustrated Aratea manuscripts

    CERN Document Server

    Dolan, Marion

    2017-01-01

    This carefully researched monograph is a historical investigation of the illustrated Aratea astronomical manuscript and its many interpretations over the centuries. Aratus' 270 B.C.E. Greek poem describing the constellations and astrological phenomena was translated and copied over 800 years into illuminated manuscripts that preserved and illustrated these ancient stories about the constellations. The Aratea survives in its entirety due to multiple translations from Greek to Latin and even to Arabic, with many illuminated versions being commissioned over the ages. The survey encompasses four interrelated disciplines: history of literature, history of myth, history of science, and history of art. Aratea manuscripts by their nature are a meeting place of these distinct branches, and the culling of information from historical literature and from the manuscripts themselves focuses on a wider, holistic view; a narrow approach could not provide a proper prospective. What is most essential to know about this work is...

  4. Cultural contacts at International Astronomical Olympiads

    Science.gov (United States)

    Babakhanova, Siranush

    2016-12-01

    It is surprising, but the fact is that the International Olympiads are often only combined with the competition, whereas the intercultural communication between the representatives of different nationalities and the expanding of ideologies of young people are the general-purpose components of not only in frames of the boundaries of scientific expertise, but also such communications, the Olympiads. Worldviews meeting and collaboration are driving forces of progress and play the most important role in the development of the modern science. Armenia participates in the International Astronomical Olympiads since 1997, and in the International Olympiads on Astronomy and Astrophysics since 2013. The Armenian team has always shown high results in competitions and is actively involved in cultural activities.

  5. Shirakatsi Astronomical and Natural Philosophical Views

    Science.gov (United States)

    Mkrtchyan, Lilit

    2016-12-01

    Our work is aimed at presenting Shirakatsi astronomical and natural philosophical views. Karl Anania Shirakatsi is classified as one of the world-class intellectual geniuses. He was endowed with exceptional talent and analyzing scientific understanding of natural phenomena. He refers his philosophical works to almost all fields of science, cosmography, mathematics, calendarology, historiography, etc. Shirakatsy's earnings of natural science and natural philosophy in medieval is too big He was the first prominent scholar and thinker of his time, creating a unique, comprehensive gitapilisopayakan system that still feeds the human mind. The scientific value of Shirakatsi has great importance not only for Armenians but also for the whole world of science, history, culture and philosophy. Shirakatsi can be considered not only national but also universal greatness.

  6. Dacic Ancient Astronomical Research in Sarmizegetuza

    Directory of Open Access Journals (Sweden)

    Emanuel George Oprea

    2015-11-01

    Full Text Available The actual Romanian territory belongs to Carpatho-Danubian Space and to Ancient Europe. The Ancient European Society was a vast cultural entity based on a theocratic, matriarchal society, peaceful and art creating.Temples of Sarmizegetusa have given rise to several theories over time, proven by historians with the most diverse arguments. The largest complex of temples and sanctuaries was founded in Sarmizegetusa Regia, the Dacian’s main fortress and ancient capital of Dacia in the time of King Decebalus. The mysterious form of settlements has led researchers to the conclusion that the locations were astronomical observation shrines. Among the places of Dacian worship in Orastie Mountains the most impressive is the Great Circular Sanctuary, used to perform some celestial observations, and also as original solar calendar. This paper had the purpose to re-discover the Dacian Civilization and Dacian cosmogony based on the accumulated knowledge upon our country’s past.

  7. A Star Formation/ISM Astronomical Database

    Science.gov (United States)

    Molinari, Sergio; Ali, Babar; Good, John; Noriega-Crespo, Alberto

    2003-02-01

    The Star Formation/ISM Astronomical Database (hereafter SFD) will be a set of on-line services adding value to existing data archives and published journals, along the lines of the very successful NASA/IPAC Extragalactic Database (NED) and SIMBAD projects but with a focus on star formation an the interstellar medium (ISM) within the Milky Way. Unlike NED and SIMBAD, however, the SFD must deal with multi-wavelength measurements of extended regions and cross-correlative relationships between disparate measurements. The SFD will rely heavily on existing databases, primarily adding data content and connectivity between datasets around the world, and custom tailoring of existing tools to provide interfaces (programming API, Web, and JAVA GUI) specific to this application. We consider the SFD as a valuable component in the broader context of a future Virtual Observatory.

  8. A possible Harappan Astronomical Observatory at Dholavira

    CERN Document Server

    Vahia, Mayank N

    2013-01-01

    Astronomy arises very early in a civilization and evolves as the civilization advances. It is therefore reasonable to assume that a vibrant knowledge of astronomy would have been a feature of a civilization the size of the Harappan Civilization. We suggest that structures dedicated to astronomy existed in every major Harappan city. One such city was Dholavira, an important trading port that was located on an island in what is now the Rann of Kutch during the peak of the Harappan Civilization. We have analyzed an unusual structure at Dholavira that includes two circular rooms. Upon assuming strategically-placed holes in their ceilings we examine the internal movement of sunlight within these rooms and suggest that the larger structure of which they formed a part could have functioned as an astronomical observatory.

  9. Preparing Colorful Astronomical Images III: Cosmetic Cleaning

    Science.gov (United States)

    Frattare, L. M.; Levay, Z. G.

    2003-12-01

    We present cosmetic cleaning techniques for use with mainstream graphics software (Adobe Photoshop) to produce presentation-quality images and illustrations from astronomical data. These techniques have been used on numerous images from the Hubble Space Telescope when producing photographic, print and web-based products for news, education and public presentation as well as illustrations for technical publication. We expand on a previous paper to discuss the treatment of various detector-attributed artifacts such as cosmic rays, chip seams, gaps, optical ghosts, diffraction spikes and the like. While Photoshop is not intended for quantitative analysis of full dynamic range data (as are IRAF or IDL, for example), we have had much success applying Photoshop's numerous, versatile tools to final presentation images. Other pixel-to-pixel applications such as filter smoothing and global noise reduction will be discussed.

  10. Polarization in astronomical spectra - Theoretical evidence

    Science.gov (United States)

    Fymat, A. L.

    1974-01-01

    Theoretical evidence for the existence and behavior of polarization in astronomical spectra is provided. The theory for the study of spectral multiple scattering of arbitrarily polarized light is first developed, and the detailed and integrated spectropolarimetry of a planetary atmosphere is then studied for cases in which the spectra are formed in the presence of either very small nonspherical particles (Rayleigh-Cabannes scattering) or large polydisperse spherical particles (Mie scattering). It is shown in both cases that polarization is indeed present; it increases with the line strength but decreases afterwards as the line becomes very strong and tends to saturation. A polarization reversal is also predicted during latitudinal (pole-to-equator) scan and possibly also during longitudinal (terminator-to-limb) scan of the planet. The reversal happened at all phase angles considered. Our companion article (Forbes and Fymat) will provide observational substantiation to these theoretical predictions.

  11. The astronomical revolution. Copernicus - Kepler - Borelli.

    Science.gov (United States)

    Koyré, A.

    The work was originally published in 1961 under the title "La révolution astronomique" as part of the series, Histoire de la pensée. This book is an unabridged and unaltered republication of the English translation, by R. E. W. Maddison, originally published in 1973 (see 10.003.074). The author elucidates, precisely and in stages, the revolutionary ideas of Nicolaus Copernicus as well as the work of two other thinkers who made major contributions to the astronomical revolution: Johannes Kepler and Giovanni Borelli. He illuminates the exact contribution of each man, placing his work in its historical context and dispelling a host of misconceptions about it. In order to effectively recapture the ferment and flavor of the times, the author, whenever possible, has allowed Copernicus, Kepler and Borelli to speak for themselves by quoting key passages from their writings. Many of these passages were here translated for the first time.

  12. Geographic Information Processings for Astronomical Site Survey

    Science.gov (United States)

    Wu, N.; Liu, Y.; Zhao, M. Y.

    2015-01-01

    The geographic information is of great importance for the site survey of ground-based telescopes. Especially, an effective utilization of the geographic information system (GIS) has been one of the most significant methods for the remote analysis of modern site survey. The astronomical site survey should give consideration to the following geographical conditions: a large relative fall, convenient traffic conditions, and far away from populated areas. Taking into account of the convenience of construction and maintenance of the observatories as well as the living conditions of the scientists-in-residence, the optimum candidate locations may meet the conditions to be at a altitude between 3000 m and 5000 m and within one-hour drive from villages/towns. In this paper, as an example, we take the regions of the Great Baicao mountain ridge at Dayao county in Yunnan province to research the role of the GIS for site survey task. The results indicate that the GIS can provide accurate and intuitive data for us to understand the three dimensional landforms, rivers, roads, villages, and the distributions of the electric power as well as to forecast the tendency of the population and city development around. According to the analysis based on the GIS, we find that the top of the Great Baicao mountain ridge is flat and droughty. There are few inhabitants to distribute around the place while the traffic conditions are convenient. Moreover, it is a natural conservation area protected by the local government, and no industry with pollution sources exists in this region. Its top is 1500 m higher than the nearby village 10 km away, and 1800 m higher than the town center 50 km away. The Great Baicao mountain ridge is definitely an isolated peak in the area of the Yi nationality of Yunnan. Therefore, the GIS data analysis is a very useful for the remote investigation stage for site survey, and the GIS is the indispensable source for modern astronomical site survey.

  13. US Astronomers Access to SIMBAD in Strasbourg

    Science.gov (United States)

    Oliversen, Ronald (Technical Monitor); Eichhorn, Guenther

    2004-01-01

    During the last year the US SIMBAD Gateway Project continued to provide services like user registration to the US users of the SIMBAD database in France. Currently there are over 4500 US users registered. We also provided user support by answering questions from users and handling requests for lost passwords when still necessary. Even though almost all users now access SIMBAD without a password, based on hostnames/IP addresses, there are still some users that need individual passwords. We continued to maintain the mirror copy of the SIMBAD database on a server at SAO. This allows much faster access for the US users. During the past year we again moved this mirror to a faster server to improve access for the US users. We again supported a demonstration of the SIMBAD database at the meeting of the American Astronomical Society in January. We provided support for the demonstration activities at the SIMBAD booth. We paid part of the fee for the SIMBAD demonstration. We continued to improve the cross-linking between the SIMBAD project and the Astrophysics Data System. This cross-linking between these systems is very much appreciated by the users of both the SIMBAD database and the ADS Abstract Service. The mirror of the SIMBAD database at SA0 makes this connection faster for the US astronomers. We exchange information between the ADS and SIMBAD on a daily basis. During the last year we also installed a mirror copy of the Vizier system from the CDS, in addition to the SIMBAD mirror.

  14. US Gateway to SIMBAD Astronomical Database

    Science.gov (United States)

    Eichhorn, G.; Oliversen, R. (Technical Monitor)

    1999-01-01

    During the last year the US SIMBAD Gateway Project continued to provide services like user registration to the US users of the SIMBAD database in France. Currently there are over 3400 US users registered. We also provide user support by answering questions from users and handling requests for lost passwords when still necessary. We have implemented in cooperation with the CDS SIMBAD project access to the SIMBAD database for US users on an Internet address basis. This allows most US users to access SIMBAD without having to enter passwords. We have maintained the mirror copy of the SIMBAD database on a server at SAO. This has allowed much faster access for the US users. We also supported a demonstration of the SIMBAD database at the meeting of the American Astronomical Society in January. We shipped computer equipment to the meeting and provided support for the demonstration activities at the SIMBAD booth. We continued to improve the cross-linking between the SIMBAD project and the Astrophysics Data System. This cross-linking between these systems is very much appreciated by the users of both the SIMBAD database and the ADS Abstract Service. The mirror of the SIMBAD database at SAO makes this connection faster for the US astronomers. We exchange information between the ADS and SIMBAD on a daily basis. The close cooperation between the CDS in Strasbourg and SAO, facilitated by this project, is an important part of the astronomy-wide digital library initiative called Urania. It has proven to be a model in how different data centers can collaborate and enhance the value of their products by linking with other data centers.

  15. Software Package for Preparing and Processing of an Astronomical Observation

    Science.gov (United States)

    Vaduvescu, Ovidiu; Birlan, Mirel

    This paper presents an astronomical software package which draws celestial charts. It was conceived taking into account the technical possibilities available for the Romanian astronomers and the actual trend of the observational astronomy. The software package, now to its third version, comes to decrease the time to prepare an observation and to perform accurate charts for searching and identification.

  16. Project ASTRO: How-To Manual for Teachers and Astronomers.

    Science.gov (United States)

    Richter, Jessica; Fraknoi, Andrew

    Project ASTRO is an innovative program to support science education by linking teachers and students in grades 4-9 with amateur and professional astronomers with the overall goal being to increase students' interest in astronomy and science in general. This manual was designed for teachers, amateur and professional astronomers, youth group…

  17. Astronomical Books and Charts in the Book of Bibliographie Coreenne

    Directory of Open Access Journals (Sweden)

    Ki-Won Lee

    2008-06-01

    Full Text Available We investigate astronomical materials listed in the book of Bibliographie Coreenne written by Maurice Courant. He classified ancient Korean books into nine Divisions (部 and thirty six Classes (類, and published them as three volumes (ranging from 1894 to 1896 and one supplement (in 1901. In total, 3,821 books including astronomical ones are listed together with information on physical size, possessional place, bibliographical note, and so forth. Although this book is an essential one in the field of Korea bibliography and contains many astronomical materials such as Cheon-Mun-Ryu-Cho 天文類抄, Si-Heon-Seo 時憲書, and Cheon-Sang-Yeol-Cha-Bun-Ya-Ji-Do 天象列次分野之圖, it has not been well known to the public nor to astronomical society. Of 3,821 catalogues, we found that about 50 Items (種 are related to astronomy or astrology, and verified that most of them are located in the Kyujanggak Royal Library 奎章閣. We also found an unknown astronomical chart, Hon-Cheon-Chong-Seong-Yeol-Cha-Bun-Ya-Ji-Do 渾天總星列次分野之圖. Because those astronomical materials are not well known to international astronomical community and there have been few studies on the materials in Korea, we here introduce and review them, particularly with the astronomical viewpoint.

  18. Astronomical Books and Charts in the Book of Bibliographie Coreenne

    Science.gov (United States)

    Lee, Ki-Won; Yang, Hong-Jin; Park, Myeong-Gu

    2008-06-01

    We investigate astronomical materials listed in the book of Bibliographie Coréenne written by Maurice Courant. He classified ancient Korean books into nine Divisions (?) and thirty six Classes (?), and published them as three volumes (ranging from 1894 to 1896) and one supplement (in 1901). In total, 3,821 books including astronomical ones are listed together with information on physical size, possessional place, bibliographical note, and so forth. Although this book is an essential one in the field of Korea bibliography and contains many astronomical materials such as Cheon-Mun-Ryu-Cho ????, Si-Heon-Seo ??????, and Cheon-Sang-Yeol-Cha-Bun-Ya-Ji-Do ????????, it has not been well known to the public nor to astronomical society. Of 3,821 catalogues, we found that about 50 Items (?) are related to astronomy or astrology, and verified that most ! of them are located in the Kyujanggak Royal Library ???. We also found an unknown astronomical chart, Hon-Cheon-Chong-Seong-Yeol-Cha-Bun-Ya-Ji-Do ??????????. Because those astronomical materials are not well known to international astronomical community and there have been few studies on the materials in Korea, we here introduce and review them, particularly with the astronomical viewpoint.

  19. How Astronomers Focused the Scope of their Discussions: The Formation of the Astronomical Society of Australia

    Science.gov (United States)

    Lomb, Nick

    2015-05-01

    Scientific societies provide an important forum for scientists to meet and exchange ideas. In the early days of European settlement in Australia the few people interested in the sciences joined together to form societies that embraced all their individual disciplines. From 1888 the Australasian Association for the Advancement of Science with its different sections allowed a growing number of astronomers to share meetings only with researchers in the closely allied fields of mathematics and physics. Eventually, all three of these groups formed their own societies with the Astronomical Society of Australia (ASA) being the last in 1966. Archival records are used to illustrate how the formation of the ASA came about and to identify the people involved. The makeup of Australian astronomy at that period and some of its research fields are looked at, as well as the debates and discussions in the Society's first year while its future structure and role were established.

  20. Why stellar astronomers should be interested in the sun

    Science.gov (United States)

    Schmelz, J.

    By all accounts, the Sun is a garden-variety star with an average age, a standard size, a regular temperature, a normal mass, an ordinary structure, and a typical chemical composition. Only one feature makes it special - the Sun is our star. It is located in the center of our solar system, and therefore, is responsible for all l fe on Earth.i Astronomically speaking, the Sun is the only star in the sky that we can study up- close and personal. The unaided human eye does a better job of resolving the Sun than the finest telescope does for any other star. Stellar astronomers issue a press release whenever they can lay a few pixels of some state-of the-art instrument across a nearby supergiant. The resolution of the Sun, however, is something we can see routinely in the magnificent images that are downloaded every day from the TRACE spacecraft. In a very real sense, the Sun is the Rosetta Stone of the Stars. It was observations of the Sun deflecting starlight that ushered in a new way of thinking about gravity. Zeeman observations of the Sun showed that stellar atmospheres were controlled by magnetic fields. Models of the solar chromosphere required the development of more complex non-LTE analysis. The discovery of solar helium founded the science of stellar spectroscopy. Measurements of the solar mass, radius, and temperature allowed scientists to probe the interiors of stars for the first time. The ancient age of the Sun implied that stars shine as a result of thermonuclear fusion. Observations of solar flares stimulated developments in rapid magnetic reconnection theory. The study of solar coronal holes lead to a deeper understanding of the role that mass loss plays in the evolution of stars. Detailed analysis of the solar activity cycle inspired the development of MHD dynamo theory. The detection and understanding of the solar corona u covered one of the longest unsolvedn mysteries in all of astrophysics - the coronal-heating problem. And the list goes on. The Sun

  1. The Role of Amateur Astronomy to Outreach Astronomical Knowledge

    Science.gov (United States)

    Khachatryan, Vachik; Voskanyan, Tsovak

    2016-12-01

    It is known that in the educational system of republic the astronomy is not taught as a separate subject. Moreover, there are no telescopes in the vast majority of schools. "Goodricke John" NGO of amateur astronomers tries to fill this gap by organizing practical lessons of astronomy in secondary schools. NGO is equipped with high quality portable amateur telescopes and organizes periodic mass observations of planets, Moon, star clusters, nebulae in Yerevan and in regions. In addition, mass observations of rare astronomical phenomena are organized, such as the transit of Venus and Mercury across the disk of the Sun. Being the only NGO of amateur astronomers, it has a goal to contribute to publicizing astronomical knowledge and to ensure the availability of astronomical equipment, telescopes also to those segments of the society who have no opportunity to deal with them, in particular, persons with disabilities, prisoners, persons with disabilities, prisoners, soldiers, children from orphanages, school children and others.

  2. Linking Young Astronomers in Southeast Asia: The SEAYAC Story

    Science.gov (United States)

    Dionisio Sese, Rogel Mari

    2015-08-01

    The importance of involving young astronomers in developing astronomy cannot be overemphasized. This is very much true in areas where astronomy is still an emerging and minor field, such as in the Southeast Asian (SEA) region. However, recent years have seen a sudden spark of interest in developing professional astronomy within SEA, primarily for young astronomers and students. This was especially highlighted during the 2009 International Year of Astronomy. In this presentation, we introduce the Southeast Asian Young Astronomers Collaboration (SEAYAC), a recently formed organization that aims to provide a venue for professional and personal interaction for young astronomers in the SEA region. Here we present the background and rationale behind the formation of SEAYAC, its current status as well as planned future activities aimed at developing collaborations between young astronomers in the SEA region. We will also discuss the problems and challenges being faced by SEAYAC as well as its future plan of actions.

  3. Building on ruins: Copernicus' defense of ancient astronomers against modern critics.

    Science.gov (United States)

    Galle, Karl

    2008-09-01

    Nicholas Copernicus'De revolutionibus (1543) is a frequent starting point for histories of the Scientific Revolution on account of his dramatic reversal of the cosmic order handed down from antiquity. Nevertheless, Copernicus also mounted a surprisingly sharp attack on one of his contemporaries who tried to correct ancient astronomers. This uneasy balance between respecting and criticizing ancient works was part of broader contemporaneous attempts to grapple with the fragmentary legacies of past generations. Debates over stone ruins as well as manuscript texts shaped the evolution of early printed books, and artists, printers and instrument makers joined natural philosophers in pursuing novelties even while emulating tradition.

  4. Investigating metals in the MLT using astronomical facilities

    Science.gov (United States)

    Unterguggenberger, Stefanie; Noll, Stefan; Feng, Wuhu; Plane, John M. C.; Kausch, Wolfgang; Kimeswenger, Stefan; Jones, Amy

    2017-04-01

    Metals in the mesopause region, such as Na, Fe or Ni, originate from meteoric ablation in the upper atmosphere. Through reactions with ozone they emit airglow and in the case of Fe and Ni form metal oxides. Unlike Na, their emission does not result in line emission but in a (pseudo-) continuum. However, (pseudo-) continuum emission is difficult to observe since it is a broad but weak spectral feature compared to the line emissions arising from Na. The pseudo-continuum of FeO is located in the wavelength range of 0.55 to 0.72 μm, while NiO covers 0.45 to 0.72 μm. So far FeO has been studied with the Odin satellite and with ground-based astronomical facilities (ESI/Keck and Kitt Peak). The observed spectral data were compared to laboratory spectra. The diurnal behaviour of FeO was studied in comparison to OH, Na, and O(5577) during nine nights. For NiO even fewer observations are available. NiO has been detected via night airglow tangent limb spectroscopy with the GLO-1 instrument onboard a space shuttle. For this study on metals in the mesopause region we use astronomical data taken with the Very Large Telescope (VLT) operated by the European Southern Observatory (ESO) in Chile (24° 37' S, 70° 24') and the Apache Point Observatory (APO) in New Mexico/USA (32° 46' N, 105° 49' W). The ESO spectrograph X-shooter (0.30 - 2.48 μm, resolving power R = 3000 - 18000) as well as the APO MaNGA survey instrument (0.36 - 1.03 μm, R ˜ 2000) were utilized. The X-shooter sample consists of 3662 spectra taken between October 2009 to March 2013. The MaNGA sample consists of ˜1500 spectra taken between February 2014 and June 2015. Using X-shooter data the diurnal and seasonal behaviour of FeO and Na was studied for the southern hemisphere. We found a semi-annual amplitude of 27% and 30% with respect to the annual mean for FeO and Na respectively. This compares to 17% and 25% in the amplitude of the annual oscillation for FeO and Na, respectively. In addition simulations

  5. Astronomers Discover Fastest-Spinning Pulsar

    Science.gov (United States)

    2006-01-01

    Astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope have discovered the fastest-spinning neutron star ever found, a 20-mile-diameter superdense pulsar whirling faster than the blades of a kitchen blender. Their work yields important new information about the nature of one of the most exotic forms of matter known in the Universe. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) "We believe that the matter in neutron stars is denser than an atomic nucleus, but it is unclear by how much. Our observations of such a rapidly rotating star set a hard upper limit on its size, and hence on how dense the star can be.," said Jason Hessels, a graduate student at McGill University in Montreal. Hessels and his colleagues presented their findings to the American Astronomical Society's meeting in Washington, DC. Pulsars are spinning neutron stars that sling "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its "normal" life. With no nuclear fuel left to produce energy to offset the stellar remnant's weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name "neutron star." "Neutron stars are incredible laboratories for learning about the physics of the fundamental particles of nature, and this pulsar has given us an important new limit," explained Scott Ransom, an astronomer at the National Radio Astronomy Observatory and one of Hessels' collaborators on this work. The scientists discovered the pulsar, named PSR J1748-2446ad, in a globular cluster of stars called Terzan 5, located some 28,000 light-years from Earth in the constellation Sagittarius. The newly-discovered pulsar is spinning 716 times per second, or at 716 Hertz (Hz), readily beating the previous record of 642 Hz from a pulsar

  6. Optimizing significance testing of astronomical forcing in cyclostratigraphy

    Science.gov (United States)

    Kemp, David B.

    2016-12-01

    The recognition of astronomically forced (Milankovitch) climate cycles in geological archives marked a major advance in Earth science, revealing a heartbeat within the climate system of general importance and key utility. Power spectral analysis is the primary tool used to facilitate identification of astronomical cycles in stratigraphic data, but commonly employed methods for testing the statistical significance of relatively high narrow-band variance of potential astronomical origin in spectra have been criticized for inadequately balancing the respective probabilities of type I (false positive) and type II (false negative) errors. This has led to suggestions that the importance of astronomical forcing in Earth history is overstated. It can be readily demonstrated, however, that the imperfect nature of the stratigraphic record and the quasiperiodicity of astronomical cycles sets an upper limit on the attainable significance of astronomical signals. Optimized significance testing is that which minimizes the combined probability of type I and type II errors. Numerical simulations of stratigraphically preserved astronomical signals suggest that optimum significance levels at which to reject a null hypothesis of no astronomical forcing are between 0.01 and 0.001 (i.e., 99-99.9% confidence level). This is lower than commonly employed in the literature (90-99% confidence levels). Nevertheless, in consonance with the emergent view from other scientific disciplines, fixed-value null hypothesis significance testing of power spectra is implicitly ill suited to demonstrating astronomical forcing, and the use of spectral analysis remains a difficult and subjective endeavor in the absence of additional supporting evidence.

  7. Elizabethan Instrument Makers - The Origins of the London Trade in Precision Instrument Making

    Science.gov (United States)

    L'E Turner, Gerard

    2001-01-01

    Europe in the sixteenth century experienced a period of unprecedented vitality and innovation in the spheres of science and commerce. The Americas had been discovered and the colonizing nations had an urgent need for mathematical instruments for navigation and surveying. In 1540 the Elizabethan age saw the establishment of the precision instrument-making trade in London, a trade that would become world-famous in the succeeding two centuries. The mathematical instruments needed by astronomers, navigators, and surveyors owe much of their development to the work of the Flemish mathematician and astronomer, Gemma Frisius, and to the map and globe maker, Gerard Mercator, both of whom studied at Louvain. However it was Thomas Gemini who is credited with starting the London trade in 1540: his reputation came from making the plates for his own printing of the Anatomy of Vesalius, and the astrolabs he made and presented to Edward VI and Elizabeth I, which survive today. He was followed by Humphrey Cole, and other makers whose instruments have survived, including Ryther, Knyvyn, and Whitwell. This book first describes the context in which the Elizabethan trade began, and the influence of the instruments taken to Florence by Sir Robert Dudley in 1606. The second part catalogues in detail every surviving instrument from this period, signed and unsigned, that has been traced. The catalogue is accompanied by fine photographs which illustrate both the instruments and the techniques used to identify unsigned instruments.

  8. Radiation events in astronomical CCD images

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.R.; McDonald, R.J.; Hurley, D.L.; Holland, S.E.; Groom, D.E.; Brown, W.E.; Gilmore, D.K.; Stover, R.J.; Wei, M.

    2001-12-18

    The remarkable sensitivity of depleted silicon to ionizing radiation is a nuisance to astronomers. ''Cosmic rays'' degrade images because of struck pixels, leading to modified observing strategies and the development of algorithms to remove the unwanted artifacts. In the new-generation CCD's with thick sensitive regions, cosmic-ray muons make recognizable straight tracks and there is enhanced sensitivity to ambient gamma radiation via Compton-scattered electrons (''worms''). Beta emitters inside the dewar, for example high-potassium glasses such as BK7, also produce worm-like tracks. The cosmic-ray muon rate is irreducible and increases with altitude. The gamma rays are mostly by-products of the U and Th decay chains; these elements always appear as traces in concrete and other materials. The Compton recoil event rate can be reduced significantly by the choice of materials in the environment and dewar and by careful shielding. Telescope domes appear to be significantly cleaner than basement laboratories and Coude spectrograph rooms. Radiation sources inside the dewar can be eliminated by judicious choice of materials. Cosmogenic activation during high-altitude flights does not appear to be a problem. Our conclusions are supported by tests at the Lawrence Berkeley National Laboratory low-level counting facilities in Berkeley and at Oroville, California (180 m underground).

  9. Is astronomical research appropriate for developing countries?

    Science.gov (United States)

    Snowden, Michael S.

    An unproductive 45-cm astronomical telescope, given by JICA (Japan) to Sri Lanka, raises general questions as to the reasons for unproductive pure science in developing countries. Before installation, site, maintenance, and scientific objectives were discussed. The facility was launched with a conference organised by the UN Office for Outer Space Affairs. Unfortunately, no research or significant education has resulted after four years. The annual operating cost is U.S. $5000 per year, including salary for a trainee, maintenance, and a modest promotional programme. Comparison with a similar installation in Auckland suggests lack of funding or technical competence do not explain the failure in Sri Lanka. The facility in New Zealand, on the roof of Auckland University's Physics Department, has a slightly smaller budget but has led to modest but useful research and teaching. Lack of financial backing and expertise are often blamed for weak science in developing countries, but examination shows most of these countries have adequately skilled people, and plenty of resources for religion and military. General lack of motivation for science appears to be the principal reason. This lack of interest and highly inefficient bureaucracies are common to scientifically unproductive countries. They mostly lack the cultural and philosophical base of the European Renaissance that motivate the pursuit of modern science, an activity that violates human preferences. There are excellent facilities (ESO, SAAO, Cerro Tololo, and GONG) in some of these same countries, when administered from the West.

  10. Book Review: Scientific Writing for Young Astronomers

    Science.gov (United States)

    Uyttenhove, Jos

    2011-12-01

    EDP Sciences, Les Ulis, France. Part 1 : 162 pp. € 35 ISBN 978-2-7598-0506-8 Part 2 : 298 pp. € 60 ISBN 978-2-7598-0639-3 The journal Astronomy & Astrophysics (A&A) and EDP Sciences decided in 2007 to organize a School on the various aspects of scientific writing and publishing. In 2008 and 2009 Scientific Writing for Young Astronomers (SWYA) Schools were held in Blankenberge (B) under the direction of Christiaan Sterken (FWO-VUB). These two books (EAS publication series, Vol. 49 and 50) reflect the outcome of these Schools. Part 1 contains a set of contributions that discuss various aspects of scientific publication; it includes A&A Editors' view of the peer review and publishing process. A very interesting short paper by S.R. Pottasch (Kapteyn Astronomical Institute, Groningen, and one of the two first Editors-in Chief of A&A) deals with the history of the creation of the journal Astronomy & Astrophysics. Two papers by J. Adams et al. (Observatoire de Paris) discuss language editing, including a detailed guide for any non-native user of the English language. In 2002 the Board of Directors decided that all articles in A&A must be written in clear and correct English. Part 2 consists of three very extensive and elaborated papers by Christiaan Sterken, supplying guidelines to PhD students and postdoctoral fellows to help them compose scientific papers for different forums (journals, proceedings, thesis, etc.). This part is of interest not only for young astronomers but it is very useful for scholars of all ages and disciplines. Paper I "The writing process" (60 pp.) copes with the preparation of manuscripts, with communicating with editors and referees and with avoiding common errors. Delicate problems on authorship, refereeing, revising multi-authored papers etc. are treated in 26 FAQ's. Paper II "Communication by graphics" (120 pp.) is entirely dedicated to the important topic of communication with images, graphs, diagrams, tables etc. Design types of graphs

  11. An Astronomical Life Salted by Pure Chance

    Science.gov (United States)

    Kraft, Robert P.

    2009-09-01

    My childhood upbringing in no way suggested that I would become an astronomer, but accidents of fate pushed me in the direction of science, and I have benefited greatly from being in the right place at the right time. I grew up in Seattle, earned B.S. and M.S. degrees in mathematics at the University of Washington, and eventually a Ph.D. in astronomy from the University of California, Berkeley. I was a postdoc at the Mt. Wilson Observatory, an assistant professor at Indiana University, later the Yerkes Observatory (University of Chicago), and still later I became a staff member of the Mt. Wilson and Palomar Observatories. After several years, I returned to the University of California, this time with the Lick Observatory staff at its new academic home on the Santa Cruz campus, where I have been ever since. My research has focused on the relation of Cepheids and RR Lyrae stars to problems of Galactic structure, the binary nature of cataclysmic variables, the decay of angular momentum of solar type stars, and the chemical history of the Galaxy as revealed by the abundances of very old stars in globular clusters and the Galactic halo field. None of this work would have been possible without the help of excellent teachers and mentors, great colleagues, and superb postdocs and graduate students. Most of all, I am grateful for the educational opportunities afforded me by state-supported public Universities.

  12. Conceptualizing Astronomical Distances for Urban Populations

    Science.gov (United States)

    Popinchalk, Mark; Olson, Kristen; Ingber, Jenny; O'Brien, Mariel

    2017-01-01

    Students living in urban environments may have a washed-out night sky, but their enthusiasm for astronomy can still shine bright. As an educator, it can sometimes be a challenge to see the opportunities afforded by city living to the teaching of astronomy; however, several benefits can be identified. For example, the intrinsic understanding children have of the distances and scales involved in their everyday life is enhanced when they live in a regimented urban structure. This existing understanding of scale is critical to building a foundation for later conceptualizing of the universe.Leveraging the assets of New York City and the resources found in the American Museum of Natural History, The Science and Nature Program offers students (PreK through 8th grade) robust science learning experiences. To address concepts important for studying astronomy, we present a novel twist on the classic lesson “Earth as a Peppercorn,” by scaling the solar system to the size of New York City. Using local landmarks and their distance in relation to the Museum to represent the planets, students can use their prior knowledge of their surroundings to appreciate the impressive scale of our neighborhood in space in the context of their own neighborhoods. We correlate the activity with NGSS standards, present preliminary feedback on it’s success, and discuss the opportunities to apply a similar model lesson to other astronomical systems.

