WorldWideScience

Sample records for astronomical beam combiner

  1. Direct UV-Written Integrated Optical Beam Combiner for Stellar Interferometry

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael; Jocou, L.

    2007-01-01

    In this paper, we report the fabrication of an optical-beam combiner for stellar interferometry by means of direct ultraviolet (UV) writing. The component is shown to have good performance (fringe contrast > 95%, total loss similar to 0.7, -40-dB crosstalk, broadband operation covering at least...... the range 1.49-1.65 mu m, and low differential chromatic dispersion). The overall performance exceeds that of similar components currently used for astronomical research. This result, combined with the fast-prototyping ability of UV writing, opens up new possibilities for the realization of highly optimized...

  2. Methods in Astronomical Image Processing

    Science.gov (United States)

    Jörsäter, S.

    A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future

  3. Nonlinear optical beam manipulation, beam combining, and atmospheric propagation

    International Nuclear Information System (INIS)

    Fischer, R.A.

    1988-01-01

    These proceedings collect papers on optics: Topics include: diffraction properties of laser speckle, coherent beam combination by plasma modes, nonlinear responses, deformable mirrors, imaging radiometers, electron beam propagation in inhomogeneous media, and stability of laser beams in a structured environment

  4. Spectral beam combining of diode lasers with high efficiency

    DEFF Research Database (Denmark)

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin

    2012-01-01

    Based on spectral beam combining we obtain 16 W of output power, combining two 1063 nm DBR-tapered diode lasers. The spectral separation within the combined beam can be used for subsequent sum-frequency generation.......Based on spectral beam combining we obtain 16 W of output power, combining two 1063 nm DBR-tapered diode lasers. The spectral separation within the combined beam can be used for subsequent sum-frequency generation....

  5. Astronomical Instrumentation System Markup Language

    Science.gov (United States)

    Goldbaum, Jesse M.

    2016-05-01

    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  6. Combined phenomena of beam-beam and beam-electron cloud interactionsin circular e^{+}e^{-} colliders

    Directory of Open Access Journals (Sweden)

    Kazuhito Ohmi

    2002-10-01

    Full Text Available An electron cloud causes various effects in high intensity positron storage rings. The positron beam and the electron cloud can be considered a typical two-stream system with a certain plasma frequency. Beam-beam interaction is another important effect for high luminosity circular colliders. Colliding two beams can be considered as a two-stream system with another plasma frequency. We study the combined phenomena of the beam-electron cloud and beam-beam interactions from a viewpoint of two complex two-stream effects with two plasma frequencies.

  7. Cardiac single-photon emission-computed tomography using combined cone-beam/fan-beam collimation

    International Nuclear Information System (INIS)

    Gullberg, Grant T.; Zeng, Gengsheng L.

    2004-01-01

    The objective of this work is to increase system sensitivity in cardiac single-photon emission-computed tomography (SPECT) studies without increasing patient imaging time. For imaging the heart, convergent collimation offers the potential of increased sensitivity over that of parallel-hole collimation. However, if a cone-beam collimated gamma camera is rotated in a planar orbit, the projection data obtained are not complete. Two cone-beam collimators and one fan-beam collimator are used with a three-detector SPECT system. The combined cone-beam/fan-beam collimation provides a complete set of data for image reconstruction. The imaging geometry is evaluated using data acquired from phantom and patient studies. For the Jaszazck cardiac torso phantom experiment, the combined cone-beam/fan-beam collimation provided 1.7 times greater sensitivity than standard parallel-hole collimation (low-energy high-resolution collimators). Also, phantom and patient comparison studies showed improved image quality. The combined cone-beam/fan-beam imaging geometry with appropriate weighting of the two data sets provides improved system sensitivity while measuring sufficient data for artifact free cardiac images

  8. A Survey of Atom Interferometer Beam-Combination Configurations and Beam Splitter Designs

    National Research Council Canada - National Science Library

    Zhang, Xiaolei

    2005-01-01

    This report summarizes the state of the art of atom-interferometry experiments, with an emphasis on the beam-splitting and beam-combination configurations, as well as on the different choices of beam...

  9. Raman beam combining for laser brightness enhancement

    Science.gov (United States)

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  10. Transverse combining of four beams in MBE-4

    International Nuclear Information System (INIS)

    Celata, C.M.; Chupp, W.; Faltens, A.; Fawley, W.M.; Ghiorso, W.; Hahn, K.D.; Henestroza, E.; Judd, D.; Peters, C.; Seidl, P.A.

    1996-01-01

    Transverse beam combining is a cost-saving option employed in many designs for induction linac heavy ion fusion drivers. The resultant transverse emittance increase, due predominantly to anharmonic space charge forces, must be kept minimal so that the beam remains focusable at the target. A prototype combining experiment has been built using the MBE-4 experimental apparatus. Four new sources produce up to 6.7 mA Cs + beams at 200 keV. The ion sources are angled toward each other so that the beams converge. Focusing upstream of the merge consists of four quadrupoles and a final combined-function element (quadrupole and dipole). All lattice elements are electrostatic. Owing to the small distance between beams at the last element (about 3-4 mm), the electrodes here are a cage of small rods, each at different voltage. The beams emerge into the 30-period transport lattice of MBE-4 where emittance growth due to merging, as well as the subsequent evolution of the distribution function, can be diagnosed. The combiner design, simulation predictions and preliminary results from the experiment are presented. (orig.)

  11. Coherent laser beam combining

    CERN Document Server

    Brignon, Arnaud

    2013-01-01

    Recently, the improvement of diode pumping in solid state lasers and the development of double clad fiber lasers have allowed to maintain excellent laser beam quality with single mode fibers. However, the fiber output power if often limited below a power damage threshold. Coherent laser beam combining (CLBC) brings a solution to these limitations by identifying the most efficient architectures and allowing for excellent spectral and spatial quality. This knowledge will become critical for the design of the next generation high-power lasers and is of major interest to many industrial, environme

  12. Propagation of coherently combined truncated laser beam arrays with beam distortions in non-Kolmogorov turbulence.

    Science.gov (United States)

    Tao, Rumao; Si, Lei; Ma, Yanxing; Zhou, Pu; Liu, Zejin

    2012-08-10

    The propagation properties of coherently combined truncated laser beam arrays with beam distortions through non-Kolmogorov turbulence are studied in detail both analytically and numerically. The analytical expressions for the average intensity and the beam width of coherently combined truncated laser beam arrays with beam distortions propagating through turbulence are derived based on the combination of statistical optics methods and the extended Huygens-Fresnel principle. The effect of beam distortions, such as amplitude modulation and phase fluctuation, is studied by numerical examples. The numerical results reveal that phase fluctuations have significant influence on the spreading of coherently combined truncated laser beam arrays in non-Kolmogorov turbulence, and the effects of the phase fluctuations can be negligible as long as the phase fluctuations are controlled under a certain level, i.e., a>0.05 for the situation considered in the paper. Furthermore, large phase fluctuations can convert the beam distribution rapidly to a Gaussian form, vary the spreading, weaken the optimum truncation effects, and suppress the dependence of spreading on the parameters of the non-Kolmogorov turbulence.

  13. Fabrication of the polarization independent spectral beam combining grating

    Science.gov (United States)

    Liu, Quan; Jin, Yunxia; Wu, Jianhong; Guo, Peiliang

    2016-03-01

    Owing to damage, thermal issues, and nonlinear optical effects, the output power of fiber laser has been proven to be limited. Beam combining techniques are the attractive solutions to achieve high-power high-brightness fiber laser output. The spectral beam combining (SBC) is a promising method to achieve high average power output without influencing the beam quality. A polarization independent spectral beam combining grating is one of the key elements in the SBC. In this paper the diffraction efficiency of the grating is investigated by rigorous coupled-wave analysis (RCWA). The theoretical -1st order diffraction efficiency of the grating is more than 95% from 1010nm to 1080nm for both TE and TM polarizations. The fabrication tolerance is analyzed. The polarization independent spectral beam combining grating with the period of 1.04μm has been fabricated by holographic lithography - ion beam etching, which are within the fabrication tolerance.

  14. Model for Atmospheric Propagation of Spatially Combined Laser Beams

    Science.gov (United States)

    2016-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS MODEL FOR ATMOSPHERIC PROPAGATION OF SPATIALLY COMBINED LASER BEAMS by Kum Leong Lee September...MODEL FOR ATMOSPHERIC PROPAGATION OF SPATIALLY COMBINED LASER BEAMS 5. FUNDING NUMBERS 6. AUTHOR(S) Kum Leong Lee 7. PERFORMING ORGANIZATION NAME(S) AND...BLANK ii Approved for public release. Distribution is unlimited. MODEL FOR ATMOSPHERIC PROPAGATION OF SPATIALLY COMBINED LASER BEAMS Kum Leong Lee

  15. Transverse combining of 4 beams in MBE-4

    International Nuclear Information System (INIS)

    Celata, C.M.; Chupp, W.; Faltens, A.; Fawley, W.M.; Ghiorso, W.; Hahn, K.D.; Henestroza, E.; Peters, C.; Seidl, P.

    1995-05-01

    Transverse beam combining is a cost-saving optio employed in many designs for induction linac heavy ion fusion drivers. But resultant transverse emittance increase, due predominantly to anharmonic space charoe forces, must be kept minimal so as not to sacrifice focusability at the target. A prototype combining experiment has been built, using the MBE-4 experiment. Four sources produce four 4 mA Cs + beams at 200 keV. The ion sources are angled toward each other, so that beams converge. Focusing upstream of the merge consists of 4 quadrupoles and a final combined-function element (quadrupole ampersand dipole). All lattice elements are electrostatic. Due to the small distance between beams at the last element (∼ 2 mm), the electrodes here are a cage of small wires, each at different voltage. The beams emerge into the 30 period transport lattice of MBE-4 where emittance growth due to merging, as well as the subsequent evolution of the distribution function, can be diagnosed. The combiner design, simulation predictions, and preliminary results from the experiment are presented

  16. A plasma amplifier to combine multiple beams at NIF

    Science.gov (United States)

    Kirkwood, R. K.; Turnbull, D. P.; Chapman, T.; Wilks, S. C.; Rosen, M. D.; London, R. A.; Pickworth, L. A.; Colaitis, A.; Dunlop, W. H.; Poole, P.; Moody, J. D.; Strozzi, D. J.; Michel, P. A.; Divol, L.; Landen, O. L.; MacGowan, B. J.; Van Wonterghem, B. M.; Fournier, K. B.; Blue, B. E.

    2018-05-01

    Combining laser beams in a plasma is enabled by seeded stimulated Brillouin scattering which allows cross-beam energy transfer (CBET) to occur and re-distributes the energy between beams that cross with different incident angles and small differences in wavelength [Kirkwood et al. Phys. Plasmas 4, 1800 (1997)]. Indirect-drive implosions at the National Ignition Facility (NIF) [Haynam et al. Appl. Opt. 46, 3276-3303 (2007)] have controlled drive symmetry by using plasma amplifiers to transfer energy between beams [Kirkwood et al., Plasma Phys. Controlled Fusion 55, 103001 (2013); Lindl et al., Phys. Plasmas 21, 020501 (2014); and Hurricane et al. Nature 506, 343-348 (2014)]. In this work, we show that the existing models are well enough validated by experiments to allow a design of a plasma beam combiner that, once optimized, is expected to produce a pulse of light in a single beam with the energy greatly enhanced over existing sources. The scheme combines up to 61 NIF beams with 120 kJ of available energy into a single f/20 beam with a 1 ns pulse duration and a 351 nm wavelength by both resonant and off-resonance CBET. Initial experiments are also described that have already succeeded in producing a 4 kJ, 1 ns pulse in a single beam by combination of up to eight incident pump beams containing <1.1 kJ/beam, which are maintained near resonance for CBET in a plasma that is formed by 60 pre-heating beams [Kirkwood et al., Nat. Phys. 14, 80 (2018)].

  17. High-power direct diode laser output by spectral beam combining

    Science.gov (United States)

    Tan, Hao; Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao

    2018-03-01

    We demonstrate a spectral beam combining scheme based on multiple mini-bar stacks, which have more diode laser combining elements, to increase the combined diode laser power and realize equal beam quality in both the fast and slow axes. A spectral beam combining diode laser output of 1130 W is achieved with an operating current of 75 A. When a 9.6 X de-magnifying telescope is introduced between the output mirror and the diffraction grating, to restrain cross-talk among diode laser emitters, a 710 W spectral beam combining diode laser output is achieved at the operating current of 70 A, and the beam quality on the fast and slow axes of the combined beam is about 7.5 mm mrad and 7.3 mm mrad respectively. The power reduction is caused by the existence of a couple resonator between the rear facet of the diode laser and the fast axis collimation lens, and it should be eliminated by using diode laser chips with higher front facet transmission efficiency and a fast axis collimation lens with lower residual reflectivity.

  18. Care of astronomical telescopes and accessories a manual for the astronomical observer and amateur telescope maker

    CERN Document Server

    Pepin, M Barlow

    2005-01-01

    Commercially-made astronomical telescopes are better and less expensive than ever before, and their optical and mechanical performance can be superb. When a good-quality telescope fails to perform as well as it might, the reason is quite probably that it needs a little care and attention! Here is a complete guide for anyone who wants to understand more than just the basics of astronomical telescopes and accessories, and how to maintain them in the peak of condition. The latest on safely adjusting, cleaning, and maintaining your equipment is combined with thoroughly updated methods from the old masters. Here, too, are details of choosing new and used optics and accessories, along with enhancements you can make to extend their versatility and useful lifetime. This book is for you. Really. Looking after an astronomical telescope isn't only for the experts - although there are some things that only an expert should attempt - and every serious amateur astronomer will find invaluable information here, gleaned from ...

  19. New Life for Astronomical Instruments of the Past at the Astronomical Observatory of Taras Shevchenko

    Science.gov (United States)

    Kazantseva, Liliya

    2012-09-01

    Astronomical instruments of the past are certainly valuable artifacts of the history of science and education. Like other collections of scientific equipment, they also demonstrate i) development of scientific and technical ideas, ii) technological features of the historical period, iii) professional features of artists or companies -- manufacturers, and iv) national and local specificity of production. However, astronomical instruments are also devices made for observations of rare phenomena -- solar eclipses, transits of planets of the solar disk, etc. Instruments used to study these rare events were very different for each event, since the science changed quickly between events. The Astronomical Observatory of Kyiv National Taras Shevchenko University has a collection of tools made by leading European and local shops from the early nineteenth century. These include tools for optically observing the first artificial Earth satellites, photography, chronometry, and meteorology. In addition, it has assembled a library of descriptions of astronomical instruments and makers'price-lists. Of particular interest are the large stationary tools that are still active in their pavilions. Almost every instrument has a long interesting history. Museification of astronomical instruments gives them a second life, expanding educational programs and tracing the development of astronomy in general and scientific institution and region in particular. It would be advisable to first create a regional database of these rare astronomical instruments (which is already being done in Ukraine), then a common global database. By combining all the historical information about astronomical instruments with the advantages of the Internet, you can show the full evolution of an astronomical instrument with all its features. Time is relentless, and much is destroyed, badly kept and thrown in the garbage. We need time to protect, capture, and tell about it.

  20. Space beam combiner for long-baseline interferometry

    Science.gov (United States)

    Lin, Yao; Bartos, Randall D.; Korechoff, Robert P.; Shaklan, Stuart B.

    1999-04-01

    An experimental beam combiner (BC) is being developed to support the space interferometry program at the JPL. The beam combine forms the part of an interferometer where star light collected by the sidestats or telescopes is brought together to produce white light fringes, and to provide wavefront tilt information via guiding spots and beam walk information via shear spots. The assembly and alignment of the BC has been completed. The characterization test were performed under laboratory conditions with an artificial star and optical delay line. Part of each input beam was used to perform star tracking. The white light interference fringes were obtained over the selected wavelength range from 450 nm to 850 nm. A least-square fit process was used to analyze the fringe initial phase, fringe visibilities and shift errors of the optical path difference in the delay line using the dispersed white-light fringes at different OPD positions.

  1. All-fiber 7x1 signal combiner for incoherent laser beam combining

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Maack, Martin D.; Skovgaard, Peter M. W.

    2011-01-01

    We demonstrate an all-fiber 7x1 signal combiner for incoherent laser beam combining. This is a potential key component for reaching several kW of stabile laser output power. The combiner couples the output from 7 single-mode (SM) fiber lasers into a single multi-mode (MM) fiber. The input signal ...... in device temperature is observed. At an intermediate power level of 600 W a beam parameter product (BPP) of 2.22 mm x mrad is measured, corresponding to an M2 value of 6.5. These values are approaching the theoretical limit dictated by brightness conservation....

  2. System for combining laser beams of diverse frequencies

    International Nuclear Information System (INIS)

    1980-01-01

    A system is described for combining laser beams of different frequencies into a number of beams each comprising laser radiation having components of each of the different frequencies. The system can be used in laser isotope separation facilities. (U.K.)

  3. Detection and Implications of Laser-Induced Raman Scattering at Astronomical Observatories

    Directory of Open Access Journals (Sweden)

    Frédéric P. A. Vogt

    2017-06-01

    Full Text Available Laser guide stars employed at astronomical observatories provide artificial wavefront reference sources to help correct (in part the impact of atmospheric turbulence on astrophysical observations. Following the recent commissioning of the 4 Laser Guide Star Facility (4LGSF on Unit Telescope 4 (UT4 of the Very Large Telescope (VLT, we characterize the spectral signature of the uplink beams from the 22-W lasers to assess the impact of laser scattering from the 4LGSF on science observations. We use the Multi-Unit Spectroscopic Explorer (MUSE optical integral field spectrograph mounted on the Nasmyth B focus of UT4 to acquire spectra at a resolution of R≅3000 of the uplink laser beams over the wavelength range of 4750 Å–9350 Å. We report the first detection of laser-induced Raman scattering by N_{2}, O_{2}, CO_{2}, H_{2}O, and (tentatively CH_{4} molecules in the atmosphere above the astronomical observatory of Cerro Paranal. In particular, our observations reveal the characteristic spectral signature of laser photons—but 480 Å to 2210 Å redder than the original laser wavelength of 5889.959 Å—landing on the 8.2-m primary mirror of UT4 after being Raman-scattered on their way up to the sodium layer. Laser-induced Raman scattering, a phenomenon not usually discussed in the astronomical context, is not unique to the observatory of Cerro Paranal, but it is common to any astronomical telescope employing a laser guide star (LGS system. It is thus essential for any optical spectrograph coupled to a LGS system to thoroughly handle the possibility of a Raman spectral contamination via a proper baffling of the instrument and suitable calibrations procedures. These considerations are particularly applicable for the HARMONI optical spectrograph on the upcoming Extremely Large Telescope (ELT. At sites hosting multiple telescopes, laser-collision-prediction tools should also account for the presence of Raman emission from the uplink laser beam(s

  4. First beam test of a combined ramp and squeeze at LHC

    CERN Document Server

    Wenninger, Jorg; Coello De Portugal - Martinez Vazquez, Jaime Maria; Gorzawski, Arkadiusz; Redaelli, Stefano; Schaumann, Michaela; Solfaroli Camillocci, Matteo; CERN. Geneva. ATS Department

    2015-01-01

    With increasing maturity of LHC operation it is possible to envisage more complex beam manipulations. At the same time operational efficiency receives increasing attention. So far ramping the beams to their target energy and squeezing the beams to smaller or higher beta are decoupled at the LHC. (De-)squeezing is always performed at the target energy, currently 6.5 TeV. Studies to combine the ramp and squeeze processes have been made for the LHC since 2011, but so far no experimental test with beam had ever performed. This note describes the first machine experiment with beam aiming at validating the combination of ramp and squeeze, the so-called combined ramp and squeeze (CRS).

  5. A Scaled Beam-Combining Experiment for Heavy Ion Inertial Fusion

    International Nuclear Information System (INIS)

    Celata, C.M.; Chupp, W.W.; Faltens, A.; Fawley, W.M.; Ghiorso, W.; Hahn, K.; Henestroza, E.; MacLaren, S.; Peters, C.; Seidl, P.

    1997-01-01

    Transverse beam combining is a cost-saving option employed in many designs for induction linac heavy ion fusion drivers. The resultant transverse emittance increase, due predominantly to enharmonic space charge forces, must be kept minimal so that the beam remains focusable at the target. A prototype combining experiment has been built and preliminary results are presented. Four sources each produce up to 4.8 mA Cs+ beams at 160 keV. Focusing upstream of the merge consists of four quadruples and a final combined-function element (quadruple ampersand dipole). All lattice elements of the prototype are electrostatic. Due to the small distance between beams near the merge (-3-4 mm), the electrodes here are a cage of small rods, each at different voltage

  6. All-fiber 7x1 signal combiner for incoherent laser beam combining

    Science.gov (United States)

    Noordegraaf, D.; Maack, M. D.; Skovgaard, P. M. W.; Johansen, J.; Becker, F.; Belke, S.; Blomqvist, M.; Laegsgaard, J.

    2011-02-01

    We demonstrate an all-fiber 7x1 signal combiner for incoherent laser beam combining. This is a potential key component for reaching several kW of stabile laser output power. The combiner couples the output from 7 single-mode (SM) fiber lasers into a single multi-mode (MM) fiber. The input signal fibers have a core diameter of 17 μm and the output MM fiber has a core diameter of 100 μm. In a tapered section light gradually leaks out of the SM fibers and is captured by a surrounding fluorine-doped cladding. The combiner is tested up to 2.5 kW of combined output power and only a minor increase in device temperature is observed. At an intermediate power level of 600 W a beam parameter product (BPP) of 2.22 mm x mrad is measured, corresponding to an M2 value of 6.5. These values are approaching the theoretical limit dictated by brightness conservation.

  7. Transverse combining of nonrelativistic beams in a multiple beam induction linac

    International Nuclear Information System (INIS)

    Celata, C.M.; Faltens, A.; Judd, D.L.; Smith, L.; Tiefenback, M.G.

    1987-01-01

    Emittance growth of beams during transverse combining has been studied computationally and experimentally for Heavy Ion Fusion applications, and the theory and results are presented. A hardware design is also discussed

  8. Getting Astronomers Involved in the IYA: Astronomer in the Classroom

    Science.gov (United States)

    Koenig, Kris

    2008-05-01

    The Astronomer in the Classroom program provides professional astronomers the opportunity to engage with 3rd-12th grade students across the nation in grade appropriate discussions of their recent research, and provides students with rich STEM content in a personalized forum, bringing greater access to scientific knowledge for underserved populations. 21st Century Learning and Interstellar Studios, the producer of the 400 Years of the Telescope documentary along with their educational partners, will provide the resources necessary to facilitate the Astronomer in the Classroom program, allowing students to interact with astronomers throughout the IYA2009. PROGRAM DESCRIPTION One of hundreds of astronomers will be available to interact with students via live webcast daily during Spring/Fall 2009. The astronomer for the day will conduct three 20-minute discussions (Grades 3-5 /6-8/9-12), beginning with a five-minute PowerPoint on their research or area of interest. The discussion will be followed by a question and answer period. The students will participate in real-time from their school computer(s) with the technology provided by 21st Century Learning. They will see and hear the astronomer on their screen, and pose questions from their keyboard. Teachers will choose from three daily sessions; 11:30 a.m., 12:00 p.m., 12:30 p.m. Eastern Time. This schedule overlaps all US time zones, and marginalizes bandwidth usage, preventing technological barriers to web access. The educational partners and astronomers will post materials online, providing easy access to information that will prepare teachers and students for the chosen discussion. The astronomers, invited to participate from the AAS and IAU, will receive a web cam shipment with instructions, a brief training and conductivity test, and prepaid postage for shipment of the web cam to the next astronomer on the list. The anticipated astronomer time required is 3-hours, not including the time to develop the PowerPoint.

  9. Effect of beamlets arrange on beam combination characteristics of solid-state laser

    International Nuclear Information System (INIS)

    Yi Hengyu; Qi Yu; Song Wei; Zhang Kai; Huang Jijin; Huang Shan

    2011-01-01

    The mathematical model of coherent combination for rectangle beams array is established. Experimental results of Northrop Grumman Corporation are analyzed, such as two beam combination, four beam combination, eight beam combination. Then applying this model, it is simulated on the computer that intensity distribution of combined far-field spots changes in various conditions. Results show that aperture filling method determines the figure of far-field spots, and interval among beamlets determines distribution of energy and number of diffraction ring, and some useful results are obtained with Power-in-the-bucket calculation. The simulated results show, Power-in-the-bucket of far field spot descends with increasing distance among beamlets and number of beamlets. (authors)

  10. Coherent beam combining architectures for high power tapered laser arrays

    Science.gov (United States)

    Schimmel, G.; Janicot, S.; Hanna, M.; Decker, J.; Crump, P.; Erbert, G.; Witte, U.; Traub, M.; Georges, P.; Lucas-Leclin, G.

    2017-02-01

    Coherent beam combining (CBC) aims at increasing the spatial brightness of lasers. It consists in maintaining a constant phase relationship between different emitters, in order to combine them constructively in one single beam. We have investigated the CBC of an array of five individually-addressable high-power tapered laser diodes at λ = 976 nm, in two architectures: the first one utilizes the self-organization of the lasers in an interferometric extended-cavity, which ensures their mutual coherence; the second one relies on the injection of the emitters by a single-frequency laser diode. In both cases, the coherent combining of the phase-locked beams is ensured on the front side of the array by a transmission diffractive grating with 98% efficiency. The passive phase-locking of the laser bar is obtained up to 5 A (per emitter). An optimization algorithm is implemented to find the proper currents in the five ridge sections that ensured the maximum combined power on the front side. Under these conditions we achieve a maximum combined power of 7.5 W. In the active MOPA configuration, we can increase the currents in the tapered sections up to 6 A and get a combined power of 11.5 W, corresponding to a combining efficiency of 76%. It is limited by the beam quality of the tapered emitters and by fast phase fluctuations between emitters. Still, these results confirm the potential of CBC approaches with tapered lasers to provide a high-power and high-brightness beam, and compare with the current state-of-the-art with laser diodes.

  11. Biographical encyclopedia of astronomers

    CERN Document Server

    Trimble, Virginia; Williams, Thomas; Bracher, Katherine; Jarrell, Richard; Marché, Jordan; Palmeri, JoAnn; Green, Daniel

    2014-01-01

    The Biographical Encyclopedia of Astronomers is a unique and valuable resource for historians and astronomers alike. It includes approx. 1850 biographical sketches on astronomers from antiquity to modern times. It is the collective work of 430 authors edited by an editorial board of 8 historians and astronomers. This reference provides biographical information on astronomers and cosmologists by utilizing contemporary historical scholarship. The fully corrected and updated second edition adds approximately 300 biographical sketches. Based on ongoing research and feedback from the community, the new entries will fill gaps and provide expansions. In addition, greater emphasis on Russo phone astronomers and radio astronomers is given. Individual entries vary from 100 to 1500 words, including the likes of the super luminaries such as Newton and Einstein, as well as lesser-known astronomers like Galileo's acolyte, Mario Guiducci.

  12. Spectral beam combining of a 980 nm tapered diode laser bar

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Ostendorf, Ralf

    2010-01-01

    We demonstrate spectral beam combining of a 980 nm tapered diode laser bar. The combined beam from 12 tapered emitters on the bar yielded an output power of 9.3 W at 30 A of operating current. An M2 value of 5.3 has been achieved along the slow axis. This value is close to that of a free running...... single tapered emitter on the bar at the same current level. The overall spectral beam combining efficiency was measured to be 63%....

  13. Self-Nulling Beam Combiner Using No External Phase Inverter

    Science.gov (United States)

    Bloemhof, Eric E.

    2010-01-01

    A self-nulling beam combiner is proposed that completely eliminates the phase inversion subsystem from the nulling interferometer, and instead uses the intrinsic phase shifts in the beam splitters. Simplifying the flight instrument in this way will be a valuable enhancement of mission reliability. The tighter tolerances on R = T (R being reflection and T being transmission coefficients) required by the self-nulling configuration actually impose no new constraints on the architecture, as two adaptive nullers must be situated between beam splitters to correct small errors in the coatings. The new feature is exploiting the natural phase shifts in beam combiners to achieve the 180 phase inversion necessary for nulling. The advantage over prior art is that an entire subsystem, the field-flipping optics, can be eliminated. For ultimate simplicity in the flight instrument, one might fabricate coatings to very high tolerances and dispense with the adaptive nullers altogether, with all their moving parts, along with the field flipper subsystem. A single adaptive nuller upstream of the beam combiner may be required to correct beam train errors (systematic noise), but in some circumstances phase chopping reduces these errors substantially, and there may be ways to further reduce the chop residuals. Though such coatings are beyond the current state of the art, the mechanical simplicity and robustness of a flight system without field flipper or adaptive nullers would perhaps justify considerable effort on coating fabrication.

  14. Narrow linewidth operation of a spectral beam combined diode laser bar.

    Science.gov (United States)

    Zhu, Zhanda; Jiang, Menghua; Cheng, Siqi; Hui, Yongling; Lei, Hong; Li, Qiang

    2016-04-20

    Our experiment is expected to provide an approach for realizing ultranarrow linewidth for a spectral beam combined diode laser bar. The beams of a diode laser bar are combined in a fast axis after a beam transformation system. With the help of relay optics and a transform lens with a long focal length of 1.5 m, the whole wavelength of a spectral combined laser bar can be narrowed down to 0.48 nm from more than 10 nm. We have achieved 56.7 W cw from a 19-element single bar with an M2 of 1.4  (in horizontal direction)×11.6  (in vertical direction). These parameters are good evidence that all the beams from the diode laser bar are combined together to increase the brightness.

  15. Experimental demonstration of spatially coherent beam combining using optical parametric amplification.

    Science.gov (United States)

    Kurita, Takashi; Sueda, Keiichi; Tsubakimoto, Koji; Miyanaga, Noriaki

    2010-07-05

    We experimentally demonstrated coherent beam combining using optical parametric amplification with a nonlinear crystal pumped by random-phased multiple-beam array of the second harmonic of a Nd:YAG laser at 10-Hz repetition rate. In the proof-of-principle experiment, the phase jump between two pump beams was precisely controlled by a motorized actuator. For the demonstration of multiple-beam combining a random phase plate was used to create random-phased beamlets as a pump pulse. Far-field patterns of the pump, the signal, and the idler indicated that the spatially coherent signal beams were obtained on both cases. This approach allows scaling of the intensity of optical parametric chirped pulse amplification up to the exa-watt level while maintaining diffraction-limited beam quality.

  16. Efficient coherent beam combination of two-dimensional phase-locked laser arrays

    International Nuclear Information System (INIS)

    Li, Bing; Yan, Aimin; Liu, Liren; Dai, Enwen; Sun, Jianfeng; Shen, Baoliang; Lv, Xiaoyu; Wu, Yapeng

    2011-01-01

    An efficient technique in which a two-dimensional (2D) phase-locked laser array can be coherently combined into a high power and high quality beam by using a conjugate Dammann grating (CDG) is presented. A theoretical model is established to provide a physical interpretation of the proposed scheme. Using this technique, we investigate analytically and numerically the coherent combination of 2D laser arrays such as 5 × 5 and 32 × 32 arrangements. Far-field distributions and the near-field pattern of the combined beam are calculated and compared with experimental results. A verification experiment with a simulated 5 × 5 2D laser array using an aperture mask has been performed. Calculations and experimental results show that the proposed technique in this paper is an efficient coherent beam combination method to obtain a high power and high quality beam from laser arrays

  17. Incoherent beam combining based on the momentum SPGD algorithm

    Science.gov (United States)

    Yang, Guoqing; Liu, Lisheng; Jiang, Zhenhua; Guo, Jin; Wang, Tingfeng

    2018-05-01

    Incoherent beam combining (ICBC) technology is one of the most promising ways to achieve high-energy, near-diffraction laser output. In this paper, the momentum method is proposed as a modification of the stochastic parallel gradient descent (SPGD) algorithm. The momentum method can improve the speed of convergence of the combining system efficiently. The analytical method is employed to interpret the principle of the momentum method. Furthermore, the proposed algorithm is testified through simulations as well as experiments. The results of the simulations and the experiments show that the proposed algorithm not only accelerates the speed of the iteration, but also keeps the stability of the combining process. Therefore the feasibility of the proposed algorithm in the beam combining system is testified.

  18. Controlling the Laser Guide Star power density distribution at Sodium layer by combining Pre-correction and Beam-shaping

    Science.gov (United States)

    Huang, Jian; Wei, Kai; Jin, Kai; Li, Min; Zhang, YuDong

    2018-06-01

    The Sodium laser guide star (LGS) plays a key role in modern astronomical Adaptive Optics Systems (AOSs). The spot size and photon return of the Sodium LGS depend strongly on the laser power density distribution at the Sodium layer and thus affect the performance of the AOS. The power density distribution is degraded by turbulence in the uplink path, launch system aberrations, the beam quality of the laser, and so forth. Even without any aberrations, the TE00 Gaussian type is still not the optimal power density distribution to obtain the best balance between the measurement error and temporal error. To optimize and control the LGS power density distribution at the Sodium layer to an expected distribution type, a method that combines pre-correction and beam-shaping is proposed. A typical result shows that under strong turbulence (Fried parameter (r0) of 5 cm) and for a quasi-continuous wave Sodium laser (power (P) of 15 W), in the best case, our method can effectively optimize the distribution from the Gaussian type to the "top-hat" type and enhance the photon return flux of the Sodium LGS; at the same time, the total error of the AOS is decreased by 36% with our technique for a high power laser and poor seeing.

  19. Latin American astronomers and the International Astronomical Union

    Science.gov (United States)

    Torres-Peimbert, S.

    2017-07-01

    Selected aspects of the participation of the Latin American astronomers in the International Astronomical Union are presented: Membership, Governing bodies, IAU meetings, and other activities. The Union was founded in 1919 with 7 initial member states, soon to be followed by Brazil. In 1921 Mexico joined, and in 1928 Argentina also formed part of the Union, while Chile joined in 1947. In 1961 Argentina, Brazil, Chile, Mexico and Venezuela were already member countries. At present (October 2016) 72 countries contribute financially to the Union. The Union lists 12,391 professional astronomers as individual members; of those, 692 astronomers work in Latin America and the Caribbean, from 13 member states (Argentina, Bolivia , Brazil, Chile, Colombia, Costa Rica, Cuba, Honduras, Mexico, Panamá, Perú, Uruguay and Venezuela) as well as from Ecuador and Puerto Rico. This group comprises 5.58% of the total membership, a figure somewhat lower than the fraction of the population in the region, which is 8.6% of the world population. Of the Latin American members, 23.4% are women and 76.6% are men; slightly higher than the whole membership of Union, which is of 16.9%. In the governing bodies it can be mentioned that there have been 2 Presidents of the Union (Jorge Sahade and Silvia Torres-Peimbert), 7 VicePresidents (Guillermo Haro, Jorge Sahade, Manuel Peimbert Claudio Anguita, Silvia Torres-Peimbert, Beatriz Barbuy, and Marta G. Rovira). The IAU meetings held in the region, include 2 General Assemblies (the 1991 XXI GA took place in Buenos Aires, Argentina and the 2009 XXVIII GA, in Rio de Janeiro, Brazil), 15 Regional Meetings (in Argentina, Brazil, Chile, Colombia, Mexico, Venezuela and Uruguay), 29 Symposia (in Argentina, Brazil, Chile, Colombia, Costa Rica, Ecuador, Peru and Mexico), 5 Colloquia (in Argentina and Mexico), 8 International Schools for Young Astronomers (in Argentina, Brazil, Cuba, Honduras and Mexico), and 11 projects sponsored by the Office of Astronomy

  20. 16 W output power by high-efficient spectral beam combining of DBR-tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin

    2011-01-01

    output power achieved by spectral beam combining of two single element tapered diode lasers. Since spectral beam combining does not affect beam propagation parameters, M2-values of 1.8 (fast axis) and 3.3 (slow axis) match the M2- values of the laser with lowest spatial coherence. The principle......Up to 16 W output power has been obtained using spectral beam combining of two 1063 nm DBR-tapered diode lasers. Using a reflecting volume Bragg grating, a combining efficiency as high as 93.7% is achieved, resulting in a single beam with high spatial coherence. The result represents the highest...... of spectral beam combining used in our experiments can be expanded to combine more than two tapered diode lasers and hence it is expected that the output power may be increased even further in the future....

  1. 16 W output power by high-efficient spectral beam combining of DBR-tapered diode lasers.

    Science.gov (United States)

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-01-17

    Up to 16 W output power has been obtained using spectral beam combining of two 1063 nm DBR-tapered diode lasers. Using a reflecting volume Bragg grating, a combining efficiency as high as 93.7% is achieved, resulting in a single beam with high spatial coherence. The result represents the highest output power achieved by spectral beam combining of two single element tapered diode lasers. Since spectral beam combining does not affect beam propagation parameters, M2-values of 1.8 (fast axis) and 3.3 (slow axis) match the M2-values of the laser with lowest spatial coherence. The principle of spectral beam combining used in our experiments can be expanded to combine more than two tapered diode lasers and hence it is expected that the output power may be increased even further in the future.

  2. Test facility for astronomical x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Lewis, Robert A.; Bordas, J.

    1990-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has to appro......Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions; however, the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area while still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes, is described. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  3. Trigger and DAQ in the Combined Test Beam

    CERN Multimedia

    Dobson, M; Padilla, C

    2004-01-01

    Introduction During the Combined Test Beam the latest prototype of the ATLAS Trigger and DAQ system is being used to support the data taking of all the detectors. Further development of the TDAQ subsystems benefits from the direct experience given by the integration in the beam test. Support of detectors for the Combined Test Beam All ATLAS detectors need their own detector-specific DAQ development. The readout electronics is controlled by a Readout Driver (ROD), custom-built for each detector. The ROD receives data for events that are accepted by the first level trigger. The detector-specific part of the DAQ system needs to control the ROD and to respond to commands of the central DAQ (e.g. to "Start" a run). The ROD module then sends event data to a Readout System (ROS), a PC with special receiver modules/buffers. At this point the data enters the realm of the ATLAS DAQ and High Level Trigger system, constructed from Linux PCs connected with gigabit Ethernet networks. Most ATLAS detectors, representing s...

  4. Incoherent beam combining of fiber lasers by an all-fiber 7 × 1 signal combiner at a power level of 14 kW.

    Science.gov (United States)

    Lei, Chengmin; Gu, Yanran; Chen, Zilun; Wang, Zengfeng; Zhou, Pu; Ma, Yanxing; Xiao, Hu; Leng, Jinyong; Wang, Xiaolin; Hou, Jing; Xu, Xiaojun; Chen, Jinbao; Liu, Zejin

    2018-04-16

    We demonstrate an all-fiber 7 × 1 signal combiner with an output core diameter of 50 μm for high power incoherent beam combining of seven self-made Yb-doped single-mode fiber lasers around a wavelength of 1080 nm and output power of 2 kW. 14.1 kW combined output power is achieved with a total transmission efficiency of higher than 98.5% and a beam quality of M 2 = 5.37, which is close to the theoretical results based on finite-difference beam propagation technique. To the best of our knowledge, this is the highest output power ever reported for all-fiber structure beam combining generation, which indicates the feasibility and potential of >10 kW high brightness incoherent beam combining based on an all-fiber signal combiner.

  5. Combined performance studies for electrons at the 2004 ATLAS combined test-beam

    International Nuclear Information System (INIS)

    Abat, E; Arik, E; Abdallah, J M; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T P A; Aleksa, M; Anghinolfi, F; Baron, S; Alexa, C; Anderson, K; Andreazza, A; Banfi, D; Antonaki, A; Arabidze, G; Atkinson, T; Baines, J; Baker, O K

    2010-01-01

    In 2004 at the ATLAS (A Toroidal LHC ApparatuS) combined test beam, one slice of the ATLAS barrel detector (including an Inner Detector set-up and the Liquid Argon calorimeter) was exposed to particles from the H8 SPS beam line at CERN. It was the first occasion to test the combined electron performance of ATLAS. This paper presents results obtained for the momentum measurement p with the Inner Detector and for the performance of the electron measurement with the LAr calorimeter (energy E linearity and resolution) in the presence of a magnetic field in the Inner Detector for momenta ranging from 20 GeV/c to 100 GeV/c. Furthermore the particle identification capabilities of the Transition Radiation Tracker, Bremsstrahlungs-recovery algorithms relying on the LAr calorimeter and results obtained for the E/p ratio and a way how to extract scale parameters will be discussed.

  6. Combined performance studies for electrons at the 2004 ATLAS combined test-beam

    Energy Technology Data Exchange (ETDEWEB)

    Abat, E; Arik, E [Bogazici University, Faculty of Sciences, Department of Physics, TR - 80815 Bebek-Istanbul (Turkey); Abdallah, J M [Institut de Fisica d' Altes Energies, IFAE, Universitat Autonoma de Barcelona, Edifici Cn, ES - 08193 Bellaterra, Barcelona Spain (Spain); Addy, T N [Hampton University, Department of Physics, Hampton, VA 23668 (United States); Adragna, P [Queen Mary, University of London, Mile End Road, E1 4NS, London (United Kingdom); Aharrouche, M [Universitaet Mainz, Institut fuer Physik, Staudinger Weg 7, DE 55099 (Germany); Ahmad, A [Insitute of Physics, Academia Sinica, TW - Taipei 11529, Taiwan (China); Akesson, T P A [Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Box 118, SE - 221 00, Lund (Sweden); Aleksa, M; Anghinolfi, F; Baron, S [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Alexa, C [National Institute of Physics and Nuclear Engineering (Bucharest -IFIN-HH), P.O. Box MG-6, R-077125 Bucharest (Romania); Anderson, K [University of Chicago, Enrico Fermi Institute, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Andreazza, A; Banfi, D [INFN Sezione di Milano, via Celoria 16, IT - 20133 Milano (Italy); Antonaki, A; Arabidze, G [University of Athens, Nuclear and Particle Physics Department of Physics, Panepistimiopouli Zografou, GR 15771 Athens (Greece); Atkinson, T [School of Physics, University of Melbourne, AU - Parkvill, Victoria 3010 (Australia); Baines, J [Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Baker, O K, E-mail: robert.froeschl@cern.c [Yale University, Department of Physics, PO Box 208121, New Haven, CT06520-8121 (United States)

    2010-11-15

    In 2004 at the ATLAS (A Toroidal LHC ApparatuS) combined test beam, one slice of the ATLAS barrel detector (including an Inner Detector set-up and the Liquid Argon calorimeter) was exposed to particles from the H8 SPS beam line at CERN. It was the first occasion to test the combined electron performance of ATLAS. This paper presents results obtained for the momentum measurement p with the Inner Detector and for the performance of the electron measurement with the LAr calorimeter (energy E linearity and resolution) in the presence of a magnetic field in the Inner Detector for momenta ranging from 20 GeV/c to 100 GeV/c. Furthermore the particle identification capabilities of the Transition Radiation Tracker, Bremsstrahlungs-recovery algorithms relying on the LAr calorimeter and results obtained for the E/p ratio and a way how to extract scale parameters will be discussed.

  7. The Practical Astronomer

    Science.gov (United States)

    Koester, Jack

    "The Practical Astronomer" by Thomas Dick, LLD, E.C. & J. Biddle, Philadelphia, 1849, is reviewed. Information on telescope makers and astronomers can be found. Mentioned are: Fraunhofer; John Herschel; Lawson; Dollond; Tulley; W. & S. Jones; and S.W. Burnham.

  8. AESoP: Astronomical Extinction Spectrophotometer

    Science.gov (United States)

    Linford, Justin; McGraw, J.; Zimmer, P.; Ackermann, M.; Fitch, J.

    2009-01-01

    The Earth's atmosphere is a major obstruction to the precision and accuracy of ground-based photometry. The atmosphere removes light from astronomical objects both by absorption and scattering by constituent molecules, aerosols and clouds. These effects can change significantly over short time periods and over modest angles on the sky. To further understand these effects, the UNM Measurement Astrophysics Group has designed, built and recently deployed the Astronomical Extinction Spectrophotometer (AESoP), a 100mm objective grating spectrometer. By monitoring bright stars in sensibly the same direction as a larger photometric telescope is observing, AESoP will measure the wavelength-dependent extinction due to the Earth's atmosphere from 450nm to 900nm on time scales of approximately one minute. The collocated Astronomical LIDAR for Extinction (ALE) provides a high-precision monochromatic extinction measurement at 527nm. Knowing the extinction at a single wavelength allows us to pin the relative spectra generated by AESoP. These extinction spectra can then be integrated over the bandpass of the photometric telescope system to create real time corrections of observations. We present the design and construction of AESoP along with the preliminary results of our first combined observing campaign. This effort is our first step toward breaking the 1% photometry barrier. This project is funded by AFRL Grant FA9451-04-2-0355

  9. Astronomical Research Using Virtual Observatories

    Directory of Open Access Journals (Sweden)

    M Tanaka

    2010-01-01

    Full Text Available The Virtual Observatory (VO for Astronomy is a framework that empowers astronomical research by providing standard methods to find, access, and utilize astronomical data archives distributed around the world. VO projects in the world have been strenuously developing VO software tools and/or portal systems. Interoperability among VO projects has been achieved with the VO standard protocols defined by the International Virtual Observatory Alliance (IVOA. As a result, VO technologies are now used in obtaining astronomical research results from a huge amount of data. We describe typical examples of astronomical research enabled by the astronomical VO, and describe how the VO technologies are used in the research.

  10. FITSManager: Management of Personal Astronomical Data

    Science.gov (United States)

    Cui, Chenzhou; Fan, Dongwei; Zhao, Yongheng; Kembhavi, Ajit; He, Boliang; Cao, Zihuang; Li, Jian; Nandrekar, Deoyani

    2011-07-01

    With the increase of personal storage capacity, it is easy to find hundreds to thousands of FITS files in the personal computer of an astrophysicist. Because Flexible Image Transport System (FITS) is a professional data format initiated by astronomers and used mainly in the small community, data management toolkits for FITS files are very few. Astronomers need a powerful tool to help them manage their local astronomical data. Although Virtual Observatory (VO) is a network oriented astronomical research environment, its applications and related technologies provide useful solutions to enhance the management and utilization of astronomical data hosted in an astronomer's personal computer. FITSManager is such a tool to provide astronomers an efficient management and utilization of their local data, bringing VO to astronomers in a seamless and transparent way. FITSManager provides fruitful functions for FITS file management, like thumbnail, preview, type dependent icons, header keyword indexing and search, collaborated working with other tools and online services, and so on. The development of the FITSManager is an effort to fill the gap between management and analysis of astronomical data.

  11. UKRVO Astronomical WEB Services

    Directory of Open Access Journals (Sweden)

    Mazhaev, O.E.

    2017-01-01

    Full Text Available Ukraine Virtual Observatory (UkrVO has been a member of the International Virtual Observatory Alliance (IVOA since 2011. The virtual observatory (VO is not a magic solution to all problems of data storing and processing, but it provides certain standards for building infrastructure of astronomical data center. The astronomical databases help data mining and offer to users an easy access to observation metadata, images within celestial sphere and results of image processing. The astronomical web services (AWS of UkrVO give to users handy tools for data selection from large astronomical catalogues for a relatively small region of interest in the sky. Examples of the AWS usage are showed.

  12. Observatory Sponsoring Astronomical Image Contest

    Science.gov (United States)

    2005-05-01

    and to provide a showcase for a broad range of astronomical research and celestial objects," Adams added. In addition, NRAO is developing enhanced data visualization techniques and data-processing recipes to assist radio astronomers in making quality images and in combining radio data with data collected at other wavelengths, such as visible-light or infrared, to make composite images. "We encourage all our telescope users to take advantage of these techniques to showcase their research," said Juan Uson, a member of the NRAO scientific staff and the observatory's EPO scientist. "All these efforts should demonstrate the vital and exciting roles that radio telescopes, radio observers, and the NRAO play in modern astronomy," Lo said. "While we want to encourage images that capture the imagination, we also want to emphasize that extra effort invested in enhanced imagery also will certainly pay off scientifically, by revealing subtleties and details that may have great significance for our understanding of astronomical objects," he added. Details of the NRAO Image Contest, which will become an annual event, are on the observatory's Web site. The observatory will announce winners on October 15. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  13. Combined VIS-IR spectrometer with vertical probe beam

    Science.gov (United States)

    Protopopov, V.

    2017-12-01

    A prototype of a combined visible-infrared spectrometer with a vertical probe beam is designed and tested. The combined spectral range is 0.4-20 μ with spatial resolution 1 mm. Basic features include the ability to measure both visibly transparent and opaque substances, as well as buried structures, such as in semiconductor industry; horizontal orientation of a sample, including semiconductor wafers; and reflection mode of operation, delivering twice the sensitivity compared to the transmission mode.

  14. SPECT reconstruction of combined cone beam and parallel hole collimation with experimental data

    International Nuclear Information System (INIS)

    Li, Jianying; Jaszczak, R.J.; Turkington, T.G.; Greer, K.L.; Coleman, R.E.

    1993-01-01

    The authors have developed three methods to combine parallel and cone bean (P and CB) SPECT data using modified Maximum Likelihood-Expectation Maximization (ML-EM) algorithms. The first combination method applies both parallel and cone beam data sets to reconstruct a single intermediate image after each iteration using the ML-EM algorithm. The other two iterative methods combine the intermediate parallel beam (PB) and cone beam (CB) source estimates to enhance the uniformity of images. These two methods are ad hoc methods. In earlier studies using computer Monte Carlo simulation, they suggested that improved images might be obtained by reconstructing combined P and CB SPECT data. These combined collimation methods are qualitatively evaluated using experimental data. An attenuation compensation is performed by including the effects of attenuation in the transition matrix as a multiplicative factor. The combined P and CB images are compared with CB-only images and the result indicate that the combined P and CB approaches suppress artifacts caused by truncated projections and correct for the distortions of the CB-only images

  15. New Combined Electron-Beam Methods of Wastewater Purification

    International Nuclear Information System (INIS)

    Pikaev, A.K.; Makarov, I.E.; Ponomarev, A.V.; Kartasheva, L.I.; Podzorova, E.A.; Chulkov, V.N.; Han, B.; Kim, D.K.

    1999-01-01

    The paper is a brief review of the results obtained with the participation of the authors from the study on combined electron-beam methods for purification of some wastewaters. The data on purification of wastewaters containing dyes or hydrogen peroxide and municipal wastewater in the aerosol flow are considered

  16. A large capacity time division multiplexed (TDM) laser beam combining technique enabled by nanosecond speed KTN deflector

    Science.gov (United States)

    Yin, Stuart (Shizhuo); Chao, Ju-Hung; Zhu, Wenbin; Chen, Chang-Jiang; Campbell, Adrian; Henry, Michael; Dubinskiy, Mark; Hoffman, Robert C.

    2017-08-01

    In this paper, we present a novel large capacity (a 1000+ channel) time division multiplexing (TDM) laser beam combining technique by harnessing a state-of-the-art nanosecond speed potassium tantalate niobate (KTN) electro-optic (EO) beam deflector as the time division multiplexer. The major advantages of TDM approach are: (1) large multiplexing capability (over 1000 channels), (2) high spatial beam quality (the combined beam has the same spatial profile as the individual beam), (3) high spectral beam quality (the combined beam has the same spectral width as the individual beam, and (4) insensitive to the phase fluctuation of individual laser because of the nature of the incoherent beam combining. The quantitative analyses show that it is possible to achieve over one hundred kW average power, single aperture, single transverse mode solid state and/or fiber laser by pursuing this innovative beam combining method, which represents a major technical advance in the field of high energy lasers. Such kind of 100+ kW average power diffraction limited beam quality lasers can play an important role in a variety of applications such as laser directed energy weapons (DEW) and large-capacity high-speed laser manufacturing, including cutting, welding, and printing.

  17. Astronomical Heritage in the National Culture

    Science.gov (United States)

    Harutyunian, H. A.; Mickaelian, A. M.; Parsamian, E. S.

    2014-10-01

    The book contains Proceedings of the Archaeoastronomical Meeting "Astronomical Heritage in the National Culture" Dedicated to Anania Shirakatsi's 1400th Anniversary and XI Annual Meeting of the Armenian Astronomical Society. It consists of 3 main sections: "Astronomical Heritage", "Anania Shirakatsi" and "Modern Astronomy", as well as Literature about Anania Shirakatsi is included. The book may be interesting for astronomers, historians, archaeologists, linguists, students and other readers.

  18. Explanatory supplement to the astronomical almanac

    CERN Document Server

    Urban, Sean E

    2013-01-01

    The Explanatory Supplement to the Astronomical Almanac offers explanatory material, supplemental information and detailed descriptions of the computational models and algorithms used to produce The Astronomical Almanac, which is an annual publication prepared jointly by the US Naval Observatory and Her Majesty's Nautical Almanac Office in the UK. Like The Astronomical Almanac, The Explanatory Supplement provides detailed coverage of modern positional astronomy. Chapters are devoted to the celestial and terrestrial reference frames, orbital ephemerides, precession, nutation, Earth rotation, and coordinate transformations. These topics have undergone substantial revisions since the last edition was published. Astronomical positions are intertwined with timescales and relativity in The Astronomical Almanac, so related chapters are provided in The Explanatory Supplement. The Astronomical Almanac also includes information on lunar and solar eclipses, physical ephemerides of solar system bodies, and calendars, so T...

  19. Coherent beam combination via microparticle plasma modes

    International Nuclear Information System (INIS)

    Rogovin, D.; Shen, T.P.

    1988-01-01

    Recently, there have been interesting observations and calculations on phase conjugation via degenerate four-wave mixing in gold colloids. The generation of phase conjugate radiation in these media arises from and reflects the creation of static index grating imposed on the electronic wave functions within the microparticles. These encouraging findings motivate us to consider the possibility of generating moving index gratings in these media with possible applications to coherent beam combination

  20. Astronomical Ecosystems

    Science.gov (United States)

    Neuenschwander, D. E.; Finkenbinder, L. R.

    2004-05-01

    Just as quetzals and jaguars require specific ecological habitats to survive, so too must planets occupy a tightly constrained astronomical habitat to support life as we know it. With this theme in mind we relate the transferable features of our elementary astronomy course, "The Astronomical Basis of Life on Earth." Over the last five years, in a team-taught course that features a spring break field trip to Costa Rica, we have introduced astronomy through "astronomical ecosystems," emphasizing astronomical constraints on the prospects for life on Earth. Life requires energy, chemical elements, and long timescales, and we emphasize how cosmological, astrophysical, and geological realities, through stabilities and catastrophes, create and eliminate niches for biological life. The linkage between astronomy and biology gets immediate and personal: for example, studies in solar energy production are followed by hikes in the forest to examine the light-gathering strategies of photosynthetic organisms; a lesson on tides is conducted while standing up to our necks in one on a Pacific beach. Further linkages between astronomy and the human timescale concerns of biological diversity, cultural diversity, and environmental sustainability are natural and direct. Our experience of teaching "astronomy as habitat" strongly influences our "Astronomy 101" course in Oklahoma as well. This "inverted astrobiology" seems to transform our student's outlook, from the universe being something "out there" into something "we're in!" We thank the SNU Science Alumni support group "The Catalysts," and the SNU Quetzal Education and Research Center, San Gerardo de Dota, Costa Rica, for their support.

  1. Numerical simulation studies of the LBNL heavy-ion beam combiner experiment

    International Nuclear Information System (INIS)

    Fawley, W.M.; Seidl, P.; Haber, I.; Friedman, A.; Grote, D.P.

    1997-01-01

    Transverse beam combining is a cost-saving option employed in many designs for heavy-ion inertial fusion energy drivers. A major area of interest, both theoretically and experimentally, is the resultant transverse phase space dilution during the beam merging process. Currently, a prototype combining experiment is underway at LBNL and we have employed a variety of numerical descriptions to aid in both the initial design of the experiment data. These range from simple envelope codes to detailed 2- and 3-D PIC simulations. We compare the predictions of the different numerical models to each other and to experimental data at different longitudinal positions

  2. Test Beam Coordination: 2003 ATLAS Combined Test Beam

    CERN Multimedia

    Di Girolamo, B.

    The 2003 Test Beam Period The 2003 Test Beam period has been very fruitful for ATLAS. In spite of several days lost because of the accelerator problems, ATLAS has been able to achieve many results: FCAL has completed the calibration program in H6 Tilecal has completed the calibration program in H8 Pixel has performed extensive studies with normal and high intensity beams (up to 1.4*108 hadrons/spill) SCT has completed a variety of studies with quite a high number of modules operated concurrently TRT has performed several studies at high, low and very low energy (first use of the new H8 beam in the range 1 to 9 GeV) Muons (MDT,RPC and TGC) have been operating a large setup for about 5 months. The almost final MDT ROD (MROD) has been integrated in the readout and the final trigger electronics for TGC and RPC has been tested and certified with normal beam and during dedicated 40 MHz beam periods. The TDAQ has exploited a new generation prototype successfully and the new Event Filter infrastructure f...

  3. Coherent beam combination of fiber lasers with a strongly confined waveguide: numerical model.

    Science.gov (United States)

    Tao, Rumao; Si, Lei; Ma, Yanxing; Zhou, Pu; Liu, Zejin

    2012-08-20

    Self-imaging properties of fiber lasers in a strongly confined waveguide (SCW) and their application in coherent beam combination (CBC) are studied theoretically. Analytical formulas are derived for the positions, amplitudes, and phases of the N images at the end of an SCW, which is important for quantitative analysis of waveguide CBC. The formulas are verified with experimental results and numerical simulation of a finite difference beam propagation method (BPM). The error of our analytical formulas is less than 6%, which can be reduced to less than 1.5% with Goos-Hahnchen penetration depth considered. Based on the theoretical model and BPM, we studied the combination of two laser beams based on an SCW. The effects of the waveguide refractive index and Gaussian beam waist are studied. We also simulated the CBC of nine and 16 fiber lasers, and a single beam without side lobes was achieved.

  4. Choosing and using astronomical eyepieces

    CERN Document Server

    Paolini, William

    2013-01-01

    This valuable reference fills a number of needs in the field of astronomical eyepieces, including that of a buyer's guide, observer's field guide and technical desk reference. It documents the past market for eyepieces and its evolution right up to the present day. In addition to appealing to practical astronomers - and potentially saving them money - it is useful both as a historical reference and as a detailed review of the current market place for this bustling astronomical consumer product. What distinguishes this book from other publications on astronomy is the involvement of observers from all aspects of the astronomical community, and also the major manufacturers of equipment. It not only catalogs the technical aspects of the many modern eyepieces but also documents amateur observer reactions and impressions of their utility over the years, using many different eyepieces. Eyepieces are the most talked-about accessories and collectible items available to the amateur astronomer. No other item of equi...

  5. Korean Astronomical Calendar, Chiljeongsan

    Science.gov (United States)

    Lee, Eun Hee

    In fifteenth century Korea, there was a grand project for the astronomical calendar and instrument making by the order of King Sejong 世宗 (1418-1450). During this period, many astronomical and calendrical books including Islamic sources in Chinese versions were imported from Ming 明 China, and corrected and researched by the court astronomers of Joseon 朝鮮 (1392-1910). Moreover, the astronomers and technicians of Korea frequently visited China to study astronomy and instrument making, and they brought back useful information in the form of new published books or specifications of instruments. As a result, a royal observatory equipped with 15 types of instrument was completed in 1438. Two types of calendar, Chiljeongsan Naepyeon 七政算內篇 and Chiljeongsan Oepyeon 七政算外篇, based on the Chinese and Islamic calendar systems, respectively, were published in 1444 with a number of calendrical editions such as corrections and example supplements (假令) including calculation methods and results for solar and lunar eclipses.

  6. Combined electron beam and UV lithography in SU-8

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Thamdrup, Lasse Højlund; Mironov, Andrej

    2007-01-01

    We present combined electron beam and UV lithography (CEUL) in SU-8 as a fast and flexible lithographic technique for prototyping of functional polymer devices and pattern transfer applications. CEUL is a lithographic technique suitable for defining both micrometer and nanometer scale features...

  7. Pixel-Tilecal-MDT Combined Test Beam

    CERN Multimedia

    B. Di Girolamo

    A test with many expectations When an additional week of running (from September 11th to 18th) was allocated for the test-beam, it was decided to give priority to a combined run with the participation of the Pixel, Tilecal and MDT sub-detectors. The integration of these three sub-detectors was possible as they all use the baseline (DAQ-1/EF based) DAQ for test beams (as reported in a previous e-news). The tests and the addition of a common trigger and busy were organized in a short timescale by experts from the three sub-detectors and DAQ/EF. The expectations were many; both looking for problems and finding solutions. The setup The setup, shown in the figure, consisted of the Pixel telescope normally used during the sub-detector tests, two Tilecal barrel modules, two Tilecal extended barrel modules, and six MDT barrel chambers. This fully occupied a length of some 30 meters in the H8 line of the SPS North Area. Each sub-detector used their own specialized front-end electronics. The data collected by modu...

  8. The 2004 ATLAS Combined Test Beam

    CERN Multimedia

    The ATLAS CTB Team, .

