WorldWideScience

Sample records for astronomer mines spitzer

  1. Astroinformatics, data mining and the future of astronomical research

    Energy Technology Data Exchange (ETDEWEB)

    Brescia, Massimo, E-mail: longo@na.infn.it [INAF, Astronomical Obs. of Capodimonte, Via Moiariello 16, I-80131 Napoli (Italy); Longo, Giuseppe [Department of Physics, University Federico II, Via Cintia 6, 80126 Napoli (Italy); Department of Astronomy, Caltech, Pasadena (United States)

    2013-08-21

    Astronomy, as many other scientific disciplines, is facing a true data deluge which is bound to change both the praxis and the methodology of every day research work. The emerging field of astroinformatics, while on the one end appears crucial to face the technological challenges, on the other is opening new exciting perspectives for new astronomical discoveries through the implementation of advanced data mining procedures. The complexity of astronomical data and the variety of scientific problems, however, call for innovative algorithms and methods as well as for an extreme usage of ICT technologies.

  2. Astroinformatics, data mining and the future of astronomical research

    International Nuclear Information System (INIS)

    Brescia, Massimo; Longo, Giuseppe

    2013-01-01

    Astronomy, as many other scientific disciplines, is facing a true data deluge which is bound to change both the praxis and the methodology of every day research work. The emerging field of astroinformatics, while on the one end appears crucial to face the technological challenges, on the other is opening new exciting perspectives for new astronomical discoveries through the implementation of advanced data mining procedures. The complexity of astronomical data and the variety of scientific problems, however, call for innovative algorithms and methods as well as for an extreme usage of ICT technologies

  3. Spitzer Digs Up Galactic Fossil

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] Figure 2 This false-color image taken by NASA's Spitzer Space Telescope shows a globular cluster previously hidden in the dusty plane of our Milky Way galaxy. Globular clusters are compact bundles of old stars that date back to the birth of our galaxy, 13 or so billion years ago. Astronomers use these galactic 'fossils' as tools for studying the age and formation of the Milky Way. Most clusters orbit around the center of the galaxy well above its dust-enshrouded disc, or plane, while making brief, repeated passes through the plane that each last about a million years. Spitzer, with infrared eyes that can see into the dusty galactic plane, first spotted the newfound cluster during its current pass. A visible-light image (inset of Figure 1) shows only a dark patch of sky. The red streak behind the core of the cluster is a dust cloud, which may indicate the cluster's interaction with the Milky Way. Alternatively, this cloud may lie coincidentally along Spitzer's line of sight. Follow-up observations with the University of Wyoming Infrared Observatory helped set the distance of the new cluster at about 9,000 light-years from Earth - closer than most clusters - and set the mass at the equivalent of 300,000 Suns. The cluster's apparent size, as viewed from Earth, is comparable to a grain of rice held at arm's length. It is located in the constellation Aquila. Astronomers believe that this cluster may be one of the last in our galaxy to be uncovered. This image composite was taken on April 21, 2004, by Spitzer's infrared array camera. It is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). Galactic Fossil Found Behind Curtain of Dust In Figure 2, the image mosaic shows the same patch of sky in various wavelengths of light. While the visible-light image (left) shows a dark sky speckled

  4. Efficient Mosaicking of Spitzer Space Telescope Images

    Science.gov (United States)

    Jacob, Joseph; Makovoz, David; Eisenhardt, Peter

    2007-01-01

    A parallel version of the MOPEX software, which generates mosaics of infrared astronomical images acquired by the Spitzer Space Telescope, extends the capabilities of the prior serial version. In the parallel version, both the input image space and the output mosaic space are divided among the available parallel processors. This is the only software that performs the point-source detection and the rejection of spurious imaging effects of cosmic rays required by Spitzer scientists. This software includes components that implement outlier-detection algorithms that can be fine-tuned for a particular set of image data by use of a number of adjustable parameters. This software has been used to construct a mosaic of the Spitzer Infrared Array Camera Shallow Survey, which comprises more than 17,000 exposures in four wavelength bands from 3.6 to 8 m and spans a solid angle of about 9 square degrees. When this software was executed on 32 nodes of the 1,024-processor Cosmos cluster computer at NASA s Jet Propulsion Laboratory, a speedup of 8.3 was achieved over the serial version of MOPEX. The performance is expected to improve dramatically once a true parallel file system is installed on Cosmos.

  5. UKRVO Astronomical WEB Services

    Directory of Open Access Journals (Sweden)

    Mazhaev, O.E.

    2017-01-01

    Full Text Available Ukraine Virtual Observatory (UkrVO has been a member of the International Virtual Observatory Alliance (IVOA since 2011. The virtual observatory (VO is not a magic solution to all problems of data storing and processing, but it provides certain standards for building infrastructure of astronomical data center. The astronomical databases help data mining and offer to users an easy access to observation metadata, images within celestial sphere and results of image processing. The astronomical web services (AWS of UkrVO give to users handy tools for data selection from large astronomical catalogues for a relatively small region of interest in the sky. Examples of the AWS usage are showed.

  6. Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Lumninous Infrared Galaxy Candidates

    Science.gov (United States)

    Griffith, Roger L.; Kirkpatrick, J. Davy; Eisenhardt, Peter R. M.; Gelino, Christopher R.; Cushing, Michael C.; Benford, Dominic; Blain, Andrew; Bridge, Carrie R.; Cohen, Martin; Cutri, Roc M.; hide

    2012-01-01

    We present Spitzer 3.6 and 4.5 micrometer photometry and positions for a sample of 1510 brown dwarf candidates identified by the Wide-field Infrared Survey Explorer (WISE) all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12). Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify seven fainter (4.5 m to approximately 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy candidates. For this control sample, we find another six brown dwarf candidates, suggesting that the seven companion candidates are not physically associated. In fact, only one of these seven Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this, there is no evidence for any widely separated (greater than 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of 7.33 x 10(exp 5) objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 m photometry, along with positionally matched B and R photometry from USNO-B; J, H, and Ks photometry from Two Micron All-Sky Survey; and W1, W2, W3, and W4 photometry from the WISE all-sky catalog.

  7. VizieR Online Data Catalog: Spitzer observations of Taurus members (Luhman+, 2010)

    Science.gov (United States)

    Luhman, K. L.; Allen, P. R.; Espaillat, C.; Hartmann, L.; Calvet, N.

    2016-03-01

    For our census of the disk population in Taurus, we use images at 3.6, 4.5, 5.8, and 8.0um obtained with Spitzer's Infrared Array Camera (IRAC) and images at 24um obtained with the Multiband Imaging Photometer for Spitzer (MIPS). The cameras produced images with FWHM=1.6"-1.9" from 3.6 to 8.0um and FWHM=5.9" at 24um. The available data were obtained through Guaranteed Time Observations for PID = 6, 36, 37 (G. Fazio), 53 (G. Rieke), 94 (C. Lawrence), 30540 (G. Fazio, J. Houck), and 40302 (J. Houck), Director's Discretionary Time for PID = 462 (L. Rebull), Legacy programs for PID = 139, 173 (N. Evans), and 30816 (D. Padgett), and General Observer programs for PID = 3584 (D. Padgett), 20302 (P. Andre), 20386 (P. Myers), 20762 (J. Swift), 30384 (T. Bourke), 40844 (C. McCabe), and 50584 (D. Padgett). The IRAC and MIPS observations were performed through 180 and 137 Astronomical Observation Requests (AORs), respectively. The characteristics of the resulting images are summarized in Tables 1 and 2. (6 data files).

  8. The NASA Spitzer Space Telescope.

    Science.gov (United States)

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  9. Astronomical Image and Data Analysis

    CERN Document Server

    Starck, J.-L

    2006-01-01

    With information and scale as central themes, this comprehensive survey explains how to handle real problems in astronomical data analysis using a modern arsenal of powerful techniques. It treats those innovative methods of image, signal, and data processing that are proving to be both effective and widely relevant. The authors are leaders in this rapidly developing field and draw upon decades of experience. They have been playing leading roles in international projects such as the Virtual Observatory and the Grid. The book addresses not only students and professional astronomers and astrophysicists, but also serious amateur astronomers and specialists in earth observation, medical imaging, and data mining. The coverage includes chapters or appendices on: detection and filtering; image compression; multichannel, multiscale, and catalog data analytical methods; wavelets transforms, Picard iteration, and software tools. This second edition of Starck and Murtagh's highly appreciated reference again deals with to...

  10. Pathway to the Galactic Distribution of Planets: Combined Spitzer and Ground-Based Microlens Parallax Measurements of 21 Single-Lens Events

    Science.gov (United States)

    Novati, S. Calchi; Gould, A.; Udalski, A.; Menzies, J. W.; Bond, I. A.; Shvartzvald, Y.; Street, R. A.; Hundertmark, M.; Beichman, C. A.; Barry, R. K.

    2015-01-01

    We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was approximately 1 Astronomical Unit west of Earth in projection. We combine these measurements with a kinematic model of the Galaxy to derive distance estimates for each lens, with error bars that are small compared to the Sun's galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle, it is possible to compare this distribution against a set of planets detected in the same experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated.

  11. Spitzer/IRS Observations Of Multiple Main-Belt And Binary Near-Earth Asteroids

    Science.gov (United States)

    Enriquez, J. Emilio; Marchis, F.; Emery, J. P.; Im, S.

    2010-10-01

    Since the discovery of Ida's companion in 1993, 195 companions of asteroids have been discovered. To understand the formation process of these interesting bodies, their physical properties such as their bulk density, size, shape, and surface roughness need to be determined. During the Spitzer Cycle-4, we obtained IRS thermal emission spectra (5-42 um) of 23 known binary systems. The majority of asteroids are from the main-belt (16), while the rest are NEOs (7). After extracting the thermal spectra, we used a modified Standard Thermal Model (STM) to calculate their equivalent diameter (from 0.8 km to 237 km), their albedo (from 0.04 for C-type to 0.394 for a V-type) and their beaming factor related to the surface roughness and thermal inertia. We derive their emissivity spectra, which is useful to detect silicate features. Combining these measurements with 3D-models of these multiple asteroid systems obtained by lightcurve inversion, we should be able to derive an accurate estimate of their bulk-density and contrast them with their taxonomic classes. Preliminary studies by Marchis et al. (2008)1, suggested a relationship between bulk density and the taxonomic class of asteroids, which varies from 0.9 g/cc for C-complex to 2.4 g/cc for S-complex asteroids. The National Science Foundation supported this research under award number AAG-0807468. It was conducted with the Spitzer space telescope, which is operated by JPL under a contract with NASA. 1 Marchis et al. , 2008, "Mid-infrared Spectra of Binary Asteroids With Spitzer/IRS", 40th DPS Meeting, Bulletin of the American Astronomical Society, 40, 508

  12. Advances in Machine Learning and Data Mining for Astronomy

    Science.gov (United States)

    Way, Michael J.; Scargle, Jeffrey D.; Ali, Kamal M.; Srivastava, Ashok N.

    2012-03-01

    Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.

  13. Novel Algorithms for Astronomical Plate Analyses Rene Hudec1,2 ...

    Indian Academy of Sciences (India)

    2Czech Technical University in Prague, Faculty of Electrical Engineering, Technicka 2,. Prague 6 ... Abstract. Powerful computers and dedicated software allow effective data mining and scientific analyses in astronomical plate archives. We.

  14. SPRITE: the Spitzer proposal review website

    Science.gov (United States)

    Crane, Megan K.; Storrie-Lombardi, Lisa J.; Silbermann, Nancy A.; Rebull, Luisa M.

    2008-07-01

    The Spitzer Science Center (SSC), located on the campus of the California Institute of Technology, supports the science operations of NASA's infrared Spitzer Space Telescope. The SSC issues an annual Call for Proposals inviting investigators worldwide to submit Spitzer Space Telescope proposals. The Spitzer Proposal Review Website (SPRITE) is a MySQL/PHP web database application designed to support the SSC proposal review process. Review panel members use the software to view, grade, and write comments about the proposals, and SSC support team members monitor the grading and ranking process and ultimately generate a ranked list of all the proposals. The software is also used to generate, edit, and email award letters to the proposers. This work was performed at the California Institute of Technology under contract to the National Aeronautics and Space Administration.

  15. Emergent Exoplanet Flux: Review of the Spitzer Results

    OpenAIRE

    Deming, Drake

    2008-01-01

    Observations using the Spitzer Space Telescope provided the first detections of photons from extrasolar planets. Spitzer observations are allowing us to infer the temperature structure, composition, and dynamics of exoplanet atmospheres. The Spitzer studies extend from many hot Jupiters, to the hot Neptune orbiting GJ436. Here I review the current status of Spitzer secondary eclipse observations, and summarize the results from the viewpoint of what is robust, what needs more work, and what th...

  16. Hunting Elusive SPRITEs with Spitzer

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    In recent years, astronomers have developed many wide-field imaging surveys in which the same targets are observed again and again. This new form of observing has allowed us to discover optical and radio transients explosive or irregular events with durations ranging from seconds to years. The dynamic infrared sky, however, has remained largely unexplored until now.Infrared ExplorationExample of a transient: SPIRITS 14ajc was visible when imaged by SPIRITS in 2014 (left) but it wasnt there during previous imaging between 2004 and 2008 (right). The bottom frame shows the difference between the two images. [Adapted from Kasliwal et al. 2017]Why hunt for infrared transients? Optical wavelengths dont allow us to observe events that are obscured, such that their own structure or their surroundings hide them from our view. Both supernovae and luminous red novae (associated with stellar mergers) are discoverable as infrared transients, and there may well be new types of transients in infrared that we havent seen before!To explore this uncharted territory, a team of scientists developed SPIRITS, the Spitzer Infrared Intensive Transients Survey. Begun in 2014, SPIRITS is a five-year long survey that uses the Spitzer Space Telescope to conduct a systematic search for mid-infrared transients in nearby galaxies.In a recent publication led by Mansi Kasliwal (Caltech and the Carnegie Institution for Science), the SPIRITS team has now detailed how their survey works and what theyve discovered in its first year.The light curves of SPRITEs (red stars) lie in the mid-infared luminosity gap between novae (orange) and supernovae (blue). [Kasliwal et al. 2017]Mystery TransientsKasliwal and collaborators used Spitzer to monitor 190 nearby galaxies. In SPIRITS first year, they found over 1958 variable stars and 43 infrared transient sources. Of these 43 transients, 21 were known supernovae, 4 were in the luminosity range of novae, and 4 had optical counterparts. The remaining 14 events

  17. ASTRONOMICAL PLATE ARCHIVES AND SUPERMASSIVE BLACK HOLE BINARIES

    Directory of Open Access Journals (Sweden)

    René Hudec

    2013-12-01

    Full Text Available The recent extensive digitisation of astronomical photographic plate archives, the development of new dedicated software and the use of powerful computers have for the first time enabled effective data mining in extensive plate databases, with wide applications in various fields of recent astrophysics. As an example, analyses of supermassive binary black holes (binary blazars require very long time intervals (50 years and more, which cannot be provided by other data sources. Examples of data obtained from data mining in plate archives are presented and briefly discussed.

  18. Advances in machine learning and data mining for astronomy

    CERN Document Server

    Way, Michael J

    2012-01-01

    Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health

  19. THE SPITZER DEEP, WIDE-FIELD SURVEY

    International Nuclear Information System (INIS)

    Ashby, M. L. N.; Brodwin, M.; Stern, D.; Griffith, R.; Eisenhardt, P.; Gorjian, V.; Kozlowski, S.; Kochanek, C. S.; Bock, J. J.; Borys, C.; Brand, K.; Grogin, N. A.; Brown, M. J. I.; Cool, R.; Cooray, A.; Croft, S.; Dey, A.; Eisenstein, D.; Gonzalez, A. H.; Ivison, R. J.

    2009-01-01

    The Spitzer Deep, Wide-Field Survey (SDWFS) is a four-epoch infrared survey of 10 deg. 2 in the Booetes field of the NOAO Deep Wide-Field Survey using the IRAC instrument on the Spitzer Space Telescope. SDWFS, a Spitzer Cycle 4 Legacy project, occupies a unique position in the area-depth survey space defined by other Spitzer surveys. The four epochs that make up SDWFS permit-for the first time-the selection of infrared-variable and high proper motion objects over a wide field on timescales of years. Because of its large survey volume, SDWFS is sensitive to galaxies out to z ∼ 3 with relatively little impact from cosmic variance for all but the richest systems. The SDWFS data sets will thus be especially useful for characterizing galaxy evolution beyond z ∼ 1.5. This paper explains the SDWFS observing strategy and data processing, presents the SDWFS mosaics and source catalogs, and discusses some early scientific findings. The publicly released, full-depth catalogs contain 6.78, 5.23, 1.20, and 0.96 x 10 5 distinct sources detected to the average 5σ, 4''-diameter, aperture-corrected limits of 19.77, 18.83, 16.50, and 15.82 Vega mag at 3.6, 4.5, 5.8, and 8.0 μm, respectively. The SDWFS number counts and color-color distribution are consistent with other, earlier Spitzer surveys. At the 6 minute integration time of the SDWFS IRAC imaging, >50% of isolated Faint Images of the Radio Sky at Twenty cm radio sources and >80% of on-axis XBooetes sources are detected out to 8.0 μm. Finally, we present the four highest proper motion IRAC-selected sources identified from the multi-epoch imaging, two of which are likely field brown dwarfs of mid-T spectral class.

  20. Physical Characterization of Warm Spitzer Observed Near-Earth Objects

    NARCIS (Netherlands)

    Thomas, C. A.; Emery, J. P.; Trilling, D. E.; Delbo, M.; Hora, J. L.; Mueller, M.

    2012-01-01

    We have undertaken a spectroscopic observing campaign to complement the ExploreNEOs Warm Spitzer program. The combination of Spitzer derived albedos and diameters with spectroscopic data will enhance our understanding of the NEO population.

  1. Physical characterization of Near Earth Objects with Spitzer

    Science.gov (United States)

    Trilling, David; Hora, Joseph; Mommert, Michael; Chesley, Steve; Emery, Joshua; Fazio, Giovanni; Harris, Alan; Mueller, Migo; Smith, Howard

    2018-05-01

    We propose here an efficient, flux-limited survey of 426 optically discovered NEOs in order to measure their diameters and albedos. We include only targets not previously detected by Spitzer or NEOWISE and includes all NEOs available to Spitzer in Cycle 14. This program will maintain the fraction of all known NEOs with measured diameters and albedos at around 20% even in the face of increasingly successful NEO discovery surveys. By the conclusion of this program nearly 3500 NEOs will have measured diameters and albedos, with nearly 3000 of those observations being made by Spitzer and our team. We will determine an independent size distribution of NEOs at 100 meters that is free from albedo assumptions, addressing a current controversy. We will also derive, through our albedo measurements, the compositional distribution of NEOs as a function of size. We will measure or constrain lightcurves for more than 400 NEOs, thus constraining their shapes in addition to sizes and compositions. This catalog will enable a number of other science cases to be pursued by us and other researchers. Our team has unmatched experience observing NEOs with Spitzer.

  2. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. II. SILICATE FEATURE ANALYSIS OF UNRESOLVED TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Tushar [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720-4767 (United States); Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive Baltimore, MD 21218 (United States); Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Manoj, P. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Sargent, Benjamin A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Watson, Dan M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Lisse, Carey M., E-mail: cchen@stsci.edu [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States)

    2015-01-10

    During the Spitzer Space Telescope cryogenic mission, astronomers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates that have been compiled in the Spitzer IRS Debris Disk Catalog. We have discovered 10 and/or 20 μm silicate emission features toward 120 targets in the catalog and modeled the IRS spectra of these sources, consistent with MIPS 70 μm observations, assuming that the grains are composed of silicates (olivine, pyroxene, forsterite, and enstatite) and are located either in a continuous disk with power-law size and surface density distributions or thin rings that are well-characterized using two separate dust grain temperatures. For systems better fit by the continuous disk model, we find that (1) the dust size distribution power-law index is consistent with that expected from a collisional cascade, q = 3.5-4.0, with a large number of values outside this range, and (2) the minimum grain size, a {sub min}, increases with stellar luminosity, L {sub *}, but the dependence of a {sub min} on L {sub *} is weaker than expected from radiation pressure alone. In addition, we also find that (3) the crystalline fraction of dust in debris disks evolves as a function of time with a large dispersion in crystalline fractions for stars of any particular stellar age or mass, (4) the disk inner edge is correlated with host star mass, and (5) there exists substantial variation in the properties of coeval disks in Sco-Cen, indicating that the observed variation is probably due to stochasticity and diversity in planet formation.

  3. Exoplanet Characterization With Spitzer Eclipses

    Science.gov (United States)

    Harrington, Joseph

    We will analyze our existing Spitzer eclipse data for 11 exoplanets (GJ 436b, WASP-8b, WASP-29b, WASP-11b, TrES-1, WASP-34b, WASP-43b, HD 209458b, HAT-P-30b, HAT-P-13b, and WASP-12b) along with all other Spitzer eclipse and transit data for these systems (723 hours of total data). In combination with transit results, these measurements reveal the surface fluxes emitted by the planets' atmospheres in the six Spitzer bandpasses (3.6, 4.5, 5.8, 8.0, 16, and 24 1-4m), as well as orbital eccentricity and in a few cases possibly even precession rate. The fluxes, in turn, can constrain atmospheric composition and thermal profiles. We propose here to analyze data for these planets using Monte Carlo-driven, radiative-transfer, model-fitting codes; to conduct aggregate analyses; and to develop and share statistical modeling tools. Secondary eclipses provide us with a unique way to characterize exoplanetary atmospheres. Since other techniques like spectroscopy divide the planetary signal into many channels, they require very high signal-to-noise ratio (S/N) and are only possible for a few planets. Broadband eclipse photometry is thus the only technique that can measure dozens of atmospheres and identify the mechanisms that cause planets at a given irradiation level to behave so differently from one another. Until JWST becomes available, the broad variety of Spitzer data that we already have in hand, along with observations from the Hubble Space Telescope and possibly SOFIA, are our best way to understand the wide diversity of exoplanetary atmospheres. Since 2010, the team has produced six papers from a new, highly modular pipeline that implements optimal methods for analysis of Spitzer photometric time series, and our efficiency is increasing. The sensitivity needed for these measurements is up to 100 times better than Spitzer's design criteria, so careful treatment of systematic error is critically important and first-order approximations rarely work. The new pipeline

  4. THE SPITZER-WISE SURVEY OF THE ECLIPTIC POLES

    International Nuclear Information System (INIS)

    Jarrett, T. H.; Masci, F.; Cutri, R. M.; Marsh, K.; Padgett, D.; Tsai, C. W.; Cohen, M.; Wright, E.; Petty, S.; Stern, D.; Eisenhardt, P.; Mainzer, A.; Ressler, M.; Benford, D.; Blain, A.; Carey, S.; Surace, J.; Lonsdale, C.; Skrutskie, M.; Stanford, S.

    2011-01-01

    We have carried out a survey of the north and south ecliptic poles, EP-N and EP-S, respectively, with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE). The primary objective was to cross-calibrate WISE with the Spitzer and Midcourse Space Experiment (MSX) photometric systems by developing a set of calibration stars that are common to these infrared missions. The ecliptic poles were continuous viewing zones for WISE due to its polar-crossing orbit, making these areas ideal for both absolute and internal calibrations. The Spitzer IRAC and MIPS imaging survey covers a complete area of 0.40 deg 2 for the EP-N and 1.28 deg 2 for the EP-S. WISE observed the whole sky in four mid-infrared bands, 3.4, 4.6, 12, and 22 μm, during its eight-month cryogenic mission, including several hundred ecliptic polar passages; here we report on the highest coverage depths achieved by WISE, an area of ∼1.5 deg 2 for both poles. Located close to the center of the EP-N, the Sy-2 galaxy NGC 6552 conveniently functions as a standard calibrator to measure the red response of the 22 μm channel of WISE. Observations from Spitzer-IRAC/MIPS/IRS-LL and WISE show that the galaxy has a strong red color in the mid-infrared due to star-formation and the presence of an active galactic nucleus (AGN), while over a baseline >1 year the mid-IR photometry of NGC 6552 is shown to vary at a level less than 2%. Combining NGC 6552 with the standard calibrator stars, the achieved photometric accuracy of the WISE calibration, relative to the Spitzer and MSX systems, is 2.4%, 2.8%, 4.5%, and 5.7% for W1 (3.4 μm), W2 (4.6 μm), W3 (12 μm), and W4 (22 μm), respectively. The WISE photometry is internally stable to better than 0.1% over the cryogenic lifetime of the mission. The secondary objective of the Spitzer-WISE Survey was to explore the poles at greater flux-level depths, exploiting the higher angular resolution Spitzer observations and the exceptionally deep (in total

  5. 156th Symposium of the International Astronomical Union

    CERN Document Server

    Kołaczek, Barbara

    1993-01-01

    In this review talk, I would like to report on the proper motion analysis, which has been recently carried out together with M. Soma and M. Yoshizawa: There has been a persistent demand in astronomy for accurate stellar positions and proper motions, which are represented by an inertial reference system constructed on the basis of a set of consistent astronomical constants. In the reference system the precessional constant plays a primary role. In a series of papers Fricke (1967a,b, 1977a,b) has deter­ mined the luni-solar precessional correction to Newcomb's value and the fictitious motion of the equinox, which have been adopted in the "IAU (1976) System of Astronomical Con­ stants". Based on the precessional correction and the equinoctial motion thus established, the fundamental reference system, the FK5 system (Fricke et al. 1988) for positions and proper motions, has been constructed. However, for several years geodetic VLBI (McCarthy & Luzum 1991) and LLR (Williams et at. 1991) observations have bee...

  6. SPITZER IRAC PHOTOMETRY FOR TIME SERIES IN CROWDED FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Novati, S. Calchi; Beichman, C. [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Gould, A.; Fausnaugh, M.; Gaudi, B. S.; Pogge, R. W.; Wibking, B.; Zhu, W.; Poleski, R. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Bryden, G.; Henderson, C. B.; Shvartzvald, Y. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Carey, S. [Spitzer, Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Udalski, A.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Collaboration: Spitzer team; OGLE group; and others

    2015-12-01

    We develop a new photometry algorithm that is optimized for the Infrared Array Camera (IRAC) Spitzer time series in crowded fields and that is particularly adapted to faint or heavily blended targets. We apply this to the 170 targets from the 2015 Spitzer microlensing campaign and present the results of three variants of this algorithm in an online catalog. We present detailed accounts of the application of this algorithm to two difficult cases, one very faint and the other very crowded. Several of Spitzer's instrumental characteristics that drive the specific features of this algorithm are shared by Kepler and WFIRST, implying that these features may prove to be a useful starting point for algorithms designed for microlensing campaigns by these other missions.

  7. A Statistical Approach to Exoplanetary Molecular Spectroscopy Using Spitzer Eclipses

    Science.gov (United States)

    Deming, Drake; Garhart, Emily; Burrows, Adam; Fortney, Jonathan; Knutson, Heather; Todorov, Kamen

    2018-01-01

    Secondary eclipses of exoplanets observed using the Spitzer Space Telescope measure the total emission emergent from exoplanetary atmospheres integrated over broad photometric bands. Spitzer photometry is excellent for measuring day side temperatures, but is less well suited to the detection of molecular absorption or emission features. Even for very hot exoplanets, it can be difficult to attain the accuracy on eclipse depth that is needed to unambiguously interpret the Spitzer results in terms of molecular absorption or emission. However, a statistical approach, wherein we seek deviations from a simple blackbody planet as a function of the planet's equilibrium temperature, shows promise for defining the nature and strength of molecular absorption in ensembles of planets. In this paper, we explore such an approach using secondary eclipses observed for tens of hot exoplanets during Spitzer's Cycles 10, 12, and 13. We focus on the possibility that the hottest planets exhibit molecular features in emission, due to temperature inversions.

  8. Getting Astronomers Involved in the IYA: Astronomer in the Classroom

    Science.gov (United States)

    Koenig, Kris

    2008-05-01

    The Astronomer in the Classroom program provides professional astronomers the opportunity to engage with 3rd-12th grade students across the nation in grade appropriate discussions of their recent research, and provides students with rich STEM content in a personalized forum, bringing greater access to scientific knowledge for underserved populations. 21st Century Learning and Interstellar Studios, the producer of the 400 Years of the Telescope documentary along with their educational partners, will provide the resources necessary to facilitate the Astronomer in the Classroom program, allowing students to interact with astronomers throughout the IYA2009. PROGRAM DESCRIPTION One of hundreds of astronomers will be available to interact with students via live webcast daily during Spring/Fall 2009. The astronomer for the day will conduct three 20-minute discussions (Grades 3-5 /6-8/9-12), beginning with a five-minute PowerPoint on their research or area of interest. The discussion will be followed by a question and answer period. The students will participate in real-time from their school computer(s) with the technology provided by 21st Century Learning. They will see and hear the astronomer on their screen, and pose questions from their keyboard. Teachers will choose from three daily sessions; 11:30 a.m., 12:00 p.m., 12:30 p.m. Eastern Time. This schedule overlaps all US time zones, and marginalizes bandwidth usage, preventing technological barriers to web access. The educational partners and astronomers will post materials online, providing easy access to information that will prepare teachers and students for the chosen discussion. The astronomers, invited to participate from the AAS and IAU, will receive a web cam shipment with instructions, a brief training and conductivity test, and prepaid postage for shipment of the web cam to the next astronomer on the list. The anticipated astronomer time required is 3-hours, not including the time to develop the PowerPoint.

  9. Recent SPIRITS discoveries of Infrared Transients and Variables with Spitzer/IRAC

    Science.gov (United States)

    Jencson, J. E.; Kasliwal, M. M.; Adams, S.; Cook, D.; Tinyanont, S.; Kwan, S.; Prince, T.; Lau, R. M.; Perley, D.; Masci, F.; Helou, G.; Armus, L.; Surace, J.; Dyk, S. D. Van; Cody, A.; Boyer, M. L.; Bond, H. E.; Monson, A.; Bally, J.; Khan, R.; Levesque, E.; Fox, O.; Williams, R.; Whitelock, P. A.; Mohamed, S.; Gehrz, R. D.; Amodeo, S.; Shenoy, D.; Carlon, R.; Cass, A.; Corgan, D.; Dykhoff, D.; Faella, J.; Gburek, T.; Smith, N.; Cantiello, M.; Langer, N.; Ofek, E.; Johansson, J.; Parthasarathy, M.; Hsiao, E.; Phillips, M.; Morrell, N.; Gonzalez, C.; Contreras, C.

    2018-04-01

    We report the discoveries of mid-infrared transients/strong variables found in the course of the Spitzer InfraRed Intensive Transients Survey (SPIRITS) using Spitzer Early Release Data (ATel #6644, #7929, #8688, #8940, #9434, #10171, #10172, #10488, #10903).

  10. SPIRITS: SPitzer InfraRed Intensive Transients Survey

    Science.gov (United States)

    Kasliwal, Mansi; Jencson, Jacob; Lau, Ryan; Masci, Frank; Helou, George; Williams, Robert; Bally, John; Bond, Howard; Whitelock, Patricia; Cody, Ann Marie; Gehrz, Robert; Tinyanont, Samaporn; Smith, Nathan; Surace, Jason; Armus, Lee; Cantiello, Matteo; Langer, Norbert; Levesque, Emily; Mohamed, Shazrene; Ofek, Eran; Parthasarathy, Mudumba; van Dyk, Schuyler; Boyer, Martha; Phillips, Mark; Hsiao, Eric; Morrell, Nidia; Perley, Dan; Gonzalez, Consuelo; Contreras, Carlos; Jones, Olivia; Ressler, Michael; Adams, Scott; Moore, Anna; Cook, David; Fox, Ori; Johansson, Joel; Khan, Rubab; Monson, Andrew; Hankins, Matthew; Goldman, Steven; Jacob, Jencson

    2018-05-01

    Spitzer is pioneering a systematic exploration of the dynamic infrared sky. Our SPitzer InfraRed Intensive Transients Survey (SPIRITS) has already discovered 78 explosive transients and 2457 eruptive variables. Of these 78 infrared transients, 60 are so red that they are devoid of optical counterparts and we call them SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). The nature of SPRITEs is unknown and progress on deciphering the explosion physics depends on mid-IR spectroscopy. Multiple physical origins have been proposed including stellar merger, birth of a massive binary, electron capture supernova and stellar black hole formation. Hence, we propose a modest continuation of SPIRITS, focusing on discovering and monitoring SPRITEs, in preparation for follow-up with the James Webb Space Telescope (JWST). As the SPRITEs evolve and cool, the bulk of the emission shifts to longer wavelengths. MIRI aboard JWST will be the only available platform in the near future capable of characterizing SPRITEs out to 28 um. Specifically, the low resolution spectrometer would determine dust mass, grain chemistry, ice abundance and energetics to disentangle the proposed origins. The re-focused SPIRITS program consists of continued Spitzer monitoring of those 106 luminous galaxies that are known SPRITE hosts or are most likely to host new SPRITEs. Scaling from the SPIRITS discovery rate, we estimate finding 10 new SPRITEs and 2-3 new supernovae in Cycle 14. The SPIRITS team remains committed to extensive ground-based follow-up. The Spitzer observations proposed here are essential for determining the final fates of active SPRITEs as well as bridging the time lag between the current SPIRITS survey and JWST launch.

  11. IPHAS A-TYPE STARS WITH MID-INFRARED EXCESSES IN SPITZER SURVEYS

    International Nuclear Information System (INIS)

    Hales, Antonio S.; Barlow, Michael J.; Drew, Janet E.; Unruh, Yvonne C.; Greimel, Robert; Irwin, Michael J.; Gonzalez-Solares, Eduardo

    2009-01-01

    We have identified 17 A-type stars in the Galactic Plane that have mid-infrared (mid-IR) excesses at 8 μm. From observed colors in the (r' - Hα) - (r' - i') plane, we first identified 23,050 early A-type main-sequence (MS) star candidates in the Isaac Newton Photometric H-Alpha Survey (IPHAS) point source database that are located in Spitzer Galactic Legacy Mid-Plane Survey Extraordinaire Galactic plane fields. Imposing the requirement that they be detected in all seven Two Micron All Sky Survey and Infrared Astronomical Satellite bands led to a sample of 2692 candidate A-type stars with fully sampled 0.6 to 8 μm spectral energy distributions (SEDs). Optical classification spectra of 18 of the IPHAS candidate A-type MS stars showed that all but one could be well fitted using MS A-type templates, with the other being an A-type supergiant. Out of the 2692 A-type candidates 17 (0.6%) were found to have 8 μm excesses above the expected photospheric values. Taking into account non-A-Type contamination estimates, the 8 μm excess fraction is adjusted to ∼0.7%. The distances to these sources range from 0.7 to 2.5 kpc. Only 10 out of the 17 excess stars had been covered by Spitzer MIPSGAL survey fields, of which five had detectable excesses at 24 μm. For sources with excesses detected in at least two mid-IR wavelength bands, blackbody fits to the excess SEDs yielded temperatures ranging from 270 to 650 K, and bolometric luminosity ratios L IR /L * from 2.2 x 10 -3 - 1.9 x 10 -2 , with a mean value of 7.9 x 10 -3 (these bolometric luminosities are lower limits as cold dust is not detectable by this survey). Both the presence of mid-IR excesses and the derived bolometric luminosity ratios are consistent with many of these systems being in the planet-building transition phase between the early protoplanetary disk phase and the later debris disk phase.

  12. Biographical encyclopedia of astronomers

    CERN Document Server

    Trimble, Virginia; Williams, Thomas; Bracher, Katherine; Jarrell, Richard; Marché, Jordan; Palmeri, JoAnn; Green, Daniel

    2014-01-01

    The Biographical Encyclopedia of Astronomers is a unique and valuable resource for historians and astronomers alike. It includes approx. 1850 biographical sketches on astronomers from antiquity to modern times. It is the collective work of 430 authors edited by an editorial board of 8 historians and astronomers. This reference provides biographical information on astronomers and cosmologists by utilizing contemporary historical scholarship. The fully corrected and updated second edition adds approximately 300 biographical sketches. Based on ongoing research and feedback from the community, the new entries will fill gaps and provide expansions. In addition, greater emphasis on Russo phone astronomers and radio astronomers is given. Individual entries vary from 100 to 1500 words, including the likes of the super luminaries such as Newton and Einstein, as well as lesser-known astronomers like Galileo's acolyte, Mario Guiducci.

  13. Spitzer - Hot & Colorful Student Activities

    Science.gov (United States)

    McDonald, D.; Rebull, L. M.; DeWolf, C.; Guastella, P.; Johnson, C. H.; Schaefers, J.; Spuck, T.; McDonald, J. G., III; DeWolf, T.; Brock, S.; Boerma, J.; Bemis, G.; Paulsen, K.; Yueh, N.; Peter, A.; Wassmer, W.; Haber, R.; Scaramucci, A.; Butchart, J.; Holcomb, A.; Karns, B.; Kennedy, S.; Siegel, R.; Weiser, S.

    2009-01-01

    In this poster, we present the results of several activities developed for the general science student to explore infrared light. The first activity involved measuring infrared radiation using an updated version of Newton's experiment of splitting white light and finding IR radiation. The second used Leslie's cube to allow students to observe different radiators, while the third used a modern infrared thermometer to measure and identify IR sources in an enclosed box. The last activity involved students making false-color images from narrow-band filter images from data sets from Spitzer Space Telescope, STScI Digitized Sky Survey and other sources. Using computer programs like Adobe Photoshop and free software such as ds9, Spot and Leopard, poster-like images were created by the students. This research is funded by the Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO). Please see our companion poster, Johnson et al., on the science aspect of this program, and another poster on the educational aspects, Guastella et al.

  14. Science Initiatives of the US Virtual Astronomical Observatory

    Science.gov (United States)

    Hanisch, R. J.

    2012-09-01

    The United States Virtual Astronomical Observatory program is the operational facility successor to the National Virtual Observatory development project. The primary goal of the US VAO is to build on the standards, protocols, and associated infrastructure developed by NVO and the International Virtual Observatory Alliance partners and to bring to fruition a suite of applications and web-based tools that greatly enhance the research productivity of professional astronomers. To this end, and guided by the advice of our Science Council (Fabbiano et al. 2011), we have focused on five science initiatives in the first two years of VAO operations: 1) scalable cross-comparisons between astronomical source catalogs, 2) dynamic spectral energy distribution construction, visualization, and model fitting, 3) integration and periodogram analysis of time series data from the Harvard Time Series Center and NASA Star and Exoplanet Database, 4) integration of VO data discovery and access tools into the IRAF data analysis environment, and 5) a web-based portal to VO data discovery, access, and display tools. We are also developing tools for data linking and semantic discovery, and have a plan for providing data mining and advanced statistical analysis resources for VAO users. Initial versions of these applications and web-based services are being released over the course of the summer and fall of 2011, with further updates and enhancements planned for throughout 2012 and beyond.

  15. Science Initiatives of the US Virtual Astronomical Observatory

    Directory of Open Access Journals (Sweden)

    Hanisch Robert J.

    2012-09-01

    Full Text Available The United States Virtual Astronomical Observatory program is the operational facility successor to the National Virtual Observatory development project. The primary goal of the US VAO is to build on the standards, protocols, and associated infrastructure developed by NVO and the International Virtual Observatory Alliance partners and to bring to fruition a suite of applications and web-based tools that greatly enhance the research productivity of professional astronomers. To this end, and guided by the advice of our Science Council (advisory committee, we are focusing on five science initiatives in the first two years of VAO operations: (1 scalable cross-comparisons between astronomical source catalogs, (2 dynamic spectral energy distribution construction, visualization, and model fitting, (3 integration and periodogram analysis of time series data from the Harvard Time Series Center and NASA Star and Exoplanet Database, (4 integration of VO data discovery and access tools into the IR AF data analysis environment, and (5 a web-based portal to VO data discovery, access, and display tools. We are also developing tools for data linking and semantic discovery, and have a plan for providing data mining and advanced statistical analysis resources for VAO users. Initial versions of these applications and web-based services are being released over the course of the summer and fall of 2011, with further updates and enhancements planned for throughout 2012 and beyond.

  16. The Size Distribution of Very Small Near Earth Objects As Measured by Warm Spitzer

    NARCIS (Netherlands)

    Trilling, David E.; Hora, J.; Burt, B.; Delbo, M.; Emery, J.; Fazio, G.; Fuentes, C.; Harris, A.; Mueller, M.; Mommert, M.; Smith, H.

    2013-01-01

    We have carried out a pilot search for Near Earth Objects (NEOs) with 84 hours of Warm Spitzer time in April, 2013. Results are obtained through a multi-step process: implanting synthetic objects in the Spitzer data stream; processing the Spitzer data; linking non-sidereal sources to form plausible

  17. The PACA Project: When Amateur Astronomers Become Citizen Scientists

    Science.gov (United States)

    Yanamandra-Fisher, P. A.