  13. Astronomers Find Enormous Hole in the Universe

    Science.gov (United States)

    2007-08-01

    Astronomers have found an enormous hole in the Universe, nearly a billion light-years across, empty of both normal matter such as stars, galaxies, and gas, and the mysterious, unseen "dark matter." While earlier studies have shown holes, or voids, in the large-scale structure of the Universe, this new discovery dwarfs them all. Void Illustration Hole in Universe revealed by its effect on Cosmic Microwave Background radiation. CREDIT: Bill Saxton, NRAO/AUI/NSF, NASA Click on image for page of graphics and detailed information "Not only has no one ever found a void this big, but we never even expected to find one this size," said Lawrence Rudnick of the University of Minnesota. Rudnick, along with Shea Brown and Liliya R. Williams, also of the University of Minnesota, reported their findings in a paper accepted for publication in the Astrophysical Journal. Astronomers have known for years that, on large scales, the Universe has voids largely empty of matter. However, most of these voids are much smaller than the one found by Rudnick and his colleagues. In addition, the number of discovered voids decreases as the size increases. "What we've found is not normal, based on either observational studies or on computer simulations of the large-scale evolution of the Universe," Williams said. The astronomers drew their conclusion by studying data from the NRAO VLA Sky Survey (NVSS), a project that imaged the entire sky visible to the Very Large Array (VLA) radio telescope, part of the National Science Foundation's National Radio Astronomy Observatory (NRAO). Their careful study of the NVSS data showed a remarkable drop in the number of galaxies in a region of sky in the constellation Eridanus. "We already knew there was something different about this spot in the sky," Rudnick said. The region had been dubbed the "WMAP Cold Spot," because it stood out in a map of the Cosmic Microwave Background (CMB) radiation made by the Wilkinson Microwave Anisotopy Probe (WMAP) satellite

  14. Astronomical Constraints on Quantum Cold Dark Matter

    Science.gov (United States)

    Spivey, Shane; Musielak, Z.; Fry, J.

    2012-01-01

    A model of quantum (`fuzzy') cold dark matter that accounts for both the halo core problem and the missing dwarf galaxies problem, which plague the usual cold dark matter paradigm, is developed. The model requires that a cold dark matter particle has a mass so small that its only allowed physical description is a quantum wave function. Each such particle in a galactic halo is bound to a gravitational potential that is created by luminous matter and by the halo itself, and the resulting wave function is described by a Schrödinger equation. To solve this equation on a galactic scale, we impose astronomical constraints that involve several density profiles used to fit data from simulations of dark matter galactic halos. The solutions to the Schrödinger equation are quantum waves which resemble the density profiles acquired from simulations, and they are used to determine the mass of the cold dark matter particle. The effects of adding certain types of baryonic matter to the halo, such as a dwarf elliptical galaxy or a supermassive black hole, are also discussed.

  15. The Blue Comet: A Railroad's Astronomical Heritage

    Science.gov (United States)

    Rumstay, Kenneth S.

    2009-01-01

    Between 1929 February 21 and 1941 September 27, the Central New Jersey Railroad operated a luxury passenger train between Jersey City and Atlantic City. Named The Blue Comet, the locomotive, tender, and coaches sported a unique royal blue paint scheme designed to evoke images of celestial bodies speeding through space. Inside each car were etched window panes and lampshades featuring stars and comets. And each coach sported the name of a famous comet on its side; these comets were of course named for their discoverers. Some of the astronomers honored in this unique fashion remain famous to this day, or at least their comets do. The names D'Arrest, Barnard, Encke, Faye, Giacobini, Halley, Olbers, Temple, Tuttle, and Westphal are familiar ones. But Biela, Brorsen, deVico, Spitaler, and Winnecke have now largely faded into obscurity; their stories are recounted here. Although more than sixty years have elapsed since its last run, The Blue Comet, perhaps the most famous passenger train in American history, lives on in the memories of millions of passengers and railfans. This famous train returned to the attention of millions of television viewers on the evening of 2007 June 3, in an episode of the HBO series The Sopranos. This work was supported by a faculty development grant from Valdosta State University.

  16. Spatial Statistical Analysis of Large Astronomical Datasets

    Science.gov (United States)

    Szapudi, Istvan

    2002-12-01

    The future of astronomy will be dominated with large and complex data bases. Megapixel CMB maps, joint analyses of surveys across several wavelengths, as envisioned in the planned National Virtual Observatory (NVO), TByte/day data rate of future surveys (Pan-STARRS) put stringent constraints on future data analysis methods: they have to achieve at least N log N scaling to be viable in the long term. This warrants special attention to computational requirements, which were ignored during the initial development of current analysis tools in favor of statistical optimality. Even an optimal measurement, however, has residual errors due to statistical sample variance. Hence a suboptimal technique with significantly smaller measurement errors than the unavoidable sample variance produces results which are nearly identical to that of a statistically optimal technique. For instance, for analyzing CMB maps, I present a suboptimal alternative, indistinguishable from the standard optimal method with N3 scaling, that can be rendered N log N with a hierarchical representation of the data; a speed up of a trillion times compared to other methods. In this spirit I will present a set of novel algorithms and methods for spatial statistical analyses of future large astronomical data bases, such as galaxy catalogs, megapixel CMB maps, or any point source catalog.

  17. Are opthalmic hydrophobic coatings useful for astronomical optics?

    Science.gov (United States)

    Schwab, Christian; Phillips, Andrew C.

    2010-07-01

    Astronomical optics are often exposed to moisture and dust in observatory environments, which frequently compromises their high-performance coatings. Suitable protective layers to resist dust and moisture accumulation would be extremely advantageous, but have received scant attention thus far. Hydrophobic and scratch-resistant coatings, developed primarily for opthalmic use, exhibit several attractive properties for astronomical optics. We examine the properties of one such coating and its applicability to astronomical mirrors and lenses. This includes efficiency of dust removal, abrasion resistance, moisture resistance, ease of stripping, and transmission across a wide wavelength range.

  18. Astronomical Dating of Edvard Munch's Summer Sky Paintings

    Science.gov (United States)

    Pope, Ava; Olson, Donald

    2010-02-01

    Norwegian painter Edvard Munch, most famous for The Scream, created many spectacular works depicting the skies of Norway. Our Texas State group used astronomical methods to analyze three of these paintings: Starry Night, The Storm, and Sunrise in Asgardstrand. Astronomical dating of these paintings has some importance because the precise days when Munch visited Asgardstrand are unknown. Our research group traveled to Norway in August 2008 to find the locations from which Munch painted these three works. We then used astronomical calculations, topographical analysis, historical photographs, and weather records to determine the precise dates and times for the scenes depicted in these paintings. )

  19. Serbian Astronomers in Science Citation Index in the XX Century

    Science.gov (United States)

    Dimitrijevic, Milan S.

    The book is written paralelly in Serbian and English. The presence of works of Serbian astronomers and works in astronomical journals published by other Serbian scientists, in Science Citation Index within the period from 1945 up to the end of 2000, has been analyzed. Also is presented the list of 38 papers which had some influence on the development of astronomy in the twentieth century. A review of the development of astronomy in Serbia in the last century is given as well. Particular attention is payed to the Astronomical Observatory, the principal astronomical institution in Serbia, where it is one of the oldest scientific organizations and the only autonomous astronomical institute. Its past development forms an important part of the history of science and culture in these regions. In the book is also considered and the history of the university teaching of astronomy in Serbia after the second world war. First of all the development of the Chair of Astronomy at the Faculty of Mathematics in Belgrade, but also the teaching of astronomy at University in Novi Sad, Ni and Kragujevac is discussed. In addition to professional Astronomy, well developed in Serbia is also the amateur Astronomy. In the review is first of all included the largest and the oldest organization of amateur-astronomers in Serbia, founded in 1934. Besides, here are the Astronomical Society "Novi Sad", ADNOS and Research Station "Petnica". In Valjevo, within the framework of the Society of researchers "Vladimir Mandic - Manda", there is active also the Astronomical Group. In Kragujevac, on the roof of the Institute of Physics of the Faculty of Sciences, there is the "Belerofont" Observatory. In Ni, at the close of the sixties and the start of the seventies, there was operating a branch of the Astronomical Society "Rudjer Bokovic", while at the Faculty of Philosophy there existed in the period 1976-1980 the "Astro-Geophysical Society". In the year 1996 there was founded Astronomical Society

  20. The Virtual Astronomical Observatory: Re-engineering access to astronomical data

    Science.gov (United States)

    Hanisch, R. J.; Berriman, G. B.; Lazio, T. J. W.; Emery Bunn, S.; Evans, J.; McGlynn, T. A.; Plante, R.

    2015-06-01

    The US Virtual Astronomical Observatory was a software infrastructure and development project designed both to begin the establishment of an operational Virtual Observatory (VO) and to provide the US coordination with the international VO effort. The concept of the VO is to provide the means by which an astronomer is able to discover, access, and process data seamlessly, regardless of its physical location. This paper describes the origins of the VAO, including the predecessor efforts within the US National Virtual Observatory, and summarizes its main accomplishments. These accomplishments include the development of both scripting toolkits that allow scientists to incorporate VO data directly into their reduction and analysis environments and high-level science applications for data discovery, integration, analysis, and catalog cross-comparison. Working with the international community, and based on the experience from the software development, the VAO was a major contributor to international standards within the International Virtual Observatory Alliance. The VAO also demonstrated how an operational virtual observatory could be deployed, providing a robust operational environment in which VO services worldwide were routinely checked for aliveness and compliance with international standards. Finally, the VAO engaged in community outreach, developing a comprehensive web site with on-line tutorials, announcements, links to both US and internationally developed tools and services, and exhibits and hands-on training at annual meetings of the American Astronomical Society and through summer schools and community days. All digital products of the VAO Project, including software, documentation, and tutorials, are stored in a repository for community access. The enduring legacy of the VAO is an increasing expectation that new telescopes and facilities incorporate VO capabilities during the design of their data management systems.

  1. The Double Didactic Astronomical Quadrant for the XIII International Astronomical Olympiad

    CERN Document Server

    Maris, Michele; Boehm, Conrad; Iafrate, Giulia; Ramella, Massimo

    2010-01-01

    Here we present the development of a simplified version of double astronomical quadrant, designed for educational aims and realized on the occasion of the observational round of the XIII International Astronomy Olympiad, held in Trieste (Italy) October 13-21, 2008. (Italia: In questo contributo illustriamo il progetto di una versione semplificata di doppio quadrante astronomico, progettato per fini didattici e realizzato in occasione dello svolgimento della gara osservativa delle XIII Olimpiadi Internazionali di Astronomia (XIII International Astronomy Olympiad, XIII IAO), Trieste (I), 13-21 ottobre 2008))

  2. The Frontiers of the Astronomical Universe

    Science.gov (United States)

    Pecker, Jean-Claude

    1977-01-01

    Reviews the current state of knowledge obtained by means of observations using the increasingly powerful or proficient instruments of astrophysics, radio astronomy, and space astronomy by satellite. In conclusion, he refers to certain mathematical entities introduced into the theory of the origins and evolution of the cosmos. (Author/MA)

  3. How Much Mass Makes a Black Hole? - Astronomers Challenge Current Theories

    Science.gov (United States)

    2010-08-01

    constraints on magnetar progenitor masses from the eclipsing binary W13", by B. Ritchie et al.). The same team published a first study of this object in 2006 ("A Neutron Star with a Massive Progenitor in Westerlund 1", by M.P. Muno et al., Astrophysical Journal, 636, L41). The team is composed of Ben Ritchie and Simon Clark (The Open University, UK), Ignacio Negueruela (Universidad de Alicante, Spain), and Norbert Langer (Universität Bonn, Germany, and Universiteit Utrecht, the Netherlands). The astronomers used the FLAMES instrument on ESO's Very Large Telescope at Paranal, Chile to study the stars in the Westerlund 1 cluster. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. Spectroscopy for amateur astronomers recording, processing, analysis and interpretation

    CERN Document Server

    Trypsteen , Marc F M

    2017-01-01

    This accessible guide presents the astrophysical concepts behind astronomical spectroscopy, covering both the theory and the practical elements of recording, processing, analysing and interpreting your spectra. It covers astronomical objects, such as stars, planets, nebulae, novae, supernovae, and events such as eclipses and comet passages. Suitable for anyone with only a little background knowledge and access to amateur-level equipment, the guide's many illustrations, sketches and figures will help you understand and practise this scientifically important and growing field of amateur astronomy, up to the level of Pro-Am collaborations. Accessible to non-academics, it benefits many groups from novices and learners in astronomy clubs, to advanced students and teachers of astrophysics. This volume is the perfect companion to the Spectral Atlas for Amateur Astronomers, which provides detailed commented spectral profiles of more than 100 astronomical objects.

  5. The application of interferometry to optical astronomical imaging.

    Science.gov (United States)

    Baldwin, John E; Haniff, Christopher A

    2002-05-15

    In the first part of this review we survey the role optical/infrared interferometry now plays in ground-based astronomy. We discuss in turn the origins of astronomical interferometry, the motivation for its development, the techniques of its implementation, examples of its astronomical significance, and the limitations of the current generation of interferometric arrays. The second part focuses on the prospects for ground-based astronomical imaging interferometry over the near to mid-term (i.e. 10 years) at optical and near-infrared wavelengths. An assessment is made of the astronomical and technical factors which determine the optimal designs for imaging arrays. An analysis based on scientific capability, technical feasibility and cost argues for an array of large numbers of moderate-sized (2 m class) telescopes rather than one comprising a small number of much larger collectors.

  6. Application of digital image processing techniques to astronomical imagery 1977

    Science.gov (United States)

    Lorre, J. J.; Lynn, D. J.

    1978-01-01

    Nine specific techniques of combination of techniques developed for applying digital image processing technology to existing astronomical imagery are described. Photoproducts are included to illustrate the results of each of these investigations.

  7. Lessons from the masters current concepts in astronomical image processing

    CERN Document Server

    2013-01-01

    There are currently thousands of amateur astronomers around the world engaged in astrophotography at increasingly sophisticated levels. Their ranks far outnumber professional astronomers doing the same and their contributions both technically and artistically are the dominant drivers of progress in the field today. This book is a unique collaboration of individuals, all world-renowned in their particular area, and covers in detail each of the major sub-disciplines of astrophotography. This approach offers the reader the greatest opportunity to learn the most current information and the latest techniques directly from the foremost innovators in the field today.   The book as a whole covers all types of astronomical image processing, including processing of eclipses and solar phenomena, extracting detail from deep-sky, planetary, and widefield images, and offers solutions to some of the most challenging and vexing problems in astronomical image processing. Recognized chapter authors include deep sky experts su...

  8. Astronomical sketching a step-by-step introduction

    CERN Document Server

    Handy, Richard; Perez, Jeremy; Rix, Erika; Robbins, Sol

    2007-01-01

    This book presents the amateur with fine examples of astronomical sketches and step-by-step tutorials in each medium, from pencil to computer graphics programs. This unique book can teach almost anyone to create beautiful sketches of celestial objects.

  9. PPARC: Grid technology helps astronomers keep pace with the Universe

    CERN Multimedia

    2003-01-01

    "Intelligent Agent" computer programs are roaming the Internet and watching the skies. These programs, using Grid computing technology, will help astronomers detect some of the most dramatic events in the universe, such as massive supernova explosions (1 page).

  10. Investigating Student Understanding of the Universe: Perceptions of Astronomical Sizes and Distances

    Science.gov (United States)

    Camarillo, Carmelita; Coble, K.; Hayes, V.; Nickerson, M.; Cochran, G. L.; Bailey, J. M.; McLin, K. M.; Cominsky, L. R.

    2011-05-01

    Student perceptions regarding astronomical sizes and distances are being analyzed for Chicago State University's Basic Astronomy course. This area is of great interest to further understand the students’ learning processes and to produce more effective instruction. Insights from cognitive psychology have shown that perceptions are related to prior experiences and current knowledge. Students enter into this course with different mental representations, and these representations can affect their learning. Through a repeated measures design, perceptions are analyzed through several instruments. The instruments implemented are pre-tests surveys (before lab), exams (after lab), lab comments, and interviews. Preliminary analysis reveals that students who have difficulty with astronomical sizes and distances have been more strongly influenced by culture and the media whereas those who had less difficulty expanded on their personal prior experiences. This project is part of a larger study; also see our posters on the structure of the universe, dark matter, the age and expansion of the universe. This work was supported by NASA ROSES E/PO Grant #NNXlOAC89G, as well as by the Illinois Space Grant Consortium and National Science Foundation CCLI Grant #0632563 at Chicago State University and the Fermi E/PO program at Sonoma State University.

  11. Investigation carried out with pre-service elementary teachers on some basic astronomical topics

    CERN Document Server

    Gangui, Alejandro; Quinteros, Cynthia

    2010-01-01

    We perform a situational diagnosis in topics of astronomy of pre-service elementary teachers in order to try and develop didactic tools that better collaborate with their formal education. In this work we present the instrument we designed to put in evidence some of the most frequently used models on a few basic astronomical notions endowed by them. We work with an open written questionnaire comprising a limited but representative group of basic astronomical notions. We discuss the results of two first pilot tests, provided to 30 individuals, and we comment on the necessary changes applied to the instrument in order to design the final questionnaire, which was then provided to another group of 51 pre-service elementary teachers. A detailed qualitative analysis of the answers revealed many well-known alternative conceptions, and others that seem new. We find that prospective teachers have a hard time in trying to explain the movements of the Moon and its phases. They also meet difficulties to recognize and exp...

  12. The 2013 Summer Undergraduate Research Internship Program at the Pisgah Astronomical Research Institute

    Science.gov (United States)

    Castelaz, Michael W.; Cline, J. D.; Whitworth, C.; Clavier, D.; Barker, T.

    2014-01-01

    Pisgah Astronomical Research Institute (PARI) offers summer undergraduate research internships. PARI has received support for the internships from the EMC Corporation, private donations, private foundations, and through a collaboration with the Pisgah Astronomical Research and Education Center of the University of North Carolina - Asheville. The internship program began in 2001 with 4 students. This year 10 funded students participated. Mentors for the interns include PARI’s Directors of Science, Education, and Information Technology and visiting faculty who are members of the PARI Research Faculty Affiliate program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the PARI Summer Student Proceedings. Students are encouraged to present their research at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors.

  13. The NASA Astrophysics Data System Free Access to the Astronomical Literature On-Line and through Email

    CERN Document Server

    Eichhorn, G; Grant, C S; Kurtz, M J; Murray, S S

    2001-01-01

    The Astrophysics Data System (ADS) provides access to the astronomical literature through the World Wide Web. It is a NASA funded project and access to all the ADS services is free to everybody world-wide.The ADS Abstract Service allows the searching of four databases with abstracts in Astronomy, Instrumentation, Physics/Geophysics, and the LANL Preprints with a total of over 2.2 million references. The system also provides access to reference and citation information, links to on-line data, electronic journal articles, and other on-line information. The ADS Article Service contains the articles for most of the astronomical literature back to volume 1. It contains the scanned pages of all the major journals (Astrophysical Journal, Astronomical Journal, Astronomy & Astrophysics, Monthly Notices of the Royal Astronomical Society, and Solar Physics), as well as most smaller journals back to volume 1. The ADS can be accessed through any web browser without signup or login. Alternatively an email interface is ...

  14. Profile fitting in crowded astronomical images

    Science.gov (United States)

    Manish, Raja

    Around 18,000 known objects currently populate the near Earth space. These constitute active space assets as well as space debris objects. The tracking and cataloging of such objects relies on observations, most of which are ground based. Also, because of the great distance to the objects, only non-resolved object images can be obtained from the observations. Optical systems consist of telescope optics and a detector. Nowadays, usually CCD detectors are used. The information that is sought to be extracted from the frames are the individual object's astrometric position. In order to do so, the center of the object's image on the CCD frame has to be found. However, the observation frames that are read out of the detector are subject to noise. There are three different sources of noise: celestial background sources, the object signal itself and the sensor noise. The noise statistics are usually modeled as Gaussian or Poisson distributed or their combined distribution. In order to achieve a near real time processing, computationally fast and reliable methods for the so-called centroiding are desired; analytical methods are preferred over numerical ones of comparable accuracy. In this work, an analytic method for the centroiding is investigated and compared to numerical methods. Though the work focuses mainly on astronomical images, same principle could be applied on non-celestial images containing similar data. The method is based on minimizing weighted least squared (LS) error between observed data and the theoretical model of point sources in a novel yet simple way. Synthetic image frames have been simulated. The newly developed method is tested in both crowded and non-crowded fields where former needs additional image handling procedures to separate closely packed objects. Subsequent analysis on real celestial images corroborate the effectiveness of the approach.

  15. Preservation and maintenance of the astronomical sites in Armenia

    Science.gov (United States)

    Mickaelian, A. M.

    2008-01-01

    Astronomy in Armenia was popular since ancient times. There are signs of astronomical observations coming from a few thousands years ago. Two ancient observatories, Karahunge and Metzamor are especially well known. Karahunge is the Armenian twin of the Stonehenge and is even older. However, there is no proper attention from the state authorities and efforts are needed for preservation of such historical-astronomical monuments. The Byurakan Astrophysical Observatory (BAO) is the modern famous Armenian observatory founded in 1946 by the outstanding scientist Victor Ambartsumian. It was one of the world astronomical centres in 1950-s to 1970-s, and at present is the largest observatory in the Middle East area. As the ancient astronomical sites, Byurakan also needs a proper attitude from the state authorities and corresponding international organizations to preserve its values and importance for the present and future astronomical activities in the region, including its rich observational archive, telescopes, and human resources. Despite all the difficulties, the Armenian astronomers keep high international level of research and display various activities organizing international meetings and schools, preparing new young generation for the future research. The Armenian Astronomical Society (ArAS) is an affiliated member of EAS. Armenia has its Virtual Observatory project (ArVO) as well. The next Joint European and National Astronomy Meeting (JENAM-2007) will be held in Yerevan, Armenia, in August 2007. There are plans to organize astronomical tours to Armenia for making observations from various sites, including the ancient observatories. The future of astronomy in Armenia strongly depends on all of this activities and the proper attention both from state authorities and society.

  16. Applying artificial intelligence to astronomical databases - a surveyof applicable technology.

    Science.gov (United States)

    Rosenthal, D. A.

    This paper surveys several emerging technologies which are relevant to astronomical database issues such as interface technology, internal database representation, and intelligent data reduction aids. Among the technologies discussed are natural language understanding, frame and object representations, planning, pattern analysis, machine learning and the nascent study of simulated neural nets. These techniques will become increasingly important for astronomical research, and in particular, for applications with large databases.

  17. Astronomical guidance for directed searches for continuous gravitational waves

    Science.gov (United States)

    Owen, Benjamin

    2014-01-01

    The LIGO Scientic Collaboration and Virgo Collaboration have published a search for continuous gravitational-waves from the non-pulsing neutron star in supernova remnant Cas A and, more recently, from the galactic center. More such searches, where the direction is known but no pulsar timing is available, are under way. I describe the astronomical criteria for good targets for such gravitational-wave searches, list classes of astronomical objects, and give examples of each class.

  18. Astronomers watch the stars come out in berkeley.

    Science.gov (United States)

    1993-06-25

    New and strange sightings caught the attention of astronomers at this June's American Astronomical Society (AAS) meeting in Berkeley: a supernova that has changed its identity, a clutch of mysterious blue stars, and objects at the edge of the universe, shining brilliantly at the far end of the ultraviolet spectrum. Meanwhile, a more familiar object-one species of supernova-is raising hopes of predicting the ultimate fate of this cosmic zoo.

  19. Blowing bubbles in the cosmos astronomical winds, jets, and explosions

    CERN Document Server

    Hartquist, T W; Ruffle, D P

    2004-01-01

    1. The First Discoveries of Astronomical Winds2. The Magnitudes of Astronomical Quantities3. Stellar Evolution4. Basic Structures of Winds and Windblown Bubbles5. Star Formation and Low-Mass Young Stellar Objects6. Regions of High-Mass Star Formation7. Winds from Main-Sequence and Post-Main-Sequence Stars8. Supernovae and Their Remnants9. Galactic Winds, Starburst Superwinds, and the Epoch of Galaxy Formation10. Active Galaxies and Their Nuclei11. Some Other Windy and Explosive Sources

  20. European astronomers' successes with the Hubble Space Telescope*

    Science.gov (United States)

    1997-02-01

    [Figure: Laguna Nebula] Their work spans all aspects of astronomy, from the planets to the most distant galaxies and quasars, and the following examples are just a few European highlights from Hubble's second phase, 1994-96. A scarcity of midget stars Stars less massive and fainter than the Sun are much numerous in the Milky Way Galaxy than the big bright stars that catch the eye. Guido De Marchi and Francesco Paresce of the European Southern Observatory as Garching, Germany, have counted them. With the wide-field WFPC2 camera, they have taken sample censuses within six globular clusters, which are large gatherings of stars orbiting independently in the Galaxy. In every case they find that the commonest stars have an output of light that is only one-hundredth of the Sun's. They are ten times more numerous than stars like the Sun. More significant for theories of the Universe is a scarcity of very faint stars. Some astronomers have suggested that vast numbers of such stars could account for the mysterious dark matter, which makes stars and galaxies move about more rapidly than expected from the mass of visible matter. But that would require an ever-growing count of objects at low brightnesses, and De Marchi and Paresce find the opposite to be the case -- the numbers diminish. There may be a minimum size below which Nature finds starmaking difficult. The few examples of very small stars seen so far by astronomers may be, not the heralds of a multitude of dark-matter stars, but rareties. Unchanging habits in starmaking Confirmation that very small stars are scarce comes from Gerry Gilmore of the Institute of Astronomy in Cambridge (UK). He leads a European team that analyses long-exposure images in the WFPC2 camera, obtained as a by-product when another instrument is examining a selected object. The result is an almost random sample of well-observed stars and galaxies. The most remarkable general conclusion is that the make-up of stellar populations never seems to

  1. The Expansion of the Astronomical Photographic Data Archive at PARI

    Science.gov (United States)

    Cline, J. Donald; Barker, Thurburn; Castelaz, Michael

    2017-01-01

    A diverse set of photometric, astrometric, spectral and surface brightness data exist on decades of photographic glass plates. The Astronomical Photographic Data Archive (APDA) at the Pisgah Astronomical Research Institute (PARI) was established in November 2007 and is dedicated to the task of collecting, restoring, preserving and storing astronomical photographic data and PARI continues to accept collections. APDA is also tasked with scanning each image and establishing a database of images that can be accessed via the Internet by the global community of scientists, researchers and students. APDA is a new type of astronomical observatory - one that harnesses analog data of the night sky taken for more than a century and making that data available in a digital format.In 2016, APDA expanded from 50 collections with about 220,000 plates to more than 55 collections and more than 340,000 plates and films. These account for more than 30% of all astronomical photographic data in the United States. The largest of the new acquisitions are the astronomical photographic plates in the Yale University collection. We present details of the newly added collections and review of other collections in APDA.

  2. Luminescence Instrumentation

    DEFF Research Database (Denmark)

    Jain, Mayank; Bøtter-Jensen, Lars

    2014-01-01

    This chapter gives an introduction to instrumentation for stimulated luminescence studies, with special focus on luminescence dating using the natural dosimeters, quartz and feldspars. The chapter covers basic concepts in luminescence detection, and thermal and optical stimulation, and reference...... irradiation. It then briefly describes development of spectrometers in dating applications, and finally gives an overview of recent development in the field directly linked to novel instrumentation. Contents of Paper...

  3. ALOHA/CHARA at 1.55 μm: sensitivity improvement and on-sky ability to detect astronomical sources in H band

    Science.gov (United States)

    Darré, P.; Grossard, L.; Delage, L.; Reynaud, F.; Scott, N. J.; Sturmann, J.; Ten Brummelaar, T. A.

    2016-07-01

    The interferometric concept named ALOHA (Astronomical Light Optical Hybrid Analysis) offers an alternative for high resolution imaging in the mid-infrared domain by shifting the astronomical light to shorter wavelength where optical guided components from telecommunications are available and efficient. A prototype with two arms converting a signal from 1.55 μm to 630 nm is used to validate the concept in laboratory and on-sky. Thanks to collaboration with the CHARA team, photometric tests were achieved with a single arm of the interferometer and have allowed to predict instrument performance in its interferometric configuration in order to obtain first fringes in H band.

  4. Astronomers Discover Most Massive Neutron Star Yet Known

    Science.gov (United States)

    2010-10-01

    spacetime produced by the white dwarf's gravitation. This effect, called the Shapiro Delay, allowed the scientists to precisely measure the masses of both stars. "We got very lucky with this system. The rapidly-rotating pulsar gives us a signal to follow throughout the orbit, and the orbit is almost perfectly edge-on. In addition, the white dwarf is particularly massive for a star of that type. This unique combination made the Shapiro Delay much stronger and thus easier to measure," said Scott Ransom, also of NRAO. The astronomers used a newly-built digital instrument called the Green Bank Ultimate Pulsar Processing Instrument (GUPPI), attached to the GBT, to follow the binary stars through one complete orbit earlier this year. Using GUPPI improved the astronomers' ability to time signals from the pulsar severalfold. The researchers expected the neutron star to have roughly one and a half times the mass of the Sun. Instead, their observations revealed it to be twice as massive as the Sun. That much mass, they say, changes their understanding of a neutron star's composition. Some theoretical models postulated that, in addition to neutrons, such stars also would contain certain other exotic subatomic particles called hyperons or condensates of kaons. "Our results rule out those ideas," Ransom said. Demorest and Ransom, along with Tim Pennucci of the University of Virginia, Mallory Roberts of Eureka Scientific, and Jason Hessels of the Netherlands Institute for Radio Astronomy and the University of Amsterdam, reported their results in the October 28 issue of the scientific journal Nature. Their result has further implications, outlined in a companion paper, scheduled for publication in the Astrophysical Journal Letters. "This measurement tells us that if any quarks are present in a neutron star core, they cannot be 'free,' but rather must be strongly interacting with each other as they do in normal atomic nuclei," said Feryal Ozel of the University of Arizona, lead author of

  5. Astronomical Data Integration Beyond the Virtual Observatory

    Science.gov (United States)

    Lemson, G.; Laurino, O.

    2015-09-01

    "Data integration" generally refers to the process of combining data from different source data bases into a unified view. Much work has been devoted in this area by the International Virtual Observatory Alliance (IVOA), allowing users to discover and access databases through standard protocols. However, different archives present their data through their own schemas and users must still select, filter, and combine data for each archive individually. An important reason for this is that the creation of common data models that satisfy all sub-disciplines is fraught with difficulties. Furthermore it requires a substantial amount of work for data providers to present their data according to some standard representation. We will argue that existing standards allow us to build a data integration framework that works around these problems. The particular framework requires the implementation of the IVOA Table Access Protocol (TAP) only. It uses the newly developed VO data modelling language (VO-DML) specification, which allows one to define extensible object-oriented data models using a subset of UML concepts through a simple XML serialization language. A rich mapping language allows one to describe how instances of VO-DML data models are represented by the TAP service, bridging the possible mismatch between a local archive's schema and some agreed-upon representation of the astronomical domain. In this so called local-as-view approach to data integration, “mediators" use the mapping prescriptions to translate queries phrased in terms of the common schema to the underlying TAP service. This mapping language has a graphical representation, which we expose through a web based graphical “drag-and-drop-and-connect" interface. This service allows any user to map the holdings of any TAP service to the data model(s) of choice. The mappings are defined and stored outside of the data sources themselves, which allows the interface to be used in a kind of crowd-sourcing effort

  6. SPHEREx: Science Opportunities for the Astronomical Community

    Science.gov (United States)

    Cooray, Asantha; SPHEREx Science Team

    2018-01-01

    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A study in August 2017, will perform an all-sky near-infrared spectral survey between 0.75 - 5.0 microns. The survey will reach 18.3 AB mag (5 sigma) in R=41 filters, with R=135 coverage between 4.2 - 5.0 microns. The key science topics of the SPHEREx team are: (a) primordial non-Gaussianity through 3-dimensional galaxy clustering; (b) extragalactic background light fluctuations; and (c) ices and biogenic molecules in the interstellar medium and towards protoplanetary environments.The large legacy dataset of SPHEREx will enable a large number of scientific studies and find interesting targets for follow-up observations with Hubble, JWST, ALMA, among other facilities. The SPHEREx catalog will include 1.4 billion galaxies, with redshifts secured for more than 10 and 120 million with fractional accuracies in error/(1+z) better than 0.3% and 3%, respectively. The spectral coverage and resolution provided by SPHEREx are adequate to determine redshifts for most WISE-detected sources with an accuracy better than 3%. The catalog will contain close to 1.5 million quasars including 300 bright QSOs at z > 7 during the epoch of reionization, based on observational extrapolations. The catalog will be adequate to obtain redshifts for all 25,000 galaxy clusters expected to be detected in X-rays with e-Rosita. SPHEREx produces all-sky maps of the Galactic emission lines, including hydrocarbon emission around 3 microns.In this poster, we will show example science studies the broader astronomical community will be able to lead using the SPHEREx database. We will also outline existing plans within the SPHEREx team to develop software tools to enable easy access to the data and to conduct catalog searches, and ways in which the community can provide input to the SPHEREx Science Team on scientific studies and data/software requirements for those studies. The team is eager to develop best software

  7. Cosmic Blasts Much More Common, Astronomers Discover

    Science.gov (United States)

    2006-08-01

    A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. The VLA The Very Large Array CREDIT: NRAO/AUI/NSF (Click on image for VLA gallery) A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova

  8. Instrumental Capital

    Directory of Open Access Journals (Sweden)

    Gabriel Valerio

    2007-07-01

    Full Text Available During the history of human kind, since our first ancestors, tools have represented a mean to reach objectives which might otherwise seemed impossibles. In the called New Economy, where tangibles assets appear to be losing the role as the core element to produce value versus knowledge, tools have kept aside man in his dairy work. In this article, the author's objective is to describe, in a simple manner, the importance of managing the organization's group of tools or instruments (Instrumental Capital. The characteristic conditions of this New Economy, the way Knowledge Management deals with these new conditions and the sub-processes that provide support to the management of Instrumental Capital are described.

  9. Astronomical optical interferometry, II: Astrophysical results

    Directory of Open Access Journals (Sweden)

    Jankov S.