    2004-01-01

    In the year 2004, ATLAS has been involved in a huge combined test beam (CTB) effort in H8. A complete slice of the barrel detector and of the Muon End-cap has been tested, with the following clear goals: pre-commission the final elements and study the detector performance in a realistic combined data taking. Thanks to this experience, a lot of expertise in the operations has been acquired and much data (~ 4.6 TB of data, ~ 90 million events on castor) has been collected and is already under analysis. The CTB has been characterized by different phases with an incremental presence of sub-detectors modules and associated DAQ infrastructure, as well as incremental improvement of analysis tools for prompt data certification. The physics goals of the CTB have been defined in consultation with the physics coordinator, all the sub-detector representatives and the combined performance group representative. With all these indications, a detailed run plan day-by-day schedule was defined before the CTB start and was foll...

  9. Astronomers Get New Tools for Gravitational-Wave Detection

    Science.gov (United States)

    2010-01-01

    exclaimed. "Fermi showed us where to look." "This is a huge help in our effort to use millisecond pulsars to detect gravitational waves," Ransom said. The more such pulsars scientists can find and observe over time, the more likely they are to detect gravitational waves, he explained. He said that astronomers now have barely enough millisecond pulsars to make a convincing gravitational-wave detection. "With Fermi guiding the way, though, we can change that picture quickly," Ray said. "We've just started to follow up on the objects located by Fermi, and have many more to go, with a great success rate so far," he added. Ransom, along with his colleague Mallory Roberts of Eureka Scientific, used the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) to find eight of the 17 new pulsars. The scientists announced their discoveries at the American Astronomical Society's meeting in Washington, DC. Pulsars are neutron stars -- the dense cores left after a massive star has exploded as a supernova. About as large as a medium-sized city, these neutron stars have strong magnetic fields that channel lighthouse-like beams of radio waves that sweep through space as the star rotates. When such a beam strikes the Earth, radio telescopes can detect the strong radio waves. As they age, pulsars slow their rotation rates. However, if the pulsar is part of a binary-star system and can draw in material from its companion, its rotation can be sped up. When the neutron star has been sped up to rotate hundreds of times a second, it is called a millisecond pulsar. In addition to helping scientists detect gravitational waves, study of millisecond pulars also can yield important new information about other effects of General Relativity and about fundamental particle physics. "This new ability to find many more millisecond pulsars really is a treasure chest that can yield many valuable gems of scientific discovery," Ransom said.

  10. Amateur Astronomers: Secret Agents of EPO

    Science.gov (United States)

    Berendsen, M.; White, V.; Devore, E.; Reynolds, M.

    2008-06-01

    Amateur astronomers prime the public to be more interested, receptive, and excited about space science, missions, and programs. Through recent research and targeted programs, amateur astronomy outreach is being increasingly recognized by professional astronomers, educators, and other amateurs as a valued and important service. The Night Sky Network program, administered by the ASP, is the first nationwide research-based program specifically targeted to support outreach by amateur astronomers. This Network of trained and informed amateur astronomers can provide a stimulating introduction to your EPO programs as Network members share the night sky with families, students, and youth groups.

  11. NUMERICAL PREDICTION OF COMPOSITE BEAM SUBJECTED TO COMBINED NEGATIVE BENDING AND AXIAL TENSION

    Directory of Open Access Journals (Sweden)

    MAHESAN BAVAN

    2013-08-01

    Full Text Available The present study has investigated the finite element method (FEM techniques of composite beam subjected to combined axial tension and negative bending. The negative bending regions of composite beams are influenced by worsen failures due to various levels of axial tensile loads on steel section especially in the regions near internal supports. Three dimensional solid FEM model was developed to accurately predict the unfavourable phenomenon of cracking of concrete and compression of steel in the negative bending regions of composite beam due to axial tensile loads. The prediction of quasi-static solution was extensively analysed with various deformation speeds and energy stabilities. The FEM model was then validated with existing experimental data. Reasonable agreements were observed between the results of FEM model and experimental analysis in the combination of vertical-axial forces and failure modes on ultimate limit state behaviour. The local failure modes known as shear studs failure, excess yielding on steel beam and crushing on concrete were completely verified by extensive similarity between the numerical and experimental results. Finally, a proper way of modelling techniques for large FEM models by considering uncertainties of material behaviour due to biaxial loadings and complex contact interactions is discussed. Further, the model is suggested for the limit state prediction of composite beam with calibrating necessary degree of the combined axial loads.

  12. Analytical treatment of the nonlinear electron cloud effect and the combined effects with beam-beam and space charge nonlinear forces in storage rings

    International Nuclear Information System (INIS)

    Gao Jie

    2009-01-01

    In this paper we treat first some nonlinear beam dynamics problems in storage rings, such as beam dynamic apertures due to magnetic multipoles, wiggles, beam-beam effects, nonlinear space charge effect, and then nonlinear electron cloud effect combined with beam-beam and space charge effects, analytically. This analytical treatment is applied to BEPC II. The corresponding analytical expressions developed in this paper are useful both in understanding the physics behind these problems and also in making practical quick hand estimations. (author)

  13. Astronomy Legacy Project - Pisgah Astronomical Research Institute

    Science.gov (United States)

    Barker, Thurburn; Castelaz, Michael W.; Rottler, Lee; Cline, J. Donald

    2016-01-01

    Pisgah Astronomical Research Institute (PARI) is a not-for-profit public foundation in North Carolina dedicated to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines. In November 2007 a Workshop on a National Plan for Preserving Astronomical Photographic Data (2009ASPC,410,33O, Osborn, W. & Robbins, L) was held at PARI. The result was the establishment of the Astronomical Photographic Data Archive (APDA) at PARI. In late 2013 PARI began ALP (Astronomy Legacy Project). ALP's purpose is to digitize an extensive set of twentieth century photographic astronomical data housed in APDA. Because of the wide range of types of plates, plate dimensions and emulsions found among the 40+ collections, plate digitization will require a versatile set of scanners and digitizing instruments. Internet crowdfunding was used to assist in the purchase of additional digitization equipment that were described at AstroPlate2014 Plate Preservation Workshop (www.astroplate.cz) held in Prague, CZ, March, 2014. Equipment purchased included an Epson Expression 11000XL scanner and two Nikon D800E cameras. These digital instruments will compliment a STScI GAMMA scanner now located in APDA. GAMMA will be adapted to use an electroluminescence light source and a digital camera with a telecentric lens to achieve high-speed high-resolution scanning. The 1μm precision XY stage of GAMMA will allow very precise positioning of the plate stage. Multiple overlapping CCD images of small sections of each plate, tiles, will be combined using a photo-mosaic process similar to one used in Harvard's DASCH project. Implementation of a software pipeline for the creation of a SQL database containing plate images and metadata will be based upon APPLAUSE as described by Tuvikene at AstroPlate2014 (www.astroplate.cz/programs/).

  14. Instrument Remote Control via the Astronomical Instrument Markup Language

    Science.gov (United States)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  15. Near-diffraction-limited segmented broad area diode laser based on off-axis spectral beam combining

    DEFF Research Database (Denmark)

    Jensen, O.B.; Thestrup Nielsen, Birgitte; Andersen, Peter E.

    2006-01-01

    -feedback scheme we are able to improve the beam quality of the laser by a factor of 23 from M-2 = 55 for the free-running diode laser to M-2 = 2.4 for the laser with feedback at a drive current of 2.2 A. The improved M-2 value is a factor of 3.4 below M-2 = 8.2 for a single free-running segment. This is the first......The beam quality of a 500-mu m-wide broad area diode laser with five active segments has been improved beyond the beam quality of the individual segments. The principle of this new laser system is based on off-axis feedback in combination with spectral beam combining. By using a double...... time that the beam quality of a segmented broad area diode laser has been improved beyond the beam quality of the individual segments....

  16. Using commercial amateur astronomical spectrographs

    CERN Document Server

    Hopkins, Jeffrey L

    2014-01-01

    Amateur astronomers interested in learning more about astronomical spectroscopy now have the guide they need. It provides detailed information about how to get started inexpensively with low-resolution spectroscopy, and then how to move on to more advanced  high-resolution spectroscopy. Uniquely, the instructions concentrate very much on the practical aspects of using commercially-available spectroscopes, rather than simply explaining how spectroscopes work. The book includes a clear explanation of the laboratory theory behind astronomical spectrographs, and goes on to extensively cover the practical application of astronomical spectroscopy in detail. Four popular and reasonably-priced commercially available diffraction grating spectrographs are used as examples. The first is a low-resolution transmission diffraction grating, the Star Analyser spectrograph. The second is an inexpensive fiber optic coupled bench spectrograph that can be used to learn more about spectroscopy. The third is a newcomer, the ALPY ...

  17. Novel adaptive fiber-optics collimator for coherent beam combination.

    Science.gov (United States)

    Zhi, Dong; Ma, Pengfei; Ma, Yanxing; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2014-12-15

    In this manuscript, we experimentally validate a novel design of adaptive fiber-optics collimator (AFOC), which utilizes two levers to enlarge the movable range of the fiber end cap. The enlargement of the range makes the new AFOC possible to compensate the end-cap/tilt aberration in fiber laser beam combining system. The new AFOC based on flexible hinges and levers was fabricated and the performance of the new AFOC was tested carefully, including its control range, frequency response and control accuracy. Coherent beam combination (CBC) of two 5-W fiber amplifiers array with simultaneously end-cap/tilt control and phase-locking control was implemented successfully with the novel AFOC. Experimental results show that the average normalized power in the bucket (PIB) value increases from 0.311 to 0.934 with active phasing and tilt aberration compensation simultaneously, and with both controls on, the fringe contrast improves to more than 82% from 0% for the case with both control off. This work presents a promising structure for tilt aberration control in high power CBC system.

  18. Fiber-based coherent polarization beam combining with cascaded phase-locking and polarization-transforming controls

    Science.gov (United States)

    Yang, Yan; Geng, Chao; Li, Feng; Huang, Guan; Li, Xinyang

    2018-05-01

    In this paper, the fiber-based coherent polarization beam combining (CPBC) with cascaded phase-locking (PL) and polarization-transforming (PT) controls was proposed to combine imbalanced input beams where the number of the input beams is not binary, in which the PL control was performed using the piezoelectric-ring fiber-optic phase compensator, and the PT control was realized by the dynamic polarization controller, simultaneously. The principle of the proposed CPBC was introduced. The performance of the proposed CPBC was analyzed in comparison with the CPBC based on PL control and the CPBC based on PT control. The basic experiment of CPBC of three laser beams was carried out to validate the feasibility of the proposed CPBC, where cascaded controls of PL and PT were implemented based on stochastic parallel gradient descent algorithm. Simulation and experimental results show that the proposed CPBC incorporates the advantages of the two previous CPBC schemes and performs well in the closed loop. Moreover, the expansibility and the application of the proposed CPBC were validated by scaling the CPBC to combine seven laser beams. We believe that the proposed fiber-based CPBC with cascaded PL and PT controls has great potential in free space optical communications employing the multi-aperture receiver with asymmetric structure.

  19. Mutually incoherent beam combining through optical parametric amplification

    International Nuclear Information System (INIS)

    Tropheme, B.

    2012-01-01

    This work deals with a technique of combination of coherent beams: Optical Parametric Amplification (OPA) with Multiple Pumps. This technique is used to instantly transfer the energy of several pumps on one beam, without energy storage and thus avoiding thermal effects in the amplifying media. It can be useful to combine energy of numerous fiber lasers and to amplify with a high repetition rate very high energy lasers or broadband pulses. With a numerical and experimental study using BBO and LBO as nonlinear crystal, we determine how to dispose the pumps around the signal and the corresponding angular tolerances of such set up. Then we focus our attention on recombining mechanisms between a pump and a non-corresponding idler. We demonstrate experimentally that these cascading effects may decrease the spatial and spectral quality of the amplified signal, and that these phenomena can be avoided with a minimum angle between the different pumps. A novel modelling of multi-pumps OPA links these cascading effects to the gratings generated by the interaction between the pumps. The last part presents a 5 pump OPA experiment. We achieve a pump-to-signal efficiency of 27% and so that a signal more powerful than each pump is obtained. (author) [fr

  20. Fast Transverse Beam Instability Caused by Electron Cloud Trapped in Combined Function Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey [Univ. of Chicago, IL (United States)

    2017-03-01

    Electron cloud instabilities affect the performance of many circular high-intensity particle accelerators. They usually have a fast growth rate and might lead to an increase of the transverse emittance and beam loss. A peculiar example of such an instability is observed in the Fermilab Recycler proton storage ring. Although this instability might pose a challenge for future intensity upgrades, its nature had not been completely understood. The phenomena has been studied experimentally by comparing the dynamics of stable and unstable beam, numerically by simulating the build-up of the electron cloud and its interaction with the beam, and analytically by constructing a model of an electron cloud driven instability with the electrons trapped in combined function dipoles. Stabilization of the beam by a clearing bunch reveals that the instability is caused by the electron cloud, trapped in beam optics magnets. Measurements of microwave propagation confirm the presence of the cloud in the combined function dipoles. Numerical simulations show that up to 10$^{-2}$ of the particles can be trapped by their magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. In a combined function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The estimated fast instability growth rate of about 30 revolutions and low mode frequency of 0.4 MHz are consistent with experimental observations and agree with the simulations. The created instability model allows investigating the beam stability for the future intensity upgrades.

  1. The First Astronomical Observatory in Cluj-Napoca

    Science.gov (United States)

    Szenkovits, Ferenc

    2008-09-01

    One of the most important cities of Romania is Cluj-Napoca (Kolozsvár, Klausenburg). This is a traditional center of education, with many universities and high schools. From the second half of the 18th century the University of Cluj has its own Astronomical Observatory, serving for didactical activities and scientific researches. The famous astronomer Maximillian Hell was one of those Jesuits who put the base of this Astronomical Observatory. Our purpose is to offer a short history of the beginnings of this Astronomical Observatory.

  2. Storing Astronomical Information on the Romanian Territory

    Science.gov (United States)

    Stavinschi, M.; Mioc, V.

    2004-12-01

    Romanian astronomy has a more than 2000-year old tradition, which is, however, little known abroad. The first known archive of astronomical information is the Dacian sanctuary at Sarmizegetusa Regia, erected in the first century AD, having similarities with that of Stonehenge. After a gap of more than 1000 years, more sources of astronomical information become available, mainly records of astronomical events. Monasteries were the safest storage places of these genuine archives. We present a classification of the ways of storing astronomical information, along with characteristic examples.

  3. A new method for incoherent combining of far-field laser beams based on multiple faculae recognition

    Science.gov (United States)

    Ye, Demao; Li, Sichao; Yan, Zhihui; Zhang, Zenan; Liu, Yuan

    2018-03-01

    Compared to coherent beam combining, incoherent beam combining can complete the output of high power laser beam with high efficiency, simple structure, low cost and high thermal damage resistance, and it is easy to realize in engineering. Higher target power is achieved by incoherent beam combination which using technology of multi-channel optical path correction. However, each channel forms a spot in the far field respectively, which cannot form higher laser power density with low overlap ratio of faculae. In order to improve the combat effectiveness of the system, it is necessary to overlap different faculae that improve the target energy density. Hence, a novel method for incoherent combining of far-field laser beams is present. The method compromises piezoelectric ceramic technology and evaluation algorithm of faculae coincidence degree which based on high precision multi-channel optical path correction. The results show that the faculae recognition algorithm is low-latency(less than 10ms), which can meet the needs of practical engineering. Furthermore, the real time focusing ability of far field faculae is improved which was beneficial to the engineering of high-energy laser weapon or other laser jamming systems.

  4. VEGAS: VErsatile GBT Astronomical Spectrometer

    Science.gov (United States)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  5. Combining Generalized Phase Contrast with matched filtering into a versatile beam shaping approach

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    2010-01-01

    We adapt concepts from matched filtering to propose a method for generating reconfigurable multiple beams. Combined with the Generalized Phase Contrast (GPC) technique, the proposed method coined mGPC can yield dynamically reconfigurable optical beam arrays with high light efficiency for optical...... manipulation, high-speed sorting and other parallel spatial light applications [1]....

  6. Three-dimensional SPECT [single photon emission computed tomography] reconstruction of combined cone beam and parallel beam data

    International Nuclear Information System (INIS)

    Jaszczak, R.J.; Jianying Li; Huili Wang; Coleman, R.E.

    1992-01-01

    Single photon emission computed tomography (SPECT) using cone beam (CB) collimation exhibits increased sensitivity compared with acquisition geometries using parallel (P) hole collimation. However, CB collimation has a smaller field-of-view which may result in truncated projections and image artifacts. A primary objective of this work is to investigate maximum likelihood-expectation maximization (ML-EM) methods to reconstruct simultaneously acquired parallel and cone beam (P and CB) SPECT data. Simultaneous P and CB acquisition can be performed with commercially available triple camera systems by using two cone-beam collimators and a single parallel-hole collimator. The loss in overall sensitivity (relative to the use of three CB collimators) is about 15 to 20%. The authors have developed three methods to combine P and CB data using modified ML-EM algorithms. (author)

  7. Astronomical calibration of the middle Eocene Contessa Highway section (Gubbio, Italy)

    Science.gov (United States)

    Jovane, Luigi; Sprovieri, Mario; Coccioni, Rodolfo; Florindo, Fabio; Marsili, Andrea; Laskar, Jacques

    2010-09-01

    The Eocene climatic system experienced an important transition from warm Paleocene greenhouse to icehouse Oligocene conditions. This transition could first appear as a long-term cooling trend but, at an up-close look, this period is a complex combination of climatic events and, for most of them, causes and consequences are still not fully characterized. In this context, a study has been carried out on the middle Eocene sedimentary succession of the Contessa Highway section, central Italy, which is proposed as the Global Stratotype Section and Point (GSSP) for the Lutetian/Bartonian boundary at the top of the Chron 19n, with an astronomically calibrated age of 41.23 Ma. Through a cyclostratigraphic analysis of the rhythmic sedimentary alternations and combination with the results of time series analysis of the proxy record, we provide an orbital tuning of the middle Eocene and astronomical calibration of the bio-magnetostratigraphic events (particularly for the C19n/C18r Chron boundary) recognized at the Contessa Highway section.

  8. The combined effects of e-beam irradiation and microwaves on starch, flour and ingredients

    International Nuclear Information System (INIS)

    Ferdes, O.S.; Martin, D.; Minea, R.; Tirlea, A.; Badea, M.

    1998-01-01

    The influences of both microwave field and electron beam irradiation, separately and combined, mainly on physical parameters of corn starch, wheat flour and black pepper were studied. These treatments have been used to achieve the hygienic and microbiological quality requirements of these materials and for their dehydration. The electron-beam irradiation has been carried out by using an ALIN-7 linear accelerator with the following parameters: electron mean energy 6 MeV, mean bean current 10 μA, pulse period 3.5 μs. repetition frequency 100 Hz. For microwave experiments, a special designed microwave applicator consisting of a special cavity, a power controlled generator with a 2.45 GHz standard frequency CW magnetron of 850 W maximum output power was used. The experiments were carried out in 5 variants: microwave treatment solely; electron beam irradiation solely; microwave treatment followed by electron beam irradiation; electron beam irradiation followed by microwave treatment; simultaneous microwave and electron beam treatment. The samples were treated by microwaves at 4 different power values from 250 W to 550 W for 5 different exposure times. The electron beam irradiation took place within the dose range of 1 - 10 kGy, at the same dose rate of approximately 2 kGy/min. The influence of these two physical fields on some common properties (r.h., pH), spectrophotometric (UV-VIS spectra), viscometric (rheograms) and microbiological (CFU/g) properties of the food materials was evaluated. A direct relationship between the variables was observed. The microwave effects are mainly thermal effects, although a non-thermal effect was also observed. The main microbiocidal action is due to the electron beam effect, although the microwave treatment affects sometimes significantly both the microbial population and its sensitivity to irradiation. The combined treatment indicates the presence of a synergistic effect of microwaves and electron-beams, which is of non

  9. Astronomical Cybersketching

    CERN Document Server

    Grego, Peter

    2009-01-01

    Outlines the techniques involved in making observational sketches and more detailed 'scientific' drawings of a wide variety of astronomical subjects using modern digital equipment; primarily PDAs and tablet PCs. This book also discusses about choosing hardware and software

  10. Astronomical Symbolism in Australian Aboriginal Rock Art

    Science.gov (United States)

    Norris, Ray P.; Hamacher, Duane W.

    2011-05-01

    Traditional Aboriginal Australian cultures include a significant astronomical component, perpetuated through oral tradition and ceremony. This knowledge has practical navigational and calendrical functions, and sometimes extends to a deep understanding of the motion of objects in the sky. Here we explore whether this astronomical tradition is reflected in the rock art of Aboriginal Australians. We find several plausible examples of depictions of astronomical figures and symbols, and also evidence that astronomical observations were used to set out stone arrangements. However, we recognise that the case is not yet strong enough to make an unequivocal statement, and describe our plans for further research.

  11. The Victorian Amateur Astronomer: Independent Astronomical Research in Britain 1820-1920

    Science.gov (United States)

    Chapman, Allan

    1999-01-01

    This is the first book to look in detail at amateur astronomy in Victorian Britain. It deals with the technical issues that were active in Victorian astronomy, and reviews the problems of finance, patronage and the dissemination of scientific ideas. It also examines the relationship between the amateur and professional in Britain. It contains a wealth of previously unpublished biographical and anecdotal material, and an extended bibliography with notes incorporating much new scholarship. In The Victorian Amateur Astronomer, Allan Chapman shows that while on the continent astronomical research was lavishly supported by the state, in Britain such research was paid for out of the pockets of highly educated, wealthy gentlemen the so-called Grand Amateurs . It was these powerful individuals who commissioned the telescopes, built the observatories, ran the learned societies, and often stole discoveries from their state-employed colleagues abroad. In addition to the Grand Amateurs , Victorian Britain also contained many self-taught amateurs. Although they belonged to no learned societies, these people provide a barometer of the popularity of astronomy in that age. In the late 19th century, the comfortable middle classes clergymen, lawyers, physicians and retired military officers took to astronomy as a serious hobby. They formed societies which focused on observation, lectures and discussions, and it was through this medium that women first came to play a significant role in British astronomy. Readership: Undergraduate and postgraduate students studying the history of science or humanities, professional historians of science, engineering and technology, particularly those with an interest in astronomy, the development of astronomical ideas, scientific instrument makers, and amateur astronomers.

  12. The astronomical tables of Giovanni Bianchini

    CERN Document Server

    Chabas, Jose

    2009-01-01

    This book describes and analyses, for the first time, the astronomical tables of Giovanni Bianchini of Ferrara (d. after 1469), explains their context, inserts them into an astronomical tradition that began in Toledo, and addresses their diffusion.

  13. Tests of Local Hadron Calibration Approaches in ATLAS Combined Beam Tests

    International Nuclear Information System (INIS)

    Grahn, Karl-Johan; Kiryunin, Andrey; Pospelov, Guennadi

    2011-01-01

    Three ATLAS calorimeters in the region of the forward crack at |η| 3.2 in the nominal ATLAS setup and a typical section of the two barrel calorimeters at |η| = 0.45 of ATLAS have been exposed to combined beam tests with single electrons and pions. Detailed shower shape studies of electrons and pions with comparisons to various Geant4 based simulations utilizing different physics lists are presented for the endcap beam test. The local hadron calibration approach as used in the full Atlas setup has been applied to the endcap beam test data. An extension of it using layer correlations has been tested with the barrel test beam data. Both methods utilize modular correction steps based on shower shape variables to correct for invisible energy inside the reconstructed clusters in the calorimeters (compensation) and for lost energy deposits outside of the reconstructed clusters (dead material and out-of-cluster deposits). Results for both methods and comparisons to Monte Carlo simulations are presented.

  14. The Soviet center of astronomical data

    International Nuclear Information System (INIS)

    Dluzhnevskaya, O.B.

    1982-01-01

    On the basis of the current French-Soviet cooperation in science and technology, the Astronomical Council of the U.S.S.R. Academy of Sciences and the Strasbourg Center signed in 1977 an agreement on setting up the Soviet Center of Astronomical Data as its filial branch. The Soviet Center was created on the basis of a computation center at the Zvenigorod station of the Astronomical Council of the U.S.S.R. Academy of Sciences, which had already had considerable experience of working with stellar catalogues. In 1979 the Center was equipped with a EC-1033 computer. In 1978-1979 the Soviet Center of Astronomical Data (C.A.D.) received from Strasbourg 96 of the most important catalogues. By September 1981 the list of catalogues available at the Soviet Center has reached 140 catalogues some of which are described. (Auth.)

  15. Atlas of Astronomical Discoveries

    CERN Document Server

    Schilling, Govert

    2011-01-01

    Four hundred years ago in Middelburg, in the Netherlands, the telescope was invented. The invention unleashed a revolution in the exploration of the universe. Galileo Galilei discovered mountains on the Moon, spots on the Sun, and moons around Jupiter. Christiaan Huygens saw details on Mars and rings around Saturn. William Herschel discovered a new planet and mapped binary stars and nebulae. Other astronomers determined the distances to stars, unraveled the structure of the Milky Way, and discovered the expansion of the universe. And, as telescopes became bigger and more powerful, astronomers delved deeper into the mysteries of the cosmos. In his Atlas of Astronomical Discoveries, astronomy journalist Govert Schilling tells the story of 400 years of telescopic astronomy. He looks at the 100 most important discoveries since the invention of the telescope. In his direct and accessible style, the author takes his readers on an exciting journey encompassing the highlights of four centuries of astronomy. Spectacul...

  16. Digital holography for coherent fiber beam combining with a co-propagative scheme.

    Science.gov (United States)

    Antier, Marie; Larat, Christian; Lallier, Eric; Bourderionnet, Jérôme; Primot, Jérôme; Brignon, Arnaud

    2014-09-22

    We present a technique for passive coherent fiber beam combining based on digital holography. In this method, the phase errors between the fibers are compensated by the diffracted phase-conjugated -1 order of a digital hologram. Unlike previous digital holography technique, the probe beams measuring the phase errors between the fibers are co-propagating with the phase-locked signal beams. This architecture is compatible with the use of multi-stage isolated amplifying fibers. It does not require any phase calculation algorithm and its correction is collective. This concept is experimentally demonstrated with three fibers at 1.55 μm. A residual phase error of λ/20 is measured.

  17. Nuclear astrophysics with radioactive beams

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Gade, A.

    2010-01-01

    The quest to comprehend how nuclear processes influence astrophysical phenomena is driving experimental and theoretical research programs worldwide. One of the main goals in nuclear astrophysics is to understand how energy is generated in stars, how elements are synthesized in stellar events and what the nature of neutron stars is. New experimental capabilities, the availability of radioactive beams and increased computational power paired with new astronomical observations have advanced the present knowledge. This review summarizes the progress in the field of nuclear astrophysics with a focus on the role of indirect methods and reactions involving beams of rare isotopes.

  18. Reporting Astronomical Discoveries: Past, Now, and Future

    Science.gov (United States)

    Yamaoka, Hitoshi; Green, Daniel W. E.; Samus, Nikolai N.; West, Richard

    2015-08-01

    Many new astronomical objects have been discovered over the years by amateur astronomers, and this continues to be the case. They have traditionally reported them (as have professional astronomers) to the Central Bureau for Astronomical Telegrams (CBAT), which was established in the 19th century. This procedure has worked very well throughout the 20th century, moving under the umbrella of the newly established IAU in 1920. The discoverers have been honored by the formal announcement of their discoveries in the publications of the CBAT.In recent years, some professional research groups have established other ways of announcing their discoveries of explosive objects such as novae and supernovae; some do not now report their discoveries or spectroscopic confirmations of the transients to the CBAT, including often spectroscopic reports of objects posted to the CBAT "Transient Objects Confirmation Page" -- the highly successful TOCP webpage, which assigns official positional designations to new transients posted there by approved, registered users. This leads to a delay in formal announcements of discoveries by amateur astronomers in many cases, as well as inconsistent designations being put into use by individual groups. Amateur astronomers are feeling frustrated about this situation, and they hope that the IAU will help to settle the situation.We have proposed the new IAU commission NC-52, which will treat these phenomena in a continuation of Commission 6, through the CBAT. We hope to continuously support the reporting of the discoveries by amateur astronomers, as well as professional astronomers, who all deserve and desire proper recognition. Our strategy will maintain the firm trust between the amateur and professional astronomers, which is necessary for true collaboration. The plan is for the CBAT to work with collaborators to assure that discoveries posted on the TOCP are promptly designated and announced by the CBAT, even when confirmations are made elsewhere

  19. A Test Facility For Astronomical X-Ray Optics

    DEFF Research Database (Denmark)

    Lewis, R. A.; Bordas, J.; Christensen, Finn Erland

    1989-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earths atmosphere. These devices require a large collection aperture and the imaging of an x-ray source which is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions, however the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron Radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area whilst still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes is described below. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  20. A method to combine three dimensional dose distributions for external beam and brachytherapy radiation treatments for gynecological neoplasms

    International Nuclear Information System (INIS)

    Narayana, V.; Sahijdak, W.M.; Orton, C.G.

    1997-01-01

    Purpose: Radiation treatment of gynecological neoplasms, such as cervical carcinoma, usually combines external radiation therapy with one or more intracavitary brachytherapy applications. Although the dose from external beam radiation therapy and brachytherapy can be calculated and displayed in 3D individually, the dose distributions are not combined. At most, combined point doses are calculated for select points using various time-dose models. In this study, we present a methodology to combine external beam and brachytherapy treatments for gynecological neoplasms. Material and Methods: Three dimensional bio-effect treatment planning to obtain complication probability has been outlined. CT scans of the patient's pelvis with the gynecological applicator in place are used to outline normal tissue and tumor volumes. 3D external beam and brachytherapy treatment plans are developed separately and an external beam dose matrix and a brachytherapy dose matrix was calculated. The dose in each voxel was assumed to be homogeneous. The physical dose in each voxel of the dose matrix was then converted into extrapolated response dose (ERD) based on the linear quadratic model that accounts for the dose per fraction, number of fractions, dose rate, and complete or incomplete repair of sublethal damage (time between fractions). The net biological dose delivered was obtained by summing the ERD grids from external beam and brachytherapy since there was complete repair of sublethal damage between external beam and brachytherapy treatments. The normal tissue complication probability and tumor control probability were obtained using the biological dose matrix based on the critical element model. Results: The outlined method of combining external beam and brachytherapy treatments was implemented on gynecological treatments using an applicator for brachytherapy treatments. Conclusion: Implementation of the biological dose calculation that combine different modalities is extremely useful

  1. A New Approach with Combined Stereotactic Trans-multiarc Beams for Radiosurgery Based on the Linear Accelerator : Photon Knife

    International Nuclear Information System (INIS)

    Choi, Tae Jin; Kim, Jin Hee; Kim, Ok Bae

    1996-01-01

    Purpose : To get an acute steepness of dose gradients at outside the target volume in intracranial lesion and a less limitation of beam selection avoiding the high dose at normal brain tissue, this Photon Knife Radiosurgery System was developed in order to provide the three-dimensional dose distribution through the reconstruction of CT scan and the combined stereotactic tranmultiarc beam mode based on linear accelerator photon beam. Methods and Materials : This stereotactic radiosurgery, Photon Knife based on linear accelerator photon beam was provided the non-coplanar multiarc and trans-multiarc irradiations. The stereotactic trans-multiarc beam mode can be obtained from the patient position in decubitus. This study has provided the 3-dimensional isodose curve and anatomical structures with the surface rendering technique. Results : In this study, it shows that the dose distributions of stereotactic beam mode are significantly depended on the selected couch and gantry angle in same collimator size. Practical dose distribution of combined stereotactic trans-multiarc beam has shown a more small rim thickness than that of the non-coplanar multiarc beam mode in axial, sagittal and coronal plane in our study. 3-Dimensional dose line displayed with surface rendering of irregular target shape is helpful to determine the target dose and to predict the prognosis in follow-up radiosurgery. Conclusion : 3-Dimensional dose line displayed with surface rendering of irregular target shape is essential in stereotactic radiosurgery. This combined stereotactic trans-multiarc beam has shown a less limitation of the selection couch and gantry beam angles for the target surrounding critical organs. It has shown that the dose distribution of combined trans-multiarc beam greatly depended on the couch and gantry angles. In our experiments. the absorbed dose has been decreased to 27 % /mm in maximum at the interval of 50% to 80% of isodose line

  2. An astronomical murder?

    Science.gov (United States)

    Belenkiy, Ari

    2010-04-01

    Ari Belenkiy examines the murder of Hypatia of Alexandria, wondering whether problems with astronomical observations and the date of Easter led to her becoming a casualty of fifth-century political intrigue.

  3. The Moon in Close-up A Next Generation Astronomer's Guide

    CERN Document Server

    Wilkinson, John

    2010-01-01

    Information collected by recent space probes sent to explore the Moon by the USA, the European Space Agency, Japan, China and India has changed our knowledge and understanding of the Moon, particularly its geology, since the Apollo missions. This book presents those findings in a way that will be welcomed by amateur astronomers, students, educators and anyone interested in the Moon. Enhanced by many colour photos, it combines newly acquired scientific understanding with detailed descriptions and labelled photographic maps of the lunar surface. Guided by observation methods explained in the book and 17 Study Areas presented and carefully explained in the last chapter, amateur astronomers can observe these features from Earth using telescopes and binoculars. Readers who consult the photographic maps will gain a better understanding about the Moon’s topography and geology. The book is rounded out by a helpful glossary.

  4. Treatment of liquid separated from sludge by the method using electron beam and ozone in combination

    International Nuclear Information System (INIS)

    Hosono, Masakazu; Arai, Hidehiko; Aizawa, Masaki; Shimooka, Toshio; Shimizu, Ken; Sugiyama, Masashi.

    1995-01-01

    Since the liquid separated from sludge in the dehydration or concentration process of sewer sludge contains considerable amount of organic compositions that are hard to be decomposed by microorganisms, it has become difficult to be treated by conventional activated sludge process. In the case of discharging the separated liquid into closed water areas, the higher quality treatment is required. The method of using electron beam irradiation and ozone oxidation in combination for cleaning the liquid separated from sludge was examined, therefore, the results are reported. The water quality of the sample from the sludge treatment plant in A City is shown. The method of bio-pretreatment, the treatment method by using electron beam and ozone in combination, and the method of analyzing the water quality are described. The effect of the treatment by activated sludge process, as the effect of the treatment by the combined use of electron beam and ozone, the change of COD and TOC, the change of chromaticity, the change of gel chromatogram, and the reaction mechanism are reported. In this paper, only the basic concept on the model plant for applying the method of the combined use of electron beam and ozone to the treatment of the liquid separated from sludge is discussed. (K.I.)

  5. If Frisch is true - impacts of varying beam width, resolution, frequency combinations and beam overlap when retrieving liquid water content profiles

    Science.gov (United States)

    Küchler, N.; Kneifel, S.; Kollias, P.; Loehnert, U.

    2017-12-01

    Cumulus and stratocumulus clouds strongly affect the Earth's radiation budget and are a major uncertainty source in weather and climate prediction models. To improve and evaluate models, a comprehensive understanding of cloud processes is necessary and references are needed. Therefore active and passive microwave remote sensing of clouds can be used to derive cloud properties such as liquid water path and liquid water content (LWC), which can serve as a reference for model evaluation. However, both the measurements and the assumptions when retrieving physical quantities from the measurements involve uncertainty sources. Frisch et al. (1998) combined radar and radiometer observations to derive LWC profiles. Assuming their assumptions are correct, there will be still uncertainties regarding the measurement setup. We investigate how varying beam width, temporal and vertical resolutions, frequency combinations, and beam overlap of and between the two instruments influence the retrieval of LWC profiles. Especially, we discuss the benefit of combining vertically, high resolved radar and radiometer measurements using the same antenna, i.e. having ideal beam overlap. Frisch, A. S., G. Feingold, C. W. Fairall, T. Uttal, and J. B. Snider, 1998: On cloud radar and microwave radiometer measurements of stratus cloud liquid water profiles. J. Geophys. Res.: Atmos., 103 (18), 23 195-23 197, doi:0148-0227/98/98JD-01827509.00.

  6. Finding Hidden Treasures: Investigations in US Astronomical Plate Archives

    Czech Academy of Sciences Publication Activity Database

    Hudec, René; Hudec, L.

    2013-01-01

    Roč. 53, č. 1 (2013), s. 23-26 ISSN 1210-2709 R&D Projects: GA ČR GA205/08/1207 Institutional support: RVO:67985815 Keywords : astronomical data archives * astronomical photography * astronomical photographic archives Subject RIV: BH - Optics, Masers, Lasers

  7. Astronomía en la cultura

    Science.gov (United States)

    López, A.; Giménez Benitez, S.; Fernández, L.

    La Astronomía en la Cultura es el estudio interdisciplinario a nivel global de la astronomía prehistórica, antigua y tradicional, en el marco de su contexto cultural. Esta disciplina abarca cualquier tipo de estudios o líneas de investigación en que se relacione a la astronomía con las ciencias humanas o sociales. En ella se incluyen tanto fuentes escritas, relatos orales como fuentes arqueológicas, abarcando entre otros, los siguientes temas: calendarios, observación práctica, cultos y mitos, representación simbólica de eventos, conceptos y objetos astronómicos, orientación astronómica de tumbas, templos, santuarios y centros urbanos, cosmología tradicional y la aplicación ceremonial de tradiciones astronómicas, la propia historia de la astronomía y la etnoastronomía (Krupp, 1989) (Iwaniszewski, 1994). En nuestro trabajo abordamos la historia y situación actual de esta disciplina, sus métodos y sus relaciones con otras áreas de investigación.

  8. Astronomical Image and Data Analysis

    CERN Document Server

    Starck, J.-L

    2006-01-01

    With information and scale as central themes, this comprehensive survey explains how to handle real problems in astronomical data analysis using a modern arsenal of powerful techniques. It treats those innovative methods of image, signal, and data processing that are proving to be both effective and widely relevant. The authors are leaders in this rapidly developing field and draw upon decades of experience. They have been playing leading roles in international projects such as the Virtual Observatory and the Grid. The book addresses not only students and professional astronomers and astrophysicists, but also serious amateur astronomers and specialists in earth observation, medical imaging, and data mining. The coverage includes chapters or appendices on: detection and filtering; image compression; multichannel, multiscale, and catalog data analytical methods; wavelets transforms, Picard iteration, and software tools. This second edition of Starck and Murtagh's highly appreciated reference again deals with to...

  9. The amateur astronomer

    CERN Document Server

    Moore, Patrick

    2006-01-01

    Introduces astronomy and amateur observing together. This edition includes photographs and illustrations. The comprehensive appendices provide hints and tips, as well as data for every aspect of amateur astronomy. This work is useful for amateur astronomers

  10. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks.

    Science.gov (United States)

    Xiao, Y; Brunet, F; Kanskar, M; Faucher, M; Wetter, A; Holehouse, N

    2012-01-30

    We have demonstrated a monolithic cladding-pumped ytterbium-doped single all-fiber laser oscillator generating 1 kW of CW signal power at 1080 nm with 71% slope efficiency and near diffraction-limited beam quality. Fiber components were highly integrated on "spliceless" passive fibers to promote laser efficiency and alleviate non-linear effects. The laser was pumped through a 7:1 pump combiner with seven 200-W 91x nm fiber-pigtailed wavelength-beam-combined diode-stack modules. The signal power of such a single all-fiber laser oscillator showed no evidence of roll-over, and the highest output was limited only by available pump power.

  11. Astronomers celebrate a year of new Hubble results

    Science.gov (United States)

    1995-02-01

    "We are beginning to understand that because of these observations we are going to have to change the way we look at the Universe," said ESA's Dr Duccio Macchetto, Associate Director for Science Programs at the Space Telescope Science Institute (STScI), Baltimore, Maryland, USA. The European Space Agency plays a major role in the Hubble Space Telescope programme. The Agency provided one of the telescope's four major instruments, called the Faint Object Camera, and two sets of electricity-generating solar arrays. In addition, 15 ESA scientific and technical staff work at the STScI. In return for this contribution, European astronomers are entitled to 15 percent of the telescope's observing time, although currently they account for 20 percent of all observations. "This is a testimony to the quality of the European science community", said Dr Roger Bonnet, Director of Science at ESA. "We are only guaranteed 15 percent of the telescope's use, but consistently receive much more than that." Astronomers from universities, observatories and research institutes across Europe lead more than 60 investigations planned for the telescope's fifth observing cycle, which begins this summer. Many more Europeans contribute to teams led by other astronomers. Looking back to the very start of time European astronomer Dr Peter Jakobsen used ESA's Faint Object Camera to confirm that helium was present in the early Universe. Astronomers had long predicted that 90 percent of the newly born Universe consisted of hydrogen, with helium making up the remainder. Before the refurbished Hubble came along, it was easy to detect the hydrogen, but the primordial helium remained elusive. The ultraviolet capabilities of the telescope, combined with the improvement in spatial resolution following the repair, made it possible for Dr Jakobsen to obtain an image of a quasar close to the edge of the known Universe. A spectral analysis of this picture revealed the quasar's light, which took 13 billion years

  12. IEC 61267: Feasibility of type 1100 aluminium and a copper/aluminium combination for RQA beam qualities.

    Science.gov (United States)

    Leong, David L; Rainford, Louise; Zhao, Wei; Brennan, Patrick C

    2016-01-01

    In the course of performance acceptance testing, benchmarking or quality control of X-ray imaging systems, it is sometimes necessary to harden the X-ray beam spectrum. IEC 61267 specifies materials and methods to accomplish beam hardening and, unfortunately, requires the use of 99.9% pure aluminium (Alloy 1190) for the RQA beam quality, which is expensive and difficult to obtain. Less expensive and more readily available filters, such as Alloy 1100 (99.0% pure) aluminium and copper/aluminium combinations, have been used clinically to produce RQA series without rigorous scientific investigation to support their use. In this paper, simulation and experimental methods are developed to determine the differences in beam quality using Alloy 1190 and Alloy 1100. Additional simulation investigated copper/aluminium combinations to produce RQA5 and outputs from this simulation are verified with laboratory tests using different filter samples. The results of the study demonstrate that although Alloy 1100 produces a harder beam spectrum compared to Alloy 1190, it is a reasonable substitute. A combination filter of 0.5 mm copper and 2 mm aluminium produced a spectrum closer to that of Alloy 1190 than Alloy 1100 with the added benefits of lower exposures and lower batch variability. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Astronomical theory of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Berger, A.; Loutre, M.F. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium). Inst. d' Astronomie et de Geophysique G. Lemaitre

    2004-12-01

    The astronomical theory of paleo-climates aims to explain the climatic variations occurring with quasi-periodicities lying between tens and hundreds of thousands of years. The origin of these quasi-cycles lies in the astronomically driven changes in the latitudinal and seasonal distributions of the energy that the Earth receives from the Sun. These changes are then amplified by the feedback mechanisms which characterize the natural behaviour of the climate system like those involving the albedo-, the water vapor-, and the vegetation- temperature relationships. Climate models of different complexities are used to explain the chain of processes which finally link the long-term variations of three astronomical parameters to the long-term climatic variations at time scale of tens to hundreds of thousands of years. In particular, sensitivity analysis to the astronomically driven insolation changes and to the CO{sub 2} atmospheric concentrations have been performed with the 2-dimension climate model of Louvain-la-Neuve. It could be shown that this model simulates more or less correctly the entrance into glaciation around 2.75 million year (Myr) BP (before present), the late Pliocene-early Pleistocene 41-kyr (thousand years) cycle, the emergence of the 100-kyr cycle around 850 kyr BP and the glacial-interglacial cycles of the last 600 kyr. During the Late Pliocene (in an ice-free - warm world) ice sheets can only develop during times of sufficiently low summer insolation. This occurs during large eccentricity times when climatic precession and obliquity combine to obtain such low values, leading to the 41-kyr period between 3 and 1 million years BP. On the contrary in a glacial world, ice sheets persist most of the time except when insolation is very high in polar latitudes, requiring large eccentricity again, but leading this time to interglacial and finally to the 100-kyr period of the last 1 Myr. Using CO{sub 2} scenarios, it has been shown that stage 11 and stage 1

  14. Cosmological field theory for observational astronomers

    International Nuclear Information System (INIS)

    Zel'Dovich, Y.B.

    1987-01-01

    Theories of the very early Universe that use scalar fields (i.e., the so-called inflationary models of the Universe) have now come into wide use. The inflationary universe approach may perhaps solve some of the most difficult enigmas about the Universe as a whole. The inflationary universe forms a good bridge between the quantum theory of the birth of the Universe (which is still in the initial stages of development) and the standard hot Big Bang theory (which is well established, at least qualitatively). Therefore, an understanding of the basic ideas of inflation is a must for astronomers interested in the broad picture of the science. Astronomers are mathematically oriented enough (via celestial mechanics, electromagnetic theory, magnetohydrodynamics, nuclear reactions,etc.) that there is no negative attitude towards formulae in general. What the astronomer lacks is a knowledge of recent developments in particle physics and field theory. The astronomer should not be blamed for this, because these branches of physics are developing in a very peculiar fashion: some subfields of it are progressing comparatively slowly, with experimental verifications at each and every step, while other subfields progress rapidly

  15. Astronomical Books and Charts in the Book of Bibliographie Coreenne

    Science.gov (United States)

    Lee, Ki-Won; Yang, Hong-Jin; Park, Myeong-Gu

    2008-06-01

    We investigate astronomical materials listed in the book of Bibliographie Coréenne written by Maurice Courant. He classified ancient Korean books into nine Divisions (?) and thirty six Classes (?), and published them as three volumes (ranging from 1894 to 1896) and one supplement (in 1901). In total, 3,821 books including astronomical ones are listed together with information on physical size, possessional place, bibliographical note, and so forth. Although this book is an essential one in the field of Korea bibliography and contains many astronomical materials such as Cheon-Mun-Ryu-Cho ????, Si-Heon-Seo ??????, and Cheon-Sang-Yeol-Cha-Bun-Ya-Ji-Do ????????, it has not been well known to the public nor to astronomical society. Of 3,821 catalogues, we found that about 50 Items (?) are related to astronomy or astrology, and verified that most ! of them are located in the Kyujanggak Royal Library ???. We also found an unknown astronomical chart, Hon-Cheon-Chong-Seong-Yeol-Cha-Bun-Ya-Ji-Do ??????????. Because those astronomical materials are not well known to international astronomical community and there have been few studies on the materials in Korea, we here introduce and review them, particularly with the astronomical viewpoint.

  16. Generation and application of Bessel beam in alignment works

    International Nuclear Information System (INIS)

    Gale, D. M.

    2009-01-01

    The divergence of a Gaussian laser beam is a limiting factor for optical alignment tasks at large distances. Bessel beams have almost zero divergence but are still not widely used. We discuss the construction of an alignment telescope based on Bessel beam generation using a commercial laser diode module. The Bessel beam is generated with conical or plano-convex lenses, and projected using a commercial CCD camera lens to extend the useful range of the beam. Our Bessel beams have diameters of between 0.5 - 1mm over beam lengths of 15m, representing a six-fold improvement compared to Gaussian beams, while the transverse beam structure (Bessel pattern) provides an excellent alignment aid for use with beam target. Another advantage of Bessel beams is their self-regeneration property, which allows the use of multiple beam targets with minimum beam degradation. We are using our crosshair targets with crosshair targets to align optical components in a large astronomical telescope, and can achieve precisions of tens of microns over distances of 20m using purely visual methods. (Author)

  17. 150th Anniversary of the Astronomical Observatory Library of Sciences

    Science.gov (United States)

    Solntseva, T.

    The scientific library of the Astronomical observatory of Kyiv Taras Shevchenko University is one of the oldest ones of such a type in Ukraine. Our Astronomical Observatory and its scientific library will celebrate 150th anniversary of their foundation. 900 volumes of duplicates of Olbers' private library underlay our library. These ones were acquired by Russian Academy of Sciences for Poulkovo observatory in 1841 but according to Struve's order were transmitted to Kyiv Saint Volodymyr University. These books are of great value. There are works edited during Copernicus', Kepler's, Galilei's, Newton's, Descartes' lifetime. Our library contains more than 100000 units of storage - monographs, periodical astronomical editions from the first (Astronomische Nachrichten, Astronomical journal, Monthly Notices etc.), editions of the majority of the astronomical observatories and institutions of the world, unique astronomical atlases and maps

  18. Wavelength beam combining of a 980-nm tapered diode laser bar in an external cavity

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Thestrup Nielsen, Birgitte

    2010-01-01

    solution for preserving the beam quality of the bar in the range of that of a single emitter and at the same time, enabling the power scaling. We report spectral beam combining applied to a 12 emitter tapered laser bar at 980 nm. The external cavity has been designed for a wavelength separation of 4.0 nm......High power diode lasers are used in a large number of applications. A limiting factor for more widespread use of broad area lasers is the poor beam quality. Gain guided tapered diode lasers are ideal candidates for industrial applications that demands watt level output power with good beam quality...

  19. CW 50W/M2 = 10.9 diode laser source by spectral beam combining based on a transmission grating.

    Science.gov (United States)

    Zhang, Jun; Peng, Hangyu; Fu, Xihong; Liu, Yun; Qin, Li; Miao, Guoqing; Wang, Lijun

    2013-02-11

    An external cavity structure based on the -1st transmission grating is introduced to spectral beam combining a 970 nm diode laser bar. A CW output power of 50.8 W, an electro-optical conversion efficiency of 45%, a spectral beam combining efficiency of 90.2% and a holistic M(2) value of 10.9 are achieved. This shows a way for a diode laser source with several KW power and diffraction-limited beam quality at the same time.

  20. Choosing and using astronomical filters

    CERN Document Server

    Griffiths, Martin

    2014-01-01

    As a casual read through any of the major amateur astronomical magazines will demonstrate, there are filters available for all aspects of optical astronomy. This book provides a ready resource on the use of the following filters, among others, for observational astronomy or for imaging: Light pollution filters Planetary filters Solar filters Neutral density filters for Moon observation Deep-sky filters, for such objects as galaxies, nebulae and more Deep-sky objects can be imaged in much greater detail than was possible many years ago. Amateur astronomers can take

  1. Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation.

    Science.gov (United States)

    Park, Sangwoo; Cha, Seongwoo; Oh, Jungsuk; Lee, Hwihyeong; Ahn, Heekyung; Churn, Kil Sung; Kong, Hong Jin

    2016-04-18

    The self-phase locking of a stimulated Brillouin scattering-phase conjugate mirror (SBS-PCM) allows a simple and scalable coherent beam combination of existing lasers. We propose a simple optical system composed of a rotating wedge and a concave mirror to overcome the power limit of the SBS-PCM. Its phase locking ability and the usefulness on the beam-combination laser are demonstrated experimentally. A four-beam combination is demonstrated using this SBS-PCM scheme. The relative phases between the beams were measured to be less than λ/24.7.

  2. Suppression of Astronomical Sources Using Starshades and the McMath-Pierce Solar Telescope

    Science.gov (United States)

    Novicki, Megan; Warwick, Steve; Smith, Daniel; Richards, Michael; Harness, Anthony

    2016-01-01

    The external starshade is a method for the direct detection and spectral characterization of terrestrial planets around other stars, a key goal identified in ASTRO2010. Tests of this approach have been and continue to be conducted in the lab and in the field (Samuele et al., 2010, Glassman et al., 2014) using non-collimated light sources with a spherical wavefront. We extend the current approach to performing night-time observations of astronomical objects using small-scale (approximately 1/300th) starshades and the McMath-Pierce Solar Telescope at Kitt Peak National Observatory. We placed a starshade directly in the path of the beam from an astronomical object in front of the main heliostat. Using only flat mirrors, we then directed the light through the observatory path and reflected it off the West heliostat to an external telescope located approximately 270m away, for an effective baseline of 420m.This configuration allowed us to make measurements of flat wavefront sources with a Fresnel number close to those expected in proposed full-scale space configurations. We present the results of our engineering runs conducted in 2015.

  3. Serbian Astronomers in Science Citation Index in the XX Century

    Science.gov (United States)

    Dimitrijevic, Milan S.

    The book is written paralelly in Serbian and English. The presence of works of Serbian astronomers and works in astronomical journals published by other Serbian scientists, in Science Citation Index within the period from 1945 up to the end of 2000, has been analyzed. Also is presented the list of 38 papers which had some influence on the development of astronomy in the twentieth century. A review of the development of astronomy in Serbia in the last century is given as well. Particular attention is payed to the Astronomical Observatory, the principal astronomical institution in Serbia, where it is one of the oldest scientific organizations and the only autonomous astronomical institute. Its past development forms an important part of the history of science and culture in these regions. In the book is also considered and the history of the university teaching of astronomy in Serbia after the second world war. First of all the development of the Chair of Astronomy at the Faculty of Mathematics in Belgrade, but also the teaching of astronomy at University in Novi Sad, Ni and Kragujevac is discussed. In addition to professional Astronomy, well developed in Serbia is also the amateur Astronomy. In the review is first of all included the largest and the oldest organization of amateur-astronomers in Serbia, founded in 1934. Besides, here are the Astronomical Society "Novi Sad", ADNOS and Research Station "Petnica". In Valjevo, within the framework of the Society of researchers "Vladimir Mandic - Manda", there is active also the Astronomical Group. In Kragujevac, on the roof of the Institute of Physics of the Faculty of Sciences, there is the "Belerofont" Observatory. In Ni, at the close of the sixties and the start of the seventies, there was operating a branch of the Astronomical Society "Rudjer Bokovic", while at the Faculty of Philosophy there existed in the period 1976-1980 the "Astro-Geophysical Society". In the year 1996 there was founded Astronomical Society

  4. A combined thermal dissociation and electron impact ionization source for radioactive ion beam generationa

    International Nuclear Information System (INIS)

    Alton, G.D.; Williams, C.

    1996-01-01

    The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, in principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. copyright 1996 American Institute of Physics

  5. Preservation and maintenance of the astronomical sites in Armenia

    Science.gov (United States)

    Mickaelian, A. M.

    2008-01-01

    Astronomy in Armenia was popular since ancient times. There are signs of astronomical observations coming from a few thousands years ago. Two ancient observatories, Karahunge and Metzamor are especially well known. Karahunge is the Armenian twin of the Stonehenge and is even older. However, there is no proper attention from the state authorities and efforts are needed for preservation of such historical-astronomical monuments. The Byurakan Astrophysical Observatory (BAO) is the modern famous Armenian observatory founded in 1946 by the outstanding scientist Victor Ambartsumian. It was one of the world astronomical centres in 1950-s to 1970-s, and at present is the largest observatory in the Middle East area. As the ancient astronomical sites, Byurakan also needs a proper attitude from the state authorities and corresponding international organizations to preserve its values and importance for the present and future astronomical activities in the region, including its rich observational archive, telescopes, and human resources. Despite all the difficulties, the Armenian astronomers keep high international level of research and display various activities organizing international meetings and schools, preparing new young generation for the future research. The Armenian Astronomical Society (ArAS) is an affiliated member of EAS. Armenia has its Virtual Observatory project (ArVO) as well. The next Joint European and National Astronomy Meeting (JENAM-2007) will be held in Yerevan, Armenia, in August 2007. There are plans to organize astronomical tours to Armenia for making observations from various sites, including the ancient observatories. The future of astronomy in Armenia strongly depends on all of this activities and the proper attention both from state authorities and society.

  6. Basic Optics for the Astronomical Sciences

    CERN Document Server

    Breckinridge, James

    2012-01-01

    This text was written to provide students of astronomy and engineers an understanding of optical science - the study of the generation, propagation, control, and measurement of optical radiation - as it applies to telescopes and instruments for astronomical research in the areas of astrophysics, astrometry, exoplanet characterization, and planetary science. The book provides an overview of the elements of optical design and physical optics within the framework of the needs of the astronomical community.

  7. Information seeking behavior of Greek astronomers

    OpenAIRE

    Brindesi, Hara; Kapidakis, Sarantos

    2011-01-01

    This study examines three aspects of information seeking behaviour of astronomers in Greece including a) the importance they place in keeping up- to-date with current developments b) the methods they depend on for keeping up-to-date and c) the information sources they mostly use. We adopted an intradisciplinary approach in order to investigate similarities and differences in information seeking behaviour among astronomers when examining them as groups bearing different characteristics, includ...

  8. Early experience of proton beam therapy combined with chemotherapy for locally advanced oropharyngeal cancer

    International Nuclear Information System (INIS)

    Ishikawa, Youjirou; Nakamura, Tatsuya; Takada, Akinori; Takayama, Kanako; Makita, Chiyoko; Suzuki, Motohisa; Azami, Yusuke; Kikuchi, Yasuhiro; Fuwa, Nobukazu

    2013-01-01

    Between 2009 and 2012, 10 patients with advanced oropharyngeal cancer underwent proton therapy combined with chemotherapy. The initial results of this therapy were 8 complete response (CR) and 2 partial response (PR), local recurrence was detected 1 patient. Proton beam therapy combined with chemotherapy is thought to be an effective treatment for locally advanced oropharyngeal cancer. (author)

  9. New astronomical references in two Catalonian late medieval documents.

    Science.gov (United States)

    Martínez, María José; Marco, Francisco J

    2014-01-01

    In 2008, after 13 years of preparation, the Generalitat of Catalunya finished the publication of the 10 volumes of the Dietaris de la Generalitat de Catalunya. The Dietaris, as well as a closely related source, the llibre de Jornades 1411/1484 de Jaume Safont, cover the period of 1411 to 1539. In this article, we examine astronomical references contained in these two sources, and place them in their historical context. Our main focus lies on astronomical phenomena that have not previously been published in the astronomical literature. In fact, relatively few astronomical records are accessible in Spanish medieval and early modern history, and our paper intends to fill this gap partially.

  10. Astronomical Books and Charts in the Book of Bibliographie Coreenne

    Directory of Open Access Journals (Sweden)

    Ki-Won Lee

    2008-06-01

    Full Text Available We investigate astronomical materials listed in the book of Bibliographie Coreenne written by Maurice Courant. He classified ancient Korean books into nine Divisions (部 and thirty six Classes (類, and published them as three volumes (ranging from 1894 to 1896 and one supplement (in 1901. In total, 3,821 books including astronomical ones are listed together with information on physical size, possessional place, bibliographical note, and so forth. Although this book is an essential one in the field of Korea bibliography and contains many astronomical materials such as Cheon-Mun-Ryu-Cho 天文類抄, Si-Heon-Seo 時憲書, and Cheon-Sang-Yeol-Cha-Bun-Ya-Ji-Do 天象列次分野之圖, it has not been well known to the public nor to astronomical society. Of 3,821 catalogues, we found that about 50 Items (種 are related to astronomy or astrology, and verified that most of them are located in the Kyujanggak Royal Library 奎章閣. We also found an unknown astronomical chart, Hon-Cheon-Chong-Seong-Yeol-Cha-Bun-Ya-Ji-Do 渾天總星列次分野之圖. Because those astronomical materials are not well known to international astronomical community and there have been few studies on the materials in Korea, we here introduce and review them, particularly with the astronomical viewpoint.

  11. Improving external beam radiotherapy by combination with internal irradiation.

    Science.gov (United States)

    Dietrich, A; Koi, L; Zöphel, K; Sihver, W; Kotzerke, J; Baumann, M; Krause, M

    2015-07-01

    The efficacy of external beam radiotherapy (EBRT) is dose dependent, but the dose that can be applied to solid tumour lesions is limited by the sensitivity of the surrounding tissue. The combination of EBRT with systemically applied radioimmunotherapy (RIT) is a promising approach to increase efficacy of radiotherapy. Toxicities of both treatment modalities of this combination of internal and external radiotherapy (CIERT) are not additive, as different organs at risk are in target. However, advantages of both single treatments are combined, for example, precise high dose delivery to the bulk tumour via standard EBRT, which can be increased by addition of RIT, and potential targeting of micrometastases by RIT. Eventually, theragnostic radionuclide pairs can be used to predict uptake of the radiotherapeutic drug prior to and during therapy and find individual patients who may benefit from this treatment. This review aims to highlight the outcome of pre-clinical studies on CIERT and resultant questions for translation into the clinic. Few clinical data are available until now and reasons as well as challenges for clinical implementation are discussed.

  12. Early results from the Infrared Astronomical Satellite

    International Nuclear Information System (INIS)

    Neugebauer, G.; Beichman, C.A.; Soifer, B.T.