    2014-12-01

    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON in 2013. Following the success of the professional-amateur astronomer collaboration in scientific research via social media, it is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: (1) the establishment of a network of astronomers and related professionals, that can be galvanized into action on short notice to support observing campaigns; (2) assist in various science investigations pertinent to the campaign; (3) provide an alert-sounding mechanism should the need arise; (4) immediate outreach and dissemination of results via our media/blogger members; (5) provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. In 2014, two new comet observing campaigns involving pro-am collaborations have been initiated: (1) C/2013 A1 (C/SidingSpring) and (2) 67P/Churyumov-Gerasimenko (CG), target for ESA/Rosetta mission. The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA portal that currently is focused on comets: from supporting observing campaigns of current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers

  18. Virtual Observatories, Data Mining, and Astroinformatics

    Science.gov (United States)

    Borne, Kirk

    The historical, current, and future trends in knowledge discovery from data in astronomy are presented here. The story begins with a brief history of data gathering and data organization. A description of the development ofnew information science technologies for astronomical discovery is then presented. Among these are e-Science and the virtual observatory, with its data discovery, access, display, and integration protocols; astroinformatics and data mining for exploratory data analysis, information extraction, and knowledge discovery from distributed data collections; new sky surveys' databases, including rich multivariate observational parameter sets for large numbers of objects; and the emerging discipline of data-oriented astronomical research, called astroinformatics. Astroinformatics is described as the fourth paradigm of astronomical research, following the three traditional research methodologies: observation, theory, and computation/modeling. Astroinformatics research areas include machine learning, data mining, visualization, statistics, semantic science, and scientific data management.Each of these areas is now an active research discipline, with significantscience-enabling applications in astronomy. Research challenges and sample research scenarios are presented in these areas, in addition to sample algorithms for data-oriented research. These information science technologies enable scientific knowledge discovery from the increasingly large and complex data collections in astronomy. The education and training of the modern astronomy student must consequently include skill development in these areas, whose practitioners have traditionally been limited to applied mathematicians, computer scientists, and statisticians. Modern astronomical researchers must cross these traditional discipline boundaries, thereby borrowing the best of breed methodologies from multiple disciplines. In the era of large sky surveys and numerous large telescopes, the potential

  19. Spitzer secondary eclipses of Qatar-1b

    Science.gov (United States)

    Garhart, Emily; Deming, Drake; Mandell, Avi; Knutson, Heather; Fortney, Jonathan J.

    2018-02-01

    Aims: Previous secondary eclipse observations of the hot Jupiter Qatar-1b in the Ks band suggest that it may have an unusually high day side temperature, indicative of minimal heat redistribution. There have also been indications that the orbit may be slightly eccentric, possibly forced by another planet in the system. We investigate the day side temperature and orbital eccentricity using secondary eclipse observations with Spitzer. Methods: We observed the secondary eclipse with Spitzer/IRAC in subarray mode, in both 3.6 and 4.5 μm wavelengths. We used pixel-level decorrelation to correct for Spitzer's intra-pixel sensitivity variations and thereby obtain accurate eclipse depths and central phases. Results: Our 3.6 μm eclipse depth is 0.149 ± 0.051% and the 4.5 μm depth is 0.273 ± 0.049%. Fitting a blackbody planet to our data and two recent Ks band eclipse depths indicates a brightness temperature of 1506 ± 71 K. Comparison to model atmospheres for the planet indicates that its degree of longitudinal heat redistribution is intermediate between fully uniform and day-side only. The day side temperature of the planet is unlikely to be as high (1885 K) as indicated by the ground-based eclipses in the Ks band, unless the planet's emergent spectrum deviates strongly from model atmosphere predictions. The average central phase for our Spitzer eclipses is 0.4984 ± 0.0017, yielding e cos ω = -0.0028 ± 0.0027. Our results are consistent with a circular orbit, and we constrain e cos ω much more strongly than has been possible with previous observations. Tables of the lightcurve data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A55

  20. Revealing evolved massive stars with Spitzer

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2010-06-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24-μm data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). We interpret this similarity as an indication that the central stars of detected nebulae are either LBVs or related evolved massive stars. Our interpretation is supported by follow-up spectroscopy of two dozen of these central stars, most of which turn out to be either candidate LBVs (cLBVs), blue supergiants or WNL stars. We expect that the forthcoming spectroscopy of the remaining objects from our list, accompanied by the spectrophotometric monitoring of the already discovered cLBVs, will further increase the known population of Galactic LBVs. This, in turn, will have profound consequences for better understanding the LBV phenomenon and its role in the transition between hydrogen-burning O stars and helium-burning WR stars. We also report on the detection of an arc-like structure attached to the cLBV HD 326823 and an arc associated with the LBV R99 (HD 269445) in the LMC. Partially based on observations collected at the German-Spanish Astronomical Centre, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); fabrika@sao.ru (SF)

  1. Early 2017 observations of TRAPPIST-1 with Spitzer

    Science.gov (United States)

    Delrez, L.; Gillon, M.; Triaud, A. H. M. J.; Demory, B.-O.; de Wit, J.; Ingalls, J. G.; Agol, E.; Bolmont, E.; Burdanov, A.; Burgasser, A. J.; Carey, S. J.; Jehin, E.; Leconte, J.; Lederer, S.; Queloz, D.; Selsis, F.; Van Grootel, V.

    2018-04-01

    The recently detected TRAPPIST-1 planetary system, with its seven planets transiting a nearby ultracool dwarf star, offers the first opportunity to perform comparative exoplanetology of temperate Earth-sized worlds. To further advance our understanding of these planets' compositions, energy budgets, and dynamics, we are carrying out an intensive photometric monitoring campaign of their transits with the Spitzer Space Telescope. In this context, we present 60 new transits of the TRAPPIST-1 planets observed with Spitzer/Infrared Array Camera (IRAC) in 2017 February and March. We combine these observations with previously published Spitzer transit photometry and perform a global analysis of the resulting extensive data set. This analysis refines the transit parameters and provides revised values for the planets' physical parameters, notably their radii, using updated properties for the star. As part of our study, we also measure precise transit timings that will be used in a companion paper to refine the planets' masses and compositions using the transit timing variations method. TRAPPIST-1 shows a very low level of low-frequency variability in the IRAC 4.5-μm band, with a photometric RMS of only 0.11 per cent at a 123-s cadence. We do not detect any evidence of a (quasi-)periodic signal related to stellar rotation. We also analyse the transit light curves individually, to search for possible variations in the transit parameters of each planet due to stellar variability, and find that the Spitzer transits of the planets are mostly immune to the effects of stellar variations. These results are encouraging for forthcoming transmission spectroscopy observations of the TRAPPIST-1 planets with the James Webb Space Telescope.

  2. SPITZER SPACE TELESCOPE MID-IR LIGHT CURVES OF NEPTUNE

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, John; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William [Spitzer Science Center (SSC), California Institute of Technology, Pasadena, CA 91125 (United States); Marley, Mark S. [NASA Ames Research Center, Space Sciences and Astrobiology Division, MS245-3, Moffett Field, CA 94035 (United States); Gizis, John E. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Kirkpatrick, J. Davy [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Simon, Amy A. [NASA Goddard Space Flight Center, Solar System Exploration Division (690.0), 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Wong, Michael H. [University of California, Department of Astronomy, Berkeley CA 94720-3411 (United States)

    2016-11-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 μ m. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 μ m and 0.6 mag at 4.5 μ m. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 μ m) and W2 (4.6 μ m) from the Wide-feld Infrared Survey Explorer ( WISE )/ NEOWISE archive at six epochs in 2010–2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler / K 2 in the visible (amplitude ∼0.02 mag) or at 845 nm with the Hubble Space Telescope ( HST ) in 2015 and at 763 nm in 2016 (amplitude ∼0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune’s atmosphere than for K 2. Methane gas is the dominant opacity source in Neptune’s atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 μ m filters.

  3. THE SPITZER -HETDEX EXPLORATORY LARGE-AREA SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Papovich, C.; Shipley, H. V.; Mehrtens, N.; Lanham, C.; DePoy, D. L.; Kawinwanichakij, L. [Department of Physics and Astronomy, Texas A and M University, College Station, TX, 77843-4242 (United States); Lacy, M. [North American ALMA Science Center, NRAO Headquarters, Charlottesville, VA 22903 (United States); Ciardullo, R.; Gronwall, C. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Finkelstein, S. L.; Drory, N.; Gebhardt, K.; Hill, G. J.; Jogee, S. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Bassett, R. [International Centre for Radio Astronomy Research, University of Western Australia, 7 Fairway, Crawley, WA 6009 (Australia); Behroozi, P. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Blanc, G. A. [Departamento de Astronomía, Universidad de Chile, Camino del Observatorio 1515, Las Condes, Santiago (Chile); Jong, R. S. de [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Gawiser, E. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Hopp, U., E-mail: papovich@physics.tamu.edu, E-mail: papovich@tamu.edu [Max-Planck-Institut für Extraterrestrische Physik, D-85741, Garching (Germany); and others

    2016-06-01

    We present post-cryogenic Spitzer imaging at 3.6 and 4.5 μ m with the Infrared Array Camera (IRAC) of the Spitzer /HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers ≈24 deg{sup 2} of the Sloan Digital Sky Survey “Stripe 82” region, and falls within the footprints of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R ∼ 800 spectroscopy will produce ∼200,000 redshifts from the Ly α emission for galaxies in the range 1.9 <  z  < 3.5, and an additional ∼200,000 redshifts from the [O ii] emission for galaxies at z  < 0.5. When combined with deep ugriz images from the Dark Energy Camera, K -band images from NEWFIRM, and other ancillary data, the IRAC photometry from Spitzer will enable a broad range of scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, the presence of active galactic nuclei, and environment over a co-moving volume of ∼0.5 Gpc{sup 3} at 1.9 <  z  < 3.5. Here, we discuss the properties of the SHELA IRAC data set, including the data acquisition, reduction, validation, and source catalogs. Our tests show that the images and catalogs are 80% (50%) complete to limiting magnitudes of 22.0 (22.6) AB mag in the detection image, which is constructed from the weighted sum of the IRAC 3.6 and 4.5 μ m images. The catalogs reach limiting sensitivities of 1.1  μ Jy at both 3.6 and 4.5 μ m (1 σ , for R = 2″ circular apertures). As a demonstration of the science, we present IRAC number counts, examples of highly temporally variable sources, and galaxy surface density profiles of rich galaxy clusters. In the spirit of the Spitzer Exploratory programs, we provide all of the images and catalogs as part of the publication.

  4. THE SPITZER -HETDEX EXPLORATORY LARGE-AREA SURVEY

    International Nuclear Information System (INIS)

    Papovich, C.; Shipley, H. V.; Mehrtens, N.; Lanham, C.; DePoy, D. L.; Kawinwanichakij, L.; Lacy, M.; Ciardullo, R.; Gronwall, C.; Finkelstein, S. L.; Drory, N.; Gebhardt, K.; Hill, G. J.; Jogee, S.; Bassett, R.; Behroozi, P.; Blanc, G. A.; Jong, R. S. de; Gawiser, E.; Hopp, U.

    2016-01-01

    We present post-cryogenic Spitzer imaging at 3.6 and 4.5 μ m with the Infrared Array Camera (IRAC) of the Spitzer /HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers ≈24 deg 2 of the Sloan Digital Sky Survey “Stripe 82” region, and falls within the footprints of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R ∼ 800 spectroscopy will produce ∼200,000 redshifts from the Ly α emission for galaxies in the range 1.9 <  z  < 3.5, and an additional ∼200,000 redshifts from the [O ii] emission for galaxies at z  < 0.5. When combined with deep ugriz images from the Dark Energy Camera, K -band images from NEWFIRM, and other ancillary data, the IRAC photometry from Spitzer will enable a broad range of scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, the presence of active galactic nuclei, and environment over a co-moving volume of ∼0.5 Gpc 3 at 1.9 <  z  < 3.5. Here, we discuss the properties of the SHELA IRAC data set, including the data acquisition, reduction, validation, and source catalogs. Our tests show that the images and catalogs are 80% (50%) complete to limiting magnitudes of 22.0 (22.6) AB mag in the detection image, which is constructed from the weighted sum of the IRAC 3.6 and 4.5 μ m images. The catalogs reach limiting sensitivities of 1.1  μ Jy at both 3.6 and 4.5 μ m (1 σ , for R = 2″ circular apertures). As a demonstration of the science, we present IRAC number counts, examples of highly temporally variable sources, and galaxy surface density profiles of rich galaxy clusters. In the spirit of the Spitzer Exploratory programs, we provide all of the images and catalogs as part of the publication.

  5. Latin American astronomers and the International Astronomical Union

    Science.gov (United States)

    Torres-Peimbert, S.

    2017-07-01

    Selected aspects of the participation of the Latin American astronomers in the International Astronomical Union are presented: Membership, Governing bodies, IAU meetings, and other activities. The Union was founded in 1919 with 7 initial member states, soon to be followed by Brazil. In 1921 Mexico joined, and in 1928 Argentina also formed part of the Union, while Chile joined in 1947. In 1961 Argentina, Brazil, Chile, Mexico and Venezuela were already member countries. At present (October 2016) 72 countries contribute financially to the Union. The Union lists 12,391 professional astronomers as individual members; of those, 692 astronomers work in Latin America and the Caribbean, from 13 member states (Argentina, Bolivia , Brazil, Chile, Colombia, Costa Rica, Cuba, Honduras, Mexico, Panamá, Perú, Uruguay and Venezuela) as well as from Ecuador and Puerto Rico. This group comprises 5.58% of the total membership, a figure somewhat lower than the fraction of the population in the region, which is 8.6% of the world population. Of the Latin American members, 23.4% are women and 76.6% are men; slightly higher than the whole membership of Union, which is of 16.9%. In the governing bodies it can be mentioned that there have been 2 Presidents of the Union (Jorge Sahade and Silvia Torres-Peimbert), 7 VicePresidents (Guillermo Haro, Jorge Sahade, Manuel Peimbert Claudio Anguita, Silvia Torres-Peimbert, Beatriz Barbuy, and Marta G. Rovira). The IAU meetings held in the region, include 2 General Assemblies (the 1991 XXI GA took place in Buenos Aires, Argentina and the 2009 XXVIII GA, in Rio de Janeiro, Brazil), 15 Regional Meetings (in Argentina, Brazil, Chile, Colombia, Mexico, Venezuela and Uruguay), 29 Symposia (in Argentina, Brazil, Chile, Colombia, Costa Rica, Ecuador, Peru and Mexico), 5 Colloquia (in Argentina and Mexico), 8 International Schools for Young Astronomers (in Argentina, Brazil, Cuba, Honduras and Mexico), and 11 projects sponsored by the Office of Astronomy

  6. Amateur astronomers in support of observing campaigns

    Science.gov (United States)

    Yanamandra-Fisher, P.

    2014-07-01

    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON. The success of the paradigm shift in scientific research is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access, and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: - the establishment of a network of astronomers and related professionals that can be galvanized into action on short notice to support observing campaigns; - assist in various science investigations pertinent to the campaign; - provide an alert-sounding mechanism should the need arise; - immediate outreach and dissemination of results via our media/blogger members; - provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. In 2014, two new comet observing campaigns involving pro-am collaborations have been identified: (1) C/2013 A1 (C/Siding Spring) and (2) 67P/Churyumov-Gerasimenko (CG). The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA (Pro-Am Collaborative Astronomy) portal that currently is focused on comets: from supporting observing campaigns for current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers. The recent observation of comet 67P, at a magnitude of 21.2, from Siding

  7. Methods in Astronomical Image Processing

    Science.gov (United States)

    Jörsäter, S.

    A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future

  8. Visible photometry of NEOs in support of a Warm Spitzer program

    Science.gov (United States)

    Trilling, David E.; Jones, Sarah; Penprase, Bryan; Emery, Josh; Harris, Alan; Spahr, Tim; Delbo, Marco

    2009-08-01

    Near Earth Objects (NEOs) may act as dynamical and compositional tracers of the history of near-Earth space. However, despite their scientific importance, key characteristics of the NEO population -- such as the size distribution, mix of albedos and mineralogies, and contributions from so-called dead or dormant comets -- remain largely unexplored; some 99% of all presently known NEOs are essentially uncharacterized. We have been awarded 500 hours of Warm Spitzer time to study some 700 NEOs. The Spitzer data will allow us to measure thermal fluxes and, in combination with optical data, derive albedos and diameters for a large fraction of all known NEOs. Remarkably, the primary uncertainty in our Spitzer results will derive from a lack of good optical photometry for our targets. Fortunately, our targets are generally bright, and obtaining good V band measurements of them requires only a modest amount of time on modest aperture telescopes. We propose here for 36 hours of SMARTS 1.3-m time or 54 hours of SMARTS 0.9-m time to obtain visible photometry of the 72 southern moderately bright ``B'' semester targets in our Warm Spitzer program. These program is ideal for queue/service observing because each observation requires only ~30 minutes and our targets are all over the sky.

  9. The Practical Astronomer

    Science.gov (United States)

    Koester, Jack

    "The Practical Astronomer" by Thomas Dick, LLD, E.C. & J. Biddle, Philadelphia, 1849, is reviewed. Information on telescope makers and astronomers can be found. Mentioned are: Fraunhofer; John Herschel; Lawson; Dollond; Tulley; W. & S. Jones; and S.W. Burnham.

  10. Spitzer Observations of GRB Hosts: A Legacy Approach

    Science.gov (United States)

    Perley, Daniel; Tanvir, Nial; Hjorth, Jens; Berger, Edo; Laskar, Tanmoy; Michalowski, Michal; Chary, Ranga-Ram; Fynbo, Johan; Levan, Andrew

    2012-09-01

    The host galaxies of long-duration GRBs are drawn from uniquely broad range of luminosities and redshifts. Thus they offer the possibility of studying the evolution of star-forming galaxies without the limitations of other luminosity-selected samples, which typically are increasingly biased towards the most massive systems at higher redshift. However, reaping the full benefits of this potential requires careful attention to the selection biases affecting host identification. To this end, we propose observations of a Legacy sample of 70 GRB host galaxies (an additional 70 have already been observed by Spitzer), in order to constrain the mass and luminosity function in GRB-selected galaxies at high redshift, including its dependence on redshift and on properties of the afterglow. Crucially, and unlike previous Spitzer surveys, this sample is carefully designed to be uniform and free of optical selection biases that have caused previous surveys to systematically under-represent the role of luminous, massive hosts. We also propose to extend to larger, more powerfully constraining samples the study of two science areas where Spitzer observations have recently shown spectacular success: the hosts of dust-obscured GRBs (which promise to further our understanding of the connection between GRBs and star-formation in the most luminous galaxies), and the evolution of the mass-metallicity relation at z>2 (for which GRB host observations provide particularly powerful constraints on high-z chemical evolution).

  11. Astronomical Research Using Virtual Observatories

    Directory of Open Access Journals (Sweden)

    M Tanaka

    2010-01-01

    Full Text Available The Virtual Observatory (VO for Astronomy is a framework that empowers astronomical research by providing standard methods to find, access, and utilize astronomical data archives distributed around the world. VO projects in the world have been strenuously developing VO software tools and/or portal systems. Interoperability among VO projects has been achieved with the VO standard protocols defined by the International Virtual Observatory Alliance (IVOA. As a result, VO technologies are now used in obtaining astronomical research results from a huge amount of data. We describe typical examples of astronomical research enabled by the astronomical VO, and describe how the VO technologies are used in the research.

  12. FITSManager: Management of Personal Astronomical Data

    Science.gov (United States)

    Cui, Chenzhou; Fan, Dongwei; Zhao, Yongheng; Kembhavi, Ajit; He, Boliang; Cao, Zihuang; Li, Jian; Nandrekar, Deoyani

    2011-07-01

    With the increase of personal storage capacity, it is easy to find hundreds to thousands of FITS files in the personal computer of an astrophysicist. Because Flexible Image Transport System (FITS) is a professional data format initiated by astronomers and used mainly in the small community, data management toolkits for FITS files are very few. Astronomers need a powerful tool to help them manage their local astronomical data. Although Virtual Observatory (VO) is a network oriented astronomical research environment, its applications and related technologies provide useful solutions to enhance the management and utilization of astronomical data hosted in an astronomer's personal computer. FITSManager is such a tool to provide astronomers an efficient management and utilization of their local data, bringing VO to astronomers in a seamless and transparent way. FITSManager provides fruitful functions for FITS file management, like thumbnail, preview, type dependent icons, header keyword indexing and search, collaborated working with other tools and online services, and so on. The development of the FITSManager is an effort to fill the gap between management and analysis of astronomical data.

  13. Central Stars of Mid-Infrared Nebulae Discovered with Spitzer and WISE

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.

    2017-02-01

    Searches for compact mid-IR nebulae with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE), accompanied by spectroscopic observations of central stars of these nebulae led to the discovery of many dozens of massive stars at different evolutionary stages, of which the most numerous are candidate luminous blue variables (LBVs). In this paper, we give a census of candidate and confirmed Galactic LBVs revealed with Spitzer and WISE, and present some new results of spectroscopic observations of central stars of mid-IR nebulae.

  14. SPITZER SECONDARY ECLIPSES OF WASP-18b

    International Nuclear Information System (INIS)

    Nymeyer, Sarah; Harrington, Joseph; Hardy, Ryan A.; Stevenson, Kevin B.; Campo, Christopher J.; Blecic, Jasmina; Bowman, William C.; Britt, Christopher B. T.; Cubillos, Patricio; Madhusudhan, Nikku; Collier-Cameron, Andrew; Maxted, Pierre F. L.; Loredo, Thomas J.; Hellier, Coel; Anderson, David R.; Gillon, Michael; Hebb, Leslie; Wheatley, Peter J.; Pollacco, Don

    2011-01-01

    The transiting exoplanet WASP-18b was discovered in 2008 by the Wide Angle Search for Planets project. The Spitzer Exoplanet Target of Opportunity Program observed secondary eclipses of WASP-18b using Spitzer's Infrared Array Camera in the 3.6 μm and 5.8 μm bands on 2008 December 20, and in the 4.5 μm and 8.0 μm bands on 2008 December 24. We report eclipse depths of 0.30% ± 0.02%, 0.39% ± 0.02%, 0.37% ± 0.03%, 0.41% ± 0.02%, and brightness temperatures of 3100 ± 90, 3310 ± 130, 3080 ± 140, and 3120 ± 110 K in order of increasing wavelength. WASP-18b is one of the hottest planets yet discovered—as hot as an M-class star. The planet's pressure-temperature profile most likely features a thermal inversion. The observations also require WASP-18b to have near-zero albedo and almost no redistribution of energy from the day side to the night side of the planet.

  15. Astronomical Heritage in the National Culture

    Science.gov (United States)

    Harutyunian, H. A.; Mickaelian, A. M.; Parsamian, E. S.

    2014-10-01

    The book contains Proceedings of the Archaeoastronomical Meeting "Astronomical Heritage in the National Culture" Dedicated to Anania Shirakatsi's 1400th Anniversary and XI Annual Meeting of the Armenian Astronomical Society. It consists of 3 main sections: "Astronomical Heritage", "Anania Shirakatsi" and "Modern Astronomy", as well as Literature about Anania Shirakatsi is included. The book may be interesting for astronomers, historians, archaeologists, linguists, students and other readers.

  16. SPITZER PARALLAX of OGLE-2015-BLG-0966

    DEFF Research Database (Denmark)

    Street, R. A.; Udalski, A.; Novati, S. Calchi

    2016-01-01

    We report the detection of a cold Neptune mplanet = 21 ± 2 M⊕ orbiting a 0.38 M⊙ M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real...

  17. Explanatory supplement to the astronomical almanac

    CERN Document Server

    Urban, Sean E

    2013-01-01

    The Explanatory Supplement to the Astronomical Almanac offers explanatory material, supplemental information and detailed descriptions of the computational models and algorithms used to produce The Astronomical Almanac, which is an annual publication prepared jointly by the US Naval Observatory and Her Majesty's Nautical Almanac Office in the UK. Like The Astronomical Almanac, The Explanatory Supplement provides detailed coverage of modern positional astronomy. Chapters are devoted to the celestial and terrestrial reference frames, orbital ephemerides, precession, nutation, Earth rotation, and coordinate transformations. These topics have undergone substantial revisions since the last edition was published. Astronomical positions are intertwined with timescales and relativity in The Astronomical Almanac, so related chapters are provided in The Explanatory Supplement. The Astronomical Almanac also includes information on lunar and solar eclipses, physical ephemerides of solar system bodies, and calendars, so T...

  18. Astronomical Ecosystems

    Science.gov (United States)

    Neuenschwander, D. E.; Finkenbinder, L. R.

    2004-05-01

    Just as quetzals and jaguars require specific ecological habitats to survive, so too must planets occupy a tightly constrained astronomical habitat to support life as we know it. With this theme in mind we relate the transferable features of our elementary astronomy course, "The Astronomical Basis of Life on Earth." Over the last five years, in a team-taught course that features a spring break field trip to Costa Rica, we have introduced astronomy through "astronomical ecosystems," emphasizing astronomical constraints on the prospects for life on Earth. Life requires energy, chemical elements, and long timescales, and we emphasize how cosmological, astrophysical, and geological realities, through stabilities and catastrophes, create and eliminate niches for biological life. The linkage between astronomy and biology gets immediate and personal: for example, studies in solar energy production are followed by hikes in the forest to examine the light-gathering strategies of photosynthetic organisms; a lesson on tides is conducted while standing up to our necks in one on a Pacific beach. Further linkages between astronomy and the human timescale concerns of biological diversity, cultural diversity, and environmental sustainability are natural and direct. Our experience of teaching "astronomy as habitat" strongly influences our "Astronomy 101" course in Oklahoma as well. This "inverted astrobiology" seems to transform our student's outlook, from the universe being something "out there" into something "we're in!" We thank the SNU Science Alumni support group "The Catalysts," and the SNU Quetzal Education and Research Center, San Gerardo de Dota, Costa Rica, for their support.

  19. Choosing and using astronomical eyepieces

    CERN Document Server

    Paolini, William

    2013-01-01

    This valuable reference fills a number of needs in the field of astronomical eyepieces, including that of a buyer's guide, observer's field guide and technical desk reference. It documents the past market for eyepieces and its evolution right up to the present day. In addition to appealing to practical astronomers - and potentially saving them money - it is useful both as a historical reference and as a detailed review of the current market place for this bustling astronomical consumer product. What distinguishes this book from other publications on astronomy is the involvement of observers from all aspects of the astronomical community, and also the major manufacturers of equipment. It not only catalogs the technical aspects of the many modern eyepieces but also documents amateur observer reactions and impressions of their utility over the years, using many different eyepieces. Eyepieces are the most talked-about accessories and collectible items available to the amateur astronomer. No other item of equi...

  20. Korean Astronomical Calendar, Chiljeongsan

    Science.gov (United States)

    Lee, Eun Hee

    In fifteenth century Korea, there was a grand project for the astronomical calendar and instrument making by the order of King Sejong 世宗 (1418-1450). During this period, many astronomical and calendrical books including Islamic sources in Chinese versions were imported from Ming 明 China, and corrected and researched by the court astronomers of Joseon 朝鮮 (1392-1910). Moreover, the astronomers and technicians of Korea frequently visited China to study astronomy and instrument making, and they brought back useful information in the form of new published books or specifications of instruments. As a result, a royal observatory equipped with 15 types of instrument was completed in 1438. Two types of calendar, Chiljeongsan Naepyeon 七政算內篇 and Chiljeongsan Oepyeon 七政算外篇, based on the Chinese and Islamic calendar systems, respectively, were published in 1444 with a number of calendrical editions such as corrections and example supplements (假令) including calculation methods and results for solar and lunar eclipses.

  1. New Life for Astronomical Instruments of the Past at the Astronomical Observatory of Taras Shevchenko

    Science.gov (United States)

    Kazantseva, Liliya

    2012-09-01

    Astronomical instruments of the past are certainly valuable artifacts of the history of science and education. Like other collections of scientific equipment, they also demonstrate i) development of scientific and technical ideas, ii) technological features of the historical period, iii) professional features of artists or companies -- manufacturers, and iv) national and local specificity of production. However, astronomical instruments are also devices made for observations of rare phenomena -- solar eclipses, transits of planets of the solar disk, etc. Instruments used to study these rare events were very different for each event, since the science changed quickly between events. The Astronomical Observatory of Kyiv National Taras Shevchenko University has a collection of tools made by leading European and local shops from the early nineteenth century. These include tools for optically observing the first artificial Earth satellites, photography, chronometry, and meteorology. In addition, it has assembled a library of descriptions of astronomical instruments and makers'price-lists. Of particular interest are the large stationary tools that are still active in their pavilions. Almost every instrument has a long interesting history. Museification of astronomical instruments gives them a second life, expanding educational programs and tracing the development of astronomy in general and scientific institution and region in particular. It would be advisable to first create a regional database of these rare astronomical instruments (which is already being done in Ukraine), then a common global database. By combining all the historical information about astronomical instruments with the advantages of the Internet, you can show the full evolution of an astronomical instrument with all its features. Time is relentless, and much is destroyed, badly kept and thrown in the garbage. We need time to protect, capture, and tell about it.

  2. Astronomical Instrumentation System Markup Language

    Science.gov (United States)

    Goldbaum, Jesse M.

    2016-05-01

    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  3. Data Mining and Machine Learning in Astronomy

    Science.gov (United States)

    Ball, Nicholas M.; Brunner, Robert J.

    We review the current state of data mining and machine learning in astronomy. Data Mining can have a somewhat mixed connotation from the point of view of a researcher in this field. If used correctly, it can be a powerful approach, holding the potential to fully exploit the exponentially increasing amount of available data, promising great scientific advance. However, if misused, it can be little more than the black box application of complex computing algorithms that may give little physical insight, and provide questionable results. Here, we give an overview of the entire data mining process, from data collection through to the interpretation of results. We cover common machine learning algorithms, such as artificial neural networks and support vector machines, applications from a broad range of astronomy, emphasizing those in which data mining techniques directly contributed to improving science, and important current and future directions, including probability density functions, parallel algorithms, Peta-Scale computing, and the time domain. We conclude that, so long as one carefully selects an appropriate algorithm and is guided by the astronomical problem at hand, data mining can be very much the powerful tool, and not the questionable black box.

  4. Dayside atmospheric structure of HD209458b from Spitzer eclipses

    Science.gov (United States)

    Reinhard, Matthew; Harrington, Joseph; Challener, Ryan; Cubillos, Patricio; Blecic, Jasmina

    2017-10-01

    HD209458b is a hot Jupiter with a radius of 1.26 ± 0.08 Jupiter radii (Richardson et al, 2006) and a mass of 0.64 ± 0.09 Jupiter masses (Snellen et al, 2010). The planet orbits a G0 type star with an orbital period of 3.52472 ± 2.81699e-05 days, and a relatively low eccentricity of 0.0082 +0.0078/-0.0082 (Wang and Ford 2013). We report the analysis of observations of HD209458b during eclipse, taken in the 3.6 and 4.5 micron channels by the Spitzer Space Telescope's Infrared Array Camera (Program 90186). We produce a photometric light curve of the eclipses in both channels, using our Photometry for Orbits Eclipses and Transits (POET) code, and calculate the brightness temperatures and eclipse depths. We also present best estimates of the atmospheric parameters of HD209458b using our Bayesian Atmospheric Radiative Transfer (BART) code. These are some preliminary results of what will be an analysis of all available Spitzer data for HD209458b. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  5. ExploreNEOs: The Warm Spitzer Near Earth Object Survey

    NARCIS (Netherlands)

    Trilling, D. E.; Hora, J. L.; Mueller, M.; Thomas, C. A.; Harris, A. W.; Hagen, A. R.; Mommert, M.; Benner, L.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Delbo, M.; Emery, J. P.; Fazio, G.; Kistler, J. L.; Mainzer, A.; Morbidelli, A.; Penprase, B.; Smith, H. A.; Spahr, T. B.; Stansberry, J. A.

    2012-01-01

    We have observed some 600 near Earth objects (NEOs) at 3.6 and 4.5 microns with the Warm Spitzer Space Telescope. We derive the albedo and diameter for each NEO to characterize global properties of the NEO population, among other goals.

  6. VizieR Online Data Catalog: Deconvolved Spitzer images of 89 protostars (Velusamy+, 2014)

    Science.gov (United States)

    Velusamy, T.; Langer, W. D.; Thompson, T.

    2016-03-01

    The sample of Class 0 protostars, H2 jets, and outflow sour selected for HiRes deconvolution of Spitzer images are listed in Table1. The majority of our target protostellar objects were selected from "The Youngest Protostars" webpage hosted by the University of Kent (http://astro.kent.ac.uk/protostars/old/), which are based on the young Class 0 objects compiled by Froebrich 2005 (cat. J/ApJS/156/169). In addition to these objects, our sample includes some Herbig-Haro (HH) sources and a few well known jet outflow sources. Our sample also includes one high-mass protostar (IRAS20126+4104; cf. Caratti o Garatti et al., 2008A&A...485..137C) to demonstrate the use of HiRes for such sources. Our choice for target selection was primarily based on the availability of Spitzer images in IRAC and MIPS bands in the archives and the feasibility for reprocessing based on the published Spitzer images wherever available. (1 data file).

  7. Spitzer ultra faint survey program (surfs up). I. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Bradač, Maruša; Huang, Kuang-Han; Cain, Benjamin; Hall, Nicholas; Lubin, Lori [Department of Physics, University of California, Davis, CA 95616 (United States); Ryan, Russell; Casertano, Stefano [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lemaux, Brian C. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Schrabback, Tim; Hildebrandt, Hendrik [Argelander-Institut für Astronomie, Auf Dem Hügel 71, D-53121 Bonn (Germany); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Allen, Steve; Von der Linden, Anja [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States); Gladders, Mike [The University of Chicago, The Kavli Institute for Cosmological Physics, 933 East 56th Street, Chicago, IL 60637 (United States); Hinz, Joannah; Zaritsky, Dennis [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Treu, Tommaso, E-mail: marusa@physics.ucdavis.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2014-04-20

    Spitzer UltRa Faint SUrvey Program is a joint Spitzer and Hubble Space Telescope Exploration Science program using 10 galaxy clusters as cosmic telescopes to study z ≳ 7 galaxies at intrinsically lower luminosities, enabled by gravitational lensing, than blank field surveys of the same exposure time. Our main goal is to measure stellar masses and ages of these galaxies, which are the most likely sources of the ionizing photons that drive reionization. Accurate knowledge of the star formation density and star formation history at this epoch is necessary to determine whether these galaxies indeed reionized the universe. Determination of the stellar masses and ages requires measuring rest-frame optical light, which only Spitzer can probe for sources at z ≳ 7, for a large enough sample of typical galaxies. Our program consists of 550 hr of Spitzer/IRAC imaging covering 10 galaxy clusters with very well-known mass distributions, making them extremely precise cosmic telescopes. We combine our data with archival observations to obtain mosaics with ∼30 hr exposure time in both 3.6 μm and 4.5 μm in the central 4' × 4' field and ∼15 hr in the flanking fields. This results in 3σ sensitivity limits of ∼26.6 and ∼26.2 AB magnitudes for the central field in the IRAC 3.6 and 4.5 μm bands, respectively. To illustrate the survey strategy and characteristics we introduce the sample, present the details of the data reduction and demonstrate that these data are sufficient for in-depth studies of z ≳ 7 sources (using a z = 9.5 galaxy behind MACS J1149.5+2223 as an example). For the first cluster of the survey (the Bullet Cluster) we have released all high-level data mosaics and IRAC empirical point-spread function models. In the future we plan to release these data products for the entire survey.

  8. Amateur Astronomers: Secret Agents of EPO

    Science.gov (United States)

    Berendsen, M.; White, V.; Devore, E.; Reynolds, M.

    2008-06-01

    Amateur astronomers prime the public to be more interested, receptive, and excited about space science, missions, and programs. Through recent research and targeted programs, amateur astronomy outreach is being increasingly recognized by professional astronomers, educators, and other amateurs as a valued and important service. The Night Sky Network program, administered by the ASP, is the first nationwide research-based program specifically targeted to support outreach by amateur astronomers. This Network of trained and informed amateur astronomers can provide a stimulating introduction to your EPO programs as Network members share the night sky with families, students, and youth groups.

  9. Spitzer mid-infrared spectra of cool-core galaxy clusters

    NARCIS (Netherlands)

    de Messières, G.E.; O'Connell, R.W.; McNamara, B.R.; Donahue, M.; Nulsen, P.E.J.; Voit, G.M.; Wise, M.W.; Smith, B.; Higdon, J.; Higdon, S.; Bastian, N.

    2010-01-01

    We have obtained mid-infrared spectra of nine cool-core galaxy clusters with the Infrared Spectrograph aboard the Spitzer Space Telescope. X-ray, ultraviolet and optical observations have demonstrated that each of these clusters hosts a cooling flow which seems to be fueling vigorous star formation

  10. SPIRITS: Uncovering Unusual Infrared Transients with Spitzer

    International Nuclear Information System (INIS)

    Kasliwal, Mansi M.; Jencson, Jacob E.; Tinyanont, Samaporn; Cao, Yi; Cook, David; Bally, John; Masci, Frank; Armus, Lee; Cody, Ann Marie; Bond, Howard E.; Contreras, Carlos; Dykhoff, Devin A.; Amodeo, Samuel; Carlon, Robert L.; Cass, Alexander C.; Corgan, David T.; Faella, Joseph; Boyer, Martha; Cantiello, Matteo; Fox, Ori D.

    2017-01-01

    We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS—SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer /IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between −11 and −14 (Vega-mag) and [3.6]–[4.5] colors between 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from <0.1 mag yr −1 to >7 mag yr −1 . SPRITEs occur in star-forming galaxies. We present an in-depth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.

  11. SPIRITS: Uncovering Unusual Infrared Transients with Spitzer

    Energy Technology Data Exchange (ETDEWEB)

    Kasliwal, Mansi M.; Jencson, Jacob E.; Tinyanont, Samaporn; Cao, Yi; Cook, David [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Bally, John [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Masci, Frank; Armus, Lee [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cody, Ann Marie [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Bond, Howard E. [Dept. of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Contreras, Carlos [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Dykhoff, Devin A.; Amodeo, Samuel; Carlon, Robert L.; Cass, Alexander C.; Corgan, David T.; Faella, Joseph [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S. E., University of Minnesota, Minneapolis, MN 55455 (United States); Boyer, Martha [NASA Goddard Space Flight Center, MC 665, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Cantiello, Matteo [Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010 (United States); Fox, Ori D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2017-04-20

    We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS—SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer /IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between −11 and −14 (Vega-mag) and [3.6]–[4.5] colors between 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from <0.1 mag yr{sup −1} to >7 mag yr{sup −1}. SPRITEs occur in star-forming galaxies. We present an in-depth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.

  12. SPITZER IRS SPECTRA OF DEBRIS DISKS IN THE SCORPIUS–CENTAURUS OB ASSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Chen, Christine H.; Mittal, Tushar; Lisse, Carey M. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Manoj, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Rd., Mumbai 400005 (India); Watson, Dan [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Nesvold, Erika; Kuchner, Marc [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2015-08-01

    We analyze spectra obtained with the Spitzer Infrared Spectrograph (IRS) of 110 B-, A-, F-, and G-type stars with optically thin infrared excess in the Scorpius–Centaurus OB association. The ages of these stars range from 11 to 17 Myr. We fit the infrared excesses observed in these sources by Spitzer IRS and the Multiband Imaging Photometer for Spitzer (MIPS) to simple dust models according to Mie theory. We find that nearly all of the objects in our study can be fit by one or two belts of dust. Dust around lower mass stars appears to be closer in than around higher mass stars, particularly for the warm dust component in the two-belt systems, suggesting a mass-dependent evolution of debris disks around young stars. For those objects with stellar companions, all dust distances are consistent with truncation of the debris disk by the binary companion. The gaps between several of the two-belt systems can place limits on the planets that might lie between the belts, potentially constraining the mass and locations of planets that may be forming around these stars.

  13. Using commercial amateur astronomical spectrographs

    CERN Document Server

    Hopkins, Jeffrey L

    2014-01-01

    Amateur astronomers interested in learning more about astronomical spectroscopy now have the guide they need. It provides detailed information about how to get started inexpensively with low-resolution spectroscopy, and then how to move on to more advanced  high-resolution spectroscopy. Uniquely, the instructions concentrate very much on the practical aspects of using commercially-available spectroscopes, rather than simply explaining how spectroscopes work. The book includes a clear explanation of the laboratory theory behind astronomical spectrographs, and goes on to extensively cover the practical application of astronomical spectroscopy in detail. Four popular and reasonably-priced commercially available diffraction grating spectrographs are used as examples. The first is a low-resolution transmission diffraction grating, the Star Analyser spectrograph. The second is an inexpensive fiber optic coupled bench spectrograph that can be used to learn more about spectroscopy. The third is a newcomer, the ALPY ...

  14. A SPITZER SURVEY FOR DUST IN TYPE IIn SUPERNOVAE

    International Nuclear Information System (INIS)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (>100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (<10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This paper presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days post-discovery. The detection of late-time emission from 10 targets (∼15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at ∼1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable progenitors.

  15. Mining the SDSS SkyServer SQL queries log

    Science.gov (United States)

    Hirota, Vitor M.; Santos, Rafael; Raddick, Jordan; Thakar, Ani

    2016-05-01

    SkyServer, the Internet portal for the Sloan Digital Sky Survey (SDSS) astronomic catalog, provides a set of tools that allows data access for astronomers and scientific education. One of SkyServer data access interfaces allows users to enter ad-hoc SQL statements to query the catalog. SkyServer also presents some template queries that can be used as basis for more complex queries. This interface has logged over 330 million queries submitted since 2001. It is expected that analysis of this data can be used to investigate usage patterns, identify potential new classes of queries, find similar queries, etc. and to shed some light on how users interact with the Sloan Digital Sky Survey data and how scientists have adopted the new paradigm of e-Science, which could in turn lead to enhancements on the user interfaces and experience in general. In this paper we review some approaches to SQL query mining, apply the traditional techniques used in the literature and present lessons learned, namely, that the general text mining approach for feature extraction and clustering does not seem to be adequate for this type of data, and, most importantly, we find that this type of analysis can result in very different queries being clustered together.