    2011-01-01

    Full Text Available Optical interferometry is entering a new age with several ground- based long-baseline observatories now making observations of unprecedented spatial resolution. Based on a great leap forward in the quality and quantity of interferometric data, the astrophysical applications are not limited anymore to classical subjects, such as determination of fundamental properties of stars; namely, their effective temperatures, radii, luminosities and masses, but the present rapid development in this field allowed to move to a situation where optical interferometry is a general tool in studies of many astrophysical phenomena. Particularly, the advent of long-baseline interferometers making use of very large pupils has opened the way to faint objects science and first results on extragalactic objects have made it a reality. The first decade of XXI century is also remarkable for aperture synthesis in the visual and near-infrared wavelength regimes, which provided image reconstructions from stellar surfaces to Active Galactic Nuclei. Here I review the numerous astrophysical results obtained up to date, except for binary and multiple stars milliarcsecond astrometry, which should be a subject of an independent detailed review, taking into account its importance and expected results at microarcsecond precision level. To the results obtained with currently available interferometers, I associate the adopted instrumental settings in order to provide a guide for potential users concerning the appropriate instruments which can be used to obtain the desired astrophysical information.

  10. Astronomical Optical Interferometry. II. Astrophysical Results

    Science.gov (United States)

    Jankov, S.

    2011-12-01

    Optical interferometry is entering a new age with several ground-based long-baseline observatories now making observations of unprecedented spatial resolution. Based on a great leap forward in the quality and quantity of interferometric data, the astrophysical applications are not limited anymore to classical subjects, such as determination of fundamental properties of stars; namely, their effective temperatures, radii, luminosities and masses, but the present rapid development in this field allowed to move to a situation where optical interferometry is a general tool in studies of many astrophysical phenomena. Particularly, the advent of long-baseline interferometers making use of very large pupils has opened the way to faint objects science and first results on extragalactic objects have made it a reality. The first decade of XXI century is also remarkable for aperture synthesis in the visual and near-infrared wavelength regimes, which provided image reconstructions from stellar surfaces to Active Galactic Nuclei. Here I review the numerous astrophysical results obtained up to date, except for binary and multiple stars milli-arcsecond astrometry, which should be a subject of an independent detailed review, taking into account its importance and expected results at micro-arcsecond precision level. To the results obtained with currently available interferometers, I associate the adopted instrumental settings in order to provide a guide for potential users concerning the appropriate instruments which can be used to obtain the desired astrophysical information.

  11. Analysis of Korean astronomical records with Chinese equatorial coordinates

    Science.gov (United States)

    Lee, K. W.

    2012-08-01

    The historical documents of ancient Korea contain abundant records on various astronomical phenomena. The historical documents of the Joseon dynasty contain observational values based on Chinese equatorial coordinate system (i.e., angular distances from the reference star of a lunar mansion and the North Pole). However, quantitative analysis of the observational values has not been carried out. In this study, we investigate the observational accuracy during the Joseon dynasty by comparing the astronomical records of Joseonwangjo Sillok (Annals of the Joseon Dynasty) and Seungjeongwon Ilgi (Daily Records of the Royal Secretariat) with modern astronomical calculations. Consequently, we find that the observational accuracy during the early Joseon dynasty was approximately 1.2° 0.3° in the right ascension and declination, respectively. On the other hand, we find that the observational accuracy during the later Joseon dynasty was considerably poor. Observations of Halley's comet in 1759 were off by approximately 7° in declination. We believe that further investigation is required to verify the reason for this poor accuracy. Thus, we list the complete records used for this study in the appendix. We believe that these records also can contribute to modern studies on phenomena such as supernovae or Halley's comet. In conclusion, we believe that this study is useful for understanding ancient Korean astronomical records, even though we have considered a small number of astronomical events.

  12. The Binary Offset Effect in CCDs: an Anomalous Readout Artifact Affecting Most Astronomical CCDs in Use

    Science.gov (United States)

    Boone, Kyle Robert; Aldering, Gregory; Copin, Yannick; Dixon, Samantha; Domagalski, Rachel; Gangler, Emmanuel; Pecontal, Emmanuel; Perlmutter, Saul; Nearby Supernova Factory Collaboration

    2018-01-01

    We discovered an anomalous behavior of CCD readout electronics that affects their use in many astronomical applications, which we call the “binary offset effect”. Due to feedback in the readout electronics, an offset is introduced in the values read out for each pixel that depends on the binary encoding of the previously read-out pixel values. One consequence of this effect is that a pathological local background offset can be introduced in images that only appears where science data are present on the CCD. The amplitude of this introduced offset does not scale monotonically with the amplitude of the objects in the image, and can be up to 4.5 ADU per pixel for certain instruments. Additionally, this background offset will be shifted by several pixels from the science data, potentially distorting the shape of objects in the image. We tested 22 instruments for signs of the binary offset effect and found evidence of it in 16 of them, including LRIS and DEIMOS on the Keck telescopes, WFC3-UVIS and STIS on HST, MegaCam on CFHT, SNIFS on the UH88 telescope, GMOS on the Gemini telescopes, HSC on Subaru, and FORS on VLT. A large amount of archival data is therefore affected by the binary offset effect, and conventional methods of reducing CCD images do not measure or remove the introduced offsets. As a demonstration of how to correct for the binary offset effect, we have developed a model that can accurately predict and remove the introduced offsets for the SNIFS instrument on the UH88 telescope. Accounting for the binary offset effect is essential for precision low-count astronomical observations with CCDs.

  13. Instrumental aspects

    Science.gov (United States)

    Qureshi, Navid

    2017-10-01

    Every neutron scattering experiment requires the choice of a suited neutron diffractometer (or spectrometer in the case of inelastic scattering) with its optimal configuration in order to accomplish the experimental tasks in the most successful way. Most generally, the compromise between the incident neutron flux and the instrumental resolution has to be considered, which is depending on a number of optical devices which are positioned in the neutron beam path. In this chapter the basic instrumental principles of neutron diffraction will be explained. Examples of different types of experiments and their respective expectable results will be shown. Furthermore, the production and use of polarized neutrons will be stressed.

  14. Instrumental methods for professional and amateur collaborations in planetary astronomy

    Science.gov (United States)

    Mousis, O.; Hueso, R.; Beaulieu, J.-P.; Bouley, S.; Carry, B.; Colas, F.; Klotz, A.; Pellier, C.; Petit, J.-M.; Rousselot, P.; Ali-Dib, M.; Beisker, W.; Birlan, M.; Buil, C.; Delsanti, A.; Frappa, E.; Hammel, H. B.; Levasseur-Regourd, A. C.; Orton, G. S.; Sánchez-Lavega, A.; Santerne, A.; Tanga, P.; Vaubaillon, J.; Zanda, B.; Baratoux, D.; Böhm, T.; Boudon, V.; Bouquet, A.; Buzzi, L.; Dauvergne, J.-L.; Decock, A.; Delcroix, M.; Drossart, P.; Esseiva, N.; Fischer, G.; Fletcher, L. N.; Foglia, S.; Gómez-Forrellad, J. M.; Guarro-Fló, J.; Herald, D.; Jehin, E.; Kugel, F.; Lebreton, J.-P.; Lecacheux, J.; Leroy, A.; Maquet, L.; Masi, G.; Maury, A.; Meyer, F.; Pérez-Hoyos, S.; Rajpurohit, A. S.; Rinner, C.; Rogers, J. H.; Roques, F.; Schmude, R. W.; Sicardy, B.; Tregon, B.; Vanhuysse, M.; Wesley, A.; Widemann, T.

    2014-11-01

    Amateur contributions to professional publications have increased exponentially over the last decades in the field of planetary astronomy. Here we review the different domains of the field in which collaborations between professional and amateur astronomers are effective and regularly lead to scientific publications.We discuss the instruments, detectors, software and methodologies typically used by amateur astronomers to collect the scientific data in the different domains of interest. Amateur contributions to the monitoring of planets and interplanetary matter, characterization of asteroids and comets, as well as the determination of the physical properties of Kuiper Belt Objects and exoplanets are discussed.

  15. Astronomers Detect Powerful Bursting Radio Source Discovery Points to New Class of Astronomical Objects

    Science.gov (United States)

    2005-03-01

    Astronomers at Sweet Briar College and the Naval Research Laboratory (NRL) have detected a powerful new bursting radio source whose unique properties suggest the discovery of a new class of astronomical objects. The researchers have monitored the center of the Milky Way Galaxy for several years and reveal their findings in the March 3, 2005 edition of the journal, “Nature”. This radio image of the central region of the Milky Way Galaxy holds a new radio source, GCRT J1745-3009. The arrow points to an expanding ring of debris expelled by a supernova. CREDIT: N.E. Kassim et al., Naval Research Laboratory, NRAO/AUI/NSF Principal investigator, Dr. Scott Hyman, professor of physics at Sweet Briar College, said the discovery came after analyzing some additional observations from 2002 provided by researchers at Northwestern University. “"We hit the jackpot!” Hyman said referring to the observations. “An image of the Galactic center, made by collecting radio waves of about 1-meter in wavelength, revealed multiple bursts from the source during a seven-hour period from Sept. 30 to Oct. 1, 2002 — five bursts in fact, and repeating at remarkably constant intervals.” Hyman, four Sweet Briar students, and his NRL collaborators, Drs. Namir Kassim and Joseph Lazio, happened upon transient emission from two radio sources while studying the Galactic center in 1998. This prompted the team to propose an ongoing monitoring program using the National Science Foundation’s Very Large Array (VLA) radio telescope in New Mexico. The National Radio Astronomy Observatory, which operates the VLA, approved the program. The data collected, laid the groundwork for the detection of the new radio source. “Amazingly, even though the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths,” NRL astronomer Dr. Joseph Lazio pointed out, “very little has been done to look for radio bursts, which are often easier for astronomical objects to produce

  16. An automated extinction and sky brightness monitor for the Indian Astronomical Observatory, Hanle

    Science.gov (United States)

    Sharma, Tarun Kumar; Parihar, Padmakar; Banyal, R. K.; Dar, Ajaz Ahmad; Kemkar, P. M. M.; Stanzin, Urgain; Anupama, G. C.

    2017-09-01

    We have developed a simple and portable device that makes precise and automated measurements of night sky extinction. Our instrument uses a commercially available telephoto lens for light collection, which is retrofitted to a custom-built telescope mount, a thermoelectrically cooled CCD for imaging, and a compact enclosure with electronic control to facilitate remote observations. The instrument is also capable of measuring the sky brightness and detecting the presence of thin clouds that otherwise would remain unnoticed. The measurements of sky brightness made by our simple device are more accurate than those made using a large telescope. Another capability of the device is that it can provide an instantaneous measurement of atmospheric extinction, which is extremely useful for exploring the nature of short-term extinction variation. The instrument was designed and developed primarily in order to characterize and investigate thoroughly the Indian Astronomical Observatory (IAO), Hanle for the establishment of India's future large-telescope project. The device was installed at the IAO, Hanle in 2014 May. In this paper, we present the instrument details and discuss the results of extinction data collected for about 250 nights.

  17. Foil X-Ray Mirrors for Astronomical Observations: Still an Evolving Technology

    Science.gov (United States)

    Serlemitsos, Peter J.; Soong, Yang; Okajima, Takashi; Hahne, Devin J.

    2011-01-01

    Foil X-ray mirrors, introduced by the Goddard X-ray Group in the late 1970s, were envisioned as an interim and complementary approach toward increased sensitivity for small inexpensive astronomical instruments. The extreme light weight nature of these mirrors dovetailed beautifully with Japan's small payload missions, leading to several collaborative, earth orbiting observatories, designed primarily for spectroscopy, of which SUZAKU is still in earth orbit. ASTRO-H is the latest joint instrument with Japan, presently in the implementation phase. At Goddard, some 30 years after we introduced them, we are involved with four separate flight instruments utilizing foil X-ray mirrors, a good indication that this technology is here to stay. Nevertheless, an improved spatial resolution will be the most welcomed development by all. The task of preparing upwards of 1000 reflectors, then assembling them into a single mirror with arcmin resolution remains a formidable one. Many, performance limiting approximations become necessary when converting commercial aluminum sheets into 8 quadrant segments, each with approximately 200 nested conical, approximately 4Angstrom surface reflectors, which are then assembled into a single mirror. In this paper we will describe the mirror we are presently involved with, slated for the Goddard high resolution imaging X-ray spectrometer (SXS) onboard ASTRO-H. Improved spatial resolution will be an important enhancement to the science objectives from this instrument. We are accordingly pursuing and will briefly describe in this paper several design and reflector assembly modifications, aimed toward that goal.

  18. Atmospheric conditions at Cerro Armazones derived from astronomical data

    Science.gov (United States)

    Lakićević, Maša; Kimeswenger, Stefan; Noll, Stefan; Kausch, Wolfgang; Unterguggenberger, Stefanie; Kerber, Florian

    2016-04-01

    Aims: We studied the precipitable water vapour (PWV) content near Cerro Armazones and discuss the potential use of our technique of modelling the telluric absorbtion lines for the investigation of other molecular layers. The site is designated for the European Extremely Large Telescope (E-ELT) and the nearby planned site for the Čerenkov Telescope Array (CTA). Methods: Spectroscopic data from the Bochum Echelle Spectroscopic Observer (BESO) instrument were investigated by using a line-by-line radiative transfer model (LBLRTM) for the Earth's atmosphere with the telluric absorption correction tool molecfit. All observations from the archive in the period from December 2008 to the end of 2014 were investigated. The dataset completely covers the El Niño event registered in the period 2009-2010. Models of the 3D Global Data Assimilation System (GDAS) were used for further comparison. Moreover, we present a direct comparison for those days for which data from a similar study with VLT/X-Shooter and microwave radiometer LHATPRO at Cerro Paranal are available. Results: This analysis shows that the site has systematically lower PWV values, even after accounting for the decrease in PWV expected from the higher altitude of the site with respect to Cerro Paranal, using the average atmosphere found with radiosondes. We found that GDAS data are not a suitable basis for predicting local atmospheric conditions - they usually systematically overestimate the PWV values. The large sample furthermore enabled us to characterize the site with respect to symmetry across the sky and variation with the years and within the seasons. This technique of studying the atmospheric conditions is shown to be a promising step into a possible monitoring equipment for the CTA. Based on archival observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile and of the Cerro Armazones Observatory facilities of the Ruhr Universität Bochum.Full Table 1

  19. Teaching astronomical navigation at the university: an historical overview

    Science.gov (United States)

    López Varela, P.; Salgado Don, A.; Manteiga Outeiro, M.

    2011-11-01

    Astronomy and navigation are two sciences whose historical evolution have been linked for centuries through relationships of mutual dependency, up to the point of leading to a new science: astronomical or celestial navigation. Currently, astronomy has a very important well defined area within all university nautical degrees. Knowledge of astronomical navigation is still mandatory for deck officers in merchant ships. In the GPS era, practicing astronomical navigation has been relegated to a mere control procedure, and the tendency is to falling into disuse. Nevertheless, it is still the only method through which seamen can depend on their own means and knowledge to keep a track in a safe way. The new syllabi of our majors contemplates a drastic reduction of the contents of this subject, whose importance in the seafarer's profession we want to highlight in this paper.

  20. The Astronomer Alexander I. Postoiev (1900-1976)

    Science.gov (United States)

    Dos Santos, P. M.; Matsuura, O. T.

    This is a biographical note on the life of Dr Alexander I. Postoiev, a victim of Stalin's purge of Soviet astronomers in 1936-1937 (McCutcheon, 1985). Along with his family, he left the Soviet Union in 1943, and lived in Germany as a refugee and "displaced person" until 1952, when he moved to Brazil. Then he started the second part of his professional career. Thanks to his efforts the Astronomical and Geophysical Institute (IAG) from the University of Sao Paulo (USP) was involved, for the first time, in programme of international cooperation, thus contributing to the institutional consolidation of IAG/USP as a leading centre of astronomical research and teaching today in Brazil.

  1. Profiling Some of the Lesser-Known Historical Women Astronomers

    Science.gov (United States)

    Pagnotta, Ashley

    2016-01-01

    Although some historical women astronomers such as Henrietta Swan Leavitt and Cecilia Payne Gaposchkin have recently become somewhat well known among the astronomical community, many others--especially those from non-Western cultures--remain a mystery even to those of us who are actively aware of and interested in the role of early women in astronomy. As part of a project to educate myself on some of these women, I started a blog series (http://ashpags.tumblr.com/tagged/lady-astronomers) to share this newfound knowledge with a population that is on average relatively young, extremely tech savvy, and generally would not consider themselves to be science-inclined. I will discuss some of the more interesting women I have profiled, as well as my observations on the efficacy of this method of history education.

  2. ImgCutout, an Engine of Instantaneous Astronomical Discovery

    Science.gov (United States)

    Nieto-Santisteban, M. A.; Szalay, A. S.; Gray, J.

    2004-07-01

    ImgCutout is a Web application that enables professional astronomers and the general public to interactively visualize and explore large, complex astronomical data sets. The application consists of a Web interface that calls a Web service, which accesses SkyServer, a 1 TB SQL Server database containing catalog data for 100 million objects, spectra and images from the Sloan Digital Sky Survey. ImgCutout builds, in real time, color mosaic-images of user-selected regions of the sky, and overlays additional information about astronomical and spatial objects in the database including: boundaries of survey fields and aperture plates, outlines of individual objects and data quality masks, in addition to locations of photometric and spectroscopic objects. The tool can search for lists of known objects, allows new database queries, and provides detailed information about selected objects.

  3. Using Modern Technologies to Capture and Share Indigenous Astronomical Knowledge

    CERN Document Server

    Nakata, N M; Warren, J; Byrne, A; Pagnucco, M; Harley, R; Venugopal, S; Thorpe, K; Neville, R; Bolt, R

    2014-01-01

    Indigenous Knowledge is important for Indigenous communities across the globe and for the advancement of our general scientific knowledge. In particular, Indigenous astronomical knowledge integrates many aspects of Indigenous Knowledge, including seasonal calendars, navigation, food economics, law, ceremony, and social structure. We aim to develop innovative ways of capturing, managing, and disseminating Indigenous astronomical knowledge for Indigenous communities and the general public for the future. Capturing, managing, and disseminating this knowledge in the digital environment poses a number of challenges, which we aim to address using a collaborative project involving experts in the higher education, library, and industry sectors. Using Microsoft's WorldWide Telescope and Rich Interactive Narratives technologies, we propose to develop software, media design, and archival management solutions to allow Indigenous communities to share their astronomical knowledge with the world on their terms and in a cult...

  4. Examination and notes to the astronomical records in >SUISHU<.

    Science.gov (United States)

    Liu, Ciyuan

    1996-06-01

    Astronomical records are an important part in Chinese official historical books. Their main purpose was for astrology and they are an obstacle for historians who read those books. With modern astronomical methods, one can compute and examine most of those ancient records. By comparing the computed results with the original texts, one can examine the texts, find their mistakes, study their observation method and regulation, inspect astrological theory, take a deeper understanding to those important historical materials. As an example the author deals with the astronomcial records of Dynasties Liang and Chen for 60 years in >SUISHU<, the official history of Dynasty Sui. He also synthesized other historical sources in addition to the astronomical computation.

  5. Xia-Shang-Zhou Chronology Project and its astronomical problems

    Science.gov (United States)

    Liu, Ciyuan

    2001-06-01

    "Xia-Shang-Zhou Chronology Project" incorporates more than 200 experts on historical literature, ancient script, archeology, astronomy and C-14 measurement to promote early Chinese chronology (Xia, Shang, Zhou dynasties). Various astronomical problems have been studied in 12 separate groups. They are conjunctions of the five planets during the dynasties; Fire star for seasons determination; the famous solar eclipse in King Zhongkang's time; horizontal stars positions in Calendar Xiaxiaozheng; solar eclipse in King Yu; the lunar and solar eclipses recorded on oracle bones; celestial phenomena took place on King Wu's conquest; "double dawn" solar eclipse; lunar phase series on bronzes; calendar regulation of Zhou dynasty, and a comparison with foreign chronolgy. The astronomical conclusions of King Wuding by 5 lunar eclipses, King Wu by various astronomical records, King Yi by "double dawn" eclipse have been accepted as important frame of the Xia Shang Zhou chronology list while the years of west Zhou dynasty depended on the records of lunar phases.

  6. Radio Recombination Lines as Tools for Astronomers and Physicists

    Science.gov (United States)

    Gordon, M. A.

    2008-10-01

    Described by simple atomic theory published in 1913 by Niels Bohr, spectral lines in the radio range arising from transitions between large principal quantum numbers of atoms have proved to be useful tools for astronomers and physicists. Called ``radio recombination lines'' because of the wavelength range where most are observed, they are usually easy to detect, give unique information about astronomical objects, and facilitate the study of physical effects in environments that cannot be created in terrestrial laboratories. Observations have revealed unexpected results regarding thermodynamic populations of the principal quantum levels and about pressure broadening in astronomical environments. Detections of large-n lines, such as the n = 1006-->1010 absorption line of interstellar carbon, show the existence of atoms with classical diameters of about 0.1 mm, the thickness of a sheet of typing paper. This paper briefly discusses observations of Stark broadening reported by Bell et al. in 2002.

  7. RHIC instrumentation

    Science.gov (United States)

    Shea, T. J.; Witkover, R. L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 1011 protons to 250 GeV, or 109 fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  8. The Xinglong 2.16-m Telescope: Current Instruments and Scientific Projects

    Science.gov (United States)

    Fan, Zhou; Wang, Huijuan; Jiang, Xiaojun; Wu, Hong; Li, Hongbin; Huang, Yang; Xu, Dawei; Hu, Zhongwen; Zhu, Yinan; Wang, Jianfeng; Komossa, Stefanie; Zhang, Xiaoming

    2016-11-01

    The Xinglong 2.16-m reflector is the first 2-m class astronomical telescope in China. It was jointly designed and built by the Nanjing Astronomical Instruments Factory (NAIF), Beijing Astronomical Observatory (now National Astronomical Observatories, Chinese Academy of Sciences, NAOC), and Institute of Automation, Chinese Academy of Sciences in 1989. It is a Ritchey-Chrétien (R-C) reflector on an English equatorial mount and the effective aperture is 2.16 m. It had been the largest optical telescope in China for ˜18 years until the Guoshoujing Telescope (also called Large Sky Area Multi-Object Fiber Spectroscopic Telescope, LAMOST) and the Lijiang 2.4-m telescope were built. At present, there are three main instruments on the Cassegrain focus available: the Beijing Faint Object Spectrograph and Camera (BFOSC) for direct imaging and low-resolution (R ˜ 500-2000) spectroscopy, the spectrograph made by Optomechanics Research Inc. (OMR) for low-resolution spectroscopy (the spectral resolutions are similar to those of BFOSC) and the fiber-fed High Resolution Spectrograph (HRS; R ˜ 30,000-65,000). The telescope is widely open to astronomers all over China as well as international astronomical observers. Each year there are more than 40 ongoing observing projects, including 6-8 key projects. Recently, some new techniques and instruments (e.g., astro-frequency comb calibration system, polarimeter, and adaptive optics) have been or will be tested on the telescope to extend its observing abilities.

  9. The Research Tools of the Virtual Astronomical Observatory

    Science.gov (United States)

    Hanisch, Robert J.; Berriman, G. B.; Lazio, T. J.; Project, VAO

    2013-01-01

    Astronomy is being transformed by the vast quantities of data, models, and simulations that are becoming available to astronomers at an ever-accelerating rate. The U.S. Virtual Astronomical Observatory (VAO) has been funded to provide an operational facility that is intended to be a resource for discovery and access of data, and to provide science services that use these data. Over the course of the past year, the VAO has been developing and releasing for community use five science tools: 1) "Iris", for dynamically building and analyzing spectral energy distributions, 2) a web-based data discovery tool that allows astronomers to identify and retrieve catalog, image, and spectral data on sources of interest, 3) a scalable cross-comparison service that allows astronomers to conduct pair-wise positional matches between very large catalogs stored remotely as well as between remote and local catalogs, 4) time series tools that allow astronomers to compute periodograms of the public data held at the NASA Star and Exoplanet Database (NStED) and the Harvard Time Series Center, and 5) A VO-aware release of the Image Reduction and Analysis Facility (IRAF) that provides transparent access to VO-available data collections and is SAMP-enabled, so that IRAF users can easily use tools such as Aladin and Topcat in conjuction with IRAF tasks. Additional VAO services will be built to make it easy for researchers to provide access to their data in VO-compliant ways, to build VO-enabled custom applications in Python, and to respond generally to the growing size and complexity of astronomy data. Acknowledgements: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  10. Eminent Astronomers - Odessa University Graduates - In European Astronomy

    Science.gov (United States)

    Volyanskaya, M. Yu.

    1998-09-01

    A brief description of scientific activity of some eminent astronomers - graduates of the Odessa University named after I.I. Mechnikov (earlier - Novorossiiski University) in European astronomy is given: * Stratonov V.V. (1869-1938), professor, wellknown specialist in stellar astronomy, who was exiled abroad in 1992 among many scientists and writers, lived in Germany and Prague, where died; * Gansky A.P. (1870-1908) - famous investagator of the Sun, worked at the Meudon Observatory, ascended 9 times to Mount Blanc to make observations, was awarded by P.Z.C. Jansen medal of the Paris Academy of Sciences; * Donitch N.N. (1874-1956) - wellknown investigator of the Solar system, one of the first Romanian astronomers, a brilliant personality of the astronomical community of his time, a honorary member of the Romanian Academy of Sciences, died in Nice (France); * Zalesky Bogdan (1887-1927), specialist in astrometry, which became a wellknown astronomer in Poland. One of the founders and the first director of the University Observatory in Poznan; * Witkowsky Josef (1892- 1976) - specialist in astrometry, practical astronomy, and tidal phenomena studies, history of astronomy. Professor, Director of the Astronomical Centre in Poznan; *Stoiko N.M. ((1894-1976) - investigator of the irregularities of the Earth's rotation, the Earth's poles motions and the universal time determination. A member of many scientific societies. He was awarded by prizes of the Paris Academy of Sciences, of the French astronomical society, of the Royal Academy of Belgium. He worked at the Paris Observatory and was one of the Directors of the International Time Service; * Jardecky (Zhardecky) Vietcheslaw (1896-1962), worked at the Department of Mathematics of the Beograd University; eminent specialist in the field of Mechanics of Fluids; After the Second World War he emmigrated to the USA, Professor of Geophysics at the Columbia Univeristy (New York), where died.

  11. Astronomical phenomena: events with high impact factor in teaching optics and photonics

    Science.gov (United States)

    Curticapean, Dan

    2014-07-01

    Astronomical phenomena fascinate people from the very beginning of mankind up to today. They have a enthusiastic effect, especially on young people. Among the most amazing and well-known phenomena are the sun and moon eclipses. The impact factor of such events is very high, as they are being covered by mass media reports and the Internet, which provides encyclopedic content and discussion in social networks. The principal optics and photonics topics that can be included in such lessons originate from geometrical optics and the basic phenomena of reflection, refraction and total internal reflection. Lenses and lens systems up to astronomical instruments also have a good opportunity to be presented. The scientific content can be focused on geometrical optics but also diffractive and quantum optics can be incorporated successfully. The author will present how live streams of the moon eclipses can be used to captivate the interest of young listeners for optics and photonics. The gathered experience of the last two moon eclipses visible from Germany (on Dec, 21 2010 and Jun, 15 2011) will be considered. In an interactive broadcast we reached visitors from more than 135 countries.

  12. Application of Astronomical Compositions in Small Architectural Forms

    Science.gov (United States)

    Haykazun, Ani

    2016-12-01

    The small architectural forms are an important part of the Armenian architecture. Their compositions are diverse including quadrihedral structures, cross-stones, monuments, gravestones, memorial stones, etc. From ancient times to the late middle ages, and up to themodern small architectural forms, there are many decorative elements of astronomical character. Among them, one can more often see stars, the sun, the moon, the sky, the planets, the sign of eternity and other symbolic decorative images, which play a major role in the formation of the artistic image of the architectural compositions. The analysis of application of astronomical compositions will help more comprehensively introduce the compositional peculiarities of the small architectural forms.

  13. The Potential of Deep Learning with Astronomical Data

    Science.gov (United States)

    Schafer, Chad

    2017-06-01

    Modern astronomical surveys yield massive catalogs of noisy high-dimensional objects, e.g., images, spectra, and light curves. Valuable information stored in individual objects can be lost when ad hoc approaches of feature extraction are used in an effort to build data sets amenable to established data analysis tools. Deep learning procedures provide a promising avenue to enabling the use of data in their raw form and hence allowing both for estimates of greater accuracy and for novel discoveries with greater confidence. This talk will give an overview of deep learning and its potential in astronomical applications.

  14. Astroinformatics, data mining and the future of astronomical research

    Energy Technology Data Exchange (ETDEWEB)

    Brescia, Massimo, E-mail: longo@na.infn.it [INAF, Astronomical Obs. of Capodimonte, Via Moiariello 16, I-80131 Napoli (Italy); Longo, Giuseppe [Department of Physics, University Federico II, Via Cintia 6, 80126 Napoli (Italy); Department of Astronomy, Caltech, Pasadena (United States)

    2013-08-21

    Astronomy, as many other scientific disciplines, is facing a true data deluge which is bound to change both the praxis and the methodology of every day research work. The emerging field of astroinformatics, while on the one end appears crucial to face the technological challenges, on the other is opening new exciting perspectives for new astronomical discoveries through the implementation of advanced data mining procedures. The complexity of astronomical data and the variety of scientific problems, however, call for innovative algorithms and methods as well as for an extreme usage of ICT technologies.

  15. Cost effective development of a Shuttle-based astronomical instrument control system

    Science.gov (United States)

    Parise, R. A.; Blum, A.; Budney, T. J.; Stone, R. W.

    1982-10-01

    The high level language FORTH is used for the electronic control of the Space Shuttle-based Ultraviolet Imaging Telescope, in a flight computer system which minimizes costs. The greater part of the breadboard version of the flight computer is assembled from commercially available components, reducing novel circuit design features and permitting simultaneous development of both hardware and software. The commercial boards are then refabricated on aluminum core heat conducting stock, using high reliability parts to produce the flight versions of the system. The system's ground support equipment employs a MINC-25 minicomputer which performs such functions as flight computer software development, PROM programming, test and integration support, and flight operations support. The implementation of these concepts in flight computer telescope controls is described.

  16. Laser instrument

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, R.J.; Eagar, T.W.

    1986-04-08

    An instrument is described for intercepting a carbon dioxide incident laser beam after it has energized a desired surgical target site but before it energizes material adjacent to the surgical target site. The instrument consists of: a substrate means for transmitting energy received from a laser beam away from a surgical target site, the substrate means having a high thermal conductivity and an exterior surface; a coating means for absorbing laser energy at the wavelength of a carbon dioxide laser, the coating means covering substantially the entirety of the exterior surface of the substrate means and having a high absorptivity for energy at the wavelength of the incident laser beam; and, the coating means having thickness which is large enough to provide high absorptivity but small enough to permit absorbed energy to be readily transferred to the high conductivity substrate means, and the thickness of the coating means being not greater than 0.001 inch.

  17. Detection and Implications of Laser-Induced Raman Scattering at Astronomical Observatories

    Directory of Open Access Journals (Sweden)

    Frédéric P. A. Vogt

    2017-06-01

    Full Text Available Laser guide stars employed at astronomical observatories provide artificial wavefront reference sources to help correct (in part the impact of atmospheric turbulence on astrophysical observations. Following the recent commissioning of the 4 Laser Guide Star Facility (4LGSF on Unit Telescope 4 (UT4 of the Very Large Telescope (VLT, we characterize the spectral signature of the uplink beams from the 22-W lasers to assess the impact of laser scattering from the 4LGSF on science observations. We use the Multi-Unit Spectroscopic Explorer (MUSE optical integral field spectrograph mounted on the Nasmyth B focus of UT4 to acquire spectra at a resolution of R≅3000 of the uplink laser beams over the wavelength range of 4750 Å–9350 Å. We report the first detection of laser-induced Raman scattering by N_{2}, O_{2}, CO_{2}, H_{2}O, and (tentatively CH_{4} molecules in the atmosphere above the astronomical observatory of Cerro Paranal. In particular, our observations reveal the characteristic spectral signature of laser photons—but 480 Å to 2210 Å redder than the original laser wavelength of 5889.959 Å—landing on the 8.2-m primary mirror of UT4 after being Raman-scattered on their way up to the sodium layer. Laser-induced Raman scattering, a phenomenon not usually discussed in the astronomical context, is not unique to the observatory of Cerro Paranal, but it is common to any astronomical telescope employing a laser guide star (LGS system. It is thus essential for any optical spectrograph coupled to a LGS system to thoroughly handle the possibility of a Raman spectral contamination via a proper baffling of the instrument and suitable calibrations procedures. These considerations are particularly applicable for the HARMONI optical spectrograph on the upcoming Extremely Large Telescope (ELT. At sites hosting multiple telescopes, laser-collision-prediction tools should also account for the presence of Raman emission from the uplink laser beam

  18. Detection and Implications of Laser-Induced Raman Scattering at Astronomical Observatories

    Science.gov (United States)

    Vogt, Frédéric P. A.; Bonaccini Calia, Domenico; Hackenberg, Wolfgang; Opitom, Cyrielle; Comin, Mauro; Schmidtobreik, Linda; Smoker, Jonathan; Blanchard, Israel; Espinoza Contreras, Marcela; Aranda, Ivan; Milli, Julien; Jaffe, Yara L.; Selman, Fernando; Kolb, Johann; Hibon, Pascale; Kuntschner, Harald; Madec, Pierre-Yves

    2017-04-01

    Laser guide stars employed at astronomical observatories provide artificial wavefront reference sources to help correct (in part) the impact of atmospheric turbulence on astrophysical observations. Following the recent commissioning of the 4 Laser Guide Star Facility (4LGSF) on Unit Telescope 4 (UT4) of the Very Large Telescope (VLT), we characterize the spectral signature of the uplink beams from the 22-W lasers to assess the impact of laser scattering from the 4LGSF on science observations. We use the Multi-Unit Spectroscopic Explorer (MUSE) optical integral field spectrograph mounted on the Nasmyth B focus of UT4 to acquire spectra at a resolution of R ≅3000 of the uplink laser beams over the wavelength range of 4750 Å-9350 Å. We report the first detection of laser-induced Raman scattering by N2 , O2 , CO2 , H2O , and (tentatively) CH4 molecules in the atmosphere above the astronomical observatory of Cerro Paranal. In particular, our observations reveal the characteristic spectral signature of laser photons—but 480 Å to 2210 Å redder than the original laser wavelength of 5889.959 Å—landing on the 8.2-m primary mirror of UT4 after being Raman-scattered on their way up to the sodium layer. Laser-induced Raman scattering, a phenomenon not usually discussed in the astronomical context, is not unique to the observatory of Cerro Paranal, but it is common to any astronomical telescope employing a laser guide star (LGS) system. It is thus essential for any optical spectrograph coupled to a LGS system to thoroughly handle the possibility of a Raman spectral contamination via a proper baffling of the instrument and suitable calibrations procedures. These considerations are particularly applicable for the HARMONI optical spectrograph on the upcoming Extremely Large Telescope (ELT). At sites hosting multiple telescopes, laser-collision-prediction tools should also account for the presence of Raman emission from the uplink laser beam(s) to avoid the unintentional

  19. Instrumentation viewpoint

    OpenAIRE

    Sarti, Centro Tecnológico de Vilanova i la Geltrú

    2010-01-01

    Following our traditional edition line, on this issue our magazine presents the annual summary of the different projects and research activities developed by SARTI research group during 2011. The research projects undertaken by SARTI, in collaboration with other Spanish and international research teams, are linked to the development of instrumentation technology for marine applications, as well as for general industry. SARTI, as research group of the Universitat Politècnica de Cat...