    1984-01-01

    For 10 months the Infrared Astronomical Satellite (IRAS) provided astronomers with what might be termed their first view of the infrared sky on a clear, dark night. Without IRAS, atmospheric absorption and the thermal emission from both the atmosphere and Earthbound telescopes make the task of the infrared astronomer comparable to what an optical astronomer would face if required to work only on cloudy afternoons. IRAS observations are serving astronomers in the same manner as the photographic plates of the Palomar Observatory Sky Survey; just as the optical survey has been used by all astronomers for over three decades, as a source of quantitative information about the sky and as a roadmap for future observations, the results of IRAS will be studied for years to come. IRAS has demonstrated the power of infrared astronomy from space. Already, from a brief look at a miniscule fraction of the data available, we have learned much about the solar system, about nearby stars, about the Galaxy as a whole and about distant extragalactic systems. Comets are much dustier than previously thought. Solid particles, presumably the remnants of the star-formation process, orbit around Vega and other stars and may provide the raw material for planetary systems. Emission from cool interstellar material has been traced throughout the Galaxy all the way to the galactic poles. Both the clumpiness and breadth of the distribution of this material were previously unsuspected. The far-infrared sky away from the galactic plane has been found to be dominate by spiral galaxies, some of which emit more than 50% and as much as 98% of their energy in the infrared - an exciting and surprising revelation. The IRAS mission is clearly the pathfinder for future mission that, to a large extent, will be devoted to the discoveries revealed by IRAS. 8 figures

  13. Astronomical Observatory of Belgrade from 1924 to 1955

    Science.gov (United States)

    Radovanac, M.

    2014-12-01

    History of the Astronomical Observatory in Belgrade, as the presentation is done here, become the field of interest to the author of the present monograph in early 2002. Then, together with Luka C. Popovic, during the Conference "Development of Astronomy among Serbs II" held in early April of that year, he prepared a paper entitled "Astronomska opservatorija tokom Drugog Svetskog rata" (Astronomical Observatory in the Second World War). This paper was based on the archives material concerning the Astronomical Observatory which has been professionally bearing in mind the author's position the subject of his work.

  14. Optical modelling of far-infrared astronomical instrumentation exploiting multimode horn antennas

    Science.gov (United States)

    O'Sullivan, Créidhe; Murphy, J. Anthony; Mc Auley, Ian; Wilson, Daniel; Gradziel, Marcin L.; Trappe, Neil; Cahill, Fiachra; Peacocke, T.; Savini, G.; Ganga, K.

    2014-07-01

    In this paper we describe the optical modelling of astronomical telescopes that exploit bolometric detectors fed by multimoded horn antennas. In cases where the horn shape is profiled rather than being a simple cone, we determine the beam at the horn aperture using an electromagnetic mode-matching technique. Bolometers, usually placed in an integrating cavity, can excite many hybrid modes in a corrugated horn; we usually assume they excite all modes equally. If the waveguide section feeding the horn is oversized these modes can propagate independently, thereby increasing the throughput of the system. We use an SVD analysis on the matrix that describes the scattering between waveguide (TE/TM) modes to recover the independent orthogonal fields (hybrid modes) and then propagate these to the sky independently where they are added in quadrature. Beam patterns at many frequencies across the band are then added with a weighting appropriate to the source spectrum. Here we describe simulations carried out on the highest-frequency (857-GHz) channel of the Planck HFI instrument. We concentrate in particular on the use of multimode feedhorns and consider the effects of possible manufacturing tolerances on the beam on the sky. We also investigate the feasibility of modelling far-out sidelobes across a wide band for electrically large structures and bolometers fed by multi-mode feedhorns. Our optical simulations are carried out using the industry-standard GRASP software package.

  15. Novel Algorithms for Astronomical Plate Analyses

    Czech Academy of Sciences Publication Activity Database

    Hudec, René; Hudec, L.

    2011-01-01

    Roč. 32, 1-2 (2011), s. 121-123 ISSN 0250-6335. [Conference on Multiwavelength Variability of Blazars. Guangzhou, 22,09,2010-24,09,2010] R&D Projects: GA ČR GA205/08/1207 Grant - others:GA ČR(CZ) GA102/09/0997; MŠMT(CZ) ME09027 Institutional research plan: CEZ:AV0Z10030501 Keywords : astronomical plates * plate archives archives * astronomical algorithms Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.400, year: 2011

  16. Finite element modeling of reinforced concrete beams with a hybrid combination of steel and aramid reinforcement

    International Nuclear Information System (INIS)

    Hawileh, R.A.

    2015-01-01

    Highlights: • Modeling of concrete beams reinforced steel and FRP bars. • Developed finite element models achieved good results. • The models are validated via comparison with experimental results. • Parametric studies are performed. - Abstract: Corrosion of steel bars has an adverse effect on the life-span of reinforced concrete (RC) members and is usually associated with crack development in RC beams. Fiber reinforced polymer (FRP) bars have been recently used to reinforce concrete members in flexure due to their high tensile strength and superior corrosion resistance properties. However, FRP materials are brittle in nature, thus RC beams reinforced with such materials would exhibit a less ductile behavior when compared to similar members reinforced with conventional steel reinforcement. Recently, researchers investigated the performance of concrete beams reinforced with a hybrid combination of steel and Aramid Fiber Reinforced Polymer (AFRP) reinforcement to maintain a reasonable level of ductility in such members. The function of the AFRP bars is to increase the load-carrying capacity, while the function of the steel bars is to ensure ductility of the flexural member upon yielding in tension. This paper presents a three-dimensional (3D) finite element (FE) model that predicted the load versus mid-span deflection response of tested RC beams conducted by other researchers with a hybrid combination of steel and AFRP bars. The developed FE models account for the constituent material nonlinearities and bond–slip behavior between the reinforcing bars and adjacent concrete surfaces. It was concluded that the developed models can accurately capture the behavior and predicts the load-carrying capacity of such RC members. In addition, a parametric study is conducted using the validated models to investigate the effect of AFRP bar size, FRP material type, bond–slip action, and concrete compressive strength on the performance of concrete beams when reinforced

  17. Nonlinear Response of Cantilever Beams to Combination and Subcombination Resonances

    Directory of Open Access Journals (Sweden)

    Ali H. Nayfeh

    1998-01-01

    Full Text Available The nonlinear planar response of cantilever metallic beams to combination parametric and external subcombination resonances is investigated, taking into account the effects of cubic geometric and inertia nonlinearities. The beams considered here are assumed to have large length-to-width aspect ratios and thin rectangular cross sections. Hence, the effects of shear deformations and rotatory inertia are neglected. For the case of combination parametric resonance, a two-mode Galerkin discretization along with Hamilton’s extended principle is used to obtain two second-order nonlinear ordinary-differential equations of motion and associated boundary conditions. Then, the method of multiple scales is applied to obtain a set of four first-order nonlinear ordinary-differential equations governing the modulation of the amplitudes and phases of the two excited modes. For the case of subcombination resonance, the method of multiple scales is applied directly to the Lagrangian and virtual-work term. Then using Hamilton’s extended principle, we obtain a set of four first-order nonlinear ordinary-differential equations governing the amplitudes and phases of the two excited modes. In both cases, the modulation equations are used to generate frequency- and force-response curves. We found that the trivial solution exhibits a jump as it undergoes a subcritical pitchfork bifurcation. Similarly, the nontrivial solutions also exhibit jumps as they undergo saddle-node bifurcations.

  18. SIP: A Web-Based Astronomical Image Processing Program

    Science.gov (United States)

    Simonetti, J. H.

    1999-12-01

    I have written an astronomical image processing and analysis program designed to run over the internet in a Java-compatible web browser. The program, Sky Image Processor (SIP), is accessible at the SIP webpage (http://www.phys.vt.edu/SIP). Since nothing is installed on the user's machine, there is no need to download upgrades; the latest version of the program is always instantly available. Furthermore, the Java programming language is designed to work on any computer platform (any machine and operating system). The program could be used with students in web-based instruction or in a computer laboratory setting; it may also be of use in some research or outreach applications. While SIP is similar to other image processing programs, it is unique in some important respects. For example, SIP can load images from the user's machine or from the Web. An instructor can put images on a web server for students to load and analyze on their own personal computer. Or, the instructor can inform the students of images to load from any other web server. Furthermore, since SIP was written with students in mind, the philosophy is to present the user with the most basic tools necessary to process and analyze astronomical images. Images can be combined (by addition, subtraction, multiplication, or division), multiplied by a constant, smoothed, cropped, flipped, rotated, and so on. Statistics can be gathered for pixels within a box drawn by the user. Basic tools are available for gathering data from an image which can be used for performing simple differential photometry, or astrometry. Therefore, students can learn how astronomical image processing works. Since SIP is not part of a commercial CCD camera package, the program is written to handle the most common denominator image file, the FITS format.

  19. An Astronomer In The Classroom: Observatoire de Paris's Partnership Between Teachers and Astronomers

    Science.gov (United States)

    Doressoundiram, A.; Barban, C.

    2006-08-01

    The Observatoire de Paris is offering a partnership between teachers and astronomers. The principle is simple: any teacher wishing to undertake a pedagogical project in astronomy, in the classroom or involving the entire school, can request the help of a mentor. An astronomer from the Observatoire de Paris will then follow the teacher's project progress and offer advice and scientific support throughout the school year. The projects may take different forms: construction projects (models, instruments), lectures, posters, exhibitions, etc. The type of assistance offered is as varied as the projects: lecture(s) in class, telephone and e-mail exchanges, visits to the Observatoire; an almost made-to-measure approach that delighted the thirty or so groups that benefited such partnership in the 2005-2006 academic year. And this number is continuously growing. There was a rich variety of projects undertaken, from mounting a show and building a solar clock to visiting a high altitude observatory, or resolving the mystery of Jupiter's great red spot. The Universe and its mysteries fascinate the young (and the not so- young) and provide a multitude of scientific topics that can be exploited in class. Astronomy offers the added advantage of being a multidisciplinary field. Thus, if most projects are generally initiated by a motivated teacher, they are often taken over by teachers in other subjects: Life and Earth Sciences (SVT), history, mathematics, French, and so forth. The project may consist in an astronomy workshop or be part of the school curriculum. Whatever the case, the astronomer's task is not to replace the teacher or the textbooks, but to propose activities or experiments that are easy to implement. Representing the Solar system on a school-yard scale, for instance, is a perfect way to make youngsters realize that the Universe consists mostly of empty space. There is no shortage of topics, and the students' enthusiasm, seldom absent, is the best reward for the

  20. Astronomical Data and Information Visualization

    Science.gov (United States)

    Goodman, Alyssa A.

    2010-01-01

    As the size and complexity of data sets increases, the need to "see" them more clearly increases as well. In the past, many scientists saw "fancy" data and information visualization as necessary for "outreach," but not for research. In this talk, I wlll demonstrate, using specific examples, why more and more scientists--not just astronomers--are coming to rely upon the development of new visualization strategies not just to present their data, but to understand it. Principal examples will be drawn from the "Astronomical Medicine" project at Harvard's Initiative in Innovative Computing, and from the "Seamless Astronomy" effort, which is co-sponsored by the VAO (NASA/NSF) and Microsoft Research.

  1. The South African Astronomical Observatory

    International Nuclear Information System (INIS)

    1989-01-01

    The research work discussed in this report covers a wide range, from work on the nearest stars to studies of the distant quasars, and the astronomers who have carried out this work come from universities and observatories spread around the world as well as from South African universities and from the South African Astronomical Observatory (SAAO) staff itself. A characteristic of much of this work has been its collaborative character. SAAO studies in 1989 included: supernovae 1987A; galaxies; ground-based observations of celestial x-ray sources; the Magellanic Clouds; pulsating variables; galactic structure; binary star phenomena; the provision of photometric standards; nebulous matter; stellar astrophysics, and astrometry

  2. Astronomical Research with the MicroObservatory Net

    Science.gov (United States)

    Brecher, K.; Sadler, P.; Gould, R.; Leiker, S.; Antonucci, P.; Deutsch, F.

    1997-05-01

    We have developed a fully integrated automated astronomical telescope system which combines the imaging power of a cooled CCD, with a self-contained and weatherized 15 cm reflecting optical telescope and mount. The MicroObservatory Net consists of five of these telescopes. They are currently being deployed around the world at widely distributed longitudes. Remote access to the MicroObservatories over the Internet has now been implemented. Software for computer control, pointing, focusing, filter selection as well as pattern recognition have all been developed as part of the project. The telescopes can be controlled in real time or in delay mode, from a Macintosh, PC or other computer using Web-based software. The Internet address of the telescopes is http://cfa- www.harvard.edu/cfa/sed/MicroObservatory/MicroObservatory.html. In the real-time mode, individuals have access to all of the telescope control functions without the need for an `on-site' operator. Users can sign up for a specific period of ti me. In the batch mode, users can submit requests for delayed telescope observations. After a MicroObservatory completes a job, the user is automatically notified by e-mail that the image is available for viewing and downloading from the Web site. The telescopes were designed for classroom instruction, as well as for use by students and amateur astronomers for original scientific research projects. We are currently examining a variety of technical and educational questions about the use of the telescopes including: (1) What are the best approaches to scheduling real-time versus batch mode observations? (2) What criteria should be used for allocating telescope time? (3) With deployment of more than one telescope, is it advantageous for each telescope to be used for just one type of observation, i.e., some for photometric use, others for imaging? And (4) What are the most valuable applications of the MicroObservatories in astronomical research? Support for the Micro

  3. Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform.

    Science.gov (United States)

    Stanton, Eric J; Heck, Martijn J R; Bovington, Jock; Spott, Alexander; Bowers, John E

    2015-05-04

    We present the design of a novel platform that is able to combine optical frequency bands spanning 4.2 octaves from ultraviolet to mid-wave infrared into a single, low M2 output waveguide. We present the design and realization of a key component in this platform that combines the wavelength bands of 350 nm - 1500 nm and 1500 nm - 6500 nm with demonstrated efficiency greater than 90% in near-infrared and mid-wave infrared. The multi-octave spectral beam combiner concept is realized using an integrated platform with silicon nitride waveguides and silicon waveguides. Simulated bandwidth is shown to be over four octaves, and measured bandwidth is shown over two octaves, limited by the availability of sources.

  4. Ion-beam doping of GaAs with low-energy (100 eV) C + using combined ion-beam and molecular-beam epitaxy

    Science.gov (United States)

    Iida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-ichiro

    1995-01-01

    A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV-30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C+) irradiation during MBE growth of GaAs was carried out at substrate temperatures Tg between 500 and 590 °C. C+-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. CAs acceptor-related emissions such as ``g,'' [g-g], and [g-g]β are observed and their spectra are significantly changed with increasing C+ beam current density Ic. PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for Tg as low as 500 °C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C+ with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.

  5. Ion-beam doping of GaAs with low-energy (100 eV) C(+) using combined ion-beam and molecular-beam epitaxy

    Science.gov (United States)

    Lida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-Ichiro

    1995-01-01

    A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV - 30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C(+)) irradiation during MBE growth of GaAs was carried out at substrate temperatures T(sub g) between 500 and 590 C. C(+)-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. C(sub As) acceptor-related emissions such as 'g', (g-g), and (g-g)(sub beta) are observed and their spectra are significantly changed with increasing C(+) beam current density I(sub c). PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for T(sub g) as low as 500 C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C(+) with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.

  6. Linear feature detection algorithm for astronomical surveys - I. Algorithm description

    Science.gov (United States)

    Bektešević, Dino; Vinković, Dejan

    2017-11-01

    Computer vision algorithms are powerful tools in astronomical image analyses, especially when automation of object detection and extraction is required. Modern object detection algorithms in astronomy are oriented towards detection of stars and galaxies, ignoring completely the detection of existing linear features. With the emergence of wide-field sky surveys, linear features attract scientific interest as possible trails of fast flybys of near-Earth asteroids and meteors. In this work, we describe a new linear feature detection algorithm designed specifically for implementation in big data astronomy. The algorithm combines a series of algorithmic steps that first remove other objects (stars and galaxies) from the image and then enhance the line to enable more efficient line detection with the Hough algorithm. The rate of false positives is greatly reduced thanks to a step that replaces possible line segments with rectangles and then compares lines fitted to the rectangles with the lines obtained directly from the image. The speed of the algorithm and its applicability in astronomical surveys are also discussed.

  7. Astronomers gossip about the (cosmic) neighborhood.

    Science.gov (United States)

    Jayawardhana, R

    1994-09-09

    The Hague, Netherlands, last month welcomed 2000 astronomers from around the world for the 22nd General Assembly of the International Astronomical Union (IAU). From 15 to 27 August, they participated in symposia and discussions on topics ranging from the down-to-Earth issue of light and radio-frequency pollution to the creation of elements at the farthest reaches of time and space, in the big bang. Some of the most striking news, however, came in new findings from our galaxy and its immediate surroundings.

  8. On the Astronomical Knowledge and Traditions of Aboriginal Australians

    Science.gov (United States)

    Hamacher, Duane W.

    2011-12-01

    Historian of science David Pingree defines science in a broad context as the process of systematically explaining perceived or imaginary phenomena. Although Westerners tend to think of science being restricted to Western culture, I argue in this thesis that astronomical scientific knowledge is found in Aboriginal traditions. Although research into the astronomical traditions of Aboriginal Australians stretches back for more than 150 years, it is relatively scant in the literature. We do know that the sun, moon, and night sky have been an important and inseparable component of the landscape to hundreds of Australian Aboriginal groups for thousands (perhaps tens-of-thousands) of years. The literature reveals that astronomical knowledge was used for time keeping, denoting seasonal change and the availability of food sources, navigation, and tidal prediction. It was also important for rituals and ceremonies, birth totems, marriage systems, cultural mnemonics, and folklore. Despite this, the field remains relatively unresearched considering the diversity of Aboriginal cultures and the length of time people have inhabited Australia (well over 40,000 years). Additionally, very little research investigating the nature and role of transient celestial phenomena has been conducted, leaving our understanding of Indigenous astronomical knowledge grossly incomplete. This thesis is an attempt to overcome this deficiency, with a specific focus on transient celestial phenomena. My research, situated in the field of cultural astronomy, draws from the sub-disciplines of archaeoastronomy, ethnoastronomy, historical astronomy, and geomythology. This approach incorporates the methodologies and theories of disciplines in the natural sciences, social sciences, and humanities. This thesis, by publication, makes use of archaeological, ethnographic, and historical records, astronomical software packages, and geographic programs to better understand the ages of astronomical traditions and the

  9. A combination-weighted Feldkamp-based reconstruction algorithm for cone-beam CT

    International Nuclear Information System (INIS)

    Mori, Shinichiro; Endo, Masahiro; Komatsu, Shuhei; Kandatsu, Susumu; Yashiro, Tomoyasu; Baba, Masayuki

    2006-01-01

    The combination-weighted Feldkamp algorithm (CW-FDK) was developed and tested in a phantom in order to reduce cone-beam artefacts and enhance cranio-caudal reconstruction coverage in an attempt to improve image quality when utilizing cone-beam computed tomography (CBCT). Using a 256-slice cone-beam CT (256CBCT), image quality (CT-number uniformity and geometrical accuracy) was quantitatively evaluated in phantom and clinical studies, and the results were compared to those obtained with the original Feldkamp algorithm. A clinical study was done in lung cancer patients under breath holding and free breathing. Image quality for the original Feldkamp algorithm is degraded at the edge of the scan region due to the missing volume, commensurate with the cranio-caudal distance between the reconstruction and central planes. The CW-FDK extended the reconstruction coverage to equal the scan coverage and improved reconstruction accuracy, unaffected by the cranio-caudal distance. The extended reconstruction coverage with good image quality provided by the CW-FDK will be clinically investigated for improving diagnostic and radiotherapy applications. In addition, this algorithm can also be adapted for use in relatively wide cone-angle CBCT such as with a flat-panel detector CBCT

  10. Astronomical optics

    CERN Document Server

    Schroeder, Daniel J

    1988-01-01

    Written by a recognized expert in the field, this clearly presented, well-illustrated book provides both advanced level students and professionals with an authoritative, thorough presentation of the characteristics, including advantages and limitations, of telescopes and spectrographic instruments used by astronomers of today.Key Features* Written by a recognized expert in the field* Provides both advanced level students and professionals with an authoritative, thorough presentation of the characteristics, including advantages and limitations, of telescopes and spectrographic i

  11. Inverse problemfor an inhomogeneous elastic beam at a combined strength

    Directory of Open Access Journals (Sweden)

    Andreev Vladimir Igorevich

    2014-01-01

    Full Text Available In the article the authors describe a method of optimizing the stress state of an elastic beam, subject to the simultaneous action of the central concentrated force and bending moment. The optimization method is based on solving the inverse problem of the strength of materials, consisting in defining the law of changing in elasticity modulus with beam cross-section altitude. With this changing the stress state will be preset. Most problems of the elasticity theory of inhomogeneous bodies are solved in direct formulation, the essence of which is to determine the stress-strain state of a body at the known dependences of the material elastic characteristics from the coordinates. There are also some solutions of the inverse problems of the elasticity theory, in which the dependences of the mechanical characteristics from the coordinates, at which the stress state of a body is preset, are determined. In the paper the authors solve the problem of finding a dependence modulus of elasticity, where the stresses will be constant over the beam’s cross section. We will solve the problem of combined strength (in the case of the central stretching and bending. We will use an iterative method. As the initial solution, we take the solution for a homogeneous material. As the first approximation, we consider the stress state of a beam, when the modulus of elasticity varies linearly. According to the results, it can be stated that three approximations are sufficient in the considered problem. The obtained results allow us to use them in assessing the strength of a beam and its optimization.

  12. Alignment of the Pixel and SCT Modules for the 2004 ATLAS Combined Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Ahmad, A.; Andreazza, A.; Atkinson, T.; Baines, J.; Barr, A.J.; Beccherle, R.; Bell, P.J.; Bernabeu, J.; Broklova, Z.; Bruckman de Renstrom, P.A.; Cauz, D.; Chevalier, L.; Chouridou, S.; Citterio, M.; Clark, A.; Cobal, M.; Cornelissen, T.; Correard, S.; Costa, M.J.; Costanzo, D.; Cuneo, S.; Dameri, M.; Darbo, G.; de Vivie, J.B.; Di Girolamo, B.; Dobos, D.; Drasal, Z.; Drohan, J.; Einsweiler, K.; Elsing, M.; Emelyanov, D.; Escobar, C.; Facius, K.; Ferrari, P.; Fergusson, D.; Ferrere, D.; Flick,, T.; Froidevaux, D.; Gagliardi, G.; Gallas, M.; Gallop, B.J.; Gan, K.K.; Garcia, C.; Gavrilenko, I.L.; Gemme, C.; Gerlach, P.; Golling, T.; Gonzalez-Sevilla, S.; Goodrick, M.J.; Gorfine, G.; Gottfert, T.; Grosse-Knetter, J.; Hansen, P.H.; Hara, K.; Hartel, R.; Harvey, A.; Hawkings, R.J.; Heinemann, F.E.W.; Henss, T.; Hill, J.C.; Huegging, F.; Jansen, E.; Joseph, J.; Unel, M. Karagoz; Kataoka, M.; Kersten, S.; Khomich, A.; Klingenberg, R.; Kodys, P.; Koffas, T.; Konstantinidis, N.; Kostyukhin, V.; Lacasta, C.; Lari, T.; Latorre, S.; Lester, C.G.; Liebig, W.; Lipniacka, A.; Lourerio, K.F.; Mangin-Brinet, M.; Marti i Garcia, S.; Mathes, M.; Meroni, C.; Mikulec, B.; Mindur, B.; Moed, S.; Moorhead, G.; Morettini, P.; Moyse, E.W.J.; Nakamura, K.; Nechaeva, P.; Nikolaev, K.; Parodi, F.; Parzhitskiy, S.; Pater, J.; Petti, R.; Phillips, P.W.; Pinto, B.; Poppleton, A.; Reeves, K.; Reisinger, I.; Reznicek, P.; Risso, P.; Robinson, D.; Roe, S.; Rozanov, A.; Salzburger, A.; Sandaker, H.; Santi, L.; Schiavi, C.; Schieck, J.; Schultes, J.; Sfyrla, A.; Shaw, C.; Tegenfeldt, F.; Timmermans, C.J.W.P.; Toczek, B.; Troncon, C.; Tyndel, M.; Vernocchi, F.; Virzi, J.; Anh, T. Vu; Warren, M.; Weber, J.; Weber, M.; Weidberg, A.R.; Weingarten, J.; Wellsf, P.S.; Zhelezkow, A.

    2008-06-02

    A small set of final prototypes of the ATLAS Inner Detector silicon tracking system(Pixel Detector and SemiConductor Tracker), were used to take data during the 2004 Combined Test Beam. Data were collected from runs with beams of different flavour (electrons, pions, muons and photons) with a momentum range of 2 to 180 GeV/c. Four independent methods were used to align the silicon modules. The corrections obtained were validated using the known momenta of the beam particles and were shown to yield consistent results among the different alignment approaches. From the residual distributions, it is concluded that the precision attained in the alignmentof the silicon modules is of the order of 5 mm in their most precise coordinate.

  13. Effectiveness of Amateur Astronomers as Informal Science Educators

    Science.gov (United States)

    Gibbs, Michael G.; Berendsen, Margaret

    2007-01-01

    The Astronomical Society of the Pacific (ASP) conducted a national survey of in-service teachers participating in Project ASTRO. The survey results document (1) the value that teachers place on supplemental astronomy education provided by professional and amateur astronomers, and (2) the difference that teachers perceive in the value provided by…

  14. Coronagraph for astronomical imaging and spectrophotometry

    Science.gov (United States)

    Vilas, Faith; Smith, Bradford A.

    1987-01-01

    A coronagraph designed to minimize scattered light in astronomical observations caused by the structure of the primary mirror, secondary mirror, and secondary support structure of a Cassegrainian telescope is described. Direct (1:1) and reducing (2.7:1) imaging of astronomical fields are possible. High-quality images are produced. The coronagraph can be used with either a two-dimensional charge-coupled device or photographic film camera. The addition of transmission dispersing optics converts the coronagraph into a low-resolution spectrograph. The instrument is modular and portable for transport to different observatories.

  15. National Astronomical Observatory of Japan

    CERN Document Server

    Haubold, Hans J; UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan

    2010-01-01

    This book represents Volume II of the Proceedings of the UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan, Tokyo, 18 - 22 June, 2007. It covers two programme topics explored in this and past workshops of this nature: (i) non-extensive statistical mechanics as applicable to astrophysics, addressing q-distribution, fractional reaction and diffusion, and the reaction coefficient, as well as the Mittag-Leffler function and (ii) the TRIPOD concept, developed for astronomical telescope facilities. The companion publication, Volume I of the proceedings of this workshop, is a special issue in the journal Earth, Moon, and Planets, Volume 104, Numbers 1-4, April 2009.

  16. Astronomical Spectroscopy for Amateurs

    CERN Document Server

    Harrison, Ken M

    2011-01-01

    Astronomical Spectroscopy for Amateurs is a complete guide for amateur astronomers who are looking for a new challenge beyond astrophotography. The book provides a brief overview of the history and development of the spectroscope, then a short introduction to the theory of stellar spectra, including details on the necessary reference spectra required for instrument testing and spectral comparison. The various types of spectroscopes available to the amateur are then described. Later sections cover all aspects of setting up and using various types of commercially available and home-built spectroscopes, starting with basic transmission gratings and going through more complex models, all the way to the sophisticated Littrow design. The final part of the text is about practical spectroscope design and construction. This book uniquely brings together a collection of observing, analyzing, and processing hints and tips that will allow the amateur to build skills in preparing scientifically acceptable spectra data. It...

  17. Influence of temporal–spectral effects on ultrafast fiber coherent polarization beam combining system

    International Nuclear Information System (INIS)

    Yu, H L; Ma, P F; Wang, X L; Su, R T; Zhou, P; Chen, J B

    2015-01-01

    The active coherent polarization beam combining (CPBC) technique has been experimentally proved to be a promising approach for the energy and power scaling of ultrashort laser pulses, despite the tremendous challenge in temporal synchronization, dispersion management and nonlinearity control. In order to develop a comprehensive theoretical model to investigate the influence of temporal–spectral effects on ultrafast fiber active CPBC systems, a generalized nonlinear Schrödinger equation carrying spectral factors is used to depict the propagation of ultrashort pulses in fiber amplifier channels and ultrashort-pulsed Gaussian beams (PGBs) carrying temporal–spatial factors are utilized to picture the propagation of ultrashort pulses in the free space. To the best of our knowledge, the influence of different temporal–spectral effects has been segregated for the first time and corresponding analytical equations have been strictly derived to link the combining efficiency with specific factors. Based on our analysis, the optical path difference (OPD) has the most detrimental impact on the combining efficiency because of the high controlling accuracy and anti-interference requirements. For instance, the OPD must be controlled in ∼  ±14 μm to achieve a combining efficiency of above 95% for combining ultrashort laser pulses with a 3 dB spectral bandwidth of 13 nm centered at 1064 nm. Besides, the analytical expression also demonstrates that the impact of self-phase modulation on the combining efficiency has no dependence on spectral bandwidth and only depends on the B integral difference if neglecting the direct influence of the peak power difference. Our analysis also indicates that the group velocity dispersion has relatively small influence on the combining efficiency. These formulas can be used to diagnose the influence of temporal–spectral effects and provide useful guidelines for the design or optimization of the active CPBC system of ultrafast

  18. Thirteenth Joint European and National Astronomical Meeting

    CERN Document Server

    Iniesta, J C

    2006-01-01

    The book gathers the invited talks to the XIII JENAM conference, organized this time by the European Astronomical Society (EAS) and the Spanish Astronomical Society (SEA), and hosted by the Instituto de Astrofísica de Andalucía (CSIC). All branches of astrophysics are encompassed from the largest scales and cosmology to the solar system and the Sun, through the galaxies and the stars, including a section on astronomical instrumentation. Very relevant experts from all over the world speak in a single book about the most recent, exciting results from their fields in a way which is useful for both researchers in these fields and colleagues working in other disciplines. The book is accompanied by a CD-ROM including the remaining contributions of the meeting in PDF format, hence opening a wide panorama of what is going on in astrophysics nowadays.

  19. Elizabeth Brown (1830-1899), solar astronomer

    Science.gov (United States)

    Creese, M.

    1998-08-01

    Were it not for the fact that she was a woman, Elizabeth Brown might well be thought of as a fairly typical nineteenth-century British amateur astronomer. She has a place, although a relatively modest one, in the distinguished group of people who, with their own fortunes, carried out much of the astronomical research being done in the country at a time before extensive government support was forthcoming for the work.1 Her career in fact follows a pattern common to several of the nineteenth-century men astronomers in that her full productive period came only after she was freed from her primary responsibilities; she did not have to amass the necessary financial resources as did many of the men,2 but she had the time-consuming responsibility, not unusual for a Victorian woman, of caring for a parent through a lengthy old age. Only after her father died at the age of ninety-one, did Elizabeth, then in her early fifties, begin her sixteen years of remarkable public activity in astronomy.

  20. Spectroscopy for amateur astronomers recording, processing, analysis and interpretation

    CERN Document Server

    Trypsteen , Marc F M

    2017-01-01

    This accessible guide presents the astrophysical concepts behind astronomical spectroscopy, covering both the theory and the practical elements of recording, processing, analysing and interpreting your spectra. It covers astronomical objects, such as stars, planets, nebulae, novae, supernovae, and events such as eclipses and comet passages. Suitable for anyone with only a little background knowledge and access to amateur-level equipment, the guide's many illustrations, sketches and figures will help you understand and practise this scientifically important and growing field of amateur astronomy, up to the level of Pro-Am collaborations. Accessible to non-academics, it benefits many groups from novices and learners in astronomy clubs, to advanced students and teachers of astrophysics. This volume is the perfect companion to the Spectral Atlas for Amateur Astronomers, which provides detailed commented spectral profiles of more than 100 astronomical objects.

  1. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    Science.gov (United States)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the

  2. Application of electron-beam irradiation combined with antioxidants for fermented sausage and its quality characteristic

    International Nuclear Information System (INIS)

    Lim, D.G.; Seol, K.H.; Jeon, H.J.; Jo, C.; Lee, M.

    2008-01-01

    The effects of various doses of electron-beam irradiation on the changes in microbiological attributes of fermented sausage and the combined effect of electron-beam irradiation and various antioxidants on the oxidative stability and sensory properties during cold storage were investigated. Results indicated that 2 kGy of irradiation was the most effective in manufacturing a fermented sausage, and the addition of rosemary extracts was effective in controlling the production of off-flavor and development of lipid oxidation during cold storage

  3. Application of electron-beam irradiation combined with antioxidants for fermented sausage and its quality characteristic

    Science.gov (United States)

    Lim, D. G.; Seol, K. H.; Jeon, H. J.; Jo, C.; Lee, M.

    2008-06-01

    The effects of various doses of electron-beam irradiation on the changes in microbiological attributes of fermented sausage and the combined effect of electron-beam irradiation and various antioxidants on the oxidative stability and sensory properties during cold storage were investigated. Results indicated that 2 kGy of irradiation was the most effective in manufacturing a fermented sausage, and the addition of rosemary extracts was effective in controlling the production of off-flavor and development of lipid oxidation during cold storage.

  4. Photon reconstruction in the ATLAS inner detector and liquid argon barrel calorimeter at the 2004 combined test beam

    NARCIS (Netherlands)

    Abat, E.; et al., [Unknown; Ferrari, P.; Gorfine, G.; Liebig, W.

    2011-01-01

    The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal

  5. A small electron beam ion trap/source facility for electron/neutral–ion collisional spectroscopy in astrophysical plasmas

    Science.gov (United States)

    Liang, Gui-Yun; Wei, Hui-Gang; Yuan, Da-Wei; Wang, Fei-Lu; Peng, Ji-Min; Zhong, Jia-Yong; Zhu, Xiao-Long; Schmidt, Mike; Zschornack, Günter; Ma, Xin-Wen; Zhao, Gang

    2018-01-01

    Spectra are fundamental observation data used for astronomical research, but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations. Different models give different insights for understanding a specific object. Hence, laboratory benchmarks for these theoretical models become necessary. An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae, supernova remnants and so on. In this paper, we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories, Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission, ion production, the ionization process of trapped ions as well as the effects of charge exchange on the ionization.

  6. Electron beam combined with hydrothermal treatment for enhancing the enzymatic convertibility of sugarcane bagasse

    International Nuclear Information System (INIS)

    Duarte, C.L.; Ribeiro, M.A.; Oikawa, H.; Mori, M.N.; Napolitano, C.M.; Galvão, C.A.

    2012-01-01

    The use of microbial cellulolytic enzymes is the most efficient process to liberate glucose from cellulose in biomass without the formation of fermentation inhibitors. A combination of pretreatment technologies is an alternative way to increase the access of enzymes to cellulose, and consequently, the conversion yield. In this way, the present study reports on the enzymatic hydrolysis of SCB submitted to three kinds of pretreatment: electron beam processing (EBP), and EBP followed by hydrothermal (TH) and diluted acid (AH) treatment. SCB samples were irradiated using a radiation dynamics electron beam accelerator, and then submitted to thermal and acid (0.1% sulfuric acid) hydrolysis for 40 and 60 min at 180 °C. These samples were submitted to enzymatic hydrolysis (EH) using commercial preparations, including Celluclast 1.5 L and beta-glycosidase. The addition of diluted acid improved TH treatment allowing for a shorter application time. EBP with 50 kGy increased the enzymatic hydrolysis yield of cellulose by 20% after TH and 30% after AH. - Highlights: ► We study the enzymatic hydrolysis of cellulose and hemicellulose in sugarcane bagasse. ► We study the combination of three pretreatments: electron beam processing, EBP followed by hydrothermal and by diluted acid treatment. ► The electron beam processing increased the enzymatic hydrolysis from 8% to 15% with 20 kGy. ► The enzymes used were commercial preparations, as Celluclast 1.5 L and β-glycosidase. ► The EBP with 50 kGy increased on 20% the yield of EH of cellulose after TH and 30% after AH.

  7. Decoding the mechanisms of Antikythera astronomical device

    CERN Document Server

    Lin, Jian-Liang

    2016-01-01

    This book presents a systematic design methodology for decoding the interior structure of the Antikythera mechanism, an astronomical device from ancient Greece. The historical background, surviving evidence and reconstructions of the mechanism are introduced, and the historical development of astronomical achievements and various astronomical instruments are investigated. Pursuing an approach based on the conceptual design of modern mechanisms and bearing in mind the standards of science and technology at the time, all feasible designs of the six lost/incomplete/unclear subsystems are synthesized as illustrated examples, and 48 feasible designs of the complete interior structure are presented. This approach provides not only a logical tool for applying modern mechanical engineering knowledge to the reconstruction of the Antikythera mechanism, but also an innovative research direction for identifying the original structures of the mechanism in the future. In short, the book offers valuable new insights for all...

  8. Filling the Astronomical Void - A Visual Medium for a Visual Subject

    Science.gov (United States)

    Ryan, J.

    1996-12-01

    Astronomy is fundamentally a visual subject. The modern science of astronomy has at its foundation the ancient art of observing the sky visually. The visual elements of astronomy are arguably the most important. Every person in the entire world is affected by visually-observed astronomical phenomena such as the seasonal variations in daylight. However, misconceptions abound and the average person cannot recognize the simple signs in the sky that point to the direction, the hour and the season. Educators and astronomy popularizers widely lament that astronomy is not appreciated in our society. Yet, there is a remarkable dearth of popular literature for teaching the visual elements of astronomy. This is what I refer to as *the astronomical void.* Typical works use illustrations sparsely, relying most heavily on text-based descriptions of the visual astronomical phenomena. Such works leave significant inferential gaps to the inexperienced reader, who is unequipped for making astronomical observations. Thus, the astronomical void remains unfilled by much of the currently available literature. I therefore propose the introduction of a visually-oriented medium for teaching the visual elements of Astronomy. To this end, I have prepared a series of astronomy "comic strips" that are intended to fill the astronomical void. By giving the illustrations the central place, the comic strip medium permits the depiction of motion and other sequential activity, thus effectively representing astronomical phenomena. In addition to the practical advantages, the comic strip is a "user friendly" medium that is inviting and entertaining to a reader. At the present time, I am distributing a monthly comic strip entitled *Starman*, which appears in the newsletters of over 120 local astronomy organizations and on the web at http://www.cyberdrive.net/ starman. I hope to eventually publish a series of full-length books and believe that astronomical comic strips will help expand the perimeter of

  9. Astronomical publications of Melbourne Observatory

    Science.gov (United States)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  10. Astronomers Make First Images With Space Radio Telescope

    Science.gov (United States)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  11. Astronomical optics and elasticity theory

    CERN Document Server

    Lemaitre, Gerard Rene

    2008-01-01

    Astronomical Optics and Elasticity Theory provides a very thorough and comprehensive account of what is known in this field. After an extensive introduction to optics and elasticity, the book discusses variable curvature and multimode deformable mirrors, as well as, in depth, active optics, its theory and applications. Further, optical design utilizing the Schmidt concept and various types of Schmidt correctors, as well as the elasticity theory of thin plates and shells are elaborated upon. Several active optics methods are developed for obtaining aberration corrected diffraction gratings. Further, a weakly conical shell theory of elasticity is elaborated for the aspherization of grazing incidence telescope mirrors. The very didactic and fairly easy-to-read presentation of the topic will enable PhD students and young researchers to actively participate in challenging astronomical optics and instrumentation projects.

  12. Preserving and Archiving Astronomical Photographic Plates

    Science.gov (United States)

    Castelaz, M. W.; Cline, J. D.

    2005-05-01

    Astronomical objects change with time. New observations complement past observations recorded on photographic plates. Analyses of changes provide essential routes to information about an object's formation, constitution and evolution. Preserving a century of photographic plate observations is thus of paramount importance. Plate collections are presently widely dispersed; plates may be stored in poor conditions, and are effectively inaccessible to both researchers and historians. We describe a planned project at Pisgah Astronomical Research Institute to preserve the collections of astronomical plates in the United States by gathering them into a single storage location. Collections will be sorted, cleaned, and cataloged on-line so as to provide access to researchers. Full scientific and historic use of the material then requires the observations themselves to be accessible digitally. The project's goal will be the availability of these data as a unique, fully-maintained scientific and educational resource. The new archive will support trans-disciplinary research such as the chemistry of the Earth's atmosphere, library information science, trends in local weather patterns, and impacts of urbanization on telescope use, while the hand-written observatory logs will be a valuable resource for science historians and biographers.

  13. Astronomers Without Borders: A Global Astronomy Community

    Science.gov (United States)

    Simmons, M.

    2011-10-01

    Astronomers Without Borders (AWB) brings together astronomy enthusiasts of all types - amateur astronomers, educators, professionals and "armchair" astronomers for a variety of online and physicalworld programs. The AWB web site provides social networking and a base for online programs that engage people worldwide in astronomy activities that transcend geopolitical and cultural borders. There is universal interest in astronomy, which has been present in all cultures throughout recorded history. Astronomy is also among the most accessible of sciences with the natural laboratory of the sky being available to people worldwide. There are few other interests for which people widely separated geographically can engage in activities involving the same objects. AWB builds on those advantages to bring people together. AWB also provides a platform where projects can reach a global audience. AWB also provides unique opportunities for multidisciplinary collaboration in EPO programs. Several programs including The World at Night, Global Astronomy Month and others will be described along with lessons learned.

  14. A combined thermal dissociation and electron impact ionization source for radioactive ion beam generation (abstract)a

    International Nuclear Information System (INIS)

    Alton, G.D.; Williams, C.

    1996-01-01

    The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, in principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. copyright 1996 American Institute of Physics

  15. ASURV: Astronomical SURVival Statistics

    Science.gov (United States)

    Feigelson, E. D.; Nelson, P. I.; Isobe, T.; LaValley, M.

    2014-06-01

    ASURV (Astronomical SURVival Statistics) provides astronomy survival analysis for right- and left-censored data including the maximum-likelihood Kaplan-Meier estimator and several univariate two-sample tests, bivariate correlation measures, and linear regressions. ASURV is written in FORTRAN 77, and is stand-alone and does not call any specialized libraries.

  16. The South African astronomical observatory

    International Nuclear Information System (INIS)

    Feast, M.

    1985-01-01

    A few examples of the activities of the South African Astronomical Observatory are discussed. This includes the studying of stellar evolution, dust around stars, the determination of distances to galaxies and collaboration with space experiments

  17. Astronomers Discover Six-Image Gravitational Lens

    Science.gov (United States)

    2001-08-01

    -Smithsonian Center for Astrophysics (CfA). "When we understand this system, we will have a much clearer picture of how galaxies are changed by being part of a bigger cluster of galaxies," he added. B1359+154 was discovered in 1999 by the Cosmic Lens All-Sky Survey, an international collaboration of astronomers who use radio telescopes to search the sky for gravitational lenses. Images made by the NSF's Very Large Array in New Mexico and by Britain's MERLIN radio telescope showed six objects suspected of being gravitational-lens images, but the results were inconclusive. Rusin and his team used the VLBA and HST in 1999 and 2000 to make more-detailed studies of B1359+154. The combination of data from the VLBA and HST convinced the astronomers that B1359+154 actually consists of six lensed images of a single background galaxy. The VLBA images were made from data collected during observations at a radio frequency of 1.7 GHz. "This is a great example of modern, multi-wavelength astronomy," said Rusin. "We need the radio telescopes to detect the gravitational lenses in the first place, then we need the visible-light information from Hubble to show us additional detail about the structure of the system." Armed with the combined VLBA and HST data about the positions and brightnesses of the six images of the background galaxy as well as the positions of the three intermediate galaxies, the astronomers did computer simulations to show how the gravitation of the three galaxies could produce the lens effect. They were able to design a computer model of the system that, in fact, produces the six images seen in B1359+154. "Our computer model certainly is not perfect, and we need to do more observations of this system to refine it, but we have clearly demonstrated that the three galaxies we see can produce a six-image lens system," said Martin Norbury, a graduate student at Jodrell Bank Observatory in Britain. "We think this work will give us an excellent tool for studying much-denser clusters of

  18. The National Astronomical Observatory of Japan and Post-war Japanese Optical Astronomy

    Science.gov (United States)

    Tajima, Toshiyuki

    This paper depicts some aspects of the formative process of the Japanese optical and infrared astronomical community in the post-war period, featuring the transition of the National Astronomical Observatory of Japan(NAOJ). We take up three cases of telescope construction, examining their background and their contribution to the Japanese astronomical community. Through these cases, the characteristics of traditions and cultures of optical and infrared astronomy in Japan are considered. Although the Tokyo Astronomical Observatory (TAO) of the University of Tokyo, the predecessor of NAOJ, was originally founded as an agency for practical astronomical observation such as time and almanac service, it has become an international centre for all types of astrophysical research. Research and development of telescopes and observational instruments have become an important part of the astronomers' practice. Now, however, a number of Japanese universities are planning to have their own large to middle-sized telescopes, and a new style of astronomical research is emerging involving astrophysical studies utilising data acquired from the Virtual Observatory, so there is a distinct possibility that the status of the NAOJ will change even further in the future.

  19. A Brief History of Manchester Astronomical Society

    Science.gov (United States)

    Kilburn, K. J.

    Manchester Astronomical Society celebrated its centenary in September 2003. But that centenary was of a hundred years as the MAS: the history of the society goes back much further, and can be traced directly to that great era of.public awareness of astronomy and amateur interest in Victorian England in the last half of the nineteenth century. Allan Chapman has discussed this period in detail, so the present paper concentrates on the MAS's particular influence on Manchester astronomers and recent work on the history of the society.

  20. Astronomical databases of Nikolaev Observatory

    Science.gov (United States)

    Protsyuk, Y.; Mazhaev, A.

    2008-07-01

    Several astronomical databases were created at Nikolaev Observatory during the last years. The databases are built by using MySQL search engine and PHP scripts. They are available on NAO web-site http://www.mao.nikolaev.ua.

  1. Towards a robust and consistent middle Eocene astronomical timescale

    Science.gov (United States)

    Boulila, Slah; Vahlenkamp, Maximilian; De Vleeschouwer, David; Laskar, Jacques; Yamamoto, Yuhji; Pälike, Heiko; Kirtland Turner, Sandra; Sexton, Philip F.; Westerhold, Thomas; Röhl, Ursula

    2018-03-01

    present a revision of previous astronomical timescales from the Equatorial and South Atlantic, to overcome the differences between different mid-Eocene astrochronologies. Using our new records from the North Atlantic, combined with existing records from the South Atlantic (ODP Site 1263 and Hole 702B) and Equatorial Atlantic (ODP Site 1260), we revise the durations of magnetic polarity Chrons C18n.1n to C21n, thereby arriving at a robust and self-consistent closure of the middle Eocene astronomical timescale gap.

  2. Astronomical virtual observatory and the place and role of Bulgarian one

    Science.gov (United States)

    Petrov, Georgi; Dechev, Momchil; Slavcheva-Mihova, Luba; Duchlev, Peter; Mihov, Bojko; Kochev, Valentin; Bachev, Rumen

    2009-07-01

    Virtual observatory could be defined as a collection of integrated astronomical data archives and software tools that utilize computer networks to create an environment in which research can be conducted. Several countries have initiated national virtual observatory programs that combine existing databases from ground-based and orbiting observatories, scientific facility especially equipped to detect and record naturally occurring scientific phenomena. As a result, data from all the world's major observatories will be available to all users and to the public. This is significant not only because of the immense volume of astronomical data but also because the data on stars and galaxies has been compiled from observations in a variety of wavelengths-optical, radio, infrared, gamma ray, X-ray and more. In a virtual observatory environment, all of this data is integrated so that it can be synthesized and used in a given study. During the autumn of the 2001 (26.09.2001) six organizations from Europe put the establishment of the Astronomical Virtual Observatory (AVO)-ESO, ESA, Astrogrid, CDS, CNRS, Jodrell Bank (Dolensky et al., 2003). Its aims have been outlined as follows: - To provide comparative analysis of large sets of multiwavelength data; - To reuse data collected by a single source; - To provide uniform access to data; - To make data available to less-advantaged communities; - To be an educational tool. The Virtual observatory includes: - Tools that make it easy to locate and retrieve data from catalogues, archives, and databases worldwide; - Tools for data analysis, simulation, and visualization; - Tools to compare observations with results obtained from models, simulations and theory; - Interoperability: services that can be used regardless of the clients computing platform, operating system and software capabilities; - Access to data in near real-time, archived data and historical data; - Additional information - documentation, user-guides, reports

  3. Astronomical dating in the 19th century

    Science.gov (United States)

    Hilgen, Frederik J.

    2010-01-01

    Today astronomical tuning is widely accepted as numerical dating method after having revolutionised the age calibration of the geological archive and time scale over the last decades. However, its origin is not well known and tracing its roots is important especially from a science historic perspective. Astronomical tuning developed in consequence of the astronomical theory of the ice ages and was repeatedly used in the second half of the 19th century before the invention of radio-isotopic dating. Building upon earlier ideas of Joseph Adhémar, James Croll started to formulate his astronomical theory of the ice ages in 1864 according to which precession controlled ice ages occur alternatingly on both hemispheres at times of maximum eccentricity of the Earth's orbit. The publication of these ideas compelled Charles Lyell to revise his Principles of Geology and add Croll's theory, thus providing an alternative to his own geographical cause of the ice ages. Both Croll and Lyell initially tuned the last glacial epoch to the prominent eccentricity maximum 850,000 yr ago. This age was used as starting point by Lyell to calculate an age of 240 million years for the beginning of the Cambrium. But Croll soon revised the tuning to a much younger less prominent eccentricity maximum between 240,000 and 80,000 yr ago. In addition he tuned older glacial deposits of late Miocene and Eocene ages to eccentricity maxima around 800,000 and 2,800,000 yr ago. Archibald and James Geikie were the first to recognize interglacials during the last glacial epoch, as predicted by Croll's theory, and attempted to tune them to precession. Soon after Frank Taylor linked a series of 15 end-moraines left behind by the retreating ice sheet to precession to arrive at a possible age of 300,000 yr for the maximum glaciation. In a classic paper, Axel Blytt (1876) explained the scattered distribution of plant groups in Norway to precession induced alternating rainy and dry periods as recorded by the

  4. TPCs in high-energy astronomical polarimetry

    International Nuclear Information System (INIS)

    Black, J K

    2007-01-01

    High-energy astrophysics has yet to exploit the unique and important information that polarimetry could provide, largely due to the limited sensitivity of previously available polarimeters. In recent years, numerous efforts have been initiated to develop instruments with the sensitivity required for astronomical polarimetry over the 100 eV to 10 GeV band. Time projection chambers (TPCs), with their high-resolution event imaging capability, are an integral part of some of these efforts. After a brief overview of current astronomical polarimeter development efforts, the role of TPCs will be described in more detail. These include TPCs as photoelectric X-ray polarimeters and TPCs as components of polarizationsensitive Compton and pair-production telescopes

  5. Division B Commission 6: Astronomical Telegrams

    Science.gov (United States)

    Yamaoka, H.; Green, D. W. E.; Samus, N. N.; Aksnes, K.; Gilmore, A. C.; Nakano, S.; Sphar, T.; Tichá, J.; Williams, G. V.

    2016-04-01

    IAU Commission 6 ``Astronomical Telegrams'' had a single business meeting during Honolulu General Assembly of the IAU. It took place on Tuesday, 11 August 2015. The meeting was attended by Hitoshi Yamaoka (President), Daniel Green (Director of the Central Bureau for Astronomical Telegrams, CBAT, via Skype), Steven Chesley (JPL), Paul Chodas (JPL), Alan Gilmore (Canterbury University), Shinjiro Kouzuma (Chukyo University), Paolo Mazzali (Co-Chair of the Supernova Working Group), Elena Pian (Scuola Normale Superiore di Pisa), Marion Schmitz (chair IAU Working Group Designations + NED), David Tholen (University of Hawaii), Jana Ticha (Klet Observatory), Milos Tichy (Klet Observatory), Giovanni Valsecchi (INAF\\slash Italy), Gareth Williams (Minor Planet Center). Apologies: Nikolai Samus (General Catalogue of Variable Stars, GCVS).

  6. Coherent electromagnetic radiation of a combined electron-ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, S G; Samoshenkov, Yu K [Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Optiko-Fizicheskikh Izmerenij, Moscow (USSR)

    1977-07-01

    The intensity of coherent electromagnetic radiation due to interaction of a modulated electron beam with a modulated ion beam is calculated. It is shown that the radiation intensity has a sharp maximum at the frequency equal to the difference of the modulation frequency of the electron and ion beams. The results obtained are compared with those corresponding to the scattering of a modulated electron beam on randomly distributed gas ions.

  7. Astrobiology: An astronomer's perspective

    International Nuclear Information System (INIS)

    Bergin, Edwin A.

    2014-01-01

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the process of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface

  8. Astronomical Virtual Observatories Through International Collaboration

    Directory of Open Access Journals (Sweden)

    Masatoshi Ohishi

    2010-03-01

    Full Text Available Astronomical Virtual Observatories (VOs are emerging research environment for astronomy, and 16 countries and a region have funded to develop their VOs based on international standard protocols for interoperability. The 16 funded VO projects have established the International Virtual Observatory Alliance (http://www.ivoa.net/ to develop the standard interoperable interfaces such as registry (meta data, data access, query languages, output format (VOTable, data model, application interface, and so on. The IVOA members have constructed each VO environment through the IVOA interfaces. National Astronomical Observatory of Japan (NAOJ started its VO project (Japanese Virtual Observatory - JVO in 2002, and developed its VO system. We have succeeded to interoperate the latest JVO system with other VOs in the USA and Europe since December 2004. Observed data by the Subaru telescope, satellite data taken by the JAXA/ISAS, etc. are connected to the JVO system. Successful interoperation of the JVO system with other VOs means that astronomers in the world will be able to utilize top-level data obtained by these telescopes from anywhere in the world at anytime. System design of the JVO system, experiences during our development including problems of current standard protocols defined in the IVOA, and proposals to resolve these problems in the near future are described.

  9. Astrobiology: An astronomer's perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bergin, Edwin A. [University of Michigan, Department of Astronomy, 500 Church Street, Ann Arbor, MI 48109 (United States)

    2014-12-08

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the process of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface.

  10. Different Categories of Astronomical Heritage: Issues and Challenges

    Science.gov (United States)

    Ruggles, Clive

    2012-09-01

    Since 2008 the AWHWG has, on behalf of the IAU, been working with UNESCO and its advisory bodies to help identify, safeguard and promote cultural properties relating to astronomy and, where possible, to try to facilitate the eventual nomination of key astronomical heritage sites onto the World Heritage List. Unfortunately, the World Heritage Convention only covers fixed sites (i.e., the tangible immovable heritage of astronomy), and a key question for the UNESCO-IAU Astronomy and World Heritage Initiative (AWHI) is the extent to which the tangible moveable and intangible heritage of astronomy (e.g. moveable instruments; ideas and theories) influence the assessment of the tangible immovable heritage. Clearly, in an ideal world we should be concerned not only with tangible immovable heritage but, to quote the AWHWG's own Terms of Reference, ``to help ensure that cultural properties and artefacts significant in the development of astronomy, together with the intangible heritage of astronomy, are duly studied, protected and maintained, both for the greater benefit of humankind and to the potential benefit of future historical research''. With this in mind, the IAU/INAF symposium on ``Astronomy and its Instruments before and after Galileo'' held in Venice in Sep-Oct 2009 recommended that urgent steps should be taken 1. to sensitise astronomers and the general public, and particularly observatory directors and others with direct influence and control over astronomical resources, to the importance of identifying, protecting and preserving the various material products of astronomical research and discovery that already have, or have significant potential to acquire, universal value; (N.B. National or regional interests and concerns have no relevance in the assessment of ``universal value'', which, by definition, extends beyond cultural boundaries and, by reasonable expectation, down the generations into the future. 2. to identify modes of interconnectivity between

  11. Lessons from the masters current concepts in astronomical image processing

    CERN Document Server

    2013-01-01

    There are currently thousands of amateur astronomers around the world engaged in astrophotography at increasingly sophisticated levels. Their ranks far outnumber professional astronomers doing the same and their contributions both technically and artistically are the dominant drivers of progress in the field today. This book is a unique collaboration of individuals, all world-renowned in their particular area, and covers in detail each of the major sub-disciplines of astrophotography. This approach offers the reader the greatest opportunity to learn the most current information and the latest techniques directly from the foremost innovators in the field today.   The book as a whole covers all types of astronomical image processing, including processing of eclipses and solar phenomena, extracting detail from deep-sky, planetary, and widefield images, and offers solutions to some of the most challenging and vexing problems in astronomical image processing. Recognized chapter authors include deep sky experts su...

  12. Study of the ATLAS MDT spectrometer using high energy CERN combined test beam data

    NARCIS (Netherlands)

    Adorisio, C.; et al., [Unknown; Barisonzi, M.; Bobbink, G.; Boterenbrood, H.; Brouwer, G.; Groenstege, H.; Hart, R.; Konig, A.; Linde, F.; van der Graaf, H.; Vermeulen, J.; Vreeswijk, M.; Werneke, P.

    2009-01-01

    In 2004, a combined system test was performed in the H8 beam line at the CERN SPS with a setup reproducing the geometry of sectors of the ATLAS Muon Spectrometer, formed by three stations of Monitored Drift Tubes (MDT). The full ATLAS analysis chain was used to obtain the results presented in this

  13. Combining active chilled beams and air cleaning technologies to improve indoor climate in offices

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian

    2012-01-01

    This project is part of a long-term research programme studying the possibilities of using efficient air cleaning technologies to improve the indoor air quality in buildings. The purpose of this part of the project is to study energy-saving potential by combining cooling and cleaning of air in of....... Furthermore, the measurement results of the combined system showed that adding the filter accelerated the removal rate of the particles by 2 (h-1). However, the efficiency of the chilled beam in exchanging the heat reduced by 38%....

  14. Super resolution for astronomical observations

    Science.gov (United States)

    Li, Zhan; Peng, Qingyu; Bhanu, Bir; Zhang, Qingfeng; He, Haifeng

    2018-05-01

    In order to obtain detailed information from multiple telescope observations a general blind super-resolution (SR) reconstruction approach for astronomical images is proposed in this paper. A pixel-reliability-based SR reconstruction algorithm is described and implemented, where the developed process incorporates flat field correction, automatic star searching and centering, iterative star matching, and sub-pixel image registration. Images captured by the 1-m telescope at Yunnan Observatory are used to test the proposed technique. The results of these experiments indicate that, following SR reconstruction, faint stars are more distinct, bright stars have sharper profiles, and the backgrounds have higher details; thus these results benefit from the high-precision star centering and image registration provided by the developed method. Application of the proposed approach not only provides more opportunities for new discoveries from astronomical image sequences, but will also contribute to enhancing the capabilities of most spatial or ground-based telescopes.

  15. Astronomía Mocoví

    Science.gov (United States)

    López, A.; Giménez Benitez, S.; Fernández, L.

    El presente trabajo, es una revisión crítica de la astronomía en la cultura Mocoví, aportando a lo realizado previamente por Lehmann Nistche (Lehmann Nistche, 1924 y 1927) el resultado de nuestro trabajo de campo. Un mayor conocimiento de las cosmovisiones de las etnias de esta área es fundamental para una mejor comprensión de la dispersión de las ideas cosmológicas entre los pueblos aborígenes americanos, dada la importancia del corredor chaqueño como conexión entre las altas culturas andinas, la mesopotamia y la región pampeana (Susnik, 1972). Para ello se realiza una comparación con otras cosmovisiones del área americana. Nuestro aporte se enmarca dentro de las actuales líneas de trabajo mundialmente en desarrollo en Astronomía en la Cultura.

  16. A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

    International Nuclear Information System (INIS)

    Abat, E; Arik, E; Abdallah, J M; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T P A; Aleksa, M; Anghinolfi, F; Baron, S; Alexa, C; Anderson, K; Andreazza, A; Banfi, D; Antonaki, A; Arabidze, G; Atkinson, T; Baines, J; Baker, O K

    2011-01-01

    A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20GeV and 180GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.

  17. A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

    Energy Technology Data Exchange (ETDEWEB)

    Abat, E; Arik, E [Bogazici University, Faculty of Sciences, Department of Physics, TR - 80815 Bebek-Istanbul (Turkey); Abdallah, J M [Institut de Fisica d' Altes Energies, IFAE, Universitat Autonoma de Barcelona, Edifici Cn, ES - 08193 Bellaterra (Barcelona) Spain (Spain); Addy, T N [Hampton University, Department of Physics, Hampton, VA 23668 (United States); Adragna, P [Queen Mary, University of London, Mile End Road, E1 4NS, London (United Kingdom); Aharrouche, M [Universitaet Mainz, Institut fuer Physik, Staudinger Weg 7, DE 55099 (Germany); Ahmad, A [Insitute of Physics, Academia Sinica, TW - Taipei 11529, Taiwan (China); Akesson, T P A [Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Box 118, SE - 221 00, Lund (Sweden); Aleksa, M; Anghinolfi, F; Baron, S [European Laboratory for Particle Physics CERN, CH-1211 Geneva 23 (Switzerland); Alexa, C [National Institute of Physics and Nuclear Engineering (Bucharest -IFIN-HH), P.O. Box MG-6, R-077125 Bucharest (Romania); Anderson, K [University of Chicago, Enrico Fermi Institute, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Andreazza, A; Banfi, D [INFN Sezione di Milano, via Celoria 16, IT - 20133 Milano (Italy); Antonaki, A; Arabidze, G [University of Athens, Nuclear and Particle Physics Department of Physics, Panepistimiopouli Zografou, GR 15771 Athens (Greece); Atkinson, T [School of Physics, University of Melbourne, AU - Parkvill, Victoria 3010 (Australia); Baines, J [Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Baker, O K, E-mail: kjg@particle.kth.se [Yale University, Department of Physics , PO Box 208121, New Haven, CT06520-8121 (United States)

    2011-06-15

    A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20GeV and 180GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.