  16. Diogenite-like Features in the Spitzer IRS (5-35 micrometers) Spectrum of 956 ELISA

    Science.gov (United States)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2009-01-01

    We report preliminary results from the Spitzer Infrared Spectrograph (IRS) observations of the V-type asteroid 956 Elisa. Elisa was observed as part of a campaign to measure the 5.2-38 micron spectra of small basaltic asteroids with the Spitzer IRS. Targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vesroids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan.

  17. The First Astronomical Observatory in Cluj-Napoca

    Science.gov (United States)

    Szenkovits, Ferenc

    2008-09-01

    One of the most important cities of Romania is Cluj-Napoca (Kolozsvár, Klausenburg). This is a traditional center of education, with many universities and high schools. From the second half of the 18th century the University of Cluj has its own Astronomical Observatory, serving for didactical activities and scientific researches. The famous astronomer Maximillian Hell was one of those Jesuits who put the base of this Astronomical Observatory. Our purpose is to offer a short history of the beginnings of this Astronomical Observatory.

  18. Storing Astronomical Information on the Romanian Territory

    Science.gov (United States)

    Stavinschi, M.; Mioc, V.

    2004-12-01

    Romanian astronomy has a more than 2000-year old tradition, which is, however, little known abroad. The first known archive of astronomical information is the Dacian sanctuary at Sarmizegetusa Regia, erected in the first century AD, having similarities with that of Stonehenge. After a gap of more than 1000 years, more sources of astronomical information become available, mainly records of astronomical events. Monasteries were the safest storage places of these genuine archives. We present a classification of the ways of storing astronomical information, along with characteristic examples.

  19. THE SPITZER LOCAL VOLUME LEGACY: SURVEY DESCRIPTION AND INFRARED PHOTOMETRY

    International Nuclear Information System (INIS)

    Dale, D. A.; Cohen, S. A.; Johnson, L. C.; Schuster, M. D.; Calzetti, D.; Engelbracht, C. W.; Kennicutt, R. C.; Block, M.; Marble, A. R.; Gil de Paz, A.; Lee, J. C.; Begum, A.; Dalcanton, J. J.; Funes, J. G.; Gordon, K. D.; Johnson, B. D.; Sakai, S.; Skillman, E. D.; Van Zee, L.; Walter, F.

    2009-01-01

    The survey description and the near-, mid-, and far-infrared flux properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer Space Telescope legacy program that surveys the local universe out to 11 Mpc, built upon a foundation of ultraviolet, Hα, and Hubble Space Telescope imaging from 11HUGS (11 Mpc Hα and Ultraviolet Galaxy Survey) and ANGST (ACS Nearby Galaxy Survey Treasury). LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8 μm polycyclic aromatic hydrocarbon emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between the infrared-to-ultraviolet ratio and the ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.

  20. A Spitzer Survey for Dust in Type IIn Supernovae

    Science.gov (United States)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (greater than 100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (less than 10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This article presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days postdiscovery. The detection of late-time emission from ten targets (approximately 15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at approximately 1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable (LBV) progenitors.

  1. THE TAURUS SPITZER SURVEY: NEW CANDIDATE TAURUS MEMBERS SELECTED USING SENSITIVE MID-INFRARED PHOTOMETRY

    International Nuclear Information System (INIS)

    Rebull, L. M.; Padgett, D. L.; McCabe, C.-E.; Noriega-Crespo, A.; Carey, S. J.; Brooke, T.; Hillenbrand, L. A.; Stapelfeldt, K. R.; Angione, J. R.; Huard, T.; Terebey, S.; Audard, M.; Baldovin-Saavedra, C.; Monin, J.-L.; Menard, F.; Bouvier, J.; Fukagawa, M.; Guedel, M.; Knapp, G. R.; Allen, L. E.

    2010-01-01

    We report on the properties of pre-main-sequence objects in the Taurus molecular clouds as observed in seven mid- and far-infrared bands with the Spitzer Space Telescope. There are 215 previously identified members of the Taurus star-forming region in our ∼44 deg 2 map; these members exhibit a range of Spitzer colors that we take to define young stars still surrounded by circumstellar dust (noting that ∼20% of the bona fide Taurus members exhibit no detectable dust excesses). We looked for new objects in the survey field with similar Spitzer properties, aided by extensive optical, X-ray, and ultraviolet imaging, and found 148 new candidate members of Taurus. We have obtained follow-up spectroscopy for about half the candidate sample, thus far confirming 34 new members, three probable new members, and 10 possible new members, an increase of 15%-20% in Taurus members. Of the objects for which we have spectroscopy, seven are now confirmed extragalactic objects, and one is a background Be star. The remaining 93 candidate objects await additional analysis and/or data to be confirmed or rejected as Taurus members. Most of the new members are Class II M stars and are located along the same cloud filaments as the previously identified Taurus members. Among non-members with Spitzer colors similar to young, dusty stars are evolved Be stars, planetary nebulae, carbon stars, galaxies, and active galactic nuclei.

  2. ExploreNEOs: The Warm Spitzer Near Earth Object survey

    NARCIS (Netherlands)

    Mueller, M.; Trilling, D. E.; Hora, J. L.; Harris, A. W.; Benner, L. A. M.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Delbó, M.; Emery, J. P.; Fazio, G.; Hagen, A. R.; Kistler, J. L.; Mainzer, A.; Mommert, M.; Morbidelli, A.; Penprase, B.; Smith, H. A.; Spahr, T. B.; Stansberry, J. A.; Thomas, C. A.

    2011-01-01

    We are carrying out the ExploreNEOs project in which we observe more than 600 near Earth Objects (NEOs) at 3.6 and 4.5 microns with Warm Spitzer. For each NEO we derive diameter and albedo. We present our results to date, which include studies of individual objects, results for our entire observed

  3. Robert Spitzer and psychiatric classification: technical challenges and ethical dilemmas.

    Science.gov (United States)

    Jacob, K S

    2016-01-01

    Dr Robert Leopold Spitzer (May 22, 1932-December 25, 2015), the architect of modern psychiatric diagnostic criteria and classification, died recently at the age of 83 in Seattle. Under his leadership, the American Psychiatric Association's (APA) Diagnostic and Statistical Manuals (DSM) became the international standard.

  4. Astronomical Cybersketching

    CERN Document Server

    Grego, Peter

    2009-01-01

    Outlines the techniques involved in making observational sketches and more detailed 'scientific' drawings of a wide variety of astronomical subjects using modern digital equipment; primarily PDAs and tablet PCs. This book also discusses about choosing hardware and software

  5. The PACA Project: Convergence of Scientific Research, Social Media and Citizen Science in the Era of Astronomical Big Data

    Science.gov (United States)

    Yanamandra-Fisher, Padma A.

    2015-08-01

    The Pro-Am Collaborative Astronomy (PACA) project promotes and supports the professional-amateur astronomer collaboration in scientific research via social media and has been implemented in several comet observing campaigns. In 2014, two comet observing campaigns involving pro-am collaborations were initiated: (1) C/2013 A1 (C/SidingSpring) and (2) 67P/Churyumov-Gerasimenko (CG), target for ESA/Rosetta mission. The evolving need for individual customized observing campaigns has been incorporated into the evolution of The PACA Project that currently is focused on comets: from supporting observing campaigns of current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers in the era of astronmical big data. The empowerment of amateur astronomers vis-à-vis their partnerships with the professional scientists creates a new demographic of data scientists, enabling citizen science of the integrated data from both the professional and amateur communities.While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers. The PACA Project is expanding to include pro-am collaborations on other solar system objects; allow for immersive outreach and include various types of astronomical communities, ranging from individuals, to astronmical societies and telescopic networks. Enabling citizen science research in the era of astronomical big data is a challenge which requires innovative approaches and integration of professional and amateur astronomers with data scientists and some examples of recent projects will be highlighted.

  6. Astronomical Symbolism in Australian Aboriginal Rock Art

    Science.gov (United States)

    Norris, Ray P.; Hamacher, Duane W.

    2011-05-01

    Traditional Aboriginal Australian cultures include a significant astronomical component, perpetuated through oral tradition and ceremony. This knowledge has practical navigational and calendrical functions, and sometimes extends to a deep understanding of the motion of objects in the sky. Here we explore whether this astronomical tradition is reflected in the rock art of Aboriginal Australians. We find several plausible examples of depictions of astronomical figures and symbols, and also evidence that astronomical observations were used to set out stone arrangements. However, we recognise that the case is not yet strong enough to make an unequivocal statement, and describe our plans for further research.

  7. Size and Albedo of Irregular Saturnian Satellites from Spitzer Observations

    NARCIS (Netherlands)

    Mueller, Michael; Grav, T.; Trilling, D.; Stansberry, J.; Sykes, M.

    2008-01-01

    Using MIPS onboard the Spitzer Space Telescope, we observed the thermal emission (24 and, for some targets, 70 um) of eight irregular satellites of Saturn: Albiorix, Siarnaq, Paaliaq, Kiviuq, Ijiraq, Tarvos, Erriapus, and Ymir. We determined the size and albedo of all targets. An analysis of

  8. AstroML: "better, faster, cheaper" towards state-of-the-art data mining and machine learning

    Science.gov (United States)

    Ivezic, Zeljko; Connolly, Andrew J.; Vanderplas, Jacob

    2015-01-01

    We present AstroML, a Python module for machine learning and data mining built on numpy, scipy, scikit-learn, matplotlib, and astropy, and distributed under an open license. AstroML contains a growing library of statistical and machine learning routines for analyzing astronomical data in Python, loaders for several open astronomical datasets (such as SDSS and other recent major surveys), and a large suite of examples of analyzing and visualizing astronomical datasets. AstroML is especially suitable for introducing undergraduate students to numerical research projects and for graduate students to rapidly undertake cutting-edge research. The long-term goal of astroML is to provide a community repository for fast Python implementations of common tools and routines used for statistical data analysis in astronomy and astrophysics (see http://www.astroml.org).

  9. The Victorian Amateur Astronomer: Independent Astronomical Research in Britain 1820-1920

    Science.gov (United States)

    Chapman, Allan

    1999-01-01

    This is the first book to look in detail at amateur astronomy in Victorian Britain. It deals with the technical issues that were active in Victorian astronomy, and reviews the problems of finance, patronage and the dissemination of scientific ideas. It also examines the relationship between the amateur and professional in Britain. It contains a wealth of previously unpublished biographical and anecdotal material, and an extended bibliography with notes incorporating much new scholarship. In The Victorian Amateur Astronomer, Allan Chapman shows that while on the continent astronomical research was lavishly supported by the state, in Britain such research was paid for out of the pockets of highly educated, wealthy gentlemen the so-called Grand Amateurs . It was these powerful individuals who commissioned the telescopes, built the observatories, ran the learned societies, and often stole discoveries from their state-employed colleagues abroad. In addition to the Grand Amateurs , Victorian Britain also contained many self-taught amateurs. Although they belonged to no learned societies, these people provide a barometer of the popularity of astronomy in that age. In the late 19th century, the comfortable middle classes clergymen, lawyers, physicians and retired military officers took to astronomy as a serious hobby. They formed societies which focused on observation, lectures and discussions, and it was through this medium that women first came to play a significant role in British astronomy. Readership: Undergraduate and postgraduate students studying the history of science or humanities, professional historians of science, engineering and technology, particularly those with an interest in astronomy, the development of astronomical ideas, scientific instrument makers, and amateur astronomers.

  10. The astronomical tables of Giovanni Bianchini

    CERN Document Server

    Chabas, Jose

    2009-01-01

    This book describes and analyses, for the first time, the astronomical tables of Giovanni Bianchini of Ferrara (d. after 1469), explains their context, inserts them into an astronomical tradition that began in Toledo, and addresses their diffusion.

  11. The Soviet center of astronomical data

    International Nuclear Information System (INIS)

    Dluzhnevskaya, O.B.

    1982-01-01

    On the basis of the current French-Soviet cooperation in science and technology, the Astronomical Council of the U.S.S.R. Academy of Sciences and the Strasbourg Center signed in 1977 an agreement on setting up the Soviet Center of Astronomical Data as its filial branch. The Soviet Center was created on the basis of a computation center at the Zvenigorod station of the Astronomical Council of the U.S.S.R. Academy of Sciences, which had already had considerable experience of working with stellar catalogues. In 1979 the Center was equipped with a EC-1033 computer. In 1978-1979 the Soviet Center of Astronomical Data (C.A.D.) received from Strasbourg 96 of the most important catalogues. By September 1981 the list of catalogues available at the Soviet Center has reached 140 catalogues some of which are described. (Auth.)

  12. SPITZER IRAC COLOR DIAGNOSTICS FOR EXTENDED EMISSION IN STAR-FORMING REGIONS

    International Nuclear Information System (INIS)

    Ybarra, Jason E.; Tapia, Mauricio; Román-Zúñiga, Carlos G.; Lada, Elizabeth A.

    2014-01-01

    The infrared data from the Spitzer Space Telescope are an invaluable tool for identifying physical processes in star formation. In this study, we calculate the Infrared Array Camera (IRAC) color space of UV fluorescent H 2 and polycyclic aromatic hydrocarbon (PAH) emission in photodissociation regions (PDRs) using the Cloudy code with PAH opacities from Draine and Li. We create a set of color diagnostics that can be applied to study the structure of PDRs and to distinguish between FUV-excited and shock-excited H 2 emission. To test this method, we apply these diagnostics to Spitzer IRAC data of NGC 2316. Our analysis of the structure of the PDR is consistent with previous studies of the region. In addition to UV excited emission, we identify shocked gas that may be part of an outflow originating from the cluster

  13. SPITZER IRAC COLOR DIAGNOSTICS FOR EXTENDED EMISSION IN STAR-FORMING REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ybarra, Jason E.; Tapia, Mauricio; Román-Zúñiga, Carlos G. [Instituto de Astronomía, Universidad Nacional Autónoma de Mexíco, Unidad Académica en Ensenada, Km 103 Carr. Tijuana-Ensenada, 22860 Ensenada BC (Mexico); Lada, Elizabeth A., E-mail: jybarra@astro.unam.mx [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States)

    2014-10-20

    The infrared data from the Spitzer Space Telescope are an invaluable tool for identifying physical processes in star formation. In this study, we calculate the Infrared Array Camera (IRAC) color space of UV fluorescent H{sub 2} and polycyclic aromatic hydrocarbon (PAH) emission in photodissociation regions (PDRs) using the Cloudy code with PAH opacities from Draine and Li. We create a set of color diagnostics that can be applied to study the structure of PDRs and to distinguish between FUV-excited and shock-excited H{sub 2} emission. To test this method, we apply these diagnostics to Spitzer IRAC data of NGC 2316. Our analysis of the structure of the PDR is consistent with previous studies of the region. In addition to UV excited emission, we identify shocked gas that may be part of an outflow originating from the cluster.

  14. Atlas of Astronomical Discoveries

    CERN Document Server

    Schilling, Govert

    2011-01-01

    Four hundred years ago in Middelburg, in the Netherlands, the telescope was invented. The invention unleashed a revolution in the exploration of the universe. Galileo Galilei discovered mountains on the Moon, spots on the Sun, and moons around Jupiter. Christiaan Huygens saw details on Mars and rings around Saturn. William Herschel discovered a new planet and mapped binary stars and nebulae. Other astronomers determined the distances to stars, unraveled the structure of the Milky Way, and discovered the expansion of the universe. And, as telescopes became bigger and more powerful, astronomers delved deeper into the mysteries of the cosmos. In his Atlas of Astronomical Discoveries, astronomy journalist Govert Schilling tells the story of 400 years of telescopic astronomy. He looks at the 100 most important discoveries since the invention of the telescope. In his direct and accessible style, the author takes his readers on an exciting journey encompassing the highlights of four centuries of astronomy. Spectacul...

  15. Care of astronomical telescopes and accessories a manual for the astronomical observer and amateur telescope maker

    CERN Document Server

    Pepin, M Barlow

    2005-01-01

    Commercially-made astronomical telescopes are better and less expensive than ever before, and their optical and mechanical performance can be superb. When a good-quality telescope fails to perform as well as it might, the reason is quite probably that it needs a little care and attention! Here is a complete guide for anyone who wants to understand more than just the basics of astronomical telescopes and accessories, and how to maintain them in the peak of condition. The latest on safely adjusting, cleaning, and maintaining your equipment is combined with thoroughly updated methods from the old masters. Here, too, are details of choosing new and used optics and accessories, along with enhancements you can make to extend their versatility and useful lifetime. This book is for you. Really. Looking after an astronomical telescope isn't only for the experts - although there are some things that only an expert should attempt - and every serious amateur astronomer will find invaluable information here, gleaned from ...

  16. Reporting Astronomical Discoveries: Past, Now, and Future

    Science.gov (United States)

    Yamaoka, Hitoshi; Green, Daniel W. E.; Samus, Nikolai N.; West, Richard

    2015-08-01

    Many new astronomical objects have been discovered over the years by amateur astronomers, and this continues to be the case. They have traditionally reported them (as have professional astronomers) to the Central Bureau for Astronomical Telegrams (CBAT), which was established in the 19th century. This procedure has worked very well throughout the 20th century, moving under the umbrella of the newly established IAU in 1920. The discoverers have been honored by the formal announcement of their discoveries in the publications of the CBAT.In recent years, some professional research groups have established other ways of announcing their discoveries of explosive objects such as novae and supernovae; some do not now report their discoveries or spectroscopic confirmations of the transients to the CBAT, including often spectroscopic reports of objects posted to the CBAT "Transient Objects Confirmation Page" -- the highly successful TOCP webpage, which assigns official positional designations to new transients posted there by approved, registered users. This leads to a delay in formal announcements of discoveries by amateur astronomers in many cases, as well as inconsistent designations being put into use by individual groups. Amateur astronomers are feeling frustrated about this situation, and they hope that the IAU will help to settle the situation.We have proposed the new IAU commission NC-52, which will treat these phenomena in a continuation of Commission 6, through the CBAT. We hope to continuously support the reporting of the discoveries by amateur astronomers, as well as professional astronomers, who all deserve and desire proper recognition. Our strategy will maintain the firm trust between the amateur and professional astronomers, which is necessary for true collaboration. The plan is for the CBAT to work with collaborators to assure that discoveries posted on the TOCP are promptly designated and announced by the CBAT, even when confirmations are made elsewhere

  17. REPEATABILITY OF SPITZER/IRAC EXOPLANETARY ECLIPSES WITH INDEPENDENT COMPONENT ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Morello, G.; Waldmann, I. P.; Tinetti, G., E-mail: giuseppe.morello.11@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, WC1E6BT (United Kingdom)

    2016-04-01

    The research of effective and reliable detrending methods for Spitzer data is of paramount importance for the characterization of exoplanetary atmospheres. To date, the totality of exoplanetary observations in the mid- and far-infrared, at wavelengths >3 μm, have been taken with Spitzer. In some cases, in past years, repeated observations and multiple reanalyses of the same data sets led to discrepant results, raising questions about the accuracy and reproducibility of such measurements. Morello et al. (2014, 2015) proposed a blind-source separation method based on the Independent Component Analysis of pixel time series (pixel-ICA) to analyze InfraRed Array Camera (IRAC) data, obtaining coherent results when applied to repeated transit observations previously debated in the literature. Here we introduce a variant to the pixel-ICA through the use of wavelet transform, wavelet pixel-ICA, which extends its applicability to low-signal-to-noise-ratio cases. We describe the method and discuss the results obtained over 12 eclipses of the exoplanet XO3b observed during the “Warm Spitzer” era in the 4.5 μm band. The final results are reported, in part, also in Ingalls et al. (2016), together with results obtained with other detrending methods, and over 10 synthetic eclipses that were analyzed for the “IRAC Data Challenge 2015.” Our results are consistent within 1σ with the ones reported in Wong et al. (2014) and with most of the results reported in Ingalls et al. (2016), which appeared on arXiv while this paper was under review. Based on many statistical tests discussed in Ingalls et al. (2016), the wavelet pixel-ICA method performs as well as or better than other state-of-art methods recently developed by other teams to analyze Spitzer/IRAC data, and, in particular, it appears to be the most repeatable and the most reliable, while reaching the photon noise limit, at least for the particular data set analyzed. Another strength of the ICA approach is its highest

  18. REPEATABILITY OF SPITZER/IRAC EXOPLANETARY ECLIPSES WITH INDEPENDENT COMPONENT ANALYSIS

    International Nuclear Information System (INIS)

    Morello, G.; Waldmann, I. P.; Tinetti, G.

    2016-01-01

    The research of effective and reliable detrending methods for Spitzer data is of paramount importance for the characterization of exoplanetary atmospheres. To date, the totality of exoplanetary observations in the mid- and far-infrared, at wavelengths >3 μm, have been taken with Spitzer. In some cases, in past years, repeated observations and multiple reanalyses of the same data sets led to discrepant results, raising questions about the accuracy and reproducibility of such measurements. Morello et al. (2014, 2015) proposed a blind-source separation method based on the Independent Component Analysis of pixel time series (pixel-ICA) to analyze InfraRed Array Camera (IRAC) data, obtaining coherent results when applied to repeated transit observations previously debated in the literature. Here we introduce a variant to the pixel-ICA through the use of wavelet transform, wavelet pixel-ICA, which extends its applicability to low-signal-to-noise-ratio cases. We describe the method and discuss the results obtained over 12 eclipses of the exoplanet XO3b observed during the “Warm Spitzer” era in the 4.5 μm band. The final results are reported, in part, also in Ingalls et al. (2016), together with results obtained with other detrending methods, and over 10 synthetic eclipses that were analyzed for the “IRAC Data Challenge 2015.” Our results are consistent within 1σ with the ones reported in Wong et al. (2014) and with most of the results reported in Ingalls et al. (2016), which appeared on arXiv while this paper was under review. Based on many statistical tests discussed in Ingalls et al. (2016), the wavelet pixel-ICA method performs as well as or better than other state-of-art methods recently developed by other teams to analyze Spitzer/IRAC data, and, in particular, it appears to be the most repeatable and the most reliable, while reaching the photon noise limit, at least for the particular data set analyzed. Another strength of the ICA approach is its highest

  19. S-COSMOS: The Spitzer Legacy Survey of the Hubble Space Telescope ACS 2 deg2 COSMOS Field I: Survey Strategy and First Analysis

    Science.gov (United States)

    Sanders, D. B.; Salvato, M.; Aussel, H.; Ilbert, O.; Scoville, N.; Surace, J. A.; Frayer, D. T.; Sheth, K.; Helou, G.; Brooke, T.; Bhattacharya, B.; Yan, L.; Kartaltepe, J. S.; Barnes, J. E.; Blain, A. W.; Calzetti, D.; Capak, P.; Carilli, C.; Carollo, C. M.; Comastri, A.; Daddi, E.; Ellis, R. S.; Elvis, M.; Fall, S. M.; Franceschini, A.; Giavalisco, M.; Hasinger, G.; Impey, C.; Koekemoer, A.; Le Fèvre, O.; Lilly, S.; Liu, M. C.; McCracken, H. J.; Mobasher, B.; Renzini, A.; Rich, M.; Schinnerer, E.; Shopbell, P. L.; Taniguchi, Y.; Thompson, D. J.; Urry, C. M.; Williams, J. P.

    2007-09-01

    The COSMOS Spitzer survey (S-COSMOS) is a Legacy program (Cycles 2+3) designed to carry out a uniform deep survey of the full 2 deg2 COSMOS field in all seven Spitzer bands (3.6, 4.5, 5.6, 8.0, 24.0, 70.0, and 160.0 μm). This paper describes the survey parameters, mapping strategy, data reduction procedures, achieved sensitivities to date, and the complete data set for future reference. We show that the observed infrared backgrounds in the S-COSMOS field are within 10% of the predicted background levels. The fluctuations in the background at 24 μm have been measured and do not show any significant contribution from cirrus, as expected. In addition, we report on the number of asteroid detections in the low Galactic latitude COSMOS field. We use the Cycle 2 S-COSMOS data to determine preliminary number counts, and compare our results with those from previous Spitzer Legacy surveys (e.g., SWIRE, GOODS). The results from this ``first analysis'' confirm that the S-COSMOS survey will have sufficient sensitivity with IRAC to detect ~L* disks and spheroids out to z>~3, and with MIPS to detect ultraluminous starbursts and AGNs out to z~3 at 24 μm and out to z~1.5-2 at 70 and 160 μm. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555 also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which are operated by AURA under cooperative agreement with the National Science Foundation; the National Radio Astronomy

  20. An astronomical murder?

    Science.gov (United States)

    Belenkiy, Ari

    2010-04-01

    Ari Belenkiy examines the murder of Hypatia of Alexandria, wondering whether problems with astronomical observations and the date of Easter led to her becoming a casualty of fifth-century political intrigue.

  1. Bulk Densities of Binary Asteroids from the Warm Spitzer NEO Survey

    NARCIS (Netherlands)

    Kistler, John; Trilling, D. E.; Mueller, M.; Hora, J. L.; Harris, A. W.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Emery, J. P.; Fazo, G.; Mainzer, A.; Penprase, B.; Smith, H. A.; Spahr, T. B.; Stansberry, J. A.; Thomas, C. A.

    2010-01-01

    The Warm Spitzer NEO survey, ExploreNEOs, will observe approximately 700 Near Earth Asteroids. Several of these objects are known to be binary asteroid systems. Binary systems are interesting due to the unique opportunity they present for determining the masses and densities of their constituent

  2. SPITZER OBSERVATIONS OF BOW SHOCKS AND OUTFLOWS IN RCW 38

    Energy Technology Data Exchange (ETDEWEB)

    Winston, E. [ESA-ESTEC (SRE-SA), Keplerlaan 1, 2201 AZ Noordwijk ZH (Netherlands); Wolk, S. J.; Bourke, T. L.; Spitzbart, B. [Harvard Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Megeath, S. T. [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft Ave., Toledo, OH 43606 (United States); Gutermuth, R., E-mail: ewinston@rssd.esa.int [Five Colleges Astronomy Department, Smith College, Northampton, MA 01027 (United States)

    2012-01-10

    We report Spitzer observations of five newly identified bow shocks in the massive star-forming region RCW 38. Four are visible at Infrared Array Camera (IRAC) wavelengths, the fifth is only visible at 24 {mu}m. Chandra X-ray emission indicates that winds from the central O5.5 binary, IRS 2, have caused an outflow to the northeast and southwest of the central subcluster. The southern lobe of hot ionized gas is detected in X-rays; shocked gas and heated dust from the shock front are detected with Spitzer at 4.5 and 24 {mu}m. The northern outflow may have initiated the present generation of star formation, based on the filamentary distribution of the protostars in the central subcluster. Further, the bow-shock driving star, YSO 129, is photo-evaporating a pillar of gas and dust. No point sources are identified within this pillar at near- to mid-IR wavelengths. We also report on IRAC 3.6 and 5.8 {mu}m observations of the cluster DBS2003-124, northeast of RCW 38, where 33 candidate young stellar objects (YSOs) are identified. One star associated with the cluster drives a parsec-scale jet. Two Herbig-Haro objects associated with the jet are visible at IRAC and Multiband Imaging Photometer for Spitzer (MIPS) wavelengths. The jet extends over a distance of {approx}3 pc. Assuming a velocity of 100 km s{sup -1} for the jet material gives an age of 3 Multiplication-Sign 10{sup 4} yr, indicating that the star (and cluster) are likely to be very young, with a similar or possibly younger age than RCW 38, and that star formation is ongoing in the extended RCW 38 region.

  3. SPITZER OBSERVATIONS OF BOW SHOCKS AND OUTFLOWS IN RCW 38

    International Nuclear Information System (INIS)

    Winston, E.; Wolk, S. J.; Bourke, T. L.; Spitzbart, B.; Megeath, S. T.; Gutermuth, R.

    2012-01-01

    We report Spitzer observations of five newly identified bow shocks in the massive star-forming region RCW 38. Four are visible at Infrared Array Camera (IRAC) wavelengths, the fifth is only visible at 24 μm. Chandra X-ray emission indicates that winds from the central O5.5 binary, IRS 2, have caused an outflow to the northeast and southwest of the central subcluster. The southern lobe of hot ionized gas is detected in X-rays; shocked gas and heated dust from the shock front are detected with Spitzer at 4.5 and 24 μm. The northern outflow may have initiated the present generation of star formation, based on the filamentary distribution of the protostars in the central subcluster. Further, the bow-shock driving star, YSO 129, is photo-evaporating a pillar of gas and dust. No point sources are identified within this pillar at near- to mid-IR wavelengths. We also report on IRAC 3.6 and 5.8 μm observations of the cluster DBS2003-124, northeast of RCW 38, where 33 candidate young stellar objects (YSOs) are identified. One star associated with the cluster drives a parsec-scale jet. Two Herbig-Haro objects associated with the jet are visible at IRAC and Multiband Imaging Photometer for Spitzer (MIPS) wavelengths. The jet extends over a distance of ∼3 pc. Assuming a velocity of 100 km s –1 for the jet material gives an age of 3 × 10 4 yr, indicating that the star (and cluster) are likely to be very young, with a similar or possibly younger age than RCW 38, and that star formation is ongoing in the extended RCW 38 region.

  4. Physical Properties of Asteroid (10302) 1989 ML, a Potential Spacecraft Target, from Spitzer Observations

    Science.gov (United States)

    Mueller, Michael; Harris, A. W.

    2006-09-01

    We report on results from recent Spitzer observations of near-Earth asteroid (10302) 1989 ML, which is among the lowest-ranking objects in terms of the specific momentum Δv required to reach it from Earth. It was originally considered as a target for Hayabusa and is now under consideration as a target of the planned ESA mission Don Quijote. Unfortunately, little is known about the physical properties of 1989 ML, in particular its size and albedo are unknown. Its exhibits an X type reflection spectrum, so depending on its albedo, 1989 ML may be an E, M, or P type asteroid. Provisional results from thermal-infrared observations carried out with Spitzer indicate that the albedo of 1989 ML is compatible with an M- or E-type classification. We will discuss our results and their implications for the physical properties and the rotation period of 1989 ML, and its importance as a potential spacecraft target. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  5. The impact of Spitzer infrared data on stellar mass estimates - and a revised galaxy stellar mass function at 0 < z < 5

    Science.gov (United States)

    Elsner, F.; Feulner, G.; Hopp, U.

    2008-01-01

    Aims:We estimate stellar masses of galaxies in the high redshift universe with the intention of determining the influence of newly available Spitzer/IRAC infrared data on the analysis. Based on the results, we probe the mass assembly history of the universe. Methods: We use the GOODS-MUSIC catalog, which provides multiband photometry from the U-filter to the 8 μm Spitzer band for almost 15 000 galaxies with either spectroscopic (for ≈7% of the sample) or photometric redshifts, and apply a standard model fitting technique to estimate stellar masses. We than repeat our calculations with fixed photometric redshifts excluding Spitzer photometry and directly compare the outcomes to look for systematic deviations. Finally we use our results to compute stellar mass functions and mass densities up to redshift z = 5. Results: We find that stellar masses tend to be overestimated on average if further constraining Spitzer data are not included into the analysis. Whilst this trend is small up to intermediate redshifts z ⪉ 2.5 and falls within the typical error in mass, the deviation increases strongly for higher redshifts and reaches a maximum of a factor of three at redshift z ≈ 3.5. Thus, up to intermediate redshifts, results for stellar mass density are in good agreement with values taken from literature calculated without additional Spitzer photometry. At higher redshifts, however, we find a systematic trend towards lower mass densities if Spitzer/IRAC data are included.

  6. SPITZER OBSERVATIONS OF HOTSPOTS IN RADIO LOBES

    International Nuclear Information System (INIS)

    Werner, Michael W.; Murphy, David W.; Livingston, John H.; Gorjian, Varoujan; Jones, Dayton L.; Meier, David L.; Lawrence, Charles R.

    2012-01-01

    We have carried out a systematic search with Spitzer Warm Mission and archival data for infrared emission from the hotspots in radio lobes that have been described by Hardcastle et al. These hotspots have been detected with both radio and X-ray observations, but an observation at an intermediate frequency in the infrared can be critical to distinguish between competing models for particle acceleration and radiation processes in these objects. Between the archival and warm mission data, we report detections of 18 hotspots; the archival data generally include detections at all four IRAC bands, the Warm Mission data only at 3.6 μm. Using a theoretical formalism adopted from Godfrey et al., we fit both archival and warm mission spectral energy distributions (SEDs)—including radio, X-ray, and optical data from Hardcastle as well as the Spitzer data—with a synchrotron self-Compton (SSC) model, in which the X-rays are produced by Compton scattering of the radio frequency photons by the energetic electrons which radiate them. With one exception, an SSC model requires that the magnetic field be less or much less than the equipartition value which minimizes total energy and has comparable amounts of energy in the magnetic field and in the energetic particles. This conclusion agrees with those of comparable recent studies of hotspots, and with the analysis presented by Hardcastle et al. We also show that the infrared data rule out the simplest synchrotron-only models for the SEDs. We briefly discuss the implications of these results and of alternate interpretations of the data.

  7. Finding Hidden Treasures: Investigations in US Astronomical Plate Archives

    Czech Academy of Sciences Publication Activity Database

    Hudec, René; Hudec, L.

    2013-01-01

    Roč. 53, č. 1 (2013), s. 23-26 ISSN 1210-2709 R&D Projects: GA ČR GA205/08/1207 Institutional support: RVO:67985815 Keywords : astronomical data archives * astronomical photography * astronomical photographic archives Subject RIV: BH - Optics, Masers, Lasers

  8. Astronomía en la cultura

    Science.gov (United States)

    López, A.; Giménez Benitez, S.; Fernández, L.

    La Astronomía en la Cultura es el estudio interdisciplinario a nivel global de la astronomía prehistórica, antigua y tradicional, en el marco de su contexto cultural. Esta disciplina abarca cualquier tipo de estudios o líneas de investigación en que se relacione a la astronomía con las ciencias humanas o sociales. En ella se incluyen tanto fuentes escritas, relatos orales como fuentes arqueológicas, abarcando entre otros, los siguientes temas: calendarios, observación práctica, cultos y mitos, representación simbólica de eventos, conceptos y objetos astronómicos, orientación astronómica de tumbas, templos, santuarios y centros urbanos, cosmología tradicional y la aplicación ceremonial de tradiciones astronómicas, la propia historia de la astronomía y la etnoastronomía (Krupp, 1989) (Iwaniszewski, 1994). En nuestro trabajo abordamos la historia y situación actual de esta disciplina, sus métodos y sus relaciones con otras áreas de investigación.

  9. The amateur astronomer

    CERN Document Server

    Moore, Patrick

    2006-01-01

    Introduces astronomy and amateur observing together. This edition includes photographs and illustrations. The comprehensive appendices provide hints and tips, as well as data for every aspect of amateur astronomy. This work is useful for amateur astronomers

  10. Observatory Sponsoring Astronomical Image Contest

    Science.gov (United States)

    2005-05-01

    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery

  11. Computation of the Spitzer function in stellarators and tokamaks with finite collisionality

    Directory of Open Access Journals (Sweden)

    Kernbichler Winfried

    2015-01-01

    Full Text Available The generalized Spitzer function, which determines the current drive efficiency in toka- maks and stellarators is modelled for finite plasma collisionality with help of the drift kinetic equation solver NEO-2 [1]. The effect of finite collisionality on the global ECCD efficiency in a tokamak is studied using results of the code NEO-2 as input to the ray tracing code TRAVIS [2]. As it is known [3], specific features of the generalized Spitzer function, which are absent in asymptotic (collisionless or highly collisional regimes result in current drive from a symmetric microwave spectrum with respect to parallel wave numbers. Due to this effect the direction of the current may become independent of the microwave beam launch angle in advanced ECCD scenarii (O2 and X3 where due to relatively low optical depth a significant amount of power is absorbed by trapped particles.

  12. Serendipitous discovery of an infrared bow shock near PSR J1549–4848 with Spitzer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongxiang [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Kaplan, David L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Slane, Patrick [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Morrell, Nidia [Las Campanas Observatory, Observatories of the Carnegie Institution of Washington, La Serena (Chile); Kaspi, Victoria M. [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada)

    2013-06-01

    We report on the discovery of an infrared cometary nebula around PSR J1549–4848 in our Spitzer survey of a few middle-aged radio pulsars. Following the discovery, multi-wavelength imaging and spectroscopic observations of the nebula were carried out. We detected the nebula in Spitzer Infrared Array Camera 8.0, Multiband Imaging Photometer for Spitzer 24 and 70 μm imaging, and in Spitzer IRS 7.5-14.4 μm spectroscopic observations, and also in the Wide-field Infrared Survey Explorer all-sky survey at 12 and 22 μm. These data were analyzed in detail, and we find that the nebula can be described with a standard bow shock shape, and that its spectrum contains polycyclic aromatic hydrocarbon and H{sub 2} emission features. However, it is not certain which object drives the nebula. We analyze the field stars and conclude that none of them can be the associated object because stars with a strong wind or mass ejection that usually produce bow shocks are much brighter than the field stars. The pulsar is approximately 15'' away from the region in which the associated object is expected to be located. In order to resolve the discrepancy, we suggest that a highly collimated wind could be emitted from the pulsar and produce the bow shock. X-ray imaging to detect the interaction of the wind with the ambient medium- and high-spatial resolution radio imaging to determine the proper motion of the pulsar should be carried out, which will help verify the association of the pulsar with the bow shock nebula.

  13. Spitzer Secondary Eclipses of HAT-P-13b

    Science.gov (United States)

    Hardy, Ryan A.; Harrington, J.; Hardin, M. R.; Madhusudhan, N.; Cubillos, P.; Blecic, J.; Bakos, G.; Hartman, J. D.

    2013-10-01

    HAT-P-13 b is a transiting hot Jupiter with a slightly eccentric orbit (e = 0.010) inhabiting a two-planet system. The two-planet arrangement provides an opportunity to probe the interior structure of HAT-P-13b. Under equilibrium-tide theory and confirmation that the apsides of planets b and c are in alignment, a measurement of the planet's eccentricity can be related to the planet's tidal Love number k2, which describes the central condensation of the planet's mass and its deformation under tidal effects. A measurement of k2 could constrain interior models of HAT-P-13b. HAT-P-13b's orbit is configured favorably for refinement of the eccentricity by secondary eclipse timing observations, which provide direct measurements of ecosω. In 2010, Spitzer observed two secondary eclipses of HAT-P-13b in the 3.6- and 4.5-μm IRAC bandpasses. We present secondary eclipse times and depths; joint models of the HAT-P-13 system that incorporate transit photometry and radial velocity data; and constraints on the atmospheric chemistry of HAT-P-13b that suggest solar-abundance composition without a thermal inversion. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, which provided support for this work. This work was supported in part by NASA Planetary Atmospheres Grant NNX13AF38G.

  14. Cosmological field theory for observational astronomers

    International Nuclear Information System (INIS)

    Zel'Dovich, Y.B.

    1987-01-01

    Theories of the very early Universe that use scalar fields (i.e., the so-called inflationary models of the Universe) have now come into wide use. The inflationary universe approach may perhaps solve some of the most difficult enigmas about the Universe as a whole. The inflationary universe forms a good bridge between the quantum theory of the birth of the Universe (which is still in the initial stages of development) and the standard hot Big Bang theory (which is well established, at least qualitatively). Therefore, an understanding of the basic ideas of inflation is a must for astronomers interested in the broad picture of the science. Astronomers are mathematically oriented enough (via celestial mechanics, electromagnetic theory, magnetohydrodynamics, nuclear reactions,etc.) that there is no negative attitude towards formulae in general. What the astronomer lacks is a knowledge of recent developments in particle physics and field theory. The astronomer should not be blamed for this, because these branches of physics are developing in a very peculiar fashion: some subfields of it are progressing comparatively slowly, with experimental verifications at each and every step, while other subfields progress rapidly

  15. Astronomical Books and Charts in the Book of Bibliographie Coreenne

    Science.gov (United States)

    Lee, Ki-Won; Yang, Hong-Jin; Park, Myeong-Gu

    2008-06-01

    We investigate astronomical materials listed in the book of Bibliographie Coréenne written by Maurice Courant. He classified ancient Korean books into nine Divisions (?) and thirty six Classes (?), and published them as three volumes (ranging from 1894 to 1896) and one supplement (in 1901). In total, 3,821 books including astronomical ones are listed together with information on physical size, possessional place, bibliographical note, and so forth. Although this book is an essential one in the field of Korea bibliography and contains many astronomical materials such as Cheon-Mun-Ryu-Cho ????, Si-Heon-Seo ??????, and Cheon-Sang-Yeol-Cha-Bun-Ya-Ji-Do ????????, it has not been well known to the public nor to astronomical society. Of 3,821 catalogues, we found that about 50 Items (?) are related to astronomy or astrology, and verified that most ! of them are located in the Kyujanggak Royal Library ???. We also found an unknown astronomical chart, Hon-Cheon-Chong-Seong-Yeol-Cha-Bun-Ya-Ji-Do ??????????. Because those astronomical materials are not well known to international astronomical community and there have been few studies on the materials in Korea, we here introduce and review them, particularly with the astronomical viewpoint.

  16. Spitzer Mid-to-Far-Infrared Flux Densities of Distant Galaxies

    Science.gov (United States)

    Papovich, Casey J.; Rudnick, G.; Le Floc'h, E.; van Dokkum, P. G.; Rieke, G. H.; Taylor, E. N.; Armus, L.; Gawiser, E.; Marcillac, D.; Huang, J.; Franx, M.