  20. Immersive 3D Visualization of Astronomical Data

    Science.gov (United States)

    Schaaff, A.; Berthier, J.; Da Rocha, J.; Deparis, N.; Derriere, S.; Gaultier, P.; Houpin, R.; Normand, J.; Ocvirk, P.

    2015-09-01

    The immersive-3D visualization, or Virtual Reality in our study, was previously dedicated to specific uses (research, flight simulators, etc.) The investment in infrastructure and its cost was reserved to large laboratories or companies. Lately we saw the development of immersive-3D masks intended for wide distribution, for example the Oculus Rift and the Sony Morpheus projects. The usual reaction is to say that these tools are primarily intended for games since it is easy to imagine a player in a virtual environment and the added value to conventional 2D screens. Yet it is likely that there are many applications in the professional field if these tools are becoming common. Introducing this technology into existing applications or new developments makes sense only if interest is properly evaluated. The use in Astronomy is clear for education, it is easy to imagine mobile and light planetariums or to reproduce poorly accessible environments (e.g., large instruments). In contrast, in the field of professional astronomy the use is probably less obvious and it requires to conduct studies to determine the most appropriate ones and to assess the contributions compared to the other display modes.

  1. Deep sky observing an astronomical tour

    CERN Document Server

    Coe, Steven R

    2016-01-01

    This updated second edition has all of the information needed for your successful forays into deep sky observing. Coe uses his years of experience to give detailed practical advice about how to find the best observing site, how to make the most of the time spent there, and what equipment and instruments to take along. There are comprehensive lists of deep sky objects of all kinds, along with Steve's own observations describing how they look through telescopes with apertures ranging from 4 inches to 36 inches (0.1 - 0.9 meters). Binocular observing also gets its due, while the lists of objects have been amended to highlight only the best targets. A new index makes finding targets easier than ever before, while the selection of viewing targets has been revised from the first edition. Most of all, this book is all about how to enjoy astronomy. The author's enthusiasm and sense of wonder shine through every page as he invites you along on a tour of some of the most beautiful and fascinating sites in the deep ...

  2. Search for Varying Constants of Nature from Astronomical Observation of Molecules

    Science.gov (United States)

    Ubachs, Wim

    2018-02-01

    The status of searches for possible variation in the constants of nature from astronomical observation of molecules is reviewed, focusing on the dimensionless constant representing the proton-electron mass ratio μ =mp/me. The optical detection of H2 and CO molecules with large ground-based telescopes (as the ESO-VLT and the Keck telescopes), as well as the detection of H2 with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope is discussed in the context of varying constants, and in connection to different theoretical scenarios. Radio astronomy provides an alternative search strategy bearing the advantage that molecules as NH3 (ammonia) and CH3OH (methanol) can be used, which are much more sensitive to a varying μ than diatomic molecules. Current constraints are |Δ μ /μ | Universe (both at 3σ statistical significance). Existing bottlenecks and prospects for future improvement with novel instrumentation are discussed.

  3. Improving Resolution and Depth of Astronomical Observations via Modern Mathematical Methods for Image Analysis

    Science.gov (United States)

    Castellano, M.; Ottaviani, D.; Fontana, A.; Merlin, E.; Pilo, S.; Falcone, M.

    2015-09-01

    In the past years modern mathematical methods for image analysis have led to a revolution in many fields, from computer vision to scientific imaging. However, some recently developed image processing techniques successfully exploited by other sectors have been rarely, if ever, experimented on astronomical observations. We present here tests of two classes of variational image enhancement techniques: "structure-texture decomposition" and "super-resolution" showing that they are effective in improving the quality of observations. Structure-texture decomposition allows to recover faint sources previously hidden by the background noise, effectively increasing the depth of available observations. Super-resolution yields an higher-resolution and a better sampled image out of a set of low resolution frames, thus mitigating problematics in data analysis arising from the difference in resolution/sampling between different instruments, as in the case of EUCLID VIS and NIR imagers.

  4. Advantages of a Lunar Cryogenic Astronomical Observatory

    Science.gov (United States)

    Burke, James; Kaltenegger, Lisa

    2017-04-01

    ESA and collaborating agencies are preparing to establish a Moon Village at a south polar site. Robotic precursor missions will include resource prospecting in permanently shadowed cold traps. The environment there is favorable for infrared and millimeter-wave astronomy. In this paper we examine the evolutionary development of a cryogenic observatory, beginning with small telescopes robotically installed and operated in conjunction with prospecting precursor missions, and continuing into later phases supported from the Moon Village. Relay communications into and out of the cold traps may be shared or else provided by dedicated links. Candidate locations can be selected with the help of data from the Lunar Reconnaissance Orbiter. The first telescope will be primarily a proof-of-concept demonstrator but it can have scientific and applications uses too, supplementing other space-based survey instruments observing astrophysical objects and potentially hazardous asteroids and comets. A south polar site sees only half or the sky but that half includes the galactic center and many other interesting targets. The telescopes can stare at any object for as long as desired, providing monitoring capabilities for transiting or radial velocity planet searches, like NASA's TESS mission. In addition such telescopes are opening the prospect of gathering spectroscopic data on exoplanet atmospheres and cool stars - from UV information to assess the activity of a star to VIS to IR spectral data of the atmosphere and even atmospheric biosignatures. Preliminary design of the first telescope might be funded under a NASA call for lunar science payload concepts. An important additional product can be educational and outreach uses of the observatory, especially for the benefit of people in the developing world who can do southern hemisphere follow-up observations.

  5. Recent Advances for LGBT Astronomers in the United States

    Science.gov (United States)

    Dixon, William V.; Rigby, Jane; Oppenheimer, Rebecca

    2015-08-01

    The legal environment for lesbian, gay, bisexual, and transgender (LGBT) astronomers in the United States has changed dramatically in recent years. In 2013, the Supreme Court ruled that Section 3 of the Defense of Marriage Act (DOMA), which had barred the federal government from recognizing same-sex marriages, was unconstitutional. This decision particularly affects astronomers, since astronomers in the U.S. are more likely than the general population to be foreign nationals, to have a foreign-born spouse, or to work for the federal government. In 2014, the Attorney General directed the Department of Justice to take the position in litigation that the protection of Title VII of the Civil Rights Act of 1964 extends to claims of discrimination based on an individual’s gender identity, including transgender status. Title VII makes it unlawful for employers to discriminate in the employment of an individual “because of such individual’s... sex,” among other protected characteristics. As of March 2015, more than 70% of the population lives in states that recognize same-sex marriage, and the Supreme Court is expected to rule on the constitutionality of the remaining same-sex marriage bans during the current term. In this poster, we discuss these advances and their implications for the personal and professional lives of LGBT astronomers across the United States.

  6. Factors Contributing to Lifelong Science Learning: Amateur Astronomers and Birders

    Science.gov (United States)

    Jones, M. Gail; Corin, Elysa Nicole; Andre, Thomas; Childers, Gina M.; Stevens, Vanessa

    2017-01-01

    This research examined lifelong science learning reported by amateur astronomers and birders. One hundred seven adults who reported engaging in an informal (out-of-school) science interest were interviewed as part of an ongoing series of studies of lifelong science learners. The goal of the study was to gain insight into how and why amateur…

  7. Astronomy for Astronomical Numbers: A Worldwide Massive Open Online Class

    Science.gov (United States)

    Impey, Chris D.; Wenger, Matthew C.; Austin, Carmen L.

    2015-01-01

    Astronomy: State of the Art is a massive, open, online class (MOOC) offered through Udemy by an instructional team at the University of Arizona. With nearly 24,000 enrolled as of early 2015, it is the largest astronomy MOOC available. The astronomical numbers enrolled do not translate into a similar level of engagement. The content consists of 14…

  8. The Astronomical Information Infrastructure from the End-User Perspective

    NARCIS (Netherlands)

    Hogeveen, S.J.

    1995-01-01

    Information Technology (IT) today has found so many applications in as- tronomy, that we may speak of an electronic `Astronomical Information Infrastructure' (AII). At this moment, the AII really is nothing but a collection of disparate services. Over the last few years the collection has grown

  9. Leveraging data lineage to infer logical relationships between astronomical catalogs

    NARCIS (Netherlands)

    Buddelmeijer, Hugo; Valentijn, Edwin A.

    A novel method to infer logical relationships between sets is presented. These sets can be any collection of elements, for example astronomical catalogs of celestial objects. The method does not require the contents of the sets to be known explicitly. It combines incomplete knowledge about the

  10. How did the Supreme Court ruling on DOMA affect astronomers?

    Science.gov (United States)

    Rigby, Jane R.; The AAS Working Group on LGBTIQ Equality

    2014-01-01

    In June 2013, the United States Supreme Court ruled that Section 3 of the Defense of Marriage Act (DOMA) was unconstitutional. Section 3 had barred the federal government from recognizing same-sex marriages. The decision in United States v. Windsor, made headlines around the world, and particularly affected astronomers, since astronomers in the US are more likely than the general population to be foreign nationals, to have a foreign-born spouse, or to work for the federal government. In this poster, we highlight some of the real-world ways that the Windsor case has affected US astronomers and our profession. Bi-national couples can now apply for green cards granting permanent residency. Scientists who work for the federal government, including NASA and the NSF, can now obtain health insurance for a same-sex spouse. From taxes to death benefits, health insurance to daycare, immigration to ethics laws, the end of S3 of DOMA has had profoundly improved the lives of US scientists who are lesbian, gay, bisexual, or transgender (LGBT). Here we, highlight several real-world examples of how DOMA's demise has improved the lives and careers of US astronomer.

  11. Jan Hendrik Oort – A Complete Astronomer (1900 –1992)

    Indian Academy of Sciences (India)

    IAS Admin

    therefore makes our vision shortsighted. The radio map revealed spiral arms of our Galaxy, and showed that the Milky Way was similar in appearance to other spiral galaxies. Oort is remembered not only as the father of Dutch astronomy, but also as a major figure in spearheading astronomical research in Europe, and in ...

  12. This Month in Astronomical History: Preliminary Survey Results

    Science.gov (United States)

    Wilson, Teresa

    2017-01-01

    This Month in Astronomical History is a short (~500 word) column on the AAS website that revisits significant astronomical events or the lives of people who have made a large impact on the field. The monthly column began in July 2016 at the request of the Historical Astronomical Division. Examples of topics that have been covered include Comet Shoemaker-Levy’s collision with Jupiter, the discovery of the moons of Mars, the life of Edwin Hubble, Maria Mitchell’s comet discovery, and the launch of Sputnik II. A survey concerning the column is in progress to ensure the column addresses the interests and needs of a broad readership, including historians, educators, research astronomers, and the general public. Eleven questions focus on the style and content of the column, while eight collect simple demographics. The survey has been available on the AAS website since and was mentioned in several AAS newsletters; however, non-members of AAS were also recruited to include respondents from a variety of backgrounds. Preliminary results of the survey are presented and will be used to hone the style and content of the column to serve the widest possible audience. Responses continue to be collected at: https://goo.gl/forms/Lhwl2aWJl2Vkoo7v1

  13. Revised Miocene splice, astronomical tuning and calcareous plankton biochronology

    NARCIS (Netherlands)

    Zeeden, C.; Hilgen, F.; Westerwold, T.; Lourens, L.; Röhl, Ursula; Bickert, Torsten

    2013-01-01

    The distinctly cyclic sediments recovered during ODP Leg 154 played an important role in constructing the astronomical time scale and associated astro(bio)chronology for the Miocene, and in deciphering ocean–climate history. The accuracy of the timescale critically depends on the reliability of

  14. The Top Ten Astronomical 'breakthroughs' of the 20th century

    Directory of Open Access Journals (Sweden)

    Hughes, D. W.

    2007-10-01

    Full Text Available Astronomy was revolutionized in the 20th century. The electron was discovered in 1897 and this transformed spectroscopy and introduced plasma and magnetohydrodynamic physics and astro-chemistry. Einstein’s E = mc2, solved the problem of stellar energy generation and spawned the study of elemental nuclear synthesis. Large telescopes led to a boom in astronomical spectroscopic and photometric data collection, leading to such cornerstones as the Hertzprung-Russell diagram and the mass-luminosity relationship, and to the realization that the Universe contained a multitude of galaxies and was expanding. Radio astronomy was introduced and the advent of the space age saw the astronomical wavelength range expand into the ultraviolet, X-ray and gamma-ray regions, as well as the infrared and millimetre. We also startedwandering around roaming the Solar System instead of merely glimpsing its members from the bottom of our warm, turbulent atmosphere. Astronomical “breakthroughs” abounded. We have asked astronomers to select their “top ten” and these are listed and discussed in this paper.

  15. Analytical algorithms of relativistic reduction of astronomical observations.

    Science.gov (United States)

    Brumberg, V. A.; Bretagnon, P.; Francou, G.

    Using the analytical planetary theories VSOP87 (Bretagnon and Francou, 1988) and the relativistic theory of astronomical reference systems of Brumberg and Kopejkin (1989) the authors have derived the analytical expressions of the relativistic quantities enabling one to set the relationships between (1) TCB and TCG, (2) barycentric spatial coordinates and geocentric spatial coordinates and (3) observer's proper time and TCG.

  16. Radio Recombination Lines. Their Physics and Astronomical Applications

    Science.gov (United States)

    Gordon, M. A.; Sorochenko, R. L.

    2002-11-01

    This book is a comprehensive guide to the physics and observations of Radio Recombination Lines from astronomical sources, written for astronomers, physicists, and graduate students. It serves as a graduate-level textbook. It includes the history of RRL detections, the astrophysics underlying their intensities and line shapes including topics like departures from LTE and Stark broadening, the maximum possible size of an atom, as well as detailed descriptions of the astronomical topics for which RRLs have proved to be effective tools. The text includes more than 250 equations and 110 illustrations. It also contains hundreds of specific references to the astronomical literature to enable readers to explore additional details. The appendix includes supplementary information such as the detailed physics underlying the Bohr atomic model, tables of RRL frequencies including fine structure components, techniques for calculating hydrogenic oscillator strengths, FORTRAN code for calculating departure coefficients, and a discussion with formulas for converting observational (telescope) intensity units to astrophysical ones. Link: http://www.wkap.nl/prod/b/1-4020-1016-8

  17. Using Modern And Inexpensive Tools In the Classroom To Teach Spectroscopy And To Do Exciting Citizen Science On Astronomical Objects

    Science.gov (United States)

    Field, T.

    2014-12-01

    Spectroscopy is a key tool used in modern astronomical research. But, it's always been a difficult topic to teach or practice because the expense and complexity of the available tools. Over the past few years, there's been somewhat of a revolution in this field as new technologies have applied. In this presentation we'll review some new spectroscopy tools that enable educators, students and citizen scientists to do exciting spectroscopic work. With the addition of a simple, inexpensive grating, it's now possible to capture scientifically significant spectra of astronomical objects with small (6") telescopes and even just a DSLR. See the tools that citizen scientists are using to contribute data to pro-am collaborations around the world. We'll also examine a simple, surprisingly inexpensive, tripod-mounted spectrometer that can be used in the classroom for demonstrations and hands-on labs with gas tubes and other light sources. Both of the above instruments use a software program named RSpec, which is state of the art software suite that is easy to learn and easy to use. In this presentation we'll see these devices in operation and discuss how they can be used by educators to dramatically improve their teaching of this topic. You'll see how these tools can eliminate the frustration of hand-held rainbow foil and plastic spectrometers. And we'll review some exciting examples of astronomical spectra being collected by amateurs and educators.

  18. The Astronomical Virtual Observatory: Lessons Learned, Looking Forward

    Science.gov (United States)

    Genova, F.

    2012-09-01

    The astronomical Virtual Observatory (VO) aims at providing seamless access to the wealth of the discipline's on-line resources, hence at developing global interoperability between them. This is coordinated by the International Virtual Observatory Alliance (IVOA). The paper summarizes the VO history and current evolution. During the first period of VO development, a huge amount of work has been devoted to the development of basic interoperability standards, to set up the VO framework for publication of data and for tools interoperability. This has proven to be a major asset for seamless usage of data. Now the VO is in operation, and the emphasis on supporting the take-up by astronomers and data providers, as well as on outreach, is increasing. A census of European astronomical data centres performed in 2009/2010 shows a large interest in the VO, and a wide diversity of sizes and organisations, in the data centre community. The different strands of work of an operational VO, and the challenges ahead are described, taking in particular the example of the European VO. The European implementation of the VO has been moulded by the specific organisation of European astronomy, with complementary roles of the national and European levels. Local and national projects contribute to the VO development and implementation in their domains of interest and expertise. Several projects supported by the European Commission have helped to shape Euro-VO, with a strong emphasis on coordination of national and intergovernmental agency projects, with actions towards astronomers, data centres and VO developers, including during the last period of outreach towards education and the public. The Astronet Infrastructure Roadmap for European astronomy (2009) has recognized data and the VO as one of the infrastructures of astronomy. The way forward in this context is discussed. In conclusion, the astronomical data infrastructure is put in perspective with the general trends around scientific

  19. "Route of astronomical observatories'' project: classical observatories from the Renaissance to the rise of astrophysics

    Science.gov (United States)

    Wolfschmidt, Gudrun

    2015-08-01

    Observatories offer a good possibility for serial transnational applications. A well-known example for a thematic programme is the Struve arc, already recognized as World Heritage.I will discuss what has been achieved and show examples, like the route of astronomical observatories or the transition from classical astronomy to modern astrophysics (La Plata, Hamburg, Nice, etc.), visible in the architecture, the choice of instruments, and the arrangement of the observatory buildings in an astronomy park. This corresponds to the main categories according to which the ``outstanding universal value'' (UNESCO criteria ii, iv and vi) of the observatories have been evaluated: historic, scientific, and aesthetic. This proposal is based on the criteria of a comparability of the observatories in terms of the urbanistic complex and the architecture, the scientific orientation, equipment of instruments, authenticity and integrity of the preserved state, as well as in terms of historic scientific relations and scientific contributions.Apart from these serial transnational applications one can also choose other groups like baroque or neo-classical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments and made by the same famous firm. I will also discuss why the implementation of the Astronomy and World Heritage Initiative is difficult and why there are problems to nominate observatories for election in the national Tentative Lists

  20. Spatial dependent systematic error correction and colour coefficients for the 2-m telescope of theRozhen National Astronomical Observatory

    Science.gov (United States)

    Mihov, Boyko M.; Slavcheva-Mihova, Lyuba S.

    2017-07-01

    Spatial dependent systematic error of the instrumental magnitudes on the CCD frames taken at the 2-m telescope of the Rozhen National Astronomical Observatory due to scattered light was present till mid-June 2009. We derive and discuss (U)BVRI spatial dependent systematic error correction, together with colour coefficients, on the basis of archival data. The simultaneous estimation of the two types of coefficients - spatial and colour, ensures the detachment of the two effects, and, accordingly, the higher accuracy in the coefficient estimates. The application of the spatial dependent systematic error correction to the data in the period discussed would increase photometry accuracy.

  1. International Astronomical Search Collaboration -- Astronomical Discovery Program for High School and College Students

    Science.gov (United States)

    Miller, Patrick

    2012-01-01

    Centered at Hardin-Simmons University (Abilene, TX) the International Astronomical Search Collaboration (IASC) has conducted successful student-based asteroid search programs, called campaigns. Since 2006 these campaigns have engaged 3,000 high school and college students per year. These students come from 300 schools worldwide located in more than 40 countries on 5 continents. Students have made thousands of observations of near-Earth objects and >300 provisional discoveries of Main Belt asteroids, both reported to the Minor Planet Center (Harvard). To date students have 15 numbered discoveries, catalogued by the IAU and currently being named by the student discoverers. The first telescope of the Panoramic Survey and Rapid Response System (PS1, University of Hawaii) is conducting the largest optical survey ever attempted. In support of education and public outreach, Pan-STARRS collaborated with IASC in 2010-2012 to use the PS1 images in the student asteroid search and discovery campaigns. The PS1 images are wide field with 7o FOV and 1.4 Gpix in size. These were partitioned into 144 sub-images and distributed to 40 high schools in Texas, Hawaii, Washington, Germany, Taiwan, Poland, Brazil, and Bulgaria. In two 6-week campaigns per year, students from these schools made 1000 preliminary asteroid discoveries. This poster presents the results of the first and second year of the IASC-PS1 campaigns plus other asteroid search campaigns conducted by IASC. Also, plans will be described for future campaigns. These future campaigns will reach 500 schools in 2012 and 1,000 high schools within the coming 36 months.

  2. Sports stars: analyzing the performance of astronomers at visualization-based discovery

    OpenAIRE

    Fluke, C. J.; Parrington, L.; Hegarty, S.; MacMahon, C.; Morgan, S.; Hassan, A. H.; Kilborn, V. A.

    2017-01-01

    In this data-rich era of astronomy, there is a growing reliance on automated techniques to discover new knowledge. The role of the astronomer may change from being a discoverer to being a confirmer. But what do astronomers actually look at when they distinguish between "sources" and "noise?" What are the differences between novice and expert astronomers when it comes to visual-based discovery? Can we identify elite talent or coach astronomers to maximize their potential for discovery? By look...

  3. Top astronomers head to the city. Experts to talk on exciting quasar discoveries.

    CERN Multimedia

    Grant, S

    2002-01-01

    The UK National Astronomy Meeting - NAM 2002 - is at Bristol University this week. The meeting is one of the most important regular gatherings of astronomers in the UK. Sponsored by the Royal Astronomical Society and PPARC, it should attract about 300 astronomers from the UK and beyond.

  4. The PACA Project: When Amateur Astronomers Become Citizen Scientists

    Science.gov (United States)

    Yanamandra-Fisher, P. A.

    2014-12-01

    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON in 2013. Following the success of the professional-amateur astronomer collaboration in scientific research via social media, it is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: (1) the establishment of a network of astronomers and related professionals, that can be galvanized into action on short notice to support observing campaigns; (2) assist in various science investigations pertinent to the campaign; (3) provide an alert-sounding mechanism should the need arise; (4) immediate outreach and dissemination of results via our media/blogger members; (5) provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. In 2014, two new comet observing campaigns involving pro-am collaborations have been initiated: (1) C/2013 A1 (C/SidingSpring) and (2) 67P/Churyumov-Gerasimenko (CG), target for ESA/Rosetta mission. The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA portal that currently is focused on comets: from supporting observing campaigns of current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers

  5. Astrophysics is easy! an introduction for the amateur astronomer

    CERN Document Server

    Inglis, Mike

    2007-01-01

    With some justification, many amateur astronomers believe astrophysics is a very difficult subject, requiring at least degree-level mathematics to understand it properly. This isn’t necessarily the case. Mike Inglis' quantitative approach to the subject explains all aspects of astrophysics in simple terms and cuts through the incomprehensible mathematics with which this fascinating subject is all too often associated. Astrophysics is Easy! begins by looking at the H-R diagram and other basic tools of astrophysics, then ranges across the universe, from a first look at the interstellar medium and nebulae, through the birth, evolution and death of stars, to the physics of galaxies and clusters of galaxies. A unique feature of this book is the way that Dr. Inglis lists example objects for practical observation at every stage, so that practical astronomers can go and look at the object or objects under discussion – using only easily-available commercial amateur equipment.

  6. Astronomical Correlates of Architecture and Landscape in Mesoamerica

    Science.gov (United States)

    Šprajc, Ivan

    Mesoamerican civic and ceremonial buildings were largely oriented to astronomical phenomena on the horizon, mostly to sunrises and sunsets on particular dates; some orientations were probably intended to mark major lunar standstills and Venus extremes. Solar orientations must have had a practical function, allowing the use of observational calendars that facilitated a proper scheduling of agricultural activities. Moreover, some important buildings seem to have been erected on carefully selected places, with the purpose of employing prominent peaks on the local horizon as natural markers of sunrises and sunsets on relevant dates. However, the characteristics of buildings incorporating deliberate alignments, their predominant clockwise skew from cardinal directions, and their relations to the surrounding natural and cultural landscape reveal that the architectural and urban planning in Mesoamerica was dictated by a complex set of rules, in which astronomical considerations were embedded in a broader framework of cosmological concepts substantiated by political ideology.

  7. On AIPS++, A New Astronomical Information Processing System

    Science.gov (United States)

    Croes, G. A.

    1993-01-01

    The AIPS system that has served the needs of the radio astronomical community remarkably well during the last 15 years, is showing signs of age, and is being replaced by a more modern system, AIPS++. As the name implies AIPS++ will be developed in an object-oriented fashion, and use C++ as its main programming language. The work is being done by a consortium of seven organizations, with coordinated activities worldwide. After a review of the history of the project to this date, from management, astronomical and technical viewpoints and the current state of the project, the paper concentrates on the tradeoffs implied by the choice of implementation style, and the lessons we have learned, good and bad.

  8. Unveiling galaxies the role of images in astronomical discovery

    CERN Document Server

    Roy, Jean-René

    2017-01-01

    Galaxies are known as the building blocks of the universe, but arriving at this understanding has been a thousand-year odyssey. This journey is told through the lens of the evolving use of images as investigative tools. Initial chapters explore how early insights developed in line with new methods of scientific imaging, particularly photography. The volume then explores the impact of optical, radio and x-ray imaging techniques. The final part of the story discusses the importance of atlases of galaxies; how astronomers organised images in ways that educated, promoted ideas and pushed for new knowledge. Images that created confusion as well as advanced knowledge are included to demonstrate the challenges faced by astronomers and the long road to understanding galaxies. By examining developments in imaging, this text places the study of galaxies in its broader historical context, contributing to both astronomy and the history of science.

  9. Knowledge Discovery Workflows in the Exploration of Complex Astronomical Datasets

    Science.gov (United States)

    D'Abrusco, Raffaele; Fabbiano, Giuseppina; Laurino, Omar; Massaro, Francesco

    2015-03-01

    The massive amount of data produced by the recent multi-wavelength large-area surveys has spurred the growth of unprecedentedly massive and complex astronomical datasets that are proving the traditional data analysis techniques more and more inadequate. Knowledge discovery techniques, while relatively new to astronomy, have been successfully applied in several other quantitative disciplines for the determination of patterns in extremely complex datasets. The concerted use of different unsupervised and supervised machine learning techniques, in particular, can be a powerful approach to answer specific questions involving high-dimensional datasets and degenerate observables. In this paper I will present CLaSPS, a data-driven methodology for the discovery of patterns in high-dimensional astronomical datasets based on the combination of clustering techniques and pattern recognition algorithms. I shall also describe the result of the application of CLaSPS to a sample of a peculiar class of AGNs, the blazars.

  10. Using Modern Technologies to Capture and Share Indigenous Astronomical Knowledge

    Science.gov (United States)

    Nakata, Martin; Hamacher, Duane W.; Warren, John; Byrne, Alex; Pagnucco, Maurice; Harley, Ross; Venugopal, Srikumar; Thorpe, Kirsten; Neville, Richard; Bolt, Reuben

    2014-06-01

    Indigenous Knowledge is important for Indigenous communities across the globe and for the advancement of our general scientific knowledge. In particular, Indigenous astronomical knowledge integrates many aspects of Indigenous Knowledge, including seasonal calendars, navigation, food economics, law, ceremony, and social structure. Capturing, managing, and disseminating this knowledge in the digital environment poses a number of challenges, which we aim to address using a collaborative project emerging between experts in the higher education, library, archive and industry sectors. Using Microsoft's WorldWide Telescope and Rich Interactive Narratives technologies, we propose to develop software, media design, and archival management solutions to allow Indigenous communities to share their astronomical knowledge with the world on their terms and in a culturally sensitive manner.

  11. Astronomically speaking a dictionary of quotations on astronomy and physics

    CERN Document Server

    Gaither, CC

    2003-01-01

    To understand the history, accomplishments, failures, and meanings of astronomy requires a knowledge of what has been said about astronomy by philosophers, novelists, playwrights, poets, scientists, and laymen. With this in mind, Astronomically Speaking: A Dictionary of Quotations on Astronomy and Physics serves as a guide to what has been said about astronomy through the ages. Containing approximately 1,550 quotations and numerous illustrations, this resource is the largest compilation of astronomy and astrophysics quotations published to date.Devoted to astronomy and the closely related areas of mathematics and physics, this resource helps form an accurate picture of these interconnected disciplines. It is designed as an aid for general readers with little knowledge of astronomy who are interested in astronomical topics. Students can use the book to increase their understanding of the complexity and richness that exists in scientific disciplines. In addition, experienced scientists will find it as a handy s...

  12. Molecular Ions and Other Exotic Molecules in Space: A Coordinated Astronomical, Laboratory, and Theoretical Study

    Science.gov (United States)

    McCarthy, Michael

    This proposal request funds to continue a laboratory program in close coordination with radio astronomical observations dedicated to the study of highly reactive molecular ions, radicals, and metastable isomers that are thought to be key intermediates in rich interstellar and circumstellar sources. Determining the carriers of strong unidentified lines, such as U617.6 which has recently been observed with the Herschel space satellite, is the type of problem in laboratory astrophysics that our group is particularly adept at, and will be also emphasized in the upcoming grant period. Most new molecular species will be detected using microwave cavity rotational spectroscopy, followed either by microwave/millimeter-wave double resonance or millimeter/THz absorption to better characterize the rotational spectra in bands where Herschel and SOFIA operate. Using this combined approach, the rotational spectra of a number of ions of astronomical interest such as the cis- and trans isomers of HOSO+, H2NCO+, HNCOH+, H2CCHCNH+, C3N-, and NCO- have recently been detected in our laboratory, as have metastable isomers or derivatives of isocyanic acid, HNCO. As a result of this work, HOCN, HSCN, TiO2, and several molecular anions have been identified for the first time in space in the span of only a few years. Emphasis in the upcoming grant period will be placed on the detection of diatomic and small polyatomic ions such as SiH+, SiN-, CN+, NCS-, etc., other prototypical ions, including protonated benzene C6H7+, and silicon- and phosphorus-bearing species of astronomical interest. On the assumption that U617.6 is the fundamental b-type transition of a small polyatomic molecule, systematic searches for species of the form XOH, where X is likely either an atom or diatomic, will be given high priority because slightly bent species with this functional group (e.g., NNOH+, SiOH, etc.) possess an A rotational constants of about the right magnitude. Instrumental refinement will also be

  13. MYRaf: A new Approach with IRAF for Astronomical Photometric Reduction

    Science.gov (United States)

    Kilic, Y.; Shameoni Niaei, M.; Özeren, F. F.; Yesilyaprak, C.

    2016-12-01

    In this study, the design and some developments of MYRaf software for astronomical photometric reduction are presented. MYRaf software is an easy to use, reliable, and has a fast IRAF aperture photometry GUI tools. MYRaf software is an important step for the automated software process of robotic telescopes, and uses IRAF, PyRAF, matplotlib, ginga, alipy, and Sextractor with the general-purpose and high-level programming language Python and uses the QT framework.

  14. The astronomers. Companion book to the PBS television series.

    Science.gov (United States)

    Goldsmith, D.

    Contents: 1. Under the dome of heaven. 2. The dark matter. 3. We are all astronomers. 4. Mapping the universe. 5. The afterglow of creation. 6. Why stars shine. 7. Stars from birth to old age. 8. The stellar explosions that made us. 9. Quasars and peculiar galaxies. 10. The beast in the middle. 11. Exploring the neighborhood. 12. How many worlds in the Milky Way? 13. The wave of the future? 14. Astronomy for the twenty-first century.

  15. An Improved Infrared/Visible Fusion for Astronomical Images

    Directory of Open Access Journals (Sweden)

    Attiq Ahmad

    2015-01-01

    Full Text Available An undecimated dual tree complex wavelet transform (UDTCWT based fusion scheme for astronomical visible/IR images is developed. The UDTCWT reduces noise effects and improves object classification due to its inherited shift invariance property. Local standard deviation and distance transforms are used to extract useful information (especially small objects. Simulation results compared with the state-of-the-art fusion techniques illustrate the superiority of proposed scheme in terms of accuracy for most of the cases.

  16. The organization and management of the Virtual Astronomical Observatory

    OpenAIRE

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.; Szalay, Alexander; Fabbiano, Giussepina

    2012-01-01

    The U.S. Virtual Astronomical Observatory (VAO; http://www.us-vao.org/) has been in operation since May 2010. Its goal is to enable new science through efficient integration of distributed multi-wavelength data. This paper describes the management and organization of the VAO, and emphasizes the techniques used to ensure efficiency in a distributed organization. Management methods include using an annual program plan as the basis for establishing contracts with member organizations, regular co...

  17. Astronomers Travel in Time and Space with Light

    Science.gov (United States)

    Mather, John C.

    2016-01-01

    This is an excerpt of John Mather's in a book titled: INSPIRED BY LIGHT, Reflections from the International Year of Light 2015. It was produced in January 2016 by SPIE, the European Physical Society (EPS), and The Abdus Salam International Centre for Theoretical Physics (ICTP) to commemorate the International Year of Light and Light-based Technologies 2015. The excerpt discusses how astronomers use light.