  18. Terahertz Mixing Characteristics of NbN Superconducting Tunnel Junctions and Related Astronomical Observations

    Science.gov (United States)

    Li, J.

    2010-01-01

    (5hω/kB), which is the best among NbN superconducting SIS mixers developed in this frequency band; (4) demonstration of high sensitivity for NbN superconducting SIS mixers operated at temperatures as high as 10 K, and demonstration of much less interference resulting from the Josephson effect; (5) demonstration of the first astronomical observation ever done with an NbN superconducting SIS mixer. This study has provided further understanding of the quantum mixing behaviors of NbN superconducting SIS mixers. It has been demonstrated that NbN superconducting SIS mixers can reach nearly quantum-limited sensitivity and have good stability. Furthermore, NbN superconducting SIS mixers have less stringent requirement for cooling and magnetic field compared with Nb ones. Hence they can be used in astronomical applications, especially for space-borne projects and complex systems such as multi-beam receivers.

  19. First experiences with the ATLAS pixel detector control system at the combined test beam 2004

    International Nuclear Information System (INIS)

    Imhaeuser, Martin; Becks, Karl-Heinz; Henss, Tobias; Kersten, Susanne; Maettig, Peter; Schultes, Joachim

    2006-01-01

    Detector control systems (DCS) include the readout, control and supervision of hardware devices as well as the monitoring of external systems like cooling system and the processing of control data. The implementation of such a system in the final experiment also has to provide the communication with the trigger and data acquisition system (TDAQ). In addition, conditions data which describe the status of the pixel detector modules and their environment must be logged and stored in a common LHC wide database system. At the combined test beam all ATLAS subdetectors were operated together for the first time over a longer period. To ensure the functionality of the pixel detector, a control system was set up. We describe the architecture chosen for the pixel DCS, the interfaces to hardware devices, the interfaces to the users and the performance of our system. The embedding of the DCS in the common infrastructure of the combined test beam and also its communication with surrounding systems will be discussed in some detail

  20. Astronomers Gain Clues About Fundamental Physics

    Science.gov (United States)

    2005-12-01

    An international team of astronomers has looked at something very big -- a distant galaxy -- to study the behavior of things very small -- atoms and molecules -- to gain vital clues about the fundamental nature of our entire Universe. The team used the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) to test whether the laws of nature have changed over vast spans of cosmic time. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) "The fundamental constants of physics are expected to remain fixed across space and time; that's why they're called constants! Now, however, new theoretical models for the basic structure of matter indicate that they may change. We're testing these predictions." said Nissim Kanekar, an astronomer at the National Radio Astronomy Observatory (NRAO), in Socorro, New Mexico. So far, the scientists' measurements show no change in the constants. "We've put the most stringent limits yet on some changes in these constants, but that's not the end of the story," said Christopher Carilli, another NRAO astronomer. "This is the exciting frontier where astronomy meets particle physics," Carilli explained. The research can help answer fundamental questions about whether the basic components of matter are tiny particles or tiny vibrating strings, how many dimensions the Universe has, and the nature of "dark energy." The astronomers were looking for changes in two quantities: the ratio of the masses of the electron and the proton, and a number physicists call the fine structure constant, a combination of the electron charge, the speed of light and the Planck constant. These values, considered fundamental physical constants, once were "taken as time independent, with values given once and forever" said German particle physicist Christof Wetterich. However, Wetterich explained, "the viewpoint of modern particle theory has changed in recent years," with ideas such as

  1. Top astronomers head to the city. Experts to talk on exciting quasar discoveries.

    CERN Multimedia

    Grant, S

    2002-01-01

    The UK National Astronomy Meeting - NAM 2002 - is at Bristol University this week. The meeting is one of the most important regular gatherings of astronomers in the UK. Sponsored by the Royal Astronomical Society and PPARC, it should attract about 300 astronomers from the UK and beyond.

  2. AWOB: A Collaborative Workbench for Astronomers

    Science.gov (United States)

    Kim, J. W.; Lemson, G.; Bulatovic, N.; Makarenko, V.; Vogler, A.; Voges, W.; Yao, Y.; Kiefl, R.; Koychev, S.

    2015-09-01

    We present the Astronomers Workbench (AWOB1), a web-based collaboration and publication platform for a scientific project of any size, developed in collaboration between the Max-Planck institutes of Astrophysics (MPA) and Extra-terrestrial Physics (MPE) and the Max-Planck Digital Library (MPDL). AWOB facilitates the collaboration between geographically distributed astronomers working on a common project throughout its whole scientific life cycle. AWOB does so by making it very easy for scientists to set up and manage a collaborative workspace for individual projects, where data can be uploaded and shared. It supports inviting project collaborators, provides wikis, automated mailing lists, calendars and event notification and has a built in chat facility. It allows the definition and tracking of tasks within projects and supports easy creation of e-publications for the dissemination of data and images and other resources that cannot be added to submitted papers. AWOB extends the project concept to larger scale consortia, within which it is possible to manage working groups and sub-projects. The existing AWOB instance has so far been limited to Max-Planck members and their collaborators, but will be opened to the whole astronomical community. AWOB is an open-source project and its source code is available upon request. We intend to extend AWOB's functionality also to other disciplines, and would greatly appreciate contributions from the community.

  3. Skype Me! Astronomers, Students, and Cutting-Edge Research

    Science.gov (United States)

    Hickox, Ryan C.; Gauthier, Adrienne J.

    2014-06-01

    A primary goal of many university science courses is to promote understanding of the process of contemporary scientific inquiry. One powerful way to achieve this is for students to explore current research and then interact directly with the leading scientist, the feasibility of which has recently increased dramatically due to free online video communication tools. We report on a program implemented at Dartmouth College in which students connect with a guest astronomer through Skype (video chat). The Skype session is wrapped in a larger activity where students explore current research articles, interact with the astronomer, and then reflect on the experience. The in-class Skype discussions require a small time commitment from scientists (20-30 minutes, with little or no need for preparation) while providing students direct access to researchers at the cutting edge of modern astronomy. We outline the procedures used to implement these discussions, and present qualitative assessments of student's understanding of the process of research, as well as feedback from the guest astronomers.

  4. Breakthrough! 100 astronomical images that changed the world

    CERN Document Server

    Gendler, Robert

    2015-01-01

    This unique volume by two renowned astrophotographers unveils the science and history behind 100 of the most significant astronomical images of all time. The authors have carefully selected their list of images from across time and technology to bring to the reader the most relevant photographic images spanning all eras of modern astronomical history.    Based on scientific evidence today we have a basic notion of how Earth and the universe came to be. The road to this knowledge was paved with 175 years of astronomical images acquired by the coupling of two revolutionary technologies – the camera and telescope. With ingenuity and determination humankind would quickly embrace these technologies to tell the story of the cosmos and unravel its mysteries.   This book presents in pictures and words a photographic chronology of our aspiration to understand the universe. From the first fledgling attempts to photograph the Moon, planets, and stars to the marvels of orbiting observatories that record the cosmos a...

  5. The PACA Project: When Amateur Astronomers Become Citizen Scientists

    Science.gov (United States)

    Yanamandra-Fisher, P. A.

    2014-12-01

    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON in 2013. Following the success of the professional-amateur astronomer collaboration in scientific research via social media, it is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: (1) the establishment of a network of astronomers and related professionals, that can be galvanized into action on short notice to support observing campaigns; (2) assist in various science investigations pertinent to the campaign; (3) provide an alert-sounding mechanism should the need arise; (4) immediate outreach and dissemination of results via our media/blogger members; (5) provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. In 2014, two new comet observing campaigns involving pro-am collaborations have been initiated: (1) C/2013 A1 (C/SidingSpring) and (2) 67P/Churyumov-Gerasimenko (CG), target for ESA/Rosetta mission. The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA portal that currently is focused on comets: from supporting observing campaigns of current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers

  6. A website for astronomical news in Spanish

    Science.gov (United States)

    Ortiz-Gil, A.

    2008-06-01

    Noticias del Cosmos is a collection of web pages within the Astronomical Observatory of the University of Valencia's website where we publish short daily summaries of astronomical press releases. Most, if not all of, the releases are originally written in English, and often Spanish readers may find them difficult to understand because not many people are familiar with the scientific language employed in these releases. Noticias del Cosmos has two principal aims. First, we want to communicate the latest astronomical news on a daily basis to a wide Spanish-speaking public who would otherwise not be able to read them because of the language barrier. Second, daily news can be used as a tool to introduce the astronomical topics of the school curriculum in a more immediate and relevant way. Most of the students at school have not yet reached a good enough level in their knowledge of English to fully understand a press release, and Noticias del Cosmos offers them and their teachers this news in their mother tongue. During the regular programme of school visits at the Observatory we use the news as a means of showing that there is still a lot to be discovered. So far the visits to the website have been growing steadily. Between June 2003 and June 2007 we had more than 30,000 visits (excluding 2006). More than 50% of the visits come from Spain, followed by visitors from South and Central America. The feedback we have received from teachers so far has been very positive, showing the usefulness of news items in the classroom when teaching astronomy.

  7. Concepts, features, and design of a sixteen-to-four beam combiner for ILSE [Induction Linac Systems Experiment

    International Nuclear Information System (INIS)

    Judd, D.L.; Celata, C.; Close, E.; Faltens, A.; Hahn, K.; La Mon, K.; Lee, E.P.; Smith, L.; Thur, W.

    1989-03-01

    Sixteen intense parallel ion beams are to be transversely combined into four by dispersionless double bends. Emittance growth due to electrostatic energy redistribution and to the geometry is evaluated. Most bending elements are electric, and alternate with AG electrostatic quadrupoles similar to those upstream. The final elements are magnetic, combining focusing and ''unbending''. Electrode shapes and pulsed-current arrays (having very small clearances), and mechanical and electric features of the combiner, and described. 1 ref., 7 figs

  8. South African Astronomical Observatory

    International Nuclear Information System (INIS)

    1987-01-01

    Work at the South African Astronomical Observatory (SAAO) in recent years, by both staff and visitors, has made major contributions to the fields of astrophysics and astronomy. During 1986 the SAAO has been involved in studies of the following: galaxies; celestial x-ray sources; magellanic clouds; pulsating variables; galactic structure; binary star phenomena; nebulae and interstellar matter; stellar astrophysics; open clusters; globular clusters, and solar systems

  9. On astronomical drawing [1846

    Science.gov (United States)

    Smyth, Charles Piazzi

    Reprinted from the Memoirs of the Royal Astronomical Society 15, 1846, pp. 71-82. With annotations and illustrations added by Klaus Hentschel. The activities of the Astronomer Royal for Scotland, Charles Piazzi Smyth (1819-1900), include the triangulation of South African districts, landscape painting, day-to-day or tourist sketching, the engraving and lithographing of prominent architectural sites, the documentary photography of the Egyptian pyramids or the Tenerife Dragon tree, and `instant photographs' of the clouds above his retirement home in Clova, Ripon. His colorful records of the aurora polaris, and solar and terrestrial spectra all profited from his trained eye and his subtle mastery of the pen and the brush. As his paper on astronomical drawing, which we chose to reproduce in this volume, amply demonstrates, he was conversant in most of the print technology repertoire that the 19th century had to offer, and carefully selected the one most appropriate to each sujet. For instance, he chose mezzotint for the plates illustrating Maclear's observations of Halley's comet in 1835/36, so as to achieve a ``rich profundity of shadows, the deep obscurity of which is admirably adapted to reproduce those fine effects of chiaroscuro frequently found in works where the quantity of dark greatly predominates.'' The same expertise with which he tried to emulate Rembrandt's chiaroscuro effects he applied to assessing William and John Herschel's illustrations of nebulae, which appeared in print between 1811 and 1834. William Herschel's positive engraving, made partly by stippling and partly by a coarse mezzotint, receives sharp admonishment because of the visible ruled crossed lines in the background and the fact that ``the objects, which are also generally too light, [have] a much better definition than they really possess.'' On the other hand, John Herschel's illustration of nebulae and star clusters, given in negative, ``in which the lights are the darkest part of the

  10. The Church of San Miniato al Monte, Florence: Astronomical and Astrological Connections

    Science.gov (United States)

    Shrimplin, V.

    2011-06-01

    The church of San Miniato al Monte is examined in the context of interest in astrology and astronomy in early Renaissance Florence. Vitruvius emphasised the need for architects to "be acquainted with astronomy and the theory of the heavens" in his famous Ten Books of Architecture and, at San Miniato, astronomical and astrological features are combined in order to link humanity with the celestial or spiritual realm. The particular significance of Pisces and Taurus is explored in relation to Christian symbolism, raising questions about the role of astronomy and astrology in art and architecture.

  11. Astronomers find distant planet like Jupiter

    CERN Multimedia

    2003-01-01

    Astronomers searching for planetary systems like our solar system have found a planet similar to Jupiter orbiting a nearby star similar to our Sun, about 90 light-years from Earth, according to researchers (1/2 page).

  12. Adapting astronomical source detection software to help detect animals in thermal images obtained by unmanned aerial systems

    Science.gov (United States)

    Longmore, S. N.; Collins, R. P.; Pfeifer, S.; Fox, S. E.; Mulero-Pazmany, M.; Bezombes, F.; Goodwind, A.; de Juan Ovelar, M.; Knapen, J. H.; Wich, S. A.

    2017-02-01

    In this paper we describe an unmanned aerial system equipped with a thermal-infrared camera and software pipeline that we have developed to monitor animal populations for conservation purposes. Taking a multi-disciplinary approach to tackle this problem, we use freely available astronomical source detection software and the associated expertise of astronomers, to efficiently and reliably detect humans and animals in aerial thermal-infrared footage. Combining this astronomical detection software with existing machine learning algorithms into a single, automated, end-to-end pipeline, we test the software using aerial video footage taken in a controlled, field-like environment. We demonstrate that the pipeline works reliably and describe how it can be used to estimate the completeness of different observational datasets to objects of a given type as a function of height, observing conditions etc. - a crucial step in converting video footage to scientifically useful information such as the spatial distribution and density of different animal species. Finally, having demonstrated the potential utility of the system, we describe the steps we are taking to adapt the system for work in the field, in particular systematic monitoring of endangered species at National Parks around the world.

  13. The Top Ten Astronomical 'breakthroughs' of the 20th century

    Directory of Open Access Journals (Sweden)

    Hughes, D. W.

    2007-10-01

    Full Text Available Astronomy was revolutionized in the 20th century. The electron was discovered in 1897 and this transformed spectroscopy and introduced plasma and magnetohydrodynamic physics and astro-chemistry. Einstein’s E = mc2, solved the problem of stellar energy generation and spawned the study of elemental nuclear synthesis. Large telescopes led to a boom in astronomical spectroscopic and photometric data collection, leading to such cornerstones as the Hertzprung-Russell diagram and the mass-luminosity relationship, and to the realization that the Universe contained a multitude of galaxies and was expanding. Radio astronomy was introduced and the advent of the space age saw the astronomical wavelength range expand into the ultraviolet, X-ray and gamma-ray regions, as well as the infrared and millimetre. We also startedwandering around roaming the Solar System instead of merely glimpsing its members from the bottom of our warm, turbulent atmosphere. Astronomical “breakthroughs” abounded. We have asked astronomers to select their “top ten” and these are listed and discussed in this paper.

  14. TESTBEAM COORDINATION: 2nd ATLAS H8 Combined Test Beam Workshop

    CERN Multimedia

    Di Girolamo, B

    The second ATLAS H8 Combined Test Beam Workshop took place at CERN on 24th and 25th November. After a first workshop in July to warm up the atmosphere, a lot of work has been done in the meantime and there was a clear need to get together again before the end of 2003. The morning of the first day has been devoted to an assessment of the status of the various elements needed for next year’s test beam in H8. Each sub-detector has been presenting the status of preparation, as well as the work in progress and still to be done. The picture has been completed with the first plans for the DAQ from the point of view of the sub-detectors requirements, and a status of the LVL1 elements. Finally, the status and the timescale for availability of the LVL2 and EF infrastructure have been presented. The final draft layout of the sub-detectors has been discussed (figures 1 and 2). A more detailed description of the layout is in preparation to include more information on dead material and on the ancillary detectors (scint...

  15. Dante, astrología y astronomía

    OpenAIRE

    Gangui, Alejandro

    2017-01-01

    En este artículo, los versos de Dante Alighieri nos llevan a reflexionar acerca de los diferentes métodos -cada vez más divergentes- con los que la ciencia y las creencias se aproximan a la realidad. Fil: Gangui, Alejandro. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Físi...

  16. TMT in the Astronomical Landscape of the 2020s

    Science.gov (United States)

    Dickinson, Mark; Inami, Hanae

    2014-07-01

    Thirty Meter Telescope Observatory and NOAO will host the second TMT Science Forum at Loews Ventana Canyon Resort in Tucson, Arizona. The TMT Science Forum is an an annual gathering of astronomers, educators, and observatory staff, who meet to explore TMT science, instrumentation, observatory operations, archiving and data processing, astronomy education, and science, technology, engineering, and math (STEM) issues. It is an opportunity for astronomers from the international TMT partners and from the US-at-large community to learn about the observatory status, discuss and plan cutting-edge science, establish collaborations, and to help shape the future of TMT. One important theme for this year's Forum will be the synergy between TMT and other facilities in the post-2020 astronomical landscape. There will be plenary sessions, an instrumentation workshop, topical science sessions and meetings of the TMT International Science Development Teams (ISDTs).

  17. Novel reconfigurable wide-beam radio interferometer for space physics instrumentation

    Science.gov (United States)

    Dekoulis, George; Honary, Farideh

    2008-07-01

    This paper describes the instrumentation design of a novel wide-beam interferometer system for radio astronomy studies. The system measures the Earth's or another planet's atmospheric layers attenuation of the highly energetic galactic electron emissions superimposed on the Cosmic Microwave Background (CMB) and other last scattering surface galactic and extragalactic radio astronomical background emissions. Right ascension coordinates are surveyed in a unique manner in terms of digital signal processing flexibility, compared to existing wide-beam instrumentations, allowing higher resolution analysis of the captured Space Physics events. The system provides a prototyping platform for other Space Physics projects, since a modular software and hardware design approach has been followed. The system is reconfigurable to meet a variety of testing scenarios.

  18. Astronomical random numbers for quantum foundations experiments

    Science.gov (United States)

    Leung, Calvin; Brown, Amy; Nguyen, Hien; Friedman, Andrew S.; Kaiser, David I.; Gallicchio, Jason

    2018-04-01

    Photons from distant astronomical sources can be used as a classical source of randomness to improve fundamental tests of quantum nonlocality, wave-particle duality, and local realism through Bell's inequality and delayed-choice quantum eraser tests inspired by Wheeler's cosmic-scale Mach-Zehnder interferometer gedanken experiment. Such sources of random numbers may also be useful for information-theoretic applications such as key distribution for quantum cryptography. Building on the design of an astronomical random number generator developed for the recent cosmic Bell experiment [Handsteiner et al. Phys. Rev. Lett. 118, 060401 (2017), 10.1103/PhysRevLett.118.060401], in this paper we report on the design and characterization of a device that, with 20-nanosecond latency, outputs a bit based on whether the wavelength of an incoming photon is greater than or less than ≈700 nm. Using the one-meter telescope at the Jet Propulsion Laboratory Table Mountain Observatory, we generated random bits from astronomical photons in both color channels from 50 stars of varying color and magnitude, and from 12 quasars with redshifts up to z =3.9 . With stars, we achieved bit rates of ˜1 ×106Hz/m 2 , limited by saturation of our single-photon detectors, and with quasars of magnitudes between 12.9 and 16, we achieved rates between ˜102 and 2 ×103Hz /m2 . For bright quasars, the resulting bitstreams exhibit sufficiently low amounts of statistical predictability as quantified by the mutual information. In addition, a sufficiently high fraction of bits generated are of true astronomical origin in order to address both the locality and freedom-of-choice loopholes when used to set the measurement settings in a test of the Bell-CHSH inequality.

  19. Astronomers Win Protection for Key Part of Radio Spectrum

    Science.gov (United States)

    2000-06-01

    Astronomers using the millimeter-wave region of the radio spectrum have won crucial protection for their science. Dedicated allocations for radio astronomy have been given final approval by the 2,500 delegates to the World Radiocommunication Conference (WRC-00), which recently concluded a month of deliberations in Istanbul, Turkey. Radio services can transmit in these parts of the spectrum as long as they don't hinder astronomers' attempts to catch faint signals from the cosmos. The new allocations represent the culmination of more than three years of cooperative planning by radio astronomers in many countries. Millimeter waves -- high-frequency radio waves -- have come of age as an astronomical tool in the last ten years. They are one of the last technological frontiers for astronomers. WRC-00 has protected for science all the frequencies between 71 and 275 Gigahertz (GHz) that radio astronomers currently use, adding more than 90 GHz of spectrum to the 44 GHz already set aside in this frequency range. As a result, radio astronomy is now allocated most of the frequencies between 71 and 275 GHz that can get through the Earth's atmosphere. "We have formal access to all three atmospheric 'windows', apart from their very edges," said Dr. Tom Gergely of the National Science Foundation, one of the U.S. delegates to WRC-00. The WRC also changed most of the frequencies allocated to satellite downlinks within the 71-275 GHz range to frequencies not used for science. Since no satellites yet operate at these high frequencies, no equipment needs to be altered. "Commercial technologies are just starting to develop above 50 GHz," said Dr. Klaus Ruf, Chairman of the Inter-Union Commission for the Allocation of Frequencies. "The WRC's actions mean that, when they are, radio astronomers should be able to share this part of the spectrum with most terrestrial services." The World Radiocommunication Conference is held every two or three years. Here member countries of the

  20. Maraghe Observatory and an Effort towards Retrieval of Architectural Design of Astronomical Units

    Directory of Open Access Journals (Sweden)

    Javad Shekari Niri

    2015-03-01

    Full Text Available Maraghe observatory was built by such engineers as Moayiededdin Orozi etc. under supervision of Khaje Nasireddin Tousi in 7th century AH. The most significant feature associated with Maraghe observatory is the fact that architecture is employed to achieve astronomical purposes in this site. The reason for preferring observatory by astronomers was the fact that these units are superior to wooden and metal instruments with respect to accuracy, no size limitations, etc. Architectural design and function of astronomical units of Maraghe observatory site after discovery of its foundation in the course of explorations before Islamic Revolution remained unclear until recent years. After conducting required studies and investigations, the author managed to find significant cues and after some precise comparisons, he succeeded to recover the main design and function of some astronomical units of this international center. Based on these findings these astronomical structures can reliably be rebuilt. This research showed that every circular or polygonal building cannot be considered as an observatory. For example form and function of cemetery structures are completely different with astronomical ones. Following this research also valuable results were obtained in relation to stone architectural structures present on Maraghe observatory hill. In addition, claims about invention of astronomical units of Maraghe observatory by non-Iranian scientists are rejected and rights of Iranian scientists are rationally defended in this regard.

  1. GalileoMobile: Astronomical activities in schools

    Science.gov (United States)

    Dasi Espuig, Maria; Vasquez, Mayte; Kobel, Philippe

    GalileoMobile is an itinerant science education initiative run on a voluntary basis by an international team of astronomers, educators, and science communicators. Our team's main goal is to make astronomy accessible to schools and communities around the globe that have little or no access to outreach actions. We do this by performing teacher workshops, activities with students, and donating educational material. Since the creation of GalileoMobile in 2008, we have travelled to Chile, Bolivia, Peru, India, and Uganda, and worked with 56 schools in total. Our activities are centred on the GalileoMobile Handbook of Activities that comprises around 20 astronomical activities which we adapted from many different sources, and translated into 4 languages. The experience we gained in Chile, Bolivia, Peru, India, and Uganda taught us that (1) bringing experts from other countries was very stimulating for children as they are naturally curious about other cultures and encourages a collaboration beyond borders; (2) high-school students who were already interested in science were always very eager to interact with real astronomers doing research to ask for career advice; (3) inquiry-based methods are important to make the learning process more effective and we have therefore, re-adapted the activities in our Handbook according to these; (4) local teachers and university students involved in our activities have the potential to carry out follow-up activities, and examples are those from Uganda and India.

  2. Astronomical Spectroscopy A Short History

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Astronomical Spectroscopy A Short History. J C Bhattacharyya. General Article Volume 3 Issue 5 May 1998 pp 24-29. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/003/05/0024-0029 ...

  3. Astronomical Photometry Past, Present, and Future

    CERN Document Server

    Milone, Eugene F

    2011-01-01

    This book brings together experts in the field of astronomical photometry to discuss how their subfields provide the precision and accuracy in astronomical energy flux measurements that are needed to permit tests of astrophysical theories. Differential photometers and photometry, improvements in infrared precision, the improvements in precision and accuracy of CCD photometry, the absolute calibration of flux, the development of the Johnson UBVRI photometric system and other passband systems to measure and precisely classify specific types of stars and astrophysical quantities, and the current capabilities of spectrophotometry and polarimetry to provide precise and accurate data, are all discussed in this volume. The discussion of `differential’ or `two-star’ photometers ranges from early experiments in visual photometry through the Harvard and Princeton polarizing photometers to the pioneering work of Walraven and differential photometers designed to minimize effects of atmospheric extinction and to count...

  4. Isaac Newton and the astronomical refraction.

    Science.gov (United States)

    Lehn, Waldemar H

    2008-12-01

    In a short interval toward the end of 1694, Isaac Newton developed two mathematical models for the theory of the astronomical refraction and calculated two refraction tables, but did not publish his theory. Much effort has been expended, starting with Biot in 1836, in the attempt to identify the methods and equations that Newton used. In contrast to previous work, a closed form solution is identified for the refraction integral that reproduces the table for his first model (in which density decays linearly with elevation). The parameters of his second model, which includes the exponential variation of pressure in an isothermal atmosphere, have also been identified by reproducing his results. The implication is clear that in each case Newton had derived exactly the correct equations for the astronomical refraction; furthermore, he was the first to do so.

  5. The data analysis facilities that astronomers want

    International Nuclear Information System (INIS)

    Disney, M.

    1985-01-01

    This paper discusses the need and importance of data analysis facilities and what astronomers ideally want. A brief survey is presented of what is available now and some of the main deficiencies and problems with today's systems are discussed. The main sources of astronomical data are presented incuding: optical photographic, optical TV/CCD, VLA, optical spectros, imaging x-ray satellite, and satellite planetary camera. Landmark discoveries are listed in a table, some of which include: our galaxy as an island, distance to stars, H-R diagram (stellar structure), size of our galaxy, and missing mass in clusters. The main problems at present are discussed including lack of coordinated effort and central planning, differences in hardware, and measuring performance

  6. Working data together: the accountability and reflexivity of digital astronomical practice.

    Science.gov (United States)

    Hoeppe, Götz

    2014-04-01

    Drawing on ethnomethodology, this article considers the sequential work of astronomers who combine observations from telescopes at two observatories in making a data set for scientific analyses. By witnessing the induction of a graduate student into this work, it aims at revealing the backgrounded assumptions that enter it. I find that these researchers achieved a consistent data set by engaging diverse evidential contexts as contexts of accountability. Employing graphs that visualize data in conventional representational formats of observational astronomy, experienced practitioners held each other accountable by using an 'implicit cosmology', a shared (but sometimes negotiable) characterization of 'what the universe looks like' through these formats. They oriented to data as malleable, that is, as containing artifacts of the observing situation which are unspecified initially but can be defined and subsequently removed. Alternating between reducing data and deducing astronomical phenomena, they ascribed artifacts to local observing conditions or computational procedures, thus maintaining previously stabilized phenomena reflexively. As researchers in data-intensive sciences are often removed from the instruments that generated the data they use, this example demonstrates how scientists can achieve agreement by engaging stable 'global' data sets and diverse contexts of accountability, allowing them to bypass troubling features and limitations of data generators.

  7. Combined effect of high curing temperature and crack width on chloride migration in reinforced concrete beams

    Science.gov (United States)

    Elkedrouci, L.; Diao, B.; Pang, S.; Li, Y.

    2018-03-01

    Deterioration of reinforced concrete structures is a serious concern in the construction engineering, largely due to chloride induced corrosion of reinforcement. Chloride penetration is markedly influenced by one or several major factors at the same time such as cuing in combination with different crack widths which have spectacular effect on reinforced concrete structures. This research presents the results of an experimental investigation involving reinforced concrete beams with three different crack widths ranging from 0 to 0.2mm, curing temperatures of 20°C or 40°C and water-to-cement of 0.5. Chloride content profiles were determined under non-steady state diffusion at 20°C. Based on the obtained results, higher chloride content was obtained under condition of high curing temperature in combination with large crack more than 0.1mm and there are no significant differences between narrow crack width (less than 0.1 mm) and beams without crack (0 mm).

  8. Grigor Narekatsi's astronomical insights

    Science.gov (United States)

    Poghosyan, Samvel

    2015-07-01

    What stand out in the solid system of Gr. Narekatsi's naturalistic views are his astronomical insights on the material nature of light, its high speed and the Sun being composed of "material air". Especially surprising and fascinating are his views on stars and their clusters. What astronomers, including great Armenian academician V. Ambartsumian (scattering of stellar associations), would understand and prove with much difficulty thousand years later, Narekatsi predicted in the 10th century: "Stars appear and disappear untimely", "You who gather and scatter the speechless constellations, like a flock of sheep". Gr. Narekatsti's reformative views were manifested in all the spheres of the 10th century social life; he is a reformer of church life, great language constructor, innovator in literature and music, freethinker in philosophy and science. His ideology is the reflection of the 10th century Armenian Renaissance. During the 9th-10th centuries, great masses of Armenians, forced to migrate to the Balkans, took with them and spread reformative ideas. The forefather of the western science, which originated in the period of Reformation, is considered to be the great philosopher Nicholas of Cusa. The study of Gr. Narekatsti's logic and naturalistic views enables us to claim that Gr. Narekatsti is the great grandfather of European science.

  9. Amateur astronomers in support of observing campaigns

    Science.gov (United States)

    Yanamandra-Fisher, P.

    2014-07-01

    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON. The success of the paradigm shift in scientific research is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access, and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: - the establishment of a network of astronomers and related professionals that can be galvanized into action on short notice to support observing campaigns; - assist in various science investigations pertinent to the campaign; - provide an alert-sounding mechanism should the need arise; - immediate outreach and dissemination of results via our media/blogger members; - provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. In 2014, two new comet observing campaigns involving pro-am collaborations have been identified: (1) C/2013 A1 (C/Siding Spring) and (2) 67P/Churyumov-Gerasimenko (CG). The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA (Pro-Am Collaborative Astronomy) portal that currently is focused on comets: from supporting observing campaigns for current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers. The recent observation of comet 67P, at a magnitude of 21.2, from Siding

  10. Astronomers no longer in the dark

    CERN Multimedia

    MacMillan, L

    2002-01-01

    In a significant breakthrough, British and US astronomers have begun to pin down the most elusive material in the universe. They have made a map of dark matter - the heavy, invisible stuff that gives the galaxies their shape (1 page).

  11. LGBT Workplace Issues for Astronomers

    Science.gov (United States)

    Kay, Laura E.; Danner, R.; Sellgren, K.; Dixon, V.; GLBTQastro

    2011-01-01

    Federal Equal Employment Opportunity laws and regulations do not provide protection from discrimination on the basis of sexual orientation or gender identity or gender expression. Sexual minority astronomers (including lesbian, gay, bisexual and transgender people; LGBT) can face additional challenges at school and work. Studies show that LGBT students on many campuses report experiences of harassment. Cities, counties, and states may or may not have statutes to protect against such discrimination. There is wide variation in how states and insurance plans handle legal and medical issues for transgender people. Federal law does not acknowledge same-sex partners, including those legally married in the U.S. or in other countries. Immigration rules in the U.S. (and many other, but not all) countries do not recognize same-sex partners for visas, employment, etc. State `defense of marriage act' laws have been used to remove existing domestic partner benefits at some institutions, or benefits can disappear with a change in governor. LGBT astronomers who change schools, institutions, or countries during their career may experience significant differences in their legal, medical, and marital status.

  12. What Lies Behind NSF Astronomer Demographics? Subjectivities of Women, Minorities and Foreign-born Astronomers within Meshworks of Big Science Astronomy

    Science.gov (United States)

    Guillen, Reynal; Gu, D.; Holbrook, J.; Murillo, L. F.; Traweek, S.

    2011-01-01

    Our current research focuses on the trajectory of scientists working with large-scale databases in astronomy, following them as they strategically build their careers, digital infrastructures, and make their epistemological commitments. We look specifically at how gender, ethnicity, nationality intersect in the process of subject formation in astronomy, as well as in the process of enrolling partners for the construction of instruments, design and implementation of large-scale databases. Work once figured as merely technical support, such assembling data catalogs, or as graphic design, generating pleasing images for public support, has been repositioned at the core of the field. Some have argued that such databases enable a new kind of scientific inquiry based on data exploration, such as the "fourth paradigm" or "data-driven" science. Our preliminary findings based on oral history interviews and ethnography provide insights into meshworks of women, African-American, "Hispanic," Asian-American and foreign-born astronomers. Our preliminary data suggest African-American men are more successful in sustaining astronomy careers than Chicano and Asian-American men. A distinctive theme in our data is the glocal character of meshworks available to and created by foreign-born women astronomers working at US facilities. Other data show that the proportion of Asian to Asian American and foreign-born Latina/o to Chicana/o astronomers is approximately equal. Futhermore, Asians and Latinas/os are represented in significantly greater numbers than Asian Americans and Chicanas/os. Among professional astronomers in the US, each ethnic minority group is numbered on the order of tens, not hundreds. Project support is provided by the NSF EAGER program to University of California, Los Angeles under award 0956589.

  13. Local deposition of high-purity Pt nanostructures by combining electron beam induced deposition and atomic layer deposition

    NARCIS (Netherlands)

    Mackus, A.J.M.; Mulders, J.J.L.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2010-01-01

    An approach for direct-write fabrication of high-purity platinum nanostructures has been developed by combining nanoscale lateral patterning by electron beam induced deposition (EBID) with area-selective deposition of high quality material by atomic layer deposition (ALD). Because virtually pure,

  14. Preserving Astronomy's Photographic Legacy: Current State and the Future of North American Astronomical Plates

    Science.gov (United States)

    Osborn, W.; Robbins, L.

    2009-08-01

    This book contains articles on preserving astronomy's valuable heritage of photographic observations, most of which are on glass plates. It is intended to serve as a reference for institutions charged with preserving and managing plate archives and astronomers interested in using archival photographic plates in their research. The first portion of the book focuses on previous activities and recommendations related to plate archiving. These include actions taken by the International Astronomical Union, activities in Europe and a detailed account of a workshop on preserving astronomical photographic data held in 2007 at the Pisgah Astronomical Research Institute, North Carolina. The workshop discussions covered a wide range of issues that must be considered in any effort to archive plates and culminated in a set of recommendations on preserving, cataloging and making publicly available these irreplaceable data. The second part of the book reports on some recent efforts to implement the recommendations. These include essays on the recently established Astronomical Photographic Data Archive, projects to make photographic collections available electronically, evaluations of commercial scanners for digitization of astronomical plates and the case for the continuing value of these data along with a report on the census of astronomical plate collections in North America carried out in 2008. The census cataloged the locations, numbers, and types of astronomical plates in the US and Canada. Comprehensive appendices identify all the significant collections in North America and detail the current contents, state and status of their holdings.

  15. Electromagnetic design and development of a combined function horizontal and vertical dipole steerer magnet for medium energy beam transport line

    International Nuclear Information System (INIS)

    Singh, Kumud; Itteera, Janvin; Ukarde, Priti; Teotia, Vikas; Kumar, Prashant; Malhotra, Sanjay; Taly, Y.K.

    2013-01-01

    Medium Energy Beam Transport (MEBT) line is required to match the optical functions between the RFQ and SRF cavities/DTL cavities.The primary function of the MEBT lines is to keep the emittance growth of the output beam as low as possible in a highly space charge environment at low energies. The transverse focusing of the beam is achieved by strong focusing quadrupoles and the longitudinal dynamics is achieved by the buncher cavities. The Dipole Steerers serve the function of a control element to achieve the desired transverse beam position. To minimize the emittance growth high magnetic field rigidity is required in a highly constrained longitudinal space for these corrector magnets. The design and development of an air-cooled dipole steerer magnet has been done for an integral dipole field of 2.1mT-m in a Good Field Region (GFR) of 23 mm diameter with Integral Field homogeneity better than 0.5%. Electromagnetic field simulations were done using 3D-FEM simulation software OPERA. Error sensitivity studies have been carried out to specify the manufacturing tolerances to estimate and minimize the beam transmission loss due to likely misalignments and rotation of the magnet. A combined function dipole corrector magnet has been designed and fabricated at the Control Instrumentation Division, BARC. This paper discusses measurement results of a combined function dipole steerer for MEBT line for Proton (H + ) beam at 2.5 MeV. (author)

  16. Recent Advances for LGBT Astronomers in the United States

    Science.gov (United States)

    Dixon, William V.; Rigby, Jane; Oppenheimer, Rebecca

    2015-08-01

    The legal environment for lesbian, gay, bisexual, and transgender (LGBT) astronomers in the United States has changed dramatically in recent years. In 2013, the Supreme Court ruled that Section 3 of the Defense of Marriage Act (DOMA), which had barred the federal government from recognizing same-sex marriages, was unconstitutional. This decision particularly affects astronomers, since astronomers in the U.S. are more likely than the general population to be foreign nationals, to have a foreign-born spouse, or to work for the federal government. In 2014, the Attorney General directed the Department of Justice to take the position in litigation that the protection of Title VII of the Civil Rights Act of 1964 extends to claims of discrimination based on an individual’s gender identity, including transgender status. Title VII makes it unlawful for employers to discriminate in the employment of an individual “because of such individual’s... sex,” among other protected characteristics. As of March 2015, more than 70% of the population lives in states that recognize same-sex marriage, and the Supreme Court is expected to rule on the constitutionality of the remaining same-sex marriage bans during the current term. In this poster, we discuss these advances and their implications for the personal and professional lives of LGBT astronomers across the United States.

  17. How did the Supreme Court ruling on DOMA affect astronomers?

    Science.gov (United States)

    Rigby, Jane R.; The AAS Working Group on LGBTIQ Equality

    2014-01-01

    In June 2013, the United States Supreme Court ruled that Section 3 of the Defense of Marriage Act (DOMA) was unconstitutional. Section 3 had barred the federal government from recognizing same-sex marriages. The decision in United States v. Windsor, made headlines around the world, and particularly affected astronomers, since astronomers in the US are more likely than the general population to be foreign nationals, to have a foreign-born spouse, or to work for the federal government. In this poster, we highlight some of the real-world ways that the Windsor case has affected US astronomers and our profession. Bi-national couples can now apply for green cards granting permanent residency. Scientists who work for the federal government, including NASA and the NSF, can now obtain health insurance for a same-sex spouse. From taxes to death benefits, health insurance to daycare, immigration to ethics laws, the end of S3 of DOMA has had profoundly improved the lives of US scientists who are lesbian, gay, bisexual, or transgender (LGBT). Here we, highlight several real-world examples of how DOMA's demise has improved the lives and careers of US astronomer.

  18. Research progress in plant mutation by combining ion beam irradiations and tissue culture

    International Nuclear Information System (INIS)

    Zhou Linbin; Li Wenjian; Qu Ying; Li Ping

    2007-01-01

    About a new mutation breeding method which combines plant tissue culture technique with heavy ion beam irradiations were discussed in this paper with the principles, operation steps, molecular mechanisms, etc. The mutation method developed a few advantages coming from plant tissue culture, which can produce offspring by asexual ways. Meanwhile, using this method, the study of biological effects of high energy particles with different linear energy transfer values on plant tissues or cells can be explored and optimized in theory or practice. (authors)

  19. Statistical methods for astronomical data analysis

    CERN Document Server

    Chattopadhyay, Asis Kumar

    2014-01-01

    This book introduces “Astrostatistics” as a subject in its own right with rewarding examples, including work by the authors with galaxy and Gamma Ray Burst data to engage the reader. This includes a comprehensive blending of Astrophysics and Statistics. The first chapter’s coverage of preliminary concepts and terminologies for astronomical phenomenon will appeal to both Statistics and Astrophysics readers as helpful context. Statistics concepts covered in the book provide a methodological framework. A unique feature is the inclusion of different possible sources of astronomical data, as well as software packages for converting the raw data into appropriate forms for data analysis. Readers can then use the appropriate statistical packages for their particular data analysis needs. The ideas of statistical inference discussed in the book help readers determine how to apply statistical tests. The authors cover different applications of statistical techniques already developed or specifically introduced for ...

  20. Human perception of indoor environment generated by chilled ceiling combined with mixing ventilation or localised chilled beam under cooling mode

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Nygaard, Linette; Uth, Simon C.

    2014-01-01

    Experiments with 24 subjects were performed to study and compare the human perception of the indoor environment under summer conditions generated by a chilled ceiling combined with overhead mixing ventilation and localised chilled beam. The experiments were performed in an experimental chamber (4....../s and 16 0C. The localised chilled beam was installed over the workstation placed by the simulated window. During the experiment the subjects were delegated control over the primary flow rate supplied by the localised chilled beam. The whole exposure lasted 2 hours with 30 min of acclimatisation before...

  1. ARNICA, the Arcetri near-infrared camera: Astronomical performance assessment.

    Science.gov (United States)

    Hunt, L. K.; Lisi, F.; Testi, L.; Baffa, C.; Borelli, S.; Maiolino, R.; Moriondo, G.; Stanga, R. M.

    1996-01-01

    The Arcetri near-infrared camera ARNICA was built as a users' instrument for the Infrared Telescope at Gornergrat (TIRGO), and is based on a 256x256 NICMOS 3 detector. In this paper, we discuss ARNICA's optical and astronomical performance at the TIRGO and at the William Herschel Telescope on La Palma. Optical performance is evaluated in terms of plate scale, distortion, point spread function, and ghosting. Astronomical performance is characterized by camera efficiency, sensitivity, and spatial uniformity of the photometry.

  2. Applying artificial intelligence to astronomical databases - a surveyof applicable technology.

    Science.gov (United States)

    Rosenthal, D. A.

    This paper surveys several emerging technologies which are relevant to astronomical database issues such as interface technology, internal database representation, and intelligent data reduction aids. Among the technologies discussed are natural language understanding, frame and object representations, planning, pattern analysis, machine learning and the nascent study of simulated neural nets. These techniques will become increasingly important for astronomical research, and in particular, for applications with large databases.

  3. EDUCATIONAL ASTRONOMICAL OBSERVATIONS ON REMOTE ACCESS TELESCOPES

    Directory of Open Access Journals (Sweden)

    Ivan P. Kriachko

    2016-01-01

    Full Text Available The purpose of this article is to show the way of overcoming one of the major problems of astronomy teaching methods in upper secondary school – organization of educational astronomical observations. Nowadays it became possible to perform such observations on remote access telescopes. By using up-to-date informational and communicational technologies, having an opportunity to work with robotic telescopes allows us to organize a unique cognitive and research oriented activities for students while conducting their specialized astronomical studies. Below here is given a brief description of the most significant robotic telescopes and the way of the usage of open remote access telescopic network which was created by professors and scientists of Harvard-Smithsonian Center for Astrophysics, USA.

  4. How do astronomers share data? Reliability and persistence of datasets linked in AAS publications and a qualitative study of data practices among US astronomers.

    Science.gov (United States)

    Pepe, Alberto; Goodman, Alyssa; Muench, August; Crosas, Merce; Erdmann, Christopher

    2014-01-01

    We analyze data sharing practices of astronomers over the past fifteen years. An analysis of URL links embedded in papers published by the American Astronomical Society reveals that the total number of links included in the literature rose dramatically from 1997 until 2005, when it leveled off at around 1500 per year. The analysis also shows that the availability of linked material decays with time: in 2011, 44% of links published a decade earlier, in 2001, were broken. A rough analysis of link types reveals that links to data hosted on astronomers' personal websites become unreachable much faster than links to datasets on curated institutional sites. To gauge astronomers' current data sharing practices and preferences further, we performed in-depth interviews with 12 scientists and online surveys with 173 scientists, all at a large astrophysical research institute in the United States: the Harvard-Smithsonian Center for Astrophysics, in Cambridge, MA. Both the in-depth interviews and the online survey indicate that, in principle, there is no philosophical objection to data-sharing among astronomers at this institution. Key reasons that more data are not presently shared more efficiently in astronomy include: the difficulty of sharing large data sets; over reliance on non-robust, non-reproducible mechanisms for sharing data (e.g. emailing it); unfamiliarity with options that make data-sharing easier (faster) and/or more robust; and, lastly, a sense that other researchers would not want the data to be shared. We conclude with a short discussion of a new effort to implement an easy-to-use, robust, system for data sharing in astronomy, at theastrodata.org, and we analyze the uptake of that system to-date.

  5. How Do Astronomers Share Data? Reliability and Persistence of Datasets Linked in AAS Publications and a Qualitative Study of Data Practices among US Astronomers

    Science.gov (United States)

    Pepe, Alberto; Goodman, Alyssa; Muench, August; Crosas, Merce; Erdmann, Christopher

    2014-08-01

    We analyze data sharing practices of astronomers over the past fifteen years. An analysis of URL links embedded in papers published by the American Astronomical Society reveals that the total number of links included in the literature rose dramatically from 1997 until 2005, when it leveled off at around 1500 per year. The analysis also shows that the availability of linked material decays with time: in 2011, 44% of links published a decade earlier, in 2001, were broken. A rough analysis of link types reveals that links to data hosted on astronomers' personal websites become unreachable much faster than links to datasets on curated institutional sites. To gauge astronomers' current data sharing practices and preferences further, we performed in-depth interviews with 12 scientists and online surveys with 173 scientists, all at a large astrophysical research institute in the United States: the Harvard-Smithsonian Center for Astrophysics, in Cambridge, MA. Both the in-depth interviews and the online survey indicate that, in principle, there is no philosophical objection to data-sharing among astronomers at this institution. Key reasons that more data are not presently shared more efficiently in astronomy include: the difficulty of sharing large data sets; over reliance on non-robust, non-reproducible mechanisms for sharing data (e.g. emailing it); unfamiliarity with options that make data-sharing easier (faster) and/or more robust; and, lastly, a sense that other researchers would not want the data to be shared. We conclude with a short discussion of a new effort to implement an easy-to-use, robust, system for data sharing in astronomy, at theastrodata.org, and we analyze the uptake of that system to-date.

  6. How do astronomers share data? Reliability and persistence of datasets linked in AAS publications and a qualitative study of data practices among US astronomers.

    Directory of Open Access Journals (Sweden)

    Alberto Pepe

    Full Text Available We analyze data sharing practices of astronomers over the past fifteen years. An analysis of URL links embedded in papers published by the American Astronomical Society reveals that the total number of links included in the literature rose dramatically from 1997 until 2005, when it leveled off at around 1500 per year. The analysis also shows that the availability of linked material decays with time: in 2011, 44% of links published a decade earlier, in 2001, were broken. A rough analysis of link types reveals that links to data hosted on astronomers' personal websites become unreachable much faster than links to datasets on curated institutional sites. To gauge astronomers' current data sharing practices and preferences further, we performed in-depth interviews with 12 scientists and online surveys with 173 scientists, all at a large astrophysical research institute in the United States: the Harvard-Smithsonian Center for Astrophysics, in Cambridge, MA. Both the in-depth interviews and the online survey indicate that, in principle, there is no philosophical objection to data-sharing among astronomers at this institution. Key reasons that more data are not presently shared more efficiently in astronomy include: the difficulty of sharing large data sets; over reliance on non-robust, non-reproducible mechanisms for sharing data (e.g. emailing it; unfamiliarity with options that make data-sharing easier (faster and/or more robust; and, lastly, a sense that other researchers would not want the data to be shared. We conclude with a short discussion of a new effort to implement an easy-to-use, robust, system for data sharing in astronomy, at theastrodata.org, and we analyze the uptake of that system to-date.

  7. Simulation of the beam halo from the beam-beam interaction in LEP

    International Nuclear Information System (INIS)

    Chen, T.; Irwin, J.; Siemann, R.

    1994-02-01

    The luminosity lifetimes of e + e - colliders are often dominated by the halo produced by the beam-beam interaction. They have developed a simulation technique to model this halo using the flux across boundaries in amplitude space to decrease the CPU time by a factor of one-hundred or more over 'brute force' tracking. It allows simulation of density distributions and halos corresponding to realistic lifetimes. Reference 1 shows the agreement with brute force tracking in a number of cases and the importance of beam-beam resonances in determining the density distribution of large amplitudes. this research is now directed towards comparisons with operating colliders and studies of the combined effects of lattice and beam-beam nonlinearities. LEP offers an ideal opportunity for both, and in this paper they are presenting the first results of LEP simulations

  8. Theory of using magnetic deflections to combine charged particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Steckbeck, Mackenzie K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass–energy products (MEP), the low-MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high-MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these two magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equation is given by: Bs= 1/2(rc/rs) Bc, where Bs and Bc are the magnetic fields in the steering and bending magnet and rc/rs is the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low-MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high-MEP beam will be directed into the sample.

  9. Spectral coherent combination of ultrashort pulses

    International Nuclear Information System (INIS)

    Ursescu, D.; Banici, R.; Ionel, L.; Rusen, L.; Sandel, S.; Blanaru, C.

    2010-01-01

    Complete text of publication follows. The coherent beam combination was chosen in several laser systems, including ELI, as a solution to increase the final attainable intensity. However, the coherent beam combination it is also a difficult technique while it has to combine coherently in space and in time several beams amplified in different laser chains. That means in particular that the beams should be in phase in every point of the amplified beam so the spatial beam profiling techniques have to be mastered with high accuracy for all the combined beams. Here it is proposed an alternative coherent beam combination than the use of identical ultrashort pulses. The idea is to spectrally combine laser pulses with complementary spectra. Collinear and non-collinear approaches have been modelled. Ongoing experimental development, including the demonstration of the rephasing for two spectrally complementary ultrashort pulses will be presented. Acknowledgements. The research leading to these results has received funding from the EC's Seventh Framework Programme (LASERLAB-EUROPE, grant agreement no. 228334).

  10. Spectral atlas for amateur astronomers a guide to the spectra of astronomical objects and terrestrial light sources

    CERN Document Server

    Walker, Richard

    2017-01-01

    Featuring detailed commented spectral profiles of more than one hundred astronomical objects, in colour, this spectral guide documents most of the important and spectroscopically observable objects accessible using typical amateur equipment. It allows you to read and interpret the recorded spectra of the main stellar classes, as well as most of the steps from protostars through to the final stages of stellar evolution as planetary nebulae, white dwarfs or the different types of supernovae. It also presents integrated spectra of stellar clusters, galaxies and quasars, and the reference spectra of some terrestrial light sources, for calibration purposes. Whether used as the principal reference for comparing with your recorded spectra or for inspiring independent observing projects, this atlas provides a breathtaking view into our Universe's past. The atlas is accompanied and supplemented by Spectroscopy for Amateur Astronomers, which explains in detail the methods for recording, processing, analysing and interp...

  11. Combining active chilled beams and air-cleaning technologies to improve the indoor climate in offices

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian

    2013-01-01

    This project is part of a long-term research programme to study the possibilities of using efficient air-cleaning technologies to improve the indoor air quality in buildings. The purpose of this part of the project was to study the energy-saving potential of combining the cooling and cleaning of ...... than 5 Pa (0.104 Ibf /ft2). Furthermore, the measurement results of the combined system showed that adding the filter accelerated the removal rate of the particles by 2 h-1. However, the efficiency of the chilled beam in exchanging heat was reduced by 38%....

  12. Current trends in laser fusion driver and beam combination laser system using stimulated Brillouin scattering phase conjugate mirrors for a fusion driver

    International Nuclear Information System (INIS)

    Kong, Hong Jin

    2008-01-01

    Laser fusion energy (LFE) is well known as one of the promising sources if clean energy for mankind. Laser fusion researches have been actively progressed, since Japan and the Soviet Union as well as USA developed ultrahigh power lasers at the beginning of 1970s. At present in USA, NIF (National Ignition Facility), which is the largest laser fusion facility in the world, is under construction and will be completed in 2008. Japan as a leader of the laser fusion research has developed a high energy and high power laser system, Gekko XII, and is under contemplation of FIREX projects for the fast ignition. China also has SG I, II lasers for performing the fusion research, and SG III is under construction as a next step. France is also constructing LMJ (Laser countries, many other developed countries in Europe, such as Russia, Germany, UK, and so on, have their own high energy laser systems for the fusion research. In Korea, the high power laser development started with SinMyung laser in KAIST in 1994, and KLF (KAERI Laser Facility) of KAERI was recently completed in 2007. For the practical use of laser fusion energy, the laser driver should be operated with a high repetition rate around 10Hz. Yet, current high energy laser systems, Such as NIF, Gekko XII, and etc., can be operated with only several shots per day. Some researchers have developed their own techniques to reduce the thermal loads of the laser material, by using laser diodes as pump sources and ceramic laser materials with high thermal energy scaling up for the real fusion driver. For this reason, H. J. Kong et al. proposed the beam combination laser system using stimulated Brillouin scattering phase conjugate mirrors (SBS PCMs) for a fusion driver. Proposed beam combination has many advantages for energy scaling up; it is composed by simple optical systems with small amount of components, there is no interaction between neighbored sub beams, the SBS PCMs can be used for a high energy beam reflection with

  13. A new astronomical dating of Odysseus return to Ithaca.

    Science.gov (United States)

    Papamarinopoulos, St. P.; Preka-Papadema, P.; Antonopoulos, P.; Mitropetrou, H.; Tsironi, A.; Mitropetros, P.

    The annular solar eclipse, of 30 October 1207 B.C. (Julian Day-JD 1280869), calculated by NASA together with the analysis of the weather's and the environment's description (long nights, plants, animals and peoples' habits) and the astronomical data (guiding constellations and Venus in the east horizon) mentioned by Homer in the epic, constitute an autumn return of Odysseus to Ithaca five days before the above characterized day. The latter offers a precise astronomical dating of the event and dates the legendary Trojan War's end as well.

  14. AAS Publishing News: Astronomical Software Citation Workshop

    Science.gov (United States)

    Kohler, Susanna

    2015-07-01

    Do you write code for your research? Use astronomical software? Do you wish there were a better way of citing, sharing, archiving, or discovering software for astronomy research? You're not alone! In April 2015, AAS's publishing team joined other leaders in the astronomical software community in a meeting funded by the Sloan Foundation, with the purpose of discussing these issues and potential solutions. In attendance were representatives from academic astronomy, publishing, libraries, for-profit software sharing platforms, telescope facilities, and grantmaking institutions. The goal of the group was to establish “protocols, policies, and platforms for astronomical software citation, sharing, and archiving,” in the hopes of encouraging a set of normalized standards across the field. The AAS is now collaborating with leaders at GitHub to write grant proposals for a project to develop strategies for software discoverability and citation, in astronomy and beyond. If this topic interests you, you can find more details in this document released by the group after the meeting: http://astronomy-software-index.github.io/2015-workshop/ The group hopes to move this project forward with input and support from the broader community. Please share the above document, discuss it on social media using the hashtag #astroware (so that your conversations can be found!), or send private comments to julie.steffen@aas.org.

  15. Akhet Khufu: archaeo-astronomical hints at a common project of the two main pyramids of Giza, Egypt

    OpenAIRE

    Magli, Giulio

    2007-01-01

    The architectural complexes composed by the two main pyramids of Giza together with their temples are investigated from an inter-disciplinary point of view, taking into account their astronomical alignments as well as their relationships with the visible landscape. Combining already known facts together with new clues, the work strongly supports the idea that the two complexes were conceived as parts of a common project.

  16. Longwave Imaging for Astronomical Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact portable longwave camera for astronomical applications. In Phase 1, we successfully developed the eye of the camera, i.e. the focal...

  17. Summary of the 2014 Beam-Halo Monitoring Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan

    2015-09-25

    Understanding and controlling beam halo is important for high-intensity hadron accelerators, for high-brightness electron linacs, and for low-emittance light sources. This can only be achieved by developing suitable diagnostics. The main challenge faced by such instrumentation is the high dynamic range needed to observe the halo in the presence of an intense core. In addition, measurements must often be made non-invasively. This talk summarizes the one-day workshop on Beam-Halo Monitoring that was held at SLAC on September 19 last year, immediately following IBIC 2014 in Monterey. Workshop presentations described invasive techniques using wires, screens, or crystal collimators, and non-invasive measurements with gas or scattered electrons. Talks on optical methods showed the close links between observing halo and astronomical problems like observing the solar corona or directly observing a planet orbiting another star.

  18. Astronomical calibration of the geological timescale: closing the middle Eocene gap

    Science.gov (United States)

    Westerhold, T.; Röhl, U.; Frederichs, T.; Bohaty, S. M.; Zachos, J. C.

    2015-09-01

    To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene-Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous-Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic.

  19. The Impact of the Qur'anic Conception of Astronomical Phenomena on Islamic Civilization

    Science.gov (United States)

    Ahmad, I. A.

    Discussions of astronomical phenomena in religious texts usually center around either their literal astronomical content or their symbolic significance. We shall instead consider the use of frequent references to astronomical phenomena in the Qur'an as exhortations to a worldview that ushered in the modern era. The Qur'anic conception of astronomical phenomena had a critical impact on Islamic civilization and the civilizations that followed because it introduced and mandated the adoption of certain attitudes. Among these were a greater respect for empirical data than was common in the preceding Greek civilization and an insistence that the Universe is ruled by a single set of laws. Both of these were rooted in the Islamic concept of tawhîd, the unity of God.

  20. International Astronomical Union Sympoisum No.50

    CERN Document Server

    Westerlund, B

    1973-01-01

    Dr J. Landi Dessy, Director of the Astronomical Observatory, Cordoba, Argentina, invited the International Astronomical Union to hold a Symposium in Cordoba in connection with the celebration of the Centennial of the Cordoba Observatory; the date of foundation is October 24, 1871. He proposed that the Symposium should deal with Spectral Classification and Multicolour Photometry as seven years had elapsed since the Symposium No. 24 in Saltsj6baden, and much development had occurred in the field. The invitation and the proposal were accepted by the IAU, and the Symposium was held in Villa Carlos Paz, near Cordoba, between October 18 and October 24, 1971. It was attended by about 50 scientists representing Argentina, Canada, Chile, Den­ mark, France, Germany, Italy, Mexico, Sweden, Switzerland, U.K., U.S.A., Vatican City State and Venezuela. The Symposium was divided into four sessions: 1. Classification of slit spectra, 2. Classification of objective-prism spectra, 3. Photometric classification, 4. Catalogues ...

  1. Large Astronomical Surveys, Catalogs and Databases

    Directory of Open Access Journals (Sweden)

    Mickaelian A. M.

    2012-09-01

    Full Text Available We review the status of all-sky and large astronomical surveys and their catalogued data over the whole range of electromagnetic spectrum, from gamma-ray to radio, such as ROSAT in X-ray, GALEX in UV, SDSS and several POSS1/2 based catalogs (APM, MAPS, USNO, GSC in optical, 2MASS and WISE in NIR, IRAS and AKARI in MIR/FIR, NVSS and FIRST in radio range and others. Present astronomical archives contain billions of objects, Galactic as well as extragalactic, and the vast amount of data in them permit new studies and discoveries. Cross-correlations result in revealing new objects and new samples. Very often, dozens of thousands of sources hide a few very interesting ones that are needed to be discovered by comparison of various physical characteristics. Most of the modern databases currently provide VO access to the stored information. This permits not only open access but also fast analysis and managing of these data.

  2. Recruitment and Retention of LGBTIQ Astronomers

    Science.gov (United States)

    Dixon, William Van Dyke

    2012-01-01

    While lesbian, gay, bisexual, transgender, intersex, or questioning (LGBTIQ) astronomers face many of the same workplace challenges as women and racial/ethnic minorities, from implicit bias to overt discrimination, other challenges are unique to this group. An obvious example is the absence at many institutions of health insurance and other benefits for the same-sex domestic partners of their employees. More subtle is the psychological toll paid by LGBTIQ astronomers who remain "in the closet," self-censoring every statement about their personal lives. Paradoxically, the culture of the physical sciences, in which sexuality, gender identity, and gender expression are considered irrelevant, can discourage their discussion, further isolating LGBTIQ researchers. Addressing these challenges is not just a matter of fairness; it is an essential tool in the recruitment and retention of the brightest researchers and in assuring their productivity. We will discuss these issues and what individuals and departments can to make their institutions more welcoming to their LGBTIQ colleagues.

  3. High energy astrophysics in radio-astronomical form

    International Nuclear Information System (INIS)

    Laan, H. van der

    1980-01-01

    The application of high energy astrophysics in observational astronomy, and in particular in radioastronomy, is considered. The current situation of extragalactic HEA, as brought to light by radio-astronomical techniques, is sketched. (C.F.)