    2007-05-01

    We study the 24, 70, and 160 μm properties of high-redshift galaxies. Our primary interest is to improve the constraints on the total infrared (IR) luminosities, L(IR), of these galaxies. We combine Spitzer data in the southern Extended Chandra Deep Field with a Ks-band-selected galaxy sample with photometric redshifts from the Multiwavelength Survey by Yale-Chile. We used a stacking analysis to measure the average 70 and 160 μm flux densities of 1.5 250 μJy and 1.5 250 μJy have S(70)/S(24) flux ratios comparable to sources with X-ray detections or red rest-frame IR colors, suggesting that warm dust possibly heated by AGN produces high 24 μm emission. Based on the average 24-160 μm flux densities, 24 μm-selected galaxies at 1.5 rate observed in low redshift galaxies, suggesting that high redshift galaxies have star formation efficiencies and feedback processes comparable to lower redshift analogs. Support for this work was provided by NASA through the Spitzer Space Telescope Fellowship Program, through a contract issued by JPL, Caltech under a contract with NASA.

  17. 150th Anniversary of the Astronomical Observatory Library of Sciences

    Science.gov (United States)

    Solntseva, T.

    The scientific library of the Astronomical observatory of Kyiv Taras Shevchenko University is one of the oldest ones of such a type in Ukraine. Our Astronomical Observatory and its scientific library will celebrate 150th anniversary of their foundation. 900 volumes of duplicates of Olbers' private library underlay our library. These ones were acquired by Russian Academy of Sciences for Poulkovo observatory in 1841 but according to Struve's order were transmitted to Kyiv Saint Volodymyr University. These books are of great value. There are works edited during Copernicus', Kepler's, Galilei's, Newton's, Descartes' lifetime. Our library contains more than 100000 units of storage - monographs, periodical astronomical editions from the first (Astronomische Nachrichten, Astronomical journal, Monthly Notices etc.), editions of the majority of the astronomical observatories and institutions of the world, unique astronomical atlases and maps

  18. The impact of endorsing Spitzer's proposed criteria for PTSD in the forthcoming DSM-V on male and female Veterans.

    Science.gov (United States)

    Miller, Lyndsey N; Chard, Kathleen M; Schumm, Jeremiah A; O'Brien, Carol

    2011-06-01

    This study explored differences between Spitzer's proposed model of posttraumatic stress disorder (PTSD) and the current DSM-IV diagnostic classification scheme in 353 Veterans. The majority of Veterans (89%) diagnosed with PTSD as specified in the DSM-IV also met Spitzer's proposed criteria. Veterans who met both DSM-IV and Spitzer's proposed criteria had significantly higher Clinician Administered PTSD Scale severity scores than Veterans only meeting DSM-IV criteria. Logistic regression indicated that being African American and having no comorbid diagnosis of major depressive disorder or history of a substance use disorder were found to predict those Veterans who met current, but not proposed criteria. These findings have important implications regarding proposed changes to the diagnostic classification criteria for PTSD in the forthcoming DSM-V. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Choosing and using astronomical filters

    CERN Document Server

    Griffiths, Martin

    2014-01-01

    As a casual read through any of the major amateur astronomical magazines will demonstrate, there are filters available for all aspects of optical astronomy. This book provides a ready resource on the use of the following filters, among others, for observational astronomy or for imaging: Light pollution filters Planetary filters Solar filters Neutral density filters for Moon observation Deep-sky filters, for such objects as galaxies, nebulae and more Deep-sky objects can be imaged in much greater detail than was possible many years ago. Amateur astronomers can take

  20. Neon Abundances from a Spitzer/IRS Survey of Wolf-Rayet Stars

    NARCIS (Netherlands)

    Ignace, R.; Cassinelli, J.P.; Tracy, G.; Churchwell, E.B.; Lamers, H.J.G.L.M.

    2007-01-01

    We report on neon abundances derived from Spitzer high resolution spectral data of eight Wolf-Rayet (WR) stars using the forbidden line of [Ne III] 15.56 μm. Our targets include four WN stars of subtypes 4-7, and four WC stars of subtypes 4-7. We derive ion fraction abundances γ of Ne2+ for the

  1. Serbian Astronomers in Science Citation Index in the XX Century

    Science.gov (United States)

    Dimitrijevic, Milan S.

    The book is written paralelly in Serbian and English. The presence of works of Serbian astronomers and works in astronomical journals published by other Serbian scientists, in Science Citation Index within the period from 1945 up to the end of 2000, has been analyzed. Also is presented the list of 38 papers which had some influence on the development of astronomy in the twentieth century. A review of the development of astronomy in Serbia in the last century is given as well. Particular attention is payed to the Astronomical Observatory, the principal astronomical institution in Serbia, where it is one of the oldest scientific organizations and the only autonomous astronomical institute. Its past development forms an important part of the history of science and culture in these regions. In the book is also considered and the history of the university teaching of astronomy in Serbia after the second world war. First of all the development of the Chair of Astronomy at the Faculty of Mathematics in Belgrade, but also the teaching of astronomy at University in Novi Sad, Ni and Kragujevac is discussed. In addition to professional Astronomy, well developed in Serbia is also the amateur Astronomy. In the review is first of all included the largest and the oldest organization of amateur-astronomers in Serbia, founded in 1934. Besides, here are the Astronomical Society "Novi Sad", ADNOS and Research Station "Petnica". In Valjevo, within the framework of the Society of researchers "Vladimir Mandic - Manda", there is active also the Astronomical Group. In Kragujevac, on the roof of the Institute of Physics of the Faculty of Sciences, there is the "Belerofont" Observatory. In Ni, at the close of the sixties and the start of the seventies, there was operating a branch of the Astronomical Society "Rudjer Bokovic", while at the Faculty of Philosophy there existed in the period 1976-1980 the "Astro-Geophysical Society". In the year 1996 there was founded Astronomical Society

  2. VizieR Online Data Catalog: Optical & Spitzer photometry in IC 1805 (Sung+, 2017)

    Science.gov (United States)

    Sung, H.; Bessell, M. S.; Chun, M.-Y.; Yi, J.; Naze, Y.; Lim, B.; Karimov, R.; Rauw, G.; Park, B.-G.; Hur, H.

    2017-06-01

    For a study of the IMF and the star-formation history of the young open cluster IC 1805, we obtained deep wide-field VRI and Hα images of IC 1805 using the CFH12K mosaic CCD camera of the CFHT on 2002 January 6 and 7. We also observed several regions in IC 1805, for a study of the reddening and massive star content, using the SITe 2000x800 CCD (Maidanak 2k CCD) and standard UBVRI filters of the AZT-22 1.5m telescope at the Maidanak Astronomical Observatory in Uzbekistan on 2003 August 18 and 2004 december 25,30. Later, we obtained additional images of the central region of IC 1805 with the Fairchild 486 CCD (SNUCam) and UBVI and Hα filters of the AZT-22 telescope on 2007 October 7 and 2009 January 19. The Spitzer mapping observations were performed on 2006 September 20 under program ID 20052 (PI: S. Wolff). For complete photometry of stars in the CFH12K FOV in 3.6 and 4.5um, we also downloaded and reduced the GLIMPSE360 data (AOR: 38753280, 38763264, 38769408, 38799104, 38798592, 38784512, PI: B. A. Whitney). MIPS scans of IC 1805 were obtained on 2005 August 31 and 2005 September 2 (PID 3234, PI: J. S. Greeves). The Chandra X-ray Observatory Observations of IC 1805 (ObsID: 7033, PI: L. Townley) were made on 2006 November 25. The total exposure time was about 79ks. The properties of 647 X-ray sources were published in Townsley+ (2014,J/ApJS/213/1). We searched for the optical and MIR counterparts of these X-ray sources with a matching radius of up to 1.5". (4 data files).

  3. Preservation and maintenance of the astronomical sites in Armenia

    Science.gov (United States)

    Mickaelian, A. M.

    2008-01-01

    Astronomy in Armenia was popular since ancient times. There are signs of astronomical observations coming from a few thousands years ago. Two ancient observatories, Karahunge and Metzamor are especially well known. Karahunge is the Armenian twin of the Stonehenge and is even older. However, there is no proper attention from the state authorities and efforts are needed for preservation of such historical-astronomical monuments. The Byurakan Astrophysical Observatory (BAO) is the modern famous Armenian observatory founded in 1946 by the outstanding scientist Victor Ambartsumian. It was one of the world astronomical centres in 1950-s to 1970-s, and at present is the largest observatory in the Middle East area. As the ancient astronomical sites, Byurakan also needs a proper attitude from the state authorities and corresponding international organizations to preserve its values and importance for the present and future astronomical activities in the region, including its rich observational archive, telescopes, and human resources. Despite all the difficulties, the Armenian astronomers keep high international level of research and display various activities organizing international meetings and schools, preparing new young generation for the future research. The Armenian Astronomical Society (ArAS) is an affiliated member of EAS. Armenia has its Virtual Observatory project (ArVO) as well. The next Joint European and National Astronomy Meeting (JENAM-2007) will be held in Yerevan, Armenia, in August 2007. There are plans to organize astronomical tours to Armenia for making observations from various sites, including the ancient observatories. The future of astronomy in Armenia strongly depends on all of this activities and the proper attention both from state authorities and society.

  4. Basic Optics for the Astronomical Sciences

    CERN Document Server

    Breckinridge, James

    2012-01-01

    This text was written to provide students of astronomy and engineers an understanding of optical science - the study of the generation, propagation, control, and measurement of optical radiation - as it applies to telescopes and instruments for astronomical research in the areas of astrophysics, astrometry, exoplanet characterization, and planetary science. The book provides an overview of the elements of optical design and physical optics within the framework of the needs of the astronomical community.

  5. Information seeking behavior of Greek astronomers

    OpenAIRE

    Brindesi, Hara; Kapidakis, Sarantos

    2011-01-01

    This study examines three aspects of information seeking behaviour of astronomers in Greece including a) the importance they place in keeping up- to-date with current developments b) the methods they depend on for keeping up-to-date and c) the information sources they mostly use. We adopted an intradisciplinary approach in order to investigate similarities and differences in information seeking behaviour among astronomers when examining them as groups bearing different characteristics, includ...

  6. New astronomical references in two Catalonian late medieval documents.

    Science.gov (United States)

    Martínez, María José; Marco, Francisco J

    2014-01-01

    In 2008, after 13 years of preparation, the Generalitat of Catalunya finished the publication of the 10 volumes of the Dietaris de la Generalitat de Catalunya. The Dietaris, as well as a closely related source, the llibre de Jornades 1411/1484 de Jaume Safont, cover the period of 1411 to 1539. In this article, we examine astronomical references contained in these two sources, and place them in their historical context. Our main focus lies on astronomical phenomena that have not previously been published in the astronomical literature. In fact, relatively few astronomical records are accessible in Spanish medieval and early modern history, and our paper intends to fill this gap partially.

  7. Astronomical Books and Charts in the Book of Bibliographie Coreenne

    Directory of Open Access Journals (Sweden)

    Ki-Won Lee

    2008-06-01

    Full Text Available We investigate astronomical materials listed in the book of Bibliographie Coreenne written by Maurice Courant. He classified ancient Korean books into nine Divisions (部 and thirty six Classes (類, and published them as three volumes (ranging from 1894 to 1896 and one supplement (in 1901. In total, 3,821 books including astronomical ones are listed together with information on physical size, possessional place, bibliographical note, and so forth. Although this book is an essential one in the field of Korea bibliography and contains many astronomical materials such as Cheon-Mun-Ryu-Cho 天文類抄, Si-Heon-Seo 時憲書, and Cheon-Sang-Yeol-Cha-Bun-Ya-Ji-Do 天象列次分野之圖, it has not been well known to the public nor to astronomical society. Of 3,821 catalogues, we found that about 50 Items (種 are related to astronomy or astrology, and verified that most of them are located in the Kyujanggak Royal Library 奎章閣. We also found an unknown astronomical chart, Hon-Cheon-Chong-Seong-Yeol-Cha-Bun-Ya-Ji-Do 渾天總星列次分野之圖. Because those astronomical materials are not well known to international astronomical community and there have been few studies on the materials in Korea, we here introduce and review them, particularly with the astronomical viewpoint.

  8. Early results from the Infrared Astronomical Satellite

    International Nuclear Information System (INIS)

    Neugebauer, G.; Beichman, C.A.; Soifer, B.T.

    1984-01-01

    For 10 months the Infrared Astronomical Satellite (IRAS) provided astronomers with what might be termed their first view of the infrared sky on a clear, dark night. Without IRAS, atmospheric absorption and the thermal emission from both the atmosphere and Earthbound telescopes make the task of the infrared astronomer comparable to what an optical astronomer would face if required to work only on cloudy afternoons. IRAS observations are serving astronomers in the same manner as the photographic plates of the Palomar Observatory Sky Survey; just as the optical survey has been used by all astronomers for over three decades, as a source of quantitative information about the sky and as a roadmap for future observations, the results of IRAS will be studied for years to come. IRAS has demonstrated the power of infrared astronomy from space. Already, from a brief look at a miniscule fraction of the data available, we have learned much about the solar system, about nearby stars, about the Galaxy as a whole and about distant extragalactic systems. Comets are much dustier than previously thought. Solid particles, presumably the remnants of the star-formation process, orbit around Vega and other stars and may provide the raw material for planetary systems. Emission from cool interstellar material has been traced throughout the Galaxy all the way to the galactic poles. Both the clumpiness and breadth of the distribution of this material were previously unsuspected. The far-infrared sky away from the galactic plane has been found to be dominate by spiral galaxies, some of which emit more than 50% and as much as 98% of their energy in the infrared - an exciting and surprising revelation. The IRAS mission is clearly the pathfinder for future mission that, to a large extent, will be devoted to the discoveries revealed by IRAS. 8 figures

  9. CRYSTALLINE SILICATES IN EVOLVED STARS. I. SPITZER/INFRARED SPECTROGRAPH SPECTROSCOPY OF IRAS 16456-3542, 18354-0638, AND 23239+5754

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, B. W.; Zhang, Ke [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Li, Aigen [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Lisse, C. M., E-mail: bjiang@bnu.edu.cn, E-mail: kzhang@caltech.edu, E-mail: lia@missouri.edu, E-mail: carey.lisse@jhuapl.edu [Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2013-03-01

    We report the Spitzer Infrared Spectrograph (IRS) observations of three evolved stars: IRAS 16456-3542, 18354-0638, and 23239+5754. The 9.9-37.2 {mu}m Spitzer/IRS high-resolution spectra of these three sources exhibit rich sets of enstatite-dominated crystalline silicate emission features. IRAS 16456-3542 is extremely rich in crystalline silicates, with >90% of its silicate mass in crystalline form, the highest to date ever reported for crystalline silicate sources.

  10. Astronomical Observatory of Belgrade from 1924 to 1955

    Science.gov (United States)

    Radovanac, M.

    2014-12-01

    History of the Astronomical Observatory in Belgrade, as the presentation is done here, become the field of interest to the author of the present monograph in early 2002. Then, together with Luka C. Popovic, during the Conference "Development of Astronomy among Serbs II" held in early April of that year, he prepared a paper entitled "Astronomska opservatorija tokom Drugog Svetskog rata" (Astronomical Observatory in the Second World War). This paper was based on the archives material concerning the Astronomical Observatory which has been professionally bearing in mind the author's position the subject of his work.

  11. Novel Algorithms for Astronomical Plate Analyses

    Czech Academy of Sciences Publication Activity Database

    Hudec, René; Hudec, L.

    2011-01-01

    Roč. 32, 1-2 (2011), s. 121-123 ISSN 0250-6335. [Conference on Multiwavelength Variability of Blazars. Guangzhou, 22,09,2010-24,09,2010] R&D Projects: GA ČR GA205/08/1207 Grant - others:GA ČR(CZ) GA102/09/0997; MŠMT(CZ) ME09027 Institutional research plan: CEZ:AV0Z10030501 Keywords : astronomical plates * plate archives archives * astronomical algorithms Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.400, year: 2011

  12. Cold disks : Spitzer spectroscopy of disks around young stars with large gaps

    NARCIS (Netherlands)

    Blake, G. A.; Dullemond, C. P.; Merin, B.; Augereau, J. C.; Boogert, A. C. A.; Evans, N. J.; Geers, V. C.; Lahuis, F.; Kessler-Silacci, J. E.; Pontoppidan, K. M.; van Dishoeck, E. F.; Brown, J.M.

    2007-01-01

    We have identified four circumstellar disks with a deficit of dust emission from their inner 15-50 AU. All four stars have F-G spectral type and were uncovered as part of the Spitzer Space Telescope "Cores to Disks" Legacy Program Infrared Spectrograph (IRS) first-look survey of similar to 100 pre -

  13. An Astronomer In The Classroom: Observatoire de Paris's Partnership Between Teachers and Astronomers

    Science.gov (United States)

    Doressoundiram, A.; Barban, C.

    2006-08-01

    The Observatoire de Paris is offering a partnership between teachers and astronomers. The principle is simple: any teacher wishing to undertake a pedagogical project in astronomy, in the classroom or involving the entire school, can request the help of a mentor. An astronomer from the Observatoire de Paris will then follow the teacher's project progress and offer advice and scientific support throughout the school year. The projects may take different forms: construction projects (models, instruments), lectures, posters, exhibitions, etc. The type of assistance offered is as varied as the projects: lecture(s) in class, telephone and e-mail exchanges, visits to the Observatoire; an almost made-to-measure approach that delighted the thirty or so groups that benefited such partnership in the 2005-2006 academic year. And this number is continuously growing. There was a rich variety of projects undertaken, from mounting a show and building a solar clock to visiting a high altitude observatory, or resolving the mystery of Jupiter's great red spot. The Universe and its mysteries fascinate the young (and the not so- young) and provide a multitude of scientific topics that can be exploited in class. Astronomy offers the added advantage of being a multidisciplinary field. Thus, if most projects are generally initiated by a motivated teacher, they are often taken over by teachers in other subjects: Life and Earth Sciences (SVT), history, mathematics, French, and so forth. The project may consist in an astronomy workshop or be part of the school curriculum. Whatever the case, the astronomer's task is not to replace the teacher or the textbooks, but to propose activities or experiments that are easy to implement. Representing the Solar system on a school-yard scale, for instance, is a perfect way to make youngsters realize that the Universe consists mostly of empty space. There is no shortage of topics, and the students' enthusiasm, seldom absent, is the best reward for the

  14. Astronomical Data and Information Visualization

    Science.gov (United States)

    Goodman, Alyssa A.

    2010-01-01

    As the size and complexity of data sets increases, the need to "see" them more clearly increases as well. In the past, many scientists saw "fancy" data and information visualization as necessary for "outreach," but not for research. In this talk, I wlll demonstrate, using specific examples, why more and more scientists--not just astronomers--are coming to rely upon the development of new visualization strategies not just to present their data, but to understand it. Principal examples will be drawn from the "Astronomical Medicine" project at Harvard's Initiative in Innovative Computing, and from the "Seamless Astronomy" effort, which is co-sponsored by the VAO (NASA/NSF) and Microsoft Research.

  15. The South African Astronomical Observatory

    International Nuclear Information System (INIS)

    1989-01-01

    The research work discussed in this report covers a wide range, from work on the nearest stars to studies of the distant quasars, and the astronomers who have carried out this work come from universities and observatories spread around the world as well as from South African universities and from the South African Astronomical Observatory (SAAO) staff itself. A characteristic of much of this work has been its collaborative character. SAAO studies in 1989 included: supernovae 1987A; galaxies; ground-based observations of celestial x-ray sources; the Magellanic Clouds; pulsating variables; galactic structure; binary star phenomena; the provision of photometric standards; nebulous matter; stellar astrophysics, and astrometry

  16. Education and Outreach Opportunities in New Astronomical Facilities

    Science.gov (United States)

    Mould, J. R.; Pompea, S.

    2002-12-01

    Astronomy presents extraordinary opportunities for engaging young people in science from an early age. The National Optical Astronomy Observatory (NOAO), supported by the National Science Foundation, leverages the attraction of astronomy with a suite of formal and informal education programs that engage our scientists and education and public outreach professionals in effective, strategic programs that capitalize on NOAO's role as a leader in science and in the design of new astronomical facilities. The core of the science education group at NOAO in Tucson consists of a group of Ph.D.-level scientists with experience in educational program management, curriculum and instructional materials development, teacher/scientist partnerships, and teacher professional development. This core group of scientist/educators hybrids has a strong background in earth and space science education as well as experience in working with and teaching about the technology that has enabled new astronomical discoveries. NOAO has a vigorous public affairs/media program and a history of effectively working locally, regionally, and nationally with the media, schools, science centers, and, planetaria. In particular, NOAO has created successful programs exploring how research data and tools can be used most effectively in the classroom. For example, the Teacher Leaders in Research Based Science Education explores how teachers can most effectively integrate astronomical research on novae, active galactic nuclei, and the Sun into classroom-based investigations. With immersive summer workshops at Kitt Peak National Observatory and the National Solar Observatory at Sacramento Peak, teachers learn research and instrumentation skills and how to encourage and maintain research activities in their classrooms. Some of the new facilities proposed in the recent decadal plan, Astronomy and Astrophysics in the New Millennium (National Academy Press), can provide extended opportunities for incorporating

  17. SPITZER, GAIA, AND THE POTENTIAL OF THE MILKY WAY

    International Nuclear Information System (INIS)

    Price-Whelan, Adrian M.; Johnston, Kathryn V.

    2013-01-01

    Near-future data from ESA's Gaia mission will provide precise, full phase-space information for hundreds of millions of stars out to heliocentric distances of ∼10 kpc. This ''horizon'' for full phase-space measurements is imposed by the Gaia parallax errors degrading to worse than 10%, and could be significantly extended by an accurate distance indicator. Recent work has demonstrated how Spitzer observations of RR Lyrae stars can be used to make distance estimates accurate to 2%, effectively extending the Gaia, precise-data horizon by a factor of 10 in distance and a factor of 1000 in volume. This Letter presents one approach to exploit data of such accuracy to measure the Galactic potential using small samples of stars associated with debris from satellite destruction. The method is tested with synthetic observations of 100 stars from the end point of a simulation of satellite destruction: the shape, orientation, and depth of the potential used in the simulation are recovered to within a few percent. The success of this simple test with such a small sample in a single debris stream suggests that constraints from multiple streams could be combined to examine the Galaxy's dark matter halo in even more detail—a truly unique opportunity that is enabled by the combination of Spitzer and Gaia with our intimate perspective on our own Galaxy

  18. SPITZER PARALLAX OF OGLE-2015-BLG-0966: A COLD NEPTUNE IN THE GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Street, R. A.; Bachelet, E. [LCOGT, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Novati, S. Calchi [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Hundertmark, M. P. G.; Jørgensen, U. G. [Niels Bohr Institute and Centre for Star and Planet Formation, University of Copenhagen, Øster Voldgade 5, DK-1350—Copenhagen K (Denmark); Zhu, W.; Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Yee, J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tsapras, Y. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg (ZAH), D-69120 Heidelberg (Germany); Bennett, D. P. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Dominik, M. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Andersen, M. I. [Niels Bohr Institute and Dark Cosmology Centre, University of Copenhagen, Juliane Mariesvej 30, DK-2100—Copenhagen Ø (Denmark); Bozza, V. [Dipartimento di Fisica “E.R. Caianiello,” Università di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Italy); Bramich, D. M. [Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Collaboration: RoboNet Project and MiNDSTEp Consortium; OGLE Project; Spitzer Team; MOA Collaboration; KMTNet Modeling Team; and others

    2016-03-10

    We report the detection of a cold Neptune m{sub planet} = 21 ± 2 M{sub ⊕} orbiting a 0.38 M{sub ⊙} M dwarf lying 2.5–3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al., which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near to mid-disk and are clearly not in the Galactic bulge.

  19. Astronomers gossip about the (cosmic) neighborhood.

    Science.gov (United States)

    Jayawardhana, R

    1994-09-09

    The Hague, Netherlands, last month welcomed 2000 astronomers from around the world for the 22nd General Assembly of the International Astronomical Union (IAU). From 15 to 27 August, they participated in symposia and discussions on topics ranging from the down-to-Earth issue of light and radio-frequency pollution to the creation of elements at the farthest reaches of time and space, in the big bang. Some of the most striking news, however, came in new findings from our galaxy and its immediate surroundings.

  20. On the Astronomical Knowledge and Traditions of Aboriginal Australians

    Science.gov (United States)

    Hamacher, Duane W.

    2011-12-01

    Historian of science David Pingree defines science in a broad context as the process of systematically explaining perceived or imaginary phenomena. Although Westerners tend to think of science being restricted to Western culture, I argue in this thesis that astronomical scientific knowledge is found in Aboriginal traditions. Although research into the astronomical traditions of Aboriginal Australians stretches back for more than 150 years, it is relatively scant in the literature. We do know that the sun, moon, and night sky have been an important and inseparable component of the landscape to hundreds of Australian Aboriginal groups for thousands (perhaps tens-of-thousands) of years. The literature reveals that astronomical knowledge was used for time keeping, denoting seasonal change and the availability of food sources, navigation, and tidal prediction. It was also important for rituals and ceremonies, birth totems, marriage systems, cultural mnemonics, and folklore. Despite this, the field remains relatively unresearched considering the diversity of Aboriginal cultures and the length of time people have inhabited Australia (well over 40,000 years). Additionally, very little research investigating the nature and role of transient celestial phenomena has been conducted, leaving our understanding of Indigenous astronomical knowledge grossly incomplete. This thesis is an attempt to overcome this deficiency, with a specific focus on transient celestial phenomena. My research, situated in the field of cultural astronomy, draws from the sub-disciplines of archaeoastronomy, ethnoastronomy, historical astronomy, and geomythology. This approach incorporates the methodologies and theories of disciplines in the natural sciences, social sciences, and humanities. This thesis, by publication, makes use of archaeological, ethnographic, and historical records, astronomical software packages, and geographic programs to better understand the ages of astronomical traditions and the

  1. Astronomical optics

    CERN Document Server

    Schroeder, Daniel J

    1988-01-01

    Written by a recognized expert in the field, this clearly presented, well-illustrated book provides both advanced level students and professionals with an authoritative, thorough presentation of the characteristics, including advantages and limitations, of telescopes and spectrographic instruments used by astronomers of today.Key Features* Written by a recognized expert in the field* Provides both advanced level students and professionals with an authoritative, thorough presentation of the characteristics, including advantages and limitations, of telescopes and spectrographic i

  2. VizieR Online Data Catalog: UV and IR properties for galaxies (Mao+, 2014)

    Science.gov (United States)

    Mao, Y.-W.; Kong, X.; Lin, L.

    2017-03-01

    Broadband FUV and NUV imaging data were obtained from GALEX observations and downloaded from the Multimission Archive at Space Telescope Science Institute (MAST) Web site (http://galex.stsci.edu/); 8um (dust-only) and 24um images were observed by the Spitzer Space Telescope (Spitzer) and retrieved from the SINGS data distribution service (http://irsa.ipac.caltech.edu/data/SPITZER/SINGS/). Hα narrowband imaging data are also employed in this work. The Hα narrowband image for NGC 3031 was observed by the 60/90 cm Schmidt telescope at Xing-Long station of the National Astronomical Observatories of China with the filter of transmission profile FWHM~120Å. (2 data files).

  3. Effectiveness of Amateur Astronomers as Informal Science Educators

    Science.gov (United States)

    Gibbs, Michael G.; Berendsen, Margaret

    2007-01-01

    The Astronomical Society of the Pacific (ASP) conducted a national survey of in-service teachers participating in Project ASTRO. The survey results document (1) the value that teachers place on supplemental astronomy education provided by professional and amateur astronomers, and (2) the difference that teachers perceive in the value provided by…

  4. Coronagraph for astronomical imaging and spectrophotometry

    Science.gov (United States)

    Vilas, Faith; Smith, Bradford A.

    1987-01-01

    A coronagraph designed to minimize scattered light in astronomical observations caused by the structure of the primary mirror, secondary mirror, and secondary support structure of a Cassegrainian telescope is described. Direct (1:1) and reducing (2.7:1) imaging of astronomical fields are possible. High-quality images are produced. The coronagraph can be used with either a two-dimensional charge-coupled device or photographic film camera. The addition of transmission dispersing optics converts the coronagraph into a low-resolution spectrograph. The instrument is modular and portable for transport to different observatories.

  5. National Astronomical Observatory of Japan

    CERN Document Server

    Haubold, Hans J; UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan

    2010-01-01

    This book represents Volume II of the Proceedings of the UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan, Tokyo, 18 - 22 June, 2007. It covers two programme topics explored in this and past workshops of this nature: (i) non-extensive statistical mechanics as applicable to astrophysics, addressing q-distribution, fractional reaction and diffusion, and the reaction coefficient, as well as the Mittag-Leffler function and (ii) the TRIPOD concept, developed for astronomical telescope facilities. The companion publication, Volume I of the proceedings of this workshop, is a special issue in the journal Earth, Moon, and Planets, Volume 104, Numbers 1-4, April 2009.

  6. Astronomical Spectroscopy for Amateurs

    CERN Document Server

    Harrison, Ken M

    2011-01-01

    Astronomical Spectroscopy for Amateurs is a complete guide for amateur astronomers who are looking for a new challenge beyond astrophotography. The book provides a brief overview of the history and development of the spectroscope, then a short introduction to the theory of stellar spectra, including details on the necessary reference spectra required for instrument testing and spectral comparison. The various types of spectroscopes available to the amateur are then described. Later sections cover all aspects of setting up and using various types of commercially available and home-built spectroscopes, starting with basic transmission gratings and going through more complex models, all the way to the sophisticated Littrow design. The final part of the text is about practical spectroscope design and construction. This book uniquely brings together a collection of observing, analyzing, and processing hints and tips that will allow the amateur to build skills in preparing scientifically acceptable spectra data. It...

  7. Thirteenth Joint European and National Astronomical Meeting

    CERN Document Server

    Iniesta, J C

    2006-01-01

    The book gathers the invited talks to the XIII JENAM conference, organized this time by the European Astronomical Society (EAS) and the Spanish Astronomical Society (SEA), and hosted by the Instituto de Astrofísica de Andalucía (CSIC). All branches of astrophysics are encompassed from the largest scales and cosmology to the solar system and the Sun, through the galaxies and the stars, including a section on astronomical instrumentation. Very relevant experts from all over the world speak in a single book about the most recent, exciting results from their fields in a way which is useful for both researchers in these fields and colleagues working in other disciplines. The book is accompanied by a CD-ROM including the remaining contributions of the meeting in PDF format, hence opening a wide panorama of what is going on in astrophysics nowadays.

  8. Elizabeth Brown (1830-1899), solar astronomer

    Science.gov (United States)

    Creese, M.

    1998-08-01

    Were it not for the fact that she was a woman, Elizabeth Brown might well be thought of as a fairly typical nineteenth-century British amateur astronomer. She has a place, although a relatively modest one, in the distinguished group of people who, with their own fortunes, carried out much of the astronomical research being done in the country at a time before extensive government support was forthcoming for the work.1 Her career in fact follows a pattern common to several of the nineteenth-century men astronomers in that her full productive period came only after she was freed from her primary responsibilities; she did not have to amass the necessary financial resources as did many of the men,2 but she had the time-consuming responsibility, not unusual for a Victorian woman, of caring for a parent through a lengthy old age. Only after her father died at the age of ninety-one, did Elizabeth, then in her early fifties, begin her sixteen years of remarkable public activity in astronomy.

  9. Spectroscopy for amateur astronomers recording, processing, analysis and interpretation

    CERN Document Server

    Trypsteen , Marc F M

    2017-01-01

    This accessible guide presents the astrophysical concepts behind astronomical spectroscopy, covering both the theory and the practical elements of recording, processing, analysing and interpreting your spectra. It covers astronomical objects, such as stars, planets, nebulae, novae, supernovae, and events such as eclipses and comet passages. Suitable for anyone with only a little background knowledge and access to amateur-level equipment, the guide's many illustrations, sketches and figures will help you understand and practise this scientifically important and growing field of amateur astronomy, up to the level of Pro-Am collaborations. Accessible to non-academics, it benefits many groups from novices and learners in astronomy clubs, to advanced students and teachers of astrophysics. This volume is the perfect companion to the Spectral Atlas for Amateur Astronomers, which provides detailed commented spectral profiles of more than 100 astronomical objects.

  10. The Galactic Distribution of Planets via Spitzer Microlensing Parallax

    Science.gov (United States)

    Gould, Andrew; Yee, Jennifer; Carey, Sean; Shvartzvald, Yossi

    2018-05-01

    We will measure the Galactic distribution of planets by obtaining 'microlens parallaxes' of about 200 events, including 3 planetary events, from the comparison of microlens lightcurves observed from Spitzer and Earth, which are separated by >1.5 AU in projection. The proposed observations are part of a campaign that we have conducted with Spitzer since 2014. The planets expected to be identified in this campaign when combined with previous work will yield a first statistically significant measurement of the frequency of planets in the Galactic bulge versus the Galactic disk. As we have demonstrated in three previous programs, the difference in these lightcurves yields both the 'microlens parallax' (ratio of the lens-source relative parallax) to the Einstein radius, and the direction of lens-source relative motion. For planetary events, this measurement directly yields the mass and distance of the planet. This proposal is significantly more sensitive to planets than previous work because it takes advantage of the KMTNet observing strategy that covers >85 sq.deg t >0.4/hr cadence, 24/7 from 3 southern observatories and a alert system KMTNet is implementing for 2019. This same observing program also provides a unique probe of dark objects. It will yield an improved measurement of the isolated-brown-dwarf mass function. Thirteen percent of the observations will specifically target binaries, which will probe systems with dark components (brown dwarfs, neutron stars, black holes) that are difficult or impossible to investigate by other methods. The observations and methods from this work are a test bed for WFIRST microlensing.

  11. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    Science.gov (United States)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the

  12. Decoding the mechanisms of Antikythera astronomical device

    CERN Document Server

    Lin, Jian-Liang

    2016-01-01

    This book presents a systematic design methodology for decoding the interior structure of the Antikythera mechanism, an astronomical device from ancient Greece. The historical background, surviving evidence and reconstructions of the mechanism are introduced, and the historical development of astronomical achievements and various astronomical instruments are investigated. Pursuing an approach based on the conceptual design of modern mechanisms and bearing in mind the standards of science and technology at the time, all feasible designs of the six lost/incomplete/unclear subsystems are synthesized as illustrated examples, and 48 feasible designs of the complete interior structure are presented. This approach provides not only a logical tool for applying modern mechanical engineering knowledge to the reconstruction of the Antikythera mechanism, but also an innovative research direction for identifying the original structures of the mechanism in the future. In short, the book offers valuable new insights for all...

  13. Filling the Astronomical Void - A Visual Medium for a Visual Subject

    Science.gov (United States)

    Ryan, J.

    1996-12-01

    Astronomy is fundamentally a visual subject. The modern science of astronomy has at its foundation the ancient art of observing the sky visually. The visual elements of astronomy are arguably the most important. Every person in the entire world is affected by visually-observed astronomical phenomena such as the seasonal variations in daylight. However, misconceptions abound and the average person cannot recognize the simple signs in the sky that point to the direction, the hour and the season. Educators and astronomy popularizers widely lament that astronomy is not appreciated in our society. Yet, there is a remarkable dearth of popular literature for teaching the visual elements of astronomy. This is what I refer to as *the astronomical void.* Typical works use illustrations sparsely, relying most heavily on text-based descriptions of the visual astronomical phenomena. Such works leave significant inferential gaps to the inexperienced reader, who is unequipped for making astronomical observations. Thus, the astronomical void remains unfilled by much of the currently available literature. I therefore propose the introduction of a visually-oriented medium for teaching the visual elements of Astronomy. To this end, I have prepared a series of astronomy "comic strips" that are intended to fill the astronomical void. By giving the illustrations the central place, the comic strip medium permits the depiction of motion and other sequential activity, thus effectively representing astronomical phenomena. In addition to the practical advantages, the comic strip is a "user friendly" medium that is inviting and entertaining to a reader. At the present time, I am distributing a monthly comic strip entitled *Starman*, which appears in the newsletters of over 120 local astronomy organizations and on the web at http://www.cyberdrive.net/ starman. I hope to eventually publish a series of full-length books and believe that astronomical comic strips will help expand the perimeter of

  14. SPITZER survey of dust grain processing in stable discs around binary post-AGB stars

    NARCIS (Netherlands)

    Gielen, C.; van Winckel, H.; Min, M.; Waters, L.B.F.M.; Lloyd Evans, T.

    2008-01-01

    Aims. We investigate the mineralogy and dust processing in the circumbinary discs of binary post-AGB stars using high-resolution TIMMI2 and SPITZER infrared spectra. Methods: We perform a full spectral fitting to the infrared spectra using the most recent opacities of amorphous and crystalline dust

  15. Astronomers celebrate a year of new Hubble results

    Science.gov (United States)

    1995-02-01

    "We are beginning to understand that because of these observations we are going to have to change the way we look at the Universe," said ESA's Dr Duccio Macchetto, Associate Director for Science Programs at the Space Telescope Science Institute (STScI), Baltimore, Maryland, USA. The European Space Agency plays a major role in the Hubble Space Telescope programme. The Agency provided one of the telescope's four major instruments, called the Faint Object Camera, and two sets of electricity-generating solar arrays. In addition, 15 ESA scientific and technical staff work at the STScI. In return for this contribution, European astronomers are entitled to 15 percent of the telescope's observing time, although currently they account for 20 percent of all observations. "This is a testimony to the quality of the European science community", said Dr Roger Bonnet, Director of Science at ESA. "We are only guaranteed 15 percent of the telescope's use, but consistently receive much more than that." Astronomers from universities, observatories and research institutes across Europe lead more than 60 investigations planned for the telescope's fifth observing cycle, which begins this summer. Many more Europeans contribute to teams led by other astronomers. Looking back to the very start of time European astronomer Dr Peter Jakobsen used ESA's Faint Object Camera to confirm that helium was present in the early Universe. Astronomers had long predicted that 90 percent of the newly born Universe consisted of hydrogen, with helium making up the remainder. Before the refurbished Hubble came along, it was easy to detect the hydrogen, but the primordial helium remained elusive. The ultraviolet capabilities of the telescope, combined with the improvement in spatial resolution following the repair, made it possible for Dr Jakobsen to obtain an image of a quasar close to the edge of the known Universe. A spectral analysis of this picture revealed the quasar's light, which took 13 billion years

  16. Astronomical publications of Melbourne Observatory

    Science.gov (United States)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  17. AESoP: Astronomical Extinction Spectrophotometer

    Science.gov (United States)

    Linford, Justin; McGraw, J.; Zimmer, P.; Ackermann, M.; Fitch, J.

    2009-01-01

    The Earth's atmosphere is a major obstruction to the precision and accuracy of ground-based photometry. The atmosphere removes light from astronomical objects both by absorption and scattering by constituent molecules, aerosols and clouds. These effects can change significantly over short time periods and over modest angles on the sky. To further understand these effects, the UNM Measurement Astrophysics Group has designed, built and recently deployed the Astronomical Extinction Spectrophotometer (AESoP), a 100mm objective grating spectrometer. By monitoring bright stars in sensibly the same direction as a larger photometric telescope is observing, AESoP will measure the wavelength-dependent extinction due to the Earth's atmosphere from 450nm to 900nm on time scales of approximately one minute. The collocated Astronomical LIDAR for Extinction (ALE) provides a high-precision monochromatic extinction measurement at 527nm. Knowing the extinction at a single wavelength allows us to pin the relative spectra generated by AESoP. These extinction spectra can then be integrated over the bandpass of the photometric telescope system to create real time corrections of observations. We present the design and construction of AESoP along with the preliminary results of our first combined observing campaign. This effort is our first step toward breaking the 1% photometry barrier. This project is funded by AFRL Grant FA9451-04-2-0355

  18. SPITZER IRS SPECTRA OF LUMINOUS 8 μm SOURCES IN THE LARGE MAGELLANIC CLOUD: TESTING COLOR-BASED CLASSIFICATIONS

    International Nuclear Information System (INIS)

    Buchanan, Catherine L.; Kastner, Joel H.; Hrivnak, Bruce J.; Sahai, Raghvendra

    2009-01-01

    We present archival Spitzer Infrared Spectrograph (IRS) spectra of 19 luminous 8 μm selected sources in the Large Magellanic Cloud (LMC). The object classes derived from these spectra and from an additional 24 spectra in the literature are compared with classifications based on Two Micron All Sky Survey (2MASS)/MSX (J, H, K, and 8 μm) colors in order to test the 'JHK8' (Kastner et al.) classification scheme. The IRS spectra confirm the classifications of 22 of the 31 sources that can be classified under the JHK8 system. The spectroscopic classification of 12 objects that were unclassifiable in the JHK8 scheme allow us to characterize regions of the color-color diagrams that previously lacked spectroscopic verification, enabling refinements to the JHK8 classification system. The results of these new classifications are consistent with previous results concerning the identification of the most infrared-luminous objects in the LMC. In particular, while the IRS spectra reveal several new examples of asymptotic giant branch (AGB) stars with O-rich envelopes, such objects are still far outnumbered by carbon stars (C-rich AGB stars). We show that Spitzer IRAC/MIPS color-color diagrams provide improved discrimination between red supergiants and oxygen-rich and carbon-rich AGB stars relative to those based on 2MASS/MSX colors. These diagrams will enable the most luminous IR sources in Local Group galaxies to be classified with high confidence based on their Spitzer colors. Such characterizations of stellar populations will continue to be possible during Spitzer's warm mission through the use of IRAC [3.6]-[4.5] and 2MASS colors.

  19. Size and Albedo of Irregular Saturnian Satellites from Spitzer Observations

    Science.gov (United States)

    Mueller, Michael; Grav, T.; Trilling, D.; Stansberry, J.; Sykes, M.