  18. The Organization and Management of the Virtual Astronomical Observatory

    Science.gov (United States)

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.; Szalay, Alexander; Fabbiano, Giussepina

    2012-01-01

    The U.S. Virtual Astronomical Observatory (VAO; http://www.us-vao.org/) has been in operation since May 2010. Its goal is to enable new science through efficient integration of distributed multi-wavelength data. This paper describes the management and organization of the VAO, and emphasizes the techniques used to ensure efficiency in a distributed organization. Management methods include using an annual program plan as the basis for establishing contracts with member organizations, regular communication, and monitoring of processes.

  19. Keeping the Biographical Encyclopedia of Astronomers Relevant for a Generation

    Science.gov (United States)

    Rothenberg, Marc

    2017-01-01

    The Biographical Encyclopedia of Astronomers is a magnificent accomplishment, but like all such compilations, it faces potentially rapid obsolescence. Relying on my experience as an encyclopedia editor and a contributor to more than 20 other biographical reference works, I will highlight potential pitfalls for the BEA in the future and suggest ways in which the publisher can ensure that the BEA will continue to remain relevant for a generation.

  20. Astronomical Odds: A Policy Framework for the Cosmic Impact Hazard

    Science.gov (United States)

    2004-06-01

    numerous to discuss here. Nevertheless, it is interesting to review aspects of the ancient Chinese record of cometary visitations, which is unusually...studying objects as far from society as imaginable. Historically, it was the astrologers rather than the astronomers who had aspirations to achieve social...the earth." Tyler, P., " Chinese Seek Atom Option to Fend Off Asteroids," New York Times, 27 April 1996 (Late Edition - Final), p.4. 2 In this

  1. A New Astronomical Facility for Peru: Converting a Telecommunication's 32 Meter Parabolic Antenna into a Radio Telescope

    Science.gov (United States)

    Ishitsuka, J. K.; Ishitsuka, M.; Inoue, M.; Kaifu, N.; Miyama, S.; Tsuboi, M.; Ohishi, M.; Fujisawa, K.; Kasuga, T.; Kondo, T.; Horiuchi, S.; Umemoto, T.; Miyoshi, M.; Miyazawa, K.; Bushimata, T.; Vidal, E. D.

    2006-08-01

    In 1984 Nippon Electric Company constructed an INTELSAT antenna at 3,370 meters above the sea level on the Peruvian Andes. Entel Peru, the Peruvian telecommunications company, managed the antenna station until 1993. This year the government transferred the station to a private telecommunications company, Telefónica del Peru. Since the satellite communications were rapidly replaced by transoceanic fiber optics, the beautiful 32 meters parabolic antenna has been unused since 2002.. In cooperation with the National Astronomical Observatory of Japan we began to convert the antenna into a radio telescope. Because researches on interstellar medium around Young Stellar Objects (YSO) will be able to observe the methanol masers that emit at 6.7 GHz, initially we will monitor the 6.7 GHz methanol masers and survey the southern sky. An ambient temperature receiver with Trx= 60 K was developed at Nobeyama Radio Observatory and is ready to be installed. The antenna control system is the Field System FS9 software installed in a Linux PC. An interface between the antenna and the PC was developed at Kashima Space Research Center in Japan. In the near future we plan to install the 2 GHz, 8 GHz, 12 GHz and 22 GHz receivers. The unique location and altitude of the Peruvian Radio Observatory will be useful for VLBI observations in collaboration with global arrays such as the VLBA array for astronomical observation and geodetic measurements. For Peru where few or almost no astronomical observational instruments are available for research, the implementation of the first radio observatory is a big and challenging step, and foster sciences at graduate and postgraduate levels of universities. Worldwide telecommunications antennas possibly are unused and with relative few investment could be transformed into a useful observational instrument.

  2. Skype Me! Astronomers, Students, and Cutting-Edge Research

    Science.gov (United States)

    Hickox, Ryan C.; Gauthier, Adrienne J.

    2014-06-01

    A primary goal of many university science courses is to promote understanding of the process of contemporary scientific inquiry. One powerful way to achieve this is for students to explore current research and then interact directly with the leading scientist, the feasibility of which has recently increased dramatically due to free online video communication tools. We report on a program implemented at Dartmouth College in which students connect with a guest astronomer through Skype (video chat). The Skype session is wrapped in a larger activity where students explore current research articles, interact with the astronomer, and then reflect on the experience. The in-class Skype discussions require a small time commitment from scientists (20-30 minutes, with little or no need for preparation) while providing students direct access to researchers at the cutting edge of modern astronomy. We outline the procedures used to implement these discussions, and present qualitative assessments of student's understanding of the process of research, as well as feedback from the guest astronomers.

  3. National and international astronomical activities in Chile 1849--2002

    Science.gov (United States)

    Duerbeck, H. W.

    2003-03-01

    At all times and in many ways, Chilean astronomy has been influenced externally, either by astronomical expeditions from other parts of the world, or by astronomers that immigrated from other countries. We outline the history of the Chilean National Observatory, beginning with its origins out of Gilliss' US Naval Expedition to the Southern Hemisphere, over its directors Moesta, Vergara, Obrecht, Ristenpart to the middle of the 20th century, as well as the astronomical development at the Universidad Católica. In addition, various international expeditions, which aimed at observations of solar eclipses, the Venus transit of 1882, and the Mars opposition of 1907, were carried out. While a major photometric project of Harvard Observatory was active for only six weeks in the north of Chile, the spectroscopic Mills expedition of Lick Observatory in Santiago lasted several decades, and the solar observatory of the Smithsonian Astrophysical Observatory near Calama even longer. Finally we give a brief overview of the evolution and the actual state of the international observatories Cerro Tololo, La Silla, Paranal, and Las Campanas.

  4. American Zodiac: Astronomical signs in Dickinson, Melville, and Poe

    Science.gov (United States)

    Ricca, Bradley James

    2003-11-01

    Science and literature, two means of inquiry now thought in opposition (if not posed as outright contradiction) emerged for a moment in the nineteenth century as provocatively complimentary in their methods of reading. In America, astronomy in particular provided a rich, complex subject for writers of the imagination to think about in terms of content and methodology. The purpose of my study is to uncover these unacknowledged astronomical referents in the works of Emily Dickinson, Herman Melville, and Edgar Allan Poe, and engage them as interpretive contexts in new readings of their most esoteric projects; specifically, Dickinson's solstice and circumference poetry, the Plinlimmon pamphlet in Melville's Pierre, and Poe's Eureka. After providing historical context through the shared public experience of the 1833 Leonid Meteor Storm, I uncover several astronomical and scientific sources for these writers: Denison Olmsted for Dickinson; Gauss and Plotinus for Melville; and Kepler and Alexander von Humboldt for Poe, among others. Exploring these sources in close readings of their works, I find that these authors employ astronomical facts in very different, metaphorical ways in response to the larger challenge of navigating their own poetics between the emerging new laws of science and the immeasurability of human feeling evoked by the unknown Universe.

  5. DART, a New Solution to Deploy and Access Astronomical Data

    Science.gov (United States)

    Paioro, L.; Chiappetti, L.; Garilli, B.; Franzetti, P.; Fumana, M.; Scodeggio, M.

    2008-08-01

    We present a new software solution, based on Java, which allows to deploy and access astronomical catalogs in relational database form, with their associated data products. It is already used to provide the public VVDS data via VO and manage zCosmos data within the Italian COSMOS community; it is also used as the second generation Web interface to the XMM-LSS master catalog. DART (Database Access and Retrieval Tool) supplies a Web interface which allows to query catalogs, filter data by conditions on the columns values (even complex expressions), view the results and export them in private user files; it is also possible to make simple plots or retrieve the related data products. The software supports access to more than one catalog at a time (e.g. for multi-band usage) either in parallel, or as a couple linked by pre-built correlation tables, or even viewing the result of an identification among several catalogs as a single virtual table. DART has been designed as a general tool capable of accessing any collection of astronomical database tables and related products. It is highly (and easily) customizable editing simple configuration files and (for an increased flexibility specially concerning data product access) populating appropriately a few administrative database tables. It supports ConeSearch, SSA and SIA Virtual Observatory protocols. DART will be soon released to the astronomical community from the PANDORA Web site (http://cosmos.iasf-milano.inaf.it/pandora/dart.html).

  6. The Amateur Astronomer's Introduction to the Celestial Sphere

    Science.gov (United States)

    Millar, William

    2005-12-01

    This introduction to the night sky is for amateur astronomers who desire a deeper understanding of the principles and observations of naked-eye astronomy. It covers topics such as terrestrial and astronomical coordinate systems, stars and constellations, the relative motions of the sky, sun, moon and earth leading to an understanding of the seasons, phases of the moon, and eclipses. Topics are discussed and compared for observers located in both the northern and southern hemispheres. Written in a conversational style, only addition and subtraction are needed to understand the basic principles and a more advanced mathematical treatment is available in the appendices. Each chapter contains a set of review questions and simple exercises to reinforce the reader's understanding of the material. The last chapter is a set of self-contained observation projects to get readers started with making observations about the concepts they have learned. William Charles Millar, currently Professor of Astronomy at Grand Rapids Community College in Michigan, has been teaching the subject for almost twenty years and is very involved with local amateur astronomy groups. Millar also belongs to The Planetary Society and the Astronomical Society of the Pacific and has traveled to Europe and South America to observe solar eclipses. Millar holds a Masters degree in Physics from Western Michigan University.

  7. Automatic astronomical coordinate determination using digital zenith cameras

    Directory of Open Access Journals (Sweden)

    S Farzaneh

    2009-12-01

    Full Text Available Celestial positioning has been used for navigation purposes for many years. Stars as the extra-terrestrial benchmarks provide unique opportunity in absolute point positioning. However, astronomical field data acquisition and data processing of the collected data is very time-consuming. The advent of the Global Positioning System (GPS nearly made the celestial positioning system obsolete. The new satellite-based positioning system has been very popular since it is very efficient and convenient for many daily life applications. Nevertheless, the celestial positioning method is never replaced by satellite-based positioning in absolute point positioning sense. The invention of electro-optical devices at the beginning of the 21st century was really a rebirth in geodetic astronomy. Today, the digital cameras with relatively high geometric and radiometric accuracy has opened a new insight in satellite attitude determination and the study of the Earth's surface geometry and physics of its interior, i.e., computation of astronomical coordinates and the vertical deflection components. This method or the so-called astrogeodetic vision-based method help us to determine astronomical coordinates with an accuracy better than 0.1 arc second. The theoretical background, an innovative transformation approach and the preliminary numerical results are addressed in this paper.

  8. Breakthrough! 100 astronomical images that changed the world

    CERN Document Server

    Gendler, Robert

    2015-01-01

    This unique volume by two renowned astrophotographers unveils the science and history behind 100 of the most significant astronomical images of all time. The authors have carefully selected their list of images from across time and technology to bring to the reader the most relevant photographic images spanning all eras of modern astronomical history.    Based on scientific evidence today we have a basic notion of how Earth and the universe came to be. The road to this knowledge was paved with 175 years of astronomical images acquired by the coupling of two revolutionary technologies – the camera and telescope. With ingenuity and determination humankind would quickly embrace these technologies to tell the story of the cosmos and unravel its mysteries.   This book presents in pictures and words a photographic chronology of our aspiration to understand the universe. From the first fledgling attempts to photograph the Moon, planets, and stars to the marvels of orbiting observatories that record the cosmos a...

  9. The CAPRI Project: Coordinates for Astronomical Press Release Images

    Science.gov (United States)

    Frattare, Lisa M.; Ferguson, B. A.; Summers, F.; Levay, Z. G.

    2009-01-01

    The beauty and splendor of astronomical press release images has made an enormously positive impact with the media and public alike. As a leading provider of astronomical imagery and a major contributor of Hubble Space Telescope press release images, the outreach division of Space Telescope Science Institute (STScI) recognizes the importance of making press release images compliant with virtual observatory standards for inclusion in databases and repositories. Our goal is to make outreach images accessible by virtual observatory applications by calculating World Coordinate System (WCS) data for these images. We provide updated and improved software that allows observatories to easily and accurately transform coordinates on their astronomical press release images, using reference FITS files. The resultant metadata conforms to the Simple Image Access (SIA) protocol established by the International Virtual Observatory Alliance and has been used by popular end users such as Google Sky and World Wide Telescope. Several hundred images from the STScI Office of Public Outreach NewsCenter database have been processed, and their coordinates and other relevant metadata are accessible through an SIA-compliant web service.

  10. Astronomical Observations from the Air Force Maui Optical Station (AMOS)

    Science.gov (United States)

    Lambert, J. V.; Africano, J. L.; Talent, D. L.; Sydney, P. F.; Soohoo, V.; Nishimoto, D. L.; Kervin, P. W.

    1999-05-01

    The Air Force Maui Optical Station (AMOS) was established in 1965 as a research and operations center for United States Department of Defense. The primary mission of AMOS has been space surveillance -- the detection, tracking, identification, and monitoring of suborbital missiles and manmade objects in Earth orbit. However, the site has also actively supported a secondary mission in the area of scientific and astronomical research. Each of the facility's five telescopes, with apertures ranging in size from 0.6 to 3.67 meters, has unique capabilities to support astronomical observations. Over the years, the facility has supported the development of adaptive optics and laser guide stars; high resolution imaging of P Cygni; Saturn ring plane crossing observations; Jupiter torus studies; asteroid characterization and follow-up; Comet Shoemaker/Levy-9 impact observations; and multi-decade IR photometry of long period variable stars. Results from these efforts will be presented. With the changing international political environment, the site is becoming more available for astronomical observations. Unique niches AMOS can fill include the short notice (hours to days) scheduling of transient event observations, and long-term (multi-year) synoptic observations.

  11. Astronomers Find World with Thick, Inhospitable Atmosphere and an Icy Heart

    Science.gov (United States)

    2009-12-01

    planets, they found that the observed radius exceeds the models' predictions: there is something more than the planet's solid surface blocking the star's light - a surrounding atmosphere, 200 km thick. "This atmosphere is much thicker than that of the Earth, so the high pressure and absence of light would rule out life as we know it," says Charbonneau, "but these conditions are still very interesting, as they could allow for some complex chemistry to take place." "Because the planet is too hot to have kept an atmosphere for long, GJ1214b represents the first opportunity to study a newly formed atmosphere enshrouding a world orbiting another star," adds team member Xavier Bonfils. "Because the planet is so close to us, it will be possible to study its atmosphere even with current facilities." The planet was first discovered as a transiting object within the MEarth project, which follows about 2000 low-mass stars to look for transits by exoplanets [4]. To confirm the planetary nature of GJ1214b and to obtain its mass (using the so-called Doppler method), the astronomers needed the full precision of the HARPS spectrograph, attached to ESO's 3.6-metre telescope at La Silla. An instrument with unrivalled stability and great precision, HARPS is the world's most successful hunter for small exoplanets. "This is the second super-Earth exoplanet for which the mass and radius could be obtained, allowing us to determine the density and to infer the inner structure," adds co-author Stephane Udry. "In both cases, data from HARPS was essential to characterise the planet." "The differences in composition between these two planets are relevant to the quest for habitable worlds," concludes Charbonneau. If super-Earth planets in general are surrounded by an atmosphere similar to that of GJ1214b, they may well be inhospitable to the development of life as we know it on our own planet. Notes [1] A super-Earth is defined as a planet between one and ten times the mass of the Earth. An exoplanet

  12. Spectral atlas for amateur astronomers a guide to the spectra of astronomical objects and terrestrial light sources

    CERN Document Server

    Walker, Richard

    2017-01-01

    Featuring detailed commented spectral profiles of more than one hundred astronomical objects, in colour, this spectral guide documents most of the important and spectroscopically observable objects accessible using typical amateur equipment. It allows you to read and interpret the recorded spectra of the main stellar classes, as well as most of the steps from protostars through to the final stages of stellar evolution as planetary nebulae, white dwarfs or the different types of supernovae. It also presents integrated spectra of stellar clusters, galaxies and quasars, and the reference spectra of some terrestrial light sources, for calibration purposes. Whether used as the principal reference for comparing with your recorded spectra or for inspiring independent observing projects, this atlas provides a breathtaking view into our Universe's past. The atlas is accompanied and supplemented by Spectroscopy for Amateur Astronomers, which explains in detail the methods for recording, processing, analysing and interp...

  13. Demonstration of an efficient, photonic-based astronomical spectrograph on an 8-m telescope

    Science.gov (United States)

    Jovanovic, N.; Cvetojevic, N.; Norris, B.; Betters, C.; Schwab, C.; Lozi, J.; Guyon, O.; Gross, S.; Martinache, F.; Tuthill, P.; Doughty, D.; Minowa, Y.; Takato, N.; Lawrence, J.

    2017-07-01

    We demonstrate for the first time an efficient, photonic-based astronomical spectrograph on the 8-m Subaru Telescope. An extreme adaptive optics system is combined with pupil apodiziation optics to efficiently inject light directly into a single-mode fiber, which feeds a compact cross-dispersed spectrograph based on array waveguide grating technology. The instrument currently offers a throughput of 5% from sky-to-detector which we outline could easily be upgraded to ~13% (assuming a coupling efficiency of 50%). The isolated spectrograph throughput from the single-mode fiber to detector was 42% at 1550 nm. The coupling efficiency into the single-mode fiber was limited by the achievable Strehl ratio on a given night. A coupling efficiency of 47% has been achieved with ~60% Strehl ratio on-sky to date. Improvements to the adaptive optics system will enable 90% Strehl ratio and a coupling of up to 67% eventually. This work demonstrates that the unique combination of advanced technologies enables the realization of a compact and highly efficient spectrograph, setting a precedent for future instrument design on very-large and extremely-large telescopes.

  14. The caracol tower at chichen itza: an ancient astronomical observatory?

    Science.gov (United States)

    Aveni, A F; Gibbs, S L; Hartung, H

    1975-06-06

    Although our investigations reveal a number of significant astronomical events coinciding with many of the measured alignments presented in Table 1, not every alignment appears to have an astronomical match which we can recognize. It may be that only some of the sighting possibilities we have discussed were actually functional. Moreover, our search of significant astronomical events to match the alignments has included only those which seem of obvious functional importance to us: sun, moon, and planetary extremes and the setting positions of the brightest stars. We have emphasized those celestial bodies which are documented in the literature as having been of importance. Perhaps hitherto unrecognized constellations were sighted in the windows, perhaps fainter stars, the heliacal rising and setting times of which could have served to mark important dates in the calendar. While we propose no grand cosmic scheme for the astronomical design of the Caracol it can be inferred that the building, apart from being a monument related to Quetzalcoatl, was erected primarily for the purpose of embodying in its architecture certain significant astronomical event alignments, in the same sense that a modern astronomical ephemeris exhibits information of importance to us in the keeping of the current calendar. There are examples in the Mesoamerican historical literature of deliberate attempts to align buildings with astronomical directions of importance. For example, Maudslay (33) quotes Father Motolinia, who tells us that in Tenochtitlan the festival called Tlacaxipeualistli "took place when the sun stood in the middle of Huicholobos, which was at the equinox, and because it was a little out of the straight, Montezuma wished to pull it down and set it right." According to Maudslay, worshipers were probably facing east to watch the sun rise between the two oratories on the Great Temple of Tenochtitlan at the time of the equinox. The directions of the faces of the Lower and Upper

  15. Preventing Rape of the Observatory: Thoughts on the Urgency of Preserving Historic Astronomical Artifacts

    Science.gov (United States)

    Bell, T. E.

    2005-12-01

    "What good is this century-old monster refractor? Sell it and use the money to buy a brand new go-to reflector useful for teaching students and advancing astronomy." So argues logic that is endangering an increasing number of university observatories around the U.S. (if not the rest of the world), even up to the Yerkes Observatory and its 40-inch Clark, world's largest refractor by the acknowledged world's best lens-makers. While most non-historians readily accept the value of preserving our cultural heritage in rare and precious documents (such as the Declaration of Independence), artifacts (such as Stradivarius violins), and institutions (such as the birthplaces of U.S. Presidents), they tend not to think of astronomical observatories as part of cultural heritage-with a result that history is crumbling apace to the wrecking ball. In early October, the Antique Telescope Society convened a special 60-minute session discussing philosophical why's and practical how's of preserving astronomical assets (including historically significant telescopes, observatory buildings, auxiliary equipment used to make observations or calculate results, and libraries of books and papers). This paper will summarize the discussion's key insights - including the assessing and assigning of value to old vs. new telescopes, and the roles of politics, funding and fund-raising, publicity (positive and negative), education, use as a form of preservation, innovative solutions by private collectors (including "half-way houses" for homeless instruments), restoration vs. renovation, special problems facing very large telescopes, and lessons learned from both failures and success.

  16. The challenges and frustrations of a veteran astronomical optician: Robert Lundin, 1880-1962

    Science.gov (United States)

    Briggs, John W.; Osterbrock, Donald E.

    1998-12-01

    Robert Lundin, apprenticed in nineteenth century optical craftsmanship but employed in twenty century fabrication and engineering, suffered many frustrations during a nonetheless productive career. Son of Carl A.R. Lundin, a senior optician at the famous American firm of Alvan Clark & Sons, Robert grew up building telescopes. As a teenager, he assisted with projects including the 1-m [40-inch] objective for Yerkes Observatory. After his father's death in 1915, he became manager of the Clark Corporation and was responsible for many smaller, successful refractors and reflectors. Lundin also completed major projects, including a highly praised 50.8-cm achromat for Van Vleck Observatory, as well as a successful 33-cm astrograph used at Lowell to discover Pluto. In 1929, a dispute with the owners of the Clark Corporation led to Lundin's resignation and his creation of a new business, "C.A. Robert Lundin and Associates." This short-lived firm built several observatory refractors, including a 26.7 cm for E.W. Rice, the retired chairman of General Electric. But none was entirely successful, and the Great Depression finished off the company. In 1933, Lundin took a job as head of Warner & Swasey's new optical shop, only to experience his greatest disasters. The 2.08-m [82-inch] reflector for McDonald Observatory was delayed for years until astronomers uncovered an error in Lundin's procedure for testing the primary mirror. A 38.1-cm photographic lens for the Naval Observatory was a complete failure. Under pressure to complete a 61-cm Schmidt camera, Lundin seems to have attempted to deceive visiting astronomers. After retirement in the mid 1940s, Lundin moved to Austin, Texas, the home of his daughter, where he died. His difficulties should not obscure his success with many instruments that continue to serve as important research and education tools.

  17. Building Bigger, Better Instruments with Dry Cryostats

    Science.gov (United States)

    Benford, Dominic J.; Voellmer, George

    2010-01-01

    The cylindrical instrument volume allowable n SOFIA is large, comprising perhaps 400 liters at 4K. However, the cryogen accommodation to enable this environment consumes roughly 20% of the volume, and worsens rues, airworthiness/safety, and handling/operation, Present-day pulse tube coolers have negligible cold volumes, provide adequate cooling powers, and reach colder temperatures than stored cryogen. In addition, they permit safer, more reliable, lower maintenance instrument operation. While the advantages of dry cryostats are well-known and commonly used in labs and ground-based astronomical facilities, SOFIA would require some charges in accommodations to permit a pulse tube cooler to operate on board, Whil e these changes are not negligible, we present our investigation into the feasibility and desirability of making SOFIA a dry cryostat-capable observatory

  18. Ticking Stellar Time Bomb Identified - Astronomers find prime suspect for a Type Ia supernova

    Science.gov (United States)

    2009-11-01

    Using ESO's Very Large Telescope and its ability to obtain images as sharp as if taken from space, astronomers have made the first time-lapse movie of a rather unusual shell ejected by a "vampire star", which in November 2000 underwent an outburst after gulping down part of its companion's matter. This enabled astronomers to determine the distance and intrinsic brightness of the outbursting object. It appears that this double star system is a prime candidate to be one of the long-sought progenitors of the exploding stars known as Type Ia supernovae, critical for studies of dark energy. "One of the major problems in modern astrophysics is the fact that we still do not know exactly what kinds of stellar system explode as a Type Ia supernova," says Patrick Woudt, from the University of Cape Town and lead author of the paper reporting the results. "As these supernovae play a crucial role in showing that the Universe's expansion is currently accelerating, pushed by a mysterious dark energy, it is rather embarrassing." The astronomers studied the object known as V445 in the constellation of Puppis ("the Stern") in great detail. V445 Puppis is the first, and so far only, nova showing no evidence at all for hydrogen. It provides the first evidence for an outburst on the surface of a white dwarf [1] dominated by helium. "This is critical, as we know that Type Ia supernovae lack hydrogen," says co-author Danny Steeghs, from the University of Warwick, UK, "and the companion star in V445 Pup fits this nicely by also lacking hydrogen, instead dumping mainly helium gas onto the white dwarf." In November 2000, this system underwent a nova outburst, becoming 250 times brighter than before and ejecting a large quantity of matter into space. The team of astronomers used the NACO adaptive optics instrument [2] on ESO's Very Large Telescope (VLT) to obtain very sharp images of V445 Puppis over a time span of two years. The images show a bipolar shell, initially with a very narrow

  19. Astronomers' Do-It-Yourself Project Opening A New Window on the Universe

    Science.gov (United States)

    1999-05-01

    -it-yourself project." In the first observing session using the new equipment, astronomers from four continents studied a wide range of celestial objects, and the results "were a spectacular success. We proved that you can make good images with the VLA at this frequency. The problem always was the difficulty in processing data to correct for ionospheric effects on the incoming radio waves. New computing techniques now have solved that problem." "We have shattered the ionospheric barrier and solved the wide- field imaging problem," Kassim said. The research results presented at the AAS meeting "show the great value of this new capability," Kassim said. "In addition to our work on supernova remnants, active galaxies and galaxy clusters, other papers presented at this meeting show that this frequency range is extremely valuable for solar research," Kassim added. "In fact, the success of the VLA at this frequency shows that we could learn even more from this new window on the universe by building a much larger and more sensitive instrument dedicated to long-wavelength radio astronomy -- the Low Frequency Array (LOFAR). An international consortium, initially involving NRL, NRAO, and the Netherlands Foundation for Radio Astronomy, currently is forming to develop LOFAR, an instrument which would see more detail and fainter objects than we can today," Kassim said. The VLA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Basic research in radio astronomy at the Naval Research Laboratory is supported by the Office of Naval Research.

  20. Distributed Framework for Dynamic Telescope and Instrument Control

    Science.gov (United States)

    Ames, Troy J.; Case, Lynne

    2002-01-01

    Traditionally, instrument command and control systems have been developed specifically for a single instrument. Such solutions are frequently expensive and are inflexible to support the next instrument development effort. NASA Goddard Space Flight Center is developing an extensible framework, known as Instrument Remote Control (IRC) that applies to any kind of instrument that can be controlled by a computer. IRC combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms. The IRC framework provides the ability to communicate to components anywhere on a network using the JXTA protocol for dynamic discovery of distributed components. JXTA (see httD://www.jxta.org,) is a generalized protocol that allows any devices connected by a network to communicate in a peer-to-peer manner. IRC uses JXTA to advertise a device's IML and discover devices of interest on the network. Devices can join or leave the network and thus join or leave the instrument control environment of IRC. Currently, several astronomical instruments are working with the IRC development team to develop custom components for IRC to control their instruments. These instruments include: High resolution Airborne Wideband Camera (HAWC), a first light instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA); Submillimeter And Far Infrared Experiment (SAFIRE), a Principal Investigator instrument for SOFIA; and Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE), a prototype of the SAFIRE instrument, used at the Caltech Submillimeter Observatory (CSO). Most recently, we have

  1. The Red Rectangle: An Astronomical Example of Mach Bands?

    Science.gov (United States)

    Brecher, K.

    2005-12-01

    Recently, the Hubble Space Telescope (HST) produced spectacular images of the "Red Rectangle". This appears to be a binary star system undergoing recurrent mass loss episodes. The image-processed HST photographs display distinctive diagonal lightness enhancements. Some of the visual appearance undoubtedly arises from actual variations in the luminosity distribution of the light of the nebula itself, i.e., due to limb brightening. Psychophysical enhancement similar to the Vasarely or pyramid effect also seems to be involved in the visual impression conveyed by the HST images. This effect is related to Mach bands (as well as to the Chevreul and Craik-O'Brien-Cornsweet effects). The effect can be produced by stacking concentric squares (or other geometrical figures such as rectangles or hexagons) of linearly increasing or decreasing size and lightness, one on top of another. We have constructed controllable Flash applets of this effect as part of the NSF supported "Project LITE: Light Inquiry Through Experiments". They can be found in the vision section of the LITE web site at http://lite.bu.edu. Mach band effects have previously been seen in medical x-ray images. Here we report for the first time the possibility that such effects play a role in the interpretation of astronomical images. Specifically, we examine to what extent the visual impressions of the Red Rectangle and other extended astronomical objects are purely physical (photometric) in origin and to what degree they are enhanced by psychophysical processes. To help assess the relative physical and psychophysical contributions to the perceived lightness effects, we have made use of a center-surround (Difference of Gaussians) filter we developed for MatLab. We conclude that local (lateral inhibition) and longer range human visual perception effects probably do contribute to the lightness features seen in astronomical objects like the Red Rectangle. Project LITE is supported by NSF Grant # DUE-0125992.

  2. Managing distributed software development in the Virtual Astronomical Observatory

    Science.gov (United States)

    Evans, Janet D.; Plante, Raymond L.; Boneventura, Nina; Busko, Ivo; Cresitello-Dittmar, Mark; D'Abrusco, Raffaele; Doe, Stephen; Ebert, Rick; Laurino, Omar; Pevunova, Olga; Refsdal, Brian; Thomas, Brian

    2012-09-01

    The U.S. Virtual Astronomical Observatory (VAO) is a product-driven organization that provides new scientific research capabilities to the astronomical community. Software development for the VAO follows a lightweight framework that guides development of science applications and infrastructure. Challenges to be overcome include distributed development teams, part-time efforts, and highly constrained schedules. We describe the process we followed to conquer these challenges while developing Iris, the VAO application for analysis of 1-D astronomical spectral energy distributions (SEDs). Iris was successfully built and released in less than a year with a team distributed across four institutions. The project followed existing International Virtual Observatory Alliance inter-operability standards for spectral data and contributed a SED library as a by-product of the project. We emphasize lessons learned that will be folded into future development efforts. In our experience, a well-defined process that provides guidelines to ensure the project is cohesive and stays on track is key to success. Internal product deliveries with a planned test and feedback loop are critical. Release candidates are measured against use cases established early in the process, and provide the opportunity to assess priorities and make course corrections during development. Also key is the participation of a stakeholder such as a lead scientist who manages the technical questions, advises on priorities, and is actively involved as a lead tester. Finally, frequent scheduled communications (for example a bi-weekly tele-conference) assure issues are resolved quickly and the team is working toward a common vision.

  3. Astronomical Orientation of Pyramid Tombs in North China

    Science.gov (United States)

    Rusell Tiede, Vance

    2010-01-01

    Two ancient Chinese texts, the Chou Bei Suan Ching and Chou Li (Western Han Dynasty, ca. 100 BC), record that the Imperial Astronomer (Feng Hsian Shin) made solar observations to determine the solstices and equinoxes, and for determining the cardinal directions with a circle and gnomon. By combining the techniques of astro-archaeology (G. S. Hawkins, 1968) with both overhead imagery and ground survey, the present study seeks to link historical Chinese descriptions of astronomical phenomena with contemporary architectural orientation. In the process, several unexpected astronomical orientation patterns emerged which apparently do not appear in the surviving historical record. For example, at the imperial Western Han capital of Ch'ang-an (N 34° latitude), the diagonals of cardinally oriented square pyramid mounds (ling) align to zenith (+34° declination) and nadir (-34° declination) star rise and set points on the skyline. This is in accord with the Chou (Zhou) Dynasty's name of Chung-Kuo, meaning Central Country or Middle Kingdom. That is, the imperial capital is centered both politico-geographically with respect to its vassal states of the Eastern Yi, Southern Man, Western Rong, and Northern Di, as well as astro-geomantically regarding the color-coded Five Sacred Directions East-South-West-North-Zenith/Nadir in the Cosmos. Our ground survey also confirmed pyramid orientation to the lunar standstills (+28°, +18° and +5° declination) that we reported from overhead imagery in 1980 (155th AAS Meeting, HAD 18.CE.12, Lunar and Solar Alignments of Ancient Chinese Pyramids). Grateful acknowledgment is given to the Chinese Academy of Sciences for the invitation to conduct an astro-archaeological survey of the Wei-ho valley, Shensi (Shaanxi) Province.

  4. User extensibility of the Firefly astronomical visualization software

    Science.gov (United States)

    Dubois-Felsmann, Gregory P.; Goldina, Tatiana; Ly, Loi; Roby, William; Wu, Xiuqin; Zhang, Lijun

    2016-01-01

    We have developed mechanisms for extending the functionality of the open-source Firefly astronomical visualization software with user-supplied code. Firefly is a toolkit for the construction of Web-based applications for visualizing astronomical images and tabular data, with the software distribution also including a basic general-purpose pre-built application. The Firefly tools are the base for NASA's IRSA archive as well as other web applications developed at IPAC.Recent releases include new public APIs allowing the extension of Firefly functionality in various ways. New Javascript APIs allow customization of the interface presented in the browser, including the ability to define buttons for custom actions that can be performed on points, lines, and regions in images. New Python APIs allow the invocation of operations in a Firefly-based application, allowing it to serve as a display engine for FITS images and other astronomical data. In addition, the Firefly web server side has been enhanced with the ability to invoke user-supplied processes that can produce either image or tabular results based on operations on data from the application or external sources. For instance, the user can define an operation to perform source detection on a graphically selected region in an image and return the results for display as a table and/or x-y plot. User processes can be defined in any language supported on the server host; our current efforts have focused on Python. This mechanism has been used to support the integration of Firefly with the LSST project's software stack, with reusable "tasks" from the LSST stack configurable as extensions to Firefly.