  4. Comparison of treatment using teletherapy (external beam radiation) alone versus teletherapy combined with brachytherapy for advanced squamous cell carcinoma of the esophagus

    International Nuclear Information System (INIS)

    Samea, Renato; Lourenco, Laercio Gomes

    2011-01-01

    Background - Squamous cell carcinoma of the esophagus is still a difficult tumor to treat with very poor prognosis. Aim - To compare the response to teletherapy treatment (external beam radiotherapy) alone versus teletherapy combined with brachytherapy for patients with advanced squamous cell carcinoma of the esophagus. Methods - Were studied 49 patients with advanced squamous cell carcinoma of the esophagus on clinical stage III (TNM-1999). They were separated into two groups. The first, underwent radiation therapy alone with linear accelerator of particles, average dose of 6000 cGy and the second to external beam radiation therapy at a dose of 5040 cGy combined with brachytherapy with Iridium 192 at a dose of 1500 cGy. Brachytherapy started one to two weeks after the end of teletherapy, and it was divided into three weekly applications of 500 cGy. Age, gender, race, habits (smoking and drinking), body mass index (BMI), complications with treatment benefits (pain relief and food satisfaction) and survival were analyzed. Results - The quality of life (food satisfaction, and pain palliation of dysphagia) were better in the group treated with external beam radiation therapy combined with brachytherapy. Survival was higher in the brachytherapy combined with external beam radiation therapy alone. Conclusion - Although the cure rate of squamous cell cancer of the esophagus is almost nil when treated with irradiation alone, this therapy is a form of palliative treatment for most patients in whom surgical contraindication exists. (author)

  5. Comparison of treatment using teletherapy (external beam radiation) alone versus teletherapy combined with brachytherapy for advanced squamous cell carcinoma of the esophagus

    Energy Technology Data Exchange (ETDEWEB)

    Samea, Renato; Lourenco, Laercio Gomes, E-mail: renatosamea@globo.com [Department of Surgical Oncology of Dr. Arnaldo Vieira de Carvalho Hospital, Sao Paulo, SP (Brazil)

    2011-10-15

    Background - Squamous cell carcinoma of the esophagus is still a difficult tumor to treat with very poor prognosis. Aim - To compare the response to teletherapy treatment (external beam radiotherapy) alone versus teletherapy combined with brachytherapy for patients with advanced squamous cell carcinoma of the esophagus. Methods - Were studied 49 patients with advanced squamous cell carcinoma of the esophagus on clinical stage III (TNM-1999). They were separated into two groups. The first, underwent radiation therapy alone with linear accelerator of particles, average dose of 6000 cGy and the second to external beam radiation therapy at a dose of 5040 cGy combined with brachytherapy with Iridium 192 at a dose of 1500 cGy. Brachytherapy started one to two weeks after the end of teletherapy, and it was divided into three weekly applications of 500 cGy. Age, gender, race, habits (smoking and drinking), body mass index (BMI), complications with treatment benefits (pain relief and food satisfaction) and survival were analyzed. Results - The quality of life (food satisfaction, and pain palliation of dysphagia) were better in the group treated with external beam radiation therapy combined with brachytherapy. Survival was higher in the brachytherapy combined with external beam radiation therapy alone. Conclusion - Although the cure rate of squamous cell cancer of the esophagus is almost nil when treated with irradiation alone, this therapy is a form of palliative treatment for most patients in whom surgical contraindication exists. (author)

  6. Combined X-ray fluorescence and absorption computed tomography using a synchrotron beam

    International Nuclear Information System (INIS)

    Hall, C

    2013-01-01

    X-ray computed tomography (CT) and fluorescence X-ray computed tomography (FXCT) using synchrotron sources are both useful tools in biomedical imaging research. Synchrotron CT (SRCT) in its various forms is considered an important technique for biomedical imaging since the phase coherence of SR beams can be exploited to obtain images with high contrast resolution. Using a synchrotron as the source for FXCT ensures a fluorescence signal that is optimally detectable by exploiting the beam monochromaticity and polarisation. The ability to combine these techniques so that SRCT and FXCT images are collected simultaneously, would bring distinct benefits to certain biomedical experiments. Simultaneous image acquisition would alleviate some of the registration difficulties which comes from collecting separate data, and it would provide increased information about the sample: functional X-ray images from the FXCT, with the morphological information from the SRCT. A method is presented for generating simultaneous SRCT and FXCT images. Proof of principle modelling has been used to show that it is possible to recover a fluorescence image of a point-like source from an SRCT apparatus by suitably modulating the illuminating planar X-ray beam. The projection image can be successfully used for reconstruction by removing the static modulation from the sinogram in the normal flat and dark field processing. Detection of the modulated fluorescence signal using an energy resolving detector allows the position of a fluorescent marker to be obtained using inverse reconstruction techniques. A discussion is made of particular reconstruction methods which might be applied by utilising both the CT and FXCT data.

  7. Astroinformatics, data mining and the future of astronomical research

    Energy Technology Data Exchange (ETDEWEB)

    Brescia, Massimo, E-mail: longo@na.infn.it [INAF, Astronomical Obs. of Capodimonte, Via Moiariello 16, I-80131 Napoli (Italy); Longo, Giuseppe [Department of Physics, University Federico II, Via Cintia 6, 80126 Napoli (Italy); Department of Astronomy, Caltech, Pasadena (United States)

    2013-08-21

    Astronomy, as many other scientific disciplines, is facing a true data deluge which is bound to change both the praxis and the methodology of every day research work. The emerging field of astroinformatics, while on the one end appears crucial to face the technological challenges, on the other is opening new exciting perspectives for new astronomical discoveries through the implementation of advanced data mining procedures. The complexity of astronomical data and the variety of scientific problems, however, call for innovative algorithms and methods as well as for an extreme usage of ICT technologies.

  8. Astroinformatics, data mining and the future of astronomical research

    International Nuclear Information System (INIS)

    Brescia, Massimo; Longo, Giuseppe

    2013-01-01

    Astronomy, as many other scientific disciplines, is facing a true data deluge which is bound to change both the praxis and the methodology of every day research work. The emerging field of astroinformatics, while on the one end appears crucial to face the technological challenges, on the other is opening new exciting perspectives for new astronomical discoveries through the implementation of advanced data mining procedures. The complexity of astronomical data and the variety of scientific problems, however, call for innovative algorithms and methods as well as for an extreme usage of ICT technologies

  9. Combined external beam and intraluminal radiotherapy for irresectable Klatskin tumors

    Energy Technology Data Exchange (ETDEWEB)

    Schleicher, U.M. [Klinik fuer Strahlentherapie, Technische Hochschule Aachen (Germany); Staatz, G. [Klinik fuer Radiologische Diagnostik, Technische Hochschule Aachen (Germany); Alzen, G. [Klinik fuer Radiologische Diagnostik, Technische Hochschule Aachen (Germany); Abt. Kinderradiologie, Giessen Univ. (Germany); Andreopoulos, D. [Klinik fuer Strahlentherapie, Technische Hochschule Aachen (Germany); BOC Oncology Centre, Nikosia (Cyprus)

    2002-12-01

    Background: In most cases of proximal cholangiocarcinoma, curative surgery is not possible. Radiotherapy can be used for palliative treatment. We report our experience with combined external beam and intraluminal radiotherapy of advanced Klatskin's tumors. Patients and Methods: 30 patients were treated for extrahepatic proximal bile duct cancer. Our schedule consisted for external beam radiotherapy (median dose 30 Gy) and a high-dose-rate brachytherapy boost (median dose 40 Gy) delivered in four or five fractions, which could be applied completely in twelve of our patients. 15 patients in the brachytherapy and nine patients in the non-brachytherapy group received additional low-dose chemotherapy with 5-fluorouracil. Results: The brachytherapy boost dose improved the effect of external beam radiotherapy by increasing survival from a median of 3.9 months in the non-brachytherapy group to 9.1 months in the brachytherapy group. The effect was obvious in patients receiving a brachytherapy dose above 30 Gy, and in those without jaundice at the beginning of radiotherapy (p<0.05). Conclusions: The poor prognosis in patients with advanced Klatskin's tumors may be improved by combination therapy, with the role of brachytherapy and chemotherapy still to be defined. Our results suggest that patients without jaundice should be offered brachytherapy, and that a full dose of more than 30 Gy should be applied. (orig.) [German] Hintergrund: Bei den meisten Patienten mit proximalen Cholangiokarzinomen ist eine kurative Operation nicht mehr moeglich. Im Rahmen der Palliativbehandlung kann die Strahlentherapie eingesetzt werden. Wir berichten ueber unsere Erfahrungen mit der Kombination aus perkutaner und intraluminaler Strahlentherapie fortgeschrittener Klatskin-Tumoren. Patienten und Methode: 30 Patienten wurden wegen extrahepatischer proximaler Gallengangskarzinome behandelt. Unser Therapieschema umfasste eine perkutane Strahlentherapie (mediane Dosis: 30 Gy) sowie einen

  10. New discoveries on astronomical orientation of Inca site in Ollantaytambo, Peru

    Directory of Open Access Journals (Sweden)

    Karolína Hanzalová

    2015-12-01

    Full Text Available This paper deals with astronomical orientation of Incas objects in Ollantaytambo, which is located about 35 km southeast from Machu Picchu, about 40 km northwest from Cusco, and lies in the Urubamba valley. Everybody writing about Ollantaytambo, shoud read Protzen. (1  He devoted his monograph to description and interpretation of that locality. Book of Salazar and Salazar (2 deals, among others, with the orientation of objects in Ollantaytambo with respect to the cardinal direction. Zawaski and Malville (3 documented astronomical context of major monuments of nine sites in Peru, including Ollantaytambo. We tested astronomical orientation in these places and confirm or disprove hypothesis about purpose of Incas objects. For assessment orientation of objects we used our measurements and also satellite images on Google Earth and digital elevation model from ASTER. The satellite images were used to estimate the astronomical-solar-solstice orientation, together with terrestrial images from Salazar and Salazar (2. The digital elevation model is useful in the mountains, where we need the actual horizon for a calculation of sunset and sunrise on specific days (solstices, which were for Incas people very important. We tested which astronomical phenomenon is connected with objects in Ollantaytambo. First, we focused on Temple of the Sun, also known the Wall of six monoliths.  We tested winter solstice sunrise and the rides of the Pleiades for the epochs 2000, 1500 and 1000 A.D. According with our results the Temple isn´t connected neither with winter solstice sunrise nor with the Pleiades. Then we tested also winter solstice sunset. We tried to use the line from an observation point near ruins of the Temple of Sun, to west-north, in direction to sunset. The astronomical azimuth from this point was about 5° less then we need. From this results we found, that is possible to find another observation point. By Salazar and Salazar (2 we found observation

  11. Planet Formation in Action? - Astronomers may have found the first object clearing its path in the natal disc surrounding a young star

    Science.gov (United States)

    2011-02-01

    gap in the dust disc around T Cha was a smoking gun, and we asked ourselves: could we be witnessing a companion digging a gap inside its protoplanetary disc?" However, finding a faint companion so close to a bright star is a huge challenge and the team had to use the VLT instrument NACO in a novel and powerful way, called sparse aperture masking, to reach their goal [4]. After careful analysis they found the clear signature of an object located within the gap in the dust disc, about one billion kilometres from the star - slightly further out than Jupiter is within our Solar System and close to the outer edge of the gap. This is the first detection of an object much smaller than a star within a gap in the planet-forming dust disc around a young star. The evidence suggests that the companion object cannot be a normal star [5] but it could be either a brown dwarf [6] surrounded by dust or, most excitingly, a recently formed planet. Huélamo concludes: "This is a remarkable joint study that combines two different state-of-the-art instruments at ESO's Paranal Observatory. Future observations will allow us to find out more about the companion and the disc, and also understand what fuels the inner dusty disc." Notes [1] The transitional discs can be spotted because they give off less radiation at mid-infrared wavelengths. The clearing of the dust close to the star and the creation of gaps and holes can explain this missing radiation. Recently formed planets may have created these gaps, although there are also other possibilities. [2] T Cha is a T Tauri star, a very young star that is still contracting towards the main sequence. [3] The astronomers used the AMBER instrument (Astronomical Multi-BEam combineR) and the VLTI to combine the light from all four of the 8.2-metre VLT Unit Telescopes and create a "virtual telescope" 130 metres across. [4] NACO (or NAOS-CONICA in full) is an adaptive optics instrument attached to ESO's Very Large Telescope. Thanks to adaptive optics

  12. "Word of Discovery": A Planetary Example from Volume I of the Astronomical Journal

    Science.gov (United States)

    Hockey, T.

    1998-09-01

    In 1850, William Lassell (1799-1880) discovered a series of bright white spots, in the south temperate latitudes of Jupiter, unlike any that that been seen before. Lassell's note on these STZ features is a useful example of how astronomical discoveries of the day were communicated among astronomers. Word of Lassell's Spots spread quickly by nineteenth-century standards. This was due, in part, to the recent appearance of journals devoted exclusively to astronomy. The transition from letters as a means of conveying scientific information to journals is reflected in the propagation of Lassell's announcement: a report of Lassell's description of the white spots to the Royal Astronomical Society appeared in the Monthly Notices of the Royal Astronomical Society along with a woodblock print of one of his drawings. This report reappeared shortly thereafter in German translation. It was part of a letter to the editor of the Astronomische Nachrichten, Heinrich Schumacher (1780-1850), from an English correspondent of his, the Reverend Richard Sheepshanks (1974-1855). (Sheepshanks was himself editor of the Monthly Notices of the Royal Astronomical Society.) It then made its way across the Atlantic as a letter from Schumacher to Benjamin Gould (1824-1896), who published it in the first volume of his upstart Astronomical Journal. There it appears in English, again, as Schumacher quoting Sheepshanks quoting Lassell! The observations by Lassell and William Dawes (1799-1868) of this phenomenon also were the first major planetary discovery made using a silvered-glass reflecting telescope. Lassell's Spots have remained in the "astronomical news" of the last 150 years: Most recently, they appeared worldwide in images showing the Comet Shoemaker-Levy 9 impact sites.

  13. Combined centroid-envelope dynamics of intense, magnetically focused charged beams surrounded by conducting walls

    International Nuclear Information System (INIS)

    Fiuza, K.; Rizzato, F.B.; Pakter, R.

    2006-01-01

    In this paper we analyze the combined envelope-centroid dynamics of magnetically focused high-intensity charged beams surrounded by conducting walls. Similar to the case where conducting walls are absent, it is shown that the envelope and centroid dynamics decouple from each other. Mismatched envelopes still decay into equilibrium with simultaneous emittance growth, but the centroid keeps oscillating with no appreciable energy loss. Some estimates are performed to analytically obtain characteristics of halo formation seen in the full simulations

  14. Astronomers Discover Fastest-Spinning Pulsar

    Science.gov (United States)

    2006-01-01

    Astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope have discovered the fastest-spinning neutron star ever found, a 20-mile-diameter superdense pulsar whirling faster than the blades of a kitchen blender. Their work yields important new information about the nature of one of the most exotic forms of matter known in the Universe. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) "We believe that the matter in neutron stars is denser than an atomic nucleus, but it is unclear by how much. Our observations of such a rapidly rotating star set a hard upper limit on its size, and hence on how dense the star can be.," said Jason Hessels, a graduate student at McGill University in Montreal. Hessels and his colleagues presented their findings to the American Astronomical Society's meeting in Washington, DC. Pulsars are spinning neutron stars that sling "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its "normal" life. With no nuclear fuel left to produce energy to offset the stellar remnant's weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name "neutron star." "Neutron stars are incredible laboratories for learning about the physics of the fundamental particles of nature, and this pulsar has given us an important new limit," explained Scott Ransom, an astronomer at the National Radio Astronomy Observatory and one of Hessels' collaborators on this work. The scientists discovered the pulsar, named PSR J1748-2446ad, in a globular cluster of stars called Terzan 5, located some 28,000 light-years from Earth in the constellation Sagittarius. The newly-discovered pulsar is spinning 716 times per second, or at 716 Hertz (Hz), readily beating the previous record of 642 Hz from a pulsar

  15. Combined in-beam gamma-ray and conversion electron spectroscopy with radioactive ion beams

    Directory of Open Access Journals (Sweden)

    Konki J.

    2013-12-01

    Full Text Available In-beam gamma-ray and electron spectroscopy have been widely used as tools to study the broad variety of phenomena in nuclear structure. The SPEDE spectrometer is a new device to be used in conjunction with the MINIBALL germanium detector array to enable the detection of internal conversion electrons in coincidence with gamma rays from de-exciting nuclei in radioactive ion beam experiments at the upcoming HIE-ISOLDE facility at CERN, Switzerland. Geant4 simulations were carried out in order to optimise the design and segmentation of the silicon detector to achieve good energy resolution and performance.

  16. The Growth of Interest in Astronomical X-Ray Polarimetry

    Directory of Open Access Journals (Sweden)

    Frédéric Marin

    2018-03-01

    Full Text Available Astronomical X-ray polarimetry was first explored in the end of the 1960s by pioneering rocket instruments. The craze arising from the first discoveries of stellar and supernova remnant X-ray polarization led to the addition of X-ray polarimeters to early satellites. Unfortunately, the inadequacy of the diffraction and scattering technologies required to measure polarization with respect to the constraints driven by X-ray mirrors and detectors, coupled with long integration times, slowed down the field for almost 40 years. Thanks to the development of new, highly sensitive, compact X-ray polarimeters in the beginning of the 2000s, observing astronomical X-ray polarization has become feasible, and scientists are now ready to explore our high-energy sky thanks to modern X-ray polarimeters. In the forthcoming years, several X-ray missions (rockets, balloons, and satellites will create new observational opportunities. Interest in astronomical X-ray polarimetry field has thus been renewed, and this paper presents for the first time a quantitative assessment, all based on scientific literature, of the growth of this interest.

  17. Geometric optics theory and design of astronomical optical systems using Mathematica

    CERN Document Server

    Romano, Antonio

    2016-01-01

    This text, now in its second edition, presents the mathematical background needed to design many optical combinations that are used in astronomical telescopes and cameras. It uses a novel approach to third-order aberration theory based on Fermat’s principle and the use of particular optical paths (called stigmatic paths) instead of rays, allowing for easier derivation of third-order formulae. Each optical combination analyzed is accompanied by a downloadable Mathematica® notebook that automates its third-order design, eliminating the need for lengthy calculations. The essential aspects of an optical system with an axis of rotational symmetry are introduced first, along with a development of Gaussian optics from Fermat’s principal. A simpler approach to third-order monochromatic aberrations based on both Fermat’s principle and stigmatic paths is then described, followed by a new chapter on fifth-order aberrations and their classification. Several specific optical devices are discussed and analyzed, incl...

  18. The re-definition of the astronomical unit of length:reasons and consequences

    Science.gov (United States)

    Capitaine, Nicole; Klioner, Sergei; McCarthy, Dennis

    2012-08-01

    The astronomical unit (au) is a unit of length approximating the Sun - Earth distance that is used mainly to express the scale of the solar system. Its current definition is based on the value of the Gaussian gravitational constant, k. This conveniently provided accurate relative distances (expressed in astronomical units) when absolute distances could not be estimated with high accuracy. The huge improvement achieved in solar system ephemerides during the last decade provides an opportunity to re - consider the definition and status of the au. This issue was discussed recently by Klioner (2008), Capitaine & Guinot (2009) and Capitaine et al. (2011), as well as within the IAU Working Group on "Numerical Standards for Fundamental astronomy". This resulted in a proposed IAU Resolution recommending that the astronomical unit be re - defined as a fixed number of Système International d ’ Unités (SI) metres through a defining constant. For continuity that constant should be the value of the current best estimate in metres as adopted by IAU 2009 Resolution B2 (i.e. 149 597 870 700 m). After reviewing the properties of the IAU 1976 astronomical unit and its status in the IAU 2009 System of Astronomical Constants, we explain the main reasons for a change; we present and discuss the proposed new definition as well as the advantages over the historical definition. One important consequence is that the heliocentric gravitational constant, GM(Sun), would cease to have a fixed value in astronomical units and will have to be determined experimentally. This would be compliant with modern dynamics of the solar system as it would allow

  19. Design of a Multi-Pinhole Collimator for I-123 DaTscan Imaging on Dual-Headed SPECT Systems in Combination with a Fan-Beam Collimator.

    Science.gov (United States)

    King, Michael A; Mukherjee, Joyeeta M; Könik, Arda; Zubal, I George; Dey, Joyoni; Licho, Robert

    2016-02-01

    For the 2011 FDA approved Parkinson's Disease (PD) SPECT imaging agent I-123 labeled DaTscan, the volume of interest (VOI) is the interior portion of the brain. However imaging of the occipital lobe is also required with PD for calculation of the striatal binding ratio (SBR), a parameter of significance in early diagnosis, differentiation of PD from other disorders with similar clinical presentations, and monitoring progression. Thus we propose the usage of a combination of a multi-pinhole (MPH) collimator on one head of the SPECT system and a fan-beam on the other. The MPH would be designed to provide high resolution and sensitivity for imaging of the interior portion of the brain. The fan-beam collimator would provide lower resolution but complete sampling of the brain addressing data sufficiency and allowing a volume-of-interest to be defined over the occipital lobe for calculation of SBR's. Herein we focus on the design of the MPH component of the combined system. Combined reconstruction will be addressed in a subsequent publication. An analysis of 46 clinical DaTscan studies was performed to provide information to define the VOI, and design of a MPH collimator to image this VOI. The system spatial resolution for the MPH was set to 4.7 mm, which is comparable to that of clinical PET systems, and significantly smaller than that of fan-beam collimators employed in SPECT. With this set, we compared system sensitivities for three aperture array designs, and selected the 3 × 3 array due to it being the highest of the three. The combined sensitivity of the apertures for it was similar to that of an ultra-high resolution fan-beam (LEUHRF) collimator, but smaller than that of a high-resolution fan-beam collimator (LEHRF). On the basis of these results we propose the further exploration of this design through simulations, and the development of combined MPH and fan-beam reconstruction.

  20. Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Abat, E; Arik, E [Bogazici University, Faculty of Sciences, Department of Physics, TR-80815 Bebek-Istanbul (Turkey); Abdallah, J M [Institut de Fisica d' Altes Energies, IFAE, Universitat Autonoma de Barcelona, Edifici Cn, ES-08193 Bellaterra, Barcelona (Spain); Addy, T N [Hampton University, Department of Physics, Hampton, VA 23668 (United States); Adragna, P [Queen Mary, University of London, Mile End Road, E1 4NS, London (United Kingdom); Aharrouche, M [Universitaet Mainz, Institut fuer Physik, Staudinger Weg 7, DE-55099 (Germany); Ahmad, A [Insitute of Physics, Academia Sinica, TW-Taipei 11529, Taiwan (China); Akesson, T P A [Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Box 118, SE-221 00, Lund (Sweden); Aleksa, M; Anghinolfi, F; Baron, S [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Alexa, C [National Institute of Physics and Nuclear Engineering (Bucharest -IFIN-HH), P.O. Box MG-6, R-077125 Bucharest (Romania); Anderson, K [University of Chicago, Enrico Fermi Institute, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Andreazza, A; Banfi, D [INFN Sezione di Milano, via Celoria 16, IT-20133 Milano (Italy); Antonaki, A; Arabidze, G [University of Athens, Nuclear and Particle Physics Department of Physics, Panepistimiopouli Zografou, GR 15771 Athens (Greece); Atkinson, T [School of Physics, University of Melbourne, AU-Parkvill, Victoria 3010 (Australia); Baines, J [Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Baker, O K, E-mail: stathes.paganis@cern.ch [Yale University, Department of Physics, PO Box 208121, New Haven, CT06520-8121 (United States)

    2011-04-01

    The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.

  1. Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

    International Nuclear Information System (INIS)

    Abat, E; Arik, E; Abdallah, J M; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T P A; Aleksa, M; Anghinolfi, F; Baron, S; Alexa, C; Anderson, K; Andreazza, A; Banfi, D; Antonaki, A; Arabidze, G; Atkinson, T; Baines, J; Baker, O K

    2011-01-01

    The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.

  2. Automatic astronomical coordinate determination using digital zenith cameras

    Directory of Open Access Journals (Sweden)

    S Farzaneh

    2009-12-01

    Full Text Available Celestial positioning has been used for navigation purposes for many years. Stars as the extra-terrestrial benchmarks provide unique opportunity in absolute point positioning. However, astronomical field data acquisition and data processing of the collected data is very time-consuming. The advent of the Global Positioning System (GPS nearly made the celestial positioning system obsolete. The new satellite-based positioning system has been very popular since it is very efficient and convenient for many daily life applications. Nevertheless, the celestial positioning method is never replaced by satellite-based positioning in absolute point positioning sense. The invention of electro-optical devices at the beginning of the 21st century was really a rebirth in geodetic astronomy. Today, the digital cameras with relatively high geometric and radiometric accuracy has opened a new insight in satellite attitude determination and the study of the Earth's surface geometry and physics of its interior, i.e., computation of astronomical coordinates and the vertical deflection components. This method or the so-called astrogeodetic vision-based method help us to determine astronomical coordinates with an accuracy better than 0.1 arc second. The theoretical background, an innovative transformation approach and the preliminary numerical results are addressed in this paper.

  3. The Amateur Astronomer's Introduction to the Celestial Sphere

    Science.gov (United States)

    Millar, William

    2005-12-01

    This introduction to the night sky is for amateur astronomers who desire a deeper understanding of the principles and observations of naked-eye astronomy. It covers topics such as terrestrial and astronomical coordinate systems, stars and constellations, the relative motions of the sky, sun, moon and earth leading to an understanding of the seasons, phases of the moon, and eclipses. Topics are discussed and compared for observers located in both the northern and southern hemispheres. Written in a conversational style, only addition and subtraction are needed to understand the basic principles and a more advanced mathematical treatment is available in the appendices. Each chapter contains a set of review questions and simple exercises to reinforce the reader's understanding of the material. The last chapter is a set of self-contained observation projects to get readers started with making observations about the concepts they have learned. William Charles Millar, currently Professor of Astronomy at Grand Rapids Community College in Michigan, has been teaching the subject for almost twenty years and is very involved with local amateur astronomy groups. Millar also belongs to The Planetary Society and the Astronomical Society of the Pacific and has traveled to Europe and South America to observe solar eclipses. Millar holds a Masters degree in Physics from Western Michigan University.

  4. A method of combining STEM image with parallel beam diffraction and electron-optical conditions for diffractive imaging

    International Nuclear Information System (INIS)

    He Haifeng; Nelson, Chris

    2007-01-01

    We describe a method of combining STEM imaging functionalities with nanoarea parallel beam electron diffraction on a modern TEM. This facilitates the search for individual particles whose diffraction patterns are needed for diffractive imaging or structural studies of nanoparticles. This also lays out a base for 3D diffraction data collection

  5. Climate and carbon-cycle response to astronomical forcing over the last 35 Ma.

    Science.gov (United States)

    De Vleeschouwer, D.; Palike, H.; Vahlenkamp, M.; Crucifix, M.

    2017-12-01

    On a million-year time scale, the characteristics of insolation forcing caused by cyclical variations in the astronomical parameters of the Earth remain stable. Nevertheless, Earth's climate responded very differently to this forcing during different parts of the Cenozoic. The recently-published ∂18Obenthic megasplice (De Vleeschouwer et al., 2017) allowed for a clear visualization of these changes in global climate response to astronomical forcing. However, many open questions remain regarding how carbon-cycle dynamics influence Earth's climate sensitivity to astronomical climate forcing. To provide insight into the interaction between the carbon cycle and astronomical insolation forcing, we built a benthic carbon isotope (∂13Cbenthic) megasplice for the last 35 Ma, employing the same technique used to build the ∂18Obenthic megasplice. The ∂13Cbenthic megasplice exhibits a strong imprint of the 405 and 100-kyr eccentricity cycles throughout the last 35 Ma. This is intriguing, as the oxygen isotope megasplice looses its eccentricity imprint after the mid-Miocene climatic transition (MMCT; see Fig. 1 in De Vleeschouwer et al., 2017). In other words, the carbon cycle responded completely differently to astronomical forcing, compared to global climate during the late Miocene. We visualize this difference in response by the application of a Gaussian process, which renders the dependence of one variable (here ∂18Obenthic or ∂13Cbenthic) in a multidimensional space (here precession, obliquity and eccentricity). Together, the ∂13Cbenthic and ∂18Obenthic megasplices thus provide a unique tool for paleoclimatology, allowing for the quantification and visualization of the changing paleoclimate and carbon-cycle response to astronomical forcing throughout geologic time. References De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M., Pälike, H., 2017. Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m

  6. Astronomical sketching a step-by-step introduction

    CERN Document Server

    Handy, Richard; Perez, Jeremy; Rix, Erika; Robbins, Sol

    2007-01-01

    This book presents the amateur with fine examples of astronomical sketches and step-by-step tutorials in each medium, from pencil to computer graphics programs. This unique book can teach almost anyone to create beautiful sketches of celestial objects.

  7. Powerful Radio Burst Indicates New Astronomical Phenomenon

    Science.gov (United States)

    2007-09-01

    Astronomers studying archival data from an Australian radio telescope have discovered a powerful, short-lived burst of radio waves that they say indicates an entirely new type of astronomical phenomenon. Region of Strong Radio Burst Visible-light (negative greyscale) and radio (contours) image of Small Magellanic Cloud and area where burst originated. CREDIT: Lorimer et al., NRAO/AUI/NSF Click on image for high-resolution file ( 114 KB) "This burst appears to have originated from the distant Universe and may have been produced by an exotic event such as the collision of two neutron stars or the death throes of an evaporating black hole," said Duncan Lorimer, Assistant Professor of Physics at West Virginia University (WVU) and the National Radio Astronomy Observatory (NRAO). The research team led by Lorimer consists of Matthew Bailes of Swinburne University in Australia, Maura McLaughlin of WVU and NRAO, David Narkevic of WVU, and Fronefield Crawford of Franklin and Marshall College in Lancaster, Pennsylvania. The astronomers announced their findings in the September 27 issue of the online journal Science Express. The startling discovery came as WVU undergraduate student David Narkevic re-analyzed data from observations of the Small Magellanic Cloud made by the 210-foot Parkes radio telescope in Australia. The data came from a survey of the Magellanic Clouds that included 480 hours of observations. "This survey had sought to discover new pulsars, and the data already had been searched for the type of pulsating signals they produce," Lorimer said. "We re-examined the data, looking for bursts that, unlike the usual ones from pulsars, are not periodic," he added. The survey had covered the Magellanic Clouds, a pair of small galaxies in orbit around our own Milky Way Galaxy. Some 200,000 light-years from Earth, the Magellanic Clouds are prominent features in the Southern sky. Ironically, the new discovery is not part of these galaxies, but rather is much more distant

  8. Effects of the combined action of axial and transversal loads on the failure time of a wooden beam under fire

    International Nuclear Information System (INIS)

    Nubissie, A.; Kingne Talla, E.; Woafo, P.

    2012-01-01

    Highlights: ► A wooden beam submitted to fire and axial and transversal loads is considered. ► The failure time is found to increase with the intensity of the loads. ► Implication for safety consideration is indicated. -- Abstract: This paper presents the variations of the failure time of a wooden beam (Baillonella toxisperma also called Moabi) in fire subjected to the combined effect of axial and transversal loads. Using the recommendation of the structural Eurocodes that the failure can occur when the deflection attains 1/300 of the length of the beam or when the bending moment attains the resistant moment, the partial differential equation describing the beam dynamics is solved numerically and the failure time calculated. It is found that the failure time decreases when either the axial or transversal loads increases.

  9. The Hunt for Pristine Cretaceous Astronomical Rhythms at Demerara Rise (Cenomanian-Coniacian)

    Science.gov (United States)

    Ma, C.; Meyers, S. R.

    2014-12-01

    Rhythmic Upper Cretaceous strata from Demerara Rise (ODP leg 207) preserve a strong astronomical signature, and this attribute has facilitated the development of continuous astrochronologies to refine the geologic time scale and calibrate Late Cretaceous biogeochemical events. While the mere identification of astronomical rhythms is a crucial first step in many deep-time paleoceanographic investigations, accurate evaluation of often subtle amplitude and frequency modulations are required to: (1) robustly constrain the linkage between climate and sedimentation, and (2) evaluate the plausibility of different theoretical astrodynamical models. The availability of a wide range of geophysical, lithologic and geochemical data from multiple sites drilled at Demerara Rise - when coupled with recent innovations in the statistical analysis of cyclostratigraphic data - provides an opportunity to hunt for the most pristine record of Cretaceous astronomical rhythms at a tropical Atlantic location. To do so, a statistical metric is developed to evaluate the "internal" consistency of hypothesized astronomical rhythms observed in each data set, particularly with regard to the expected astronomical amplitude modulations. In this presentation, we focus on how the new analysis yields refinements to the existing astrochronologies, provides constraints on the linkages between climate and sedimentation (including the deposition of organic carbon-rich sediments at Demerara Rise), and allows a quantitative evaluation of the continuity of deposition across sites at multiple temporal scales.

  10. Brightness Variations of Sun-like Stars: The Mystery Deepens - Astronomers facing Socratic "ignorance"

    Science.gov (United States)

    2009-12-01

    An extensive study made with ESO's Very Large Telescope deepens a long-standing mystery in the study of stars similar to the Sun. Unusual year-long variations in the brightness of about one third of all Sun-like stars during the latter stages of their lives still remain unexplained. Over the past few decades, astronomers have offered many possible explanations, but the new, painstaking observations contradict them all and only deepen the mystery. The search for a suitable interpretation is on. "Astronomers are left in the dark, and for once, we do not enjoy it," says Christine Nicholls from Mount Stromlo Observatory, Australia, lead author of a paper reporting the study. "We have obtained the most comprehensive set of observations to date for this class of Sun-like stars, and they clearly show that all the possible explanations for their unusual behaviour just fail." The mystery investigated by the team dates back to the 1930s and affects about a third of Sun-like stars in our Milky Way and other galaxies. All stars with masses similar to our Sun become, towards the end of their lives, red, cool and extremely large, just before retiring as white dwarfs. Also known as red giants, these elderly stars exhibit very strong periodic variations in their luminosity over timescales up to a couple of years. "Such variations are thought to be caused by what we call 'stellar pulsations'," says Nicholls. "Roughly speaking, the giant star swells and shrinks, becoming brighter and dimmer in a regular pattern. However, one third of these stars show an unexplained additional periodic variation, on even longer timescales - up to five years." In order to find out the origin of this secondary feature, the astronomers monitored 58 stars in our galactic neighbour, the Large Magellanic Cloud, over two and a half years. They acquired spectra using the high resolution FLAMES/GIRAFFE spectrograph on ESO's Very Large Telescope and combined them with images from other telescopes [1

  11. Astronomical fire: Richard Carrington and the solar flare of 1859.

    Science.gov (United States)

    Clark, Stuart

    2007-09-01

    An explosion on the Sun in 1859, serendipitously witnessed by amateur astronomer Richard Carrington, plunged telegraphic communications into chaos and bathed two thirds of the Earth's skies in aurorae. Explaining what happened to the Sun and how it could affect Earth, 93 million miles away, helped change the direction of astronomy. From being concerned principally with charting the stars to aid navigation, astronomers became increasingly concerned with what the celestial objects were, how they behaved and how they might affect life on Earth.

  12. Astronomical relativistic reference systems with multipolar expansion: the global one

    International Nuclear Information System (INIS)

    Xie Yi

    2014-01-01

    With the rapid development of techniques for astronomical observations, the precision of measurements has been significantly increasing. Theories describing astronomical relativistic reference systems, which are the foundation for processing and interpreting these data now and in the future, may require extensions to satisfy the needs of these trends. Besides building a framework compatible with alternative theories of gravity and the pursuit of higher order post-Newtonian approximation, it will also be necessary to make the first order post-Newtonian multipole moments of celestial bodies be explicitly expressed in the astronomical relativistic reference systems. This will bring some convenience into modeling the observations and experiments and make it easier to distinguish different contributions in measurements. As a first step, the global solar system reference system is expressed as a multipolar expansion and the post-Newtonian mass and spin moments are shown explicitly in the metric which describes the coordinates of the system. The full expression of the global metric is given. (research papers)

  13. All-sky brightness monitoring of light pollution with astronomical methods.

    Science.gov (United States)

    Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar

    2010-06-01

    This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band. (c) 2010 Elsevier Ltd. All rights reserved.

  14. Astronomical Signatures of Dark Matter

    Directory of Open Access Journals (Sweden)

    Paul Gorenstein

    2014-01-01

    Full Text Available Several independent astronomical observations in different wavelength bands reveal the existence of much larger quantities of matter than what we would deduce from assuming a solar mass to light ratio. They are very high velocities of individual galaxies within clusters of galaxies, higher than expected rotation rates of stars in the outer regions of galaxies, 21 cm line studies indicative of increasing mass to light ratios with radius in the halos of spiral galaxies, hot gaseous X-ray emitting halos around many elliptical galaxies, and clusters of galaxies requiring a much larger component of unseen mass for the hot gas to be bound. The level of gravitational attraction needed for the spatial distribution of galaxies to evolve from the small perturbations implied by the very slightly anisotropic cosmic microwave background radiation to its current web-like configuration requires much more mass than is observed across the entire electromagnetic spectrum. Distorted shapes of galaxies and other features created by gravitational lensing in the images of many astronomical objects require an amount of dark matter consistent with other estimates. The unambiguous detection of dark matter and more recently evidence for dark energy has positioned astronomy at the frontier of fundamental physics as it was in the 17th century.

  15. The League of Astronomers: Outreach

    Science.gov (United States)

    Paat, Anthony; Brandel, A.; Schmitz, D.; Sharma, R.; Thomas, N. H.; Trujillo, J.; Laws, C. S.; Astronomers, League of

    2014-01-01

    The University of Washington League of Astronomers (LOA) is an organization comprised of University of Washington (UW) undergraduate students. Our main goal is to share our interest in astronomy with the UW community and with the general public. The LOA hosts star parties on the UW campus and collaborates with the Seattle Astronomical Society (SAS) on larger Seattle-area star parties. At the star parties, we strive to teach our local community about what they can view in our night sky. LOA members share knowledge of how to locate constellations and use a star wheel. The relationship the LOA has with members of SAS increases both the number of events and people we are able to reach. Since the cloudy skies of the Northwest prevent winter star parties, we therefore focus our outreach on the UW Mobile Planetarium, an inflatable dome system utilizing Microsoft’s WorldWide Telescope (WWT) software. The mobile planetarium brings astronomy into the classrooms of schools unable to travel to the UW on-campus planetarium. Members of the LOA volunteer their time towards this project and we make up the majority of the Mobile Planetarium volunteers. Our outreach efforts allow us to connect with the community and enhance our own knowledge of astronomy.

  16. Astronomers in the Chemist's War

    Science.gov (United States)

    Trimble, Virginia L.

    2012-01-01

    World War II, with radar, rockets, and "atomic" bombs was the physicists' war. And many of us know, or think we know, what our more senior colleagues did during it, with Hubble and Hoffleit at Aberdeen; M. Schwarzschild on active duty in Italy; Bondi, Gold, and Hoyle hunkered down in Dunsfeld, Surrey, talking about radar, and perhaps steady state; Greenstein and Henyey designing all-sky cameras; and many astronomers teaching navigation. World War I was The Chemists' War, featuring poison gases, the need to produce liquid fuels from coal on one side of the English Channel and to replace previously-imported dyesstuffs on the other. The talke will focus on what astronomers did and had done to them between 1914 and 1919, from Freundlich (taken prisoner on an eclipse expedition days after the outbreak of hostilities) to Edwin Hubble, returning from France without ever having quite reached the front lines. Other events bore richer fruit (Hale and the National Research Council), but very few of the stories are happy ones. Most of us have neither first nor second hand memories of The Chemists' War, but I had the pleasure of dining with a former Freundlich student a couple of weeks ago.

  17. Astronomical Instrumentation Systems Quality Management Planning: AISQMP (Abstract)

    Science.gov (United States)

    Goldbaum, J.

    2017-12-01

    (Abstract only) The capability of small aperture astronomical instrumentation systems (AIS) to make meaningful scientific contributions has never been better. The purpose of AIS quality management planning (AISQMP) is to ensure the quality of these contributions such that they are both valid and reliable. The first step involved with AISQMP is to specify objective quality measures not just for the AIS final product, but also for the instrumentation used in its production. The next step is to set up a process to track these measures and control for any unwanted variation. The final step is continual effort applied to reducing variation and obtaining measured values near optimal theoretical performance. This paper provides an overview of AISQMP while focusing on objective quality measures applied to astronomical imaging systems.

  18. Measuring mode indices of a partially coherent vortex beam with Hanbury Brown and Twiss type experiment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruifeng; Wang, Feiran; Chen, Dongxu; Wang, Yunlong; Zhou, Yu; Gao, Hong; Zhang, Pei, E-mail: zhangpei@mail.ustc.edu.cn; Li, Fuli [Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, Shaanxi Province, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-02-01

    It is known that the cross-correlation function (CCF) of a partially coherent vortex (PCV) beam shows a robust link with the radial and azimuthal mode indices. However, the previous proposals are difficult to measure the CCF in practical systems, especially in the case of astronomical objects. In this letter, we demonstrate experimentally that the Hanbury Brown and Twiss effect can be used to measure the mode indices of the original vortex beam and investigate the relationship between the spatial coherent width and the characterization of CCF of the PCV beam. The technique we exploit is quite efficient and robust, and it may be useful in the field of free space communication and astronomy which are related to the photon's orbital angular momentum.

  19. Measuring mode indices of a partially coherent vortex beam with Hanbury Brown and Twiss type experiment

    International Nuclear Information System (INIS)

    Liu, Ruifeng; Wang, Feiran; Chen, Dongxu; Wang, Yunlong; Zhou, Yu; Gao, Hong; Zhang, Pei; Li, Fuli

    2016-01-01

    It is known that the cross-correlation function (CCF) of a partially coherent vortex (PCV) beam shows a robust link with the radial and azimuthal mode indices. However, the previous proposals are difficult to measure the CCF in practical systems, especially in the case of astronomical objects. In this letter, we demonstrate experimentally that the Hanbury Brown and Twiss effect can be used to measure the mode indices of the original vortex beam and investigate the relationship between the spatial coherent width and the characterization of CCF of the PCV beam. The technique we exploit is quite efficient and robust, and it may be useful in the field of free space communication and astronomy which are related to the photon's orbital angular momentum

  20. Astronomical chemistry.

    Science.gov (United States)

    Klemperer, William

    2011-01-01

    The discovery of polar polyatomic molecules in higher-density regions of the interstellar medium by means of their rotational emission detected by radioastronomy has changed our conception of the universe from essentially atomic to highly molecular. We discuss models for molecule formation, emphasizing the general lack of thermodynamic equilibrium. Detailed chemical kinetics is needed to understand molecule formation as well as destruction. Ion molecule reactions appear to be an important class for the generally low temperatures of the interstellar medium. The need for the intrinsically high-quality factor of rotational transitions to definitively pin down molecular emitters has been well established by radioastronomy. The observation of abundant molecular ions both positive and, as recently observed, negative provides benchmarks for chemical kinetic schemes. Of considerable importance in guiding our understanding of astronomical chemistry is the fact that the larger molecules (with more than five atoms) are all organic.

  1. "She is an astronomer" in Spain; the International Year of Astronomy 2009 and beyond

    Science.gov (United States)

    Márquez, I.

    2011-11-01

    The work of the Spanish node for the IYA2009 Cornerstoneproject, "She is an Astronomer" is presented. Our team developedseveral projects with the common goal of promoting gender equality andwomen participation in professional and amateur astronomy, andsupporting the training of young women researchers andtechnologists. The main ones were: 1)Calendar "Women astronomerswho made history". We highlighted exceptional women, fromdifferent epochs and countries, whose contributions to theadvancement of science deserve to transcend anonymity and occupy aplace in history.2) "Women in the stars" was a series of 8 TV programsdevoted to the contribution of Spanish women astronomers, made incollaboration with the UNED.3) "Women in Spanish Astronomy: analysis of a peculiar situation: A universe to discover", was the first sociological study of this type, including quantitative and qualitative (individual and group interviews) analyses. 4) The exhibit "She Astronomer", was aimed at teaching astronomy from a new perspective: the relevant contributions by women astronomers from different times and places.The main aims of the "Commission for Women and Astronomy",recently created within the Spanish Astronomical Society (SEA), are alsodescribed.

  2. ILSE combiner study

    International Nuclear Information System (INIS)

    Hahn, K.

    1994-03-01

    In a heavy ion inertial fusion (HIF) driver, the beam energy and current are increased several orders of magnitude from the injector to the final focus system. At low and high energy stages of the driver, electrostatic and magnetic focusing transport channels, respectively, can be used. At the electric-to-magnetic transition point, the beams may be combined to reduce the transverse dimensions of the system, which could have significant impact on the driver cost. In a presently envisioned combiner, four beams are brought together transversely into a single transport channel. A matching section follows the combiner in order to provide a smooth transition to the subsequent magnetic transport channel. This report summarizes a conceptual design study of possible combiner configurations for the proposed Introduction Linac Systems Experiment (ILSE). The conceptual design study includes subjects such as the expected technical difficulties, predicted emittance growth, particle loss, effect of geometric and chromatic aberrations, and the sensitivity of emittance growth on the initial beam position and angle errors

  3. The caracol tower at chichen itza: an ancient astronomical observatory?

    Science.gov (United States)

    Aveni, A F; Gibbs, S L; Hartung, H

    1975-06-06

    Although our investigations reveal a number of significant astronomical events coinciding with many of the measured alignments presented in Table 1, not every alignment appears to have an astronomical match which we can recognize. It may be that only some of the sighting possibilities we have discussed were actually functional. Moreover, our search of significant astronomical events to match the alignments has included only those which seem of obvious functional importance to us: sun, moon, and planetary extremes and the setting positions of the brightest stars. We have emphasized those celestial bodies which are documented in the literature as having been of importance. Perhaps hitherto unrecognized constellations were sighted in the windows, perhaps fainter stars, the heliacal rising and setting times of which could have served to mark important dates in the calendar. While we propose no grand cosmic scheme for the astronomical design of the Caracol it can be inferred that the building, apart from being a monument related to Quetzalcoatl, was erected primarily for the purpose of embodying in its architecture certain significant astronomical event alignments, in the same sense that a modern astronomical ephemeris exhibits information of importance to us in the keeping of the current calendar. There are examples in the Mesoamerican historical literature of deliberate attempts to align buildings with astronomical directions of importance. For example, Maudslay (33) quotes Father Motolinia, who tells us that in Tenochtitlan the festival called Tlacaxipeualistli "took place when the sun stood in the middle of Huicholobos, which was at the equinox, and because it was a little out of the straight, Montezuma wished to pull it down and set it right." According to Maudslay, worshipers were probably facing east to watch the sun rise between the two oratories on the Great Temple of Tenochtitlan at the time of the equinox. The directions of the faces of the Lower and Upper

  4. Astronomical Research Institute Photometric Results

    Science.gov (United States)

    Linder, Tyler R.; Sampson, Ryan; Holmes, Robert

    2013-01-01

    The Astronomical Research Institute (ARI) conducts astrometric and photometric studies of asteroids with a concentration on near-Earth objects (NEOs). A 0.76-m autoscope was used for photometric studies of seven asteroids of which two were main-belt targets and five were NEOs, including one potentially hazardous asteroid (PHA). These objects are: 3122 Florence, 3960 Chaliubieju, 5143 Heracles, (6455) 1992 HE, (36284) 2000 DM8, (62128) 2000 SO1, and 2010 LF86.

  5. Effects of the beam loading in the rf deflectors of the CLIC test facility CTF3 combiner ring

    Directory of Open Access Journals (Sweden)

    David Alesini

    2004-04-01

    Full Text Available In this paper we study the impact of the rf deflectors beam loading on the transverse beam dynamics of the CTF3 combiner ring. A general expression for the single-passage wake field is obtained. Different approximated formulas are derived applying linearization of the rf deflector dispersion curve either on a limited or an unlimited frequency range. A dedicated tracking code has been written to study the multibunch multiturn effects on the transverse beam dynamics. The numerical simulations reveal that the beam emittance growth due to the wake field in the rf deflectors is a small fraction of the design emittance if the trains are injected perfectly on axis. Nevertheless in case of injection errors the final emittance growth strongly depends on the betatron phase advance between the rf deflectors. If the finite bunch length is included in the tracking code, the scenario for the central part of the bunches does not change. However, for some particular injection errors, the tails of the bunches can increase the total transverse bunch emittances.

  6. Astronomers Detect Powerful Bursting Radio Source Discovery Points to New Class of Astronomical Objects

    Science.gov (United States)

    2005-03-01

    Astronomers at Sweet Briar College and the Naval Research Laboratory (NRL) have detected a powerful new bursting radio source whose unique properties suggest the discovery of a new class of astronomical objects. The researchers have monitored the center of the Milky Way Galaxy for several years and reveal their findings in the March 3, 2005 edition of the journal, “Nature”. This radio image of the central region of the Milky Way Galaxy holds a new radio source, GCRT J1745-3009. The arrow points to an expanding ring of debris expelled by a supernova. CREDIT: N.E. Kassim et al., Naval Research Laboratory, NRAO/AUI/NSF Principal investigator, Dr. Scott Hyman, professor of physics at Sweet Briar College, said the discovery came after analyzing some additional observations from 2002 provided by researchers at Northwestern University. “"We hit the jackpot!” Hyman said referring to the observations. “An image of the Galactic center, made by collecting radio waves of about 1-meter in wavelength, revealed multiple bursts from the source during a seven-hour period from Sept. 30 to Oct. 1, 2002 — five bursts in fact, and repeating at remarkably constant intervals.” Hyman, four Sweet Briar students, and his NRL collaborators, Drs. Namir Kassim and Joseph Lazio, happened upon transient emission from two radio sources while studying the Galactic center in 1998. This prompted the team to propose an ongoing monitoring program using the National Science Foundation’s Very Large Array (VLA) radio telescope in New Mexico. The National Radio Astronomy Observatory, which operates the VLA, approved the program. The data collected, laid the groundwork for the detection of the new radio source. “Amazingly, even though the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths,” NRL astronomer Dr. Joseph Lazio pointed out, “very little has been done to look for radio bursts, which are often easier for astronomical objects to produce

  7. ``Orion, I Don't Love You'': The Astronomical Legacy of Carl Sandburg

    Science.gov (United States)

    Ricca, B.

    2013-04-01

    Can poetry provide an accurate means of representing the scientific universe? This paper looks at the astronomical poetry of Carl Sandburg and how the poet employs a scientific framework to deepen his work. Sandburg's method is then compared to a class project of middle school students who use his poetry (and their own) to learn and understand astronomical facts.

  8. The Production Rate and Employment of Ph.D. Astronomers

    Science.gov (United States)

    Metcalfe, Travis S.

    2008-02-01

    In an effort to encourage self-regulation of the astronomy job market, I examine the supply of, and demand for, astronomers over time. On the supply side, I document the production rate of Ph.D. astronomers from 1970 to 2006 using the UMI Dissertation Abstracts database, along with data from other independent sources. I compare the long-term trends in Ph.D. production with federal astronomy research funding over the same time period, and I demonstrate that additional funding is correlated with higher subsequent Ph.D. production. On the demand side, I monitor the changing patterns of employment using statistics about the number and types of jobs advertised in the AAS Job Register from 1984 to 2006. Finally, I assess the sustainability of the job market by normalizing this demand by the annual Ph.D. production. The most recent data suggest that there are now annual advertisements for about one postdoctoral job, half a faculty job, and half a research/support position for every new domestic Ph.D. recipient in astronomy and astrophysics. The average new astronomer might expect to hold up to 3 jobs before finding a steady position.

  9. Polishers around the globe: an overview on the market of large astronomical mirrors

    Science.gov (United States)

    Döhring, Thorsten

    2014-07-01

    Astronomical mirrors are key elements in modern optical telescopes, their dimensions are usually large and their specifications are demanding. Only a limited number of skilled companies respectively institutions around the world are able to master the challenge to polish an individual astronomical mirror, especially in dimensions above one meter. This paper presents an overview on the corresponding market including a listing of polishers around the globe. Therefore valuable information is provided to the astronomical community: Polishers may use the information as a global competitor database, astronomers and project managers may get more transparency on potential suppliers, and suppliers of polishing equipment may learn about unknown potential customers in other parts of the world. An evaluation of the historical market demand on large monolithic astronomical mirrors is presented. It concluded that this is still a niche market with a typical mean rate of 1-2 mirrors per year. Polishing of such mirrors is an enabling technology with impact on the development of technical know-how, public relation, visibility and reputation of the supplier. Within a corresponding technical discussion different polishing technologies are described. In addition it is demonstrated that strategic aspects and political considerations are influencing the selection of the optical finisher.

  10. Note: Determination of torsional spring constant of atomic force microscopy cantilevers: Combining normal spring constant and classical beam theory

    DEFF Research Database (Denmark)

    Álvarez-Asencio, R.; Thormann, Esben; Rutland, M.W.

    2013-01-01

    A technique has been developed for the calculation of torsional spring constants for AFM cantilevers based on the combination of the normal spring constant and plate/beam theory. It is easy to apply and allow the determination of torsional constants for stiff cantilevers where the thermal power s...... spectrum is difficult to obtain due to the high resonance frequency and low signal/noise ratio. The applicability is shown to be general and this simple approach can thus be used to obtain torsional constants for any beam shaped cantilever. © 2013 AIP Publishing LLC....

  11. Science Initiatives of the US Virtual Astronomical Observatory

    Science.gov (United States)

    Hanisch, R. J.

    2012-09-01

    The United States Virtual Astronomical Observatory program is the operational facility successor to the National Virtual Observatory development project. The primary goal of the US VAO is to build on the standards, protocols, and associated infrastructure developed by NVO and the International Virtual Observatory Alliance partners and to bring to fruition a suite of applications and web-based tools that greatly enhance the research productivity of professional astronomers. To this end, and guided by the advice of our Science Council (Fabbiano et al. 2011), we have focused on five science initiatives in the first two years of VAO operations: 1) scalable cross-comparisons between astronomical source catalogs, 2) dynamic spectral energy distribution construction, visualization, and model fitting, 3) integration and periodogram analysis of time series data from the Harvard Time Series Center and NASA Star and Exoplanet Database, 4) integration of VO data discovery and access tools into the IRAF data analysis environment, and 5) a web-based portal to VO data discovery, access, and display tools. We are also developing tools for data linking and semantic discovery, and have a plan for providing data mining and advanced statistical analysis resources for VAO users. Initial versions of these applications and web-based services are being released over the course of the summer and fall of 2011, with further updates and enhancements planned for throughout 2012 and beyond.

  12. Science Initiatives of the US Virtual Astronomical Observatory

    Directory of Open Access Journals (Sweden)

    Hanisch Robert J.

    2012-09-01

    Full Text Available The United States Virtual Astronomical Observatory program is the operational facility successor to the National Virtual Observatory development project. The primary goal of the US VAO is to build on the standards, protocols, and associated infrastructure developed by NVO and the International Virtual Observatory Alliance partners and to bring to fruition a suite of applications and web-based tools that greatly enhance the research productivity of professional astronomers. To this end, and guided by the advice of our Science Council (advisory committee, we are focusing on five science initiatives in the first two years of VAO operations: (1 scalable cross-comparisons between astronomical source catalogs, (2 dynamic spectral energy distribution construction, visualization, and model fitting, (3 integration and periodogram analysis of time series data from the Harvard Time Series Center and NASA Star and Exoplanet Database, (4 integration of VO data discovery and access tools into the IR AF data analysis environment, and (5 a web-based portal to VO data discovery, access, and display tools. We are also developing tools for data linking and semantic discovery, and have a plan for providing data mining and advanced statistical analysis resources for VAO users. Initial versions of these applications and web-based services are being released over the course of the summer and fall of 2011, with further updates and enhancements planned for throughout 2012 and beyond.

  13. A flexible method for the preparation of thin film samples for in situ TEM characterization combining shadow-FIB milling and electron-beam-assisted etching

    Energy Technology Data Exchange (ETDEWEB)

    Liebig, J.P., E-mail: jan.p.liebig@fau.de [Department of Materials Science and Engineering, Institute I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr. 5, 91058 Erlangen (Germany); Göken, M. [Department of Materials Science and Engineering, Institute I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr. 5, 91058 Erlangen (Germany); Richter, G. [Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart (Germany); Mačković, M.; Przybilla, T.; Spiecker, E. [Institute of Micro, and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 6, 91058 Erlangen (Germany); Pierron, O.N. [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States); Merle, B. [Department of Materials Science and Engineering, Institute I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr. 5, 91058 Erlangen (Germany)

    2016-12-15

    A new method for the preparation of freestanding thin film samples for mechanical testing in transmission electron microscopes is presented. It is based on a combination of focused ion beam (FIB) milling and electron-beam-assisted etching with xenon difluoride (XeF{sub 2}) precursor gas. The use of the FIB allows for the target preparation of microstructural defects and enables well-defined sample geometries which can be easily adapted in order to meet the requirements of various testing setups. In contrast to existing FIB-based preparation approaches, the area of interest is never exposed to ion beam irradiation which preserves a pristine microstructure. The method can be applied to a wide range of thin film material systems compatible with XeF{sub 2} etching. Its feasibility is demonstrated for gold and alloyed copper thin films and its practical application is discussed. - Highlights: • A new method for the preparation of sub-micron tensile specimens from thin films is presented. • The method is based on the combination of focused ion beam milling and electron-beam-assisted xenon difluoride etching. • It enables the target preparation of individual microstructural defects. • The sample section is protected from ion beam damage by the use of a shadow milling geometry.

  14. Subdiffraction focusing of scanning beams by a negative-refraction layer combined with a nonlinear layer.

    Science.gov (United States)

    Husakou, A; Herrmann, J

    2006-11-13

    We evaluate the possibility to focus scanning light beams below the diffraction limit by using the combination of a nonlinear material with a Kerr-type nonlinearity or two-photon absorption to create seed evanescent components of the beam and a negative-refraction material to enhance them. Superfocusing to spots with a FWHM in the range of 0.2 lambda is theoretically predicted both in the context of the effective-medium theory and by the direct numerical solution of Maxwell equations for an inhomogeneous pho-tonic crystal. The evolution of the transverse spectrum and the dependence of superfocusing on the parameters of the negative-refraction material are also studied. We show that the use of a Kerr-type nonlinear layer for the creation of seed evanescent components yields focused spots with a higher intensity compared with those obtained by the application of a saturable absorber.

  15. Effects of combined electron-beam irradiation and sous-vide treatments on microbiological and other qualities of chicken breast meat

    International Nuclear Information System (INIS)

    Shamsuzzaman, K.; Lucht, L.; Chuaqui-Offermanns, N.

    1994-01-01

    The microbiological safety, refrigeration shelf-life, and nutritional quality of chicken breast meat were investigated following combined electron-beam irradiation and cooking under vacuum (sous-vide). Chicken breast meat inoculated with 10 6 CFU/g of Listeria monocytogenes was irradiated with an electron beam at doses up to 3.1 kGy under vacuum in barrier bags, cooked in a boiling water bath for 3 min 45 s (previously determined to achieve an internal temperature of 71.1 o C), and stored at 8 o C for up to 5 weeks. Listeria was undetectable in samples treated with combined sous-vide and irradiation at 3.1 kGy, but the organism survived the sous-vide treatment without irradiation and multiplied during storage. A similar study, conducted with uninoculated chicken breast meat, revealed that the product which received both irradiation (3 kGy) and sous-vide treatment had a shelf-life of at least 8 weeks at 8 o C, whereas the unirradiated samples treated sous-vide spoiled in 16 days. Listeria was undetectable in combination treated samples, but some of the unirradiated sous-vide samples tested after long storage showed high levels of Listeria. Some loss of thiamine occurred with the combined treatments. (author)

  16. Eighth Scientific Meeting of the Spanish Astronomical Society

    CERN Document Server

    Diego, Jose M; González-Serrano, J. Ignacio; Gorgas, Javier; Highlights of Spanish Astrophysics V

    2010-01-01

    This volume collects the invited contributions and plenary sessions presented at the Eighth Scientific Meeting of the Spanish Astronomical Society (Sociedad Española de Astronomía, SEA) held on July 7-11, 2008 in Santander. These contributions cover all fields of astronomy and astrophysics, i.e., the Sun and solar system, the galaxy and its components, galaxies and cosmology, observatories and instrumentation, as well as astronomy teaching and dissemination. Further plenary sessions were devoted to selected hot topics, including the exploration of the solar system, gravitational lensing, exoplanets, X-ray binaries, solar magnetism, gravitational waves, the ALHAMBRA collaboration, and the OSIRIS instrument on the new 10-m GTC. Abstracts of the contributions presented at the parallels sessions and posters are also included in the book. Complete versions of those papers are available online.

  17. Emerging technology for astronomical optics metrology

    Science.gov (United States)

    Trumper, Isaac; Jannuzi, Buell T.; Kim, Dae Wook

    2018-05-01

    Next generation astronomical optics will enable science discoveries across all fields and impact the way we perceive the Universe in which we live. To build these systems, optical metrology tools have been developed that push the boundary of what is possible. We present a summary of a few key metrology technologies that we believe are critical for the coming generation of optical surfaces.