    2008-09-01

    Using MIPS onboard the Spitzer Space Telescope, we observed the thermal emission (24 and, for some targets, 70 um) of eight irregular satellites of Saturn: Albiorix, Siarnaq, Paaliaq, Kiviuq, Ijiraq, Tarvos, Erriapus, and Ymir. We determined the size and albedo of all targets. An analysis of archived MIPS observations of Phoebe reproduces Cassini results very accurately, thereby validating our method. For all targets, the geometric albedo is found to be low, probably below 10% and clearly below 15%. Irregular satellites are much darker than the large regular satellites. Their albedo is, however, quite similar to that of small bodies in the outer Solar System (such as cometary nuclei, Jupiter Trojans, or TNOs). This is consistent with color measurements as well as dynamical considerations which suggest a common origin of the said populations. There appear to be significant object-to-object albedo differences. Similar albedos found for some members of dynamical clusters support the idea that they may have originated in the breakup of a parent body. For three satellites, thermal data at two wavelengths are available, enabling us to constrain their thermal properties. Sub-solar temperatures are similar to that found from Cassini's Phoebe fly-by. This suggests a rather low thermal inertia, as expected for regolith-covered objects. This work is based on observations made with the Spitzer Space Telescope, which is operated by JPL under a contract with NASA. Support for this work was provided by NASA.

  20. Astronomical optics and elasticity theory

    CERN Document Server

    Lemaitre, Gerard Rene

    2008-01-01

    Astronomical Optics and Elasticity Theory provides a very thorough and comprehensive account of what is known in this field. After an extensive introduction to optics and elasticity, the book discusses variable curvature and multimode deformable mirrors, as well as, in depth, active optics, its theory and applications. Further, optical design utilizing the Schmidt concept and various types of Schmidt correctors, as well as the elasticity theory of thin plates and shells are elaborated upon. Several active optics methods are developed for obtaining aberration corrected diffraction gratings. Further, a weakly conical shell theory of elasticity is elaborated for the aspherization of grazing incidence telescope mirrors. The very didactic and fairly easy-to-read presentation of the topic will enable PhD students and young researchers to actively participate in challenging astronomical optics and instrumentation projects.

  1. Preserving and Archiving Astronomical Photographic Plates

    Science.gov (United States)

    Castelaz, M. W.; Cline, J. D.

    2005-05-01

    Astronomical objects change with time. New observations complement past observations recorded on photographic plates. Analyses of changes provide essential routes to information about an object's formation, constitution and evolution. Preserving a century of photographic plate observations is thus of paramount importance. Plate collections are presently widely dispersed; plates may be stored in poor conditions, and are effectively inaccessible to both researchers and historians. We describe a planned project at Pisgah Astronomical Research Institute to preserve the collections of astronomical plates in the United States by gathering them into a single storage location. Collections will be sorted, cleaned, and cataloged on-line so as to provide access to researchers. Full scientific and historic use of the material then requires the observations themselves to be accessible digitally. The project's goal will be the availability of these data as a unique, fully-maintained scientific and educational resource. The new archive will support trans-disciplinary research such as the chemistry of the Earth's atmosphere, library information science, trends in local weather patterns, and impacts of urbanization on telescope use, while the hand-written observatory logs will be a valuable resource for science historians and biographers.

  2. Astronomers Without Borders: A Global Astronomy Community

    Science.gov (United States)

    Simmons, M.

    2011-10-01

    Astronomers Without Borders (AWB) brings together astronomy enthusiasts of all types - amateur astronomers, educators, professionals and "armchair" astronomers for a variety of online and physicalworld programs. The AWB web site provides social networking and a base for online programs that engage people worldwide in astronomy activities that transcend geopolitical and cultural borders. There is universal interest in astronomy, which has been present in all cultures throughout recorded history. Astronomy is also among the most accessible of sciences with the natural laboratory of the sky being available to people worldwide. There are few other interests for which people widely separated geographically can engage in activities involving the same objects. AWB builds on those advantages to bring people together. AWB also provides a platform where projects can reach a global audience. AWB also provides unique opportunities for multidisciplinary collaboration in EPO programs. Several programs including The World at Night, Global Astronomy Month and others will be described along with lessons learned.

  3. SPITZER TRANSITS OF THE SUPER-EARTH GJ1214b AND IMPLICATIONS FOR ITS ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Fraine, Jonathan D.; Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Gillon, Michaeel; Jehin, Emmanueel [Institute d' Astrophysique et de Geophysique, Universite de Liege, Liege (Belgium); Demory, Brice-Olivier; Benneke, Bjoern; Seager, Sara [Department of Earth, Atmospheric and Planetary Sciences, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Lewis, Nikole K. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Knutson, Heather [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Desert, Jean-Michel, E-mail: jfraine@astro.umd.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2013-03-10

    We observed the transiting super-Earth exoplanet GJ1214b using warm Spitzer at 4.5 {mu}m wavelength during a 20 day quasi-continuous sequence in 2011 May. The goals of our long observation were to accurately define the infrared transit radius of this nearby super-Earth, to search for the secondary eclipse, and to search for other transiting planets in the habitable zone of GJ1214. We here report results from the transit monitoring of GJ1214b, including a reanalysis of previous transit observations by Desert et al. In total, we analyze 14 transits of GJ1214b at 4.5 {mu}m, 3 transits at 3.6 {mu}m, and 7 new ground-based transits in the I+z band. Our new Spitzer data by themselves eliminate cloudless solar composition atmospheres for GJ1214b, and methane-rich models from Howe and Burrows. Using our new Spitzer measurements to anchor the observed transit radii of GJ1214b at long wavelengths, and adding new measurements in I+z, we evaluate models from Benneke and Seager and Howe and Burrows using a {chi}{sup 2} analysis. We find that the best-fit model exhibits an increase in transit radius at short wavelengths due to Rayleigh scattering. Pure water atmospheres are also possible. However, a flat line (no atmosphere detected) remains among the best of the statistically acceptable models, and better than pure water atmospheres. We explore the effect of systematic differences among results from different observational groups, and we find that the Howe and Burrows tholin-haze model remains the best fit, even when systematic differences among observers are considered.

  4. ASURV: Astronomical SURVival Statistics

    Science.gov (United States)

    Feigelson, E. D.; Nelson, P. I.; Isobe, T.; LaValley, M.

    2014-06-01

    ASURV (Astronomical SURVival Statistics) provides astronomy survival analysis for right- and left-censored data including the maximum-likelihood Kaplan-Meier estimator and several univariate two-sample tests, bivariate correlation measures, and linear regressions. ASURV is written in FORTRAN 77, and is stand-alone and does not call any specialized libraries.

  5. The South African astronomical observatory

    International Nuclear Information System (INIS)

    Feast, M.

    1985-01-01

    A few examples of the activities of the South African Astronomical Observatory are discussed. This includes the studying of stellar evolution, dust around stars, the determination of distances to galaxies and collaboration with space experiments

  6. Reduction of the general Spitzer-Haerm problem in plasma physics

    International Nuclear Information System (INIS)

    Ferreira, A.

    1988-01-01

    The general Spitzer-Haerm problem is unfolded through a redefinition of the dependent variable into two separate simpler problems. The first takes the form of a second order differential equation, and the second, that of an integration over the solution of the first problem, which provides the distribution function or, directly, the current and the heat flow. It is shown that the current and the heat flow can in general by synthesized from the solutions of the differential equation for two specific forms of the driving term. (author)

  7. The National Astronomical Observatory of Japan and Post-war Japanese Optical Astronomy

    Science.gov (United States)

    Tajima, Toshiyuki

    This paper depicts some aspects of the formative process of the Japanese optical and infrared astronomical community in the post-war period, featuring the transition of the National Astronomical Observatory of Japan(NAOJ). We take up three cases of telescope construction, examining their background and their contribution to the Japanese astronomical community. Through these cases, the characteristics of traditions and cultures of optical and infrared astronomy in Japan are considered. Although the Tokyo Astronomical Observatory (TAO) of the University of Tokyo, the predecessor of NAOJ, was originally founded as an agency for practical astronomical observation such as time and almanac service, it has become an international centre for all types of astrophysical research. Research and development of telescopes and observational instruments have become an important part of the astronomers' practice. Now, however, a number of Japanese universities are planning to have their own large to middle-sized telescopes, and a new style of astronomical research is emerging involving astrophysical studies utilising data acquired from the Virtual Observatory, so there is a distinct possibility that the status of the NAOJ will change even further in the future.

  8. A Brief History of Manchester Astronomical Society

    Science.gov (United States)

    Kilburn, K. J.

    Manchester Astronomical Society celebrated its centenary in September 2003. But that centenary was of a hundred years as the MAS: the history of the society goes back much further, and can be traced directly to that great era of.public awareness of astronomy and amateur interest in Victorian England in the last half of the nineteenth century. Allan Chapman has discussed this period in detail, so the present paper concentrates on the MAS's particular influence on Manchester astronomers and recent work on the history of the society.

  9. Astronomical databases of Nikolaev Observatory

    Science.gov (United States)

    Protsyuk, Y.; Mazhaev, A.

    2008-07-01

    Several astronomical databases were created at Nikolaev Observatory during the last years. The databases are built by using MySQL search engine and PHP scripts. They are available on NAO web-site http://www.mao.nikolaev.ua.

  10. Physical Properties of Asteroid (10302) 1989 ML, a Potential Spacecraft Target, from Spitzer Observations

    NARCIS (Netherlands)

    Mueller, Michael; Harris, A. W.

    2006-01-01

    We report on results from recent Spitzer observations of near-Earth asteroid (10302) 1989 ML, which is among the lowest-ranking objects in terms of the specific momentum Δv required to reach it from Earth. It was originally considered as a target for Hayabusa and is now under consideration as a

  11. Astronomical dating in the 19th century

    Science.gov (United States)

    Hilgen, Frederik J.

    2010-01-01

    Today astronomical tuning is widely accepted as numerical dating method after having revolutionised the age calibration of the geological archive and time scale over the last decades. However, its origin is not well known and tracing its roots is important especially from a science historic perspective. Astronomical tuning developed in consequence of the astronomical theory of the ice ages and was repeatedly used in the second half of the 19th century before the invention of radio-isotopic dating. Building upon earlier ideas of Joseph Adhémar, James Croll started to formulate his astronomical theory of the ice ages in 1864 according to which precession controlled ice ages occur alternatingly on both hemispheres at times of maximum eccentricity of the Earth's orbit. The publication of these ideas compelled Charles Lyell to revise his Principles of Geology and add Croll's theory, thus providing an alternative to his own geographical cause of the ice ages. Both Croll and Lyell initially tuned the last glacial epoch to the prominent eccentricity maximum 850,000 yr ago. This age was used as starting point by Lyell to calculate an age of 240 million years for the beginning of the Cambrium. But Croll soon revised the tuning to a much younger less prominent eccentricity maximum between 240,000 and 80,000 yr ago. In addition he tuned older glacial deposits of late Miocene and Eocene ages to eccentricity maxima around 800,000 and 2,800,000 yr ago. Archibald and James Geikie were the first to recognize interglacials during the last glacial epoch, as predicted by Croll's theory, and attempted to tune them to precession. Soon after Frank Taylor linked a series of 15 end-moraines left behind by the retreating ice sheet to precession to arrive at a possible age of 300,000 yr for the maximum glaciation. In a classic paper, Axel Blytt (1876) explained the scattered distribution of plant groups in Norway to precession induced alternating rainy and dry periods as recorded by the

  12. Denver's Pioneer Astronomer: Herbert Alonso Howe (1858-1926)

    Science.gov (United States)

    Howe, H. J.; Stencel, R. E.; Fisher, S.

    1999-05-01

    Herbert A. Howe arrived at Denver University (DU) to teach autumn 1880 classes, in math, astronomy and surveying. Howe established himself with clever solutions to the Kepler problem for orbit determinations in thesis work at Cincinnati Observatory. Riding the economic expansion of Colorado gold and silver mining in 1888, the University accepted a proposed gift of a major observatory, offered by Denver real estate baron, Humphrey Chamberlin. The result features a 20 inch aperture Alvan Clark refractor, which still ranks among the largest telescopes of the era. With the observatory building ready, the Silver Panic of 1893 -- when the US Congress dropped silver reserves from the currency basis -- burst the Denver economic bubble. Chamberlin was unable to complete payments on the balances due. Clark and G.N.Saegmuller (Fauth and Co.) at personal expense, delivered on the optics and telescope assemblies in 1894, but would wait for repayment. Sadly, this fiscal crisis affected DU for over a decade. Professor Howe, while observatory director, found himself consumed as Dean and Acting Chancellor for a young, struggling university, at the expense of the astronomy future that had looked so bright in 1892. Absent the Silver Panic, Howe would have probably been given an endowed chair in astronomy, as promised by Chamberlin. The complexion of American astronomy at the time of the birth of the American Astronomical Society in 1899 might have been different, in terms of US observing sites, etc. We are fortunate to have extensive Prof.Howe's daily diaries now in the University archives. These describe Howe's view of progress on the observatory, meetings with astronomy notables, plus vignettes of the life and times of Denver and the nation. Grandson, Herbert Julian Howe rediscovered their existence and is summarizing them in the form of a biography entitled: The Pioneer Astronomer. DU archival records contain numerous original letters from late 19th century astronomy luminaries

  13. TPCs in high-energy astronomical polarimetry

    International Nuclear Information System (INIS)

    Black, J K

    2007-01-01

    High-energy astrophysics has yet to exploit the unique and important information that polarimetry could provide, largely due to the limited sensitivity of previously available polarimeters. In recent years, numerous efforts have been initiated to develop instruments with the sensitivity required for astronomical polarimetry over the 100 eV to 10 GeV band. Time projection chambers (TPCs), with their high-resolution event imaging capability, are an integral part of some of these efforts. After a brief overview of current astronomical polarimeter development efforts, the role of TPCs will be described in more detail. These include TPCs as photoelectric X-ray polarimeters and TPCs as components of polarizationsensitive Compton and pair-production telescopes

  14. Division B Commission 6: Astronomical Telegrams

    Science.gov (United States)

    Yamaoka, H.; Green, D. W. E.; Samus, N. N.; Aksnes, K.; Gilmore, A. C.; Nakano, S.; Sphar, T.; Tichá, J.; Williams, G. V.

    2016-04-01

    IAU Commission 6 ``Astronomical Telegrams'' had a single business meeting during Honolulu General Assembly of the IAU. It took place on Tuesday, 11 August 2015. The meeting was attended by Hitoshi Yamaoka (President), Daniel Green (Director of the Central Bureau for Astronomical Telegrams, CBAT, via Skype), Steven Chesley (JPL), Paul Chodas (JPL), Alan Gilmore (Canterbury University), Shinjiro Kouzuma (Chukyo University), Paolo Mazzali (Co-Chair of the Supernova Working Group), Elena Pian (Scuola Normale Superiore di Pisa), Marion Schmitz (chair IAU Working Group Designations + NED), David Tholen (University of Hawaii), Jana Ticha (Klet Observatory), Milos Tichy (Klet Observatory), Giovanni Valsecchi (INAF\\slash Italy), Gareth Williams (Minor Planet Center). Apologies: Nikolai Samus (General Catalogue of Variable Stars, GCVS).

  15. SPITZER MICROLENS MEASUREMENT OF A MASSIVE REMNANT IN A WELL-SEPARATED BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Shvartzvald, Y.; Bryden, G.; Henderson, C. B. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Gould, A.; Fausnaugh, M.; Gaudi, B. S.; Pogge, R. W.; Wibking, B.; Zhu, W. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Bozza, V.; Novati, S. Calchi [Dipartimento di Fisica “E. R. Caianiello,” Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (Italy); Friedmann, M. [School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Hundertmark, M. [Niels Bohr Institute and Centre for Star and Planet Formation, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen K (Denmark); Beichman, C. [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Carey, S. [Spitzer, Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Kerr, T.; Varricatt, W. [UKIRT, 660 N. Aohoku Place, University Park, Hilo, HI 96720 (United States); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Collaboration: and; Spitzer team; OGLE group; KMTNet group; Wise group; RoboNet; MiNDSTEp; and others

    2015-12-01

    We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M{sub 1} > 1.35 M{sub ⊙} (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r{sub ⊥} = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the “microlens parallax” effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay at 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations.

  16. Astrobiology: An astronomer's perspective

    International Nuclear Information System (INIS)

    Bergin, Edwin A.

    2014-01-01

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the process of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface

  17. Astronomical Virtual Observatories Through International Collaboration

    Directory of Open Access Journals (Sweden)

    Masatoshi Ohishi

    2010-03-01

    Full Text Available Astronomical Virtual Observatories (VOs are emerging research environment for astronomy, and 16 countries and a region have funded to develop their VOs based on international standard protocols for interoperability. The 16 funded VO projects have established the International Virtual Observatory Alliance (http://www.ivoa.net/ to develop the standard interoperable interfaces such as registry (meta data, data access, query languages, output format (VOTable, data model, application interface, and so on. The IVOA members have constructed each VO environment through the IVOA interfaces. National Astronomical Observatory of Japan (NAOJ started its VO project (Japanese Virtual Observatory - JVO in 2002, and developed its VO system. We have succeeded to interoperate the latest JVO system with other VOs in the USA and Europe since December 2004. Observed data by the Subaru telescope, satellite data taken by the JAXA/ISAS, etc. are connected to the JVO system. Successful interoperation of the JVO system with other VOs means that astronomers in the world will be able to utilize top-level data obtained by these telescopes from anywhere in the world at anytime. System design of the JVO system, experiences during our development including problems of current standard protocols defined in the IVOA, and proposals to resolve these problems in the near future are described.

  18. Astrobiology: An astronomer's perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bergin, Edwin A. [University of Michigan, Department of Astronomy, 500 Church Street, Ann Arbor, MI 48109 (United States)

    2014-12-08

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the process of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface.

  19. Different Categories of Astronomical Heritage: Issues and Challenges

    Science.gov (United States)

    Ruggles, Clive

    2012-09-01

    Since 2008 the AWHWG has, on behalf of the IAU, been working with UNESCO and its advisory bodies to help identify, safeguard and promote cultural properties relating to astronomy and, where possible, to try to facilitate the eventual nomination of key astronomical heritage sites onto the World Heritage List. Unfortunately, the World Heritage Convention only covers fixed sites (i.e., the tangible immovable heritage of astronomy), and a key question for the UNESCO-IAU Astronomy and World Heritage Initiative (AWHI) is the extent to which the tangible moveable and intangible heritage of astronomy (e.g. moveable instruments; ideas and theories) influence the assessment of the tangible immovable heritage. Clearly, in an ideal world we should be concerned not only with tangible immovable heritage but, to quote the AWHWG's own Terms of Reference, ``to help ensure that cultural properties and artefacts significant in the development of astronomy, together with the intangible heritage of astronomy, are duly studied, protected and maintained, both for the greater benefit of humankind and to the potential benefit of future historical research''. With this in mind, the IAU/INAF symposium on ``Astronomy and its Instruments before and after Galileo'' held in Venice in Sep-Oct 2009 recommended that urgent steps should be taken 1. to sensitise astronomers and the general public, and particularly observatory directors and others with direct influence and control over astronomical resources, to the importance of identifying, protecting and preserving the various material products of astronomical research and discovery that already have, or have significant potential to acquire, universal value; (N.B. National or regional interests and concerns have no relevance in the assessment of ``universal value'', which, by definition, extends beyond cultural boundaries and, by reasonable expectation, down the generations into the future. 2. to identify modes of interconnectivity between

  20. LOW FALSE POSITIVE RATE OF KEPLER CANDIDATES ESTIMATED FROM A COMBINATION OF SPITZER AND FOLLOW-UP OBSERVATIONS

    International Nuclear Information System (INIS)

    Désert, Jean-Michel; Brown, Timothy M.; Charbonneau, David; Torres, Guillermo; Fressin, François; Ballard, Sarah; Latham, David W.; Bryson, Stephen T.; Borucki, William J.; Knutson, Heather A.; Batalha, Natalie M.; Deming, Drake; Ford, Eric B.; Fortney, Jonathan J.; Gilliland, Ronald L.; Seager, Sara

    2015-01-01

    NASA’s Kepler mission has provided several thousand transiting planet candidates during the 4 yr of its nominal mission, yet only a small subset of these candidates have been confirmed as true planets. Therefore, the most fundamental question about these candidates is the fraction of bona fide planets. Estimating the rate of false positives of the overall Kepler sample is necessary to derive the planet occurrence rate. We present the results from two large observational campaigns that were conducted with the Spitzer Space Telescope during the the Kepler mission. These observations are dedicated to estimating the false positive rate (FPR) among the Kepler candidates. We select a sub-sample of 51 candidates, spanning wide ranges in stellar, orbital, and planetary parameter space, and we observe their transits with Spitzer at 4.5 μm. We use these observations to measures the candidate’s transit depths and infrared magnitudes. An authentic planet produces an achromatic transit depth (neglecting the modest effect of limb darkening). Conversely a bandpass-dependent depth alerts us to the potential presence of a blending star that could be the source of the observed eclipse: a false positive scenario. For most of the candidates (85%), the transit depths measured with Kepler are consistent with the transit depths measured with Spitzer as expected for planetary objects, while we find that the most discrepant measurements are due to the presence of unresolved stars that dilute the photometry. The Spitzer constraints on their own yield FPRs between 5% and depending on the Kepler Objects of Interest. By considering the population of the Kepler field stars, and by combining follow-up observations (imaging) when available, we find that the overall FPR of our sample is low. The measured upper limit on the FPR of our sample is 8.8% at a confidence level of 3σ. This observational result, which uses the achromatic property of planetary transit signals that is not investigated

  1. LOW FALSE POSITIVE RATE OF KEPLER CANDIDATES ESTIMATED FROM A COMBINATION OF SPITZER AND FOLLOW-UP OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Désert, Jean-Michel; Brown, Timothy M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Charbonneau, David; Torres, Guillermo; Fressin, François; Ballard, Sarah; Latham, David W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bryson, Stephen T.; Borucki, William J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Knutson, Heather A. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Batalha, Natalie M. [San Jose State University, San Jose, CA 95192 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Ford, Eric B. [University of Florida, Gainesville, FL 32611 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Seager, Sara, E-mail: desert@colorado.edu [Massachusetts Institute of Technology, Cambridge, MA 02159 (United States)

    2015-05-01

    NASA’s Kepler mission has provided several thousand transiting planet candidates during the 4 yr of its nominal mission, yet only a small subset of these candidates have been confirmed as true planets. Therefore, the most fundamental question about these candidates is the fraction of bona fide planets. Estimating the rate of false positives of the overall Kepler sample is necessary to derive the planet occurrence rate. We present the results from two large observational campaigns that were conducted with the Spitzer Space Telescope during the the Kepler mission. These observations are dedicated to estimating the false positive rate (FPR) among the Kepler candidates. We select a sub-sample of 51 candidates, spanning wide ranges in stellar, orbital, and planetary parameter space, and we observe their transits with Spitzer at 4.5 μm. We use these observations to measures the candidate’s transit depths and infrared magnitudes. An authentic planet produces an achromatic transit depth (neglecting the modest effect of limb darkening). Conversely a bandpass-dependent depth alerts us to the potential presence of a blending star that could be the source of the observed eclipse: a false positive scenario. For most of the candidates (85%), the transit depths measured with Kepler are consistent with the transit depths measured with Spitzer as expected for planetary objects, while we find that the most discrepant measurements are due to the presence of unresolved stars that dilute the photometry. The Spitzer constraints on their own yield FPRs between 5% and depending on the Kepler Objects of Interest. By considering the population of the Kepler field stars, and by combining follow-up observations (imaging) when available, we find that the overall FPR of our sample is low. The measured upper limit on the FPR of our sample is 8.8% at a confidence level of 3σ. This observational result, which uses the achromatic property of planetary transit signals that is not investigated

  2. Lessons from the masters current concepts in astronomical image processing

    CERN Document Server

    2013-01-01

    There are currently thousands of amateur astronomers around the world engaged in astrophotography at increasingly sophisticated levels. Their ranks far outnumber professional astronomers doing the same and their contributions both technically and artistically are the dominant drivers of progress in the field today. This book is a unique collaboration of individuals, all world-renowned in their particular area, and covers in detail each of the major sub-disciplines of astrophotography. This approach offers the reader the greatest opportunity to learn the most current information and the latest techniques directly from the foremost innovators in the field today.   The book as a whole covers all types of astronomical image processing, including processing of eclipses and solar phenomena, extracting detail from deep-sky, planetary, and widefield images, and offers solutions to some of the most challenging and vexing problems in astronomical image processing. Recognized chapter authors include deep sky experts su...

  3. Super resolution for astronomical observations

    Science.gov (United States)

    Li, Zhan; Peng, Qingyu; Bhanu, Bir; Zhang, Qingfeng; He, Haifeng

    2018-05-01

    In order to obtain detailed information from multiple telescope observations a general blind super-resolution (SR) reconstruction approach for astronomical images is proposed in this paper. A pixel-reliability-based SR reconstruction algorithm is described and implemented, where the developed process incorporates flat field correction, automatic star searching and centering, iterative star matching, and sub-pixel image registration. Images captured by the 1-m telescope at Yunnan Observatory are used to test the proposed technique. The results of these experiments indicate that, following SR reconstruction, faint stars are more distinct, bright stars have sharper profiles, and the backgrounds have higher details; thus these results benefit from the high-precision star centering and image registration provided by the developed method. Application of the proposed approach not only provides more opportunities for new discoveries from astronomical image sequences, but will also contribute to enhancing the capabilities of most spatial or ground-based telescopes.

  4. Astronomía Mocoví

    Science.gov (United States)

    López, A.; Giménez Benitez, S.; Fernández, L.

    El presente trabajo, es una revisión crítica de la astronomía en la cultura Mocoví, aportando a lo realizado previamente por Lehmann Nistche (Lehmann Nistche, 1924 y 1927) el resultado de nuestro trabajo de campo. Un mayor conocimiento de las cosmovisiones de las etnias de esta área es fundamental para una mejor comprensión de la dispersión de las ideas cosmológicas entre los pueblos aborígenes americanos, dada la importancia del corredor chaqueño como conexión entre las altas culturas andinas, la mesopotamia y la región pampeana (Susnik, 1972). Para ello se realiza una comparación con otras cosmovisiones del área americana. Nuestro aporte se enmarca dentro de las actuales líneas de trabajo mundialmente en desarrollo en Astronomía en la Cultura.

  5. Measurement of the Transverse Spitzer Resistivity during Collisional Magnetic Reconnection

    International Nuclear Information System (INIS)

    Trintchouk, F.; Yamada, M.; Ji, H.; Kulsrud, R.M.; Carter, T.A.

    2000-01-01

    Measurement of the transverse resistivity was carried out in a reconnecting current sheet where the mean free path for the Coulomb collision is smaller than the thickness of the sheet. In a collisional neutral sheet without a guide field, the transverse resistivity is directly related to the reconnection rate. A remarkable agreement is found between the measured resistivity and the classical value derived by L. Spitzer. In his calculation the transverse resistivity for the electrons is higher than the parallel resistivity by a factor of 1.96. The measured values have verified this theory to within 30% errors

  6. CANFAR+Skytree: A Cloud Computing and Data Mining System for Astronomy

    Science.gov (United States)

    Ball, N. M.

    2013-10-01

    To-date, computing systems have allowed either sophisticated analysis of small datasets, as exemplified by most astronomy software, or simple analysis of large datasets, such as database queries. At the Canadian Astronomy Data Centre, we have combined our cloud computing system, the Canadian Advanced Network for Astronomical Research (CANFAR), with the world's most advanced machine learning software, Skytree, to create the world's first cloud computing system for data mining in astronomy. CANFAR provides a generic environment for the storage and processing of large datasets, removing the requirement for an individual or project to set up and maintain a computing system when implementing an extensive undertaking such as a survey pipeline. 500 processor cores and several hundred terabytes of persistent storage are currently available to users, and both the storage and processing infrastructure are expandable. The storage is implemented via the International Virtual Observatory Alliance's VOSpace protocol, and is available as a mounted filesystem accessible both interactively, and to all processing jobs. The user interacts with CANFAR by utilizing virtual machines, which appear to them as equivalent to a desktop. Each machine is replicated as desired to perform large-scale parallel processing. Such an arrangement enables the user to immediately install and run the same astronomy code that they already utilize, in the same way as on a desktop. In addition, unlike many cloud systems, batch job scheduling is handled for the user on multiple virtual machines by the Condor job queueing system. Skytree is installed and run just as any other software on the system, and thus acts as a library of command line data mining functions that can be integrated into one's wider analysis. Thus we have created a generic environment for large-scale analysis by data mining, in the same way that CANFAR itself has done for storage and processing. Because Skytree scales to large data in

  7. Top astronomers head to the city. Experts to talk on exciting quasar discoveries.

    CERN Multimedia

    Grant, S

    2002-01-01

    The UK National Astronomy Meeting - NAM 2002 - is at Bristol University this week. The meeting is one of the most important regular gatherings of astronomers in the UK. Sponsored by the Royal Astronomical Society and PPARC, it should attract about 300 astronomers from the UK and beyond.

  8. OPTICAL SPECTROSCOPY AND NEBULAR OXYGEN ABUNDANCES OF THE SPITZER/SINGS GALAXIES

    International Nuclear Information System (INIS)

    Moustakas, John; Kennicutt, Robert C. Jr.; Tremonti, Christy A.; Dale, Daniel A.; Smith, John-David T.; Calzetti, Daniela

    2010-01-01

    We present intermediate-resolution optical spectrophotometry of 65 galaxies obtained in support of the Spitzer Infrared Nearby Galaxies Survey (SINGS). For each galaxy we obtain a nuclear, circumnuclear, and semi-integrated optical spectrum designed to coincide spatially with mid- and far-infrared spectroscopy from the Spitzer Space Telescope. We make the reduced, spectrophotometrically calibrated one-dimensional spectra, as well as measurements of the fluxes and equivalent widths of the strong nebular emission lines, publicly available. We use optical emission-line ratios measured on all three spatial scales to classify the sample into star-forming, active galactic nuclei (AGNs), and galaxies with a mixture of star formation and nuclear activity. We find that the relative fraction of the sample classified as star forming versus AGN is a strong function of the integrated light enclosed by the spectroscopic aperture. We supplement our observations with a large database of nebular emission-line measurements of individual H II regions in the SINGS galaxies culled from the literature. We use these ancillary data to conduct a detailed analysis of the radial abundance gradients and average H II-region abundances of a large fraction of the sample. We combine these results with our new integrated spectra to estimate the central and characteristic (globally averaged) gas-phase oxygen abundances of all 75 SINGS galaxies. We conclude with an in-depth discussion of the absolute uncertainty in the nebular oxygen abundance scale.

  9. AWOB: A Collaborative Workbench for Astronomers

    Science.gov (United States)

    Kim, J. W.; Lemson, G.; Bulatovic, N.; Makarenko, V.; Vogler, A.; Voges, W.; Yao, Y.; Kiefl, R.; Koychev, S.

    2015-09-01

    We present the Astronomers Workbench (AWOB1), a web-based collaboration and publication platform for a scientific project of any size, developed in collaboration between the Max-Planck institutes of Astrophysics (MPA) and Extra-terrestrial Physics (MPE) and the Max-Planck Digital Library (MPDL). AWOB facilitates the collaboration between geographically distributed astronomers working on a common project throughout its whole scientific life cycle. AWOB does so by making it very easy for scientists to set up and manage a collaborative workspace for individual projects, where data can be uploaded and shared. It supports inviting project collaborators, provides wikis, automated mailing lists, calendars and event notification and has a built in chat facility. It allows the definition and tracking of tasks within projects and supports easy creation of e-publications for the dissemination of data and images and other resources that cannot be added to submitted papers. AWOB extends the project concept to larger scale consortia, within which it is possible to manage working groups and sub-projects. The existing AWOB instance has so far been limited to Max-Planck members and their collaborators, but will be opened to the whole astronomical community. AWOB is an open-source project and its source code is available upon request. We intend to extend AWOB's functionality also to other disciplines, and would greatly appreciate contributions from the community.

  10. Skype Me! Astronomers, Students, and Cutting-Edge Research

    Science.gov (United States)

    Hickox, Ryan C.; Gauthier, Adrienne J.

    2014-06-01

    A primary goal of many university science courses is to promote understanding of the process of contemporary scientific inquiry. One powerful way to achieve this is for students to explore current research and then interact directly with the leading scientist, the feasibility of which has recently increased dramatically due to free online video communication tools. We report on a program implemented at Dartmouth College in which students connect with a guest astronomer through Skype (video chat). The Skype session is wrapped in a larger activity where students explore current research articles, interact with the astronomer, and then reflect on the experience. The in-class Skype discussions require a small time commitment from scientists (20-30 minutes, with little or no need for preparation) while providing students direct access to researchers at the cutting edge of modern astronomy. We outline the procedures used to implement these discussions, and present qualitative assessments of student's understanding of the process of research, as well as feedback from the guest astronomers.

  11. Breakthrough! 100 astronomical images that changed the world

    CERN Document Server

    Gendler, Robert

    2015-01-01

    This unique volume by two renowned astrophotographers unveils the science and history behind 100 of the most significant astronomical images of all time. The authors have carefully selected their list of images from across time and technology to bring to the reader the most relevant photographic images spanning all eras of modern astronomical history.    Based on scientific evidence today we have a basic notion of how Earth and the universe came to be. The road to this knowledge was paved with 175 years of astronomical images acquired by the coupling of two revolutionary technologies – the camera and telescope. With ingenuity and determination humankind would quickly embrace these technologies to tell the story of the cosmos and unravel its mysteries.   This book presents in pictures and words a photographic chronology of our aspiration to understand the universe. From the first fledgling attempts to photograph the Moon, planets, and stars to the marvels of orbiting observatories that record the cosmos a...

  12. Olivine Composition of the Mars Trojan 5261 Eureka: Spitzer IRS Data

    Science.gov (United States)

    Lim, L. F.; Burt, B. J.; Emery, J. P.; Mueller, M.; Rivkin, A. S.; Trilling, D.

    2011-01-01

    The largest Mars trojan, 5261 Eureka, is one of two prototype "Sa" asteroids in the Bus-Demeo taxonomy. Analysis of its visible/near-IR spectrum led to the conclusion that it might represent either an angritic analog or an olivine-rich composition such as an R chondrite. Spitzer IRS data (5-30 micrometers) have enabled us to resolve this ambiguity. The thermal-IR spectrum exhibits strong olivine reststrahlen features consistent with a composition of approximately equals Fo60-70. Laboratory spectra of R chondrites, brachinites, and chassignites are dominated by similar features.

  13. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R. D. [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Srinivasan, S.; Kemper, F.; Ling, B. [Academia Sinica, Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, NTU/AS, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Volk, K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  14. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    International Nuclear Information System (INIS)

    Blum, R. D.; Srinivasan, S.; Kemper, F.; Ling, B.; Volk, K.

    2014-01-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  15. A website for astronomical news in Spanish

    Science.gov (United States)

    Ortiz-Gil, A.

    2008-06-01

    Noticias del Cosmos is a collection of web pages within the Astronomical Observatory of the University of Valencia's website where we publish short daily summaries of astronomical press releases. Most, if not all of, the releases are originally written in English, and often Spanish readers may find them difficult to understand because not many people are familiar with the scientific language employed in these releases. Noticias del Cosmos has two principal aims. First, we want to communicate the latest astronomical news on a daily basis to a wide Spanish-speaking public who would otherwise not be able to read them because of the language barrier. Second, daily news can be used as a tool to introduce the astronomical topics of the school curriculum in a more immediate and relevant way. Most of the students at school have not yet reached a good enough level in their knowledge of English to fully understand a press release, and Noticias del Cosmos offers them and their teachers this news in their mother tongue. During the regular programme of school visits at the Observatory we use the news as a means of showing that there is still a lot to be discovered. So far the visits to the website have been growing steadily. Between June 2003 and June 2007 we had more than 30,000 visits (excluding 2006). More than 50% of the visits come from Spain, followed by visitors from South and Central America. The feedback we have received from teachers so far has been very positive, showing the usefulness of news items in the classroom when teaching astronomy.

  16. On the Nature of Bright Infrared Sources in the Small Magellanic Cloud: Interpreting MSX through the Lens of Spitzer

    Science.gov (United States)

    Kraemer, Kathleen E.; Sloan, G. C.

    2015-01-01

    We compare infrared observations of the Small Magellanic Cloud (SMC) by the Midcourse Space Experiment (MSX) and the Spitzer Space Telescope to better understand what components of a metal-poor galaxy dominate radiative processes in the infrared. The SMC, at a distance of ~60 kpc and with a metallicity of ~0.1-0.2 solar, can serve as a nearby proxy for metal-poor galaxies at high redshift. The MSX Point Source Catalog contains 243 objects in the SMC that were detected at 8.3 microns, the most sensitive MSX band. Multi-epoch, multi-band mapping with Spitzer, supplemented with observations from the Two-Micron All-Sky Survey (2MASS) and the Wide-field Infrared Survey Explorer (WISE), provides variability information, and, together with spectra from Spitzer for ~15% of the sample, enables us to determine what these luminous sources are. How many remain simple point sources? What fraction break up into multiple stars? Which are star forming regions, with both bright diffuse emission and point sources? How do evolved stars and stellar remnants contribute at these wavelengths? What role do young stellar objects and HII regions play? Answering these questions sets the stage for understanding what we will see with the James Webb Space Telescope (JWST).

  17. Spitzer Opens New Path to Break Classic Degeneracy for Jupiter-mass Microlensing Planet OGLE-2017-BLG-1140Lb

    Science.gov (United States)

    Calchi Novati, S.; Skowron, J.; Jung, Y. K.; Beichman, C.; Bryden, G.; Carey, S.; Gaudi, B. S.; Henderson, C. B.; Shvartzvald, Y.; Yee, J. C.; Zhu, W.; Spitzer Team; Udalski, A.; Szymański, M. K.; Mróz, P.; Poleski, R.; Soszyński, I.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; Iwanek, P.; OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Gould, A.; Han, C.; Hwang, K.-H.; Ryu, Y.-H.; Shin, I.-G.; Zang, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration

    2018-06-01

    We analyze the combined Spitzer and ground-based data for OGLE-2017-BLG-1140 and show that the event was generated by a Jupiter-class ({m}p≃ 1.6 {M}{{J}{{u}}{{p}}}) planet orbiting a mid-late M dwarf (M≃ 0.2 {M}ȯ ) that lies {D}LS}≃ 1.0 {kpc} in the foreground of the microlensed Galactic-bar source star. The planet–host projected separation is {a}\\perp ≃ 1.0 {au}, i.e., well beyond the snow line. By measuring the source proper motion {{\\boldsymbol{μ }}}s from ongoing long-term OGLE imaging and combining this with the lens-source relative proper motion {{\\boldsymbol{μ }}}rel} derived from the microlensing solution, we show that the lens proper motion {{\\boldsymbol{μ }}}l={{\\boldsymbol{μ }}}rel}+{{\\boldsymbol{μ }}}s is consistent with the lens lying in the Galactic disk, although a bulge lens is not ruled out. We show that while the Spitzer and ground-based data are comparably well fitted by planetary (i.e., binary-lens (2L1S)) and binary-source (1L2S) models, the combination of Spitzer and ground-based data decisively favors the planetary model. This is a new channel to resolve the 2L1S/1L2S degeneracy, which can be difficult to break in some cases.

  18. Measuring the Stellar Masses of z ~ 7 Galaxies with the Spitzer UltRaFaint SUrvey Program (SURFS UP)

    Science.gov (United States)

    Ryan, R. E., Jr.; Gonzalez, A. H.; Lemaux, B. C.; Bradač, M.; Casertano, S.; Allen, S.; Cain, B.; Gladders, M.; Hall, N.; Hildebradt, H.; Hinz, J.; Huang, K.-H.; Lubin, L.; Schrabback, T.; Stiavelli, M.; Treu, T.; von der Linden, A.; Zaritsky, D.

    2014-05-01

    We present Spitzer/IRAC observations of nine z'-band dropouts highly magnified (2 ~ 7. By modeling the broadband photometry, we estimate the galaxy has an intrinsic star formation rate (SFR) of SFR ~ 1.3 M ⊙ yr-1 and stellar mass of M ~ 2.0 × 109 M ⊙, which gives a specific star formation rate of sSFR ~ 0.7 Gyr-1. If this galaxy had sustained this SFR since z ~ 20, it could have formed the observed stellar mass (to within a factor of ~2). We also discuss alternate star formation histories and argue that the exponentially increasing model is unlikely. Finally, based on the intrinsic SFR, we estimate that this galaxy has a likely [C II] flux of langf [C II]rang = 1.6 mJy. Observations were carried out using the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research is also based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 and NNX08AD79G. These observations are associated with programs Spitzer 3550, 60034, 90009, HST GO 10200, GO 10863, 11099, and 11591, and ESO Large Program 181.A-0485.