  5. US Astronomers Access to SIMBAD in Strasbourg, France

    Science.gov (United States)

    Eichhorn, G.; Oliverson, Ronald J. (Technical Monitor)

    2003-01-01

    During the last year the US SIMBAD Gateway Project continued to provide services like user registration to the US users of the SIMBAD database in France. Currently there are over 4300 US users registered. We also provided user support by answering questions from users and handling requests for lost passwords when still necessary. Even though almost all users now access SIMBAD without a password, based on hostnames/IP addresses, there are still some users that need individual passwords. We continued to maintain the mirror copy of the SIMBAD database on a server at SAO. This allows much faster access for the US users. During the past year we moved this mirror to a faster server to improve access for the US users. We again supported a demonstration of the SIMBAD database at the meeting of the American Astronomical Society in January. We provided support for the demonstration activities at the SIMBAD booth. We paid part of the fee for the SIMBAD demonstration. We continued to improve the cross-linking between the SIMBAD project and the Astrophysics Data System. This cross-linking between these systems is very much appreciated by the users of both the SIMBAD database and the ADS Abstract Service. The mirror of the SIMBAD database at SAO makes this connection faster for the US astronomers. We exchange information between the ADS and SIMBAD on a daily basis. The close cooperation between the CDS in Strasbourg and SAO, facilitated by this project, is an important part of the astronomy-wide digital library initiative. It has proven to be a model in how different data centers can collaborate and enhance the value of their products by linking with other data centers. We continue this collaboration in order to provide better services to both the US and European astronomical community. This collaboration is even more important in light of the developments for the Virtual Observatory projects in the different countries.

  6. Direct Detection of Ultralight Dark Matter via Astronomical Ephemeris

    OpenAIRE

    Fukuda, Hajime; Matsumoto, Shigeki; Yanagida, Tsutomu T.

    2018-01-01

    A novel idea of the direct detection to search for a ultralight dark matter based on the interaction between the dark matter and a nucleon is proposed. Solar system bodies feel the dark matter wind and it acts as a resistant force opposing their motions. The astronomical ephemeris of solar system bodies is so precise that it has a strong capability to detect a dark matter whose mass is much lighter than O(1) eV. We have estimated the resistant force based on the calculation of the elastic sca...

  7. Anomalous astronomical time-latitude residuals: a potential earthquake precursor

    Science.gov (United States)

    Hu, Hui; Su, You-Jin; Gao, Yi-Fei; Wang, Rui

    2016-09-01

    The geophysical mechanism behind astronomical time-latitude residuals (ATLR) are discussed. The photoelectric astrolabe at Yunnan Observatory (YO) observed apparent synchronous anomalous ATLR before the Wenchuan M8.0 earthquake (EQ) in May 12, 2008 and the Lushan M7.0 EQ n April 20, 2013. We compared the ATLR from the YO photoelectric astrolabe and EQ data since 1976. Anomalous ATLR was observed before several strong EQs in the Yunnan Province. We believe the photoelectric astrolabe can be used to predict strong EQs and the anomalous ATLR are a potential EQ precursor.

  8. Tip tilt corection for astronomical telescopes using adaptive control

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.

    1997-04-17

    The greatest hindrance to modern astronomy is the effect of the Earth`s atmosphere on incoming light. The fundamental, or lowest mode of disturbance is tip and tilt.. This mode causes the focused image of a distant point source to move about in a plane (X-Y motion) as viewed form a telescope objective. Tip-tilt correction systems can be used to correct for these disturbances in real time. We propose a novel application of adaptive control to address some unique problems inherent with tip-tilt correction systems for astronomical telescopes.

  9. BOF Session---Future of Astronomical Data Analysis Systems (FADS)

    Science.gov (United States)

    Noordam, Jan E.; Deich, William T. S.

    Even though most of us are much too busy to think about it often, there seems to be a clear consensus in the astronomical software community that distributed objects will fundamentally change the way in which we put our applications together over the next decade. But it is less clear whether there is anything we can (or should) do collectively to reach this future more quickly. In any case, strong forces would be required to get the present generation of programmers to collaborate effectively.

  10. 3D Visualization of Machine Learning Algorithms with Astronomical Data

    Science.gov (United States)

    Kent, Brian R.

    2016-01-01

    We present innovative machine learning (ML) methods using unsupervised clustering with minimum spanning trees (MSTs) to study 3D astronomical catalogs. Utilizing Python code to build trees based on galaxy catalogs, we can render the results with the visualization suite Blender to produce interactive 360 degree panoramic videos. The catalogs and their ML results can be explored in a 3D space using mobile devices, tablets or desktop browsers. We compare the statistics of the MST results to a number of machine learning methods relating to optimization and efficiency.

  11. ASTRONOMICAL PLATE ARCHIVES AND SUPERMASSIVE BLACK HOLE BINARIES

    Directory of Open Access Journals (Sweden)

    René Hudec

    2013-12-01

    Full Text Available The recent extensive digitisation of astronomical photographic plate archives, the development of new dedicated software and the use of powerful computers have for the first time enabled effective data mining in extensive plate databases, with wide applications in various fields of recent astrophysics. As an example, analyses of supermassive binary black holes (binary blazars require very long time intervals (50 years and more, which cannot be provided by other data sources. Examples of data obtained from data mining in plate archives are presented and briefly discussed.

  12. Pointing system for the balloon-borne astronomical payloads

    Science.gov (United States)

    Nirmal, Kaipacheri; Sreejith, Aickara Gopinathan; Mathew, Joice; Sarpotdar, Mayuresh; Ambily, Suresh; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant

    2016-10-01

    We describe the development and implementation of a light-weight, fully autonomous 2-axis pointing and stabilization system designed for balloon-borne astronomical payloads. The system is developed using off-the-shelf components such as Arduino Uno controller, HMC 5883L magnetometer, MPU-9150 inertial measurement unit, and iWave GPS receiver unit. It is a compact and rugged system which can also be used to take images/video in a moving vehicle or in real photography. The system performance is evaluated from the ground, as well as in conditions simulated to imitate the actual flight by using a tethered launch.

  13. Precession of the Equinoxes and the Calibration of Astronomical Epochs

    CERN Document Server

    Sidharth, Burra G

    2010-01-01

    Astronomical observations were used as a marker for time and the Calendar from ancient times. A more subtle calibration of epochs is thrown up by an observation of the position of the solstices and equinoxes, because these points shift in the sky with the years resulting in the gradual shift of celestial longitudes $\\lambda$. Chronology based on such observations however needs to be backed up by hard evidence. We match both to take us back to $10,000$ B.C., the epi-paleolithic period, and the beginning of civilization itself.

  14. Tot Graeci Tot Sententiae: Astronomical Perspective Multiplicity in Ancient Greece

    Science.gov (United States)

    Longo, O.

    2011-06-01

    Ancient Greece was made of a multiplicity of thinking heads, in an atmosphere of (relative) freedom of opinions, in every field of knowledge. then we should not wonder if many astronomical and cosmological theories, survived until our 17th century, had already been formulated by different philosophers and in different regions, cities and periods of Greek history. Geocentric and heliocentric theories, as well as an atomistic theory of an infinite universe (with infinite worlds), could survive without crashing with one another. In the same time, religious opinions regarding the planets and Sun as a series of gods were present, however not on a scientific ground.

  15. TAU - A mission to a thousand astronomical units

    Science.gov (United States)

    Nock, K. T.

    1987-01-01

    The potential of nuclear electric propulsion (NEP) is investigated as the enabling technology for achieving a mission to a thousand astronomical units within 50 years duration. By means of a 1000 AU baseline, the primary objective is to make measurements of distances to the stars in the Galaxy and beyond. In addition, several deep space unique studies in astronomy, astrophysics, cosmology, and space plasma physics can be carried out. NEP technology requirements for a mission to 1000 AU are addressed. These technology requirements are compared with current plans for both nuclear space power and ion propulsion research. And finally an example TAU spacecraft system is described.

  16. Estimating the Cramer-Rao bound for restored astronomical observations

    Science.gov (United States)

    Zaccheo, T. S.; Gonsalves, R. A.; Ebstein, S. M.; Nisenson, P.

    1995-01-01

    This work addresses the problem of assigning confidence intervals to estimated photometry data obtained from astronomical observations. The proposed solution is to estimate the Cramer-Rao bound, which is an analytical expression that describes the minimum obtainable mean square error associated with a given estimate of a parameter. This Letter presents a compact and simple form for the bound associated with a linear estimator such as a Wiener filter estimator. A prescription for estimating the variance associated with each element in a restored object was developed using an analytical model for observed data corrupted by either Poisson or Gaussian noise. Both one- and two-dimensional examples are presented.

  17. Astronomical Observations Astronomy and the Study of Deep Space

    CERN Document Server

    2010-01-01

    Our Search for knowledge about the universe has been remarkable, heartbreaking, fantastical, and inspiring, and this search is just beginning. Astronomical Observations is part of a 7 book series that takes readers through a virtual time warp of our discovery. From the nascent space programs of the 1960's to today's space tourism and the promise of distant planet colonization, readers will be transfixed. Throughout this journey of the mind, Earth-bound explorers gain keen insight into the celestial phenomena that have fascinated humans for centuries. Thrilling narratives about indefatigable sc

  18. Illustrated Guide to Astronomical Wonders From Novice to Master Observer

    CERN Document Server

    Thompson, Robert

    2011-01-01

    With the advent of inexpensive, high-power telescopes priced at under 250, amateur astronomy is now within the reach of anyone, and this is the ideal book to get you started. The Illustrated Guide to Astronomical Wonders offers you a guide to the equipment you need, and shows you how and where to find hundreds of spectacular objects in the deep sky -- double and multiple stars as well as spectacular star clusters, nebulae, and galaxies. You get a solid grounding in the fundamental concepts and terminology of astronomy, and specific advice about choosing, buying, using, and maintaining the eq

  19. The astronomical orientation of the urban plan of Alexandria

    CERN Document Server

    Ferro, Luisa

    2011-01-01

    Alexander the Great founded Alexandria in 331 BC. The newly founded town was conceived as an orthogonal grid based on a main longitudinal axis, later called Canopic Road. We analyse here the astronomical orientation of the project and propose that the main axis was deliberately oriented towards the rising sun on the day of birth of Alexander the Great. The argument is admittedly speculative as any Archaeoastronomy argument not backed up by written sources. However, it is nested accurately into the archaeological records and into what is known on the foundation of the town. Further, a topographical analysis is given to sustain the thesis.

  20. Towards a robust and consistent middle Eocene astronomical timescale

    Science.gov (United States)

    Boulila, Slah; Vahlenkamp, Maximilian; De Vleeschouwer, David; Laskar, Jacques; Yamamoto, Yuhji; Pälike, Heiko; Kirtland Turner, Sandra; Sexton, Philip F.; Westerhold, Thomas; Röhl, Ursula

    2018-03-01

    Until now, the middle Eocene has remained a poorly constrained interval of efforts to produce an astrochronological timescale for the entire Cenozoic. This has given rise to a so-called "Eocene astronomical timescale gap" (Vandenberghe et al., 2012). A high-resolution astrochronological calibration for this interval has proven to be difficult to realize, mainly because carbonate-rich deep-marine sequences of this age are scarce. In this paper, we present records from middle Eocene carbonate-rich sequences from the North Atlantic Southeast Newfoundland Ridge (IODP Exp. 342, Sites U1408 and U1410), of which the cyclical sedimentary patterns allow for an orbital calibration of the geologic timescale between ∼38 and ∼48 Ma. These carbonate-rich cyclic sediments at Sites U1408 and U1410 were deposited as drift deposits and exhibit prominent lithological alternations (couplets) between greenish nannofossil-rich clay and white nannofossil ooze. The principal lithological couplet is driven by the obliquity of Earth's axial tilt, and the intensity of their expression is modulated by a cyclicity of about 173 kyr. This cyclicity corresponds to the interference of secular frequencies s3 and s6 (related to the precession of nodes of the Earth and Saturn, respectively). This 173-kyr obliquity amplitude modulation cycle is exceptionally well recorded in the XRF (X-ray fluorescence)-derived Ca/Fe ratio. In this work, we first demonstrate the stability of the (s3-s6) cycles using the latest astronomical solutions. Results show that this orbital component is stable back to at least 50 Ma, and can thus serve as a powerful geochronometer in the mid-Eocene portion of the Cenozoic timescale. We then exploit this potential by calibrating the geochronology of the recovered middle Eocene timescale between magnetic polarity Chrons C18n.1n and C21n. Comparison with previous timescales shows similarities, but also notable differences in durations of certain magnetic polarity chrons. We

  1. The stability of spectroscopic instruments : a unified Allan variance computation scheme

    NARCIS (Netherlands)

    Ossenkopf, V.

    Context. The Allan variance is a standard technique to characterise the stability of spectroscopic instruments used in astronomical observations. The period for switching between source and reference measurement is often derived from the Allan minimum time. However, various methods are applied to

  2. The creation of the International Astronomical Union as a result of scientific diplomacy

    Science.gov (United States)

    Saint-Martin, Arnaud

    2011-06-01

    After World War I, the foundation of the International Astronomical Union delimited a space for a new form of internationality, which led to a rapid change in the way astronomical research had previously been pursued. This structure was to be a sort of parliament of astronomical nations which planned to supervise scientific programs and to rationalise inter-observatory cooperation. In this article, I will discuss the sociological aspects of this institutional process and introduce the idea of `scientific diplomacy'.

  3. Some parallels in the astronomical events recorded in the Maya codices and inscriptions.

    Science.gov (United States)

    Closs, M. P.

    The Dresden Codex contains two excellent examples of astronomical tables, one dedicated to the planet Venus and the other to solar and lunar eclipses. Most of the dates recorded in the monumental inscriptions are related to events in the lives of the Maya kings who commissioned the monuments. Nevertheless, it is not unusual to find that some of these dates are glyphically marked with astronomical references. The author looks of astronomical parallels in the events recorded in the inscriptions and codices.

  4. The West African International Summer School for Young Astronomers

    Science.gov (United States)

    Strubbe, Linda; Okere, Bonaventure I.; Chibueze, James; Lepo, Kelly; White, Heidi; Zhang, Jielai; Izuikedinachi Okoh, Daniel; Reid, Michael; Hunter, Lisa; EKEOMA Opara, Fidelis

    2015-08-01

    In October 2013 over 75 undergraduate science students and teachers from Nigeria and Ghana attended the week-long West African International Summer School for Young Astronomers. We expect an even broader audience for the second offering of the school (to be held July 2015), supported by a grant from the OAD (TF1). These schools are organized by a collaboration of astronomers from the University of Toronto, the University of Nigeria, and the Nigerian National Space Research and Development Agency. We design and lead activities that teach astronomy content, promote students' self-identity as scientists, and encourage students to think critically and figure out solutions themselves. Equally important, we design intertwined evaluation strategies to assess the effectiveness of our programs. We will describe the broader context for developing astronomy in West Africa, the inquiry-based and active learning techniques used in the schools, and results from the qualitative and quantitative evaluations of student performance. We will also describe longer-term plans for future schools, supporting our alumni, and building a sustainable partnership between North American and Nigerian universities.

  5. 156th Symposium of the International Astronomical Union

    CERN Document Server

    Kołaczek, Barbara

    1993-01-01

    In this review talk, I would like to report on the proper motion analysis, which has been recently carried out together with M. Soma and M. Yoshizawa: There has been a persistent demand in astronomy for accurate stellar positions and proper motions, which are represented by an inertial reference system constructed on the basis of a set of consistent astronomical constants. In the reference system the precessional constant plays a primary role. In a series of papers Fricke (1967a,b, 1977a,b) has deter­ mined the luni-solar precessional correction to Newcomb's value and the fictitious motion of the equinox, which have been adopted in the "IAU (1976) System of Astronomical Con­ stants". Based on the precessional correction and the equinoctial motion thus established, the fundamental reference system, the FK5 system (Fricke et al. 1988) for positions and proper motions, has been constructed. However, for several years geodetic VLBI (McCarthy & Luzum 1991) and LLR (Williams et at. 1991) observations have bee...

  6. Weird astronomical theories of the solar system and beyond

    CERN Document Server

    Seargent, David

    2016-01-01

    After addressing strange cosmological hypotheses in Weird Universe, David Seargent tackles the no-less bizarre theories closer to home. Alternate views on the Solar System's formation, comet composition, and the evolution of life on Earth are only some of the topics he addresses in this new work. Although these ideas exist on the fringe of mainstream astronomy, they can still shed light on the origins of life and the evolution of the planets. Continuing the author's series of books popularizing strange astronomy facts and knowledge, Weird Astronomical Theories presents an approachable exploration of the still mysterious questions about the origin of comets, the pattern of mass extinctions on Earth, and more. The alternative theories discussed here do not come from untrained amateurs. The scientists whose work is covered includes the mid-20th century Russian S. K. Vsekhsvyatskii, cosmologist Max Tegmark, British astronomers Victor Clube and William Napier, and American Tom Van Flandern, a special...

  7. Authentic Astronomical Discovery in Planetariums: Data-Driven Immersive Lectures

    Science.gov (United States)

    Wyatt, Ryan Jason

    2018-01-01

    Planetariums are akin to “branch offices” for astronomy in major cities and other locations around the globe. With immersive, fulldome video technology, modern digital planetariums offer the opportunity to integrate authentic astronomical data into both pre-recorded shows and live lectures. At the California Academy of Sciences Morrison Planetarium, we host the monthly Benjamin Dean Astronomy Lecture Series, which features researchers describing their cutting-edge work to well-informed lay audiences. The Academy’s visualization studio and engineering teams work with researchers to visualize their data in both pre-rendered and real-time formats, and these visualizations are integrated into a variety of programs—including lectures! The assets are then made available to any other planetariums with similar software to support their programming. A lecturer can thus give the same immersive presentation to audiences in a variety of planetariums. The Academy has also collaborated with Chicago’s Adler Planetarium to bring Kavli Fulldome Lecture Series to San Francisco, and the two theaters have also linked together in live “domecasts” to share real-time content with audiences in both cities. These lecture series and other, similar projects suggest a bright future for astronomers to bring their research to the public in an immersive and visually compelling format.

  8. Astronomical Heritage and Aboriginal People: Conflicts and Possibilities

    Science.gov (United States)

    López, Alejandro Martín

    2016-10-01

    In this presentation we address issues relating to the astronomical heritage of contemporary aboriginal groups and other minorities. We deal specially with intangible astronomical heritage and its particularities. Also, we study (from ethnographic experience with Aboriginal groups, Creoles and Europeans in the Argentine Chaco) the conflicts referring to the different ways in which the natives' knowledge and practice are categorized by the natives themselves, by scientists, state politicians, professional artists and NGOs. Furthermore, we address several cases that illustrate these kinds of conflicts. We aim to analyze the complexities of patrimonial policies when they are applied to practices and representations of contemporary communities involved in power relations with national states and the global system. The essentialization of identities, the folklorization of representations and practices, and the fossilization of aboriginal peoples are some of the risks of applying the label ``cultural heritage'' without a careful consideration of each specific case. In particular we suggest possible ways in which the international scientific community could collaborate to improve the agenda of national states instead of reproducing colonial prejudices. In this way, we aim to contribute to the promotion of respect for ethnic and religious minorities.

  9. Astronomical Dating of Monet's Paintings on the Normandy Coast

    Science.gov (United States)

    Olson, D. W.

    2016-01-01

    Claude Monet (1840-1926) is famous for landscapes accurately capturing the changing nature of seas and skies. Monet created almost two thousand paintings during his long career, and several hundred of these works depict the skies above the spectacular cliffs, arches, rocks, harbors, and beaches on the Normandy coast. Our Texas State University group made a research trip to Normandy in the summer of 2012 and found dozens of the locations where Monet set up his easel. Astronomical considerations of daylight, twilight, night skies, and tides can be used to enhance our understanding of the artist's creative process. Monet himself said, “I need the Sun or the cloudy weather to coincide again with the tide, which must be low or high in accordance with my motifs.” Astronomical methods can be used to help in dating these works, many of which have uncertain dates in the existing catalogues and literature about Monet in Normandy. Analysis using the direction of sunlight and the direction of shadows, combined with calculations of lunar phases and tide levels, meteorological records, and the artist's letters, enables us to determine the exact date and the precise time, accurate to the minute, when Monet observed the sky that inspired a painting.

  10. The unforgotten sisters female astronomers and scientists before Caroline Herschel

    CERN Document Server

    Bernardi, Gabriella

    2016-01-01

    Taking inspiration from Siv Cedering’s poem in the form of a fictional letter from Caroline Herschel that refers to “my long, lost sisters, forgotten in the books that record our science”, this book tells the lives of twenty-five female scientists, with specific attention to astronomers and mathematicians. Each of the presented biographies is organized as a kind of "personal file" which sets the biographee’s life in its historical context, documents her main works, highlights some curious facts, and records citations about her. The selected figures are among the most representative of this neglected world, including such luminaries as Hypatia of Alexandra, Hildegard of Bingen, Elisabetha Hevelius, and Maria Gaetana Agnesi. They span a period of about 4000 years, from En HeduAnna, the Akkadian princess, who was one of the first recognized female astronomers, to the dawn of the era of modern astronomy with Caroline Herschel and Mary Somerville. The book will be of interest to all who wish to learn more ...

  11. Linear feature detection algorithm for astronomical surveys - I. Algorithm description

    Science.gov (United States)

    Bektešević, Dino; Vinković, Dejan

    2017-11-01

    Computer vision algorithms are powerful tools in astronomical image analyses, especially when automation of object detection and extraction is required. Modern object detection algorithms in astronomy are oriented towards detection of stars and galaxies, ignoring completely the detection of existing linear features. With the emergence of wide-field sky surveys, linear features attract scientific interest as possible trails of fast flybys of near-Earth asteroids and meteors. In this work, we describe a new linear feature detection algorithm designed specifically for implementation in big data astronomy. The algorithm combines a series of algorithmic steps that first remove other objects (stars and galaxies) from the image and then enhance the line to enable more efficient line detection with the Hough algorithm. The rate of false positives is greatly reduced thanks to a step that replaces possible line segments with rectangles and then compares lines fitted to the rectangles with the lines obtained directly from the image. The speed of the algorithm and its applicability in astronomical surveys are also discussed.

  12. Celestial delights the best astronomical events through 2020

    CERN Document Server

    Reddy, Francis

    2012-01-01

    Celestial Delights is the essential 'TV Guide' for the sky. Through extensive graphics integrated with an eight-year-long calendar of sky events, it provides a look at "don't miss" sky events, mostly for naked-eye and binocular observing. It is organized by ease of observation – lunar phases and the brighter planets come first, with solar eclipses, the aurora, and comets coming later. This third edition also includes a hefty dose of sky lore, astronomical history, and clear overviews of current science. It provides a handy reference to upcoming naked-eye events, with information broken out in clear and simple diagrams and tables that are cross-referenced against a detailed almanac for each year covered. This book puts a variety of information all in one place, presents it in a friendly way that does not require prior in-depth astronomical knowledge, and provides the context and historical background for understanding events that astronomy software or web sites lack.

  13. Authentic Astronomical Discovery in Planetariums: Bringing Data to Domes

    Science.gov (United States)

    Wyatt, Ryan Jason; Subbarao, Mark; Christensen, Lars; Emmons, Ben; Hurt, Robert

    2018-01-01

    Planetariums offer a unique opportunity to disseminate astronomical discoveries using data visualization at all levels of complexity: the technical infrastructure to display data and a sizeable cohort of enthusiastic educators to interpret results. “Data to Dome” is an initiative the International Planetarium Society to develop our community’s capacity to integrate data in fulldome planetarium systems—including via open source software platforms such as WorldWide Telescope and OpenSpace. We are cultivating a network of planetarium professionals who integrate data into their presentations and share their content with others. Furthermore, we propose to shorten the delay between discovery and dissemination in planetariums. Currently, the “latest science” is often presented days or weeks after discoveries are announced, and we can shorten this to hours or even minutes. The Data2Dome (D2D) initiative, led by the European Southern Observatory, proposes technical infrastructure and data standards that will streamline content flow from research institutions to planetariums, offering audiences a unique opportunity to access to the latest astronomical data in near real time.

  14. Report of the Joint Scientific Mission Definition Team for an infrared astronomical satellite

    Science.gov (United States)

    1976-01-01

    The joint effort is reported of scientists and engineers from the Netherlands, the United Kingdom, and the United States working as a team for the purpose of exploring the possibility of a cooperative venture. The proposed mission builds upon experience gained from the successful Astronomical Netherlands Satellite (ANS). This satellite will be in a polar orbit at an altitude of 900 km. It will carry an 0.6 m diameter telescope cooled with helium to a temperature near 10K. An array of approximately 100 detectors will be used to measure the infrared flux in four wavelength bands centered at 10, 20, 50, and 100 microns. Sources will be located on the sky with positional accuracy of 1/2 arcminute. The instrument should be able to investigate the structure of extended sources with angular scales up to 1.0 deg. The entire sky will be surveyed and the full lifetime of the mission of about one year will be necessary to complete the survey. Special observational programs will also be incorporated into the mission.

  15. Search for Best Astronomical Observatory Sites in the MENA Region using Satellite Measurements

    Science.gov (United States)

    Abdelaziz, G.; Guebsi, R.; Guessoum, N.; Flamant, C.

    2017-06-01

    We perform a systematic search for astronomical observatory sites in the MENA (Middle-East and North Africa) region using space-based data for all the relevant factors, i.e. altitude (DEM), cloud fraction (CF), light pollution (NTL), precipitable water vapor (PWV), aerosol optical depth (AOD), relative humidity (RH), wind speed (WS), Richardson Number (RN), and diurnal temperature range (DTR). We look for the best locations overall even where altitudes are low (the threshold that we normally consider being 1,500 m) or where the combination of the afore-mentioned determining factors had previously excluded all locations in a given country. In this aim, we use the rich data that Earth-observing satellites provide, e.g. the Terra and Aqua multi-national NASA research satellites, with their MODIS (Moderate Resolution Imaging Spectroradiometer) and AIRS (Atmospheric Infrared Sounder) instruments, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS), and other products from climate diagnostics archives (e.g. MERRA). We present preliminary results on the best locations for the region.

  16. Branches of the Astronomical Society "Rudjer Boskovic" on the Teritory of Vojvodina and their Significance in the Work of the Astronomical Society 1954-1974

    Science.gov (United States)

    Francisty, Jaroslav

    2005-10-01

    It was analyzed work of Astronomical Society "Rudjer Boskovic" branches in Vojvodina in particular in Novi Sad, Sremska Mitrovica, Sombor, Bela Crkva, Subotica, Zrenjanin, Becej, Novi Becej and Stara Pazova.

  17. Astronomy for older eyes a guide for aging backyard astronomers

    CERN Document Server

    Chen, James L

    2017-01-01

    This book is for the aging amateur astronomy population, including newcomers to astronomy in their retirement and hobbyists who loved peering through a telescope as a child. Whether a novice or an experienced observer, the practice of astronomy differs over the years. This guide will extend the enjoyment of astronomy well into the Golden Years by addressing topics such as eye and overall health issues, recommendations on telescope equipment, and astronomy-related social activities especially suited for seniors. Many Baby-Boomers reaching retirement age are seeking new activities, and amateur astronomy is a perfect fit as a leisure time activity. Established backyard astronomers who began their love of astronomy in their youth , meanwhile, may face many physical and mental challenges in continuing their lifelong hobby as they age beyond their 55th birthdays. That perfect telescope purchased when they were thirty years old now suddenly at sixty years old feels like an immovable object in the living room. The 20...

  18. Research career of an astronomer who has studied celestial mechanics

    Science.gov (United States)

    Kozai, Yoshihide

    2016-09-01

    Celestial mechanics has been a classical field of astronomy. Only a few astronomers were in this field and not so many papers on this subject had been published during the first half of the 20th century. However, as the beauty of classical dynamics and celestial mechanics attracted me very much, I decided to take celestial mechanics as my research subject and entered university, where a very famous professor of celestial mechanics was a member of the faculty. Then as artificial satellites were launched starting from October 1958, new topics were investigated in the field of celestial mechanics. Moreover, planetary rings, asteroids with moderate values of eccentricity, inclination and so on have become new fields of celestial mechanics. In fact I have tried to solve such problems in an analytical way. Finally, to understand what gravitation is I joined the TAMA300 gravitational wave detector group.

  19. Test facility for astronomical x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Lewis, Robert A.; Bordas, J.

    1990-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions; however, the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area while still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes, is described. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  20. A Test Facility For Astronomical X-Ray Optics

    DEFF Research Database (Denmark)

    Lewis, R. A.; Bordas, J.; Christensen, Finn Erland

    1989-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earths atmosphere. These devices require a large collection aperture and the imaging of an x-ray source which is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions, however the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron Radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area whilst still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes is described below. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  1. Twenty five years National Astronomical Observatory: Publications and dissertations

    Science.gov (United States)

    Iliev, Ilian

    The idea to estimate the merits and to measure the impact of the National Astronomical Observatory of Bulgaria by creating the list with all publications and dissertations based fully or in part on the data collected during last 25 years with its telescopes is presented. The process of compiling the list is described. Its last version contains complete bibliographical data about more than 1000 publications with total volume of about 5500 journal pages. All of them are printed out in 1980--2005. The accumulated impact-factor exceeds 1000, the number of citations is expected to be between 3000 and 5000. The number of successful dissertations is close to 40, while the bachelor and master theses are near 100.

  2. Future Nuisance Flooding at Boston Caused by Astronomical Tides Alone

    Science.gov (United States)

    Ray, Richard D.; Foster, Grant

    2016-01-01

    Sea level rise necessarily triggers more occurrences of minor, or nuisance, flooding events along coastlines, a fact well documented in recent studies. At some locations nuisance flooding can be brought about merely by high spring tides, independent of storms, winds, or other atmospheric conditions. Analysis of observed water levels at Boston indicates that tidal flooding began to occur there in 2011 and will become more frequent in subsequent years. A compilation of all predicted nuisance-flooding events, induced by astronomical tides alone, is presented through year 2050. The accuracy of the tide prediction is improved when several unusual properties of Gulf of Maine tides, including secular changes, are properly accounted for. Future mean sea-level rise at Boston cannot be predicted with comparable confidence, so two very different climate scenarios are adopted; both predict a large increase in the frequency and the magnitude of tidal flooding events.

  3. MICRONERVA: A Novel Approach to Large Aperture Astronomical Spectroscopy

    Science.gov (United States)

    Hall, Ryan; Plavchan, Peter; Geneser, Claire; Giddens, Frank; Klenke, Christopher; Weigand, Denise

    2017-01-01

    MICRONERVA (MICRO Novel Exoplanet Radial Velocity Array) is a prototype observatory for measuring spectroscopic radial velocities. The primary goal of MICRONERVA is to demonstrate that an array of 8-inch CPC Celestron telescopes can be used at a lower cost in place of a single, larger telescope. The equivalent light gathering power of the larger telescope is achieved by sending the starlight from each of the eight-inch telescopes down single mode fibers and combining the fiber output at a single entrance slit to a multi-object high resolution spectrograph. All of the hardware from the system is automated using Python programs, ASCOM and MaximDL drivers. The detection of exoplanets using the techniques of MICRONERVA opens the door to reducing costs for astronomical spectroscopy.

  4. Optical properties of poly-HCN and their astronomical applications.

    Science.gov (United States)

    Khare, B N; Sagan, C; Thompson, W R; Arakawa, E T; Meisse, C; Tuminello, P S

    1994-01-01

    Matthews (1992) has proposed that HCN "polymer" is ubiquitous in the solar system. We apply vacuum deposition and spectroscopic techniques previously used on synthetic organic heteropolymers (tholins), kerogens, and meteoritic organic residues to the measurement of the optical constants of poly-HCN in the wavelength range 0.05-40 micrometers. These measurements allow quantitative comparison with spectrophotometry of organic-rich bodies in the outer solar system. In a specific test of Matthews' hypothesis, poly-HCN fails to match the optical constants of the haze of the Saturnian moon, Titan, in the visible and near-infrared derived from astronomical observations and standard models of the Titan atmosphere. In contrast, a tholin produced from a simulated Titan atmosphere matches within the probable errors. Poly-HCN is much more N-rich than Titan tholin.

  5. Conducting Original, Hands-On Astronomical Research in the Classroom

    Science.gov (United States)

    Corneau, M. J.

    2009-12-01

    Since 2007 I have been a Team Leader for the Tzec Maun Foundation, a non-profit foundation dedicated to providing free, research grade, Internet telescopes to students, teachers and researchers around the world. The name Tzec Maun (pronounced “Teh-Zeck-Moan”) comes from Mayan culture. Tzec Maun was the jovial messenger, laughed at adversity. Based on the challenges students, researchers and professional astronomers face with finances, equipment, and telescope access, the jovial mascot seems to fit. Hundreds of hours performing astronomical outreach as a NASA/JPL Solar System Ambassador and Astronomical League Master of outreach taught me that the best way to inspirationally teach astronomy and space science (and most subjects) is actually being at the eyepiece. I’m NOT a fan of the traditional planetarium experience as a teaching tool because it inhibits inspiration and the learning experience to a 2-D mat on a faux horizon with artificial representations. Once, a student at my dark sky observatory excitedly commented that the night sky was like a 3-D planetarium. I have hosted several classes at my own personal dark sky observatory, but this resource is impractical for all but a few lucky students. Experience has taught me that the next best thing to being at the eyepiece is to control a remote telescope via the Internet. Tzec Maun’s arsenal of telescopes is all research capable, linked to the Internet and positioned for round-the-clock dark skies. The final conditions described above, mean that I can enter an 8:30am science class, log onto the Tzec Maun telescope Portal and turn over control of an Australian system (where it is night) to a student or teacher. Working as a group, the class can either begin their investigations. My Tzec Maun science team (TARP) is engaged in searching for potentially hazardous asteroids (PHAs). PHA work excites student and teacher alike. Teaching from telescopes can unleash powerful attention-getting tools that enable

  6. 125th Colloquium of the International Astronomical Union

    CERN Document Server

    Sorochenko, R

    1990-01-01

    Text no 1 Radio Recombination Lines (RRLs), discovered in the USSR in 1964, have become a powerful research tool for astronomers. Available throughout the radio spectrum, these lines carry information regarding the density, temperature, turbulence and velocity of thermal plasmas. Their very existance shows the presence of thermal gas. They also can carry information regarding magnetic fields if Zeeman splitting were to be detected. Containing the proceedings of an IAU Colloquium celebrating the 25th anniversary of their detection, this volume tells us what has happened since. It contains the story of the detection of RRLs and reviews of many areas of physics of the interstellargas from which stars form, HII regions excited by newly formed stars, planetary nebulae involving dying stars, and the structure of our Milky Way and other galaxies reflecting the large-scale morphology of the star formation process. In addition there is an article describing modern laboratory studies of Rydberg atoms to probe the basic...