  18. Astronomical and Atmospheric Observations in the Anglo-Saxon Chronicle and in Bede

    Science.gov (United States)

    Härke, H.

    2012-01-01

    Textual sources of the early Middle Ages (fifth to tenth centuries AD) contain more astronomical observations than is popularly assumed. The Anglo-Saxon Chronicle lists some 40 observations of astronomical and atmospheric events for the just over 600 years it covers. But the contexts in which these are set show that eclipses, comets, meteor showers and aurorae were seen as portents of evil events, not as objects of early scientific curiosity. The case of Bede in the early eighth century shows that this was true, to an extent, even for the educated ecclesiastical elite. BedeÕs eclipse records also appear to show that astronomical events could be used to explain unusual phenomena such as the postulated volcanic Ôdust-veilÕ event of AD 536.

  19. Database retrieval systems for nuclear and astronomical data

    International Nuclear Information System (INIS)

    Suda, Takuma; Korennov, Sergei; Otuka, Naohiko; Yamada, Shimako; Katsuta, Yutaka; Ohnishi, Akira; Kato, Kiyoshi; Fujimoto, Masayuki Y.

    2006-01-01

    Data retrieval and plot systems of nuclear and astronomical data are constructed on a common platform. Web-based systems will soon be opened to the users of both fields of nuclear physics and astronomy. (author)

  20. Electron-beam and combined e-b and microwave processing of dried food ingredients

    International Nuclear Information System (INIS)

    Ferdes, O.; Minea, R.; Martin, D.; Tirlea, A.; Badea, M.; Oproiu, C.

    1998-01-01

    Complete text of publication follows. There are summarized and presented the results on the irradiated dried food ingredients, as starches, flour, spices, enzymes, pigments. It has investigated the electron-beam and microwave processing to achieve the hygienic and microbiological quality requirements for these materials. There are presented the results regarding the e-b and microwave effects on the main specific parameters (nutritional; microbiological; physical and chemical) for each item. Irradiation has carried out to different electron accelerators, mainly to ALIN-7 linac (W e ∼6 MeV) and using a special designed microwave equipment (2.45 GHz magnetron of 850 W maximum output power). The samples have been irradiated up to 25 kGy (dose rate ∼ 2.0 kGy/min) and there were treated by microwaves (250 W-550 W) for different exposure time. There have analyzed and presented the influence of these two physical fields on some common physical, biochemical and microbiological properties (mainly the total germ count, CFU/g) of these food materials. The main technological and physical characteristics of the materials are preserved, under irradiation up to 10 kGy and microwave treatment in the case of satisfying the national requirements for food and food grade additives microbiological load. The combined treatment seems to be present a synergistic effect arising on non-thermal basis. From these results it could be pointed out that electron-beam and microwave treatment is feasible and represents an alternative to other hygienization techniques for the dried food ingredients. It should be considered that combined treatments lead to reducing irradiation dose without losing the microbicidal effects

  1. Astronomy Against Terrorism: an Educational Astronomical Observatory Project in Peru

    Science.gov (United States)

    Ishitsuka, M.; Montes, H.; Kuroda, T.; Morimoto, M.; Ishitsuka, J.

    2003-05-01

    The Cosmos Coronagraphic Observatory was completely destroyed by terrorists in 1988. In 1995, in coordination with the Minister of Education of Peru, a project to construct a new Educational Astronomical Observatory has been executed. The main purpose of the observatory is to promote an interest in basic space sciences in young students from school to university levels, through basic astronomical studies and observations. The planned observatory will be able to lodge 25 visitors; furthermore an auditorium, a library and a computer room will be constructed to improve the interest of people in astronomy. Two 15-cm refractor telescopes, equipped with a CCD camera and a photometer, will be available for observations. Also a 6-m dome will house a 60-cm class reflector telescope, which will be donated soon, thanks to a fund collected and organized by the Nishi-Harima Astronomical Observatory in Japan. In addition a new modern planetarium donated by the Government of Japan will be installed in Lima, the capital of Peru. These installations will be widely open to serve the requirements of people interested in science.

  2. Sports Stars: Analyzing the Performance of Astronomers at Visualization-based Discovery

    Science.gov (United States)

    Fluke, C. J.; Parrington, L.; Hegarty, S.; MacMahon, C.; Morgan, S.; Hassan, A. H.; Kilborn, V. A.

    2017-05-01

    In this data-rich era of astronomy, there is a growing reliance on automated techniques to discover new knowledge. The role of the astronomer may change from being a discoverer to being a confirmer. But what do astronomers actually look at when they distinguish between “sources” and “noise?” What are the differences between novice and expert astronomers when it comes to visual-based discovery? Can we identify elite talent or coach astronomers to maximize their potential for discovery? By looking to the field of sports performance analysis, we consider an established, domain-wide approach, where the expertise of the viewer (i.e., a member of the coaching team) plays a crucial role in identifying and determining the subtle features of gameplay that provide a winning advantage. As an initial case study, we investigate whether the SportsCode performance analysis software can be used to understand and document how an experienced Hi astronomer makes discoveries in spectral data cubes. We find that the process of timeline-based coding can be applied to spectral cube data by mapping spectral channels to frames within a movie. SportsCode provides a range of easy to use methods for annotation, including feature-based codes and labels, text annotations associated with codes, and image-based drawing. The outputs, including instance movies that are uniquely associated with coded events, provide the basis for a training program or team-based analysis that could be used in unison with discipline specific analysis software. In this coordinated approach to visualization and analysis, SportsCode can act as a visual notebook, recording the insight and decisions in partnership with established analysis methods. Alternatively, in situ annotation and coding of features would be a valuable addition to existing and future visualization and analysis packages.

  3. Generalization of a global model for reinforced concrete beams under combined axial force and bending moments

    International Nuclear Information System (INIS)

    Bairrao, R.; Millard, A.; Barbe, B.

    1991-01-01

    A large set of numerical data was obtained using a program recently developed. From the various results achieved, new analytical expressions for the definition of damage and plasticity criteria are being derived. The importance of taking into account the presence of general bending was highlighted. The extension to 3D bending, of the previous global models for reinforced concrete beams under combined axial force and bending, is under development. (author)

  4. Computation of beam quality parameters for Mo/Mo, Mo/Rh, Rh/Rh, and W/Al target/filter combinations in mammography

    International Nuclear Information System (INIS)

    Kharrati, Hedi; Zarrad, Boubaker

    2003-01-01

    A computer program was implemented to predict mammography x-ray beam parameters in the range 20-40 kV for Mo/Mo, Mo/Rh, Rh/Rh, and W/Al target/filter combinations. The computation method used to simulate mammography x-ray spectra is based on the Boone et al. model. The beam quality parameters such as the half-value layer (HVL), the homogeneity coefficient (HC), and the average photon energy were computed by simulating the interaction of the spectrum photons with matter. The checking of this computation was done using a comparison of the results with published data and measured values obtained at the Netherlands Metrology Institute Van Swinden Laboratorium, National Institute of Standards and Technology, and International Atomic Energy Agency. The predicted values with a mean deviation of 3.3% of HVL, 3.7% of HC, and 1.5% of average photon energy show acceptable agreement with published data and measurements for all target/filter combinations in the 23-40 kV range. The accuracy of this computation can be considered clinically acceptable and can allow an appreciable estimation for the beam quality parameters

  5. Focus on astronomical predictable events

    DEFF Research Database (Denmark)

    Jacobsen, Aase Roland

    2006-01-01

    At the Steno Museum Planetarium we have for many occasions used a countdown clock to get focus om astronomical events. A countdown clock can provide actuality to predictable events, for example The Venus Transit, Opportunity landing on Mars and The Solar Eclipse. The movement of the clock attracs...... the public and makes a point of interest in a small exhibit area. A countdown clock can be simple, but it is possible to expand the concept to an eye-catching part of a museum....

  6. The South African Astronomical Observatory

    International Nuclear Information System (INIS)

    1988-01-01

    The geographical position, climate and equipment at the South African Astronomical Observatory (SAAO), together with the enthusiasm and efforts of SAAO scientific and technical staff and of visiting scientists, have enabled the Observatory to make a major contribution to the fields of astrophysics and cosmology. During 1987 the SAAO has been involved in studies of the following: supernovae; galaxies, including Seyfert galaxies; celestial x-ray sources; magellanic clouds; pulsating variables; galatic structure; binary star phenomena; nebulae; interstellar matter and stellar astrophysics

  7. The War's Positive Impact on the Canadian Astronomical Community

    Science.gov (United States)

    Broughton, Peter

    2015-01-01

    At the beginning of WWI, the Canadian astronomical community was tiny and astrophysical research was just beginning. By the end of the war, the country had established the forerunner of its National Research Council and had the world's largest fully operational telescope, thanks to the late entry of the USA into the conflict. By 1918, Canada was on the verge of making significant contributions to science.In spite of the immense loss of life in this pointless war, I am aware of only one casualty affecting Canadian professional astronomers, and that was the indirect death of James Chant, son of University of Toronto's only professor of astronomy. Other Canadian astronomers, including Tom Parker, Bert Topham, and Harry Plaskett were on active service; each of their stories is unique.Among those engaged in scientific work during the war were two Canadians temporarily in England: John McLennan whose helium research for dirigibles led him to establish a cryogenic lab in Toronto where the green line in the spectrum of the aurora was identified in 1925, and Allie Douglas who worked as a statistician in the War Office. Later work with Eddington led her to become his biographer and to her distinction as the first person in Canada to earn a PhD in astronomy (in 1926).

  8. Transmission of the Neutral Beam Heating Beams at TJ-II

    International Nuclear Information System (INIS)

    Fuentes Lopez, C.

    2007-01-01

    Neutral beam injection heating has been development for the TJ-II stellarator. The beam has a port-through power between 700-1500 kW and injection energy 40 keV. The sensibility of the injection system to the changes of several parameters is analysed. Beam transmission is limited by losses processes since beam is born into the ions source until is coming into the fusion machine. For the beam transmission optimization several beam diagnostics have been developed. A carbon fiber composite (CFC) target calorimeter has been installed at TJ-II to study in situ the power density distribution of the neutral beams. The thermographic print of the beam can be recorded and analysed in a reliable way due to the highly anisotropic thermal conductivity of the target material. With the combined thermographic and calorimetric measurements it has been possible to determine the power density distribution of the beam. It has been found that a large beam halo is present, which can be explained by the extreme misalignment of the grids. This kind of halo has a deleterious effect on beam transport and must be minimized in order to improve the plasma heating capability of the beams. (Author) 155 refs

  9. Letters from Augustin Hallerstein, an eighteenth century Jesuit astronomer in Beijing

    Science.gov (United States)

    Juznic, Stanislav

    2008-11-01

    Augustin Hallerstein (1703-1774) was the last astronomer sent to Beijing by the Society of Jesus. He left Europe for China in his mid-thirties, and continued to send letters back home until he died thirty-five years later. These letters and reports contained important information on Chinese astronomy, and were read in the courts of Europe; many were also published. Hallerstein was one of the most important European astronomers in Beijing, his European publications surpassing those of his predecessors.

  10. SU-E-J-181: Effect of Prostate Motion On Combined Brachytherapy and External Beam Dose Based On Daily Motion of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, V; McLaughlin, P [Providence Cancer Center, Southfield, MI (United States); University of Michigan, Ann Arbor, MI (United States); Ealbaj, J [University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Purpose: In this study, the adequacy of target expansions on the combined external beam and implant dose was examined based on the measured daily motion of the prostate. Methods: Thirty patients received an I–125 prostate implant prescribed to dose of 90Gy. This was followed by external beam to deliver a dose of 90Gyeq (external beam equivalent) to the prostate over 25 to 30 fractions. An ideal IMRT plan was developed by optimizing the external beam dose based on the delivered implant dose. The implant dose was converted to an equivalent external beam dose using the linear quadratic model. Patients were set up on the treatment table by daily orthogonal imaging and aligning the marker seeds in the prostate. Orthogonal images were obtained at the end of treatment to assess prostate intrafraction motion. Based on the observed motion of the markers between the initial and final images, 5 individual plans showing the actual dose delivered to the patient were calculated. A final true dose distribution was established based on summing the implant dose and the 5 external beam plans. Dose to the prostate, seminal vesicles, lymphnodes and normal tissues, rectal wall, urethra and lower sphincter were calculated and compared to ideal. On 18 patients who were sexually active, dose to the corpus cavernosum and internal pudendal artery was also calculated. Results: The average prostate motion in 3 orthogonal directions was less than 1 mm with a standard deviation of less than +2 mm. Dose and volume parameters showed that there was no decrease in dose to the targets and a marginal decrease in dose to in normal tissues. Conclusion: Dose delivered by seed implant moves with the prostate, decreasing the impact of intrafractions dose movement on actual dose delivered. Combined brachytherapy and external beam dose delivered to the prostate was not sensitive to prostate motion.

  11. C++, objected-oriented programming, and astronomical data models

    Science.gov (United States)

    Farris, A.

    1992-01-01

    Contemporary astronomy is characterized by increasingly complex instruments and observational techniques, higher data collection rates, and large data archives, placing severe stress on software analysis systems. The object-oriented paradigm represents a significant new approach to software design and implementation that holds great promise for dealing with this increased complexity. The basic concepts of this approach will be characterized in contrast to more traditional procedure-oriented approaches. The fundamental features of objected-oriented programming will be discussed from a C++ programming language perspective, using examples familiar to astronomers. This discussion will focus on objects, classes and their relevance to the data type system; the principle of information hiding; and the use of inheritance to implement generalization/specialization relationships. Drawing on the object-oriented approach, features of a new database model to support astronomical data analysis will be presented.

  12. Remote observatories for amateur astronomers using high-powered telescopes from home

    CERN Document Server

    Hubbell, Gerald R; Billard, Linda M

    2015-01-01

    Amateur astronomers who want to enhance their capabilities to contribute to science need look no farther than this guide to using remote observatories.  The contributors cover how to build your own remote observatory as well as the existing infrastructure of commercial networks of remote observatories that are available to the amateur. They provide specific advice on which programs to use based on your project objectives and offer practical project suggestions. Remotely controlled observatories have many advantages—the most obvious that the observer does not have to be physically present to carry out observations. Such an observatory can also be used more fully because its time can be scheduled and usefully shared among several astronomers working on different observing projects. More and more professional-level observatories are open to use by amateurs in this way via the Internet, and more advanced amateur astronomers can even build their own remote observatories for sharing among members of a society ...

  13. Communicating the Science of Global Warming — the Role of Astronomers

    Science.gov (United States)

    Bennett, Jeffrey

    2018-06-01

    Global Warming is one of the most important and issues of our times, yet it is widely misunderstood among the general public (and politicians!). The American Astronomical Society has already joined many other scientific organizations in advocating for action on global warming (by supporting the AGU statement on global warming), but we as astronomers can do much more. The high public profile of astronomy gives us a unique platform — and credibility as scientists — for doing our part to educate the public about the underlying science of global warming. And while astronomers are not climate scientists, we use the same basic physics, and many aspects of global warming science come directly from astronomy, including the ways in which we measure the heat-absorbing potential of carbon dioxide and the hard evidence of greenhouse warming provided by studies of Venus. In this session, I will briefly introduce a few methods for communicating about global warming that I believe you will find effective in your own education efforts.

  14. Beam quality improvement by population-dynamic-coupled combined guiding effect in end-pumped Nd:YVO4 laser oscillator

    Science.gov (United States)

    Shen, Yijie; Gong, Mali; Fu, Xing

    2018-05-01

    Beam quality improvement with pump power increasing in an end-pumped laser oscillator is experimentally realized for the first time, to the best of our knowledge. The phenomenon is caused by the population-dynamic-coupled combined guiding effect, a comprehensive theoretical model of which has been well established, in agreement with the experimental results. Based on an 888 nm in-band dual-end-pumped oscillator using four tandem Nd:YVO4 crystals, the output beam quality of M^2= 1.1/1.1 at the pump power of 25 W is degraded to M^2 = 2.5/1.8 at 75 W pumping and then improved to M^2= 1.8/1.3 at 150 W pumping. The near-TEM_{00} mode is obtained with the highest continuous-wave output power of 72.1 W and the optical-to-optical efficiency of 48.1%. This work demonstrates great potential to further scale the output power of end-pumped laser oscillator while keeping good beam quality.

  15. Astronomical Instruments in India

    Science.gov (United States)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  16. Block iterative restoration of astronomical images with the massively parallel processor

    International Nuclear Information System (INIS)

    Heap, S.R.; Lindler, D.J.

    1987-01-01

    A method is described for algebraic image restoration capable of treating astronomical images. For a typical 500 x 500 image, direct algebraic restoration would require the solution of a 250,000 x 250,000 linear system. The block iterative approach is used to reduce the problem to solving 4900 121 x 121 linear systems. The algorithm was implemented on the Goddard Massively Parallel Processor, which can solve a 121 x 121 system in approximately 0.06 seconds. Examples are shown of the results for various astronomical images

  17. The SAGE spectrometer: A tool for combined in-beam γ-ray and conversion electron spectroscopy

    International Nuclear Information System (INIS)

    Papadakis, P; Herzberg, R-D; Pakarinen, J; Butler, P A; Cox, D; Cresswell, J R; Parr, E; Sampson, J; Greenlees, P T; Sorri, J; Hauschild, K; Jones, P; Julin, R; Peura, P; Rahkila, P; Sandzelius, M; Coleman-Smith, P J; Lazarus, I H; Letts, S C; Pucknell, V F E

    2011-01-01

    The SAGE spectrometer allows simultaneous in-beam γ-ray and internal conversion electron measurements, by combining a germanium detector array with a highly segmented silicon detector and an electron transport system. SAGE is coupled with the ritu gas-filled recoil separator and the great focal-plane spectrometer for recoil-decay tagging studies. Digital electronics are used both for the γ ray and the electron parts of the spectrometer. SAGE was commissioned in the Accelerator Laboratory of the University of Jyvaeskylae in the beginning of 2010.

  18. New knowledge in determining the astronomical orientation of Incas object in Ollantaytambo, Peru

    Science.gov (United States)

    Hanzalová, K.; Klokočník, J.; Kostelecký, J.

    2014-06-01

    This paper deals about astronomical orientation of Incas objects in Ollantaytambo, which is located about 35 km southeast from Machu Picchu, about 40 km northwest from Cusco, and lies in the Urubamba valley. Everybody writing about Ollantaytambo, shoud read Protzen (1993). He devoted his monograph to description and interpretation of that locality. Book of Salazar and Salazar (2005) deals, among others, with the orientation of objects in Ollantaytambo with respect to the cardinal direction. Zawaski and Malville (2007) documented astronomical context of major monuments of nine sites in Peru, including Ollantaytambo. We tested astronomical orientation in these places and confirm or disprove hypothesis about purpose of Incas objects. For assessment orientation of objects we used our measurements and also satellite images on Google Earth and digital elevation model from ASTER. The satellite images used to approximate estimation of astronomical orientation. The digital elevation model is useful in the mountains, where we need the really horizon for a calculation of sunset and sunrise on specific days (solstices), which were for Incas people very important. By Incas is very famous that they worshiped the Sun. According to him they determined when to plant and when to harvest the crop. In this paper we focused on Temple of the Sun, also known the Wall of six monoliths. We tested which astronomical phenomenon is connected with this Temple. First, we tested winter solstice sunrise and the rides of the Pleiades for the epochs 2000, 1500 and 1000 A.D. According with our results the Temple isn't connected neither with winter solstice sunrise nor with the Pleiades. Then we tested also winter solstice sunset. We tried to use the line from an observation point near ruins of the Temple of Sun, to west-north, in direction to sunset. The astronomical azimuth from this point was about 5° less then we need. From this results we found, that is possible to find another observation

  19. New knowledge in determining the astronomical orientation of Incas object in Ollantaytambo, Peru

    Directory of Open Access Journals (Sweden)

    K. Hanzalová

    2014-06-01

    Full Text Available This paper deals about astronomical orientation of Incas objects in Ollantaytambo, which is located about 35 km southeast from Machu Picchu, about 40 km northwest from Cusco, and lies in the Urubamba valley. Everybody writing about Ollantaytambo, shoud read Protzen (1993. He devoted his monograph to description and interpretation of that locality. Book of Salazar and Salazar (2005 deals, among others, with the orientation of objects in Ollantaytambo with respect to the cardinal direction. Zawaski and Malville (2007 documented astronomical context of major monuments of nine sites in Peru, including Ollantaytambo. We tested astronomical orientation in these places and confirm or disprove hypothesis about purpose of Incas objects. For assessment orientation of objects we used our measurements and also satellite images on Google Earth and digital elevation model from ASTER. The satellite images used to approximate estimation of astronomical orientation. The digital elevation model is useful in the mountains, where we need the really horizon for a calculation of sunset and sunrise on specific days (solstices, which were for Incas people very important. By Incas is very famous that they worshiped the Sun. According to him they determined when to plant and when to harvest the crop. In this paper we focused on Temple of the Sun, also known the Wall of six monoliths. We tested which astronomical phenomenon is connected with this Temple. First, we tested winter solstice sunrise and the rides of the Pleiades for the epochs 2000, 1500 and 1000 A.D. According with our results the Temple isn't connected neither with winter solstice sunrise nor with the Pleiades. Then we tested also winter solstice sunset. We tried to use the line from an observation point near ruins of the Temple of Sun, to west-north, in direction to sunset. The astronomical azimuth from this point was about 5° less then we need. From this results we found, that is possible to find another

  20. AstroFrauenNetzwerk Survey Results - Career situation of female astronomers in Germany

    Science.gov (United States)

    Fohlmeister, J.; Helling, Ch.

    2012-04-01

    We survey the job situation of women in astronomy in Germany and of German women abroad and review indicators for their career development. Our sample includes women astronomers from all academic levels from doctoral students to professors, as well as female astronomers who have left the field. We find that networking and human support are among the most important factors for success. Experience shows that students should carefully choose their supervisor and collect practical knowledge abroad. We reflect the private situation of female German astronomers and find that prejudices are abundant, and are perceived as discriminating. We identify reasons why women are more likely than men to quit astronomy after they obtain their PhD degree. We give recommendations to young students on what to pay attention to in order to be on the successful path in astronomy.

  1. The Selection and Protection of Optical Astronomical Observing Sites in China

    Science.gov (United States)

    Wenjing, Jin; Bai, Jinming; Yao, Yongqiang

    2015-03-01

    Before 1950 there are two observatories, Shanghai and Purple Mountain Astronomical Observatories (SHAO and PMO), and two observing stations, Qingdao and Kunming stations in China. With the requirements of astronomical research, two observatories, Beijing and Shaanxi Astronomical Observatories (BAO and SXAO) and two artificial satellite stations, Urumqi and Changchun, were established about 1960. Based on the current management, now there are 4 observatories, SHAO, PMO, NAOC(National Astronomical Observatories), which was grouped from BAO, YNAO and 2 others, as well as XAO (Xinjiang Astronomical Observatory). The optical 1-2 m class telescopes are being operated at former four observatories. SXAO is changed as National Time Service Center. Because of city expansion as well as the traveling and economic developments, these observatories are suffered severe light pollution. For example, Zo Ce is located at the suburb of Shanghai city. A 40 cm double astrograph was installed in 1900 and a 1.56 m optical reflector have been operated since November 1987. In 1994 the seeing is better than 1 and the night sky brightness in V is about 19 mag/arcsec 2, stars fainter than 20 mag with CCD are visibles. In 2007 a large playground was built in Zô Cè area. The light pollution is severe gradually. The night sky brightness has been increased to 15.8 mag/arcsec 2. The other observatories have similar situation. New site surveys and found new stations to solve the problem. Except the solar and radio stations of each Astronomical Observatory, now there are 3 optical observing sites at PMO (Hong-He, Xu-Yi and Yaoan), 2 at SHAO (Zô Cè and Tian Huang Ping) and 2 at YNAO (Kunming and Gao-Mei-Gu) as well as 1 optical observing site at BAO (Xing-Long). The best observing site is Gao-Mei-Gu, which is selected as the optical observing site of YNAO and where atmospheric turbulence distribution is 0.11 near ground with heights from 6.5m to 2.7m during night. Sky brightness in B and V band

  2. BOOK REVIEW: The Wandering Astronomer

    Science.gov (United States)

    Swinbank, Elizabeth

    2000-09-01

    Fans of Patrick Moore will like this book. I enjoyed it more than I expected, having anticipated a collection of personal anecdotes of the type favoured by certain tedious after-dinner speakers. Some of the 41 short items it contains do tend towards that category, but there are also some nuggets which might enliven your physics teaching. For example, did you know that, in a murder trial in 1787, the defendant's belief that the Sun was inhabited was cited as evidence of his insanity? This was despite his views being shared by many astronomers of the day including William Herschel. Or that Clyde Tombaugh had a cat called Pluto after the planet he discovered, which was itself named by an eleven-year-old girl? Another gem concerns a brief flurry, in the early 1990s, over a suspected planet orbiting a pulsar; variations in the arrival time of its radio pulses indicated the presence of an orbiting body. These shifts were later found to arise from an error in a computer program that corrected for the Earth's motion. The programmer had assumed a circular orbit for the Earth whereas it is actually elliptical. The book is clearly intended for amateur astronomers and followers of Patrick Moore's TV programmes. There is plenty of astronomy, with an emphasis on the solar system, but very little astrophysics. The author's metricophobia means that quantities are given in imperial units throughout, with metric equivalents added in brackets (by an editor, I suspect) which can get irritating, particularly as powers-of-ten notation is avoided. It is quite a novelty to see the temperature for hydrogen fusion quoted as 18 000 000 °F (10 000 000 °C). By way of contrast, astronomical terms are used freely - ecliptic, first-magnitude star, and so on. Such terms are defined in a glossary at the end, but attention is not drawn to this and I only stumbled across it by chance. Patrick Moore obviously knows his public, and this book will serve them well. For physics teachers and students

  3. A Virtual Astronomical Research Machine in No Time (VARMiNT)

    Science.gov (United States)

    Beaver, John

    2012-05-01

    We present early results of using virtual machine software to help make astronomical research computing accessible to a wider range of individuals. Our Virtual Astronomical Research Machine in No Time (VARMiNT) is an Ubuntu Linux virtual machine with free, open-source software already installed and configured (and in many cases documented). The purpose of VARMiNT is to provide a ready-to-go astronomical research computing environment that can be freely shared between researchers, or between amateur and professional, teacher and student, etc., and to circumvent the often-difficult task of configuring a suitable computing environment from scratch. Thus we hope that VARMiNT will make it easier for individuals to engage in research computing even if they have no ready access to the facilities of a research institution. We describe our current version of VARMiNT and some of the ways it is being used at the University of Wisconsin - Fox Valley, a two-year teaching campus of the University of Wisconsin System, as a means to enhance student independent study research projects and to facilitate collaborations with researchers at other locations. We also outline some future plans and prospects.

  4. Harvey Butcher: a passion for astronomical instrumentation

    Science.gov (United States)

    Bhathal, Ragbir

    2014-11-01

    This paper covers some aspects of the scientific life of Harvey Butcher who was the Director of the Research School for Astronomy and Astrophysics at the Australian National University in Canberra from September 2007 to January 2013. He has made significant contributions to research on the evolution of galaxies, nucleosynthesis, and on the design and implementation of advanced astronomical instrumentation including LOFAR (Low Frequency Array Radio telescope). He is well known for his discovery of the Butcher-Oemler effect. Before coming to Australia he was the Director of the Netherlands Foundation for Research in Astronomy from September 1991 to January 2007. In 2005 he was awarded a Knighthood in the Order of the Netherlands Lion for contributions to interdisciplinary science, innovation and public outreach.This paper is based on an interview conducted by the author with Harvey Butcher for the National Project on Significant Australian Astronomers sponsored by the National Library of Australia. Except otherwise stated, all quotations used in this paper are from the Butcher interview which has been deposited in the Oral History Archives of the National Library.

  5. Sketching the moon an astronomical artist's guide

    CERN Document Server

    Handy, Richard; McCague, Thomas; Rix, Erika; Russell, Sally

    2012-01-01

    Soon after you begin studying the sky through your small telescope or binoculars, you will probably be encouraged by others to make sketches of what you see. Sketching is a time-honored tradition in amateur astronomy and dates back to the earliest times, when telescopes were invented. Even though we have lots of new imaging technologies nowadays, including astrophotography, most observers still use sketching to keep a record of what they see, make them better observers, and in hopes of perhaps contributing something to the body of scientific knowledge about the Moon. Some even sketch because it satisfies their artistic side. The Moon presents some unique challenges to the astronomer-artist, the Moon being so fond of tricks of the light. Sketching the Moon: An Astronomical Artist’s Guide, by five of the best lunar observer-artists working today, will guide you along your way and help you to achieve really high-quality sketches. All the major types of lunar features are covered, with a variety of sketching te...

  6. SAADA: Astronomical Databases Made Easier

    Science.gov (United States)

    Michel, L.; Nguyen, H. N.; Motch, C.

    2005-12-01

    Many astronomers wish to share datasets with their community but have not enough manpower to develop databases having the functionalities required for high-level scientific applications. The SAADA project aims at automatizing the creation and deployment process of such databases. A generic but scientifically relevant data model has been designed which allows one to build databases by providing only a limited number of product mapping rules. Databases created by SAADA rely on a relational database supporting JDBC and covered by a Java layer including a lot of generated code. Such databases can simultaneously host spectra, images, source lists and plots. Data are grouped in user defined collections whose content can be seen as one unique set per data type even if their formats differ. Datasets can be correlated one with each other using qualified links. These links help, for example, to handle the nature of a cross-identification (e.g., a distance or a likelihood) or to describe their scientific content (e.g., by associating a spectrum to a catalog entry). The SAADA query engine is based on a language well suited to the data model which can handle constraints on linked data, in addition to classical astronomical queries. These constraints can be applied on the linked objects (number, class and attributes) and/or on the link qualifier values. Databases created by SAADA are accessed through a rich WEB interface or a Java API. We are currently developing an inter-operability module implanting VO protocols.

  7. Continuous and pulsed laser high power beam combiner for additive manufacturing applications

    Science.gov (United States)

    Bassignana, Marta; Califano, Alessio; Pescarmona, Francesco; Braglia, Andrea; Perrone, Guido

    2018-02-01

    Laser-based additive manufacturing (AM) from metal powders is emerging as the new industrial revolution, although current fabrication approaches still require long mechanical post-processing to improve the final surface quality and meet the design tolerances. To overcome this limitation, the next generation machines are expected to complement laser AM with laser ablation (LA) to implement surface finishing and micro texturing already during the device growth process. With this aim, a new beam combiner to allow the real-time interchange of additive and subtractive processes using the same scanner head has been designed. Extensive tests have been carried out using a 6 kW continuous-wave laser similar to that used for the metal powder fusion and a nanosecond 100W pulsed source similar to that used for laser ablation.

  8. Ion-optical studies for a range adaptation method in ion beam therapy using a static wedge degrader combined with magnetic beam deflection

    International Nuclear Information System (INIS)

    Chaudhri, Naved; Saito, Nami; Bert, Christoph; Franczak, Bernhard; Steidl, Peter; Durante, Marco; Schardt, Dieter; Rietzel, Eike

    2010-01-01

    Fast radiological range adaptation of the ion beam is essential when target motion is mitigated by beam tracking using scanned ion beams for dose delivery. Electromagnetically controlled deflection of a well-focused ion beam on a small static wedge degrader positioned between two dipole magnets, inside the beam delivery system, has been considered as a fast range adaptation method. The principle of the range adaptation method was tested in experiments and Monte Carlo simulations for the therapy beam line at the GSI Helmholtz Centre for Heavy Ions Research. Based on the simulations, ion optical settings of beam deflection and realignment of the adapted beam were experimentally applied to the beam line, and additional tuning was manually performed. Different degrader shapes were employed for the energy adaptation. Measured and simulated beam profiles, i.e. lateral distribution and range in water at isocentre, were analysed and compared with the therapy beam values for beam scanning. Deflected beam positions of up to ±28 mm on degrader were performed which resulted in a range adaptation of up to ±15 mm water equivalence (WE). The maximum deviation between the measured adapted range from the nominal range adaptation was below 0.4 mm WE. In experiments, the width of the adapted beam at the isocentre was adjustable between 5 and 11 mm full width at half maximum. The results demonstrate the feasibility/proof of the proposed range adaptation method for beam tracking from the beam quality point of view.

  9. Improvement of Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size.

    Science.gov (United States)

    Ma, Haotong; Liu, Zejin; Jiang, Pengzhi; Xu, Xiaojun; Du, Shaojun

    2011-07-04

    We propose and demonstrate the improvement of conventional Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size. Based on the detailed study of the refractive beam shaping system, we found that the conventional Galilean beam shaper can only work well for the magnifying beam shaping. Taking the transformation of input beam with Gaussian irradiance distribution into target beam with high order Fermi-Dirac flattop profile as an example, the shaper can only work well at the condition that the size of input and target beam meets R(0) ≥ 1.3 w(0). For the improvement, the shaper is regarded as the combination of magnifying and demagnifying beam shaping system. The surface and phase distributions of the improved Galilean beam shaping system are derived based on Geometric and Fourier Optics. By using the improved Galilean beam shaper, the accurate transformation of input beam with Gaussian irradiance distribution into target beam with flattop irradiance distribution is realized. The irradiance distribution of the output beam is coincident with that of the target beam and the corresponding phase distribution is maintained. The propagation performance of the output beam is greatly improved. Studies of the influences of beam size and beam order on the improved Galilean beam shaping system show that restriction of beam size has been greatly reduced. This improvement can also be used to redistribute the input beam with complicated irradiance distribution into output beam with complicated irradiance distribution.

  10. Procesos para una Astronomía que le aporte a Colombia

    OpenAIRE

    Duque Escobar, Gonzalo

    2011-01-01

    Se ha validado el Plan Nacional de Desarrollo Tecnológico en Astronomía 2011-2030, para el Plan Estratégico 2009-2012 de la Comisión Colombiana del Espacio CCE, por el Grupo de Astronáutica, Astronomía y Medicina Aeroespacial. Esperamos que el grupo de astrónomos convocado, responsable de la investigación centrado en procesos científicos existentes y no en distractores, pueda señalar las acciones pertinentes e identificar los recursos necesarios, para hacer viable un desarrollo científico y t...

  11. Investigation of fish otoliths by combined ion beam analysis

    International Nuclear Information System (INIS)

    Huszank, R.; Simon, A.; Keresztessy, K.

    2008-01-01

    Complete text of publication follows. This work was implemented within the framework of the Hungarian Ion beam Physics Platform (http://hipp.atomki.hu/). Otoliths are small structures, 'the ear stones' of a fish, and are used to detect acceleration and orientation. They are composed of a combination of protein matrix and calcium carbonate (CaCO 3 ) forming aragonite micro crystals. They have an annually deposited layered conformation with a microstructure corresponding to the seasonal and daily increments. Trace elements, such as Sr, Zn, Fe etc., are also incorporated into the otolith from the environment and the nutrition. The elemental distribution of the otolith of fresh water fish burbot (Lota lota L.) collected in Hungary was measured with Elastic Recoil Detection Analysis (ERDA), Rutherford backscattering spectrometry (RBS) and Particle Induced X-ray Emission (PIXE) at the Nuclear Microprobe Facility of HAS ATOMKI. The spatial 3D structure of the otolith could be observed with a sub-micrometer resolution. It is confirmed that the aragonite micro-crystals are covered by an organic layer and there are some protein rich regions in the otolith, too. By applying the RBSMAST code developed for RBS on macroscopic structure, it was proven that the orientation of the needle shaped aragonite crystals is considerably different at adjacent locations in the otolith. The organic and inorganic component of the otolith could be set apart in the depth selective hydrogen and calcium maps derived by micro- ERDA and micro-RBS. Similar structural analysis could be done near the surface by combining the C, O and Ca elemental maps determined by micro-PIXE measurements. It was observed that the trace metal Zn is bound to the protein component. Acknowledgements This work was partially supported by the Hungarian OTKA Grant No. T046238 and the EU cofunded Economic Competitiveness Operative Programme (GVOP-3.2.1.-2004-04-0402/3.0)

  12. Explaining formation of Astronomical Jets using Dynamic Universe Model

    Science.gov (United States)

    Naga Parameswara Gupta, Satyavarapu

    2016-07-01

    Astronomical jets are observed from the centres of many Galaxies including our own Milkyway. The formation of such jet is explained using SITA simulations of Dynamic Universe Model. For this purpose the path traced by a test neutron is calculated and depicted using a set up of one densemass of the mass equivalent to mass of Galaxy center, 90 stars with similar masses of stars near Galaxy center, mass equivalents of 23 Globular Cluster groups, 16 Milkyway parts, Andromeda and Triangulum Galaxies at appropriate distances. Five different kinds of theoretical simulations gave positive results The path travelled by this test neutron was found to be an astronomical jet emerging from Galaxy center. This is another result from Dynamic Universe Model. It solves new problems like a. Variable Mass Rocket Trajectory Problem b. Explaining Very long baseline interferometry (VLBI) observations c. Astronomical jets observed from Milkyway Center d. Prediction of Blue shifted Galaxies e. Explaining Pioneer Anomaly f. Prediction of New Horizons satellite trajectory etc. Dynamic Universe Model never reduces to General relativity on any condition. It uses a different type of mathematics based on Newtonian physics. This mathematics used here is simple and straightforward. As there are no differential equations present in Dynamic Universe Model, the set of equations give single solution in x y z Cartesian coordinates for every point mass for every time step

  13. La astronomía: ciencia olvidada en la escuela, ¿cómo recuperarla?

    OpenAIRE

    Aranzazu Zea, Daniel Alejandro

    2013-01-01

    Resumen: Esta propuesta tiene la intención de diseñar una cartilla para la enseñanza de la astronomía en la básica primaria, principalmente en el Colegio Santo Domingo de Guzmán, ubicado en el sector de Zamora, Bello. Se inicia la propuesta debido a que en el Colegio la astronomía no es un tema de mucha importancia en la enseñanza y es muy poca la transversalización con las diferentes áreas de la institución. La astronomía es vista como algo aparte de todas las asignaturas, sin saber la gran ...

  14. Radio Recombination Lines Their Physics and Astronomical Applications

    CERN Document Server

    Gordon, MA

    2008-01-01

    Includes the history of RRL detections, the astrophysics underlying their intensities and line shapes including topics like departures from LTE and Stark broadening, the maximum possible size of an atom, and descriptions of the astronomical topics for which RRLs have proved to be effective tools.

  15. Radio astronomical interferometry and x-ray's computerized tomography

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, L F [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia

    1982-01-01

    Radio astronomical interferometry and computerized tomography are techniques of great importance for astronomy and medicine, respectively. In this paper we emphasize that both techniques are based on the same mathematical principles, and present them as an example of interaction between basic and applied science.

  16. Metal-Containing Molecules Beyond the Solar System: a Laboratory and Radio Astronomical Perspective

    Science.gov (United States)

    Ziurys, L. M.

    2010-06-01

    Although the history of interstellar molecules began around 1970, with the millimeter-wave detection of CO in the Orion Nebula, metal-containing species have been somewhat elusive for astronomical searches. Only in the past two decades have metal-bearing molecules been identified in space, starting with metal halides (NaCl, KCl, AlCl, and AlF), and then metal cyanide and isocyanide species (MgNC, MgCN, NaCN, and AlNC). Moreover, the metal-containing molecules seemed to be present in a single astronomical object: the envelope of a dying, carbon-rich star, IRC+10216. However, with improvements both in laboratory spectroscopy and telescope sensitivity, it is becoming clear that the relevance of metal-containing species in astrophysics is increasing. Metal oxide and hydroxide species, such as AlO and AlOH, have recently been identified in interstellar space. Metal-containing molecules are now being found in other astronomical sources, such as the oxygen-rich shell surrounding VY Canis Majoris, a supergiant star. These new astronomical discoveries will be presented, as well as the laboratory measurements that made them possible. New directions in rotational spectroscopy of metal-bearing molecules will also be discussed.

  17. Improving the Determination of Eastern Elongations of Planetary Satellites in the Astronomical Almanac

    Science.gov (United States)

    Rura, Christopher; Stollberg, Mark

    2018-01-01

    The Astronomical Almanac is an annual publication of the US Naval Observatory (USNO) and contains a wide variety of astronomical data used by astronomers worldwide as a general reference or for planning observations. Included in this almanac are the times of greatest eastern and northern elongations of the natural satellites of the planets, accurate to 0.1 hour UT. The production code currently used to determine elongation times generates X and Y coordinates for each satellite (16 total) in 5 second intervals. This consequentially caused very large data files, and resulted in the program devoted to determining the elongation times to be computationally intensive. To make this program more efficient, we wrote a Python program to fit a cubic spline to data generated with a 6-minute time step. This resulted in elongation times that were found to agree with those determined from the 5 second data currently used in a large number of cases and was tested for 16 satellites between 2017 and 2019. The accuracy of this program is being tested for the years past 2019 and, if no problems are found, the code will be considered for production of this section of The Astronomical Almanac.

  18. Beam steering for circular switched parasitic arrays using a combinational approach

    CSIR Research Space (South Africa)

    Mofolo, ROM

    2011-09-01

    Full Text Available In this paper, the authors present a method of electronic beam steering for circular switched parasitic array (SPA) antennas. In circular SPA antennas, one achieves azimuth beam steering by open-circuiting and short-circuiting different parasitic...

  19. Metaoptics for Spectral and Spatial Beam Manipulation

    Science.gov (United States)

    Raghu Srimathi, Indumathi

    Laser beam combining and beam shaping are two important areas with applications in optical communications, high power lasers, and atmospheric propagation studies. In this dissertation, metaoptical elements have been developed for spectral and spatial beam shaping, and multiplexing. Beams carrying orbital angular momentum (OAM), referred to as optical vortices, have unique propagation properties. Optical vortex beams carrying different topological charges are orthogonal to each other and have low inter-modal crosstalk which allows for them to be (de)multiplexed. Efficient spatial (de)multiplexing of these beams have been carried out by using diffractive optical geometrical coordinate transformation elements. The spatial beam combining technique shown here is advantageous because the efficiency of the system is not dependent on the number of OAM states being combined. The system is capable of generating coaxially propagating beams in the far-field and the beams generated can either be incoherently or coherently multiplexed with applications in power scaling and dynamic intensity profile manipulations. Spectral beam combining can also be achieved with the coordinate transformation elements. The different wavelengths emitted by fiber sources can be spatially overlapped in the far-field plane and the generated beams are Bessel-Gauss in nature with enhanced depth of focus properties. Unique system responses and beam shapes in the far-field can be realized by controlling amplitude, phase, and polarization at the micro-scale. This has been achieved by spatially varying the structural parameters at the subwavelength scale and is analogous to local modification of material properties. With advancements in fabrication technology, it is possible to control not just the lithographic process, but also the deposition process. In this work, a unique combination of spatial structure variations in conjunction with the conformal coating properties of an atomic layer deposition tool

  20. Astronomical tunings of the Oligocene-Miocene transition from Pacific Ocean Site U1334 and implications for the carbon cycle

    NARCIS (Netherlands)

    Beddow, Helen M.; Liebrand, Diederik; Wilson, Douglas S.; Hilgen, Frits J.; Sluijs, Appy; Wade, Bridget S.; Lourens, Lucas J.

    2018-01-01

    Astronomical tuning of sediment sequences requires both unambiguous cycle pattern recognition in climate proxy records and astronomical solutions, as well as independent information about the phase relationship between these two. Here we present two different astronomically tuned age models for the

  1. Support for the Astronomically Calibrated 40Ar/39Ar Age of Fish Canyon Sanidine

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Storey, Michael; Zeeden, Christian

    2011-01-01

    al. (2008) determined an astronomically calibrated 40Ar/39Ar age of 28.201 0.046 Ma (2), relative to the indirect astronomically tuned Moroccan Melilla Basin Messâdit section. Here, we provide independent verification for the Kuiper, et al. (2008) FCs age using sanidines extracted from the A1 tephra...

  2. Alexander the Great's Tomb at Siwa: The Astronomical Orientation

    Science.gov (United States)

    Papathanassiou, M.; Souvaltzis, Em.; Souvaltzi, L.; Moussas, X.

    A preliminary report on the possible astronomical orientation of the Tomb of Alexander the Great, recently found and excavated by the greek archaeologist Liana Souvaltzi. The tomb is a greek building of doric style. Its enormous dimensions make it the largest amongst the found macedonian tombs (much bigger than the tomb of Philip II, Alexander's father). The tomb faces generally south---west and its orientation could be related either to the constellation of Centaurus or to the star Canopus. The walls of the two long sides of the building have strickingly different widhts. Moreover each wall has three doors (opposite in pairs) of slightly different sizes. We examine the possibility the openings of the doors and their assymetries to be designed and constructed according to some astronomical (solar or stellar) orientations.

  3. Viewing and imaging the solar system a guide for amateur astronomers

    CERN Document Server

    Clark, Jane

    2015-01-01

    Viewing and Imaging the Solar System: A Guide for Amateur Astronomers is for those who want to develop their ability to observe and image Solar System objects, including the planets and moons, the Sun, and comets and asteroids. They might be beginners, or they may have already owned and used an astronomical telescope for a year or more. Newcomers are almost always wowed by sights such as the rings of Saturn and the moons of Jupiter, but have little idea how to find these objects for themselves (with the obvious exceptions of the Sun and Moon). They also need guidance about what equipment to use, besides a telescope. This book is written by an expert on the Solar System, who has had a lot of experience with outreach programs, which teach others how to make the most of relatively simple and low-cost equipment. That does not mean that this book is not for serious amateurs. On the contrary, it is designed to show amateur astronomers, in a relatively light-hearted—and math-free way—how to become serious.

  4. A Mythological, Philosophical and Astronomical approach of our solar system

    Science.gov (United States)

    Drivas, Sotirios; Kastanidou, Sofia

    2016-04-01

    Teaching Geography in the first Class of Gymnasium - secondary education we will focus in Solar System: Astronomical approach: Students will look and find the astronomical data of the planets, they will make comparisons between the sizes of their radius, they will find the distance from the Sun, they will search the relative motion, they will calculate the gravity on each planet, etc. Mythological approach: We will search the names and meanings of the planets based on Greek mythological origin. Philosophical approach: Regarding the philosophical approach of the "solar system" we will look and find: • Why planets are called so? • How did planets get their names? • What are the periods of Greek astronomy? • What were the astronomical instruments of ancient Greeks and who did built them? • What were the Greek philosophers and astronomers? When did they live and what did they discover? • Which method did Eratosthenes of Cyrene apply about 206B.C. to serve a real measurement of the earth's radius? • What was the relationship between science and religion in ancient Greece? Literature approach: At the end of the program students will write their opinion in subject "Having a friend from another planet" based on the book of Antoine de Saint - Exupéry "The little prince". Law approach: A jurist working in Secondary Education will visits our school and engages students in the Space Law. Artistic approach: Students will create their own posters of our planetary system. The best posters will be posted on the school bulletin board to display their work. Visit: Students and teachers will visit the Observatory of Larissa where they will see how observatory works and talk with scientists about their job. They will look through telescopes and observe the sun.

  5. Astronomical Polarimetry with the RIT Polarization Imaging Camera

    Science.gov (United States)

    Vorobiev, Dmitry V.; Ninkov, Zoran; Brock, Neal

    2018-06-01

    In the last decade, imaging polarimeters based on micropolarizer arrays have been developed for use in terrestrial remote sensing and metrology applications. Micropolarizer-based sensors are dramatically smaller and more mechanically robust than other polarimeters with similar spectral response and snapshot capability. To determine the suitability of these new polarimeters for astronomical applications, we developed the RIT Polarization Imaging Camera to investigate the performance of these devices, with a special attention to the low signal-to-noise regime. We characterized the device performance in the lab, by determining the relative throughput, efficiency, and orientation of every pixel, as a function of wavelength. Using the resulting pixel response model, we developed demodulation procedures for aperture photometry and imaging polarimetry observing modes. We found that, using the current calibration, RITPIC is capable of detecting polarization signals as small as ∼0.3%. The relative ease of data collection, calibration, and analysis provided by these sensors suggest than they may become an important tool for a number of astronomical targets.

  6. 156th Symposium of the International Astronomical Union

    CERN Document Server

    Kołaczek, Barbara

    1993-01-01

    In this review talk, I would like to report on the proper motion analysis, which has been recently carried out together with M. Soma and M. Yoshizawa: There has been a persistent demand in astronomy for accurate stellar positions and proper motions, which are represented by an inertial reference system constructed on the basis of a set of consistent astronomical constants. In the reference system the precessional constant plays a primary role. In a series of papers Fricke (1967a,b, 1977a,b) has deter­ mined the luni-solar precessional correction to Newcomb's value and the fictitious motion of the equinox, which have been adopted in the "IAU (1976) System of Astronomical Con­ stants". Based on the precessional correction and the equinoctial motion thus established, the fundamental reference system, the FK5 system (Fricke et al. 1988) for positions and proper motions, has been constructed. However, for several years geodetic VLBI (McCarthy & Luzum 1991) and LLR (Williams et at. 1991) observations have bee...

  7. Celestial delights the best astronomical events through 2020

    CERN Document Server

    Reddy, Francis

    2012-01-01

    Celestial Delights is the essential 'TV Guide' for the sky. Through extensive graphics integrated with an eight-year-long calendar of sky events, it provides a look at "don't miss" sky events, mostly for naked-eye and binocular observing. It is organized by ease of observation – lunar phases and the brighter planets come first, with solar eclipses, the aurora, and comets coming later. This third edition also includes a hefty dose of sky lore, astronomical history, and clear overviews of current science. It provides a handy reference to upcoming naked-eye events, with information broken out in clear and simple diagrams and tables that are cross-referenced against a detailed almanac for each year covered. This book puts a variety of information all in one place, presents it in a friendly way that does not require prior in-depth astronomical knowledge, and provides the context and historical background for understanding events that astronomy software or web sites lack.

  8. Visualization of Multi-mission Astronomical Data with ESASky

    Science.gov (United States)

    Baines, Deborah; Giordano, Fabrizio; Racero, Elena; Salgado, Jesús; López Martí, Belén; Merín, Bruno; Sarmiento, María-Henar; Gutiérrez, Raúl; Ortiz de Landaluce, Iñaki; León, Ignacio; de Teodoro, Pilar; González, Juan; Nieto, Sara; Segovia, Juan Carlos; Pollock, Andy; Rosa, Michael; Arviset, Christophe; Lennon, Daniel; O'Mullane, William; de Marchi, Guido

    2017-02-01

    ESASky is a science-driven discovery portal to explore the multi-wavelength sky and visualize and access multiple astronomical archive holdings. The tool is a web application that requires no prior knowledge of any of the missions involved and gives users world-wide simplified access to the highest-level science data products from multiple astronomical space-based astronomy missions plus a number of ESA source catalogs. The first public release of ESASky features interfaces for the visualization of the sky in multiple wavelengths, the visualization of query results summaries, and the visualization of observations and catalog sources for single and multiple targets. This paper describes these features within ESASky, developed to address use cases from the scientific community. The decisions regarding the visualization of large amounts of data and the technologies used were made to maximize the responsiveness of the application and to keep the tool as useful and intuitive as possible.

  9. High Charge PHIN Photo Injector at CERN with Fast Phase switching within the Bunch Train for Beam Combination

    CERN Document Server

    Csatari Divall, M; Bolzon, B; Bravin, E; Chevallay, E; Dabrowski, A; Doebert, S; Drozdy, A; Fedosseev, V; Hessler, C; Lefevre, T; Livesley, S; Losito, R; Olvegaard, M; Petrarca, M; Rabiller, A N; Egger, D; Mete, O

    2011-01-01

    The high charge PHIN photo-injector was developed within the framework of the European CARE program to provide an alternative to the drive beam thermionic gun in the CTF3 (CLIC Test Facility) at CERN. In PHIN 1908 electron bunches are delivered with bunch spacing of 1.5 GHz and 2.33 nC charge per bunch. Furthermore the drive beam generated by CTF3 requires several fast 180 deg phase-shifts with respect to the 1.5 GHz bunch repetition frequency in order to allow the beam combination scheme developed at CTF3. A total of 8 subtrains, each 140 ns long and shifted in phase with respect to each other, have to be produced with very high phase and amplitude stability. A novel fiber modulator based phase-switching technique developed on the laser system provides this phase-shift between two consecutive pulses much faster and cleaner than the base line scheme, where a thermionic electron gun and sub-harmonic bunching are used. The paper describes the fiber-based switching system and the measurements verifying the schem...

  10. Particle beam source development

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Electron beam research directed toward providing improved in-diode pinched beam sources and establishing the efficiency and feasibility for superposition of many beams progressed in three major areas. Focusing stability has been improved from large effective aspect ratio (radius/gap of emitting surface) diodes. Substantial progress toward establishing the feasibility of combining beams guided along ionized current-carrying channels has been made. Two beams have been transported and overlayed on a target. Theoretical and experimental measurements on channel formation have resulted in specifications for the capacitor bank channel initiation system for a 12-beam combination experiment on Proto II. An additional area of beam research has been the development of a small pulsed X-ray source to yield high quality flash X-radiography of pellets. A source yielding approximately 100-μm resolution of objects has been demonstrated and work continues to improve the convenience and reliability of this source. The effort to extend the capability of higher power conventional pulse power generators to accelerate ions (rather than electrons), and assess the feasibility of this technology variation for target experiments and reactors has progressed. Progress toward development of a multistage accelerator for ions with pulse power technology centered on development of a new laboratory facility and design and procurement of hardware for a five-stage test apparatus for the Pulslac concept

  11. Tribute to an Astronomer: The Work of Max Ernst on Wilhelm Tempel

    Science.gov (United States)

    Nazé, Yaël

    2016-05-01

    In 1964-1974, the German artist Max Ernst created, with the help of two friends, a series of works (books, movie, and paintings) related to the astronomer Wilhelm Tempel. Mixing actual texts by Tempel and artistic features, this series pays homage to the astronomer by recalling his life and discoveries. Moreover, the core of the project, the book Maximiliana or the Illegal Practice of Astronomy, actually depicts the way science works, making this work of art a most original tribute to a scientist.

  12. Using Modern Technologies to Capture and Share Indigenous Astronomical Knowledge

    Science.gov (United States)

    Nakata, Martin; Hamacher, Duane W.; Warren, John; Byrne, Alex; Pagnucco, Maurice; Harley, Ross; Venugopal, Srikumar; Thorpe, Kirsten; Neville, Richard; Bolt, Reuben

    2014-06-01

    Indigenous Knowledge is important for Indigenous communities across the globe and for the advancement of our general scientific knowledge. In particular, Indigenous astronomical knowledge integrates many aspects of Indigenous Knowledge, including seasonal calendars, navigation, food economics, law, ceremony, and social structure. Capturing, managing, and disseminating this knowledge in the digital environment poses a number of challenges, which we aim to address using a collaborative project emerging between experts in the higher education, library, archive and industry sectors. Using Microsoft's WorldWide Telescope and Rich Interactive Narratives technologies, we propose to develop software, media design, and archival management solutions to allow Indigenous communities to share their astronomical knowledge with the world on their terms and in a culturally sensitive manner.

  13. Available Tools and Challenges Classifying Cutting-Edge and Historical Astronomical Documents

    Science.gov (United States)

    Lagerstrom, Jill

    2015-08-01

    The STScI Library assists the Science Policies Division in evaluating and choosing scientific keywords and categories for proposals for the Hubble Space Telescope mission and the upcoming James Webb Space Telescope mission. In addition we are often faced with the question “what is the shape of the astronomical literature?” However, subject classification in astronomy in recent times has not been cultivated. This talk will address the available tools and challenges of classifying cutting-edge as well as historical astronomical documents. In at the process, we will give an overview of current and upcoming practices of subject classification in astronomy.

  14. AstroWeb -- Internet Resources for Astronomers

    Science.gov (United States)

    Jackson, R. E.; Adorf, H.-M.; Egret, D.; Heck, A.; Koekemoer, A.; Murtagh, F.; Wells, D. C.

    AstroWeb is a World Wide Web (WWW) interface to a collection of Internet accessible resources aimed at the astronomical community. The collection currently contains more than 1000 WWW, Gopher, Wide Area Information System (WAIS), Telnet, and Anonymous FTP resources, and it is still growing. AstroWeb provides the additional value-added services: categorization of each resource; descriptive paragraphs for some resources; searchable index of all resource information; 3 times daily search for ``dead'' or ``unreliable'' resources.

  15. Astronomical Image Compression Techniques Based on ACC and KLT Coder

    Directory of Open Access Journals (Sweden)

    J. Schindler

    2011-01-01

    Full Text Available This paper deals with a compression of image data in applications in astronomy. Astronomical images have typical specific properties — high grayscale bit depth, size, noise occurrence and special processing algorithms. They belong to the class of scientific images. Their processing and compression is quite different from the classical approach of multimedia image processing. The database of images from BOOTES (Burst Observer and Optical Transient Exploring System has been chosen as a source of the testing signal. BOOTES is a Czech-Spanish robotic telescope for observing AGN (active galactic nuclei and the optical transient of GRB (gamma ray bursts searching. This paper discusses an approach based on an analysis of statistical properties of image data. A comparison of two irrelevancy reduction methods is presented from a scientific (astrometric and photometric point of view. The first method is based on a statistical approach, using the Karhunen-Loeve transform (KLT with uniform quantization in the spectral domain. The second technique is derived from wavelet decomposition with adaptive selection of used prediction coefficients. Finally, the comparison of three redundancy reduction methods is discussed. Multimedia format JPEG2000 and HCOMPRESS, designed especially for astronomical images, are compared with the new Astronomical Context Coder (ACC coder based on adaptive median regression.

  16. Extracting meaning from astronomical telegrams

    Science.gov (United States)

    Graham, Matthew; Conwill, L.; Djorgovski, S. G.; Mahabal, A.; Donalek, C.; Drake, A.

    2011-01-01

    The rapidly emerging field of time domain astronomy is one of the most exciting and vibrant new research frontiers, ranging in scientific scope from studies of the Solar System to extreme relativistic astrophysics and cosmology. It is being enabled by a new generation of large synoptic digital sky surveys - LSST, PanStarrs, CRTS - that cover large areas of sky repeatedly, looking for transient objects and phenomena. One of the biggest challenges facing these is the automated classification of transient events, a process that needs machine-processible astronomical knowledge. Semantic technologies enable the formal representation of concepts and relations within a particular domain. ATELs (http://www.astronomerstelegram.org) are a commonly-used means for reporting and commenting upon new astronomical observations of transient sources (supernovae, stellar outbursts, blazar flares, etc). However, they are loose and unstructured and employ scientific natural language for description: this makes automated processing of them - a necessity within the next decade with petascale data rates - a challenge. Nevertheless they represent a potentially rich corpus of information that could lead to new and valuable insights into transient phenomena. This project lies in the cutting-edge field of astrosemantics, a branch of astroinformatics, which applies semantic technologies to astronomy. The ATELs have been used to develop an appropriate concept scheme - a representation of the information they contain - for transient astronomy using aspects of natural language processing. We demonstrate that it is possible to infer the subject of an ATEL from the vocabulary used and to identify previously unassociated reports.

  17. Combined e-beam lithography using different energies

    Czech Academy of Sciences Publication Activity Database

    Krátký, Stanislav; Kolařík, Vladimír; Horáček, Miroslav; Meluzín, Petr; Král, Stanislav

    2017-01-01

    Roč. 177, JUN (2017), s. 30-34 ISSN 0167-9317 R&D Projects: GA TA ČR TE01020233; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : grayscale e-beam lithography * mix and match process * absorbed energy density * resist sensitivity * micro-optical elements Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Nano-processes (applications on nano-scale) Impact factor: 1.806, year: 2016

  18. Strasbourg Astronomical Data Center (CDS

    Directory of Open Access Journals (Sweden)

    F Genova

    2013-01-01

    Full Text Available The Centre de Donnees astronomiques de Strasbourg (CDS, created in 1972, has been a pioneer in the dissemination of digital scientific data. Ensuring sustainability for several decades has been a major issue because science and technology evolve continuously and the data flow increases endlessly. The paper briefly describes CDS activities, major services, and its R&D strategy to take advantage of new technologies. The next frontiers for CDS are the new Web 2.0/3.0 paradigm and, at a more general level, global interoperability of astronomical on-line resources in the Virtual Observatory framework.

  19. Proceedings of the VI Serbian-Bulgarian Astronomical Conference, May 7 - 11 2008, Belgrade, Serbia

    Science.gov (United States)

    Dimitrijević, M. S.; Tsvetkov, M.; Popović, L. C.; Golev, V.