  19. South African Astronomical Observatory

    International Nuclear Information System (INIS)

    1987-01-01

    Work at the South African Astronomical Observatory (SAAO) in recent years, by both staff and visitors, has made major contributions to the fields of astrophysics and astronomy. During 1986 the SAAO has been involved in studies of the following: galaxies; celestial x-ray sources; magellanic clouds; pulsating variables; galactic structure; binary star phenomena; nebulae and interstellar matter; stellar astrophysics; open clusters; globular clusters, and solar systems

  20. New Views of a Familiar Beauty

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 2Figure 3Figure 4Figure 5 This image composite compares the well-known visible-light picture of the glowing Trifid Nebula (left panel) with infrared views from NASA's Spitzer Space Telescope (remaining three panels). The Trifid Nebula is a giant star-forming cloud of gas and dust located 5,400 light-years away in the constellation Sagittarius. The false-color Spitzer images reveal a different side of the Trifid Nebula. Where dark lanes of dust are visible trisecting the nebula in the visible-light picture, bright regions of star-forming activity are seen in the Spitzer pictures. All together, Spitzer uncovered 30 massive embryonic stars and 120 smaller newborn stars throughout the Trifid Nebula, in both its dark lanes and luminous clouds. These stars are visible in all the Spitzer images, mainly as yellow or red spots. Embryonic stars are developing stars about to burst into existence. Ten of the 30 massive embryos discovered by Spitzer were found in four dark cores, or stellar 'incubators,' where stars are born. Astronomers using data from the Institute of Radioastronomy millimeter telescope in Spain had previously identified these cores but thought they were not quite ripe for stars. Spitzer's highly sensitive infrared eyes were able to penetrate all four cores to reveal rapidly growing embryos. Astronomers can actually count the individual embryos tucked inside the cores by looking closely at the Spitzer image taken by its infrared array camera (figure 4). This instrument has the highest spatial resolution of Spitzer's imaging cameras. The Spitzer image from the multiband imaging photometer (figure 5), on the other hand, specializes in detecting cooler materials. Its view highlights the relatively cool core material falling onto the Trifid's growing embryos. The middle panel is a combination of Spitzer

  1. PLANETARY NEBULAE DETECTED IN THE SPITZER SPACE TELESCOPE GLIMPSE II LEGACY SURVEY

    International Nuclear Information System (INIS)

    Zhang Yong; Sun Kwok

    2009-01-01

    We report the result of a search for the infrared counterparts of 37 planetary nebulae (PNs) and PN candidates in the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire II (GLIMPSE II) survey. The photometry and images of these PNs at 3.6, 4.5, 5.8, 8.0, and 24 μm, taken through the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS), are presented. Most of these nebulae are very red and compact in the IRAC bands, and are found to be bright and extended in the 24 μm band. The infrared morphology of these objects are compared with Hα images of the Macquarie-AAO-Strasbourg (MASH) and MASH II PNs. The implications for morphological difference in different wavelengths are discussed. The IRAC data allow us to differentiate between PNs and H II regions and be able to reject non-PNs from the optical catalog (e.g., PNG 352.1 - 00.0). Spectral energy distributions are constructed by combing the IRAC and MIPS data with existing near-, mid-, and far-IR photometry measurements. The anomalous colors of some objects allow us to infer the presence of aromatic emission bands. These multi-wavelength data provide useful insights into the nature of different nebular components contributing to the infrared emission of PNs.

  2. A Spitzer Infrared Radius for the Transiting Extrasolar Planet HD 209458 b

    Science.gov (United States)

    Richardson, L. Jeremy; Harrington, Joseph; Seager, Sara; Deming, Drake

    2007-01-01

    We have measured the infrared transit of the extrasolar planet HD 209458 b using the Spitzer Space Telescope. We observed two primary eclipse events (one partial and one complete transit) using the 24 micrometer array of the Multiband Imaging Photometer for Spitzer (MIPS). We analyzed a total of 2392 individual images (10-second integrations) of the planetary system, recorded before, during, and after transit. We perform optimal photometry on the images and use the local zodiacal light as a short-term flux reference. At this long wavelength, the transit curve has a simple box-like shape, allowing robust solutions for the stellar and planetary radii independent of stellar limb darkening, which is negligible at 24 micrometers. We derive a stellar radius of R(sub *) = 1.06 plus or minus 0.07 solar radius, a planetary radius of R(sub p) = 1.26 plus or minus 0.08 R(sub J), and a stellar mass of 1.17 solar mass. Within the errors, our results agree with the measurements at visible wavelengths. The 24 micrometer radius of the planet therefore does not differ significantly compared to the visible result. We point out the potential for deriving extrasolar transiting planet radii to high accuracy using transit photometry at slightly shorter IR wavelengths where greater photometric precision is possible.

  3. On astronomical drawing [1846

    Science.gov (United States)

    Smyth, Charles Piazzi

    Reprinted from the Memoirs of the Royal Astronomical Society 15, 1846, pp. 71-82. With annotations and illustrations added by Klaus Hentschel. The activities of the Astronomer Royal for Scotland, Charles Piazzi Smyth (1819-1900), include the triangulation of South African districts, landscape painting, day-to-day or tourist sketching, the engraving and lithographing of prominent architectural sites, the documentary photography of the Egyptian pyramids or the Tenerife Dragon tree, and `instant photographs' of the clouds above his retirement home in Clova, Ripon. His colorful records of the aurora polaris, and solar and terrestrial spectra all profited from his trained eye and his subtle mastery of the pen and the brush. As his paper on astronomical drawing, which we chose to reproduce in this volume, amply demonstrates, he was conversant in most of the print technology repertoire that the 19th century had to offer, and carefully selected the one most appropriate to each sujet. For instance, he chose mezzotint for the plates illustrating Maclear's observations of Halley's comet in 1835/36, so as to achieve a ``rich profundity of shadows, the deep obscurity of which is admirably adapted to reproduce those fine effects of chiaroscuro frequently found in works where the quantity of dark greatly predominates.'' The same expertise with which he tried to emulate Rembrandt's chiaroscuro effects he applied to assessing William and John Herschel's illustrations of nebulae, which appeared in print between 1811 and 1834. William Herschel's positive engraving, made partly by stippling and partly by a coarse mezzotint, receives sharp admonishment because of the visible ruled crossed lines in the background and the fact that ``the objects, which are also generally too light, [have] a much better definition than they really possess.'' On the other hand, John Herschel's illustration of nebulae and star clusters, given in negative, ``in which the lights are the darkest part of the

  4. THE c2d SPITZER SPECTROSCOPIC SURVEY OF ICES AROUND LOW-MASS YOUNG STELLAR OBJECTS. IV. NH3 AND CH3OH

    International Nuclear Information System (INIS)

    Bottinelli, Sandrine; Van Dishoeck, Ewine F.; Lahuis, Fred; Boogert, A. C. Adwin; Bouwman, Jordy; Beckwith, Martha; Oeberg, Karin I.; Linnartz, Harold; Pontoppidan, Klaus M.; Blake, Geoffrey A.; Evans, Neal J.

    2010-01-01

    NH 3 and CH 3 OH are key molecules in astrochemical networks leading to the formation of more complex N- and O-bearing molecules, such as CH 3 CN and CH 3 OCH 3 . Despite a number of recent studies, little is known about their abundances in the solid state. This is particularly the case for low-mass protostars, for which only the launch of the Spitzer Space Telescope has permitted high-sensitivity observations of the ices around these objects. In this work, we investigate the ∼8-10 μm region in the Spitzer IRS (InfraRed Spectrograph) spectra of 41 low-mass young stellar objects (YSOs). These data are part of a survey of interstellar ices in a sample of low-mass YSOs studied in earlier papers in this series. We used both an empirical and a local continuum method to correct for the contribution from the 10 μm silicate absorption in the recorded spectra. In addition, we conducted a systematic laboratory study of NH 3 - and CH 3 OH-containing ices to help interpret the astronomical spectra. We clearly detect a feature at ∼9 μm in 24 low-mass YSOs. Within the uncertainty in continuum determination, we identify this feature with the NH 3 ν 2 umbrella mode and derive abundances with respect to water between ∼2% and 15%. Simultaneously, we also revisited the case of CH 3 OH ice by studying the ν 4 C-O stretch mode of this molecule at ∼9.7 μm in 16 objects, yielding abundances consistent with those derived by Boogert et al. based on a simultaneous 9.75 and 3.53 μm data analysis. Our study indicates that NH 3 is present primarily in H 2 O-rich ices, but that in some cases, such ices are insufficient to explain the observed narrow FWHM. The laboratory data point to CH 3 OH being in an almost pure methanol ice, or mixed mainly with CO or CO 2 , consistent with its formation through hydrogenation on grains. Finally, we use our derived NH 3 abundances in combination with previously published abundances of other solid N-bearing species to find that up to 10%-20% of

  5. SPITZER OBSERVATIONS OF OGLE-2015-BLG-1212 REVEAL A NEW PATH TOWARD BREAKING STRONG MICROLENS DEGENERACIES

    DEFF Research Database (Denmark)

    Bozza, V.; Shvartzvald, Y.; Udalski, A.

    2016-01-01

    Spitzer microlensing parallax observations of OGLE-2015-BLG-1212 decisively break a degeneracy between planetary and binary solutions that is somewhat ambiguous when only ground-based data are considered. Only eight viable models survive out of an initial set of 32 local minima in the parameter s...

  6. Sensitive Spitzer Photometry of Supermassive Black Holes at the Final Stage of Adolescence

    Science.gov (United States)

    Shemmer, Ohad; Netzer, Hagai; Mor, Rivay; Trakhtenbrot, Benny

    2011-05-01

    We propose to obtain sensitive Spitzer snapshot observations of a unique sample of 35 Sloan Digital Sky Survey quasars at redshift 4.8 for which we obtained reliable, Mg II-based determinations of the supermassive black hole (SMBH) mass and normalized accretion rate (L/L_Edd). These quasars appear to mark the final stage of SMBH `adolescence' in the history of the Universe as their SMBHs are significantly less massive and their L/L_Edd values are significantly higher with respect to their counterparts at lower redshifts. Our observations will provide both 1) deep coverage of the fields around these quasars which will be utilized as crucial priors for our approved Herschel/SPIRE observations of these sources, and 2) coverage of the rest-frame optical SEDs of these fast accreting quasars. The results will maximize our ability to measure the star-formation rate in the host galaxies of these quasars using Herschel. We will thus be able to investigate correlations between SMBH growth and star-forming activity in the early Universe. The Spitzer photometry will also provide invaluable information about the shape of the rest-frame optical continuum in these quasars which will be used to search for extreme disk properties that may be signatures of the remarkably high accretion rates in these sources.

  7. Baby Jupiters Must Gain Weight Fast

    Science.gov (United States)

    2009-01-01

    This photograph from NASA's Spitzer Space Telescope shows the young star cluster NGC 2362. By studying it, astronomers found that gas giant planet formation happens very rapidly and efficiently, within less than 5 million years, meaning that Jupiter-like worlds experience a growth spurt in their infancy.

  8. Astronomers find distant planet like Jupiter

    CERN Multimedia

    2003-01-01

    Astronomers searching for planetary systems like our solar system have found a planet similar to Jupiter orbiting a nearby star similar to our Sun, about 90 light-years from Earth, according to researchers (1/2 page).

  9. SUBMILLIMETER ARRAY AND SPITZER OBSERVATIONS OF BOK GLOBULE CB 17: A CANDIDATE FIRST HYDROSTATIC CORE?

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng; Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Schmalzl, Markus; Henning, Thomas, E-mail: xuepeng.chen@yale.edu [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-06-01

    We present high angular resolution Submillimeter Array (SMA) and Spitzer observations toward the Bok globule CB 17. SMA 1.3 mm dust continuum images reveal within CB 17 two sources with an angular separation of {approx}21'' ({approx}5250 AU at a distance of {approx}250 pc). The northwestern continuum source, referred to as CB 17 IRS, dominates the infrared emission in the Spitzer images, drives a bipolar outflow extending in the northwest-southeast direction, and is classified as a low-luminosity Class 0/I transition object (L{sub bol} {approx} 0.5 L{sub Sun }). The southeastern continuum source, referred to as CB 17 MMS, has faint dust continuum emission in the SMA 1.3 mm observations ({approx}6{sigma} detection; {approx}3.8 mJy), but is not detected in the deep Spitzer infrared images at wavelengths from 3.6 to 70 {mu}m. Its bolometric luminosity and temperature, estimated from its spectral energy distribution, are {<=}0.04 L{sub Sun} and {<=}16 K, respectively. The SMA CO (2-1) observations suggest that CB 17 MMS may drive a low-velocity molecular outflow ({approx}2.5 km s{sup -1}), extending in the east-west direction. Comparisons with prestellar cores and Class 0 protostars suggest that CB 17 MMS is more evolved than prestellar cores but less evolved than Class 0 protostars. The observed characteristics of CB 17 MMS are consistent with the theoretical predictions from radiative/magnetohydrodynamical simulations of a first hydrostatic core, but there is also the possibility that CB 17 MMS is an extremely low luminosity protostar deeply embedded in an edge-on circumstellar disk. Further observations are needed to study the properties of CB 17 MMS and to address more precisely its evolutionary stage.

  10. Random walks, Brownian motion, and interacting particle systems: a festschrift in honor of Frank Spitzer

    National Research Council Canada - National Science Library

    Durrett, Richard; Kesten, Harry; Spitzer, Frank

    1991-01-01

    ..., made the transparency used in the printing process. STUDENTS OF FRANK SPITZERSTUDENTS OF FRANK SPITZER 1957 J. W. Lamperti, On the asymptotic behavior of recurrent and almostrecurrent events. 1964 W. W. Whitman, Some strong laws for random walks and Brownian motion. 1965 J. C. Mineka, The existence and uniqueness of positive solutions to the Wien...

  11. The Top Ten Astronomical 'breakthroughs' of the 20th century

    Directory of Open Access Journals (Sweden)

    Hughes, D. W.

    2007-10-01

    Full Text Available Astronomy was revolutionized in the 20th century. The electron was discovered in 1897 and this transformed spectroscopy and introduced plasma and magnetohydrodynamic physics and astro-chemistry. Einstein’s E = mc2, solved the problem of stellar energy generation and spawned the study of elemental nuclear synthesis. Large telescopes led to a boom in astronomical spectroscopic and photometric data collection, leading to such cornerstones as the Hertzprung-Russell diagram and the mass-luminosity relationship, and to the realization that the Universe contained a multitude of galaxies and was expanding. Radio astronomy was introduced and the advent of the space age saw the astronomical wavelength range expand into the ultraviolet, X-ray and gamma-ray regions, as well as the infrared and millimetre. We also startedwandering around roaming the Solar System instead of merely glimpsing its members from the bottom of our warm, turbulent atmosphere. Astronomical “breakthroughs” abounded. We have asked astronomers to select their “top ten” and these are listed and discussed in this paper.

  12. Dante, astrología y astronomía

    OpenAIRE

    Gangui, Alejandro

    2017-01-01

    En este artículo, los versos de Dante Alighieri nos llevan a reflexionar acerca de los diferentes métodos -cada vez más divergentes- con los que la ciencia y las creencias se aproximan a la realidad. Fil: Gangui, Alejandro. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Físi...

  13. A Search for Faint, Diffuse Halo Emission in Edge-On Galaxies with Spitzer/IRAC

    Science.gov (United States)

    Ashby, Matthew; Arendt, R. G.; Pipher, J. L.; Forrest, W. J.; Marengo, M.; Barmby, P.; Willner, S. P.; Stauffer, J. R.; Fazio, G. G.

    2006-12-01

    We present deep infrared mosaics of the nearby edge-on spiral galaxies NGC 891, 4244, 4565, and 5907. These data were acquired at 3.6, 4.5, 5.8, and 8.0 microns using the Infrared Array Camera aboard Spitzer as part of GTO program number 3. This effort is designed to detect the putative faint, diffuse emission from halos and thick disks of spiral galaxies in the near-mid infrared under the thermally stable, low-background conditions of space. These conditions in combination with the advantageous viewing angles presented by these well-known edge-on spirals provide arguably the best opportunity to characterize the halo/thick disk components of such galaxies in the infrared. In this contribution we describe our observations, data reduction techniques, corrections for artifacts in the data, and the modeling approach we applied to analyze this unique dataset. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  14. TMT in the Astronomical Landscape of the 2020s

    Science.gov (United States)

    Dickinson, Mark; Inami, Hanae

    2014-07-01

    Thirty Meter Telescope Observatory and NOAO will host the second TMT Science Forum at Loews Ventana Canyon Resort in Tucson, Arizona. The TMT Science Forum is an an annual gathering of astronomers, educators, and observatory staff, who meet to explore TMT science, instrumentation, observatory operations, archiving and data processing, astronomy education, and science, technology, engineering, and math (STEM) issues. It is an opportunity for astronomers from the international TMT partners and from the US-at-large community to learn about the observatory status, discuss and plan cutting-edge science, establish collaborations, and to help shape the future of TMT. One important theme for this year's Forum will be the synergy between TMT and other facilities in the post-2020 astronomical landscape. There will be plenary sessions, an instrumentation workshop, topical science sessions and meetings of the TMT International Science Development Teams (ISDTs).

  15. Astronomical random numbers for quantum foundations experiments

    Science.gov (United States)

    Leung, Calvin; Brown, Amy; Nguyen, Hien; Friedman, Andrew S.; Kaiser, David I.; Gallicchio, Jason

    2018-04-01

    Photons from distant astronomical sources can be used as a classical source of randomness to improve fundamental tests of quantum nonlocality, wave-particle duality, and local realism through Bell's inequality and delayed-choice quantum eraser tests inspired by Wheeler's cosmic-scale Mach-Zehnder interferometer gedanken experiment. Such sources of random numbers may also be useful for information-theoretic applications such as key distribution for quantum cryptography. Building on the design of an astronomical random number generator developed for the recent cosmic Bell experiment [Handsteiner et al. Phys. Rev. Lett. 118, 060401 (2017), 10.1103/PhysRevLett.118.060401], in this paper we report on the design and characterization of a device that, with 20-nanosecond latency, outputs a bit based on whether the wavelength of an incoming photon is greater than or less than ≈700 nm. Using the one-meter telescope at the Jet Propulsion Laboratory Table Mountain Observatory, we generated random bits from astronomical photons in both color channels from 50 stars of varying color and magnitude, and from 12 quasars with redshifts up to z =3.9 . With stars, we achieved bit rates of ˜1 ×106Hz/m 2 , limited by saturation of our single-photon detectors, and with quasars of magnitudes between 12.9 and 16, we achieved rates between ˜102 and 2 ×103Hz /m2 . For bright quasars, the resulting bitstreams exhibit sufficiently low amounts of statistical predictability as quantified by the mutual information. In addition, a sufficiently high fraction of bits generated are of true astronomical origin in order to address both the locality and freedom-of-choice loopholes when used to set the measurement settings in a test of the Bell-CHSH inequality.

  16. Astronomy Legacy Project - Pisgah Astronomical Research Institute

    Science.gov (United States)

    Barker, Thurburn; Castelaz, Michael W.; Rottler, Lee; Cline, J. Donald

    2016-01-01

    Pisgah Astronomical Research Institute (PARI) is a not-for-profit public foundation in North Carolina dedicated to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines. In November 2007 a Workshop on a National Plan for Preserving Astronomical Photographic Data (2009ASPC,410,33O, Osborn, W. & Robbins, L) was held at PARI. The result was the establishment of the Astronomical Photographic Data Archive (APDA) at PARI. In late 2013 PARI began ALP (Astronomy Legacy Project). ALP's purpose is to digitize an extensive set of twentieth century photographic astronomical data housed in APDA. Because of the wide range of types of plates, plate dimensions and emulsions found among the 40+ collections, plate digitization will require a versatile set of scanners and digitizing instruments. Internet crowdfunding was used to assist in the purchase of additional digitization equipment that were described at AstroPlate2014 Plate Preservation Workshop (www.astroplate.cz) held in Prague, CZ, March, 2014. Equipment purchased included an Epson Expression 11000XL scanner and two Nikon D800E cameras. These digital instruments will compliment a STScI GAMMA scanner now located in APDA. GAMMA will be adapted to use an electroluminescence light source and a digital camera with a telecentric lens to achieve high-speed high-resolution scanning. The 1μm precision XY stage of GAMMA will allow very precise positioning of the plate stage. Multiple overlapping CCD images of small sections of each plate, tiles, will be combined using a photo-mosaic process similar to one used in Harvard's DASCH project. Implementation of a software pipeline for the creation of a SQL database containing plate images and metadata will be based upon APPLAUSE as described by Tuvikene at AstroPlate2014 (www.astroplate.cz/programs/).

  17. Astronomers Win Protection for Key Part of Radio Spectrum

    Science.gov (United States)

    2000-06-01

    Astronomers using the millimeter-wave region of the radio spectrum have won crucial protection for their science. Dedicated allocations for radio astronomy have been given final approval by the 2,500 delegates to the World Radiocommunication Conference (WRC-00), which recently concluded a month of deliberations in Istanbul, Turkey. Radio services can transmit in these parts of the spectrum as long as they don't hinder astronomers' attempts to catch faint signals from the cosmos. The new allocations represent the culmination of more than three years of cooperative planning by radio astronomers in many countries. Millimeter waves -- high-frequency radio waves -- have come of age as an astronomical tool in the last ten years. They are one of the last technological frontiers for astronomers. WRC-00 has protected for science all the frequencies between 71 and 275 Gigahertz (GHz) that radio astronomers currently use, adding more than 90 GHz of spectrum to the 44 GHz already set aside in this frequency range. As a result, radio astronomy is now allocated most of the frequencies between 71 and 275 GHz that can get through the Earth's atmosphere. "We have formal access to all three atmospheric 'windows', apart from their very edges," said Dr. Tom Gergely of the National Science Foundation, one of the U.S. delegates to WRC-00. The WRC also changed most of the frequencies allocated to satellite downlinks within the 71-275 GHz range to frequencies not used for science. Since no satellites yet operate at these high frequencies, no equipment needs to be altered. "Commercial technologies are just starting to develop above 50 GHz," said Dr. Klaus Ruf, Chairman of the Inter-Union Commission for the Allocation of Frequencies. "The WRC's actions mean that, when they are, radio astronomers should be able to share this part of the spectrum with most terrestrial services." The World Radiocommunication Conference is held every two or three years. Here member countries of the

  18. Maraghe Observatory and an Effort towards Retrieval of Architectural Design of Astronomical Units

    Directory of Open Access Journals (Sweden)

    Javad Shekari Niri

    2015-03-01

    Full Text Available Maraghe observatory was built by such engineers as Moayiededdin Orozi etc. under supervision of Khaje Nasireddin Tousi in 7th century AH. The most significant feature associated with Maraghe observatory is the fact that architecture is employed to achieve astronomical purposes in this site. The reason for preferring observatory by astronomers was the fact that these units are superior to wooden and metal instruments with respect to accuracy, no size limitations, etc. Architectural design and function of astronomical units of Maraghe observatory site after discovery of its foundation in the course of explorations before Islamic Revolution remained unclear until recent years. After conducting required studies and investigations, the author managed to find significant cues and after some precise comparisons, he succeeded to recover the main design and function of some astronomical units of this international center. Based on these findings these astronomical structures can reliably be rebuilt. This research showed that every circular or polygonal building cannot be considered as an observatory. For example form and function of cemetery structures are completely different with astronomical ones. Following this research also valuable results were obtained in relation to stone architectural structures present on Maraghe observatory hill. In addition, claims about invention of astronomical units of Maraghe observatory by non-Iranian scientists are rejected and rights of Iranian scientists are rationally defended in this regard.

  19. GalileoMobile: Astronomical activities in schools

    Science.gov (United States)

    Dasi Espuig, Maria; Vasquez, Mayte; Kobel, Philippe

    GalileoMobile is an itinerant science education initiative run on a voluntary basis by an international team of astronomers, educators, and science communicators. Our team's main goal is to make astronomy accessible to schools and communities around the globe that have little or no access to outreach actions. We do this by performing teacher workshops, activities with students, and donating educational material. Since the creation of GalileoMobile in 2008, we have travelled to Chile, Bolivia, Peru, India, and Uganda, and worked with 56 schools in total. Our activities are centred on the GalileoMobile Handbook of Activities that comprises around 20 astronomical activities which we adapted from many different sources, and translated into 4 languages. The experience we gained in Chile, Bolivia, Peru, India, and Uganda taught us that (1) bringing experts from other countries was very stimulating for children as they are naturally curious about other cultures and encourages a collaboration beyond borders; (2) high-school students who were already interested in science were always very eager to interact with real astronomers doing research to ask for career advice; (3) inquiry-based methods are important to make the learning process more effective and we have therefore, re-adapted the activities in our Handbook according to these; (4) local teachers and university students involved in our activities have the potential to carry out follow-up activities, and examples are those from Uganda and India.

  20. Astronomical Spectroscopy A Short History

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Astronomical Spectroscopy A Short History. J C Bhattacharyya. General Article Volume 3 Issue 5 May 1998 pp 24-29. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/003/05/0024-0029 ...

  1. YSOVAR II: Mapping YSO Inner Disk Structure in NGC 2264 with Simultaneous Spitzer and CoRoT Time Series Photometry

    Science.gov (United States)

    Stauffer, John; Morales-Calderon, Maria; Rebull, Luisa; Affer, Laura; Alencar, Sylvia; Allen, Lori; Barrado, David; Bouvier, Jerome; Calvet, Nuria; Carey, Sean; Carpenter, John; Ciardi, David; Covey, Kevin; D'Alessio, Paola; Espaillat, Catherine; Favata, Fabio; Flaccomio, Ettore; Forbrich, Jan; Furesz, Gabor; Hartman, Lee; Herbst, William; Hillenbrand, Lynne; Holtzman, Jon; Hora, Joe; Marchis, Franck; McCaughrean, Mark; Micela, Giusi; Mundt, Reinhard; Plavchan, Peter; Turner, Neal; Skrutzkie, Mike; Smith, Howard; Song, Inseok; Szentgyorgi, Andy; Terebey, Susan; Vrba, Fred; Wasserman, Lawrence; Watson, Alan; Whitney, Barbara; Winston, Elaine; Wood, Kenny

    2011-05-01

    We propose a simultaneous, continuous 30 day observation of the star forming region NGC2264 with Spitzer and CoRoT. NGC2264 is the only nearby, rich star-forming region which can be observed with CoRoT; it is by definition then the only nearby, rich star-forming region where a simultaneous Spitzer/CoRoT campaign is possible. Fortunately, the visibility windows for the two spacecraft overlap, allowing this program to be done in the Nov. 25, 2011 to Jan. 4, 2012 time period. For 10 days, we propose to map the majority of the cluster (a 35'x35' region) to a depth of 48 seconds per point, with each epoch taking 1.7 hours, allowing of order 12 epochs per day. For the other 20 days, we propose to obtaining staring-mode data for two positions in the cluster having a high density of cluster members. We also plan to propose for a variety of other ground and space-based data, most of which would also be simultaneous with the Spitzer and CoRoT observing. These data will allow us to address many astrophysical questions related to the structure and evolution of the disks of young stars and the interaction of those disks with the forming star. The data may also help inform models of planet formation since planets form and migrate through the pre-main sequence disks during the 0.5-5 Myr age range of stars in NGC2264. The data we collect will also provide an archive of the variability properties of young stars that is unmatched in its accuracy, sensitivity, cadence and duration and which therefore could inspire investigation of phenomena which we cannot now imagine. The CoRoT observations have been approved, contingent on approval of a simultaneous Spitzer observing program (this proposal).

  2. Bright galaxies at z=9-11 from pure-parallel HST observations: Building a unique sample for JWST with Spitzer/IRAC

    Science.gov (United States)

    Bouwens, Rychard; Morashita, Takahiro; Stefanon, Mauro; Magee, Dan

    2018-05-01

    The combination of observations taken by Hubble and Spitzer revealed the unexpected presence of sources as bright as our own Milky Way as early as 400 Myr after the Big Bang, potentially highlighting a new highly efficient regime for star formation in L>L* galaxies at very early times. Yet, the sample of high-quality z>8 galaxies with both HST and Spitzer/IRAC imaging is still small, particularly at the highest luminosities. We propose here to remedy this situation and use Spitzer/IRAC to efficiently follow up the most promising z>8 sources from our Hubble Brightest of Reionizing Galaxies (BoRG) survey, which covers a footprint on the sky similar to CANDELS, provides a deeper search than ground-based surveys like UltraVISTA, and is robust against cosmic variance because of its 210 independent lines of sight. The proposed new 3.6 micron observations will continue our Spitzer cycle 12 and 13 BORG911 programs, targeting 15 additional fields, leveraging over 200 new HST orbits to identify a final sample of about 8 bright galaxies at z >= 8.5. For optimal time use (just 20 hours), our goal is to readily discriminate between z>8 sources (undetected or marginally detected in IRAC) and z 2 interlopers (strongly detected in IRAC) with just 1-2 hours per pointing. The high-quality candidates that we will identify with IRAC will be ideal targets for further studies investigating the ionization state of the distant universe through near-IR Keck/VLT spectroscopy. They will also be uniquely suited to measurement of the redshift and stellar population properties through JWST/NIRSPEC observations, with the potential to elucidate how the first generations of stars are assembled in the earliest stages of the epoch of reionization.

  3. Data Mining and Machine Learning in Time-Domain Discovery and Classification

    Science.gov (United States)

    Bloom, Joshua S.; Richards, Joseph W.

    2012-03-01

    The changing heavens have played a central role in the scientific effort of astronomers for centuries. Galileo's synoptic observations of the moons of Jupiter and the phases of Venus starting in 1610, provided strong refutation of Ptolemaic cosmology. These observations came soon after the discovery of Kepler's supernova had challenged the notion of an unchanging firmament. In more modern times, the discovery of a relationship between period and luminosity in some pulsational variable stars [41] led to the inference of the size of the Milky way, the distance scale to the nearest galaxies, and the expansion of the Universe (see Ref. [30] for review). Distant explosions of supernovae were used to uncover the existence of dark energy and provide a precise numerical account of dark matter (e.g., [3]). Repeat observations of pulsars [71] and nearby main-sequence stars revealed the presence of the first extrasolar planets [17,35,44,45]. Indeed, time-domain observations of transient events and variable stars, as a technique, influences a broad diversity of pursuits in the entire astronomy endeavor [68]. While, at a fundamental level, the nature of the scientific pursuit remains unchanged, the advent of astronomy as a data-driven discipline presents fundamental challenges to the way in which the scientific process must now be conducted. Digital images (and data cubes) are not only getting larger, there are more of them. On logistical grounds, this taxes storage and transport systems. But it also implies that the intimate connection that astronomers have always enjoyed with their data - from collection to processing to analysis to inference - necessarily must evolve. Figure 6.1 highlights some of the ways that the pathway to scientific inference is now influenced (if not driven by) modern automation processes, computing, data-mining, and machine-learning (ML). The emerging reliance on computation and ML is a general one - a central theme of this book - but the time

  4. Astronomical Photometry Past, Present, and Future

    CERN Document Server

    Milone, Eugene F

    2011-01-01

    This book brings together experts in the field of astronomical photometry to discuss how their subfields provide the precision and accuracy in astronomical energy flux measurements that are needed to permit tests of astrophysical theories. Differential photometers and photometry, improvements in infrared precision, the improvements in precision and accuracy of CCD photometry, the absolute calibration of flux, the development of the Johnson UBVRI photometric system and other passband systems to measure and precisely classify specific types of stars and astrophysical quantities, and the current capabilities of spectrophotometry and polarimetry to provide precise and accurate data, are all discussed in this volume. The discussion of `differential’ or `two-star’ photometers ranges from early experiments in visual photometry through the Harvard and Princeton polarizing photometers to the pioneering work of Walraven and differential photometers designed to minimize effects of atmospheric extinction and to count...

  5. Isaac Newton and the astronomical refraction.

    Science.gov (United States)

    Lehn, Waldemar H

    2008-12-01

    In a short interval toward the end of 1694, Isaac Newton developed two mathematical models for the theory of the astronomical refraction and calculated two refraction tables, but did not publish his theory. Much effort has been expended, starting with Biot in 1836, in the attempt to identify the methods and equations that Newton used. In contrast to previous work, a closed form solution is identified for the refraction integral that reproduces the table for his first model (in which density decays linearly with elevation). The parameters of his second model, which includes the exponential variation of pressure in an isothermal atmosphere, have also been identified by reproducing his results. The implication is clear that in each case Newton had derived exactly the correct equations for the astronomical refraction; furthermore, he was the first to do so.

  6. The data analysis facilities that astronomers want

    International Nuclear Information System (INIS)

    Disney, M.

    1985-01-01

    This paper discusses the need and importance of data analysis facilities and what astronomers ideally want. A brief survey is presented of what is available now and some of the main deficiencies and problems with today's systems are discussed. The main sources of astronomical data are presented incuding: optical photographic, optical TV/CCD, VLA, optical spectros, imaging x-ray satellite, and satellite planetary camera. Landmark discoveries are listed in a table, some of which include: our galaxy as an island, distance to stars, H-R diagram (stellar structure), size of our galaxy, and missing mass in clusters. The main problems at present are discussed including lack of coordinated effort and central planning, differences in hardware, and measuring performance

  7. Grigor Narekatsi's astronomical insights

    Science.gov (United States)

    Poghosyan, Samvel

    2015-07-01

    What stand out in the solid system of Gr. Narekatsi's naturalistic views are his astronomical insights on the material nature of light, its high speed and the Sun being composed of "material air". Especially surprising and fascinating are his views on stars and their clusters. What astronomers, including great Armenian academician V. Ambartsumian (scattering of stellar associations), would understand and prove with much difficulty thousand years later, Narekatsi predicted in the 10th century: "Stars appear and disappear untimely", "You who gather and scatter the speechless constellations, like a flock of sheep". Gr. Narekatsti's reformative views were manifested in all the spheres of the 10th century social life; he is a reformer of church life, great language constructor, innovator in literature and music, freethinker in philosophy and science. His ideology is the reflection of the 10th century Armenian Renaissance. During the 9th-10th centuries, great masses of Armenians, forced to migrate to the Balkans, took with them and spread reformative ideas. The forefather of the western science, which originated in the period of Reformation, is considered to be the great philosopher Nicholas of Cusa. The study of Gr. Narekatsti's logic and naturalistic views enables us to claim that Gr. Narekatsti is the great grandfather of European science.

  8. Spitzer sage survey of the large magellanic cloud. II. Evolved stars and infrared color-magnitude diagrams

    NARCIS (Netherlands)

    Blum, R. D.; Mould, J. R.; Olsen, K. A.; Frogel, J. A.; Meixner, M.; Markwick-Kemper, F.; Indebetouw, R.; Whitney, B.; Meade, M.; Babler, B.; Churchwell, E. B.; Gordon, K.; Engelbracht, C.; For, B. -Q.; Misselt, K.; Vijh, U.; Leitherer, C.; Volk, K.; Points, S.; Reach, W.; Hora, J. L.; Bernard, J. -P.; Boulanger, F.; Bracker, S.; Cohen, M.; Fukui, Y.; Gallagher, J.; Gorjian, V.; Harris, J.; Kelly, D.; Kawamura, A.; Latter, W. B.; Madden, S.; Mizuno, A.; Mizuno, N.; Oey, M. S.; Onishi, T.; Paladini, R.; Panagia, N.; Perez-Gonzalez, P.; Shibai, H.; Sato, S.; Smith, L.; Staveley-Smith, L.; Tielens, A.G.G.M; Ueta, T.; Van Dyk, S.; Zaritsky, D.; Werner, M.J.

    Color-magnitude diagrams (CMDs) are presented for the Spitzer SAGE (Surveying the Agents of a Galaxy's Evolution) survey of the Large Magellanic Cloud (LMC). IRAC and MIPS 24 mu m epoch 1 data are presented. These data represent the deepest, widest mid-infrared CMDs of their kind ever produced in

  9. Protection of Existing and Potential Astronomical Sites in Chile - an Update.

    Science.gov (United States)

    Smith, M. G.; Sanhueza, P.; Norman, D.; Schwarz, H.; Orellana, D.

    2002-12-01

    The IAU's Working Group on Controlling Light Pollution (iauwg) has declared Mauna Kea and a wide strip of Northern Chile between Antofagasta and Chajnanator as top priorities for its efforts to protect existing and potential sites in the Northern and Southern hemispheres respectively. This report provides an update on the iauwg's co-ordinated efforts to protect areas around the major international optical observatories in Chile, as well as the "Chilean Special Zone" (CSZ) mentioned above. This zone is of current and potential interest for the installation of extremely large optical telescopes and includes the ALMA radio-astronomy site. The CSZ is potentially vulnerable to adverse effects of mining in the region. Progess has been made in demonstrating to local mining interests within the CSZ the economic advantages of quality lighting. Educational and outreach activities to a variety of target audiences are building on legislation covering dark skies - itself part of work by the Chilean government to protect the natural heritage of Chile. Substantial good will was generated by an international, bilingual conference held last March in Chile. Just in the region around AURA's Observatory in Chile (Gemini South, CTIO and SOAR), a portable planetarium has been used to reach out to over 600 teachers and 65,000 pupils in the RedLaSer schools network within the last three years. This has attracted the direct interest of Chile's Ministry of Education. Videoconferencing over Internet2 is being used for educational purposes between Chile and various sites in the US. The NSF- initiated Mamalluca municipal observatory now receives more visitors than all the international observatories in Chile combined and is the focus of an expanding local industry of astronomical eco-tourism. Most of this work was supported by funding from, or via, the US NSF through CTIO and Gemini, and from ESO, OCIW, CONAMA and the IDA.

  10. Astronomers no longer in the dark

    CERN Multimedia

    MacMillan, L

    2002-01-01

    In a significant breakthrough, British and US astronomers have begun to pin down the most elusive material in the universe. They have made a map of dark matter - the heavy, invisible stuff that gives the galaxies their shape (1 page).

  11. LGBT Workplace Issues for Astronomers

    Science.gov (United States)

    Kay, Laura E.; Danner, R.; Sellgren, K.; Dixon, V.; GLBTQastro

    2011-01-01

    Federal Equal Employment Opportunity laws and regulations do not provide protection from discrimination on the basis of sexual orientation or gender identity or gender expression. Sexual minority astronomers (including lesbian, gay, bisexual and transgender people; LGBT) can face additional challenges at school and work. Studies show that LGBT students on many campuses report experiences of harassment. Cities, counties, and states may or may not have statutes to protect against such discrimination. There is wide variation in how states and insurance plans handle legal and medical issues for transgender people. Federal law does not acknowledge same-sex partners, including those legally married in the U.S. or in other countries. Immigration rules in the U.S. (and many other, but not all) countries do not recognize same-sex partners for visas, employment, etc. State `defense of marriage act' laws have been used to remove existing domestic partner benefits at some institutions, or benefits can disappear with a change in governor. LGBT astronomers who change schools, institutions, or countries during their career may experience significant differences in their legal, medical, and marital status.

  12. Mine drivage in hydraulic mines

    Energy Technology Data Exchange (ETDEWEB)

    Ehkber, B Ya

    1983-09-01

    From 20 to 25% of labor cost in hydraulic coal mines falls on mine drivage. Range of mine drivage is high due to the large number of shortwalls mined by hydraulic monitors. Reducing mining cost in hydraulic mines depends on lowering drivage cost by use of new drivage systems or by increasing efficiency of drivage systems used at present. The following drivage methods used in hydraulic mines are compared: heading machines with hydraulic haulage of cut rocks and coal, hydraulic monitors with hydraulic haulage, drilling and blasting with hydraulic haulage of blasted rocks. Mining and geologic conditions which influence selection of the optimum mine drivage system are analyzed. Standardized cross sections of mine roadways driven by the 3 methods are shown in schemes. Support systems used in mine roadways are compared: timber supports, roof bolts, roof bolts with steel elements, and roadways driven in rocks without a support system. Heading machines (K-56MG, GPKG, 4PU, PK-3M) and hydraulic monitors (GMDTs-3M, 12GD-2) used for mine drivage are described. Data on mine drivage in hydraulic coal mines in the Kuzbass are discussed. From 40 to 46% of roadways are driven by heading machines with hydraulic haulage and from 12 to 15% by hydraulic monitors with hydraulic haulage.

  13. Mid-infrared spectroscopy of Uranus from the Spitzer Infrared Spectrometer: 1. Determination of the mean temperature structure of the upper troposphere and stratosphere

    Science.gov (United States)

    Orton, Glenn S.; Fletcher, Leigh N.; Moses, Julianne I.; Mainzer, Amy K.; Hines, Dean; Hammel, Heidi B.; Martin-Torres, F. Javier; Burgdorf, Martin; Merlet, Cecile; Line, Michael R.

    2014-11-01

    On 2007 December 16-17, spectra were acquired of the disk of Uranus by the Spitzer Infrared Spectrometer (IRS), ten days after the planet's equinox, when its equator was close to the sub-Earth point. This spectrum provides the highest-resolution broad-band spectrum ever obtained for Uranus from space, allowing a determination of the disk-averaged temperature and molecule composition to a greater degree of accuracy than ever before. The temperature profiles derived from the Voyager radio occultation experiment by Lindal et al. (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987]. J. Geophys. Res. 92, 14987-15001) and revisions suggested by Sromovsky et al. (Sromovsky, L.A., Fry, P.A., Kim, J.H. [2011]. Icarus 215, 292-312) that match these data best are those that assume a high abundance of methane in the deep atmosphere. However, none of these model profiles provides a satisfactory fit over the full spectral range sampled. This result could be the result of spatial differences between global and low-latitudinal regions, changes in time, missing continuum opacity sources such as stratospheric hazes or unknown tropospheric constituents, or undiagnosed systematic problems with either the Voyager radio-occultation or the Spitzer IRS data sets. The spectrum is compatible with the stratospheric temperatures derived from the Voyager ultraviolet occultations measurements by Herbert et al. (Herbert, F. et al. [1987]. J. Geophys. Res. 92, 15093-15109), but it is incompatible with the hot stratospheric temperatures derived from the same data by Stevens et al. (Stevens, M.H., Strobel, D.F., Herbert, F.H. [1993]. Icarus 101, 45-63). Thermospheric temperatures determined from the analysis of the observed H2 quadrupole emission features are colder than those derived by Herbert et al. at pressures less than ∼1 μbar. Extrapolation of the nominal model spectrum to far-infrared through millimeter wavelengths shows that the spectrum arising solely from H2

  14. What Lies Behind NSF Astronomer Demographics? Subjectivities of Women, Minorities and Foreign-born Astronomers within Meshworks of Big Science Astronomy

    Science.gov (United States)

    Guillen, Reynal; Gu, D.; Holbrook, J.; Murillo, L. F.; Traweek, S.