  7. Survival Strategies for African American Astronomers and Astrophysicists

    Science.gov (United States)

    Holbrook, Jarita C.

    2012-08-01

    The question of how to increase the number of women and minorities in astronomy has been approached from several directions in the United States including examination of admission policies, mentoring, and hiring practices. These point to departmental efforts to improve conditions for some of the students which has the overall benefit of improving conditions for all of the students. However, women and minority astronomers have managed to obtain doctorates even within the non-welcoming environment of certain astronomy and physics departments. I present here six strategies used by African American men and women to persevere if not thrive long enough to earn their doctorate. Embedded in this analysis is the idea of `astronomy culture' and experiencing astronomy culture as a cross-cultural experience including elements of culture shock. These survival strategies are not exclusive to this small subpopulation but have been used by majority students, too.

  8. Progresos recientes en Astronomía de Rayos Gamma

    Science.gov (United States)

    Romero, G. E.

    Tras la exitosa misión del Compton Gamma-Ray Observatory durante los años 1990, la astronomía de rayos gamma ha entrado en una etapa de madurez, convirtiéndose en una de las principales herramientas para el estudio de procesos relativistas en el universo. En este reporte, presentaré una revisión de los principales tópicos abordados a través de estudios con rayos gamma en los últimos años, con particular énfasis en los intentos más recientes por establecer la naturaleza de las fuentes de rayos gamma no identificadas, detectadas por el instrumento EGRET.

  9. Automating sky object classification in astronomical survey images

    Science.gov (United States)

    Fayyad, Usama M.; Doyle, Richard J.; Weir, Nicholas; Djorgovski, S. G.

    1992-01-01

    We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomer Observatory Sky Survey is nearly completed. This survey provides comprehensive coverage of the northern celestial hemisphere in the form of photographic plates. The plates are being transformed into digitized images whose quality will probably not be surpassed in the next ten to twenty years. The images are expected to contain on the order of 10(exp 7) galaxies and 10(exp 8) stars. Astronomers wish to determine which of these sky objects belong to various classes of galaxies and stars. The size of this data set precludes manual analysis. Our approach is to develop a software system which integrates the functions of independently developed techniques for image processing and data classification. Digitized sky images are passed through image processing routines to identify sky objects and to extract a set of features for each object. These routines are used to help select a useful set of attributes for classifying sky objects. Then GID3* and O-BTree, two inductive learning techniques, learn classification decision trees from examples. These classifiers will be used to process the rest of the data. This paper gives an overview of the machine learning techniques used, describes the details of our specific application, and reports the initial encouraging results. The results indicate that our approach is well-suited to the problem. The primary benefits of the approach are increased data reduction throughput and consistency of classification. The classification rules which are the product of the inductive learning techniques will form an object, examinable basis for classifying sky objects. A final, not to be underestimated benefit is that astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems based on automatically cataloged

  10. Recommendations for a service framework to access astronomical archives

    Science.gov (United States)

    Travisano, J. J.; Pollizzi, J.

    1992-01-01

    There are a large number of astronomical archives and catalogs on-line for network access, with many different user interfaces and features. Some systems are moving towards distributed access, supplying users with client software for their home sites which connects to servers at the archive site. Many of the issues involved in defining a standard framework of services that archive/catalog suppliers can use to achieve a basic level of interoperability are described. Such a framework would simplify the development of client and server programs to access the wide variety of astronomical archive systems. The primary services that are supplied by current systems include: catalog browsing, dataset retrieval, name resolution, and data analysis. The following issues (and probably more) need to be considered in establishing a standard set of client/server interfaces and protocols: Archive Access - dataset retrieval, delivery, file formats, data browsing, analysis, etc.; Catalog Access - database management systems, query languages, data formats, synchronous/asynchronous mode of operation, etc.; Interoperability - transaction/message protocols, distributed processing mechanisms (DCE, ONC/SunRPC, etc), networking protocols, etc.; Security - user registration, authorization/authentication mechanisms, etc.; Service Directory - service registration, lookup, port/task mapping, parameters, etc.; Software - public vs proprietary, client/server software, standard interfaces to client/server functions, software distribution, operating system portability, data portability, etc. Several archive/catalog groups, notably the Astrophysics Data System (ADS), are already working in many of these areas. In the process of developing StarView, which is the user interface to the Space Telescope Data Archive and Distribution Service (ST-DADS), these issues and the work of others were analyzed. A framework of standard interfaces for accessing services on any archive system which would benefit

  11. Astronomical and Meteorological Conditions of a Solar System Operation

    Science.gov (United States)

    Proszak-Miąsik, Danuta; Bukowska, Maria; Nowak, Krzysztof; Rabczak, Sławomir

    2017-10-01

    Acquisition and processing of as much solar energy for heating and electricity generation in Poland and in the world is a very important objective in the policy of alternative energy sources. The main problem with the reception of solar energy by solar collectors is vary energy supply at different times of day and year and low flux density of radiation. The term of solar radiation one mean transmission or emission of energy in the form of electromagnetic waves. The radiation emitted from the surface of the sun spreads out in all directions in space, reaches the Earth’s surface in only partly, especially the solar collectors. The most important parameters characterizing solar radiation are daily, monthly and annual sum of solar radiation. Its express the amount of solar energy which falls on a unit area at a given time. Number of hours of sunshine during the day are dependent on two key factors. The first one is the time from the sunrise to sunset, which strongly depends on the date and latitude. The second factor is the weather (clouds), influences solar radiation, radiation in touch with clouds is absorbed and dissipated. This publication shows the impact on the energy yield of the flat collector installation and astronomical conditions (angle of inclination and declination of solar), and climate. The calculations of determining the astronomical conditions of the place where the installation is located ware analyzed. The solar installation is located in Rzeszow (Poland) and the plate collector placed on the roof of building. Based on specific methodology for selected days the calculation of the elevation angle of the Sun, hourly angle, the sun azimuth and angle of incidence of the radiation on any plane were set. The results are shown in diagrams. The effect of cloud cover on the acquisition of solar energy by the collector is also shown.

  12. Archaeo-astronomical characteristics of the Kokino archaeological site

    Science.gov (United States)

    Cenev, Gjore

    In the North-East part of Macedonia, near to the peak Tatikjev Kamen, an archaeological site with vast quantity of artifacts, dated in the Bronze Age, was discovered in 2001. For the first time in Republic of Macedonia (FYROM), comprehensive archaeo-astronomical analysis of this site, providing extraordinary important results, was performed in 2002. The site contains a lot of materials typical for a megalithic observatory, 3800 years old. Three stone markers, pointing out the places of the sunrise on the days of the summer and winter solstice, as well as the vernal and autumn equinoxes, were found there. Four stone markers, indicating the places of the full Moon rise above the horizon, are recognized too. They are used in the days when the Moon has maximum or minimum declination - two of them in the summer and two of them - in the winter. There are also two other stone markers used for measuring the length of the lunar month in winter - when it has 29 days, and in summer - when it has 30 days. These markers give clear evidences that the ancient Balkan inhabitants used the observatory not only to monitor the movement of the Moon, but also to develop the lunar calendar with 19-year cycle. The archaeo-astronomical analysis presents also an evidence for the existence of one very characteristic stone marker, used for pointing out the sunrise position in a very important ritual day. This is the day when special ceremonies related to the end of the harvest, as well as to the ritual unification of the community leader with the God Sun, were performed. (Colour versions of the illustrations are presented as Appendix on the site of the journal.)

  13. The Role of Perspective Taking in How Children Connect Reference Frames When Explaining Astronomical Phenomena

    Science.gov (United States)

    Plummer, Julia D.; Bower, Corinne A.; Liben, Lynn S.

    2016-01-01

    This study investigates the role of perspective-taking skills in how children explain spatially complex astronomical phenomena. Explaining many astronomical phenomena, especially those studied in elementary and middle school, requires shifting between an Earth-based description of the phenomena and a space-based reference frame. We studied 7- to…

  14. US Astronomical Photographic Data Archives: Hidden Treasures and Importance for High-Energy Astrophysics

    Directory of Open Access Journals (Sweden)

    René Hudec

    2014-12-01

    Full Text Available We report here on an ongoing investigation of US astronomical plate archives and tests of the suitability of transportable scanning devices for in situ digitization of archival astronomical plates, with emphasis on application in high-energy astrophysics.

  15. The Music of the Spheres in Education: Using Astronomically Inspired Music

    Science.gov (United States)

    Fraknoi, Andrew

    We list and briefly describe over a hundred pieces of classical and popular music inspired by reasonable astronomical ideas, and we discuss ways that instructors (and those working in informal settings) can use music to enhance an astronomy class or program. Written and Web-based resources for exploring astronomical influences in music are also provided.

  16. Exploring Seventh-Grade Students' and Pre-Service Science Teachers' Misconceptions in Astronomical Concepts

    Science.gov (United States)

    Korur, Fikret

    2015-01-01

    Pre-service science teachers' conceptual understanding of astronomical concepts and their misconceptions in these concepts is crucial to study since they will teach these subjects in middle schools after becoming teachers. This study aimed to explore both seventh-grade students' and the science teachers' understanding of astronomical concepts and…

  17. Using Astronomical Photographs to Investigate Misconceptions about Galaxies and Spectra: Question Development for Clicker Use

    Science.gov (United States)

    Lee, Hyunju; Schneider, Stephen E.

    2015-01-01

    Many topics in introductory astronomy at the college or high-school level rely implicitly on using astronomical photographs and visual data in class. However, students bring many preconceptions to their understanding of these materials that ultimately lead to misconceptions, and the research about students' interpretation of astronomical images…

  18. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  19. Realization of the Vilnius photometric system for CCD-observations of selected sky areas at the Andrushivka Astronomical Observatory

    Science.gov (United States)

    Andruk, V.; Butenko, G.; Gerashchenko, O.; Ivashchenko, Yu.; Kovalchuk, G.; Lokot', V.; Samoylov, V.

    2005-06-01

    We describe a set of glass UPXYZVS filters of the Vilnius photometric system of the Andrushivka Astronomical Observatory in Zhytomyr Region (Ukraine) [7]. They are installed at the Zeiss-600 Cassegrain reflector together with the 15-bit 1024×1024 CCD-camera S1C-017. The response curves of instrumental photometric systems are presented and a comparison of them with a standard system are analysed. Test observations in the Vilnius system of the star cluster IC 4665 with the Andrushivka filters were carried out in May--June 2003. The MIDAS/ROMAFOT and ASTROIMAGE software is adapted for digital processing of CCD-images of stellar fields. Comprehensive ground-based observations are being planned to design a catalogue of primary UPXYZVS CCD-standards in selected areas of the sky where are with radio sources, globular and open clusters, etc.

  20. Health physics instrument manual

    Energy Technology Data Exchange (ETDEWEB)

    Gupton, E.D.

    1978-08-01

    The purpose of this manual is to provide apprentice health physics surveyors and other operating groups not directly concerned with radiation detection instruments a working knowledge of the radiation detection and measuring instruments in use at the Laboratory. The characteristics and applications of the instruments are given. Portable instruments, stationary instruments, personnel monitoring instruments, sample counters, and miscellaneous instruments are described. Also, information sheets on calibration sources, procedures, and devices are included. Gamma sources, beta sources, alpha sources, neutron sources, special sources, a gamma calibration device for badge dosimeters, and a calibration device for ionization chambers are described. (WHK)

  1. The observatories and instruments of Tycho Brahe

    Science.gov (United States)

    Wolfschmidt, Gudrun

    Tycho Brahe (1546-1601) was the most important observational astronomer until the invention of the telescope in 1608. By construction new instruments and devising new observing methods, Tycho succeeded in significantly increasing measurement accuracy: He increased the size of his instruments (e.g. a large wooden quadrant of diameter 5.4 m and a mural quadrant); he used metal and masonry rather than wood; he modified construction techniques to achieve greater stability; to provide shelter from the wind, his instruments were in subterranean nooks; his instruments were permanently and solidly mounted; for better angular readings, he developed new subdivisions and diopters (Tycho used transversals to obtain the greatest possible angular resolution readings. His instrumental sights (diopters) were specially designed to minimize errors); he carefully analysed all the errors (Tycho's aim was to reduce thethe uncertainty to less than one minute of arc); he used fundamental stars for the first time; he preferred measuring equatorial coordinates directly instead of using the zodiacal system, i.e. using the equatorial armillary sphere instead of the zodiacal armillary sphere; he tried a new measuring method with clocks and his mural quadrant (1582) for determining the right ascension; he took atmospheric refraction into account. Most of his high-accuracy instruments have been distroyed. Only two sextants, made by Jost Bürgi and Erasmus Habermel around 1600, still exist in the Narodny Technicky Muzeum (NTM) [National Technical Museum] in Prague. A model of the wooden quadrant is in the old observatory in Copenhagen, in the round tower. But we have good descriptions of the instruments (half circles of 2.3 m radius, quadrants up to 2 m radius including the mural quadrant, sextants up to 1.6 m, armillary spheres of 1.5 m radius and the great equatorial armillary sphere of 2.7 m, triquetrum and celestial globe of 1.5 m) in Tycho's book Astronomiae instauratae mechanica

  2. The First Jewish Astronomers: Lunar Theory and Reconstruction of a Dead Sea Scroll.

    Science.gov (United States)

    Ratzon, Eshbal

    2017-06-01

    Argument The Astronomical Book of Enoch describes the passage of the moon through the gates of heaven, which stand at the edges of the earth. In doing so, the book describes the position of the rising and setting of the moon on the horizon. Otto Neugebauer, the historian of ancient science, suggested using the detailed tables found in later Ethiopic texts in order to reconstruct the path of the moon through the gates. This paper offers a new examination of earlier versions of the Astronomical Book, using a mathematical analysis of the figures and astronomical theories presented throughout the Aramaic Astronomical Book; the results fit both the data preserved in the scrolls and the mathematical approach and religious ideology of the scroll's authors better than the details found in the late Ethiopic texts. Among other new insights, this alternate theory also teaches about the process of the composition of the Astronomical Book in the first centuries of its composition.

  3. Multi-arm spectrometer for parallel frequency analysis of radio-wave signals oriented to astronomical observations

    Science.gov (United States)

    Shcherbakov, Alexandre S.; Chavez Dagostino, Miguel; Arellanes, Adan Omar; Tepichin Rodriguez, Eduardo

    2017-08-01

    We describe a potential prototype of modern spectrometer based on acousto-optical technique with three parallel optical arms for analysis of radio-wave signals specific to astronomical observations. Each optical arm exhibits original performances to provide parallel multi-band observations with different scales simultaneously. Similar multi-band instrument is able to realize measurements within various scenarios from planetary atmospheres to attractive objects in the distant Universe. The arrangement under development has two novelties. First, each optical arm represents an individual spectrum analyzer with its individual performances. Such an approach is conditioned by exploiting various materials for acousto-optical cells operating within various regimes, frequency ranges, and light wavelengths from independent light sources. Individually produced beam shapers give both the needed incident light polarization and the required apodization for light beam to increase the dynamic range of the system as a whole. After parallel acousto-optical processing, a few data flows from these optical arms are united by the joint CCD matrix on the stage of the combined extremely high-bit rate electronic data processing that provides the system performances as well. The other novelty consists in the usage of various materials for designing wide-aperture acousto-optical cells exhibiting the best performances within each of optical arms. Here, one can mention specifically selected cuts of tellurium dioxide, bastron, and lithium niobate, which overlap selected areas within the frequency range from 40 MHz to 2.0 GHz. Thus one yields the united versatile instrument for comprehensive studies of astronomical objects simultaneously with precise synchronization in various frequency ranges.

  4. MARXS: A Modular Software to Ray-trace X-Ray Instrumentation

    Science.gov (United States)

    Günther, Hans Moritz; Frost, Jason; Theriault-Shay, Adam

    2017-12-01

    To obtain the best possible scientific result, astronomers must understand the properties of the available instrumentation well. This is important both when designing new instruments and when using existing instruments close to the limits of their specified capabilities or beyond. Ray-tracing is a technique for numerical simulations where the path of many light rays is followed through the system to understand how individual system components influence the observed properties, such as the shape of the point-spread-function. In instrument design, such simulations can be used to optimize the performance. For observations with existing instruments, this helps to discern instrumental artefacts from a true signal. Here, we describe MARXS, a new python package designed to simulate X-ray instruments on satellites and sounding rockets. MARXS uses probability tracking of photons and has polarimetric capabilities.

  5. Evolution of the VLT instrument control system toward industry standards

    Science.gov (United States)

    Kiekebusch, Mario J.; Chiozzi, Gianluca; Knudstrup, Jens; Popovic, Dan; Zins, Gerard

    2010-07-01

    The VLT control system is a large distributed system consisting of Linux Workstations providing the high level coordination and interfaces to the users, and VME-based Local Control Units (LCU's) running the VxWorks real-time operating system with commercial and proprietary boards acting as the interface to the instrument functions. After more than 10 years of VLT operations, some of the applied technologies used by the astronomical instruments are being discontinued making it difficult to find adequate hardware for future projects. In order to deal with this obsolescence, the VLT Instrumentation Framework is being extended to adopt well established Commercial Off The Shelf (COTS) components connected through industry standard fieldbuses. This ensures a flexible state of the art hardware configuration for the next generation VLT instruments allowing the access to instrument devices via more compact and simpler control units like PC-based Programmable Logical Controllers (PLC's). It also makes it possible to control devices directly from the Instrument Workstation through a normal Ethernet connection. This paper outlines the requirements that motivated this work, as well as the architecture and the design of the framework extension. In addition, it describes the preliminary results on a use case which is a VLTI visitor instrument used as a pilot project to validate the concepts and the suitability of some COTS products like a PC-based PLCs, EtherCAT8 and OPC UA6 as solutions for instrument control.

  6. A buyer's and user's guide to astronomical telescopes & binoculars

    CERN Document Server

    Mullaney, James

    2007-01-01

    This exciting, upbeat new guide provides an extensive overview of binoculars and telescopes. It includes detailed up-to-date information on sources, selection and use of virtually every major type, brand and model of such instruments on today's market.

  7. IYL Blog: Astronomers travel in time and space with light

    Science.gov (United States)

    Mather, John C.

    2015-01-01

    As an astronomer, I use light to travel through the universe, and to look back in time to when the universe was young. So do you! All of us see things as they were when the light was emitted, not as they are now. The farthest thing you can easily see without a telescope is the Andromeda Nebula, which is a galaxy like the Milky Way, about 2.5 million light years away. You see it as it was 2.5 million years ago, and we really don't know what it looks like today; the disk will have rotated a bit, new stars will have been born, there could have been all kinds of exploding stars, and the black hole in the middle could be lighting up. People may be skeptical of the Big Bang theory, even though we have a TV show named for it, but we (I should say Penzias and Wilson) measured its heat radiation 51 years ago at Bell Telephone Labs in New Jersey. Their discovery marks the beginning of the era of cosmology as a measurement science rather than speculation. Penzias and Wilson received the Nobel Prize in 1978 for their finding, which had been predicted in 1948 by Alpher and Herman. By the way, heat radiation is just another form of light - we call it radiation because we can't see it, but it's exactly the same phenomenon of electromagnetic waves, and the only difference is the wavelength. In the old days of analog television, if you tuned your TV in between channels, about 1% of the snow that you could see came from the Big Bang. So when we look at the heat radiation of the early universe, we really are gazing right at what seems to us a cosmic fireball, which surrounds us completely. It's a bit of an illusion; if you can imagine what astronomers in other galaxies would see, they would also feel surrounded by the fireball, and they would also think they were in the middle. So from a mathematical version of imagination, we conclude that there is no observable center and no edge of our universe, and that the heat of the fireball fills the entire universe uniformly. Astronomers are

  8. The Mid-Infrared Instrument for JWST

    Science.gov (United States)

    Rieke, G. H.; Wright, G. S.; MIRI Science Team

    2005-12-01

    The Mid-Infrared Instrument (MIRI) will play a crucial role in JWST by obtaining images and spectra from 5 to 28 microns. MIRI is a combination imager and spectrograph. There are 4 science modes: 1.) imaging in a number of bands from 5.6 to 25.5. microns, within a field 1.9 by 1.4 arcmin; 2.) coronagraphy in four bands between 10 and 25 microns; 3.) single object low resolution (R ˜ 100) spectroscopy from 5 to 11 microns; and 4.) medium resolution (R ˜ 2000) integral field spectroscopy from 5 to 28.5 microns over fields growing with wavelength from 3.5 x 3.5 to 7 x 7 arcsec. The MIRI detectors will be high performance 1024 x 1024 Si:As IBC devices. MIRI will have a cryocooler to allow it to operate over the entire JWST mission. These aspects of the instrument are being developed under the leadership of JPL. The rest of the instrument hardware -- optics and optical bench -- is being developed by a consortium of European astronomical and technical institutions, led by the UK Astronomy Technology Center with EADS Astrium as Consortium Project Manager and coordinated through ESA.

  9. Mathematical instrumentation in fourteenth-century Egypt and Syria the illustrated treatise of Najm al-Din al-Misri

    CERN Document Server

    Charette, F

    2003-01-01

    An illustrated Arabic treatise, with an English translation and detailed commentary, on the construction of over 100 various astronomical instruments, many of which are otherwise unknown to specialists. It was composed by Najm al-Din al-Misri, a rather shadowy figure, in Cairo around 1330 CE.

  10. Lewis Swift celebrated comet hunter and the people's astronomer

    CERN Document Server

    Kronk, Gary W

    2017-01-01

    This biography covers the life of Lewis Swift (1820-1913), who discovered 13 comets and nearly 1,200 other deep sky objects. All 13 comets found by Swift now bear his name, including three periodic comets with periods of 6 years (11P/Tempel-Swift-LINEAR), 9 years (64P/Swift-Gehrels), and 133 years (109P/Swift-Tuttle). Swift's enthusiasm and success as an amateur astronomer helped make him famous in the United States. With the help of others, Swift was able to buy a 16-inch refractor, the third largest telescope in the United States at the time. Hulbert Harrington Warner built "Warner Observatory" to house this telescope. As a prolific writer and lecturer, Swift's stories appeared in newspapers and magazines, while his lectures showed that he was able to explain anything in a way that everyone could understand.  When Warner went broke during the "Panic of 1893," Swift was forced to leave his home. Almost two dozen invitations arrived from around the United States asking him to bring his telescope to their ci...

  11. Wide-Field Astronomical Surveys in the Next Decade

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Michael A.; /Princeton U.; Tyson, J.Anthony; /UC, Davis; Anderson, Scott F.; /Washington U., Seattle, Astron. Dept.; Axelrod, T.S.; /LSST Corp.; Becker, Andrew C.; /Washington U., Seattle, Astron. Dept.; Bickerton, Steven J.; /Princeton U.; Blanton, Michael R.; /New York U.; Burke, David L.; /SLAC; Condon, J.J.; /NRAO, Socorro; Connolly, A.J.; /Washington U., Seattle, Astron. Dept.; Cooray, Asantha R.; /UC, Irvine; Covey, Kevin R.; /Harvard U.; Csabai, Istvan; /Eotvos U.; Ferguson, Henry C.; /Baltimore, Space Telescope Sci.; Ivezic, Zeljko; /Washington U., Seattle, Astron. Dept.; Kantor, Jeffrey; /LSST Corp.; Kent, Stephen M.; /Fermilab; Knapp, G.R.; /Princeton U.; Myers, Steven T.; /NRAO, Socorro; Neilsen, Eric H., Jr.; /Fermilab; Nichol, Robert C.; /Portsmouth U., ICG /Harish-Chandra Res. Inst. /Caltech, IPAC /Potsdam, Max Planck Inst. /Harvard U. /Hawaii U. /UC, Berkeley, Astron. Dept. /Baltimore, Space Telescope Sci. /NOAO, Tucson /Carnegie Mellon U. /Chicago U., Astron. Astrophys. Ctr.

    2011-11-14

    Wide-angle surveys have been an engine for new discoveries throughout the modern history of astronomy, and have been among the most highly cited and scientifically productive observing facilities in recent years. This trend is likely to continue over the next decade, as many of the most important questions in astrophysics are best tackled with massive surveys, often in synergy with each other and in tandem with the more traditional observatories. We argue that these surveys are most productive and have the greatest impact when the data from the surveys are made public in a timely manner. The rise of the 'survey astronomer' is a substantial change in the demographics of our field; one of the most important challenges of the next decade is to find ways to recognize the intellectual contributions of those who work on the infrastructure of surveys (hardware, software, survey planning and operations, and databases/data distribution), and to make career paths to allow them to thrive.

  12. Wide-Field Astronomical Surveys in the Next Decade

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Michael A.; /Princeton U.; Tyson, J.Anthony; /UC, Davis; Anderson, Scott F.; /Washington U., Seattle, Astron. Dept.; Axelrod, T.S.; /LSST Corp.; Becker, Andrew C.; /Washington U., Seattle, Astron. Dept.; Bickerton, Steven J.; /Princeton U.; Blanton, Michael R.; /New York U.; Burke, David L.; /SLAC; Condon, J.J.; /NRAO, Socorro; Connolly, A.J.

    2009-03-01

    Wide-angle surveys have been an engine for new discoveries throughout the modern history of astronomy, and have been among the most highly cited and scientifically productive observing facilities in recent years. This trend is likely to continue over the next decade, as many of the most important questions in astrophysics are best tackled with massive surveys, often in synergy with each other and in tandem with the more traditional observatories. We argue that these surveys are most productive and have the greatest impact when the data from the surveys are made public in a timely manner. The rise of the 'survey astronomer' is a substantial change in the demographics of our field; one of the most important challenges of the next decade is to find ways to recognize the intellectual contributions of those who work on the infrastructure of surveys (hardware, software, survey planning and operations, and databases/data distribution), and to make career paths to allow them to thrive.

  13. Weird Weather Tales of Astronomical and Atmospheric Anomalies

    CERN Document Server

    Seargent, David A J

    2012-01-01

    Have you ever heard the story of the tornado that lifted a man’s wallet right from his pants pocket? What about the myth of the Min-Min light in Australia?  Do you have a story about seeing the “Green Flash” or want an explanation of the mysterious Sun Dogs? Weird Weather: Tales of Astronomical and Atmospheric Anomalies is about the strange, unusual, and inexplicable events that take place in the air and sky. These include meteors that appear inside a darkened house, ghost lights that follow lone travelers, lightning emerging from patches of fog, and much more. Many of these climatic brainteasers occur within Earth’s skies, but there are parallel curiosities on other worlds, including: lightning on Venus, methane spouts on Titan, thunderstorms twice the size of Earth on Saturn, whirlwinds and dust storms on Mars , and auroras on Jupiter! Just as atmosphere and outer space are not separated by a sharp boundary, so the subject of this book is not confined to the skies. Earth is the way it is because of...

  14. Astronomical pacing of methane release in the Early Jurassic period.

    Science.gov (United States)

    Kemp, David B; Coe, Angela L; Cohen, Anthony S; Schwark, Lorenz

    2005-09-15

    A pronounced negative carbon-isotope (delta13C) excursion of approximately 5-7 per thousand (refs 1-7) indicates the occurrence of a significant perturbation to the global carbon cycle during the Early Jurassic period (early Toarcian age, approximately 183 million years ago). The rapid release of 12C-enriched biogenic methane as a result of continental-shelf methane hydrate dissociation has been put forward as a possible explanation for this observation. Here we report high-resolution organic carbon-isotope data from well-preserved mudrocks in Yorkshire, UK, which demonstrate that the carbon-isotope excursion occurred in three abrupt stages, each showing a shift of -2 per thousand to -3 per thousand. Spectral analysis of these carbon-isotope measurements and of high-resolution carbonate abundance data reveals a regular cyclicity. We interpret these results as providing strong evidence that methane release proceeded in three rapid pulses and that these pulses were controlled by astronomically forced changes in climate, superimposed upon longer-term global warming. We also find that the first two pulses of methane release each coincided with the extinction of a large proportion of marine species.

  15. Application of Astronomic Time-latitude Residuals in Earthquake Prediction

    Science.gov (United States)

    Yanben, Han; Lihua, Ma; Hui, Hu; Rui, Wang; Youjin, Su

    2007-04-01

    After the earthquake (Ms = 6.1) occurred in Luquan county of Yunnan province on April 18, 1985, the relationship between major earthquakes and astronomical time-latitude residuals (ATLR) of a photoelectric astrolabe in Yunnan Observatory was analyzed. ATLR are the rest after deducting the effects of Earth’s whole motion from the observations of time and latitude. It was found that there appeared the anomalies of the ATLR before earthquakes which happened in and around Yunnan, a seismic active region. The reason of the anomalies is possibly from change of the plumb line due to the motion of the groundmass before earthquakes. Afterwards, using studies of the anomalous characters and laws of ATLR, we tried to provide the warning information prior to the occurrence of a few major earthquakes in the region. The significant synchronous anomalies of ATLR of the observatory appeared before the earthquake of magnitude 6.2 in Dayao county of Yunnan province, on July 21, 2003. It has been again verified that the anomalies possibly provide the prediction information for strong earthquakes around the observatory.

  16. Nicolas-Louis De La Caille astronomer and geodesist

    CERN Document Server

    Glass, I S

    2013-01-01

    La Caille was one of the observational astronomers and geodesists who followed Newton in developing ideas about celestial mechanics and the shape of the earth. He provided data to the great 18th-century mathematicians involved in understanding the complex gravitational effects that the heavenly bodies have on one another. Observing from the Cape of Good Hope, he made the first ever telescopic sky survey and gave many of the southern constellations their present-day names. He measured the paths of the planets and determined their distances by trigonometry. In addition, he made a controversial measurement of the radius of the earth that seemed to prove it was pear-shaped. On a practical level, La Caille developed the method of `Lunars' for determining longitudes at sea. He mapped the Cape. As an influential teacher he propagated Newton's theory of universal gravitation at a time when it was only beginning to be accepted on the European continent. This book gives the most comprehensive overview so far avail...

  17. Data Triage of Astronomical Transients: A Machine Learning Approach

    Science.gov (United States)

    Rebbapragada, U.

    This talk presents real-time machine learning systems for triage of big data streams generated by photometric and image-differencing pipelines. Our first system is a transient event detection system in development for the Palomar Transient Factory (PTF), a fully-automated synoptic sky survey that has demonstrated real-time discovery of optical transient events. The system is tasked with discriminating between real astronomical objects and bogus objects, which are usually artifacts of the image differencing pipeline. We performed a machine learning forensics investigation on PTF’s initial system that led to training data improvements that decreased both false positive and negative rates. The second machine learning system is a real-time classification engine of transients and variables in development for the Australian Square Kilometre Array Pathfinder (ASKAP), an upcoming wide-field radio survey with unprecedented ability to investigate the radio transient sky. The goal of our system is to classify light curves into known classes with as few observations as possible in order to trigger follow-up on costlier assets. We discuss the violation of standard machine learning assumptions incurred by this task, and propose the use of ensemble and hierarchical machine learning classifiers that make predictions most robustly.

  18. Astrophysics is easy! an introduction for the amateur astronomer

    CERN Document Server

    Inglis, Michael

    2015-01-01

    Astrophysics is often –with some justification – regarded as incomprehensible without the use of higher mathematics. Consequently, many amateur astronomers miss out on some of the most fascinating aspects of the subject. Astrophysics Is Easy! cuts through the difficult mathematics and explains the basics of astrophysics in accessible terms. Using nothing more than plain arithmetic and simple examples, the workings of the universe are outlined in a straightforward yet detailed and easy-to-grasp manner.   The original edition of the book was written over eight years ago, and in that time, advances in observational astronomy have led to new and significant changes to the theories of astrophysics. The new theories will be reflected in both the new and expanded chapters.   A unique aspect of this book is that, for each topic under discussion, an observing list is included so that observers can actually see for themselves the concepts presented –stars of the spectral sequence, nebulae, galaxies, even black ...

  19. Chilean Astronomers and the Birth of Cerro Tololo

    Science.gov (United States)

    Moreno, H.

    1990-11-01

    P# JMEN. Hace treinta afios que se tnict6 en Chile la de n luga adecuado pata establecer observatoro astron6ini- Co, que a en wi ieflector de 1 in de diam'etrr . importante destacar el papel que le corres-pondi6 al Obseiwatorio Nacional de Ia Universidad de `Chile -- re'.-. tarde Departamento de de la inisma Univer- sidad .- en 1 de este proycoto. Los resultados han ido mucho mct5 impoftaftes lo esperado . de tal nodo q. el prc -ama destinado a instalar ui telescopio de tama- f ha I levado al establ ecimiento de iri centro de acti- cientfica de relieve inten-acional. ALb(TRA . Thifty years ago the search for a site adequate for the est 1ishment of an astronomical was fn (Thile. Initially it was planned that the main telescope would be a 1 in i-cf lector. It is importaft to the role played by th O Astm-'n6mioo Nacional de la Unfversidad de Cbf Ic - later 0: Depaftamento de of the same University - in the development of this project. The results have been much more important than was e:-:pected initially: in thiS way the prr gram for a telescope of moderate size was transfo -med in a major project wh i ch 1 cad to the estab 1 ). shinent of an i nt i ona 1 center of scieftific research. AQ/ W : OBSERVATORIES

  20. First light and beyond making a success of astronomical observing

    CERN Document Server

    Jenkins, D A

    2015-01-01

    Amateur astronomers who have been disappointed by the results of an observing session can still gain useful experience in a seemingly “failed” night at the telescope. In a world with imperfect seeing conditions, incredible observing sessions are often mixed with less inspiring ones, discouraging the amateur observer. This book is designed to help novice observers take something worthwhile away each and every time they go out under the night sky, regardless of what was originally planned. Almost every observer remembers his first sight of Ringed Saturn, hanging majestically in the blackness of space. Practitioners agree that visual observing is special. Real-time observations at the eyepiece can provide fleeting yet intense feelings that connect us with the universe. But when expectations aren’t met at the eyepiece, there are other ways to profit from the practice of astronomy. These rewards, though less showy, are well worth cultivating. This book will help you see what constitutes a “successful” vi...