    2009-07-01

    The Sixth Serbian-Bulgarian Astronomical Conference was organized by Belgrade Astronomical Observatory, and held in Belgrade, in the building of Mathematical Faculty in Jagiceva Street, from 75th to 11th May 2008. Co-organizers were Mathematical Faculty, Astronomical Society "Rudjer Boskovic", Institute of Astronomy of the Bulgarian Academy of Sciences (BAS), Space Research Institute of BAS and Department of Astronomy of the University of Sofia. Co-chairmen of the Scientific Organizing Committee were Milan Dimitrijevic and Milcho Tsvetkov and Co-vice chairmen Luka C. Popovic and Valeri Golev. Chair of the Local Organizing Committee was Andjelka Kovacevic. The conference [was] attended by 58 participants. From Serbia were 36, from Belgrade Astronomical Observatory, Mathematical Faculty, Faculty of Sciences from Nis, Institute of Physics from Zemum, High School for pedagogues of occupational studies from Aleksinac, Faculty of Sciences from Kragujevac, Mathematical Institute of Serbian Academy of Sciences and Arts, Astronomical Society "Rudjer Boskovic" and Astronomical Society "Magellanic Cloud." From Bulgaria were present 17 colleagues: Svetlana Boeva, Ana Borisova, Momchil Dechev, Peter Duchlev, Lostadinka Koleva, Georgi Petrov, Vasil Popov, Konstatin Stavrev, Katya Ysvetkova and Milcho Tsvetkov from Institute of Astronomy of BAS, Rumen Bogdanovski and Krasmimira Ianova from Space Research Institute of BAS, Georgi R. Ivanov, Georgi Petrov and Grigor Nikolov from Department of Astronomy, Sofia University "St Kliment Ohridski,", Yavor Chapanov from Central Laboratory for Geodesy of BAS and Petya Pavlova from Technical University of Sofia, Branch Plovdiv. Besides participants from Serbia and Bulgaria the Conference [was] attended [by] Vlado Milicevic from Canada, Jan Vondrak from Czech Republic, Aytap Sezer from Turkey and Tetyana Sergeeva and Alexandr Sergeev from Ukraine. On the Conference were presented 13 invited lectures, 22 short talks and 35 posters, in total

  20. "Movie Star" Acting Strangely, Radio Astronomers Find

    Science.gov (United States)

    1999-01-01

    is the first time anyone has been able to follow the motions of gas in the atmosphere of any star other than the sun. Our results raise a lot of questions that we can't answer yet, but this will give the theorists new information to work with," said Diamond. The star, called TX Cam, in the constellation Camelopardalis, is a variable star whose brightness changes regularly over a period of 557 days. In 1997, the NRAO astronomers began a series of observations aimed at tracking gas motions in the star's outer atmosphere through a full pulsation cycle. Observing with the VLBA every two weeks, they now have accumulated 37 separate images, which they combined to make the "movie." They were able to measure the gas motions because one of the gases in the star's atmosphere, Silicon Monoxide (SiO), can act as a natural amplifier of radio signals. Such cosmic masers amplify radio emission similar to the way that a laser amplifies light emission. Regions where this maser activity occurs appear as bright spots on radio telescope images when the telescope's receivers are tuned to the specific frequency emitted by the masers. With the extremely high resolving power, or ability to see detail, of the VLBA, the astronomers were able to follow the motions of individual maser regions within the star's atmosphere. These served as tracers of overall gas motions. "Such a study only became possible when the VLBA became operational, and with the availability of computers able to handle the quantity of data produced," Kemball said. The SiO maser regions appear to form a ring around the star. The ring's diameter is greater than the distance from the Sun to Saturn, and has expanded from 10 to 20 percent over the course of the VLBA observations. "The continued expansion was our first surprise, but we've only scratched the surface of the immense amount of data our observations have produced," Diamond said. "Since we think that magnetic fields are playing a large role in how this gas behaves, we

  1. Astronomical Alignments in a Neolithic Chinese Site?

    Science.gov (United States)

    Nelson, S.; Stencel, R. E.

    1997-12-01

    In the Manchurian province of Liaoning, near 41N19' and 119E30', exist ruins of a middle Neolithic society (2500 to 4000 BC) known as the Hongshan culture. This location, called Niuheliang, is comprised of 16 locations with monumental structures scattered over 80 square kilometers of hills. Most are stone burial structures that contain jade artifacts implying wealth and power. One structure is unique in being unusually shaped and containing oversized effigies of goddess figures. This structure also has a commanding view of the surrounding landscape. The presence of decorated pottery, jade and worked copper suggests the Hongshan people were sophisticated artisans and engaged in long-distance trading. During 1997, we've conducted a course at Denver as part of our Core Curriculum program for upper division students, that has examined the astronomical and cultural aspects of the Niuheliang site, to attempt to determine whether these contemporaries of the builders of Stonehenge may have included astronomical alignments into their constructions. The preliminary result of our studies suggests that certain monuments have potential for lunar standstill observation from the "goddess temple". For updates on these results, please see our website: www.du.edu/ rstencel/core2103.html.

  2. Integrating the IA2 Astronomical Archive in the VO: The VO-Dance Engine

    Science.gov (United States)

    Molinaro, M.; Laurino, O.; Smareglia, R.

    2012-09-01

    Virtual Observatory (VO) protocols and standards are getting mature and the astronomical community asks for astrophysical data to be easily reachable. This means data centers have to intensify their efforts to provide the data they manage not only through proprietary portals and services but also through interoperable resources developed on the basis of the IVOA (International Virtual Observatory Alliance) recommendations. Here we present the work and ideas developed at the IA2 (Italian Astronomical Archive) data center hosted by the INAF-OATs (Italian Institute for Astrophysics - Trieste Astronomical Observatory) to reach this goal. The core point is the development of an application that from existing DB and archive structures can translate their content to VO compliant resources: VO-Dance (written in Java). This application, in turn, relies on a database (potentially DBMS independent) to store the translation layer information of each resource and auxiliary content (UCDs, field names, authorizations, policies, etc.). The last token is an administrative interface (currently developed using the Django python framework) to allow the data center administrators to set up and maintain resources. This deployment, platform independent, with database and administrative interface highly customizable, means the package, when stable and easily distributable, can be also used by single astronomers or groups to set up their own resources from their public datasets.

  3. The Material Culture of Nineteenth-Century Astrometry, its Circulation and Heritage at the Astronomical Observatory of Lisbon

    Science.gov (United States)

    Raposo, Pedro

    The Astronomical Observatory of Lisbon was founded in 1857 in the sequence of a controversy on stellar parallax measurements involving astronomers from the Observatory of Paris and the Observatory of Pulkovo. The development of this discussion led the contenders to recognize Lisbon as a suitable place to carry out this kind of measurements and to foster the field of stellar astronomy. Some local actors strived to keep up with this wave of international interest and establish a first-rank astronomical institution in the Portuguese capital. In order to fulfil this goal, correspondence was intensively exchanged with leading foreign astronomers and instrument makers. Besides, a Portuguese Navy officer bound to become the first director of the new institution was commissioned to visit several observatories and instrument workshops abroad, and to spend a few years in Pulkovo as a trainee astronomer. Although founded with generous financial support from the Portuguese crown and lavishly equipped and constructed, the Observatory of Lisbon was later affected by limiting budgets and a shortage of qualified personnel. Nevertheless, local efforts to improve instruments as well as observation and calculation techniques enabled its astronomers to yield important contributions to positional astronomy, especially towards the end of the nineteenth century and the beginnings of the twentieth century. The original instruments and spaces of the Observatory of Lisbon, strongly modelled on those of Pulkovo, are very well preserved, constituting an outstanding extant example of a mid-nineteenth century advanced observatory. The history they embody testifies the connectedness of the astronomical heritage worldwide.

  4. Training Young Astronomers in EPO: An Update on the AAS Astronomy Ambassadors Program

    Science.gov (United States)

    Fraknoi, A.; Fienberg, R. T.; Gurton, S.; Schmitt, A. H.; Schatz, D.; Prather, E. E.

    2014-07-01

    The American Astronomical Society, with organizations active in EPO, has launched professional-development workshops and a community of practice to help improve early-career astronomers' ability to communicate effectively. Called “Astronomy Ambassadors,” the program provides mentoring and training for participants, from advanced undergraduates to beginning faculty. By learning to implement effective EPO strategies, Ambassadors become better teachers, meeting presenters, and representatives of our science to the public and government. Because young astronomers are a more diverse group than those who now do most outreach, they help the astronomy community present a more multicultural and gender-balanced face to the public, enabling underserved groups to see themselves as scientists. Ambassadors are given a library of outreach activities and materials, including many developed by cooperating organizations such as the ASP, plus some that have been created by Andrew Fraknoi specifically for this program.

  5. Scrape-off layer-induced beam density fluctuations and their effect on beam emission spectroscopy

    Science.gov (United States)

    Moulton, D.; Marandet, Y.; Tamain, P.; Dif-Pradalier, G.

    2015-07-01

    A statistical model is presented to calculate the magnitude of beam density fluctuations generated by a turbulent scrape-off layer (SOL). It is shown that the SOL can induce neutral beam density fluctuations of a similar magnitude to the plasma density fluctuations in the core, potentially corrupting beam emission spectroscopy measurements. The degree of corruption is quantified by combining simulations of beam and plasma density fluctuations inside a simulated measurement window. A change in pitch angle from the separatrix to the measurement window is found to reduce the effect of beam fluctuations, whose largest effect is to significantly reduce the measured correlation time.

  6. POLYCOMP: Efficient and configurable compression of astronomical timelines

    Science.gov (United States)

    Tomasi, M.

    2016-07-01

    This paper describes the implementation of polycomp, a open-sourced, publicly available program for compressing one-dimensional data series in tabular format. The program is particularly suited for compressing smooth, noiseless streams of data like pointing information, as one of the algorithms it implements applies a combination of least squares polynomial fitting and discrete Chebyshev transforms that is able to achieve a compression ratio Cr up to ≈ 40 in the examples discussed in this work. This performance comes at the expense of a loss of information, whose upper bound is configured by the user. I show two areas in which the usage of polycomp is interesting. In the first example, I compress the ephemeris table of an astronomical object (Ganymede), obtaining Cr ≈ 20, with a compression error on the x , y , z coordinates smaller than 1 m. In the second example, I compress the publicly available timelines recorded by the Low Frequency Instrument (LFI), an array of microwave radiometers onboard the ESA Planck spacecraft. The compression reduces the needed storage from ∼ 6.5 TB to ≈ 0.75 TB (Cr ≈ 9), thus making them small enough to be kept in a portable hard drive.

  7. The application of artificial intelligence to astronomical scheduling problems

    Science.gov (United States)

    Johnston, Mark D.

    1992-01-01

    Efficient utilization of expensive space- and ground-based observatories is an important goal for the astronomical community; the cost of modern observing facilities is enormous, and the available observing time is much less than the demand from astronomers around the world. The complexity and variety of scheduling constraints and goals has led several groups to investigate how artificial intelligence (AI) techniques might help solve these kinds of problems. The earliest and most successful of these projects was started at Space Telescope Science Institute in 1987 and has led to the development of the Spike scheduling system to support the scheduling of Hubble Space Telescope (HST). The aim of Spike at STScI is to allocate observations to timescales of days to a week observing all scheduling constraints and maximizing preferences that help ensure that observations are made at optimal times. Spike has been in use operationally for HST since shortly after the observatory was launched in Apr. 1990. Although developed specifically for HST scheduling, Spike was carefully designed to provide a general framework for similar (activity-based) scheduling problems. In particular, the tasks to be scheduled are defined in the system in general terms, and no assumptions about the scheduling timescale are built in. The mechanisms for describing, combining, and propagating temporal and other constraints and preferences are quite general. The success of this approach has been demonstrated by the application of Spike to the scheduling of other satellite observatories: changes to the system are required only in the specific constraints that apply, and not in the framework itself. In particular, the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. This talk will discuss recent progress made in scheduling search techniques, the lessons learned from early HST operations, the application of Spike

  8. The Astronomical Instrument, So-Gahui Invented During King Sejong Period

    Science.gov (United States)

    Lee, Yong-Sam Lee; Kim, Sang-Hyuk

    2002-09-01

    So-ganui, namely small simplified armillary sphere, was invented as an astronomical instrument by Lee Cheon, Jeong Cho, Jung In-Ji under 16 years' rule of King Sejong. We collect records and observed data on So-ganui. It is designed to measure position of celestial sphere and to determine time. It also can be transformed equatorial to horizontal, and horizontal to equatorial coordinate. It can measure the right ascension, declination, altitude and azimuth. It is composed of Sayu-hwan (Four displacements), Jeokdo-hwan (Equatorial dial), Baekgak-hwan (Ring with one hundred-interval quarters), Gyuhyeong (Sighting aliadade), Yongju (Dragon-pillar) and Bu (Stand). So-ganui was used conveniently portable surveying as well as astronomical instrument and possible to determine time during day and night.

  9. Stereoscopy in Astronomical Visualizations to Support Learning at Informal Education Settings

    Science.gov (United States)

    Price, Aaron; Lee, Hee-Sun

    2015-08-01

    Stereoscopy has been used in science education for 100 years. Recent innovations in low cost technology as well as trends in the entertainment industry have made stereoscopy popular among educators and audiences alike. However, experimental studies addressing whether stereoscopy actually impacts science learning are limited. Over the last decade, we have conducted a series of quasi-experimental and experimental studies on how children and adult visitors in science museums and planetariums learned about the structure and function of highly spatial scientific objects such as galaxies, supernova, etc. We present a synthesis of the results from these studies and implications for stereoscopic visualization development. The overall finding is that the impact of stereoscopy on perceptions of scientific objects is limited when presented as static imagery. However, when presented as full motion films, a significantly positive impact was detected. To conclude, we present a set of stereoscopic design principles that can help design astronomical stereoscopic films that support deep and effective learning. Our studies cover astronomical content such as the engineering of and imagery from the Mars rovers, artistic stereoscopic imagery of nebulae and a high-resolution stereoscopic film about how astronomers measure and model the structure of our galaxy.

  10. Leslie Peltier, Amateur Astronomer and Observer Extraordinaire

    Science.gov (United States)

    Corbin, B. G.

    2003-12-01

    Leslie Copus Peltier, (Jan. 2, 1900-May 10, 1980) was called "the world's greatest non-professional astronomer" by none other than Harlow Shapley, and also referred to as the "the world's greatest living amateur astronomer". He began observing variable stars on March 1, 1918 with an observation of R. Leonis and at the time of his death had made a total of 132,123 observations of variable stars. These were reported to the AAVSO on a consecutive monthly basis stretching from 1918 to his death in 1980. As of October 2003, he was still on AAVSO's list of the top 25 observers in its history. Born on a farm near Delphos, Ohio, his parents were well read and their home was filled with books on different subjects, including nature guides. As a young man he studied the flora and fauna of the area and in 1915 began his study of the heavens with Vega being the first star he identified. After the purchase of a 2-inch spyglass, his observations of variable stars began to be noticed by professional astronomers and the AAVSO loaned him a 4-inch Mogey refractor; shortly thereafter Henry Norris Russell of Princeton loaned him via the AAVSO a 6-inch refractor, a comet seeker of short focus. He discovered 12 comets, 10 of which carry his name, and 6 novae or recurring novae. His design of the "Merry-Go-Round Observatory" was a novel approach with the whole observatory revolving around the observer while seated in his observing chair. Miami University (Ohio) later donated to him their 12-inch Clark refractor with its dome. His first book, Starlight Nights: The Adventures of a Star-Gazer, appeared in 1965. This autobiography, an ode to the joys of observing both the night sky and nature, was written in beautifully descriptive language that helped lead countless readers into astronomy. Departing from astronomy, in 1977 he published The Place on Jennings Creek. Written in the style of the 19th century naturalist, the book was devoted to his family's home, Brookhaven, and its natural

  11. HIBP primary beam detector

    International Nuclear Information System (INIS)

    Schmidt, T.W.

    1979-01-01

    A position measuring detector was fabricated for the Heavy Ion Beam Probe. The 11 cm by 50 cm detector was a combination of 15 detector wires in one direction and 63 copper bars - .635 cm by 10 cm to measure along an orthogonal axis by means of a current divider circuit. High transmission tungsten meshes provide entrance windows and suppress secondary electrons. The detector dimensions were chosen to resolve the beam position to within one beam diameter

  12. Beam profile effects on NPB [neutral particle beam] performance

    International Nuclear Information System (INIS)

    LeClaire, R.J. Jr.

    1988-03-01

    A comparison of neutral particle beam brightness for various neutral beam profiles indicates that the widely used assumption of a Gaussian profile may be misleading for collisional neutralizers. An analysis of available experimental evidence shows that lower peaks and higher tails, compared to a Gaussian beam profile, are observed out of collisional neutralizers, which implies that peak brightness is over estimated, and for a given NPB platform-to-target range, the beam current (power), dwell time or some combination of such engagement parameters would have to be altered to maintain a fixed dose on target. Based on the present analysis, this factor is nominally about 2.4 but may actually be as low as 1.8 or as high as 8. This is an important consideration in estimating NPB constellation performance in SDI engagement contexts. 2 refs., 6 figs

  13. Mingantu, 18th-Century Mongol Astronomer and Radioheliograph Namesake

    Science.gov (United States)

    Pasachoff, Jay M.

    2013-01-01

    The 18th-century Mongol astronomer Mingantu (1692-1765) has been honored with a city named after him and a nearby solar telescope array. During the IAU/Beijing, my wife and I went to the new Chinese solar radioheliograph, the Mingantu Observing Station, in Inner Mongolia, ~400 km northwest of Beijing, a project of the National Astronomical Observatories, Chinese Academy of Sciences. It currently contains 40 dishes each 4.5 m across, with a correlator from Beijing. Within a year, 60 2-m dishes will be added. We passed by the 12-century ruins of Xanadu (about 20 km north of Zhangbei) about halfway. The radioheliograph is in a plane about 1 km across, forming a three-armed spiral for interferometric solar mapping, something colleagues and I had carried out with the Jansky Very Large Array, taking advantage of the lunar occultation before annularity at the 20 May 2012 solar eclipse. In the central square of Mingantu city, a statue ~10-m high of the Mongol astronomer Mingantu appears. Its base bears a plaque ~1-m high of IAU Minor Planet Circular MPC 45750 announcing the naming in 2002 of asteroid 28242 Mingantu, discovered at a Chinese observatory in 1999. Mingantu carried out orbital calculations, mapping, mathematical work on infinite series, and other scientific research. He is honored by a modern museum behind the statue. The museum's first 40% describes Mingantu and his work, and is followed by some artifacts of the region from thousands of years ago. The final, large room contains a two-meter-square scale model of the radioheliograph, flat-screen televisions running Solar Dynamics Observatory and other contemporary visualizations, orreries and other objects, and large transparencies of NASA and other astronomical imagery. See my post at http://www.skyandtelescope.com/community/skyblog/newsblog/ specfically Astro-Sightseeing_in_Inner_Mongolia-167712965.html. We thank Yihua Yan for arranging the visit and Wang Wei (both NAOC) for accompanying us. My solar research

  14. This Month in Astronomical History: Providing Context for the Advancement of Astronomy

    Science.gov (United States)

    Wilson, Teresa

    2018-01-01

    This Month in Astronomical History is a short (~500 word) illustrated column hosted on the AAS website (https://had.aas.org/resources/astro-history). Its mission is to highlight people and events that have shaped the development of astronomy to convey a historical context to current researchers, to provide a resource for education and public outreach programs seeking to incorporate a historical perspective, and to share the excitement of astronomy with the public. Knowing how the astronomical journey has proceeded thus far allows current professionals to map where to go next and how to get there. The column charts the first part of this journey by celebrating anniversaries of births, discoveries, and deaths, and the technological advances that made discoveries possible. A new “Further Reading” section encourages readers to pursue subjects in greater depth and strengthens the articles as classroom resources.In the months preceding the 21 August 2017 solar eclipse, the column featured astronomical bodies that come between Earth and the Sun: 2004 Venus transit, the 1878 solar eclipse, and the search for the hypothetical planet Vulcan. Venusian transits were an early but technically challenging way to measure the astronomical unit, now easily done with radar-ranging. Like this year’s event, eclipse chasing and citizen science were part of the 1878 experience. Newton’s Laws seemed to require a planet inside Mercury’s orbit, but General Relativity explained the behavior of Mercury without it. Studying each of these transiting bodies has expanded our knowledge and understanding of the universe differently. Transiting extrasolar planets remain to be explored in a future column. In September, an article on the discovery of Neptune followed the discussion of the non-existent Vulcan quite naturally and expanded on the brief mention of this event in relation to the discovery of Pluto. Suggestions for additional topics are always welcome.The Dudley Observatory

  15. Novel Algorithms for Astronomical Plate Analyses Rene Hudec1,2 ...

    Indian Academy of Sciences (India)

    2Czech Technical University in Prague, Faculty of Electrical Engineering, Technicka 2,. Prague 6 ... Abstract. Powerful computers and dedicated software allow effective data mining and scientific analyses in astronomical plate archives. We.

  16. Unveiling galaxies the role of images in astronomical discovery

    CERN Document Server

    Roy, Jean-René

    2017-01-01

    Galaxies are known as the building blocks of the universe, but arriving at this understanding has been a thousand-year odyssey. This journey is told through the lens of the evolving use of images as investigative tools. Initial chapters explore how early insights developed in line with new methods of scientific imaging, particularly photography. The volume then explores the impact of optical, radio and x-ray imaging techniques. The final part of the story discusses the importance of atlases of galaxies; how astronomers organised images in ways that educated, promoted ideas and pushed for new knowledge. Images that created confusion as well as advanced knowledge are included to demonstrate the challenges faced by astronomers and the long road to understanding galaxies. By examining developments in imaging, this text places the study of galaxies in its broader historical context, contributing to both astronomy and the history of science.

  17. Radio and Optical Telescopes for School Students and Professional Astronomers

    Science.gov (United States)

    Hosmer, Laura; Langston, G.; Heatherly, S.; Towner, A. P.; Ford, J.; Simon, R. S.; White, S.; O'Neil, K. L.; Haipslip, J.; Reichart, D.

    2013-01-01

    The NRAO 20m telescope is now on-line as a part of UNC's Skynet worldwide telescope network. The NRAO is completing integration of radio astronomy tools with the Skynet web interface. We present the web interface and astronomy projects that allow students and astronomers from all over the country to become Radio Astronomers. The 20 meter radio telescope at NRAO in Green Bank, WV is dedicated to public education and also is part of an experiment in public funding for astronomy. The telescope has a fantastic new web-based interface, with priority queuing, accommodating priority for paying customers and enabling free use of otherwise unused time. This revival included many software and hardware improvements including automatic calibration and improved time integration resulting in improved data processing, and a new ultra high resolution spectrometer. This new spectrometer is optimized for very narrow spectral lines, which will allow astronomers to study complex molecules and very cold regions of space in remarkable detail. In accordance with focusing on broader impacts, many public outreach and high school education activities have been completed with many confirmed future activities. The 20 meter is now a fully automated, powerful tool capable of professional grade results available to anyone in the world. Drop by our poster and try out real-time telescope control!

  18. The beam matching system between the preaccelerator and the main accelerator of the Van-de-Graaff cyclotron combination VICKSI

    International Nuclear Information System (INIS)

    Hinderer, G.

    1975-01-01

    The beam matching between the two accelerators of the heavy-ion accelerator combination VICKSI (Van de Graaff Isochron-Cyclotron Kombination fuer schwere Ionen) which is under construction at the Hahn-Meitner-Institut Berlin is investigated. The main elements are a combined gas- and carbon foil-stripper to increase the charge state of the ions and two clystron type high frequency bunchers for matching the longitudinal phase space. In order to minimize the enlargement of phase space due to energy- and angle straggling in the foil stripper a focus in all three dimensions is generated at this position. (orig./WL) [de

  19. Managing distributed software development in the Virtual Astronomical Observatory

    Science.gov (United States)

    Evans, Janet D.; Plante, Raymond L.; Boneventura, Nina; Busko, Ivo; Cresitello-Dittmar, Mark; D'Abrusco, Raffaele; Doe, Stephen; Ebert, Rick; Laurino, Omar; Pevunova, Olga; Refsdal, Brian; Thomas, Brian

    2012-09-01

    The U.S. Virtual Astronomical Observatory (VAO) is a product-driven organization that provides new scientific research capabilities to the astronomical community. Software development for the VAO follows a lightweight framework that guides development of science applications and infrastructure. Challenges to be overcome include distributed development teams, part-time efforts, and highly constrained schedules. We describe the process we followed to conquer these challenges while developing Iris, the VAO application for analysis of 1-D astronomical spectral energy distributions (SEDs). Iris was successfully built and released in less than a year with a team distributed across four institutions. The project followed existing International Virtual Observatory Alliance inter-operability standards for spectral data and contributed a SED library as a by-product of the project. We emphasize lessons learned that will be folded into future development efforts. In our experience, a well-defined process that provides guidelines to ensure the project is cohesive and stays on track is key to success. Internal product deliveries with a planned test and feedback loop are critical. Release candidates are measured against use cases established early in the process, and provide the opportunity to assess priorities and make course corrections during development. Also key is the participation of a stakeholder such as a lead scientist who manages the technical questions, advises on priorities, and is actively involved as a lead tester. Finally, frequent scheduled communications (for example a bi-weekly tele-conference) assure issues are resolved quickly and the team is working toward a common vision.

  20. A SURVEY OF ASTRONOMICAL RESEARCH: A BASELINE FOR ASTRONOMICAL DEVELOPMENT

    International Nuclear Information System (INIS)

    Ribeiro, V. A. R. M.; Russo, P.; Cárdenas-Avendaño, A.

    2013-01-01

    Measuring scientific development is a difficult task. Different metrics have been put forward to evaluate scientific development; in this paper we explore a metric that uses the number of peer-reviewed, and when available non-peer-reviewed, research articles as an indicator of development in the field of astronomy. We analyzed the available publication record, using the Smithsonian Astrophysical Observatory/NASA Astrophysics Database System, by country affiliation in the time span between 1950 and 2011 for countries with a gross national income of less than 14,365 USD in 2010. This represents 149 countries. We propose that this metric identifies countries in ''astronomical development'' with a culture of research publishing. We also propose that for a country to develop in astronomy, it should invest in outside expert visits, send its staff abroad to study, and establish a culture of scientific publishing. Furthermore, we propose that this paper may be used as a baseline to measure the success of major international projects, such as the International Year of Astronomy 2009

  1. Combination of peptide receptor radionuclide therapy with fractionated external beam radiotherapy for treatment of advanced symptomatic meningioma

    International Nuclear Information System (INIS)

    Kreissl, Michael C; Flentje, Michael; Sweeney, Reinhart A; Hänscheid, Heribert; Löhr, Mario; Verburg, Frederik A; Schiller, Markus; Lassmann, Michael; Reiners, Christoph; Samnick, Samuel S; Buck, Andreas K

    2012-01-01

    External beam radiotherapy (EBRT) is the treatment of choice for irresectable meningioma. Due to the strong expression of somatostatin receptors, peptide receptor radionuclide therapy (PRRT) has been used in advanced cases. We assessed the feasibility and tolerability of a combination of both treatment modalities in advanced symptomatic meningioma. 10 patients with irresectable meningioma were treated with PRRT ( 177 Lu-DOTA0,Tyr3 octreotate or - DOTA0,Tyr3 octreotide) followed by external beam radiotherapy (EBRT). EBRT performed after PRRT was continued over 5–6 weeks in IMRT technique (median dose: 53.0 Gy). All patients were assessed morphologically and by positron emission tomography (PET) before therapy and were restaged after 3–6 months. Side effects were evaluated according to CTCAE 4.0. Median tumor dose achieved by PRRT was 7.2 Gy. During PRRT and EBRT, no side effects > CTCAE grade 2 were noted. All patients reported stabilization or improvement of tumor-associated symptoms, no morphologic tumor progression was observed in MR-imaging (median follow-up: 13.4 months). The median pre-therapeutic SUV max in the meningiomas was 14.2 (range: 4.3–68.7). All patients with a second PET after combined PRRT + EBRT showed an increase in SUV max (median: 37%; range: 15%–46%) to a median value of 23.7 (range: 8.0–119.0; 7 patients) while PET-estimated volume generally decreased to 81 ± 21% of the initial volume. The combination of PRRT and EBRT is feasible and well tolerated. This approach represents an attractive strategy for the treatment of recurring or progressive symptomatic meningioma, which should be further evaluated

  2. astroplan: Observation Planning for Astronomers

    Science.gov (United States)

    Morris, Brett

    2016-03-01

    Astroplan is an observation planning package for astronomers. It is an astropy-affiliated package which began as a Google Summer of Code project. Astroplan facilitates convenient calculation of common observational quantities, like target altitudes and azimuths, airmasses, and rise/set times. Astroplan also computes when targets are observable given various extensible observing constraints, for example: within a range of airmasses or altitudes, or at a given separation from the Moon. Astroplan is taught in the undergraduate programming for astronomy class, and enables observational Pre- MAP projects at the University of Washington. In the near future, we plan to implement scheduling capabilities in astroplan on top of the constraints framework.

  3. Visualizing Astronomical Data with Blender

    Science.gov (United States)

    Kent, Brian R.

    2014-01-01

    We present methods for using the 3D graphics program Blender in the visualization of astronomical data. The software's forte for animating 3D data lends itself well to use in astronomy. The Blender graphical user interface and Python scripting capabilities can be utilized in the generation of models for data cubes, catalogs, simulations, and surface maps. We review methods for data import, 2D and 3D voxel texture applications, animations, camera movement, and composite renders. Rendering times can be improved by using graphic processing units (GPUs). A number of examples are shown using the software features most applicable to various kinds of data paradigms in astronomy.

  4. A fast beam-ion instability

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, G V [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    The ionization of residual gas by an electron beam in an accelerator generates ions that can resonantly couple to the beam through a wave propagating in the beam-ion system. Results of the study of a beam-ion instability are presented for a multi-bunch train taking into account the decoherence of ion oscillations due to the ion frequency spread and spatial variation of the ion frequency. It is shown that the combination of both effects can substantially reduce the growth rate of the instability. (author)

  5. Muon Beam Studies in the H4 beam line and the Gamma Irradiation Facility (GIF++)

    CERN Document Server

    Margraf, Rachel; CERN. Geneva. EN Department

    2017-01-01

    In this report, I summarize my work of detailed study and optimization of the muon beam configuration of H4 beam line in SPS North Area. Using Monte-Carlo simulations, I studied the properties and behavior of the muon beam in combination with the field of the large, spectrometer “ GOLIATH” magnet at -1.5, -1.0, 0, 1.0 and 1.5 Tesla, which is shown to affect the central x position of the muon beam that is delivered to the Gamma Irradiation Facility (GIF++). I also studied the muon beam for different configurations of the two XTDV beam dumps upstream of GIF++ in the H4 beam line. I will also discuss my role in mapping the magnetic field of the GOLIATH magnet in the H4 beam line.

  6. The Educational Activities of the Astronomical Society of the Pacific.

    Science.gov (United States)

    Fraknoi, Andrew

    1981-01-01

    Describes educational activities of the Astronomical Society of the Pacific including learning packets on various astronomy concepts, Morrison lectures, newspaper columns, teacher workshops, cosponsoring astronomy oriented lectures, and providing speakers for various groups. (DS)

  7. Removal of diclofenac from surface water by electron beam irradiation combined with a biological aerated filter

    Science.gov (United States)

    He, Shijun; Wang, Jianlong; Ye, Longfei; Zhang, Youxue; Yu, Jiang

    2014-12-01

    The degradation of DCF was investigated in aqueous solution by using electron beam (EB) technology. When the initial concentration was between 10 and 40 mg/L, almost 100% of the DCF was degraded at a dose of 0.5 kGy. However, only about 6.5% of DCF was mineralized even at 2 kGy according to total organic carbon (TOC) measurements. A combined process of EB and biological aerated filter (BAF) was therefore developed to enhance the treatment of DCF contaminated surface water. The effluent quality of combined process was substantially improved by EB pretreatment due to the degradation of DCF and related intermediates. Both irradiation and biological treatment reduced the toxicity of the treated water. The experimental results showed that EB is effective for removing DCF from artificial aqueous solution and real surface water.

  8. A Combined Approach to Cartographic Displacement for Buildings Based on Skeleton and Improved Elastic Beam Algorithm

    Science.gov (United States)

    Liu, Yuangang; Guo, Qingsheng; Sun, Yageng; Ma, Xiaoya

    2014-01-01

    Scale reduction from source to target maps inevitably leads to conflicts of map symbols in cartography and geographic information systems (GIS). Displacement is one of the most important map generalization operators and it can be used to resolve the problems that arise from conflict among two or more map objects. In this paper, we propose a combined approach based on constraint Delaunay triangulation (CDT) skeleton and improved elastic beam algorithm for automated building displacement. In this approach, map data sets are first partitioned. Then the displacement operation is conducted in each partition as a cyclic and iterative process of conflict detection and resolution. In the iteration, the skeleton of the gap spaces is extracted using CDT. It then serves as an enhanced data model to detect conflicts and construct the proximity graph. Then, the proximity graph is adjusted using local grouping information. Under the action of forces derived from the detected conflicts, the proximity graph is deformed using the improved elastic beam algorithm. In this way, buildings are displaced to find an optimal compromise between related cartographic constraints. To validate this approach, two topographic map data sets (i.e., urban and suburban areas) were tested. The results were reasonable with respect to each constraint when the density of the map was not extremely high. In summary, the improvements include (1) an automated parameter-setting method for elastic beams, (2) explicit enforcement regarding the positional accuracy constraint, added by introducing drag forces, (3) preservation of local building groups through displacement over an adjusted proximity graph, and (4) an iterative strategy that is more likely to resolve the proximity conflicts than the one used in the existing elastic beam algorithm. PMID:25470727

  9. Astronomical timescale calibration for the Permian-Triassic boundary transition interval from global correlation of cyclic marine sequences

    Science.gov (United States)

    Huang, C.; Hinnov, L. A.; Tong, J.; Chen, Z.

    2011-12-01

    The mass extinctions near the Permian-Triassic boundary (PTB) resulted in the greatest dying of life on Earth. The cause of this catastrophe remains enigmatic. High-resolution chronology is crucial to understanding the recorded pattern of biotic evolution and possible causes for the extinctions. Magnetic susceptibility (MS) data from Shangsi, South China shows evidence for astronomical forcing through the PTB interval, with strong 405-kyr cycling. This allows development of an astrochronology for the PTB interval based on the 405-kyr orbital eccentricity metronome that has been proposed for the Mesozoic timescale. Radioisotope dating combined with the 405-kyr tuned MS series from Shangsi shows that the 405-kyr-cycle predominates throughout the PTB interval. In the Permian segment, ~100-kyr cyclicity dominates, and the 100-kyr-scale MS maxima correlate with high-amplitude precession-scale MS variations. Minima in the ~1.5-Myr, 405-kyr and ~100-kyr cycles converge at 252.6 Ma, approximately 200 kyr before the onset of the main mass extinction near the PTB. In the Triassic aftermath, the recorded astronomical signal is different, with predominant 405-kyr cycles and loss of 100 kyr cyclicity, and appearance of ~33 kyr (obliquity scale) cyclicity; 100-kyr cyclicity strengthens again 2 Myr later. This pattern indicates a change in the response of the depositional environment (or magnetic susceptibility) to astronomical forcing before and after the mass extinction interval. The astrochronology interpolates the timescale between the radioisotopically determined absolute dates; this facilitates estimation of ages for specific events in the PTB crisis, including magnetic reversals, biozone boundaries, and the mass extinctions. An estimated ~700 kyr duration for the Mass Extinction Interval (MEI) at Shangsi based on the 405-kyr tuning is supported by eccentricity-tuned estimates of three other sections in China (Meishan, Huangzhishan, and Heping), and two Alpine sections

  10. Strategies for personnel sustainable lifecycle at astronomical observatories and local industry development

    Science.gov (United States)

    Bendek, Eduardo A.; Leatherbee, Michael; Smith, Heather; Strappa, Valentina; Zinnecker, Hans; Perez, Mario

    2014-08-01

    Specialized manpower required to efficiently operate world-class observatories requires large investments in time and resources to train personnel in very specific areas of engineering. Isolation and distances to mayor cities pose a challenge to retain motivated and qualified personnel on the mountain. This paper presents strategies that we believe may be effective for retaining this specific know-how in the astronomy field; while at the same time develop a local support industry for observatory operations and astronomical instrumentation development. For this study we choose Chile as a research setting because it will host more than 60% of the world's ground based astronomical infrastructure by the end of the decade, and because the country has an underdeveloped industry for astronomy services. We identify the astronomical infrastructure that exists in the country as well as the major research groups and industrial players. We further identify the needs of observatories that could be outsourced to the local economy. As a result, we suggest spin-off opportunities that can be started by former observatory employees and therefore retaining the knowhow of experienced people that decide to leave on-site jobs. We also identify tools to facilitate this process such as the creation of a centralized repository of local capabilities and observatory needs, as well as exchange programs within astronomical instrumentation groups. We believe that these strategies will contribute to a positive work environment at the observatories, reduce the operation and development costs, and develop a new industry for the host country.

  11. Partnerships between Professional and Amateur Astronomers: A Shift in Research Paradigm

    Science.gov (United States)

    Yanamandra-Fisher, Padma A.; Orton, G. S.; Casquinha, P.; Coffelt, A.; Delcroix, M.; Go, C.; Hueso, R.; Jaeschke, W.; Kardasis, M.; Kraaikamp, E.; Morales, E.; Peach, D.; Rogers, J.; Wesley, A.; Willems, F.; Wilson, T.

    2012-10-01

    "Citizen Astronomy" can be thought of as the paradigm shift transforming the nature of observational astronomy. The night sky, with all its delights and mysteries, enthralls professional and amateur astronomers, and students who will form the next generation of scientists and engineers. These students are matriculating in an era of reduced funding for core competencies such as science, technology, mathematics and engineering (STEM) sciences and an ongoing general decline in these sciences. How then do we re-generate their interest and engage students while we perform cutting-edge planetary science in a fiscally constrained environment? One promising solution is to promote the emerging partnerships between professional and dedicated proficient amateur astronomers, that rely on creating a niche for long timeline of multispectral remote sensing. In the past decade, it is the collective observations and their analyses by the ever-increasing global network of amateur astronomers that has discovered interesting phenomena and provided the reference backdrop for observations by professional ground-based professional astronomers and spacecraft missions. We shall focus on our collaboration or "Citizen Astronomy: Jupiter and Saturn" for the past five years and illustrate the strong synergy between the two groups that has produced new scientific results. With the active inclusion and use of emerging social media (Facebook, Twitter, etc.), the near daily communication and updates (via email, Skype, Facebook) between the two groups is becoming a powerful tool for ground-based remote sensing. However, what is sorely lacking in this paradigm is the inclusion of teachers and students and, therefore, its inclusion in the secondary and tertiary classrooms. We will provide various scenarios to address this issue, and emphasize the various aspects of STEM learning/teaching that is necessary for students and teachers - all that can be performed at low cost; and showcase some of our

  12. American Brachytherapy Society Task Group Report: Combination of brachytherapy and external beam radiation for high-risk prostate cancer.

    Science.gov (United States)

    Spratt, Daniel E; Soni, Payal D; McLaughlin, Patrick W; Merrick, Gregory S; Stock, Richard G; Blasko, John C; Zelefsky, Michael J

    To review outcomes for high-risk prostate cancer treated with combined modality radiation therapy (CMRT) utilizing external beam radiation therapy (EBRT) with a brachytherapy boost. The available literature for high-risk prostate cancer treated with combined modality radiation therapy was reviewed and summarized. At this time, the literature suggests that the majority of high-risk cancers are curable with multimodal treatment. Several large retrospective studies and three prospective randomized trials comparing CMRT to dose-escalated EBRT have demonstrated superior biochemical control with CMRT. Longer followup of the randomized trials will be required to determine if this will translate to a benefit in metastasis-free survival, disease-specific survival, and overall survival. Although greater toxicity has been associated with CMRT compared to EBRT, recent studies suggest that technological advances that allow better definition and sparing of critical adjacent structures as well as increasing experience with brachytherapy have improved implant quality and the toxicity profile of brachytherapy. The role of androgen deprivation therapy is well established in the external beam literature for high-risk disease, but there is controversy regarding the applicability of these data in the setting of dose escalation. At this time, there is not sufficient evidence for the omission of androgen deprivation therapy with dose escalation in this population. Comparisons with surgery remain limited by differences in patient selection, but the evidence would suggest better disease control with CMRT compared to surgery alone. Due to a series of technological advances, modern combination series have demonstrated unparalleled rates of disease control in the high-risk population. Given the evidence from recent randomized trials, combination therapy may become the standard of care for high-risk cancers. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All

  13. The NASA Astrophysics Data System Free Access to the Astronomical Literature On-Line and through Email

    CERN Document Server

    Eichhorn, G; Grant, C S; Kurtz, M J; Murray, S S

    2001-01-01

    The Astrophysics Data System (ADS) provides access to the astronomical literature through the World Wide Web. It is a NASA funded project and access to all the ADS services is free to everybody world-wide.The ADS Abstract Service allows the searching of four databases with abstracts in Astronomy, Instrumentation, Physics/Geophysics, and the LANL Preprints with a total of over 2.2 million references. The system also provides access to reference and citation information, links to on-line data, electronic journal articles, and other on-line information. The ADS Article Service contains the articles for most of the astronomical literature back to volume 1. It contains the scanned pages of all the major journals (Astrophysical Journal, Astronomical Journal, Astronomy & Astrophysics, Monthly Notices of the Royal Astronomical Society, and Solar Physics), as well as most smaller journals back to volume 1. The ADS can be accessed through any web browser without signup or login. Alternatively an email interface is ...

  14. Professional- Amateur Astronomer Partnerships in Scientific Research: The Re-emergence of Jupiter's 5-Micron Hot Spots

    Science.gov (United States)

    Yanamandra-Fisher, P. A.

    2012-12-01

    The night sky, with all its delights and mysteries, enthrall professional and amateur astronomers alike. The discrete data sets acquired by professional astronomers via their approved observing programs at various national facilities are supplemented by the nearly daily observations of the same celestial object by amateur astronomers around the world. The emerging partnerships between professional and dedicated amateur astronomers rely on creating a niche for long timeline of multispectral remote sensing. "Citizen Astronomy" can be thought of as the paradigm shift transforming the nature of observational astronomy. In the past decade, it is the collective observations and their analyses by the ever-increasing global network of amateur astronomers that has discovered interesting phenomena and provided the reference backdrop for observations by ground-based professional astronomers and spacecraft missions. We shall present results from our collaborations to observe the recent global upheaval on Jupiter for the past five years and illustrate the strong synergy between the two groups. Global upheavals on Jupiter involve changes in the albedo of entire axisymmetric regions, lasting several years, with the last two occurring in 1989 and 2006. Against this backdrop of planetary-scale changes, discrete features such as the Great Red Spot (GRS), and other vortices exhibit changes on shorter spatial- and time-scales. One set of features we are currently tracking is the variability of the discrete equatorial 5-μm hot spots, semi-evenly spaced in longitude and confined to a narrow latitude band centered at 6.5°N (southern edge of the North Equatorial Belt, NEB), abundant in Voyager images (1980-1981). Tantalizingly similar patterns were observed in the visible (bright plumes and blue-gray regions), where reflectivity in the red is anti-correlated with 5-μm thermal radiance. During the recent NEB fade (2011 - early 2012), however, these otherwise ubiquitous features were

  15. World's fastest and most sensitive astronomical camera

    Science.gov (United States)

    2009-06-01

    The next generation of instruments for ground-based telescopes took a leap forward with the development of a new ultra-fast camera that can take 1500 finely exposed images per second even when observing extremely faint objects. The first 240x240 pixel images with the world's fastest high precision faint light camera were obtained through a collaborative effort between ESO and three French laboratories from the French Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers (CNRS/INSU). Cameras such as this are key components of the next generation of adaptive optics instruments of Europe's ground-based astronomy flagship facility, the ESO Very Large Telescope (VLT). ESO PR Photo 22a/09 The CCD220 detector ESO PR Photo 22b/09 The OCam camera ESO PR Video 22a/09 OCam images "The performance of this breakthrough camera is without an equivalent anywhere in the world. The camera will enable great leaps forward in many areas of the study of the Universe," says Norbert Hubin, head of the Adaptive Optics department at ESO. OCam will be part of the second-generation VLT instrument SPHERE. To be installed in 2011, SPHERE will take images of giant exoplanets orbiting nearby stars. A fast camera such as this is needed as an essential component for the modern adaptive optics instruments used on the largest ground-based telescopes. Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets, but frustrates astronomers, since it blurs the finest details of the images. Adaptive optics techniques overcome this major drawback, so that ground-based telescopes can produce images that are as sharp as if taken from space. Adaptive optics is based on real-time corrections computed from images obtained by a special camera working at very high speeds. Nowadays, this means many hundreds of times each second. The new generation instruments require these

  16. Astronomical technology - the past and the future. Karl Schwarzschild Award Lecture 2015

    Science.gov (United States)

    Appenzeller, I.

    2016-07-01

    The past fifty years have been an epoch of impressive progress in the field of astronomical technology. Practically all the technical tools, which we use today, have been developed during that time span. While the first half of this period has been dominated by advances in the detector technologies, during the past two decades innovative telescope concepts have been developed for practically all wavelength ranges where astronomical observations are possible. Further important advances can be expected in the next few decades. Based on the experience of the past, some of the main sources of technological progress can be identified.

  17. From research institution to astronomical museum: a history of the Stockholm Observatory

    Science.gov (United States)

    Yaskell, Steven Haywood

    2008-07-01

    The Royal Swedish Academy of Sciences (RSAS) (or Kungliga Vetenskapsakademien [KvA] in Swedish) founded 1739, opened its first permanent building, an astronomical and meteorological observatory, on 20 September 1753. This was situated at Brunkebergsåsen (formerly Observatorie Lunden, or Observatory Hill), on a high terrace in a northern quarter of Stockholm. This historic building is still sometimes called Gamla Observatoriet (the Old Observatory) and now is formally the Observatory Museum. This paper reviews the history of the Observatory from its function as a scientific astronomical institution to its relatively-recent relegation to museum status.

  18. Astronomers Anonymous Getting Help with the Puzzles and Pitfalls of Practical Astronomy

    CERN Document Server

    Ringwood, Steve

    2010-01-01

    In this entertaining parody of letters to a typical “lonely hearts” columnist, real-life expert and long-time astronomy columnist Steve Ringwood presents a sweeping overview of common questions and problems practical and amateur astronomers face, compiled from Ringwood's own experiences in the world of astronomy. His screamingly funny comments will keep you laughing out loud throughout, so be careful of reading this book in public! Written especially for troubled astronomers, but also accessible to anyone with an interest in space or astronomy, readers will easily recognize the difficulties they face and enjoy the humor being directed at them and their science.

  19. Beam dynamics

    International Nuclear Information System (INIS)

    Abell, D; Adelmann, A; Amundson, J; Dragt, A; Mottershead, C; Neri, F; Pogorelov, I; Qiang, J; Ryne, R; Shalf, J; Siegerist, C; Spentzouris, P; Stern, E; Venturini, M; Walstrom, P

    2006-01-01

    We describe some of the accomplishments of the Beam Dynamics portion of the SciDAC Accelerator Science and Technology project. During the course of the project, our beam dynamics software has evolved from the era of different codes for each physical effect to the era of hybrid codes combining start-of-the-art implementations for multiple physical effects to the beginning of the era of true multi-physics frameworks. We describe some of the infrastructure that has been developed over the course of the project and advanced features of the most recent developments, the interplay betwen beam studies and simulations and applications to current machines at Fermilab. Finally we discuss current and future plans for simulations of the International Linear Collider

  20. Nikolay N. Donitch - the astronomer

    Science.gov (United States)

    Gaina, Alex B.; Volyanskaya, M. Yu.

    1999-08-01

    The article is devoted to milestones of life and scientific activity of the eminent astronomer Nikolay Nikolaevich Donitch (Nicolae N. Donici) (1874-1956), a graduate from the Odessa (Novorossiski) university. He was a wellknown expert in the field of reseacrh of objects of Solar system. A person highly cultured, which built the first in Bessarabia (actually a part of the Republic of Moldova) observatory. He was borne in Kishinev (Chisinau) in a nobles family of notable Moldavian landersmen. N.D. graduated from the Richelieu lyceym in Odessa and afterwards, in 1897, graduated from the Odessa (Novorossiysky) University. A.K. Kononovich (1850-1910)headed the chair of astronomy and the Observatory at that time - a foremost authority in the field of astrophysics and stellar astronomy. Many of his disciples became eminent scientists of their time. N. Donitch was among them. N.D. worked till 1918 at Pulkovo Observatory and became a master in the field of studying of such phenomena as solar and lunar eclipses. To observe the Sun N.D., could afford to design and manufacture a spectroheliograph, the first in Russia, with the assistance of a famous Odessa mechanic J.A. Timchenko. This instrument enabled him to obtain topquality photos of the Sun's surface and prominences. It was mounted together with coelostat in the private observatory of N.D. , built in the village Staryie Doubossary in 1908. Besides the heliograoph, the observatory was equiped with a five inch refractor-equatorial with numerous instruments for various observations. Of the other instruments should be mentioned : "a comet triplet" - an instrument consisting of guiding refractor, a photographic camera and a spectrograph with an objective prism. N.D. was lucky enough to observe rare astronomical phenomena. He observed the transit of Mercury through the disk of the Sun on November 14, 1907 and showed the athmosphere absence around this planet, observed the Halley's comet in 1910, the bright Pons-Winneke comet

  1. The High Road to Astronomical Photometric Precision : Differential Photometry

    NARCIS (Netherlands)

    Milone, E. F.; Pel, Jan Willem

    2011-01-01

    Differential photometry offers the most precise method for measuring the brightness of astronomical objects. We attempt to demonstrate why this should be the case, and then describe how well it has been done through a review of the application of differential techniques from the earliest visual

  2. Penn State astronomical image processing system

    International Nuclear Information System (INIS)

    Truax, R.J.; Nousek, J.A.; Feigelson, E.D.; Lonsdale, C.J.

    1987-01-01

    The needs of modern astronomy for image processing set demanding standards in simultaneously requiring fast computation speed, high-quality graphic display, large data storage, and interactive response. An innovative image processing system was designed, integrated, and used; it is based on a supermicro architecture which is tailored specifically for astronomy, which provides a highly cost-effective alternative to the traditional minicomputer installation. The paper describes the design rationale, equipment selection, and software developed to allow other astronomers with similar needs to benefit from the present experience. 9 references

  3. Far-infrared spectrophotometer for astronomical observations

    Science.gov (United States)

    Moseley, H.; Silverberg, R. F.

    1981-01-01

    A liquid-helium-cooled far infrared spectrophotometer was built and used to make low resolution observations of the continua of several kinds of astronomical objects using the Kuiper Airborne Observatory. This instrument fills a gap in both sensitivity to continuum sources and spectral resolution between the broadband photometers with lambda/Delta lambda approximately 1 and spectrometers with lambda/Delta lambda greater than 50. While designed primarily to study planetary nebulae, the instrument permits study of the shape of the continua of many weak sources which cannot easily be observed with high resolution systems.

  4. Le Verrier magnificent and detestable astronomer

    CERN Document Server

    Lequeux, James

    2013-01-01

    Le Verrier was a superb scientist. His discovery of Neptune in 1846 made him the most famous astronomer of his time. He produced a complete theory of the motions of the planets which served as a basis for planetary ephemeris for a full century. Doing this, he discovered an anomaly in the motion of Mercury which later became the first proof of General Relativity. He also founded European meteorology. However his arrogance and bad temper created many enemies, and he was even fired from his position of Director of the Paris Observatory.

  5. The astronomical revolution Copernicus, Kepler, Borelli

    CERN Document Server

    Koyre, Alexandre

    2013-01-01

    Originally published in English in 1973. This volume traces the development of the revolution which so drastically altered man's view of the universe in the sixteenth and seventeenth centuries. The ""astronomical revolution"" was accomplished in three stages, each linked with the work of one man. With Copernicus, the sun became the centre of the universe. With Kepler, celestial dynamics replaced the kinematics of circles and spheres used by Copernicus. With Borelli the unification of celestial and terrestrial physics was completed by abandonment of the circle in favour the straight line to inf

  6. The Astronomical Pulse of Global Extinction Events

    Directory of Open Access Journals (Sweden)

    David F.V. Lewis

    2006-01-01

    Full Text Available The linkage between astronomical cycles and the periodicity of mass extinctions is reviewed and discussed. In particular, the apparent 26 million year cycle of global extinctions may be related to the motion of the solar system around the galaxy, especially perpendicular to the galactic plane. The potential relevance of Milankovitch cycles is also explored in the light of current evidence for the possible causes of extinction events over a geological timescale.

  7. Astrophysics is easy! an introduction for the amateur astronomer

    CERN Document Server

    Inglis, Mike

    2007-01-01

    With some justification, many amateur astronomers believe astrophysics is a very difficult subject, requiring at least degree-level mathematics to understand it properly. This isn’t necessarily the case. Mike Inglis' quantitative approach to the subject explains all aspects of astrophysics in simple terms and cuts through the incomprehensible mathematics with which this fascinating subject is all too often associated. Astrophysics is Easy! begins by looking at the H-R diagram and other basic tools of astrophysics, then ranges across the universe, from a first look at the interstellar medium and nebulae, through the birth, evolution and death of stars, to the physics of galaxies and clusters of galaxies. A unique feature of this book is the way that Dr. Inglis lists example objects for practical observation at every stage, so that practical astronomers can go and look at the object or objects under discussion – using only easily-available commercial amateur equipment.

  8. Calibration of an advanced photon source linac beam position monitor used for positron position measurement of a beam containing both positrons and electrons

    International Nuclear Information System (INIS)

    Sereno, Nicholas S.

    1998-01-01

    The Advanced Photon Source (APS) linac beam position monitors can be used to monitor the position of a beam containing both positrons and electrons. To accomplish this task, both the signal at the bunching frequency of 2856 MHz and the signal at 2x2856 MHz are acquired and processed for each stripline. The positron beam position is obtained by forming a linear combination of both 2856 and 5712 MHz signals for each stripline and then performing the standard difference over sum computation. The required linear combination of the 2856 and 5712 MHz signals depends on the electrical calibration of each stripline/cable combination. In this paper, the calibration constants for both 2856 MHz and 5712 MHz signals for each stripline are determined using a pure beam of electrons. The calibration constants are obtained by measuring the 2856 and 5712 MHz stripline signals at various electron beam currents and positions. Finally, the calibration constants measured using electrons are used to determine positron beam position for the mixed beam case

  9. Combined analyses of ion beam synthesized layers in porous silicon

    International Nuclear Information System (INIS)

    Ramos, A.R.; Silva, M.F. da; Silva, M.R. da; Soares, J.C.; Paszti, F.; Horvath, Z.E.; Vazsonyi, E.; Conde, O.

    2001-01-01

    High dose ion implantation was used to form polycrystalline silicide films on porous silicon with different native concentrations of light impurities (C and O). Porous silicon layers several μm thick were implanted with 170 KeV Cr + ions to fluences of 3x10'1 7 ions/cm 2 both at room temperature and 450 o C. Similar samples were implanted with 100 keV Co + ions to fluences of 2x10 17 ions/cm 2 at room temperature and 350 o C and 450 o C. The formed silicide compounds were studied by Rutherford backscattering spectrometry, elastic recoil detection, glancing incidence X-ray diffraction, and four point-probe sheet resistance measurements. Selected Co implanted samples were analysed by cross-section transmission electron microscopy. Results show that the light impurities were partially expelled from the forming silicide layer. Combining cross-section transmission electron microscopy with ion beam methods it was possible to show that, in the implanted region, the porous structure collapses and densities during implantation, but the underlying porous silicon remains intact. The layer structure as well as the quality and type of the formed silicide, were found to depend on the original impurity level, implantation temperature, and annealing. (author)

  10. Calibration of the Gamma-RAy Polarimeter Experiment (GRAPE) at a polarized hard X-ray beam

    International Nuclear Information System (INIS)

    Bloser, P.F.; Legere, J.S.; McConnell, M.L.; Macri, J.R.; Bancroft, C.M.; Connor, T.P.; Ryan, J.M.

    2009-01-01

    The Gamma-RAy Polarimeter Experiment (GRAPE) is a concept for an astronomical hard X-ray Compton polarimeter operating in the 50-500 keV energy band. The instrument has been optimized for wide-field polarization measurements of transient outbursts from energetic astrophysical objects such as gamma-ray bursts and solar flares. The GRAPE instrument is composed of identical modules, each of which consists of an array of scintillator elements read out by a multi-anode photomultiplier tube (MAPMT). Incident photons Compton scatter in plastic scintillator elements and are subsequently absorbed in inorganic scintillator elements; a net polarization signal is revealed by a characteristic asymmetry in the azimuthal scattering angles. We have constructed a prototype GRAPE module containing a single CsI(Na) calorimeter element, at the center of the MAPMT, surrounded by 60 plastic elements. The prototype has been combined with custom readout electronics and software to create a complete 'engineering model' of the GRAPE instrument. This engineering model has been calibrated using a nearly 100% polarized hard X-ray beam at the Advanced Photon Source at Argonne National Laboratory. We find modulation factors of 0.46±0.06 and 0.48±0.03 at 69.5 and 129.5 keV, respectively, in good agreement with Monte Carlo simulations. In this paper we present details of the beam test, data analysis, and simulations, and discuss the implications of our results for the further development of the GRAPE concept.

  11. Determination of the D/T fuel mixture using two-photon laser induced fluorescence in combination with neutral beam injection

    International Nuclear Information System (INIS)

    Voslamber, D.; Mandl, W.

    1997-08-01

    Doppler-free two-photon induced fluorescence in the Lyman-α lines of H, D and T has been suggested previously as a local and isotope-selective diagnostic of the intrinsic neutral hydrogen densities in magnetically confined fusion plasmas. In the present paper it is shown that the diagnostic potential of this method is significantly increased if it is combined with neutral atom beams whose characteristics are such that efficient production of thermal ground state atoms via charge exchange reactions is achieved. Considerably deeper plasma regions than just the plasma edge can thus be probed and local, isotope-selective information is obtained on the more relevant ions rather than on the neutrals. Additional diagnostic possibilities, e.g. those arising from the spectroscopic investigation of the beam particles themselves, are also discussed. (author)

  12. Astronomical Data in Undergraduate courses

    Science.gov (United States)

    Clarkson, William I.; Swift, Carrie; Hughes, Kelli; Burke, Christopher J. F.; Burgess, Colin C.; Elrod, Aunna V.; Howard, Brittany; Stahl, Lucas; Matzke, David; Bord, Donald J.

    2016-06-01

    We present status and plans for our ongoing efforts to develop data analysis and problem-solving skills through Undergraduate Astronomy instruction. While our initiatives were developed with UM-Dearborn’s student body primarily in mind, they should be applicable for a wide range of institution and of student demographics. We focus here on two strands of our effort.Firstly, students in our Introductory Astronomy (ASTR 130) general-education course now perform several “Data Investigations”, in which they interrogate the Hubble Legacy Archive to illustrate important course concepts. This was motivated in part by the realization that typical public data archives now include tools to interrogate the observations that are sufficiently accessible that introductory astronomy students can use them to perform real science, albeit mostly at a descriptive level. We are continuing to refine these investigations, and, most importantly, to critically assess their effectiveness in terms of the student learning outcomes we wish to achieve. This work is supported by grant HST-EO-13758, provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.Secondly, at the advanced-undergraduate level, students taking courses in our Astronomy minor are encouraged to gain early experience in techniques of astronomical observation and analysis that are used by professionals. We present two example projects from the Fall 2015 iteration of our upper-division course ASTR330 (The Cosmic Distance Ladder), one involving Solar System measurements, the second producing calibrated aperture photometry. For both projects students conducted, analysed, and interpreted observations using our 0.4m campus telescope, and used many of the same analysis tools as professional astronomers. This work is supported partly from a Research Initiation and Seed grant from the

  13. PPARC: Grid technology helps astronomers keep pace with the Universe

    CERN Multimedia

    2003-01-01

    "Intelligent Agent" computer programs are roaming the Internet and watching the skies. These programs, using Grid computing technology, will help astronomers detect some of the most dramatic events in the universe, such as massive supernova explosions (1 page).

  14. Laboratory measurements and astronomical search for the HSO radical.

    Science.gov (United States)

    Cazzoli, Gabriele; Lattanzi, Valerio; Kirsch, Till; Gauss, Jürgen; Tercero, Belén; Cernicharo, José; Puzzarini, Cristina

    2016-07-01

    Despite the fact that many sulfur-bearing molecules, ranging from simple diatomic species up to astronomical complex molecules, have been detected in the interstellar medium, the sulfur chemistry in space is largely unknown and a depletion in the abundance of S-containing species has been observed in the cold, dense interstellar medium (ISM). The chemical form of the missing sulfur has yet to be identified. For these reasons, in view of the fact that there is a large abundance of triatomic species harbouring sulfur, oxygen, and hydrogen, we decided to investigate the HSO radical in the laboratory to try its astronomical detection. High-resolution measurements of the rotational spectrum of the HSO radical were carried out within a frequency range well up into the THz region. Subsequently, a rigorous search for HSO in the two most studied high-mass star-forming regions, Orion KL and Sagittarius (Sgr) B2, and in the cold dark cloud Barnard 1 (B1-b) was performed. The frequency coverage and the spectral resolution of our measurements allowed us to improve and extend the existing dataset of spectroscopic parameters, thus enabling accurate frequency predictions up to the THz range. These were used to derive the synthetic spectrum of HSO, by means of the MADEX code, according to the physical parameters of the astronomical source under consideration. For all sources investigated, the lack of HSO lines above the confusion limit of the data is evident. The derived upper limit to the abundance of HSO clearly indicates that this molecule does not achieve significant abundances in either the gas phase or in the ice mantles of dust grains.