    2011-01-01

    Our current research focuses on the trajectory of scientists working with large-scale databases in astronomy, following them as they strategically build their careers, digital infrastructures, and make their epistemological commitments. We look specifically at how gender, ethnicity, nationality intersect in the process of subject formation in astronomy, as well as in the process of enrolling partners for the construction of instruments, design and implementation of large-scale databases. Work once figured as merely technical support, such assembling data catalogs, or as graphic design, generating pleasing images for public support, has been repositioned at the core of the field. Some have argued that such databases enable a new kind of scientific inquiry based on data exploration, such as the "fourth paradigm" or "data-driven" science. Our preliminary findings based on oral history interviews and ethnography provide insights into meshworks of women, African-American, "Hispanic," Asian-American and foreign-born astronomers. Our preliminary data suggest African-American men are more successful in sustaining astronomy careers than Chicano and Asian-American men. A distinctive theme in our data is the glocal character of meshworks available to and created by foreign-born women astronomers working at US facilities. Other data show that the proportion of Asian to Asian American and foreign-born Latina/o to Chicana/o astronomers is approximately equal. Futhermore, Asians and Latinas/os are represented in significantly greater numbers than Asian Americans and Chicanas/os. Among professional astronomers in the US, each ethnic minority group is numbered on the order of tens, not hundreds. Project support is provided by the NSF EAGER program to University of California, Los Angeles under award 0956589.

  15. Revealing Fact or Fiction in Spitzer Exoplanet Phase Curve Trends

    Science.gov (United States)

    Bean, Jacob; Parmentier, Vivien; Mansfield, Megan; Cowan, Nicolas; Kempton, Eliza; Desert, Jean-Michel; Swain, Mark; Dang, Lisa; Bell, Taylor; Keating, Dylan; Zellem, Robert; Fortney, Jonathan; Line, Michael; Kreidberg, Laura; Stevenson, Kevin

    2018-05-01

    The constraints on energy transport in exoplanet atmospheres from phase curve observations is sure to be one of Spitzer's enduring legacies. However, with phase curves for 17 planets now observed we find that the previously observed trends are not coming into sharper focus. Instead, these trends in hot spot offset and day-night flux contrast vs. the fundamental planetary parameters expected to control the energy transport (e.g., irradiation and rotational period) are becoming more uncertain due to the recent discovery of outliers. At the same time, there is a growing understanding that a number of factors like magnetic fields, aerosols, and molecular chemistry could be confounding the search for these correlations. We propose a final phase curve program to advance our understanding of energy transport in transiting exoplanet atmospheres and to cement Spitzer's legacy on this topic. This program tackles the outstanding questions in this area with a comprehensive, two-pronged approach: (1) a survey of an additional 10 high signal-to-noise planets that span a broad parameter space and (2) a search for magnetic field-induced variability in the planet HAT-P-7b. The expanded survey will bring additional statistical power to the search for trends and will enable us to determine if the recently-detected outliers are indeed oddities or are instead actually representative of the intrinsic sample diversity. The variability search will test the hypothesis that the atmospheric dynamics of the partially ionized atmospheres of close-in planets are influenced by magnetic fields, which could explain the observed scatter around the existing trends. All observations will be performed at 4.5 microns, which is the consensus best channel for these measurements. The dataset from this program will provide vital context for JWST observations and will not be superseded until ARIEL flies more than a decade from now.

  16. Preserving Astronomy's Photographic Legacy: Current State and the Future of North American Astronomical Plates

    Science.gov (United States)

    Osborn, W.; Robbins, L.

    2009-08-01

    This book contains articles on preserving astronomy's valuable heritage of photographic observations, most of which are on glass plates. It is intended to serve as a reference for institutions charged with preserving and managing plate archives and astronomers interested in using archival photographic plates in their research. The first portion of the book focuses on previous activities and recommendations related to plate archiving. These include actions taken by the International Astronomical Union, activities in Europe and a detailed account of a workshop on preserving astronomical photographic data held in 2007 at the Pisgah Astronomical Research Institute, North Carolina. The workshop discussions covered a wide range of issues that must be considered in any effort to archive plates and culminated in a set of recommendations on preserving, cataloging and making publicly available these irreplaceable data. The second part of the book reports on some recent efforts to implement the recommendations. These include essays on the recently established Astronomical Photographic Data Archive, projects to make photographic collections available electronically, evaluations of commercial scanners for digitization of astronomical plates and the case for the continuing value of these data along with a report on the census of astronomical plate collections in North America carried out in 2008. The census cataloged the locations, numbers, and types of astronomical plates in the US and Canada. Comprehensive appendices identify all the significant collections in North America and detail the current contents, state and status of their holdings.

  17. Recent Advances for LGBT Astronomers in the United States

    Science.gov (United States)

    Dixon, William V.; Rigby, Jane; Oppenheimer, Rebecca

    2015-08-01

    The legal environment for lesbian, gay, bisexual, and transgender (LGBT) astronomers in the United States has changed dramatically in recent years. In 2013, the Supreme Court ruled that Section 3 of the Defense of Marriage Act (DOMA), which had barred the federal government from recognizing same-sex marriages, was unconstitutional. This decision particularly affects astronomers, since astronomers in the U.S. are more likely than the general population to be foreign nationals, to have a foreign-born spouse, or to work for the federal government. In 2014, the Attorney General directed the Department of Justice to take the position in litigation that the protection of Title VII of the Civil Rights Act of 1964 extends to claims of discrimination based on an individual’s gender identity, including transgender status. Title VII makes it unlawful for employers to discriminate in the employment of an individual “because of such individual’s... sex,” among other protected characteristics. As of March 2015, more than 70% of the population lives in states that recognize same-sex marriage, and the Supreme Court is expected to rule on the constitutionality of the remaining same-sex marriage bans during the current term. In this poster, we discuss these advances and their implications for the personal and professional lives of LGBT astronomers across the United States.

  18. How did the Supreme Court ruling on DOMA affect astronomers?

    Science.gov (United States)

    Rigby, Jane R.; The AAS Working Group on LGBTIQ Equality

    2014-01-01

    In June 2013, the United States Supreme Court ruled that Section 3 of the Defense of Marriage Act (DOMA) was unconstitutional. Section 3 had barred the federal government from recognizing same-sex marriages. The decision in United States v. Windsor, made headlines around the world, and particularly affected astronomers, since astronomers in the US are more likely than the general population to be foreign nationals, to have a foreign-born spouse, or to work for the federal government. In this poster, we highlight some of the real-world ways that the Windsor case has affected US astronomers and our profession. Bi-national couples can now apply for green cards granting permanent residency. Scientists who work for the federal government, including NASA and the NSF, can now obtain health insurance for a same-sex spouse. From taxes to death benefits, health insurance to daycare, immigration to ethics laws, the end of S3 of DOMA has had profoundly improved the lives of US scientists who are lesbian, gay, bisexual, or transgender (LGBT). Here we, highlight several real-world examples of how DOMA's demise has improved the lives and careers of US astronomer.

  19. Statistical methods for astronomical data analysis

    CERN Document Server

    Chattopadhyay, Asis Kumar

    2014-01-01

    This book introduces “Astrostatistics” as a subject in its own right with rewarding examples, including work by the authors with galaxy and Gamma Ray Burst data to engage the reader. This includes a comprehensive blending of Astrophysics and Statistics. The first chapter’s coverage of preliminary concepts and terminologies for astronomical phenomenon will appeal to both Statistics and Astrophysics readers as helpful context. Statistics concepts covered in the book provide a methodological framework. A unique feature is the inclusion of different possible sources of astronomical data, as well as software packages for converting the raw data into appropriate forms for data analysis. Readers can then use the appropriate statistical packages for their particular data analysis needs. The ideas of statistical inference discussed in the book help readers determine how to apply statistical tests. The authors cover different applications of statistical techniques already developed or specifically introduced for ...

  20. ARNICA, the Arcetri near-infrared camera: Astronomical performance assessment.

    Science.gov (United States)

    Hunt, L. K.; Lisi, F.; Testi, L.; Baffa, C.; Borelli, S.; Maiolino, R.; Moriondo, G.; Stanga, R. M.

    1996-01-01

    The Arcetri near-infrared camera ARNICA was built as a users' instrument for the Infrared Telescope at Gornergrat (TIRGO), and is based on a 256x256 NICMOS 3 detector. In this paper, we discuss ARNICA's optical and astronomical performance at the TIRGO and at the William Herschel Telescope on La Palma. Optical performance is evaluated in terms of plate scale, distortion, point spread function, and ghosting. Astronomical performance is characterized by camera efficiency, sensitivity, and spatial uniformity of the photometry.

  1. Applying artificial intelligence to astronomical databases - a surveyof applicable technology.

    Science.gov (United States)

    Rosenthal, D. A.

    This paper surveys several emerging technologies which are relevant to astronomical database issues such as interface technology, internal database representation, and intelligent data reduction aids. Among the technologies discussed are natural language understanding, frame and object representations, planning, pattern analysis, machine learning and the nascent study of simulated neural nets. These techniques will become increasingly important for astronomical research, and in particular, for applications with large databases.

  2. EDUCATIONAL ASTRONOMICAL OBSERVATIONS ON REMOTE ACCESS TELESCOPES

    Directory of Open Access Journals (Sweden)

    Ivan P. Kriachko

    2016-01-01

    Full Text Available The purpose of this article is to show the way of overcoming one of the major problems of astronomy teaching methods in upper secondary school – organization of educational astronomical observations. Nowadays it became possible to perform such observations on remote access telescopes. By using up-to-date informational and communicational technologies, having an opportunity to work with robotic telescopes allows us to organize a unique cognitive and research oriented activities for students while conducting their specialized astronomical studies. Below here is given a brief description of the most significant robotic telescopes and the way of the usage of open remote access telescopic network which was created by professors and scientists of Harvard-Smithsonian Center for Astrophysics, USA.

  3. How do astronomers share data? Reliability and persistence of datasets linked in AAS publications and a qualitative study of data practices among US astronomers.

    Science.gov (United States)

    Pepe, Alberto; Goodman, Alyssa; Muench, August; Crosas, Merce; Erdmann, Christopher

    2014-01-01

    We analyze data sharing practices of astronomers over the past fifteen years. An analysis of URL links embedded in papers published by the American Astronomical Society reveals that the total number of links included in the literature rose dramatically from 1997 until 2005, when it leveled off at around 1500 per year. The analysis also shows that the availability of linked material decays with time: in 2011, 44% of links published a decade earlier, in 2001, were broken. A rough analysis of link types reveals that links to data hosted on astronomers' personal websites become unreachable much faster than links to datasets on curated institutional sites. To gauge astronomers' current data sharing practices and preferences further, we performed in-depth interviews with 12 scientists and online surveys with 173 scientists, all at a large astrophysical research institute in the United States: the Harvard-Smithsonian Center for Astrophysics, in Cambridge, MA. Both the in-depth interviews and the online survey indicate that, in principle, there is no philosophical objection to data-sharing among astronomers at this institution. Key reasons that more data are not presently shared more efficiently in astronomy include: the difficulty of sharing large data sets; over reliance on non-robust, non-reproducible mechanisms for sharing data (e.g. emailing it); unfamiliarity with options that make data-sharing easier (faster) and/or more robust; and, lastly, a sense that other researchers would not want the data to be shared. We conclude with a short discussion of a new effort to implement an easy-to-use, robust, system for data sharing in astronomy, at theastrodata.org, and we analyze the uptake of that system to-date.

  4. How Do Astronomers Share Data? Reliability and Persistence of Datasets Linked in AAS Publications and a Qualitative Study of Data Practices among US Astronomers

    Science.gov (United States)

    Pepe, Alberto; Goodman, Alyssa; Muench, August; Crosas, Merce; Erdmann, Christopher

    2014-08-01

    We analyze data sharing practices of astronomers over the past fifteen years. An analysis of URL links embedded in papers published by the American Astronomical Society reveals that the total number of links included in the literature rose dramatically from 1997 until 2005, when it leveled off at around 1500 per year. The analysis also shows that the availability of linked material decays with time: in 2011, 44% of links published a decade earlier, in 2001, were broken. A rough analysis of link types reveals that links to data hosted on astronomers' personal websites become unreachable much faster than links to datasets on curated institutional sites. To gauge astronomers' current data sharing practices and preferences further, we performed in-depth interviews with 12 scientists and online surveys with 173 scientists, all at a large astrophysical research institute in the United States: the Harvard-Smithsonian Center for Astrophysics, in Cambridge, MA. Both the in-depth interviews and the online survey indicate that, in principle, there is no philosophical objection to data-sharing among astronomers at this institution. Key reasons that more data are not presently shared more efficiently in astronomy include: the difficulty of sharing large data sets; over reliance on non-robust, non-reproducible mechanisms for sharing data (e.g. emailing it); unfamiliarity with options that make data-sharing easier (faster) and/or more robust; and, lastly, a sense that other researchers would not want the data to be shared. We conclude with a short discussion of a new effort to implement an easy-to-use, robust, system for data sharing in astronomy, at theastrodata.org, and we analyze the uptake of that system to-date.

  5. How do astronomers share data? Reliability and persistence of datasets linked in AAS publications and a qualitative study of data practices among US astronomers.

    Directory of Open Access Journals (Sweden)

    Alberto Pepe

    Full Text Available We analyze data sharing practices of astronomers over the past fifteen years. An analysis of URL links embedded in papers published by the American Astronomical Society reveals that the total number of links included in the literature rose dramatically from 1997 until 2005, when it leveled off at around 1500 per year. The analysis also shows that the availability of linked material decays with time: in 2011, 44% of links published a decade earlier, in 2001, were broken. A rough analysis of link types reveals that links to data hosted on astronomers' personal websites become unreachable much faster than links to datasets on curated institutional sites. To gauge astronomers' current data sharing practices and preferences further, we performed in-depth interviews with 12 scientists and online surveys with 173 scientists, all at a large astrophysical research institute in the United States: the Harvard-Smithsonian Center for Astrophysics, in Cambridge, MA. Both the in-depth interviews and the online survey indicate that, in principle, there is no philosophical objection to data-sharing among astronomers at this institution. Key reasons that more data are not presently shared more efficiently in astronomy include: the difficulty of sharing large data sets; over reliance on non-robust, non-reproducible mechanisms for sharing data (e.g. emailing it; unfamiliarity with options that make data-sharing easier (faster and/or more robust; and, lastly, a sense that other researchers would not want the data to be shared. We conclude with a short discussion of a new effort to implement an easy-to-use, robust, system for data sharing in astronomy, at theastrodata.org, and we analyze the uptake of that system to-date.

  6. Developing the Infrared PAH Emission Bands Into Calibrated Probes of Astrophysical Conditions with The NASA Ames PAH IR Spectroscopic Database

    Science.gov (United States)

    Boersma, Christiaan

    We propose to quantitatively calibrate the PAH band strength ratios that have been traditionally used as qualitative proxies of PAH properties and linking PAH observables with local astrophysical conditions, thus developing PAHs into quantitative probes of astronomical environments. This will culminate in a toolbox (calibration charts) that can be used by PAH experts and non-PAH experts alike to unlock the information hidden in PAH emission sources that are part of the Spitzer and ISO archives. Furthermore, the proposed work is critical to mine the treasure trove of information JWST will return as it will capture, for the first time, the complete mid-infrared (IR) PAH spectrum with fully resolved features, through a single aperture, and along single lines-of-sight; making it possible to fully extract the information contained in the PAH spectra. In short, the work proposed here represents a major step in enabling the astronomical PAH model to reach its full potential as a diagnostic of the physical and chemical conditions in objects spanning the Universe. Polycyclic aromatic hydrocarbons (PAHs), a common and important reservoir of accessible carbon across the Universe, play an intrinsic part in the formation of stars, planets and possibly even life itself. While most PAH spectra appear quite similar, they differ in detail and contain a wealth of untapped information. Thanks to recent advances in laboratory studies and computer-based calculations of PAH spectra, the majority of which have been made at NASA Ames, coupled with the astronomical modeling tools we have developed, we can interpret the spectral details at levels never before possible. This enables us to extract local physical conditions and track subtle changes in these conditions at levels previously impossible. Building upon the tools and paradigms developed as part of the publicly available NASA Ames PAH IR Spectroscopic Database (PAHdb; www.astrochem.org/pahdb/), the purpose of our proposed research is

  7. THE MID-INFRARED PERIOD-LUMINOSITY RELATIONS FOR THE SMALL MAGELLANIC CLOUD CEPHEIDS DERIVED FROM SPITZER ARCHIVAL DATA

    International Nuclear Information System (INIS)

    Ngeow, Chow-Choong; Kanbur, Shashi M.

    2010-01-01

    In this paper, we derive the Spitzer IRAC band period-luminosity (P-L) relations for the Small Magellanic Cloud (SMC) Cepheids, by matching the Spitzer archival SAGE-SMC data with the OGLE-III SMC Cepheids. We find that the 3.6 μm and 4.5 μm band P-L relations can be better described using two P-L relations with a break period at log(P) = 0.4: this is consistent with similar results at optical wavelengths for SMC P-L relations. The 5.8 μm and 8.0 μm band P-L relations do not extend to sufficiently short periods to enable a similar detection of a slope change at log(P) = 0.4. The slopes of the SMC P-L relations, for log(P) > 0.4, are consistent with their Large Magellanic Cloud counterparts that were derived from a similar data set. They are also in agreement with those obtained from a small sample of Galactic Cepheids with parallax measurements.

  8. Spectral atlas for amateur astronomers a guide to the spectra of astronomical objects and terrestrial light sources

    CERN Document Server

    Walker, Richard

    2017-01-01

    Featuring detailed commented spectral profiles of more than one hundred astronomical objects, in colour, this spectral guide documents most of the important and spectroscopically observable objects accessible using typical amateur equipment. It allows you to read and interpret the recorded spectra of the main stellar classes, as well as most of the steps from protostars through to the final stages of stellar evolution as planetary nebulae, white dwarfs or the different types of supernovae. It also presents integrated spectra of stellar clusters, galaxies and quasars, and the reference spectra of some terrestrial light sources, for calibration purposes. Whether used as the principal reference for comparing with your recorded spectra or for inspiring independent observing projects, this atlas provides a breathtaking view into our Universe's past. The atlas is accompanied and supplemented by Spectroscopy for Amateur Astronomers, which explains in detail the methods for recording, processing, analysing and interp...

  9. A new astronomical dating of Odysseus return to Ithaca.

    Science.gov (United States)

    Papamarinopoulos, St. P.; Preka-Papadema, P.; Antonopoulos, P.; Mitropetrou, H.; Tsironi, A.; Mitropetros, P.

    The annular solar eclipse, of 30 October 1207 B.C. (Julian Day-JD 1280869), calculated by NASA together with the analysis of the weather's and the environment's description (long nights, plants, animals and peoples' habits) and the astronomical data (guiding constellations and Venus in the east horizon) mentioned by Homer in the epic, constitute an autumn return of Odysseus to Ithaca five days before the above characterized day. The latter offers a precise astronomical dating of the event and dates the legendary Trojan War's end as well.

  10. AAS Publishing News: Astronomical Software Citation Workshop

    Science.gov (United States)

    Kohler, Susanna

    2015-07-01

    Do you write code for your research? Use astronomical software? Do you wish there were a better way of citing, sharing, archiving, or discovering software for astronomy research? You're not alone! In April 2015, AAS's publishing team joined other leaders in the astronomical software community in a meeting funded by the Sloan Foundation, with the purpose of discussing these issues and potential solutions. In attendance were representatives from academic astronomy, publishing, libraries, for-profit software sharing platforms, telescope facilities, and grantmaking institutions. The goal of the group was to establish “protocols, policies, and platforms for astronomical software citation, sharing, and archiving,” in the hopes of encouraging a set of normalized standards across the field. The AAS is now collaborating with leaders at GitHub to write grant proposals for a project to develop strategies for software discoverability and citation, in astronomy and beyond. If this topic interests you, you can find more details in this document released by the group after the meeting: http://astronomy-software-index.github.io/2015-workshop/ The group hopes to move this project forward with input and support from the broader community. Please share the above document, discuss it on social media using the hashtag #astroware (so that your conversations can be found!), or send private comments to julie.steffen@aas.org.

  11. Longwave Imaging for Astronomical Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact portable longwave camera for astronomical applications. In Phase 1, we successfully developed the eye of the camera, i.e. the focal...

  12. Astronomical calibration of the geological timescale: closing the middle Eocene gap

    Science.gov (United States)

    Westerhold, T.; Röhl, U.; Frederichs, T.; Bohaty, S. M.; Zachos, J. C.

    2015-09-01

    To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene-Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous-Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic.

  13. Spitzer Trigonometric Parallaxes of L, T, and Y Dwarfs: Complementing Gaia's Optically-selected Census of Nearby Stars

    Science.gov (United States)

    Kirkpatrick, J. Davy; Smart, Richard; Marocco, Federico; Martin, Emily; Faherty, Jacqueline; Tinney, Christopher; Cushing, Michael; Beichman, Charles; Gelino, Christopher; Schneider, Adam; Wright, Edward; Lowrance, Patrick; Ingalls, James

    2018-05-01

    We now find ourselves at a moment in history where a parallax-selected census of nearby objects from the hottest A stars to the coldest Y dwarfs is almost a reality. With the release of Gaia DR2 in April of this year, we will be able to extract a volume-limited sample of stars out to 20 pc down to a spectral type of L5. Extending the census to colder types is much more difficult but nonetheless possible and essential. Ground-based astrometric monitoring of some of these colder dwarfs can be done with deep infrared detections on moderate to large (4+ meter) telescopes, but given the amount of time needed, only a portion of the colder objects believed to lie within 20 pc has been monitored. Our prior Spitzer observations have already enabled direct distance measures for T6 through Y dwarfs, but many 20-pc objects with spectral types between L5 and T5.5 have still not been astrometrically monitored, leaving a hole in our knowledge of this important all-sky sample. Spitzer Cycle 14 observations of modest time expenditure can rectify this problem by providing parallaxes for the 150+ objects remaining. Analysis of the brown dwarfs targeted by Spitzer is particularly important because it will provide insight into the low-mass cutoff of star formation, the shape of the mass function as inferred from the observed temperature distribution, the binary fraction of near-equal mass doubles, and the prevalence of extremely young (low-gravity) and extremely old (low metallicity) objects within the sample - all of which can be used to test and further refine model predictions of the underlying mass function.

  14. The Impact of the Qur'anic Conception of Astronomical Phenomena on Islamic Civilization

    Science.gov (United States)

    Ahmad, I. A.

    Discussions of astronomical phenomena in religious texts usually center around either their literal astronomical content or their symbolic significance. We shall instead consider the use of frequent references to astronomical phenomena in the Qur'an as exhortations to a worldview that ushered in the modern era. The Qur'anic conception of astronomical phenomena had a critical impact on Islamic civilization and the civilizations that followed because it introduced and mandated the adoption of certain attitudes. Among these were a greater respect for empirical data than was common in the preceding Greek civilization and an insistence that the Universe is ruled by a single set of laws. Both of these were rooted in the Islamic concept of tawhîd, the unity of God.

  15. International Astronomical Union Sympoisum No.50

    CERN Document Server

    Westerlund, B

    1973-01-01

    Dr J. Landi Dessy, Director of the Astronomical Observatory, Cordoba, Argentina, invited the International Astronomical Union to hold a Symposium in Cordoba in connection with the celebration of the Centennial of the Cordoba Observatory; the date of foundation is October 24, 1871. He proposed that the Symposium should deal with Spectral Classification and Multicolour Photometry as seven years had elapsed since the Symposium No. 24 in Saltsj6baden, and much development had occurred in the field. The invitation and the proposal were accepted by the IAU, and the Symposium was held in Villa Carlos Paz, near Cordoba, between October 18 and October 24, 1971. It was attended by about 50 scientists representing Argentina, Canada, Chile, Den­ mark, France, Germany, Italy, Mexico, Sweden, Switzerland, U.K., U.S.A., Vatican City State and Venezuela. The Symposium was divided into four sessions: 1. Classification of slit spectra, 2. Classification of objective-prism spectra, 3. Photometric classification, 4. Catalogues ...

  16. Large Astronomical Surveys, Catalogs and Databases

    Directory of Open Access Journals (Sweden)

    Mickaelian A. M.

    2012-09-01

    Full Text Available We review the status of all-sky and large astronomical surveys and their catalogued data over the whole range of electromagnetic spectrum, from gamma-ray to radio, such as ROSAT in X-ray, GALEX in UV, SDSS and several POSS1/2 based catalogs (APM, MAPS, USNO, GSC in optical, 2MASS and WISE in NIR, IRAS and AKARI in MIR/FIR, NVSS and FIRST in radio range and others. Present astronomical archives contain billions of objects, Galactic as well as extragalactic, and the vast amount of data in them permit new studies and discoveries. Cross-correlations result in revealing new objects and new samples. Very often, dozens of thousands of sources hide a few very interesting ones that are needed to be discovered by comparison of various physical characteristics. Most of the modern databases currently provide VO access to the stored information. This permits not only open access but also fast analysis and managing of these data.

  17. Recruitment and Retention of LGBTIQ Astronomers

    Science.gov (United States)

    Dixon, William Van Dyke

    2012-01-01

    While lesbian, gay, bisexual, transgender, intersex, or questioning (LGBTIQ) astronomers face many of the same workplace challenges as women and racial/ethnic minorities, from implicit bias to overt discrimination, other challenges are unique to this group. An obvious example is the absence at many institutions of health insurance and other benefits for the same-sex domestic partners of their employees. More subtle is the psychological toll paid by LGBTIQ astronomers who remain "in the closet," self-censoring every statement about their personal lives. Paradoxically, the culture of the physical sciences, in which sexuality, gender identity, and gender expression are considered irrelevant, can discourage their discussion, further isolating LGBTIQ researchers. Addressing these challenges is not just a matter of fairness; it is an essential tool in the recruitment and retention of the brightest researchers and in assuring their productivity. We will discuss these issues and what individuals and departments can to make their institutions more welcoming to their LGBTIQ colleagues.

  18. Instrument Remote Control via the Astronomical Instrument Markup Language

    Science.gov (United States)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  19. High energy astrophysics in radio-astronomical form

    International Nuclear Information System (INIS)

    Laan, H. van der

    1980-01-01

    The application of high energy astrophysics in observational astronomy, and in particular in radioastronomy, is considered. The current situation of extragalactic HEA, as brought to light by radio-astronomical techniques, is sketched. (C.F.)

  20. Mining and mining authorities in Saarland 2016. Mining economy, mining technology, occupational safety, environmental protection, statistics, mining authority activities. Annual report

    International Nuclear Information System (INIS)

    2016-01-01

    The annual report of the Saarland Upper Mining Authority provides an insight into the activities of mining authorities. Especially, the development of the black coal mining, safety and technology of mining as well as the correlation between mining and environment are stressed.

  1. New discoveries on astronomical orientation of Inca site in Ollantaytambo, Peru

    Directory of Open Access Journals (Sweden)

    Karolína Hanzalová

    2015-12-01

    Full Text Available This paper deals with astronomical orientation of Incas objects in Ollantaytambo, which is located about 35 km southeast from Machu Picchu, about 40 km northwest from Cusco, and lies in the Urubamba valley. Everybody writing about Ollantaytambo, shoud read Protzen. (1  He devoted his monograph to description and interpretation of that locality. Book of Salazar and Salazar (2 deals, among others, with the orientation of objects in Ollantaytambo with respect to the cardinal direction. Zawaski and Malville (3 documented astronomical context of major monuments of nine sites in Peru, including Ollantaytambo. We tested astronomical orientation in these places and confirm or disprove hypothesis about purpose of Incas objects. For assessment orientation of objects we used our measurements and also satellite images on Google Earth and digital elevation model from ASTER. The satellite images were used to estimate the astronomical-solar-solstice orientation, together with terrestrial images from Salazar and Salazar (2. The digital elevation model is useful in the mountains, where we need the actual horizon for a calculation of sunset and sunrise on specific days (solstices, which were for Incas people very important. We tested which astronomical phenomenon is connected with objects in Ollantaytambo. First, we focused on Temple of the Sun, also known the Wall of six monoliths.  We tested winter solstice sunrise and the rides of the Pleiades for the epochs 2000, 1500 and 1000 A.D. According with our results the Temple isn´t connected neither with winter solstice sunrise nor with the Pleiades. Then we tested also winter solstice sunset. We tried to use the line from an observation point near ruins of the Temple of Sun, to west-north, in direction to sunset. The astronomical azimuth from this point was about 5° less then we need. From this results we found, that is possible to find another observation point. By Salazar and Salazar (2 we found observation

  2. "Word of Discovery": A Planetary Example from Volume I of the Astronomical Journal

    Science.gov (United States)

    Hockey, T.

    1998-09-01

    In 1850, William Lassell (1799-1880) discovered a series of bright white spots, in the south temperate latitudes of Jupiter, unlike any that that been seen before. Lassell's note on these STZ features is a useful example of how astronomical discoveries of the day were communicated among astronomers. Word of Lassell's Spots spread quickly by nineteenth-century standards. This was due, in part, to the recent appearance of journals devoted exclusively to astronomy. The transition from letters as a means of conveying scientific information to journals is reflected in the propagation of Lassell's announcement: a report of Lassell's description of the white spots to the Royal Astronomical Society appeared in the Monthly Notices of the Royal Astronomical Society along with a woodblock print of one of his drawings. This report reappeared shortly thereafter in German translation. It was part of a letter to the editor of the Astronomische Nachrichten, Heinrich Schumacher (1780-1850), from an English correspondent of his, the Reverend Richard Sheepshanks (1974-1855). (Sheepshanks was himself editor of the Monthly Notices of the Royal Astronomical Society.) It then made its way across the Atlantic as a letter from Schumacher to Benjamin Gould (1824-1896), who published it in the first volume of his upstart Astronomical Journal. There it appears in English, again, as Schumacher quoting Sheepshanks quoting Lassell! The observations by Lassell and William Dawes (1799-1868) of this phenomenon also were the first major planetary discovery made using a silvered-glass reflecting telescope. Lassell's Spots have remained in the "astronomical news" of the last 150 years: Most recently, they appeared worldwide in images showing the Comet Shoemaker-Levy 9 impact sites.

  3. Brown dwarf distances and atmospheres: Spitzer Parallaxes and the Keck/NIRSPEC upgrade

    Science.gov (United States)

    Martin, Emily C.

    2018-01-01

    Advances in infrared technology have been essential towards improving our understanding of the solar neighborhood, revealing a large population of brown dwarfs, which span the mass regime between planets and stars. My thesis combines near-infrared (NIR) spectroscopic and astrometric analysis of nearby low-mass stars and brown dwarfs with instrumentation work to upgrade the NIRSPEC instrument for the Keck II Telescope. I will present results from a program using Spitzer/IRAC data to measure precise locations and distances to 22 of the coldest and closest brown dwarfs. These distances allow us to constrain absolute physical properties, such as mass, radius, and age, of free-floating planetary-mass objects through comparison to atmospheric and evolutionary models. NIR spectroscopy combined with the Spitzer photometry reveals a detailed look into the atmospheres of brown dwarfs and gaseous extrasolar planets. Additionally, I will discuss the improvements we are making to the NIRSPEC instrument at Keck. NIRSPEC is a NIR echelle spectrograph, capable of R~2000 and R~25,000 observations in the 1-5 μm range. As part of the upgrade, I performed detector characterization, optical design of a new slit-viewing camera, mechanical testing, and electronics design. NIRSPEC’s increased efficiency will allow us to obtain moderate- and high-resolution NIR spectra of objects up to a magnitude fainter than the current NIRSPEC design. Finally, I will demonstrate the utility of a NIR laser frequency comb as a high-resolution calibrator. This new technology will revolutionize precision radial velocity measurements in the coming decade.

  4. FINDING η CAR ANALOGS IN NEARBY GALAXIES USING SPITZER. I. CANDIDATE SELECTION

    International Nuclear Information System (INIS)

    Khan, Rubab; Stanek, K. Z.; Kochanek, C. S.

    2013-01-01

    The late-stage evolution of the most massive stars such as η Carinae is controlled by the effects of mass loss, which may be dominated by poorly understood eruptive mass ejections. Understanding this population is challenging because no true analogs of η Car have been clearly identified in the Milky Way or other galaxies. We utilize Spitzer IRAC images of seven nearby (∼ 10 5 L ☉ in the IRAC bands (3.6 to 8.0 μm) and are not known to be background sources. Based on our estimates for the expected number of background sources, we expect that follow-up observations will show that most of these candidates are not dust enshrouded massive stars, with an expectation of only 6 ± 6 surviving candidates. Since we would detect true analogs of η Car for roughly 200 years post-eruption, this implies that the rate of eruptions like η Car is less than the core-collapse supernova rate. It is possible, however, that every M > 40 M ☉ star undergoes such eruptions given our initial results. In Paper II we will characterize the candidates through further analysis and follow-up observations, and there is no barrier to increasing the galaxy sample by an order of magnitude. The primary limitation of the present search is that Spitzer's resolution limits us to the shorter wavelength IRAC bands. With the James Webb Space Telescope, such surveys can be carried out at the far more optimal wavelengths of 10-30 μm, allowing identification of η Car analogs for millennia rather than centuries post-eruption.

  5. Hot electron transport modelling in fast ignition relevant targets with non-Spitzer resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, D A; Hoarty, D J; Swatton, D J R [Plasma Physics Department, AWE, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom); Hughes, S J, E-mail: david.chapman@awe.co.u [Computational Physics Group, AWE, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom)

    2010-08-01

    The simple Lee-More model for electrical resistivity is implemented in the hybrid fast electron transport code THOR. The model is shown to reproduce experimental data across a wide range of temperatures using a small number of parameters. The effect of this model on the heating of simple Al targets by a short-pulse laser is studied and compared to the predictions of the classical Spitzer-Haerm resistivity. The model is then used in simulations of hot electron transport experiments using buried layer targets.

  6. Astronomical theory of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Berger, A.; Loutre, M.F. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium). Inst. d' Astronomie et de Geophysique G. Lemaitre

    2004-12-01

    The astronomical theory of paleo-climates aims to explain the climatic variations occurring with quasi-periodicities lying between tens and hundreds of thousands of years. The origin of these quasi-cycles lies in the astronomically driven changes in the latitudinal and seasonal distributions of the energy that the Earth receives from the Sun. These changes are then amplified by the feedback mechanisms which characterize the natural behaviour of the climate system like those involving the albedo-, the water vapor-, and the vegetation- temperature relationships. Climate models of different complexities are used to explain the chain of processes which finally link the long-term variations of three astronomical parameters to the long-term climatic variations at time scale of tens to hundreds of thousands of years. In particular, sensitivity analysis to the astronomically driven insolation changes and to the CO{sub 2} atmospheric concentrations have been performed with the 2-dimension climate model of Louvain-la-Neuve. It could be shown that this model simulates more or less correctly the entrance into glaciation around 2.75 million year (Myr) BP (before present), the late Pliocene-early Pleistocene 41-kyr (thousand years) cycle, the emergence of the 100-kyr cycle around 850 kyr BP and the glacial-interglacial cycles of the last 600 kyr. During the Late Pliocene (in an ice-free - warm world) ice sheets can only develop during times of sufficiently low summer insolation. This occurs during large eccentricity times when climatic precession and obliquity combine to obtain such low values, leading to the 41-kyr period between 3 and 1 million years BP. On the contrary in a glacial world, ice sheets persist most of the time except when insolation is very high in polar latitudes, requiring large eccentricity again, but leading this time to interglacial and finally to the 100-kyr period of the last 1 Myr. Using CO{sub 2} scenarios, it has been shown that stage 11 and stage 1

  7. The Growth of Interest in Astronomical X-Ray Polarimetry

    Directory of Open Access Journals (Sweden)

    Frédéric Marin

    2018-03-01

    Full Text Available Astronomical X-ray polarimetry was first explored in the end of the 1960s by pioneering rocket instruments. The craze arising from the first discoveries of stellar and supernova remnant X-ray polarization led to the addition of X-ray polarimeters to early satellites. Unfortunately, the inadequacy of the diffraction and scattering technologies required to measure polarization with respect to the constraints driven by X-ray mirrors and detectors, coupled with long integration times, slowed down the field for almost 40 years. Thanks to the development of new, highly sensitive, compact X-ray polarimeters in the beginning of the 2000s, observing astronomical X-ray polarization has become feasible, and scientists are now ready to explore our high-energy sky thanks to modern X-ray polarimeters. In the forthcoming years, several X-ray missions (rockets, balloons, and satellites will create new observational opportunities. Interest in astronomical X-ray polarimetry field has thus been renewed, and this paper presents for the first time a quantitative assessment, all based on scientific literature, of the growth of this interest.

  8. PROPER MOTIONS OF YOUNG STELLAR OUTFLOWS IN THE MID-INFRARED WITH SPITZER (IRAC). I. THE NGC 1333 REGION

    International Nuclear Information System (INIS)

    Raga, A. C.; Noriega-Crespo, A.; Carey, S. J.; Arce, H. G.

    2013-01-01

    We use two 4.5 μm Spitzer (IRAC) maps of the NGC 1333 region taken over a ∼7 yr interval to determine proper motions of its associated outflows. This is a first successful attempt at obtaining proper motions of stellars' outflow from Spitzer observations. For the outflow formed by the Herbig-Haro objects HH7, 8, and 10, we find proper motions of ∼9-13 km s –1 , which are consistent with previously determined optical proper motions of these objects. We determine proper motions for a total of eight outflows, ranging from ∼10 to 100 km s –1 . The derived proper motions show that out of these eight outflows, three have tangential velocities ≤20 km s –1 . This result shows that a large fraction of the observed outflows have low intrinsic velocities and that the low proper motions are not merely a projection effect.

  9. The re-definition of the astronomical unit of length:reasons and consequences

    Science.gov (United States)

    Capitaine, Nicole; Klioner, Sergei; McCarthy, Dennis

    2012-08-01

    The astronomical unit (au) is a unit of length approximating the Sun - Earth distance that is used mainly to express the scale of the solar system. Its current definition is based on the value of the Gaussian gravitational constant, k. This conveniently provided accurate relative distances (expressed in astronomical units) when absolute distances could not be estimated with high accuracy. The huge improvement achieved in solar system ephemerides during the last decade provides an opportunity to re - consider the definition and status of the au. This issue was discussed recently by Klioner (2008), Capitaine & Guinot (2009) and Capitaine et al. (2011), as well as within the IAU Working Group on "Numerical Standards for Fundamental astronomy". This resulted in a proposed IAU Resolution recommending that the astronomical unit be re - defined as a fixed number of Système International d ’ Unités (SI) metres through a defining constant. For continuity that constant should be the value of the current best estimate in metres as adopted by IAU 2009 Resolution B2 (i.e. 149 597 870 700 m). After reviewing the properties of the IAU 1976 astronomical unit and its status in the IAU 2009 System of Astronomical Constants, we explain the main reasons for a change; we present and discuss the proposed new definition as well as the advantages over the historical definition. One important consequence is that the heliocentric gravitational constant, GM(Sun), would cease to have a fixed value in astronomical units and will have to be determined experimentally. This would be compliant with modern dynamics of the solar system as it would allow

  10. Automatic astronomical coordinate determination using digital zenith cameras

    Directory of Open Access Journals (Sweden)

    S Farzaneh

    2009-12-01

    Full Text Available Celestial positioning has been used for navigation purposes for many years. Stars as the extra-terrestrial benchmarks provide unique opportunity in absolute point positioning. However, astronomical field data acquisition and data processing of the collected data is very time-consuming. The advent of the Global Positioning System (GPS nearly made the celestial positioning system obsolete. The new satellite-based positioning system has been very popular since it is very efficient and convenient for many daily life applications. Nevertheless, the celestial positioning method is never replaced by satellite-based positioning in absolute point positioning sense. The invention of electro-optical devices at the beginning of the 21st century was really a rebirth in geodetic astronomy. Today, the digital cameras with relatively high geometric and radiometric accuracy has opened a new insight in satellite attitude determination and the study of the Earth's surface geometry and physics of its interior, i.e., computation of astronomical coordinates and the vertical deflection components. This method or the so-called astrogeodetic vision-based method help us to determine astronomical coordinates with an accuracy better than 0.1 arc second. The theoretical background, an innovative transformation approach and the preliminary numerical results are addressed in this paper.

  11. The Amateur Astronomer's Introduction to the Celestial Sphere

    Science.gov (United States)

    Millar, William

    2005-12-01

    This introduction to the night sky is for amateur astronomers who desire a deeper understanding of the principles and observations of naked-eye astronomy. It covers topics such as terrestrial and astronomical coordinate systems, stars and constellations, the relative motions of the sky, sun, moon and earth leading to an understanding of the seasons, phases of the moon, and eclipses. Topics are discussed and compared for observers located in both the northern and southern hemispheres. Written in a conversational style, only addition and subtraction are needed to understand the basic principles and a more advanced mathematical treatment is available in the appendices. Each chapter contains a set of review questions and simple exercises to reinforce the reader's understanding of the material. The last chapter is a set of self-contained observation projects to get readers started with making observations about the concepts they have learned. William Charles Millar, currently Professor of Astronomy at Grand Rapids Community College in Michigan, has been teaching the subject for almost twenty years and is very involved with local amateur astronomy groups. Millar also belongs to The Planetary Society and the Astronomical Society of the Pacific and has traveled to Europe and South America to observe solar eclipses. Millar holds a Masters degree in Physics from Western Michigan University.