  1. Despite Appearances, Cosmic Explosions Have Common Origin, Astronomers Discover

    Science.gov (United States)

    2003-11-01

    A Fourth of July fireworks display features bright explosions that light the sky with different colors, yet all have the same cause. They just put their explosive energy into different colors of light. Similarly, astronomers have discovered, a variety of bright cosmic explosions all have the same origin and the same amount of total energy. This is the conclusion of an international team of astronomers that used the National Science Foundation's Very Large Array (VLA) radio telescope to study the closest known gamma-ray burst earlier this year. Artist's conception of burst Artist's Conception of Twin Jets in Energetic Cosmic Explosion CREDIT: Dana Berry, SkyWorks Digital (Click on Image for Larger Version) "For some reason we don't yet understand, these explosions put greatly varying percentages of their explosive energy into the gamma-ray portion of their output," said Dale Frail, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. That means, he said, that both strong and weak gamma-ray bursts, along with X-ray flashes, which emit almost no gamma rays, are just different forms of the same cosmic beast. The research team reported their results in the November 13 issue of the scientific journal Nature. The scientists trained the VLA on a gamma-ray burst discovered using NASA's HETE-2 satellite last March 29. This burst, dubbed GRB 030329, was the closest such burst yet seen, about 2.6 billion light-years from Earth. Because of this relative proximity, the burst was bright, with visible light from its explosion reaching a level that could be seen in amateur telescopes. As the burst faded, astronomers noted an underlying distinctive signature of a supernova explosion, confirming that the event was associated with the death of a massive star. Since 1999, astronomers have known that the strong outbursts of gamma rays, X-rays, visible light and radio waves from these bursts form beams, like those from a flashlight, rather than spreading in all directions

  2. Possible astronomical references in two megalithic building of ancient Latium

    Science.gov (United States)

    Magli, G.

    In the wide area of the ancient Latium Vetus - roughly enclosed within the coast and the Apennines between Rome and Terracina, in Central Italy - there are several examples of town's walls and buildings constructed with the spectacular megalithic technique called polygonal, in which enormous blocks are cut in irregular shapes and perfectly fit together without mortar. In many cases, for instance in Alatri, Arpino, Circei, Norba and Segni, the megalithic size of the blocks and the ingenuity in construction reach the same magnificence and impression of power and pride which characterize the worldwide famous Mycenaean towns of Tiryns and Mycenae, constructed around the XIII century BC. In Italy however, all polygonal walls are currently attributed to the Romans, and dated to the first centuries of the Roman republic (V-III century BC), although for most of these constructions no reliable stratigraphy is available. In the present work, which is part of an ongoing project aiming at a complete study of these buildings, we investigate the possible astronomical references in the planning of two among the most imposing of them, namely the so called Acropolis of Alatri and Circei.

  3. Silicon carbide optics for space and ground based astronomical telescopes

    Science.gov (United States)

    Robichaud, Joseph; Sampath, Deepak; Wainer, Chris; Schwartz, Jay; Peton, Craig; Mix, Steve; Heller, Court

    2012-09-01

    Silicon Carbide (SiC) optical materials are being applied widely for both space based and ground based optical telescopes. The material provides a superior weight to stiffness ratio, which is an important metric for the design and fabrication of lightweight space telescopes. The material also has superior thermal properties with a low coefficient of thermal expansion, and a high thermal conductivity. The thermal properties advantages are important for both space based and ground based systems, which typically need to operate under stressing thermal conditions. The paper will review L-3 Integrated Optical Systems - SSG’s (L-3 SSG) work in developing SiC optics and SiC optical systems for astronomical observing systems. L-3 SSG has been fielding SiC optical components and systems for over 25 years. Space systems described will emphasize the recently launched Long Range Reconnaissance Imager (LORRI) developed for JHU-APL and NASA-GSFC. Review of ground based applications of SiC will include supporting L-3 IOS-Brashear’s current contract to provide the 0.65 meter diameter, aspheric SiC secondary mirror for the Advanced Technology Solar Telescope (ATST).

  4. Astronomical site selection for Turkey using GIS techniques

    Science.gov (United States)

    Aksaker, N.; Yerli, S. K.; Erdoğan, M. A.; Erdi, E.; Kaba, K.; Ak, T.; Aslan, Z.; Bakış, V.; Demircan, O.; Evren, S.; Keskin, V.; Küçük, İ.; Özdemir, T.; Özışık, T.; Selam, S. O.

    2015-10-01

    A site selection of potential observatory locations in Turkey have been carried out by using Multi-Criteria Decision Analysis (MCDA) coupled with Geographical Information Systems (GIS) and satellite imagery which in turn reduced cost and time and increased the accuracy of the final outcome. The layers of cloud cover, digital elevation model, artificial lights, precipitable water vapor, aerosol optical thickness and wind speed were studied in the GIS system. In conclusion of MCDA, the most suitable regions were found to be located in a strip crossing from southwest to northeast including also a diverted region in southeast of Turkey. These regions are thus our prime candidate locations for future on-site testing. In addition to this major outcome, this study has also been applied to locations of major observatories sites. Since no goal is set for the best, the results of this study is limited with a list of positions. Therefore, the list has to be further confirmed with on-site tests. A national funding has been awarded to produce a prototype of an on-site test unit (to measure both astronomical and meteorological parameters) which might be used in this list of locations.

  5. ``Campo del Cielo'' Meteorites: Astronomical Heritage and Cultural Colonialism

    Science.gov (United States)

    López, Alejandro Martín; Altman, Agustina

    2012-09-01

    In the province of Chaco, Argentina, there is a very unique dispersion of metallic meteorites called ``Campo del Cielo''. One of the meteoric fragments of this dispersion, the meteorite called ``El Chaco'', consisting of 37 tons, is the second heaviest in the world. These meteorites are of great importance to the worldview of the Moqoit, aboriginal people that inhabit this region. For the local Creole population the meteorites are also relevant, that's why they have being cited in numerous documents and reports since the colonial period. During the first months of 2012, two Argentine artists and the Artistic Director of the German contemporary art exhibition called dOCUMENTA (13) tried to move ``El Chaco'' meteorite to Germany in order to exhibit it as an artistic object. Due to the fact that moving the meteorite could have a negative impact according to the Moqoit cosmology and that they were not able to participate in the decision they begun a manifestation against the movement of El Chaco. The opposition made by aboriginal communities and experts in cultural astronomy was able to stop the transfer. The whole process and its impact on the local community have promoted a deep discussion about art, science and cultural colonialism. In this paper we aim to address this debate and its consequences. This will allow us to think about contemporary forms of colonialism that are hidden in many scientific and artistic projects. Furthermore, we aim to debate about the most effective ways of protecting astronomical heritage in the Third World.

  6. Detection and removal of artifacts in astronomical images

    Science.gov (United States)

    Desai, S.; Mohr, J. J.; Bertin, E.; Kümmel, M.; Wetzstein, M.

    2016-07-01

    Astronomical images from optical photometric surveys are typically contaminated with transient artifacts such as cosmic rays, satellite trails and scattered light. We have developed and tested an algorithm that removes these artifacts using a deep, artifact free, static sky coadd image built up through the median combination of point spread function (PSF) homogenized, overlapping single epoch images. Transient artifacts are detected and masked in each single epoch image through comparison with an artifact free, PSF-matched simulated image that is constructed using the PSF-corrected, model fitting catalog from the artifact free coadd image together with the position variable PSF model of the single epoch image. This approach works well not only for cleaning single epoch images with worse seeing than the PSF homogenized coadd, but also the traditionally much more challenging problem of cleaning single epoch images with better seeing. In addition to masking transient artifacts, we have developed an interpolation approach that uses the local PSF and performs well in removing artifacts whose widths are smaller than the PSF full width at half maximum, including cosmic rays, the peaks of saturated stars and bleed trails. We have tested this algorithm on Dark Energy Survey Science Verification data and present performance metrics. More generally, our algorithm can be applied to any survey which images the same part of the sky multiple times.

  7. Recurrent Neural Network Applications for Astronomical Time Series

    Science.gov (United States)

    Protopapas, Pavlos

    2017-06-01

    The benefits of good predictive models in astronomy lie in early event prediction systems and effective resource allocation. Current time series methods applicable to regular time series have not evolved to generalize for irregular time series. In this talk, I will describe two Recurrent Neural Network methods, Long Short-Term Memory (LSTM) and Echo State Networks (ESNs) for predicting irregular time series. Feature engineering along with a non-linear modeling proved to be an effective predictor. For noisy time series, the prediction is improved by training the network on error realizations using the error estimates from astronomical light curves. In addition to this, we propose a new neural network architecture to remove correlation from the residuals in order to improve prediction and compensate for the noisy data. Finally, I show how to set hyperparameters for a stable and performant solution correctly. In this work, we circumvent this obstacle by optimizing ESN hyperparameters using Bayesian optimization with Gaussian Process priors. This automates the tuning procedure, enabling users to employ the power of RNN without needing an in-depth understanding of the tuning procedure.

  8. 153rd Colloquium of the International Astronomical Union

    CERN Document Server

    Kosugi, Takeo; Hudson, Hugh

    1996-01-01

    These are the Proceedings of Colloquium No. 153 of the International Astro­ nomical Union, held at Makuhari near Tokyo on May 22 - 26, 1995, and hosted by the National Astronomical Observatory. This meeting was intended to be an interdisciplinary meeting between re­ searchers of solar and stellar activity, in order for them to exchange the newest information in each field. While each of these areas has seen remarkable advances in recent years, and while the researchers in each field have felt that information from the other's domain would be extremely useful in their own work, there have not been very many opportunities for intensive exchanges of information between these closely related fields. We therefore expected much from this meeting in pro­ viding stellar researchers with new results of research on the counterparts of their targets of research, spatially and temporarily resolved, as observed on the Sun. Likewise we hoped to provide solar researchers with new results on gigantic ver­ sions of their ...

  9. Was the famous astronomer Copernicus also a nephrologist.

    Science.gov (United States)

    Popowska-Drojecka, Julia; Muszytowski, Marek; Rutkowski, Boleslaw

    2011-01-01

    Nicolaus Copernicus (1473-1543), world-famous astronomer, born in Toruń, was also a Warmian canon (senior priest) and a physician to 4 consecutive prince-bishops of Warmia and of other Warmian canons. What medical conditions preoccupied Nicolaus Copernicus and whether they included kidney diseases can only be inferred from the extant prescriptions of Copernicus, as no record remains of any treatises by Copernicus regarding medicine. While no prescription penned by him is dated, several are traced to the period of his studies in Padua, Italy. The prescriptions indicate that he was concerned with conditions afflicting virtually all systems and organs of the human body including the kidneys. His personal library included at least 45 books, of which 14 dealt with medical issues. Copernicus used to write his prescriptions in the margins or on the blank pages of the treatises. They were mostly based on Avicenna's original prescriptions. The most common herbal ingredients used by Copernicus as remedies for symptoms of renal colic, hematuria and diuresis were common nettle (Urtica dioica), goosegrass (Galium aparine), rosemary (Rosmarinus officinalis), cubeb (Piper cubeba), common pumpkin (Cucurbita pepo), almond seeds and many others. It is hard to ascertain how effective the medical methods utilized by Copernicus may have been.

  10. Surveying the skies how astronomers map the universe

    CERN Document Server

    Wynn-Williams, Gareth

    2016-01-01

    Since the time of Galileo, astronomy has been driven by technological innovation. With each major advance has come the opportunity and enthusiasm to survey the sky in a way that was not possible before. It is these surveys of discovery that are the subject of this book. In the first few chapters the author discusses what astronomers learned from visible-light surveys, first with the naked eye, then using telescopes in the seventeenth century, and photography in the nineteenth century. He then moves to the second half of the twentieth century when the skies started to be swept by radio, infrared, ultraviolet, x-ray and gamma ray telescopes, many of which had to be flown in satellites above the Earth’s atmosphere. These surveys led to the discovery of pulsars, quasars, molecular clouds, protostars, bursters, and black holes. He then returns to Earth to describe several currently active large-scale projects that methodically collect images, photometry and spectra that are then stored in vast publicly-accessibl...

  11. Instrument Modeling and Synthesis

    Science.gov (United States)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  12. Europlanet 2020: Fostering the collaboration between professional scientists and amateur astronomers

    Science.gov (United States)

    Scherf, M.; Kargl, G.; Tautvaisiene, G.; Al-Ubaidi, T.

    2017-09-01

    The Horizon 2020 advanced research infrastructure project Europlanet 2020 aims to strengthen the collaboration in European planetary sciences. One of the major goals of the project's Work Package NA1 Task 12.5 "Coordination of ground-based observations" is to foster the cooperation between professional planetary scientists and amateur astronomers in Europe. This presentation will give an overview on Europlanet 2020 and will summarize the major activities of NA1-Task 12.5, focusing on how the project supports the activities of amateur astronomers and their collaboration with professional scientists in Europe. This will also include an overview on funding possibilities for amateur astronomers.

  13. Historical documents preserved by the Shogunate Astronomical Officer the Shibukawa family (II). Letters and "Tenmonkata Daidaiki".

    Science.gov (United States)

    Nakamura, T.; Ito, S.

    1995-11-01

    This is the second report on a full survey of the historical documents preserved by the Shibukawa family, an Astronomical Officer of the Tokugawa shogunate. In this survey, the authors found some series of unknown important letters regarding the "Tempo" calendar reform made under the leadership by Kagesuke Shibukawa, the greatest astronomer in the late Tokugawa era, the imprisonment of Hironao, the eldest son of Kagesuke who then was a deputy astronomical officer, the death dates of Kagesuke and his second son, and so on.

  14. John Twysden and John Palmer: 17th-century Northamptonshire astronomers

    Science.gov (United States)

    Frost, M. A.

    2008-01-01

    John Twysden (1607-1688) and John Palmer (1612-1679) were two astronomers in the circle of Samuel Foster (circa 1600-1652), the subject of a recent paper in this journal. John Twysden qualified in law and medicine and led a peripatetic life around England and Europe. John Palmer was Rector of Ecton, Northamptonshire and later Archdeacon of Northampton. The two astronomers catalogued observations made from Northamptonshire from the 1640s to the 1670s. In their later years Twysden and Palmer published works on a variety of topics, often astronomical. Palmer engaged in correspondence with Henry Oldenburg, the first secretary of the Royal Society, on topics in astronomy and mathematics.

  15. Free-space laser communication system with rapid acquisition based on astronomical telescopes.

    Science.gov (United States)

    Wang, Jianmin; Lv, Junyi; Zhao, Guang; Wang, Gang

    2015-08-10

    The general structure of a free-space optical (FSO) communication system based on astronomical telescopes is proposed. The light path for astronomical observation and for communication can be easily switched. A separate camera is used as a star sensor to determine the pointing direction of the optical terminal's antenna. The new system exhibits rapid acquisition and is widely applicable in various astronomical telescope systems and wavelengths. We present a detailed analysis of the acquisition time, which can be decreased by one order of magnitude compared with traditional optical communication systems. Furthermore, we verify software algorithms and tracking accuracy.

  16. Design and Implement of Astronomical Cloud Computing Environment In China-VO

    Science.gov (United States)

    Li, Changhua; Cui, Chenzhou; Mi, Linying; He, Boliang; Fan, Dongwei; Li, Shanshan; Yang, Sisi; Xu, Yunfei; Han, Jun; Chen, Junyi; Zhang, Hailong; Yu, Ce; Xiao, Jian; Wang, Chuanjun; Cao, Zihuang; Fan, Yufeng; Liu, Liang; Chen, Xiao; Song, Wenming; Du, Kangyu

    2017-06-01

    Astronomy cloud computing environment is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on virtualization technology, astronomy cloud computing environment was designed and implemented by China-VO team. It consists of five distributed nodes across the mainland of China. Astronomer can get compuitng and storage resource in this cloud computing environment. Through this environments, astronomer can easily search and analyze astronomical data collected by different telescopes and data centers , and avoid the large scale dataset transportation.

  17. CCAT Heterodyne Instrument Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A key challenge in building a large pixel heterodyne array is efficiently and simultaneously delivering the astronomical signal and local oscillator power to each...

  18. The Instrumental Model

    Science.gov (United States)

    Yeates, Devin Rodney

    2011-01-01

    The goal of this dissertation is to enable better predictive models by engaging raw experimental data through the Instrumental Model. The Instrumental Model captures the protocols and procedures of experimental data analysis. The approach is formalized by encoding the Instrumental Model in an XML record. Decoupling the raw experimental data from…

  19. Aeroacoustics of Musical Instruments

    NARCIS (Netherlands)

    Fabre, B.; Gilbert, J.; Hirschberg, Abraham; Pelorson, X.

    2012-01-01

    We are interested in the quality of sound produced by musical instruments and their playability. In wind instruments, a hydrodynamic source of sound is coupled to an acoustic resonator. Linear acoustics can predict the pitch of an instrument. This can significantly reduce the trial-and-error process

  20. Performing the Super Instrument

    DEFF Research Database (Denmark)

    Kallionpaa, Maria

    2016-01-01

    The genre of contemporary classical music has seen significant innovation and research related to new super, hyper, and hybrid instruments, which opens up a vast palette of expressive potential. An increasing number of composers, performers, instrument designers, engineers, and computer programmers...... have become interested in different ways of “supersizing” acoustic instruments in order to open up previously-unheard instrumental sounds. Super instruments vary a great deal but each has a transformative effect on the identity and performance practice of the performing musician. Furthermore, composers...... provides the performer extensive virtuoso capabilities in terms of instrumental range, harmony, timbre, or spatial, textural, acoustic, technical, or technological qualities. The discussion will be illustrated by a composition case study involving augmented musical instrument electromagnetic resonator...

  1. Hexabundles: imaging fiber arrays for low-light astronomical applications

    DEFF Research Database (Denmark)

    Bland-Hawthorn, Joss; Bryant, Julia; Robertson, Gordon

    2011-01-01

    We demonstrate for the first time an imaging fibre bundle (“hexabundle”) that is suitable for low-light applications in astronomy. The most successful survey instruments at optical-infrared wavelengths today have obtained data on up to a million celestial sources using hundreds of multimode fibre...

  2. Hexabundles: imaging fibre arrays for low-light astronomical applications

    DEFF Research Database (Denmark)

    Bland-Hawthorn, Joss; Bryant, Julie; Robertson, Gordon

    2010-01-01

    We demonstrate for the first time an imaging fibre bundle (“hexabundle”) that is suitable for low-light applications in astronomy. The most successful survey instruments at optical-infrared wavelengths today have obtained data on up to a million celestial sources using hundreds of multimode fibres...

  3. Astronomical Plate Archives and Binary Blazars Studies Rene Hudec

    Indian Academy of Sciences (India)

    sity, Prague. Hudec, R. 2007, In: Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st. Century. ESO Astrophysics Symposia, European Southern Observatory Series (eds) Andrei. P. Lobanov, J. Anton Zensus, Catherine Cesarsky, Phillip J. Diamond, Springer-Verlag,. Berlin and Heidelberg, Germany, p. 79.

  4. UV Written Integrated Optical Beam Combiner for Near Infrared Astronomical Interferometry

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Olivero, Massimo; Jocou, Laurent

    2006-01-01

    A near infrared integrated optical beam combiner for astronomical interferometry is demonstrated for the first time by direct UV writing. High fringe contrast >95%, low total loss (0.7 dB), low crosstalk and broadband performance is demonstrated....

  5. Astronomical High Tide Line, Geographic NAD83, NWRC (1995) [hightide_line_NWRC_1995

    Data.gov (United States)

    Louisiana Geographic Information Center — The astronomical high tide line was compiled from National Wetlands Inventory (NWI) 1:24,000-scale habitat maps that were photo-interpreted from color-infrared...

  6. Accuracy of lunar eclipse observations made by Jesuit astronomers in China.

    Science.gov (United States)

    Fatoohi, L. J.; Stephenson, F. R.

    1996-02-01

    The Jesuit astronomers observed numerous lunar eclipses at Beijing and summaries of their observations - made between 1644 and 1785 - are preserved. The various lunar eclipse measurements that the Jesuits made are compared with the results of present-day computation.

  7. Creating and enhancing digital astro images a guide for practical astronomers

    CERN Document Server

    Privett, Grant

    2007-01-01

    This book clearly examines how to create the best astronomical images possible with a digital camera. It reveals the astonishing images that can be obtained with simple equipment, the right software, and knowledge of how to use it.

  8. A Refined Astronomically Calibrated 40Ar/39Ar Age for Fish Canyon Sanidine

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Storey, Michael; Zeeden, Christian

    2011-01-01

    Intercalibration between the astronomical and radio-isotopic dating methods provides a means to improving accuracy and reducing uncertainty of an integrated, multi-chronometer geologic timescale. Here we report a high-precision 40Ar/39Ar age for the Fish Canyon sanidine (FCs) neutron fluence...... monitor, by multi-collector noble gas mass spectrometry, through cross-calibration with A1 tephra sanidines (A1Ts) of the direct astronomically tuned Faneromeni section (Crete). The astronomically intercalibrated 40Ar/39Ar age of FCs of 28.172±0.028 Ma (2σ, external errors) is within the uncertainty of......, but more precise (±0.10%) than, the previous 40Ar/39Ar age determined by intercalibration with astronomically tuned tephras from the Melilla Basin (Morocco). Using this proposed age for FCs, combined with measurements using the A1Ts as the neutron fluence monitor, a weighted mean Bishop Tuff 40Ar/39Ar...

  9. A refined Astronomically Calibrated 40AR/39Ar age for Fish Canyon Sanidine

    NARCIS (Netherlands)

    Rivera, T.A.; Storey, M.; Zeeden, C.; Hilgen, F.J.; Kuiper, K.F.

    2011-01-01

    Intercalibration between the astronomical and radio-isotopic dating methods provides a means to improving accuracy and reducing uncertainty of an integrated, multi-chronometer geologic timescale. Here we report a high-precision

  10. A survey of European astronomical tables in the late middle ages

    CERN Document Server

    Chabás, José

    2012-01-01

    This is a survey of the numerous astronomical tables compiled in the late Middle Ages, which represent a major intellectual enterprise. Such tables were often the best way available at the time for transmitting precise information to the reader.

  11. Astronomers Use Moon in Effort to Corral Elusive Cosmic Particles

    Science.gov (United States)

    2010-11-01

    Seeking to detect mysterious, ultra-high-energy neutrinos from distant regions of space, a team of astronomers used the Moon as part of an innovative telescope system for the search. Their work gave new insight on the possible origin of the elusive subatomic particles and points the way to opening a new view of the Universe in the future. The team used special-purpose electronic equipment brought to the National Science Foundation's Very Large Array (VLA) radio telescope, and took advantage of new, more-sensitive radio receivers installed as part of the Expanded VLA (EVLA) project. Prior to their observations, they tested their system by flying a small, specialized transmitter over the VLA in a helium balloon. In 200 hours of observations, Ted Jaeger of the University of Iowa and the Naval Research Laboratory, and Robert Mutel and Kenneth Gayley of the University of Iowa did not detect any of the ultra-high-energy neutrinos they sought. This lack of detection placed a new limit on the amount of such particles arriving from space, and cast doubt on some theoretical models for how those neutrinos are produced. Neutrinos are fast-moving subatomic particles with no electrical charge that readily pass unimpeded through ordinary matter. Though plentiful in the Universe, they are notoriously difficult to detect. Experiments to detect neutrinos from the Sun and supernova explosions have used large volumes of material such as water or chlorine to capture the rare interactions of the particles with ordinary matter. The ultra-high-energy neutrinos the astronomers sought are postulated to be produced by the energetic, black-hole-powered cores of distant galaxies; massive stellar explosions; annihilation of dark matter; cosmic-ray particles interacting with photons of the Cosmic Microwave Background; tears in the fabric of space-time; and collisions of the ultra-high-energy neutrinos with lower-energy neutrinos left over from the Big Bang. Radio telescopes can't detect

  12. More flexibility in representing geometric distortion in astronomical images

    Science.gov (United States)

    Shupe, David L.; Laher, Russ R.; Storrie-Lombardi, Lisa; Surace, Jason; Grillmair, Carl; Levitan, David; Sesar, Branimir

    2012-09-01

    A number of popular software tools in the public domain are used by astronomers, professional and amateur alike, but some of the tools that have similar purposes cannot be easily interchanged, owing to the lack of a common standard. For the case of image distortion, SCAMP and SExtractor, available from Astromatic.net, perform astrometric calibration and source-object extraction on image data, and image-data geometric distortion is computed in celestial coordinates with polynomial coefficients stored in the FITS header with the PV i_j keywords. Another widely-used astrometric-calibration service, Astrometry.net, solves for distortion in pixel coordinates using the SIP convention that was introduced by the Spitzer Science Center. Up until now, due to the complexity of these distortion representations, it was very difficult to use the output of one of these packages as input to the other. New Python software, along with faster-computing C-language translations, have been developed at the Infrared Processing and Analysis Center (IPAC) to convert FITS-image headers from PV to SIP and vice versa. It is now possible to straightforwardly use Astrometry.net for astrometric calibration and then SExtractor for source-object extraction. The new software also enables astrometric calibration by SCAMP followed by image visualization with tools that support SIP distortion, but not PV . The software has been incorporated into the image-processing pipelines of the Palomar Transient Factory (PTF), which generate FITS images with headers containing both distortion representations. The software permits the conversion of archived images, such as from the Spitzer Heritage Archive and NASA/IPAC Infrared Science Archive, from SIP to PV or vice versa. This new capability renders unnecessary any new representation, such as the proposed TPV distortion convention.

  13. Astronomy for Astronomical Numbers: a Worldwide Massive Open Online Class

    Science.gov (United States)

    Austin, Carmen; Impey, Chris David; Wenger, Matthew

    2015-01-01

    Astronomy: State of the Art is a massive, open, online class (MOOC) offered through Udemy by an instructional team at the University of Arizona. With over 18,000 enrolled, it is the largest astronomy MOOC available. The astronomical numbers enrolled do not translate into a similar level of engagement. The content consists of 14 hours of video lecture, nearly 1000 PowerPoint slides, 250 pages of background readings, and 20 podcast interviews with leading researchers. Perhaps in part because of the large amount of course content, the overall completion rate is low, about 3%. However, this number was four times higher for an early cohort of learners who were selected to have a prior interest in astronomy and who took the class in synchronous mode, with new content being added every week. Completion correlates with engagement as measured by posts to the online discussion board. For a subset of learners, social media like Facebook and Twitter provide an additional, important mode of engagement. For the asynchronous learners who have continuously enrolled for the past 15 months, those who complete the course do so quickly, with few persisting longer than two months. The availability of a completion certificate had no impact of completion rates. This experiment informs a future offering of this MOOC via Coursera, along with a co-convened 'flipped' introductory astronomy class at the University of Arizona, where the video lectures will be online and class time will be used exclusively for small group labs and hands-on activities. Despite their typically low completion rates, MOOCs have the potential to add significantly to public engagement with science.

  14. A New Approach to Tagging Data in the Astronomical Literature

    Science.gov (United States)

    Alexov, A.; Good, J. C.

    2007-10-01

    Data Tags are strings used in journals to indicate the origin of the archival data and to enable the reader to recover the data. The NASA/IPAC Infrared Science Archive (IRSA) has recently introduced a new approach to production of data tags and recovery of data from them. Many of the data access services at the IRSA return filtered data sets (such as subsets of source catalogs) and dynamically created products (such as image cutouts); these dynamically created products are not saved permanently at the archive. Rather than tag the data sets from which the query result sets are drawn, the archive tags the query that generates the results. A single tag can, then, encode a complex dynamic data set and simplifies the embedding of tags in manuscripts and journals. By logging user queries and all the parameters for those query as Data Tags, IRSA can re-create the query and rerun the IRSA service using the same search parameters used when the Data Tag was created. At the same time, the logs give a simple count of the actual numbers of queries made to the archive, a powerful metric of archive usage unobtainable from the Apache web server logs. Currently, IRSA creates tags for queries to more than 20 data sets, including the Infrared Astronomical Satellite (IRAS), Cosmic Evolution Survey (COSMOS) and Spitzer Space Telescope Legacy Data Sets. These tags are returned by the spatial query engine, Atlas {http://irsa.ipac.caltech.edu/applications/Atlas/}. IRSA plans to create tags for queries to the rest of its services in late Spring 2007. The archive provides a simple web interface {http://irsa.ipac.caltech.edu/applications/DataTag/} which recovers a data set that corresponds to the input data tag. Archived data sets may evolve in time due to improved calibrations or augmentations to the data set. IRSA's query based approach guarantees that users always receive the best available data sets.

  15. Astronomy for Astronomical Numbers: A Worldwide Massive Open Online Class

    Directory of Open Access Journals (Sweden)

    Chris D. Impey

    2015-02-01

    Full Text Available Astronomy: State of the Art is a massive, open, online class (MOOC offered through Udemy by an instructional team at the University of Arizona. With nearly 24,000 enrolled as of early 2015, it is the largest astronomy MOOC available. The astronomical numbers enrolled do not translate into a similar level of engagement. The content consists of 14 hours of video lecture, nearly 1,000 Powerpoint slides, 250 pages of background readings, and 20 podcast interviews with leading researchers. Perhaps in part because of the large amount of course content, the overall completion rate is low, about 3%. However, this number was four times higher for an early cohort of learners who were selected to have a prior interest in astronomy and who took the class in synchronous mode, with new content being added every week. Completion correlates with engagement as measured by posts to the online discussion board. For a subset of learners, social media like Facebook and Twitter provide an additional, important mode of engagement. For the asynchronous learners who have continuously enrolled for the past 15 months, those who complete the course do so quickly, with few persisting longer than two months. The availability of a free completion certificate had no impact on completion rates when it was added midway through the period of data analyzed in this paper. This experiment informs a new offering of an enhanced version of this MOOC via Coursera, along with a co-convened “flipped” introductory astronomy class at the University of Arizona, where the video lectures will be online and class time will be used exclusively for small group labs and hands-on activities. Despite their typically low completion rates, MOOCs have the potential to add significantly to public engagement with science, and they attract a worldwide audience.

  16. High School Astronomical Research at the Army and Navy Academy

    Science.gov (United States)

    Boyce, Pat; Boyce, Grady

    2016-06-01

    school counseling and curricula. Active assistance from amateur astronomers and parental engagement are critical to sustainability, growth, and outreach. Possibly most important is the continuing leadership of strong advocates at the school.

  17. Letters from Augustin Hallerstein, an eighteenth century Jesuit astronomer in Beijing

    Science.gov (United States)

    Juznic, Stanislav

    2008-11-01

    Augustin Hallerstein (1703-1774) was the last astronomer sent to Beijing by the Society of Jesus. He left Europe for China in his mid-thirties, and continued to send letters back home until he died thirty-five years later. These letters and reports contained important information on Chinese astronomy, and were read in the courts of Europe; many were also published. Hallerstein was one of the most important European astronomers in Beijing, his European publications surpassing those of his predecessors.

  18. Astronomía y Física: un matrimonio Sartriano

    Science.gov (United States)

    Vucetich, H.

    Desde el siglo XVII, Física y Astronomía han formado un matrimonio similar al de Sartre y Beauvoir: lleno de amores contingentes, pero firme y duradero. En la charla examino tres de los frutos más recientes de este matrimonio: - La confirmación de la Relatividad General con datos astronómicos. - Astrofísica y Física de neutrinos. - Teorías de supercuerdas y astronomía.

  19. Results of astrometrical observations of the Sun and major planets at the mountain astronomical station of the Pulkovo Observatory

    Science.gov (United States)

    Devyatkin, A. V.; Gnevysheva, K. G.; Baturina, G. D.

    2009-12-01

    A series of daytime observations of the Sun and major planets are obtained at the mountain astronomical station of the Pulkovo Observatory using the Ertel-Struve meridian instruments. A series of declinations of Solar System bodies and major planets includes 4057 positions and that of right ascensions of Solar System bodies comprising 2057 positions. Based on the joint processing of observations of the Sun, Mercury, Venus, and Mars obtained with the Ertel-Struve vertical circle and large transit instrument, the orientation elements of the DE200/LE200 dynamic coordinate system, namely, a correction for the right ascensions of FK5 stars Δ A = +0.127″ ± 0.033″, a correction for declinations of FK5 stars Δ D = +0.056″ ± 0.011″, a correction for the ecliptic inclination Δɛ = -0.044″ ± 0.012″, and a correction for the average longitude of the Sun Δ L = -0.083″±0.035″, are determined with respect to the stellar coordinate system.

  20. Look to the Stars - The APUS Observatory: An Innovative Robotic Telescope for Online Astronomical Education and Research

    Science.gov (United States)

    Albin, Edward

    2018-01-01

    We report on the American Public University System’s new robotic telescope, located in Charles Town, WV -- an innovative observatory deployed in an online institution of higher education. The instrument is operated by the Department of Space Studies and is situated atop the university’s new Information Technology building. At the heart of the observatory is a Planewave CDK24 telescope, equipped with a SBIG STX-16803 CCD camera. The telescope is a key technological component in the Department's new undergraduate / graduate astronomy concentration. Since the university is a dedicated online educational institution, the acquisition of a fully remote controlled telescope ties closely into the program's philosophy of quality online instruction. Our robotic observatory is intimately integrated into our astronomy curriculum, with the telescope being utilized for original astronomical education and research purposes. For instance, not only is imagery used in the classroom and for laboratory instruction, graduate students in our MS degree program have an opportunity to collect original telescopic data for research / thesis projects. Examples of ongoing investigations with the telescope include observations of exoplanet transits and variable star photometry. When not in use for specific observing projects, the telescope is scripted to conduct autonomous supernova searches by patrolling dozens of galaxies throughout the night. Our goal is to have the instrument scheduled for continuous observing of the heavens throughout the year on all clear evenings.