  15. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    Science.gov (United States)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  16. Astronomical Plate Archives and Binary Blazars Studies

    Czech Academy of Sciences Publication Activity Database

    Hudec, René

    2011-01-01

    Roč. 32, 1-2 (2011), s. 91-95 ISSN 0250-6335. [Conference on Multiwavelength Variability of Blazars. Guangzhou, 22,09,2010-24,09,2010] R&D Projects: GA ČR GA205/08/1207 Grant - others:GA ČR(CZ) GA102/09/0997; MŠMT(CZ) ME09027 Institutional research plan: CEZ:AV0Z10030501 Keywords : astronomical plates * plate archives archives * binary blazars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.400, year: 2011

  17. Turbulence characterization by studying laser beam wandering in a differential tracking motion setup

    Science.gov (United States)

    Pérez, Darío G.; Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Garavaglia, Mario

    2009-09-01

    The Differential Image Motion Monitor (DIMM) is a standard and widely used instrument for astronomical seeing measurements. The seeing values are estimated from the variance of the differential image motion over two equal small pupils some distance apart. The twin pupils are usually cut in a mask on the entrance pupil of the telescope. As a differential method, it has the advantage of being immune to tracking errors, eliminating erratic motion of the telescope. The Differential Laser Tracking Motion (DLTM) is introduced here inspired by the same idea. Two identical laser beams are propagated through a path of air in turbulent motion, at the end of it their wander is registered by two position sensitive detectors-at a count of 800 samples per second. Time series generated from the difference of the pair of centroid laser beam coordinates is then analyzed using the multifractal detrended fluctuation analysis. Measurements were performed at the laboratory with synthetic turbulence: changing the relative separation of the beams for different turbulent regimes. The dependence, with respect to these parameters, and the robustness of our estimators is compared with the non-differential method. This method is an improvement with respect to previous approaches that study the beam wandering.

  18. Old Star's "Rebirth" Gives Astronomers Surprises

    Science.gov (United States)

    2005-04-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope are taking advantage of a once-in-a-lifetime opportunity to watch an old star suddenly stir back into new activity after coming to the end of its normal life. Their surprising results have forced them to change their ideas of how such an old, white dwarf star can re-ignite its nuclear furnace for one final blast of energy. Sakurai's Object Radio/Optical Images of Sakurai's Object: Color image shows nebula ejected thousands of years ago. Contours indicate radio emission. Inset is Hubble Space Telescope image, with contours indicating radio emission; this inset shows just the central part of the region. CREDIT: Hajduk et al., NRAO/AUI/NSF, ESO, StSci, NASA Computer simulations had predicted a series of events that would follow such a re-ignition of fusion reactions, but the star didn't follow the script -- events moved 100 times more quickly than the simulations predicted. "We've now produced a new theoretical model of how this process works, and the VLA observations have provided the first evidence supporting our new model," said Albert Zijlstra, of the University of Manchester in the United Kingdom. Zijlstra and his colleagues presented their findings in the April 8 issue of the journal Science. The astronomers studied a star known as V4334 Sgr, in the constellation Sagittarius. It is better known as "Sakurai's Object," after Japanese amateur astronomer Yukio Sakurai, who discovered it on February 20, 1996, when it suddenly burst into new brightness. At first, astronomers thought the outburst was a common nova explosion, but further study showed that Sakurai's Object was anything but common. The star is an old white dwarf that had run out of hydrogen fuel for nuclear fusion reactions in its core. Astronomers believe that some such stars can undergo a final burst of fusion in a shell of helium that surrounds a core of heavier nuclei such as carbon and oxygen. However, the

  19. Astronomical Heritage and Aboriginal People: Conflicts and Possibilities

    Science.gov (United States)

    López, Alejandro Martín

    2016-10-01

    In this presentation we address issues relating to the astronomical heritage of contemporary aboriginal groups and other minorities. We deal specially with intangible astronomical heritage and its particularities. Also, we study (from ethnographic experience with Aboriginal groups, Creoles and Europeans in the Argentine Chaco) the conflicts referring to the different ways in which the natives' knowledge and practice are categorized by the natives themselves, by scientists, state politicians, professional artists and NGOs. Furthermore, we address several cases that illustrate these kinds of conflicts. We aim to analyze the complexities of patrimonial policies when they are applied to practices and representations of contemporary communities involved in power relations with national states and the global system. The essentialization of identities, the folklorization of representations and practices, and the fossilization of aboriginal peoples are some of the risks of applying the label ``cultural heritage'' without a careful consideration of each specific case. In particular we suggest possible ways in which the international scientific community could collaborate to improve the agenda of national states instead of reproducing colonial prejudices. In this way, we aim to contribute to the promotion of respect for ethnic and religious minorities.

  20. Beam-intensity limitations in linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1981-01-01

    Recent demand for high-intensity beams of various particles has renewed interest in the investigation of beam current and beam quality limits in linear RF and induction accelerators and beam-transport channels. Previous theoretical work is reviewed, and new work on beam matching and stability is outlined. There is a real need for extending the theory to handle the time evolution of beam emittance; some present work toward this goal is described. The role of physical constraints in channel intensity limitation is emphasized. Work on optimizing channel performance, particularly at low particle velocities, has resulted in major technological advances. The opportunities for combining such channels into arrays are discussed. 50 references

  1. Zinc sulfide and zinc selenide immersion gratings for astronomical high-resolution spectroscopy: evaluation of internal attenuation of bulk materials in the short near-infrared region

    Science.gov (United States)

    Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Yasui, Chikako; Kuzmenko, Paul J.; Tokoro, Hitoshi; Terada, Hiroshi

    2009-08-01

    We measure the internal attenuation of bulk crystals of chemical vapor deposition zinc selenide (CVD-ZnS), chemical vapor deposition zinc sulfide (CVD-ZnSe), Si, and GaAs in the short near-infrared (sNIR) region to evaluate the possibility of astronomical immersion gratings with those high refractive index materials. We confirm that multispectral grade CVD-ZnS and CVD-ZnSe are best suited for the immersion gratings, with the smallest internal attenuation of αatt=0.01 to 0.03 cm-1 among the major candidates. The measured attenuation is roughly in proportion to λ-2, suggesting it is dominated by bulk scattering due to the polycrystalline grains rather than by absorption. The total transmittance in the immersion grating is estimated to be at least >80%, even for the spectral resolution of R=300,000. Two potential problems, the scattered light by the bulk material and the degradation of the spectral resolution due to the gradient illumination in the diffracted beam, are investigated and found to be negligible for usual astronomical applications. Since the remaining problem, the difficulty of cutting grooves on CVD-ZnS and CVD-ZnSe, has recently been overcome by the nanoprecision fly-cutting technique, ZnS and ZnSe immersion gratings for astronomy can be technically realized.

  2. Databases of Publications and Observations as a Part of the Crimean Astronomical Virtual Observatory

    Directory of Open Access Journals (Sweden)

    Shlyapnikov A.

    2015-12-01

    Full Text Available We describe the main principles of formation of databases (DBs with information about astronomical objects and their physical characteristics derived from observations obtained at the Crimean Astrophysical Observatory (CrAO and published in the “Izvestiya of the CrAO” and elsewhere. Emphasis is placed on the DBs missing from the most complete global library of catalogs and data tables, VizieR (supported by the Center of Astronomical Data, Strasbourg. We specially consider the problem of forming a digital archive of observational data obtained at the CrAO as an interactive DB related to database objects and publications. We present examples of all our DBs as elements integrated into the Crimean Astronomical Virtual Observatory. We illustrate the work with the CrAO DBs using tools of the International Virtual Observatory: Aladin, VOPlot, VOSpec, in conjunction with the VizieR and Simbad DBs.

  3. Astronomers Travel in Time and Space with Light

    Science.gov (United States)

    Mather, John C.

    2016-01-01

    This is an excerpt of John Mather's in a book titled: INSPIRED BY LIGHT, Reflections from the International Year of Light 2015. It was produced in January 2016 by SPIE, the European Physical Society (EPS), and The Abdus Salam International Centre for Theoretical Physics (ICTP) to commemorate the International Year of Light and Light-based Technologies 2015. The excerpt discusses how astronomers use light.

  4. Resolving fringe ambiguities of a wide-field Michelson interferometer using visibility measurements of a noncollimated laser beam.

    Science.gov (United States)

    Wan, Xiaoke; Wang, Ji; Ge, Jian

    2009-09-10

    An actively stabilized interferometer with a constant optical path difference is a key element in long-term astronomical observation, and resolving interference fringe ambiguities is important to produce high-precision results for the long term. We report a simple and reliable method of resolving fringe ambiguities of a wide-field Michelson interferometer by measuring the interference visibility of a noncollimated single-frequency laser beam. Theoretical analysis shows that the interference visibility is sensitive to a subfringe phase shift, and a wide range of beam arrangements is suitable for real implementation. In an experimental demonstration, a Michelson interferometer has an optical path difference of 7 mm and a converging monitoring beam has a numerical aperture of 0.045 with an incidental angle of 17 degrees. The resolution of visibility measurements corresponds to approximately 1/16 fringe in the interferometer phase shift. The fringe ambiguity-free region is extended over a range of approximately 100 fringes.

  5. Progress on the New York State Observatory: a new 12-meter astronomical telescope

    Science.gov (United States)

    Sebring, T.; O'Dea, C.; Baum, S.; Teran, J.; Loewen, N.; Stutzki, C.; Egerman, R.; Bonomi, G.

    2014-07-01

    Over the past two years, the New York Astronomical Corporation (NYAC), the business arm of the Astronomical Society of New York (ASNY), has continued planning and technical studies toward construction of a 12-meter class optical telescope for the use of all New York universities and research institutions. Four significant technical studies have been performed investigating design opportunities for the facility, the dome, the telescope optics, and the telescope mount. The studies were funded by NYAC and performed by companies who have provided these subsystems for large astronomical telescopes in the past. In each case, innovative and cost effective approaches were identified, developed, analyzed, and initial cost estimates developed. As a group, the studies show promise that this telescope could be built at historically low prices. As the project continues forward, NYAC intends to broaden the collaboration, pursue funding, to continue to develop the telescope and instrument designs, and to further define the scientific mission. The vision of a historically large telescope dedicated to all New York institutions continues to grow and find new adherents.

  6. IYL Blog: Astronomers travel in time and space with light

    Science.gov (United States)

    Mather, John C.

    2015-01-01

    also using light to find out whether we are alone in the universe. The Kepler observatory showed that thousands of stars blink a little when their orbiting planets pass between us and them, and other observatories use light to measure the wobble of stars as their planets pull on them. Eventually, we will find out whether planets like Earth have atmospheres like Earth's too - with water, carbon dioxide, oxygen, methane, and other gases that would be evidence of photosynthetic life. I think in a few decades we will have evidence that some planets do have life, and it will be done using light for remote chemical analysis. Also, astronomers at the SETI project are using light (long wavelength light we can pick up with radio telescopes) to look for signals from intelligent civilizations. That's a harder project because we don't know what to look for. But if we wanted to send signals all the way across the Milky Way, we could do it with laser beams, and if somebody over there knew what to look for, he or she could decode the message. On with the search! Dr. John C. Mather is a Senior Astrophysicist and is the Senior Project Scientist for the James Webb Space Telescope at NASA's Goddard Space Flight Center in Greenbelt, MD. His research centers on infrared astronomy and cosmology. With the Cosmic Background Explorer (COBE) team, he showed that the cosmic microwave background radiation has a blackbody spectrum within 50 parts per million, confirming the expanding universe model (aka the Big Bang Theory) to extraordinary accuracy, and initiating the study of cosmology as a precision science. The COBE team also made the first map of the hot and cold spots in the background radiation. The COBE maps have been confirmed and improved by two succeeding space missions, the Wilkinson Microwave Anisotropy Probe (WMAP, built by GSFC with Princeton University), and the Planck mission built by ESA. Based on these maps, astronomers have now developed a "standard model" of cosmology and have

  7. ISO Results Presented at International Astronomical Union

    Science.gov (United States)

    1997-08-01

    . Astronomers can now combine ISO's results with observations of the same object and others like it, at sub-millimetre radio wavelengths, to build up a detailed picture of the earliest stages of star formation. Ward-Thompson says: "Our fellow-astronomers thought we had no chance of detecting pre-stellar cores with any instruments available today. Now that we've done it, with the radio telescopes on the ground and with ISO in space, a new chapter in the study of star formation can begin. Already our results contradict the theory that a pre-stellar core should spin rapidly. It doesn't. In addition, our observations have shown us that the manner in which a newly-forming star first collapses is different from that which was previously predicted." Looking for the origin of planets Our immediate cosmic mother was the Solar Nebula, the cloud of gas and dust that supposedly swirled around the Sun at its birth about 4.5 billion years ago. Gravity flattened the gas and dust into a disk, like a giant version of the rings of Saturn. Stony and icy grains of dust congealed to make the Sun's family of planets, including the Earth. The comets are relics of the construction of the Solar System, and ISO has investigated their chemical composition. Yet the concept of planet-making in the dusty disk of the Solar Nebula was just a theory until the advent of infrared space astronomy. One of the more time-intensive programmes of ISO deals with the existence of disks of dust particles around normal stars. The Sun still has a disk, visible as the Zodiacal Light seen close to the horizon after sunset in spring or before sunrise in autumn. The dust is, however, too sparse to be detected, if one were looking for a similar feature in the surroundings of another star. Therefore it came as a big surprise when ISO's predecessor, the Dutch-US-UK Infrared Astronomical Satellite (1983), detected similar dust disks around a few nearby stars, notably Vega and Beta Pictoris, with much more material than the Sun

  8. International astronomical remote present observation on IRC.

    Science.gov (United States)

    Ji, Kaifan; Cao, Wenda; Song, Qian

    On March 6 - 7, 1997, an international astronomical remote present observation (RPO) was made on Internet Relay Chat (IRC) for the first time. Seven groups in four countries, China, United States, Canada and Great Britain, used the 1 meter telescope of Yunnan observatory together by the way of remote present observation. Within minutes, images were "On-line" by FTP, and every one was able to get them by anonymous ftp and discuss them on IRC from different widely separated sites.

  9. Improving 4D plan quality for PBS-based liver tumour treatments by combining online image guided beam gating with rescanning

    Science.gov (United States)

    Zhang, Ye; Knopf, Antje-Christin; Weber, Damien Charles; Lomax, Antony John

    2015-10-01

    Pencil beam scanned (PBS) proton therapy has many advantages over conventional radiotherapy, but its effectiveness for treating mobile tumours remains questionable. Gating dose delivery to the breathing pattern is a well-developed method in conventional radiotherapy for mitigating tumour-motion, but its clinical efficiency for PBS proton therapy is not yet well documented. In this study, the dosimetric benefits and the treatment efficiency of beam gating for PBS proton therapy has been comprehensively evaluated. A series of dedicated 4D dose calculations (4DDC) have been performed on 9 different 4DCT(MRI) liver data sets, which give realistic 4DCT extracting motion information from 4DMRI. The value of 4DCT(MRI) is its capability of providing not only patient geometries and deformable breathing characteristics, but also includes variations in the breathing patterns between breathing cycles. In order to monitor target motion and derive a gating signal, we simulate time-resolved beams’ eye view (BEV) x-ray images as an online motion surrogate. 4DDCs have been performed using three amplitude-based gating window sizes (10/5/3 mm) with motion surrogates derived from either pre-implanted fiducial markers or the diaphragm. In addition, gating has also been simulated in combination with up to 19 times rescanning using either volumetric or layered approaches. The quality of the resulting 4DDC plans has been quantified in terms of the plan homogeneity index (HI), total treatment time and duty cycle. Results show that neither beam gating nor rescanning alone can fully retrieve the plan homogeneity of the static reference plan. Especially for variable breathing patterns, reductions of the effective duty cycle to as low as 10% have been observed with the smallest gating rescanning window (3 mm), implying that gating on its own for such cases would result in much longer treatment times. In addition, when rescanning is applied on its own, large differences between volumetric

  10. Astronomically speaking a dictionary of quotations on astronomy and physics

    CERN Document Server

    Gaither, CC

    2003-01-01

    To understand the history, accomplishments, failures, and meanings of astronomy requires a knowledge of what has been said about astronomy by philosophers, novelists, playwrights, poets, scientists, and laymen. With this in mind, Astronomically Speaking: A Dictionary of Quotations on Astronomy and Physics serves as a guide to what has been said about astronomy through the ages. Containing approximately 1,550 quotations and numerous illustrations, this resource is the largest compilation of astronomy and astrophysics quotations published to date.Devoted to astronomy and the closely related areas of mathematics and physics, this resource helps form an accurate picture of these interconnected disciplines. It is designed as an aid for general readers with little knowledge of astronomy who are interested in astronomical topics. Students can use the book to increase their understanding of the complexity and richness that exists in scientific disciplines. In addition, experienced scientists will find it as a handy s...

  11. In the Jungle of Astronomical On--line Data Services

    Science.gov (United States)

    Egret, D.

    The author tried to survive in the jungle of astronomical on--line data services. In order to find efficient answers to common scientific data retrieval requests, he had to collect many pieces of information, in order to formulate typical user scenarios, and try them against a number of different data bases, catalogue services, or information systems. He discovered soon how frustrating treasure coffers may be when their keys are not available, but he realized also that nice widgets and gadgets are of no help when the information is not there. And, before long, he knew he would have to navigate through several systems because no one was yet offering a general answer to all his questions. I will present examples of common user scenarios and show how they were tested against a number of services. I will propose some elements of classification which should help the end-user to evaluate how adequate the different services may be for providing satisfying answers to specific queries. For that, many aspects of the user interaction will be considered: documentation, access, query formulation, functionalities, qualification of the data, overall efficiency, etc. I will also suggest possible improvements to the present situation: the first of them being to encourage system managers to increase collaboration between one another, for the benefit of the whole astronomical community. The subjective review I will present, is based on publicly available astronomical on--line services from the U.S. and from Europe, most of which (excepting the newcomers) were described in ``Databases and On-Line Data in Astronomy", (Albrecht & Egret, eds, 1991): this includes databases (such as NED and Simbad ), catalog services ( StarCat , DIRA , XCatScan , etc.), and information systems ( ADS and ESIS ).

  12. The Red Rectangle: An Astronomical Example of Mach Bands?

    Science.gov (United States)

    Brecher, K.

    2005-12-01

    Recently, the Hubble Space Telescope (HST) produced spectacular images of the "Red Rectangle". This appears to be a binary star system undergoing recurrent mass loss episodes. The image-processed HST photographs display distinctive diagonal lightness enhancements. Some of the visual appearance undoubtedly arises from actual variations in the luminosity distribution of the light of the nebula itself, i.e., due to limb brightening. Psychophysical enhancement similar to the Vasarely or pyramid effect also seems to be involved in the visual impression conveyed by the HST images. This effect is related to Mach bands (as well as to the Chevreul and Craik-O'Brien-Cornsweet effects). The effect can be produced by stacking concentric squares (or other geometrical figures such as rectangles or hexagons) of linearly increasing or decreasing size and lightness, one on top of another. We have constructed controllable Flash applets of this effect as part of the NSF supported "Project LITE: Light Inquiry Through Experiments". They can be found in the vision section of the LITE web site at http://lite.bu.edu. Mach band effects have previously been seen in medical x-ray images. Here we report for the first time the possibility that such effects play a role in the interpretation of astronomical images. Specifically, we examine to what extent the visual impressions of the Red Rectangle and other extended astronomical objects are purely physical (photometric) in origin and to what degree they are enhanced by psychophysical processes. To help assess the relative physical and psychophysical contributions to the perceived lightness effects, we have made use of a center-surround (Difference of Gaussians) filter we developed for MatLab. We conclude that local (lateral inhibition) and longer range human visual perception effects probably do contribute to the lightness features seen in astronomical objects like the Red Rectangle. Project LITE is supported by NSF Grant # DUE-0125992.

  13. Sky as a bridge: Astronomical interactions in Eurasia through the ages

    Science.gov (United States)

    Kochhar, Rajesh Kumar

    2015-08-01

    Since the sky constituted common heritage for the whole humankind, astronomical thoughts, prescriptions, apparatus and tools developed in a particular cultural area were monitored by others and selectively assimilated. The fact that an artificial unit of time, the seven-day week, came to be used in the whole world is a powerful illustration of the world-wide transmission of astronomical ideas.Historical facts here are interpreted in a framework, called Cultural Copernicanism which asserts that no cultural, geographical or ethnic area can be deemed to be a benchmark to be used to evaluate and judge others. This framework manifestly rejects Euro-centrism as well as anti-Euro-centrism. At the same time, astronomy is viewed as a multi-stage intellectual cumulus where each stage builds on the previous one and carries the subject forward.Post-Alexandrian developments brought about a synthesis between classical Greek intellectual tradition and the accomplishments of the still older Egyptian and Mesopotamian civilizations. The Greco-Babylonian inputs in turn vitalized Indian astronomy which along with cosmological ideas, travelled to East Asia (China, Korea, Japan in that order) and Tibet as part of the Buddhist package. Indian astronomical theory was noticed in the area now called the Middle East, but did not significantly influence local developments. The fact that the popular English term algorithm comes from a place name in Central Asia and that Europe designated Indian-origin numerals as Arabic numerals tells us about the role Muslim Cultural Zone has historically played in the intellectual development of Europe.In an earlier era, transmission of astronomical knowledge and ideas in general occurred in an un-self-conscious manner. In relatively recent times, however, considerations of origins, borrowings and priorities were introduced as part of colonial historiography. Thus, in the early 19th century, when Urdu school text books were being prepared under British

  14. Ultra-Broadband Silicon-Wire Polarization Beam Combiner/Splitter Based on a Wavelength Insensitive Coupler With a Point-Symmetrical Configuration

    OpenAIRE

    Uematsu, Takui; Kitayama, Tetsuya; Ishizaka, Yuhei; Saitoh, Kunimasa

    2014-01-01

    An ultrabroadband silicon wire polarization beam combiner/splitter (PBCS) based on a wavelength-insensitive coupler is proposed. The proposed PBCS consists of three identical directional couplers and two identical delay lines. We design the PBCS using the 3-D finite element method. Numerical simulations show that the proposed PBCS can achieve the transmittance of more than 90% over a wide wavelength range from 1450 to 1650 nm for both TE and TM polarized modes.

  15. Constructing Concept Schemes From Astronomical Telegrams Via Natural Language Clustering

    Science.gov (United States)

    Graham, Matthew; Zhang, M.; Djorgovski, S. G.; Donalek, C.; Drake, A. J.; Mahabal, A.

    2012-01-01

    The rapidly emerging field of time domain astronomy is one of the most exciting and vibrant new research frontiers, ranging in scientific scope from studies of the Solar System to extreme relativistic astrophysics and cosmology. It is being enabled by a new generation of large synoptic digital sky surveys - LSST, PanStarrs, CRTS - that cover large areas of sky repeatedly, looking for transient objects and phenomena. One of the biggest challenges facing these is the automated classification of transient events, a process that needs machine-processible astronomical knowledge. Semantic technologies enable the formal representation of concepts and relations within a particular domain. ATELs (http://www.astronomerstelegram.org) are a commonly-used means for reporting and commenting upon new astronomical observations of transient sources (supernovae, stellar outbursts, blazar flares, etc). However, they are loose and unstructured and employ scientific natural language for description: this makes automated processing of them - a necessity within the next decade with petascale data rates - a challenge. Nevertheless they represent a potentially rich corpus of information that could lead to new and valuable insights into transient phenomena. This project lies in the cutting-edge field of astrosemantics, a branch of astroinformatics, which applies semantic technologies to astronomy. The ATELs have been used to develop an appropriate concept scheme - a representation of the information they contain - for transient astronomy using hierarchical clustering of processed natural language. This allows us to automatically organize ATELs based on the vocabulary used. We conclude that we can use simple algorithms to process and extract meaning from astronomical textual data.

  16. "Zhizneopisanie" astronomia N. N. Pavlova, im samim napisannoe %t Astronomer N. N. Pavlov's autobiography

    Science.gov (United States)

    Zhukov, V. Yu.

    This document called by the author "the life story" is written for the human resources department. It is a document intended for the official departmental purposes. At the same time there is something facinating about this documentary testimony about the epoch and the man. This short autobiography describes the early years of the Pulkovo astronomer N. N. Pavlov that fell on hard times of the Civil War. In the years between the World War I and the World War II he was awarded Mendeleyev Prize. He defended his doctorate dissertation after the evacuation from Leningrad. He was one fo the first Pulkovo astronomers to return to Leningrad in order to start reconstruction of the observatory that had been completely ruined during the war. Astronomer N. N. Pavlov renewed the Time Service in the city. N. N. Pavlov was a successful scientist and an outstanding person, all his life was devoted to science.

  17. NETWORK CODING BY BEAM FORMING

    DEFF Research Database (Denmark)

    2013-01-01

    Network coding by beam forming in networks, for example, in single frequency networks, can provide aid in increasing spectral efficiency. When network coding by beam forming and user cooperation are combined, spectral efficiency gains may be achieved. According to certain embodiments, a method...... cooperating with the plurality of user equipment to decode the received data....

  18. Device for electron beam machining

    International Nuclear Information System (INIS)

    Panzer, S.; Ardenne, T. von; Liebergeld, H.

    1984-01-01

    The invention concerns a device for electron beam machining, in particular welding. It is aimed at continuous operation of the electron irradiation device. This is achieved by combining the electron gun with a beam guiding chamber, to which vacuum chambers are connected. The working parts to be welded can be arranged in the latter

  19. Authentic Astronomical Discovery in Planetariums: Bringing Data to Domes

    Science.gov (United States)

    Wyatt, Ryan Jason; Subbarao, Mark; Christensen, Lars; Emmons, Ben; Hurt, Robert

    2018-01-01

    Planetariums offer a unique opportunity to disseminate astronomical discoveries using data visualization at all levels of complexity: the technical infrastructure to display data and a sizeable cohort of enthusiastic educators to interpret results. “Data to Dome” is an initiative the International Planetarium Society to develop our community’s capacity to integrate data in fulldome planetarium systems—including via open source software platforms such as WorldWide Telescope and OpenSpace. We are cultivating a network of planetarium professionals who integrate data into their presentations and share their content with others. Furthermore, we propose to shorten the delay between discovery and dissemination in planetariums. Currently, the “latest science” is often presented days or weeks after discoveries are announced, and we can shorten this to hours or even minutes. The Data2Dome (D2D) initiative, led by the European Southern Observatory, proposes technical infrastructure and data standards that will streamline content flow from research institutions to planetariums, offering audiences a unique opportunity to access to the latest astronomical data in near real time.

  20. Weird astronomical theories of the solar system and beyond

    CERN Document Server

    Seargent, David

    2016-01-01

    After addressing strange cosmological hypotheses in Weird Universe, David Seargent tackles the no-less bizarre theories closer to home. Alternate views on the Solar System's formation, comet composition, and the evolution of life on Earth are only some of the topics he addresses in this new work. Although these ideas exist on the fringe of mainstream astronomy, they can still shed light on the origins of life and the evolution of the planets. Continuing the author's series of books popularizing strange astronomy facts and knowledge, Weird Astronomical Theories presents an approachable exploration of the still mysterious questions about the origin of comets, the pattern of mass extinctions on Earth, and more. The alternative theories discussed here do not come from untrained amateurs. The scientists whose work is covered includes the mid-20th century Russian S. K. Vsekhsvyatskii, cosmologist Max Tegmark, British astronomers Victor Clube and William Napier, and American Tom Van Flandern, a special...

  1. Far infrared extinction coefficients of minerals of interest for astronomical observations

    International Nuclear Information System (INIS)

    Hasegawa, H.

    1984-01-01

    Far infrared extinction coefficients of mineral grains of interest for astronomical observations have been measured. The measured mineral species are: amorphous carbon, high temperature magnesium silicates, hydrous silicates, iron oxides, and amorphous silicates. (author)

  2. IAU Public Astronomical Organisations Network

    Science.gov (United States)

    Canas, Lina; Cheung, Sze Leung

    2015-08-01

    The Office for Astronomy Outreach has devoted intensive means to create and support a global network of public astronomical organisations around the world. Focused on bringing established and newly formed amateur astronomy organizations together, providing communications channels and platforms for disseminating news to the global community and the sharing of best practices and resources among these associations around the world. In establishing the importance that these organizations have for the dissemination of activities globally and acting as key participants in IAU various campaigns social media has played a key role in keeping this network engaged and connected. Here we discuss the implementation process of maintaining this extensive network, the processing and gathering of information and the interactions between local active members at a national and international level.

  3. How to Make the Dream Come True: The Astronomers' Data Manifesto

    Directory of Open Access Journals (Sweden)

    Ray P Norris

    2007-03-01

    Full Text Available Astronomy is one of the most data-intensive of the sciences. Data technology is accelerating the quality and effectiveness of its research, and the rate of astronomical discovery is higher than ever. As a result, many view astronomy as being in a "Golden Age," and projects such as the Virtual Observatory are amongst the most ambitious data projects in any field of science. But these powerful tools will be impotent unless the data on which they operate are of matching quality. Astronomy, like other fields of science, therefore needs to establish and agree on a set of guiding principles for the management of astronomical data. To focus this process, we are constructing a "data manifesto," which proposes guidelines to maximise the rate and cost-effectiveness of scientific discovery.

  4. An astronomical age for the Bishop Tuff and concordance with radioisotopic dates

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Zeeden, Christian; Storey, Michael

    2014-01-01

    The Bishop Tuff forms a key stratigraphic horizon for synchronization of Quaternary sedimentary records in North America. The unit stratigraphically overlies the Matuyama-Brunhes geomagnetic polarity reversal by several thousand years; high-precision dating of this tuff may be valuable for regional...... and global correlation of records. The Quaternary time scale is anchored by 40Ar/39Ar ages on lava flows and ash layers where available, with stage boundaries and geomagnetic reversals including astronomically tuned records. However, astronomical dating has not yet validated the high-precision 238U/206Pb...... ages, including new single crystal 40Ar/39Ar sanidine fusion analyses presented here, which demonstrates that concordance through multiple dating techniques is achievable within the Quaternary...

  5. Astronomer's new guide to the galaxy: largest map of cold dust revealed

    Science.gov (United States)

    2009-07-01

    Astronomers have unveiled an unprecedented new atlas of the inner regions of the Milky Way, our home galaxy, peppered with thousands of previously undiscovered dense knots of cold cosmic dust -- the potential birthplaces of new stars. Made using observations from the APEX telescope in Chile, this survey is the largest map of cold dust so far, and will prove an invaluable map for observations made with the forthcoming ALMA telescope, as well as the recently launched ESA Herschel space telescope. ESO PR Photo 24a/09 View of the Galactic Plane from the ATLASGAL survey (annotated and in five sections) ESO PR Photo 24b/09 View of the Galactic Plane from the ATLASGAL survey (annotated) ESO PR Photo 24c/09 View of the Galactic Plane from the ATLASGAL survey (in five sections) ESO PR Photo 24d/09 View of the Galactic Plane from the ATLASGAL survey ESO PR Photo 24e/09 The Galactic Centre and Sagittarius B2 ESO PR Photo 24f/09 The NGC 6357 and NGC 6334 nebulae ESO PR Photo 24g/09 The RCW120 nebula ESO PR Video 24a/09 Annotated pan as seen by the ATLASGAL survey This new guide for astronomers, known as the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) shows the Milky Way in submillimetre-wavelength light (between infrared light and radio waves [1]). Images of the cosmos at these wavelengths are vital for studying the birthplaces of new stars and the structure of the crowded galactic core. "ATLASGAL gives us a new look at the Milky Way. Not only will it help us investigate how massive stars form, but it will also give us an overview of the larger-scale structure of our galaxy", said Frederic Schuller from the Max Planck Institute for Radio Astronomy, leader of the ATLASGAL team. The area of the new submillimetre map is approximately 95 square degrees, covering a very long and narrow strip along the galactic plane two degrees wide (four times the width of the full Moon) and over 40 degrees long. The 16 000 pixel-long map was made with the LABOCA submillimetre

  6. Simulating Transient Effects of Pulsed Beams on Beam Intercepting Devices

    CERN Document Server

    Richter, Herta; Noah Messomo, Etam

    2011-01-01

    The development in the physics community towards higher beam power through the possibilities of particle accelerators lead to challenges for the developers of elements which are exposed to effect of particle beams (beam intercepting devices = BIDs). For the design of BIDs, the increasing heat load onto these devices due to energetic and focused beams and - in most cases - their highly pulsed nature has to be taken into account. The physics requirements are sometimes opposed to the current state of the art. As one possibility of many in combining the different aspects for these ambitious demands, two highly developed computer programs, namely FLUKA and ANSYS AUTODYN, were joined for this dissertation. The former is a widely enhanced Monte-Carlo-code which specializes on the interaction of particles with static matter, while the latter is a versatile explicit code for the simulation of highly dynamic processes. Both computer programs were developed intensively over years and are still continuously enhanced in o...

  7. Combined photon-electron beams in the treatment of the supraclavicular lymph nodes in breast cancer: A novel technique that achieves adequate coverage while reducing lung dose.

    Science.gov (United States)

    Salem, Ahmed; Mohamad, Issa; Dayyat, Abdulmajeed; Kanaa'n, Haitham; Sarhan, Nasim; Roujob, Ibrahim; Salem, Abdel-Fattah; Afifi, Shatha; Jaradat, Imad; Mubiden, Rasmi; Almousa, Abdelateif

    2015-01-01

    Radiation pneumonitis is a well-documented side effect of radiation therapy for breast cancer. The purpose of this study was to compare combined photon-electron, photon-only, and electron-only plans in the radiation treatment of the supraclavicular lymph nodes. In total, 13 patients requiring chest wall and supraclavicular nodal irradiation were planned retrospectively using combined photon-electron, photon-only, and electron-only supraclavicular beams. A dose of 50Gy over 25 fractions was prescribed. Chest wall irradiation parameters were fixed for all plans. The goal of this planning effort was to cover 95% of the supraclavicular clinical target volume (CTV) with 95% of the prescribed dose and to minimize the volume receiving ≥ 105% of the dose. Comparative end points were supraclavicular CTV coverage (volume covered by the 95% isodose line), hotspot volume, maximum radiation dose, contralateral breast dose, mean total lung dose, total lung volume percentage receiving at least 20 Gy (V(20 Gy)), heart volume percentage receiving at least 25 Gy (V(25 Gy)). Electron and photon energies ranged from 8 to 18 MeV and 4 to 6 MV, respectively. The ratio of photon-to-electron fractions in combined beams ranged from 5:20 to 15:10. Supraclavicular nodal coverage was highest in photon-only (mean = 96.2 ± 3.5%) followed closely by combined photon-electron (mean = 94.2 ± 2.5%) and lowest in electron-only plans (mean = 81.7 ± 14.8%, p dose was higher in the electron-only (mean = 69.7 ± 56.1 cm(3)) as opposed to combined photon-electron (mean = 50.8 ± 40.9 cm(3)) and photon-only beams (mean = 32.2 ± 28.1 cm(3), p = 0.114). Heart V(25 Gy) was not statistically different among the plans (p = 0.999). Total lung V(20 Gy) was lowest in electron-only (mean = 10.9 ± 2.3%) followed by combined photon-electron (mean = 13.8 ± 2.3%) and highest in photon-only plans (mean = 16.2 ± 3%, p electron-only beams, in terms of decreasing lung dose, is set back by the dosimetric hotspots

  8. Low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy combined with molecular beam epitaxy for in situ two-dimensional materials' studies

    Science.gov (United States)

    Sheng, Shaoxiang; Li, Wenbin; Gou, Jian; Cheng, Peng; Chen, Lan; Wu, Kehui

    2018-05-01

    Tip-enhanced Raman spectroscopy (TERS), which combines scanning probe microscopy with the Raman spectroscopy, is capable to access the local structure and chemical information simultaneously. However, the application of ambient TERS is limited by the unstable and poorly controllable experimental conditions. Here, we designed a high performance TERS system based on a low-temperature ultrahigh-vacuum scanning tunneling microscope (LT-UHV-STM) and combined with a molecular beam epitaxy (MBE) system. It can be used for growing two-dimensional (2D) materials and for in situ STM and TERS characterization. Using a 2D silicene sheet on the Ag(111) surface as a model system, we achieved an unprecedented 109 Raman single enhancement factor in combination with a TERS spatial resolution down to 0.5 nm. The results show that TERS combined with a MBE system can be a powerful tool to study low dimensional materials and surface science.

  9. Hydrodynamic calculations of 20-TeV beam interactions with the SSC beam dump

    International Nuclear Information System (INIS)

    Wilson, D.C.; Wingate, C.A.; Goldstein, J.C.; Godwin, R.P.; Mokhov, N.V.

    1993-01-01

    The 300μs, 400 MJ SSC proton beam must be contained when extracted to the external beam dump. The current design for the SSC beam dump can tolerate the beat load produced if the beam is deflected into a raster scan over the face of the dump. If the high frequency deflecting magnet were to fail, the beam would scan a single strip across the dump face resulting in higher local energy deposition. This could vaporize some material and lead to high pressures. Since the beam duration is comparable to the characteristic time of expected hydrodynamic motions, we have combined the static energy deposition capability of the MARS computer code with the two- and three-dimensional hydrodynamics of the MBA and SPHINX codes. EOS data suggest an energy deposition threshold of 15 kJ/g, below which hydrodynamic effects are minimal. Above this our 2D calculations show a hole boring rate of 7 cm/μs for the nominal beam, and pressures of a few kbar. Scanning the nominal beam faster than 0.08 cm/μs should minimize hydrodynamic effects. 3D calculations support this

  10. Infrared Astronomical Satellite (IRAS) Catalogs and Atlases. Explanatory Supplement

    Science.gov (United States)

    Beichman, C. A. (Editor); Neugebauer, G. (Editor); Habing, H. J. (Editor); Clegg, P. E. (Editor); Chester, T. J. (Editor)

    1985-01-01

    The Infrared Astronomical Satellite (IRAS) mission is described. An overview of the mission, a description of the satellite and its telescope system, and a discussion of the mission design, requirements, and inflight modifications are given. Data reduction, flight tests, flux reconstruction and calibration, data processing, and the formats of the IRAS catalogs and atlases are also considered.

  11. Simulation and Measurements of Beam Losses on LHC Collimators During Beam Abort Failures

    CERN Document Server

    Lari, L; Bruce, R; Goddard, B; Redaelli, S; Salvachua, B; Valentino, G; Faus-Golfe, A

    2013-01-01

    One of the main purposes of tracking simulations for collimation studies is to produce loss maps along the LHC ring, in order to identify the level of local beam losses during nominal and abnormal operation scenarios. The SixTrack program is the standard tracking tool used at CERN to perform these studies. Recently, it was expanded in order to evaluate the proton load on different collimators in case of fast beam failures. Simulations are compared with beam measurements at 4 TeV. Combined failures are assumed which provide worst-case scenarios of the load on tungsten tertiary collimators.

  12. Design of the LHC beam dump

    International Nuclear Information System (INIS)

    Ferrari, A.; Stevenson, G.R.; Weisse, E.

    1992-01-01

    The severe constraints on the beam dumping system for the proposed Large Hadron Collider (LHC) arising from the beam energy (7.7 TeV) and intensity (5x10 14 protons) call for unusual procedures to dilute the beam. Monte-Carlo cascade simulations which calculated the effectiveness of thin scatterers placed upstream of the main absorber have been corrected and updated. Results are also presented concerning the optimization of the thicknesses of such scatterers. These show that a combined sweeping plus double-scatterer system gives a reasonable safety margin. A system combining the sweeping procedure with a dump where the absorber blocks are interleaved with air gaps could produce comparable dilution of the deposited energy. (author) 6 refs.; 3 figs

  13. THREE-BEAM INSTABILITY IN THE LHC*

    CERN Document Server

    Burov, A

    2013-01-01

    In the LHC, a transverse instability is regularly observed at 4TeV right after the beta-squeeze, when the beams are separated by about their ten transverse rms sizes [1-3], and only one of the two beams is seen as oscillating. So far only a single hypothesis is consistent with all the observations and basic concepts, one about a third beam - an electron cloud, generated by the two proton beams in the high-beta areas of the interaction regions. The instability results from a combined action of the cloud nonlinear focusing and impedance.

  14. Categorization of alternative astronomical and scientifical conceptions of the teachers from the north coast of São Paulo

    Science.gov (United States)

    Gonzaga, E. P.

    2016-05-01

    This work deals with the analysis of scientific and alternative astronomical concepts found in the responses of teachers who teach classes Science, Geography and Physic in Basic Education (BE) of the state of the North Coast of São Paulo and how to address the alternative astronomical concepts with students from students Fundamental Education (FE) and Medium Education (ME). Bringing the legal documents regarding the Astronomy in BE, within the national and the São Paulo regions curriculum level, also with rationed researches to the teacher's formation, conceptual errors in books, knowledge non-formal spaces, alternative concepts, Astronomical studies and content analysis for fundamental theoretical. The task executed with the teachers was done via Technical Orientations (TO), promoted by the Director of Education (DE) from Caraguatatuba and region, with the premise to threat the continuous formation giving moments of discussion, practical activities and using the Digital Mobile Planetarium (DMP) with non-formal spaces of knowledge to the Astronomical studies gathering data via questions. Within the analysis of the answers analysis by the teachers, tables were created with the categories that highlight actual situations on the astronomical studies in the North Coast of São Paulo, and demarked the possible paths where the continuous formation will be followed in the future. Aspects checked in the survey were highlighted; such as teachers understand that they need continuing education; teachers have scientific astronomical views on various aspects know to teach concepts of Astronomy at BE; TO is a viable option as continued training and the use of DMP as no formal teaching and learning.

  15. Materials processing with superposed Bessel beams

    Science.gov (United States)

    Yu, Xiaoming; Trallero-Herrero, Carlos A.; Lei, Shuting

    2016-01-01

    We report experimental results of femtosecond laser processing on the surface of glass and metal thin film using superposed Bessel beams. These beams are generated by a combination of a spatial light modulator (SLM) and an axicon with >50% efficiency, and they possess the long depth-of-focus (propagation-invariant) property as found in ordinary Bessel beams. Through micromachining experiments using femtosecond laser pulses, we show that multiple craters can be fabricated on glass with single-shot exposure, and the 1+(⿿1) superposed beam can reduce collateral damage caused by the rings in zero-order Bessel beams in the scribing of metal thin film.

  16. A buyer's and user's guide to astronomical telescopes and binoculars

    CERN Document Server

    Mullaney, James

    2014-01-01

    Amateur astronomers of all skill levels are always contemplating their next telescope, and this book points the way to the most suitable instruments. Similarly, those who are buying their first telescopes – and these days not necessarily a low-cost one – will be able to compare and contrast different types and manufacturers. This revised new guide provides an extensive overview of binoculars and telescopes. It includes detailed up-to-date information on sources, selection and use of virtually every major type, brand, and model on today’s market, a truly invaluable treasure-trove of information and helpful advice for all amateur astronomers. Originally written in 2006, much of the first edition is inevitably now out of date, as equipment advances and manufacturers come and go. This second edition not only updates all the existing sections but adds two new ones: Astro-imaging and Professional-Amateur collaboration. Thanks to the rapid and amazing developments that have been made in digital cameras it is...

  17. The unforgotten sisters female astronomers and scientists before Caroline Herschel

    CERN Document Server

    Bernardi, Gabriella

    2016-01-01

    Taking inspiration from Siv Cedering’s poem in the form of a fictional letter from Caroline Herschel that refers to “my long, lost sisters, forgotten in the books that record our science”, this book tells the lives of twenty-five female scientists, with specific attention to astronomers and mathematicians. Each of the presented biographies is organized as a kind of "personal file" which sets the biographee’s life in its historical context, documents her main works, highlights some curious facts, and records citations about her. The selected figures are among the most representative of this neglected world, including such luminaries as Hypatia of Alexandra, Hildegard of Bingen, Elisabetha Hevelius, and Maria Gaetana Agnesi. They span a period of about 4000 years, from En HeduAnna, the Akkadian princess, who was one of the first recognized female astronomers, to the dawn of the era of modern astronomy with Caroline Herschel and Mary Somerville. The book will be of interest to all who wish to learn more ...

  18. Multi-beam linear accelerator EVT

    Energy Technology Data Exchange (ETDEWEB)

    Teryaev, Vladimir E., E-mail: vladimir_teryaev@mail.ru [Omega-P, Inc., New Haven, CT 06510 (United States); Kazakov, Sergey Yu. [Fermilab, Batavia, IL 60510 (United States); Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT 06510 (United States); Yale University, New Haven, CT 06511 (United States)

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  19. High current density ion beam measurement techniques

    International Nuclear Information System (INIS)

    Ko, W.C.; Sawatzky, E.

    1976-01-01

    High ion beam current measurements are difficult due to the presence of the secondary particles and beam neutralization. For long Faraday cages, true current can be obtained only by negative bias on the target and by summing the cage wall and target currents; otherwise, the beam will be greatly distorted. For short Faraday cages, a combination of small magnetic field and the negative target bias results in correct beam current. Either component alone does not give true current

  20. An infrared upconverter for astronomical imaging

    Science.gov (United States)

    Boyd, R. W.; Townes, C. H.

    1977-01-01

    An imaging upconverter has been constructed which is suitable for use in the study of the thermal 10-micron radiation from astronomical sources. The infrared radiation is converted to visible radiation by mixing in a 1-cm-long proustite crystal. The phase-matched 2-kayser bandpass is tunable from 9 to 11 microns. The conversion efficiency is 2 by 10 to the -7th power and the field of view of 40 arc seconds on the sky contains several hundred picture elements, approximately diffraction-limited resolution in a large telescope. The instrument has been used in studies of the sun, moon, Mercury, and VY Canis Majoris.

  1. Low-dose-rate intraoperative brachytherapy combined with external beam irradiation in the conservative treatment of soft tissue sarcoma

    International Nuclear Information System (INIS)

    Delannes, M.; Thomas, L.; Martel, P.; Bonnevialle, P.; Stoeckle, E.; Chevreau, Ch.; Bui, B.N.; Daly-Schveitzer, N.; Pigneux, J.; Kantor, G.

    2000-01-01

    Purpose: Conservative treatment of soft tissue sarcomas most often implies combination of surgical resection and irradiation. The aim of this study was to evaluate low-dose-rate intraoperative brachytherapy, delivered as a boost, in the local control of primary tumors, with special concern about treatment complications. Methods and Materials: Between 1986 and 1995, 112 patients underwent intraoperative implant. This report focuses on the group of 58 patients with primary sarcomas treated by combination of conservative surgery, intraoperative brachytherapy, and external irradiation. Most of the tumors were located in the lower limbs (46/58--79%). Median size of the tumor was 10 cm, most of the lesions being T2-T3 (51/58--88%), Grade 2 or 3 (48/58--83%). The mean brachytherapy dose was 20 Gy and external beam irradiation dose 45 Gy. In 36/58 cases, iridium wires had to be placed on contact with neurovascular structures. Results: With a median follow-up of 54 months, the 5-year actuarial survival was 64.9%, with a 5-year actuarial local control of 89%. Of the 6 patients with local relapse, 3 were salvaged. Acute side effects, essentially wound healing problems, occurred in 20/58 patients, late side effects in 16/58 patients (7 neuropathies G2 to G4). No amputation was required. The only significant factor correlated with early side effects was the location of the tumor in the lower limb (p = 0.003), and with late side effects the vicinity of the tumor with neurovascular structures (p = 0.009). Conclusion: Brachytherapy allows early delivery of a boost dose in a reduced volume of tissue, precisely mapped by the intraoperative procedure. Combined with external beam irradiation, it is a safe and efficient treatment technique leading to high local control rates and limited functional impairment

  2. The Role in the Virtual Astronomical Observatory in the Era of Massive Data Sets

    Science.gov (United States)

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.

    2012-01-01

    The Virtual Observatory (VO) is realizing global electronic integration of astronomy data. One of the long-term goals of the U.S. VO project, the Virtual Astronomical Observatory (VAO), is development of services and protocols that respond to the growing size and complexity of astronomy data sets. This paper describes how VAO staff are active in such development efforts, especially in innovative strategies and techniques that recognize the limited operating budgets likely available to astronomers even as demand increases. The project has a program of professional outreach whereby new services and protocols are evaluated.

  3. Creating and enhancing digital astro images a guide for practical astronomers

    CERN Document Server

    Privett, Grant

    2007-01-01

    This book clearly examines how to create the best astronomical images possible with a digital camera. It reveals the astonishing images that can be obtained with simple equipment, the right software, and knowledge of how to use it.

  4. The Astro-WISE approach to quality control for astronomical data

    NARCIS (Netherlands)

    Mc Farland, John; Helmich, Ewout M.; Valentijn, Edwin A.

    We present a novel approach to quality control during the processing of astronomical data. Quality control in the Astro-WISE Information System is integral to all aspects of data handing and provides transparent access to quality estimators for all stages of data reduction from the raw image to the

  5. Imaging reconstruction based on improved wavelet denoising combined with parallel-beam filtered back-projection algorithm

    Science.gov (United States)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2012-11-01

    The image reconstruction is a key step in medical imaging (MI) and its algorithm's performance determinates the quality and resolution of reconstructed image. Although some algorithms have been used, filter back-projection (FBP) algorithm is still the classical and commonly-used algorithm in clinical MI. In FBP algorithm, filtering of original projection data is a key step in order to overcome artifact of the reconstructed image. Since simple using of classical filters, such as Shepp-Logan (SL), Ram-Lak (RL) filter have some drawbacks and limitations in practice, especially for the projection data polluted by non-stationary random noises. So, an improved wavelet denoising combined with parallel-beam FBP algorithm is used to enhance the quality of reconstructed image in this paper. In the experiments, the reconstructed effects were compared between the improved wavelet denoising and others (directly FBP, mean filter combined FBP and median filter combined FBP method). To determine the optimum reconstruction effect, different algorithms, and different wavelet bases combined with three filters were respectively test. Experimental results show the reconstruction effect of improved FBP algorithm is better than that of others. Comparing the results of different algorithms based on two evaluation standards i.e. mean-square error (MSE), peak-to-peak signal-noise ratio (PSNR), it was found that the reconstructed effects of the improved FBP based on db2 and Hanning filter at decomposition scale 2 was best, its MSE value was less and the PSNR value was higher than others. Therefore, this improved FBP algorithm has potential value in the medical imaging.

  6. Astronomy and Computing: A New Journal for the Astronomical Computing Community

    Science.gov (United States)

    Mann, R. G.; Accomazzi, A.; Budavári, T.; Fluke, C.; Gray, N.; O'Mullane, W.; Wicenec, A.; Wise, M.

    2013-10-01

    We introduce Astronomy and Computing (A&C), a new, peer-reviewed journal for the expanding community of people whose work focuses on the application of computer science and information technology within astronomy, rather than on astronomical research per se. A&C arose from a BoF discussion at the ADASS XX conference in Boston, and from the ADASS community will come many of the people who will write, referee and read the papers published in A&C. In this paper, we outline the aims and scope of A&C, together with a summary of the types of paper we envisage it publishing and the criteria that will be used to referee them, and we invite the ADASS community to help us develop these in more detail and to shape a journal that serves the astronomical computing community well.

  7. Reinforced Concrete Beams under Combined Axial and Lateral Loading.

    Science.gov (United States)

    1982-01-01

    auxillary speci- mens were cast in four batches. Each batch consisted of three beams, twenty 152-mm by 305-mm cylinders, twenty-four 102-mm cubes, and nine...other specimens from Batch 3 were used In tests prior to the decision to elimInate that batch. Now that sufficient data has been accumulated on the test

  8. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Science.gov (United States)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  9. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: emmazhang103@gmail.com [China Institute of Atomic Energy (China); Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming [China Institute of Atomic Energy (China); Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir [BEST Cyclotron Inc (Canada)

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN–LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  10. Photon beam position monitor

    Science.gov (United States)

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  11. Focused ion beam (FIB) milling of electrically insulating specimens using simultaneous primary electron and ion beam irradiation

    International Nuclear Information System (INIS)

    Stokes, D J; Vystavel, T; Morrissey, F

    2007-01-01

    There is currently great interest in combining focused ion beam (FIB) and scanning electron microscopy technologies for advanced studies of polymeric materials and biological microstructures, as well as for sophisticated nanoscale fabrication and prototyping. Irradiation of electrically insulating materials with a positive ion beam in high vacuum can lead to the accumulation of charge, causing deflection of the ion beam. The resultant image drift has significant consequences upon the accuracy and quality of FIB milling, imaging and chemical vapour deposition. A method is described for suppressing ion beam drift using a defocused, low-energy primary electron beam, leading to the derivation of a mathematical expression to correlate the ion and electron beam energies and currents with other parameters required for electrically stabilizing these challenging materials

  12. First use of a HyViSI H4RG for Astronomical Observations

    Energy Technology Data Exchange (ETDEWEB)

    Simms, Lance M.; /SLAC; Figer, Donald F.; Hanold, Brandon J.; Kerr, Daniel J.; /Rochester Imaging Lab.; Gilmore, D.Kirk; Kahn, Steven M.; /SLAC; Tyson, J.Anthony; /UC,

    2007-09-25

    We present the first astronomical results from a 4K2 Hybrid Visible Silicon PIN array detector (HyViSI) read out with the Teledyne Scientific and Imaging SIDECAR ASIC. These results include observations of astronomical standards and photometric measurements using the 2.1m KPNO telescope. We also report results from a test program in the Rochester Imaging Detector Laboratory (RIDL), including: read noise, dark current, linearity, gain, well depth, quantum efficiency, and substrate voltage effects. Lastly, we highlight results from operation of the detector in window read out mode and discuss its potential role for focusing, image correction, and use as a telescope guide camera.

  13. Preparing Colorful Astronomical Images II

    Science.gov (United States)

    Levay, Z. G.; Frattare, L. M.

    2002-12-01

    We present additional techniques for using mainstream graphics software (Adobe Photoshop and Illustrator) to produce composite color images and illustrations from astronomical data. These techniques have been used on numerous images from the Hubble Space Telescope to produce photographic, print and web-based products for news, education and public presentation as well as illustrations for technical publication. We expand on a previous paper to present more detail and additional techniques, taking advantage of new or improved features available in the latest software versions. While Photoshop is not intended for quantitative analysis of full dynamic range data (as are IRAF or IDL, for example), we have had much success applying Photoshop's numerous, versatile tools to work with scaled images, masks, text and graphics in multiple semi-transparent layers and channels.

  14. Accuracy of lunar eclipse observations made by Jesuit astronomers in China.

    Science.gov (United States)

    Fatoohi, L. J.; Stephenson, F. R.

    1996-02-01

    The Jesuit astronomers observed numerous lunar eclipses at Beijing and summaries of their observations - made between 1644 and 1785 - are preserved. The various lunar eclipse measurements that the Jesuits made are compared with the results of present-day computation.

  15. A survey of European astronomical tables in the late middle ages

    CERN Document Server

    Chabás, José

    2012-01-01

    This is a survey of the numerous astronomical tables compiled in the late Middle Ages, which represent a major intellectual enterprise. Such tables were often the best way available at the time for transmitting precise information to the reader.

  16. Performance predictions of a focused ion beam from a laser cooled and compressed atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Haaf, G. ten; Wouters, S. H. W.; Vredenbregt, E. J. D.; Mutsaers, P. H. A. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Geer, S. B. van der [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2014-12-28

    Focused ion beams are indispensable tools in the semiconductor industry because of their ability to image and modify structures at the nanometer length scale. Here, we report on performance predictions of a new type of focused ion beam based on photo-ionization of a laser cooled and compressed atomic beam. Particle tracing simulations are performed to investigate the effects of disorder-induced heating after ionization in a large electric field. They lead to a constraint on this electric field strength which is used as input for an analytical model which predicts the minimum attainable spot size as a function of, amongst others, the flux density of the atomic beam, the temperature of this beam, and the total current. At low currents (I < 10 pA), the spot size will be limited by a combination of spherical aberration and brightness, while at higher currents, this is a combination of chromatic aberration and brightness. It is expected that a nanometer size spot is possible at a current of 1 pA. The analytical model was verified with particle tracing simulations of a complete focused ion beam setup. A genetic algorithm was used to find the optimum acceleration electric field as a function of the current. At low currents, the result agrees well with the analytical model, while at higher currents, the spot sizes found are even lower due to effects that are not taken into account in the analytical model.

  17. Giovanni Domenico Cassini a modern astronomer in the 17th century

    CERN Document Server

    Bernardi, Gabriella

    2017-01-01

    This book offers a fascinating account of the life and scientific achievements of Giovanni Domenico Cassini, or Cassini I, the most famous astronomer of his time, who is remembered today especially for his observations of the rings and satellites of Saturn and his earlier construction of the great meridian line in the Basilica of San Petronio in Bologna. The various stages of his life are recounted in an engaging style, from his early childhood in Perinaldo and his time at the famous Jesuit College in Genoa, to his later experiences in Bologna and Paris. The emphasis, however, is on the scientific side of his life. The book explores his impressive body of work in diverse fields while also drawing attention to the international character of his endeavors, the rigor of his research, and his outstanding management skills, which combined to make him an early embodiment of the “European scientist.” It was also these abilities that gained him the attention of the most powerfu l king in Europe, Louis XIV of Fran...

  18. A novel respiratory motion compensation strategy combining gated beam delivery and mean target position concept - A compromise between small safety margins and long duty cycles

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Kavanagh, Anthony; Webb, Steve; Brada, Michael

    2011-01-01

    Purpose: To evaluate a novel respiratory motion compensation strategy combining gated beam delivery with the mean target position (MTP) concept for pulmonary stereotactic body radiotherapy (SBRT). Materials and methods: Four motion compensation strategies were compared for 10 targets with motion amplitudes between 6 mm and 31 mm: the internal target volume concept (plan ITV ); the MTP concept where safety margins were adapted based on 4D dose accumulation (plan MTP ); gated beam delivery without margins for motion compensation (plan gated ); a novel approach combining gating and the MTP concept (plan gated and MTP ). Results: For 5/10 targets with an average motion amplitude of 9 mm, the differences in the mean lung dose (MLD) between plan gated and plan MTP were gated and MTP . Despite significantly shorter duty cycles, plan gated reduced the MLD by gated and MTP . The MLD was increased by 18% in plan MTP compared to that of plan gated and MTP . Conclusions: For pulmonary targets with motion amplitudes >10-15 mm, the combination of gating and the MTP concept allowed small safety margins with simultaneous long duty cycles.

  19. Twenty-five astronomical observations that changed the world and how to make them yourself

    CERN Document Server

    Marett-Crosby, Michael

    2013-01-01

    Human history is also the record of our fascination with the sky, and to look upwards is to follow in the steps of such greats as Galileo and Newton. What they and others once saw in the heavens for the first time, amateur astronomers can discover anew using this guide to twenty-five of the greatest journeys through space.   Starting with our most visible companion the Moon, each chapter offers a step-by-step walk-through of famous astronomical observations from the history of science. Beginning with the easiest targets, sometimes even accessible with the naked eye, the challenges become progressively more difficult. Beginner astronomers and more experienced hobbyists alike can reacquaint themselves with the wonders of our fellow planets and even reach far beyond our own solar system to touch on such incredible phenomena as the birth of new stars in nebula systems and the deceptive nothingness of black holes. The would-be astronaut can spy the International Space Station in orbit with binoculars or the dooms...

  20. A nonlinear beam model to describe the postbuckling of wide neo-Hookean beams

    Science.gov (United States)

    Lubbers, Luuk A.; van Hecke, Martin; Coulais, Corentin

    2017-09-01

    Wide beams can exhibit subcritical buckling, i.e. the slope of the force-displacement curve can become negative in the postbuckling regime. In this paper, we capture this intriguing behaviour by constructing a 1D nonlinear beam model, where the central ingredient is the nonlinearity in the stress-strain relation of the beams constitutive material. First, we present experimental and numerical evidence of a transition to subcritical buckling for wide neo-Hookean hyperelastic beams, when their width-to-length ratio exceeds a critical value of 12%. Second, we construct an effective 1D energy density by combining the Mindlin-Reissner kinematics with a nonlinearity in the stress-strain relation. Finally, we establish and solve the governing beam equations to analytically determine the slope of the force-displacement curve in the postbuckling regime. We find, without any adjustable parameters, excellent agreement between the 1D theory, experiments and simulations. Our work extends the understanding of the postbuckling of structures made of wide elastic beams and opens up avenues for the reverse-engineering of instabilities in soft and metamaterials.