  12. Climate and carbon-cycle response to astronomical forcing over the last 35 Ma.

    Science.gov (United States)

    De Vleeschouwer, D.; Palike, H.; Vahlenkamp, M.; Crucifix, M.

    2017-12-01

    On a million-year time scale, the characteristics of insolation forcing caused by cyclical variations in the astronomical parameters of the Earth remain stable. Nevertheless, Earth's climate responded very differently to this forcing during different parts of the Cenozoic. The recently-published ∂18Obenthic megasplice (De Vleeschouwer et al., 2017) allowed for a clear visualization of these changes in global climate response to astronomical forcing. However, many open questions remain regarding how carbon-cycle dynamics influence Earth's climate sensitivity to astronomical climate forcing. To provide insight into the interaction between the carbon cycle and astronomical insolation forcing, we built a benthic carbon isotope (∂13Cbenthic) megasplice for the last 35 Ma, employing the same technique used to build the ∂18Obenthic megasplice. The ∂13Cbenthic megasplice exhibits a strong imprint of the 405 and 100-kyr eccentricity cycles throughout the last 35 Ma. This is intriguing, as the oxygen isotope megasplice looses its eccentricity imprint after the mid-Miocene climatic transition (MMCT; see Fig. 1 in De Vleeschouwer et al., 2017). In other words, the carbon cycle responded completely differently to astronomical forcing, compared to global climate during the late Miocene. We visualize this difference in response by the application of a Gaussian process, which renders the dependence of one variable (here ∂18Obenthic or ∂13Cbenthic) in a multidimensional space (here precession, obliquity and eccentricity). Together, the ∂13Cbenthic and ∂18Obenthic megasplices thus provide a unique tool for paleoclimatology, allowing for the quantification and visualization of the changing paleoclimate and carbon-cycle response to astronomical forcing throughout geologic time. References De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M., Pälike, H., 2017. Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m

  13. Astronomical sketching a step-by-step introduction

    CERN Document Server

    Handy, Richard; Perez, Jeremy; Rix, Erika; Robbins, Sol

    2007-01-01

    This book presents the amateur with fine examples of astronomical sketches and step-by-step tutorials in each medium, from pencil to computer graphics programs. This unique book can teach almost anyone to create beautiful sketches of celestial objects.

  14. Powerful Radio Burst Indicates New Astronomical Phenomenon

    Science.gov (United States)

    2007-09-01

    Astronomers studying archival data from an Australian radio telescope have discovered a powerful, short-lived burst of radio waves that they say indicates an entirely new type of astronomical phenomenon. Region of Strong Radio Burst Visible-light (negative greyscale) and radio (contours) image of Small Magellanic Cloud and area where burst originated. CREDIT: Lorimer et al., NRAO/AUI/NSF Click on image for high-resolution file ( 114 KB) "This burst appears to have originated from the distant Universe and may have been produced by an exotic event such as the collision of two neutron stars or the death throes of an evaporating black hole," said Duncan Lorimer, Assistant Professor of Physics at West Virginia University (WVU) and the National Radio Astronomy Observatory (NRAO). The research team led by Lorimer consists of Matthew Bailes of Swinburne University in Australia, Maura McLaughlin of WVU and NRAO, David Narkevic of WVU, and Fronefield Crawford of Franklin and Marshall College in Lancaster, Pennsylvania. The astronomers announced their findings in the September 27 issue of the online journal Science Express. The startling discovery came as WVU undergraduate student David Narkevic re-analyzed data from observations of the Small Magellanic Cloud made by the 210-foot Parkes radio telescope in Australia. The data came from a survey of the Magellanic Clouds that included 480 hours of observations. "This survey had sought to discover new pulsars, and the data already had been searched for the type of pulsating signals they produce," Lorimer said. "We re-examined the data, looking for bursts that, unlike the usual ones from pulsars, are not periodic," he added. The survey had covered the Magellanic Clouds, a pair of small galaxies in orbit around our own Milky Way Galaxy. Some 200,000 light-years from Earth, the Magellanic Clouds are prominent features in the Southern sky. Ironically, the new discovery is not part of these galaxies, but rather is much more distant

  15. THE LAST GASP OF GAS GIANT PLANET FORMATION: A SPITZER STUDY OF THE 5 Myr OLD CLUSTER NGC 2362

    International Nuclear Information System (INIS)

    Currie, Thayne; Lada, Charles J.; Robitaille, Thomas P.; Irwin, Jonathan; Kenyon, Scott J.; Plavchan, Peter

    2009-01-01

    Expanding upon the Infrared Array Camera (IRAC) survey from Dahm and Hillenbrand, we describe Spitzer IRAC and Multiband Imaging Photometer for Spitzer observations of the populous, 5 Myr old open cluster NGC 2362. We analyze the mid-IR colors of cluster members and compared their spectral energy distributions (SEDs) to star+circumstellar disk models to constrain the disk morphologies and evolutionary states. Early/intermediate-type confirmed/candidate cluster members either have photospheric mid-IR emission or weak, optically thin IR excess emission at λ ≥ 24 μm consistent with debris disks. Few late-type, solar/subsolar-mass stars have primordial disks. The disk population around late-type stars is dominated by disks with inner holes (canonical 'transition disks') and 'homologously depleted' disks. Both types of disks represent an intermediate stage between primordial disks and debris disks. Thus, in agreement with previous results, we find that multiple paths for the primordial-to-debris disk transition exist. Because these 'evolved primordial disks' greatly outnumber primordial disks, our results undermine standard arguments in favor of a ∼ 5 yr timescale for the transition based on data from Taurus-Auriga. Because the typical transition timescale is far longer than 10 5 yr, these data also appear to rule out standard ultraviolet photoevaporation scenarios as the primary mechanism to explain the transition. Combining our data with other Spitzer surveys, we investigate the evolution of debris disks around high/intermediate-mass stars and investigate timescales for giant planet formation. Consistent with Currie et al., the luminosity of 24 μm emission in debris disks due to planet formation peaks at ∼10-20 Myr. If the gas and dust in disks evolve on similar timescales, the formation timescale for gas giant planets surrounding early-type, high/intermediate-mass (∼>1.4 M sun ) stars is likely 1-5 Myr. Most solar/subsolar-mass stars detected by Spitzer

  16. The Demographics and Properties of Wide-Orbit, Planetary-Mass Companions from PSF Fitting of Spitzer/IRAC Images

    Science.gov (United States)

    Martinez, Raquel; Kraus, Adam L.

    2017-06-01

    Over the past decade, a growing population of planetary-mass companions ( 100 AU) from their host stars, challenging existing models of both star and planet formation. It is unclear whether these systems represent the low-mass extreme of stellar binary formation or the high-mass and wide-orbit extreme of planet formation theories, as various proposed formation pathways inadequately explain the physical and orbital aspects of these systems. Even so, determining which scenario best reproduces the observed characteristics of the PMCs will come once a statistically robust sample of directly-imaged PMCs are found and studied.We are developing an automated pipeline to search for wide-orbit PMCs to young stars in Spitzer/IRAC images. A Markov Chain Monte Carlo (MCMC) algorithm is the backbone of our novel point spread function (PSF) subtraction routine that efficiently creates and subtracts χ2-minimizing instrumental PSFs, simultaneously measuring astrometry and infrared photometry of these systems across the four IRAC channels (3.6 μm, 4.5 μm, 5.8 μm, and 8 μm). In this work, we present the results of a Spitzer/IRAC archival imaging study of 11 young, low-mass (0.044-0.88 M⊙ K3.5-M7.5) stars known to have faint, low-mass companions in 3 nearby star-forming regions (Chameleon, Taurus, and Upper Scorpius). We characterize the systems found to have low-mass companions with non-zero [I1] - [I4] colors, potentially signifying the presence of a circum(sub?)stellar disk. Plans for future pipeline improvements and paths forward will also be discussed. Once this computational foundation is optimized, the stage is set to quickly scour the nearby star-forming regions already imaged by Spitzer, identify potential candidates for further characterization with ground- or space-based telescopes, and increase the number of widely-separated PMCs known.

  17. The Hunt for Pristine Cretaceous Astronomical Rhythms at Demerara Rise (Cenomanian-Coniacian)

    Science.gov (United States)

    Ma, C.; Meyers, S. R.

    2014-12-01

    Rhythmic Upper Cretaceous strata from Demerara Rise (ODP leg 207) preserve a strong astronomical signature, and this attribute has facilitated the development of continuous astrochronologies to refine the geologic time scale and calibrate Late Cretaceous biogeochemical events. While the mere identification of astronomical rhythms is a crucial first step in many deep-time paleoceanographic investigations, accurate evaluation of often subtle amplitude and frequency modulations are required to: (1) robustly constrain the linkage between climate and sedimentation, and (2) evaluate the plausibility of different theoretical astrodynamical models. The availability of a wide range of geophysical, lithologic and geochemical data from multiple sites drilled at Demerara Rise - when coupled with recent innovations in the statistical analysis of cyclostratigraphic data - provides an opportunity to hunt for the most pristine record of Cretaceous astronomical rhythms at a tropical Atlantic location. To do so, a statistical metric is developed to evaluate the "internal" consistency of hypothesized astronomical rhythms observed in each data set, particularly with regard to the expected astronomical amplitude modulations. In this presentation, we focus on how the new analysis yields refinements to the existing astrochronologies, provides constraints on the linkages between climate and sedimentation (including the deposition of organic carbon-rich sediments at Demerara Rise), and allows a quantitative evaluation of the continuity of deposition across sites at multiple temporal scales.

  18. OBSERVATIONAL 5-20 μm INTERSTELLAR EXTINCTION CURVES TOWARD STAR-FORMING REGIONS DERIVED FROM SPITZER IRS SPECTRA

    International Nuclear Information System (INIS)

    McClure, M.

    2009-01-01

    Using Spitzer Infrared Spectrograph observations of G0-M4 III stars behind dark clouds, I construct 5-20 μm empirical extinction curves for 0.3 ≤ A K V between ∼3 and 50. For A K K > 1, the curve exhibits lower contrast between the silicate and absorption continuum, develops ice absorption, and lies closer to the Weingartner and Draine R V = 5.5 Case B curve, a result which is consistent with that of Flaherty et al. and Chiar et al. Recently, work using Spitzer Infrared Array Camera data by Chapman et al. independently reaches a similar conclusion that the shape of the extinction curve changes as a function of increasing A K . By calculating the optical depths of the 9.7 μm silicate and 6.0, 6.8, and 15.2 μm ice features, I determine that a process involving ice is responsible for the changing shape of the extinction curve and speculate that this process is a coagulation of ice-mantled grains rather than ice-mantled grains alone.

  19. Astronomical fire: Richard Carrington and the solar flare of 1859.

    Science.gov (United States)

    Clark, Stuart

    2007-09-01

    An explosion on the Sun in 1859, serendipitously witnessed by amateur astronomer Richard Carrington, plunged telegraphic communications into chaos and bathed two thirds of the Earth's skies in aurorae. Explaining what happened to the Sun and how it could affect Earth, 93 million miles away, helped change the direction of astronomy. From being concerned principally with charting the stars to aid navigation, astronomers became increasingly concerned with what the celestial objects were, how they behaved and how they might affect life on Earth.

  20. Spitzer Observations of Comet 9P/Tempel 1 During Deep Impact : Water and Dust Production and Spatial Distribution

    Science.gov (United States)

    Gicquel, Adeline; Bockelée-Morvan, D.; Kelley, M. S.; Woodward, C. E.

    2009-09-01

    The Deep Impact (DI) spacecraft encountered comet 9P/Tempel 1 on July 4th, 2005 (rh = 1.506 AU). Spectral maps covering 20'' x 67'' (1.85''/pixel) were acquired with the IRS instrument on the Spitzer Space Telescope (ΔSpitzer = 0.72 AU) at different times around the Deep Impact event: twice before impact (TI-41.3hrs and TI-22.9hrs) and twelve times after impact (between TI+0.67hrs and TI+1027hrs). These IRS observations (Lisse et al 2006, Sciences 313, 635) were taken from the Spitzer data archive. We present the interpretation of 5.2-7.6 µm spectra obtained in the second order of the short-wavelength module (SL2). To reduce the contribution of artifacts in the spectra, 5x5 pixel extraction apertures (9.25''x9.25'') were used. On the first stage we studied the water ν2 vibrational band emission at 6.4µm, which is present in most spectra. The water production rate before impact is deduced ( 4.25e27 molecules/sec). In order to study both the amount and origin of the water molecules released after impact, we used extractions centered on the nucleus and along the length of the slit. We analyzed the spatial distribution of water and its time evolution with a time-dependent model which describes the evolution of the water cloud after impact. The underlying continuum in the spectra provides information on the evolution and color temperature of the dust ejecta. The dust mass and dust/gas ratio in the ejecta cloud are derived and compared with other values published in the literature.

  1. Mine Water Treatment in Hongai Coal Mines

    Science.gov (United States)

    Dang, Phuong Thao; Dang, Vu Chi

    2018-03-01

    Acid mine drainage (AMD) is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine drainage treatment in Hongai coal mines. In addition, selection and criteria for the design of the treatment systems have been presented.

  2. THE ATMOSPHERES OF THE HOT-JUPITERS KEPLER-5b AND KEPLER-6b OBSERVED DURING OCCULTATIONS WITH WARM-SPITZER AND KEPLER

    Energy Technology Data Exchange (ETDEWEB)

    Desert, Jean-Michel; Charbonneau, David; Fressin, Francois; Latham, David W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Madhusudhan, Nikku [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Knutson, Heather A. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Deming, Drake [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Borucki, William J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Brown, Timothy M. [Las Cumbres Observatory Global Telescope, Goleta, CA 93117 (United States); Caldwell, Douglas [SETI Institute, Mountain View, CA 94043 (United States); Ford, Eric B. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Gilliland, Ronald L. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Marcy, Geoffrey W. [Berkeley Astronomy Department, University of California, Berkeley, CA 94720 (United States); Seager, Sara, E-mail: jdesert@cfa.harvard.edu [Massachusetts Institute of Technology, Cambridge, MA 02159 (United States)

    2011-11-01

    This paper reports the detection and the measurements of occultations of the two transiting hot giant exoplanets Kepler-5b and Kepler-6b by their parent stars. The observations are obtained in the near-infrared with Warm-Spitzer Space Telescope and at optical wavelengths by combining more than a year of Kepler photometry. The investigation consists of constraining the eccentricities of these systems and of obtaining broadband emergent photometric data for individual planets. For both targets, the occultations are detected at the 3{sigma} level at each wavelength with mid-occultation times consistent with circular orbits. The brightness temperatures of these planets are deduced from the infrared observations and reach T{sub Spitzer} = 1930 {+-} 100 K and T{sub Spitzer} = 1660 {+-} 120 K for Kepler-5b and Kepler-6b, respectively. We measure optical geometric albedos A{sub g} in the Kepler bandpass and find A{sub g} = 0.12 {+-} 0.04 for Kepler-5b and A{sub g} = 0.11 {+-} 0.04 for Kepler-6b, leading to upper an limit for the Bond albedo of A{sub B} {<=} 0.17 in both cases. The observations for both planets are best described by models for which most of the incident energy is redistributed on the dayside, with only less than 10% of the absorbed stellar flux redistributed to the nightside of these planets.

  3. Mine Water Treatment in Hongai Coal Mines

    OpenAIRE

    Dang Phuong Thao; Dang Vu Chi

    2018-01-01

    Acid mine drainage (AMD) is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine ...

  4. Probing Large-scale Coherence between Spitzer IR and Chandra X-Ray Source-subtracted Cosmic Backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Cappelluti, N.; Urry, M. [Yale Center for Astronomy and Astrophysics, P.O. Box 208120, New Haven, CT 06520 (United States); Arendt, R. [University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Kashlinsky, A. [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Li, Y.; Hasinger, G. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Helgason, K. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Natarajan, P. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Finoguenov, A. [Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, D-85741, Garching bei München (Germany)

    2017-09-20

    We present new measurements of the large-scale clustering component of the cross-power spectra of the source-subtracted Spitzer -IRAC cosmic infrared background and Chandra -ACIS cosmic X-ray background surface brightness fluctuations Our investigation uses data from the Chandra Deep Field South, Hubble Deep Field North, Extended Groth Strip/AEGIS field, and UDS/SXDF surveys, comprising 1160 Spitzer hours and ∼12 Ms of Chandra data collected over a total area of 0.3 deg{sup 2}. We report the first (>5 σ ) detection of a cross-power signal on large angular scales >20″ between [0.5–2] keV and the 3.6 and 4.5 μ m bands, at ∼5 σ and 6.3 σ significance, respectively. The correlation with harder X-ray bands is marginally significant. Comparing the new observations with existing models for the contribution of the known unmasked source population at z < 7, we find an excess of about an order of magnitude at 5 σ confidence. We discuss possible interpretations for the origin of this excess in terms of the contribution from accreting early black holes (BHs), including both direct collapse BHs and primordial BHs, as well as from scattering in the interstellar medium and intra-halo light.

  5. Astronomical relativistic reference systems with multipolar expansion: the global one

    International Nuclear Information System (INIS)

    Xie Yi

    2014-01-01

    With the rapid development of techniques for astronomical observations, the precision of measurements has been significantly increasing. Theories describing astronomical relativistic reference systems, which are the foundation for processing and interpreting these data now and in the future, may require extensions to satisfy the needs of these trends. Besides building a framework compatible with alternative theories of gravity and the pursuit of higher order post-Newtonian approximation, it will also be necessary to make the first order post-Newtonian multipole moments of celestial bodies be explicitly expressed in the astronomical relativistic reference systems. This will bring some convenience into modeling the observations and experiments and make it easier to distinguish different contributions in measurements. As a first step, the global solar system reference system is expressed as a multipolar expansion and the post-Newtonian mass and spin moments are shown explicitly in the metric which describes the coordinates of the system. The full expression of the global metric is given. (research papers)

  6. All-sky brightness monitoring of light pollution with astronomical methods.

    Science.gov (United States)

    Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar

    2010-06-01

    This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band. (c) 2010 Elsevier Ltd. All rights reserved.

  7. Astronomical Signatures of Dark Matter

    Directory of Open Access Journals (Sweden)

    Paul Gorenstein

    2014-01-01

    Full Text Available Several independent astronomical observations in different wavelength bands reveal the existence of much larger quantities of matter than what we would deduce from assuming a solar mass to light ratio. They are very high velocities of individual galaxies within clusters of galaxies, higher than expected rotation rates of stars in the outer regions of galaxies, 21 cm line studies indicative of increasing mass to light ratios with radius in the halos of spiral galaxies, hot gaseous X-ray emitting halos around many elliptical galaxies, and clusters of galaxies requiring a much larger component of unseen mass for the hot gas to be bound. The level of gravitational attraction needed for the spatial distribution of galaxies to evolve from the small perturbations implied by the very slightly anisotropic cosmic microwave background radiation to its current web-like configuration requires much more mass than is observed across the entire electromagnetic spectrum. Distorted shapes of galaxies and other features created by gravitational lensing in the images of many astronomical objects require an amount of dark matter consistent with other estimates. The unambiguous detection of dark matter and more recently evidence for dark energy has positioned astronomy at the frontier of fundamental physics as it was in the 17th century.

  8. The League of Astronomers: Outreach

    Science.gov (United States)

    Paat, Anthony; Brandel, A.; Schmitz, D.; Sharma, R.; Thomas, N. H.; Trujillo, J.; Laws, C. S.; Astronomers, League of

    2014-01-01

    The University of Washington League of Astronomers (LOA) is an organization comprised of University of Washington (UW) undergraduate students. Our main goal is to share our interest in astronomy with the UW community and with the general public. The LOA hosts star parties on the UW campus and collaborates with the Seattle Astronomical Society (SAS) on larger Seattle-area star parties. At the star parties, we strive to teach our local community about what they can view in our night sky. LOA members share knowledge of how to locate constellations and use a star wheel. The relationship the LOA has with members of SAS increases both the number of events and people we are able to reach. Since the cloudy skies of the Northwest prevent winter star parties, we therefore focus our outreach on the UW Mobile Planetarium, an inflatable dome system utilizing Microsoft’s WorldWide Telescope (WWT) software. The mobile planetarium brings astronomy into the classrooms of schools unable to travel to the UW on-campus planetarium. Members of the LOA volunteer their time towards this project and we make up the majority of the Mobile Planetarium volunteers. Our outreach efforts allow us to connect with the community and enhance our own knowledge of astronomy.

  9. Astronomers in the Chemist's War

    Science.gov (United States)

    Trimble, Virginia L.

    2012-01-01

    World War II, with radar, rockets, and "atomic" bombs was the physicists' war. And many of us know, or think we know, what our more senior colleagues did during it, with Hubble and Hoffleit at Aberdeen; M. Schwarzschild on active duty in Italy; Bondi, Gold, and Hoyle hunkered down in Dunsfeld, Surrey, talking about radar, and perhaps steady state; Greenstein and Henyey designing all-sky cameras; and many astronomers teaching navigation. World War I was The Chemists' War, featuring poison gases, the need to produce liquid fuels from coal on one side of the English Channel and to replace previously-imported dyesstuffs on the other. The talke will focus on what astronomers did and had done to them between 1914 and 1919, from Freundlich (taken prisoner on an eclipse expedition days after the outbreak of hostilities) to Edwin Hubble, returning from France without ever having quite reached the front lines. Other events bore richer fruit (Hale and the National Research Council), but very few of the stories are happy ones. Most of us have neither first nor second hand memories of The Chemists' War, but I had the pleasure of dining with a former Freundlich student a couple of weeks ago.

  10. Astronomical Instrumentation Systems Quality Management Planning: AISQMP (Abstract)

    Science.gov (United States)

    Goldbaum, J.

    2017-12-01

    (Abstract only) The capability of small aperture astronomical instrumentation systems (AIS) to make meaningful scientific contributions has never been better. The purpose of AIS quality management planning (AISQMP) is to ensure the quality of these contributions such that they are both valid and reliable. The first step involved with AISQMP is to specify objective quality measures not just for the AIS final product, but also for the instrumentation used in its production. The next step is to set up a process to track these measures and control for any unwanted variation. The final step is continual effort applied to reducing variation and obtaining measured values near optimal theoretical performance. This paper provides an overview of AISQMP while focusing on objective quality measures applied to astronomical imaging systems.

  11. Mine Water Treatment in Hongai Coal Mines

    Directory of Open Access Journals (Sweden)

    Dang Phuong Thao

    2018-01-01

    Full Text Available Acid mine drainage (AMD is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine drainage treatment in Hongai coal mines. In addition, selection and criteria for the design of the treatment systems have been presented.

  12. The c2d Spitzer spectroscopic survey of ices around low-mass young stellar objects. III. CH4

    NARCIS (Netherlands)

    Oberg, Karin I.; Boogert, A. C. Adwin; Pontoppidan, Klaus M.; Blake, Geoffrey A.; Evans, Neal J.; Lahuis, Fred; van Dishoeck, Ewine F.

    2008-01-01

    CH4 is proposed to be the starting point of a rich organic chemistry. Solid CH4 abundances have previously been determined mostly toward high-mass star-forming regions. Spitzer IRS now provides a unique opportunity to probe solid CH4 toward low-mass star-forming regions as well. Infrared spectra

  13. Astronomical chemistry.

    Science.gov (United States)

    Klemperer, William

    2011-01-01

    The discovery of polar polyatomic molecules in higher-density regions of the interstellar medium by means of their rotational emission detected by radioastronomy has changed our conception of the universe from essentially atomic to highly molecular. We discuss models for molecule formation, emphasizing the general lack of thermodynamic equilibrium. Detailed chemical kinetics is needed to understand molecule formation as well as destruction. Ion molecule reactions appear to be an important class for the generally low temperatures of the interstellar medium. The need for the intrinsically high-quality factor of rotational transitions to definitively pin down molecular emitters has been well established by radioastronomy. The observation of abundant molecular ions both positive and, as recently observed, negative provides benchmarks for chemical kinetic schemes. Of considerable importance in guiding our understanding of astronomical chemistry is the fact that the larger molecules (with more than five atoms) are all organic.

  14. "She is an astronomer" in Spain; the International Year of Astronomy 2009 and beyond

    Science.gov (United States)

    Márquez, I.

    2011-11-01

    The work of the Spanish node for the IYA2009 Cornerstoneproject, "She is an Astronomer" is presented. Our team developedseveral projects with the common goal of promoting gender equality andwomen participation in professional and amateur astronomy, andsupporting the training of young women researchers andtechnologists. The main ones were: 1)Calendar "Women astronomerswho made history". We highlighted exceptional women, fromdifferent epochs and countries, whose contributions to theadvancement of science deserve to transcend anonymity and occupy aplace in history.2) "Women in the stars" was a series of 8 TV programsdevoted to the contribution of Spanish women astronomers, made incollaboration with the UNED.3) "Women in Spanish Astronomy: analysis of a peculiar situation: A universe to discover", was the first sociological study of this type, including quantitative and qualitative (individual and group interviews) analyses. 4) The exhibit "She Astronomer", was aimed at teaching astronomy from a new perspective: the relevant contributions by women astronomers from different times and places.The main aims of the "Commission for Women and Astronomy",recently created within the Spanish Astronomical Society (SEA), are alsodescribed.

  15. The caracol tower at chichen itza: an ancient astronomical observatory?

    Science.gov (United States)

    Aveni, A F; Gibbs, S L; Hartung, H

    1975-06-06

    Although our investigations reveal a number of significant astronomical events coinciding with many of the measured alignments presented in Table 1, not every alignment appears to have an astronomical match which we can recognize. It may be that only some of the sighting possibilities we have discussed were actually functional. Moreover, our search of significant astronomical events to match the alignments has included only those which seem of obvious functional importance to us: sun, moon, and planetary extremes and the setting positions of the brightest stars. We have emphasized those celestial bodies which are documented in the literature as having been of importance. Perhaps hitherto unrecognized constellations were sighted in the windows, perhaps fainter stars, the heliacal rising and setting times of which could have served to mark important dates in the calendar. While we propose no grand cosmic scheme for the astronomical design of the Caracol it can be inferred that the building, apart from being a monument related to Quetzalcoatl, was erected primarily for the purpose of embodying in its architecture certain significant astronomical event alignments, in the same sense that a modern astronomical ephemeris exhibits information of importance to us in the keeping of the current calendar. There are examples in the Mesoamerican historical literature of deliberate attempts to align buildings with astronomical directions of importance. For example, Maudslay (33) quotes Father Motolinia, who tells us that in Tenochtitlan the festival called Tlacaxipeualistli "took place when the sun stood in the middle of Huicholobos, which was at the equinox, and because it was a little out of the straight, Montezuma wished to pull it down and set it right." According to Maudslay, worshipers were probably facing east to watch the sun rise between the two oratories on the Great Temple of Tenochtitlan at the time of the equinox. The directions of the faces of the Lower and Upper

  16. Astronomical Research Institute Photometric Results

    Science.gov (United States)

    Linder, Tyler R.; Sampson, Ryan; Holmes, Robert

    2013-01-01

    The Astronomical Research Institute (ARI) conducts astrometric and photometric studies of asteroids with a concentration on near-Earth objects (NEOs). A 0.76-m autoscope was used for photometric studies of seven asteroids of which two were main-belt targets and five were NEOs, including one potentially hazardous asteroid (PHA). These objects are: 3122 Florence, 3960 Chaliubieju, 5143 Heracles, (6455) 1992 HE, (36284) 2000 DM8, (62128) 2000 SO1, and 2010 LF86.

  17. REPEATABILITY AND ACCURACY OF EXOPLANET ECLIPSE DEPTHS MEASURED WITH POST-CRYOGENIC SPITZER

    Energy Technology Data Exchange (ETDEWEB)

    Ingalls, James G.; Krick, J. E.; Carey, S. J.; Stauffer, John R.; Lowrance, Patrick J.; Grillmair, Carl J.; Capak, Peter; Glaccum, William; Laine, Seppo; Surace, Jason; Storrie-Lombardi, Lisa [Spitzer Science Center, California Institute of Technology, 1200 E California Boulevard, Mail Code 314-6, Pasadena, CA 91125 (United States); Buzasi, Derek [Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, FL 33965 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Diamond-Lowe, Hannah; Stevenson, Kevin B. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States); Evans, Thomas M. [School of Physics, University of Exeter, EX4 4QL Exeter (United Kingdom); Morello, G. [Department of Physics and Astronomy, University College London, Gower Street, WC1 E6BT (United Kingdom); Wong, Ian, E-mail: ingalls@ipac.caltech.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-08-01

    We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. We have re-analyzed an existing 4.5 μ m data set, consisting of 10 observations of the XO-3b system during secondary eclipse, using seven different techniques for removing correlated noise. We find that, on average, for a given technique, the eclipse depth estimate is repeatable from epoch to epoch to within 156 parts per million (ppm). Most techniques derive eclipse depths that do not vary by more than a factor 3 of the photon noise limit. All methods but one accurately assess their own errors: for these methods, the individual measurement uncertainties are comparable to the scatter in eclipse depths over the 10 epoch sample. To assess the accuracy of the techniques as well as to clarify the difference between instrumental and other sources of measurement error, we have also analyzed a simulated data set of 10 visits to XO-3b, for which the eclipse depth is known. We find that three of the methods (BLISS mapping, Pixel Level Decorrelation, and Independent Component Analysis) obtain results that are within three times the photon limit of the true eclipse depth. When averaged over the 10 epoch ensemble,  5 out of 7 techniques come within 60 ppm of the true value. Spitzer exoplanet data, if obtained following current best practices and reduced using methods such as those described here, can measure repeatable and accurate single eclipse depths, with close to photon-limited results.

  18. A SPITZER c2d LEGACY SURVEY TO IDENTIFY AND CHARACTERIZE DISKS WITH INNER DUST HOLES

    International Nuclear Information System (INIS)

    Merin, Bruno; Brown, Joanna M.; Herczeg, Gregory J.; Van Dishoeck, Ewine F.; Oliveira, Isa; Lahuis, Fred; Bottinelli, Sandrine; Augereau, Jean-Charles; Olofsson, Johan; Evans, Neal J.; Harvey, Paul M.; Cieza, Lucas; Spezzi, Loredana; Prusti, Timo; Alcala, Juan M.; Blake, Geoffrey A.; Bayo, Amelia; Geers, Vincent G.; Walter, Frederick M.; Chiu, Kuenley

    2010-01-01

    Understanding how disks dissipate is essential to studies of planet formation. However, identifying exactly how dust and gas dissipate is complicated due to the difficulty of finding objects that are clearly in the transition phase of losing their surrounding material. We use Spitzer Infrared Spectrograph (IRS) spectra to examine 35 photometrically selected candidate cold disks (disks with large inner dust holes). The infrared spectra are supplemented with optical spectra to determine stellar and accretion properties and 1.3 mm photometry to measure disk masses. Based on detailed spectral energy distribution modeling, we identify 15 new cold disks. The remaining 20 objects have IRS spectra that are consistent with disks without holes, disks that are observed close to edge-on, or stars with background emission. Based on these results, we determine reliable criteria to identify disks with inner holes from Spitzer photometry, and examine criteria already in the literature. Applying these criteria to the c2d surveyed star-forming regions gives a frequency of such objects of at least 4% and most likely of order 12% of the young stellar object population identified by Spitzer. We also examine the properties of these new cold disks in combination with cold disks from the literature. Hole sizes in this sample are generally smaller than in previously discovered disks and reflect a distribution in better agreement with exoplanet orbit radii. We find correlations between hole size and both disk and stellar masses. Silicate features, including crystalline features, are present in the overwhelming majority of the sample, although the 10 μm feature strength above the continuum declines for holes with radii larger than ∼7 AU. In contrast, polycyclic aromatic hydrocarbons are only detected in 2 out of 15 sources. Only a quarter of the cold disk sample shows no signs of accretion, making it unlikely that photoevaporation is the dominant hole-forming process in most cases.

  19. ``Orion, I Don't Love You'': The Astronomical Legacy of Carl Sandburg

    Science.gov (United States)

    Ricca, B.

    2013-04-01

    Can poetry provide an accurate means of representing the scientific universe? This paper looks at the astronomical poetry of Carl Sandburg and how the poet employs a scientific framework to deepen his work. Sandburg's method is then compared to a class project of middle school students who use his poetry (and their own) to learn and understand astronomical facts.

  20. The Production Rate and Employment of Ph.D. Astronomers

    Science.gov (United States)

    Metcalfe, Travis S.

    2008-02-01

    In an effort to encourage self-regulation of the astronomy job market, I examine the supply of, and demand for, astronomers over time. On the supply side, I document the production rate of Ph.D. astronomers from 1970 to 2006 using the UMI Dissertation Abstracts database, along with data from other independent sources. I compare the long-term trends in Ph.D. production with federal astronomy research funding over the same time period, and I demonstrate that additional funding is correlated with higher subsequent Ph.D. production. On the demand side, I monitor the changing patterns of employment using statistics about the number and types of jobs advertised in the AAS Job Register from 1984 to 2006. Finally, I assess the sustainability of the job market by normalizing this demand by the annual Ph.D. production. The most recent data suggest that there are now annual advertisements for about one postdoctoral job, half a faculty job, and half a research/support position for every new domestic Ph.D. recipient in astronomy and astrophysics. The average new astronomer might expect to hold up to 3 jobs before finding a steady position.

  1. Polishers around the globe: an overview on the market of large astronomical mirrors

    Science.gov (United States)

    Döhring, Thorsten

    2014-07-01

    Astronomical mirrors are key elements in modern optical telescopes, their dimensions are usually large and their specifications are demanding. Only a limited number of skilled companies respectively institutions around the world are able to master the challenge to polish an individual astronomical mirror, especially in dimensions above one meter. This paper presents an overview on the corresponding market including a listing of polishers around the globe. Therefore valuable information is provided to the astronomical community: Polishers may use the information as a global competitor database, astronomers and project managers may get more transparency on potential suppliers, and suppliers of polishing equipment may learn about unknown potential customers in other parts of the world. An evaluation of the historical market demand on large monolithic astronomical mirrors is presented. It concluded that this is still a niche market with a typical mean rate of 1-2 mirrors per year. Polishing of such mirrors is an enabling technology with impact on the development of technical know-how, public relation, visibility and reputation of the supplier. Within a corresponding technical discussion different polishing technologies are described. In addition it is demonstrated that strategic aspects and political considerations are influencing the selection of the optical finisher.

  2. A Spitzer five-band analysis of the Jupiter-sized planet TrES-1

    Energy Technology Data Exchange (ETDEWEB)

    Cubillos, Patricio; Harrington, Joseph; Foster, Andrew S. D.; Lust, Nate B.; Hardy, Ryan A.; Bowman, M. Oliver [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States); Madhusudhan, Nikku, E-mail: pcubillos@fulbrightmail.org [Department of Physics and Department of Astronomy, Yale University, New Haven, CT 06511 (United States)

    2014-12-10

    With an equilibrium temperature of 1200 K, TrES-1 is one of the coolest hot Jupiters observed by Spitzer. It was also the first planet discovered by any transit survey and one of the first exoplanets from which thermal emission was directly observed. We analyzed all Spitzer eclipse and transit data for TrES-1 and obtained its eclipse depths and brightness temperatures in the 3.6 μm (0.083% ± 0.024%, 1270 ± 110 K), 4.5 μm (0.094% ± 0.024%, 1126 ± 90 K), 5.8 μm (0.162% ± 0.042%, 1205 ± 130 K), 8.0 μm (0.213% ± 0.042%, 1190 ± 130 K), and 16 μm (0.33% ± 0.12%, 1270 ± 310 K) bands. The eclipse depths can be explained, within 1σ errors, by a standard atmospheric model with solar abundance composition in chemical equilibrium, with or without a thermal inversion. The combined analysis of the transit, eclipse, and radial-velocity ephemerides gives an eccentricity of e=0.033{sub −0.031}{sup +0.015}, consistent with a circular orbit. Since TrES-1's eclipses have low signal-to-noise ratios, we implemented optimal photometry and differential-evolution Markov Chain Monte Carlo (MCMC) algorithms in our Photometry for Orbits, Eclipses, and Transits pipeline. Benefits include higher photometric precision and ∼10 times faster MCMC convergence, with better exploration of the phase space and no manual parameter tuning.

  3. Eighth Scientific Meeting of the Spanish Astronomical Society

    CERN Document Server

    Diego, Jose M; González-Serrano, J. Ignacio; Gorgas, Javier; Highlights of Spanish Astrophysics V

    2010-01-01

    This volume collects the invited contributions and plenary sessions presented at the Eighth Scientific Meeting of the Spanish Astronomical Society (Sociedad Española de Astronomía, SEA) held on July 7-11, 2008 in Santander. These contributions cover all fields of astronomy and astrophysics, i.e., the Sun and solar system, the galaxy and its components, galaxies and cosmology, observatories and instrumentation, as well as astronomy teaching and dissemination. Further plenary sessions were devoted to selected hot topics, including the exploration of the solar system, gravitational lensing, exoplanets, X-ray binaries, solar magnetism, gravitational waves, the ALHAMBRA collaboration, and the OSIRIS instrument on the new 10-m GTC. Abstracts of the contributions presented at the parallels sessions and posters are also included in the book. Complete versions of those papers are available online.

  4. Emerging technology for astronomical optics metrology

    Science.gov (United States)

    Trumper, Isaac; Jannuzi, Buell T.; Kim, Dae Wook

    2018-05-01

    Next generation astronomical optics will enable science discoveries across all fields and impact the way we perceive the Universe in which we live. To build these systems, optical metrology tools have been developed that push the boundary of what is possible. We present a summary of a few key metrology technologies that we believe are critical for the coming generation of optical surfaces.

  5. Astronomical and Atmospheric Observations in the Anglo-Saxon Chronicle and in Bede

    Science.gov (United States)

    Härke, H.

    2012-01-01

    Textual sources of the early Middle Ages (fifth to tenth centuries AD) contain more astronomical observations than is popularly assumed. The Anglo-Saxon Chronicle lists some 40 observations of astronomical and atmospheric events for the just over 600 years it covers. But the contexts in which these are set show that eclipses, comets, meteor showers and aurorae were seen as portents of evil events, not as objects of early scientific curiosity. The case of Bede in the early eighth century shows that this was true, to an extent, even for the educated ecclesiastical elite. BedeÕs eclipse records also appear to show that astronomical events could be used to explain unusual phenomena such as the postulated volcanic Ôdust-veilÕ event of AD 536.

  6. Database retrieval systems for nuclear and astronomical data

    International Nuclear Information System (INIS)

    Suda, Takuma; Korennov, Sergei; Otuka, Naohiko; Yamada, Shimako; Katsuta, Yutaka; Ohnishi, Akira; Kato, Kiyoshi; Fujimoto, Masayuki Y.

    2006-01-01

    Data retrieval and plot systems of nuclear and astronomical data are constructed on a common platform. Web-based systems will soon be opened to the users of both fields of nuclear physics and astronomy. (author)

  7. International mining forum 2004, new technologies in underground mining, safety in mines proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Jerzy Kicki; Eugeniusz Sobczyk (eds.)

    2004-01-15

    The book comprises technical papers that were presented at the International Mining Forum 2004. This event aims to bring together scientists and engineers in mining, rock mechanics, and computer engineering, with a view to explore and discuss international developments in the field. Topics discussed in this book are: trends in the mining industry; new solutions and tendencies in underground mines; rock engineering problems in underground mines; utilization and exploitation of methane; prevention measures for the control of rock bursts in Polish mines; and current problems in Ukrainian coal mines.

  8. Spitzer spectral line mapping of the HH211 outflow

    DEFF Research Database (Denmark)

    Dionatos, Odyssefs; Nisini, Brunella; Cabrit, Sylvie

    2010-01-01

    of emission line diagnostics and an existing grid of molecular shock models. The physical properties of the warm gas are compared against other molecular jet tracers and to the results of a similar study towards the L1448-C outflow. Results: We have detected and mapped the v=0-0 S(0) - S(7) H2 lines and fine...... compared to solar abundances by a factor ~10-50. Conclusions: Spitzer spectral mapping observations reveal for the first time a cool H$_2$ component towards the CO jet of HH211 consistent with the CO material being fully molecular and warm at ~ 300 K. The maps also reveal for the first time the existence...... uncertainties on jet speed and shock conditions are too large for a definite conclusion....

  9. Spitzer Observations of the X-ray Sources of NGC 4485/90

    Science.gov (United States)

    Vazquez, Gerardo A.; Colbert, E.; Hornschemeier, A.; Malhotra, S.; Roberts, T.; Ward, M.

    2006-06-01

    The mechanism for forming (or igniting) so-called Ultra-Luminous X- ray sources (ULXs) is very poorly understood. In order to investigate the stellar and gaseous environment of ULXs, we have observed the nearby starburst galaxy system NGC 4485/90 with Spitzer's IRAC and IRS instruments. High-quality mid-infrared images and spectra are used to characterize the stellar history of stars near the ULXs, and the ionization state of the surrounding gas. NGC 4485/90 fortuitively hosts six ULXs, and we have analyzed IRAC images and IRS spectra of all six regions. We also observed two "comparison" regions with no X-ray sources. Here we present our preliminary findings on the similarities and differences between the stellar and gaseous components near the ULXs.

  10. Association and Sequence Mining in Web Usage

    Directory of Open Access Journals (Sweden)

    Claudia Elena DINUCA

    2011-06-01

    Full Text Available Web servers worldwide generate a vast amount of information on web users’ browsing activities. Several researchers have studied these so-called clickstream or web access log data to better understand and characterize web users. Clickstream data can be enriched with information about the content of visited pages and the origin (e.g., geographic, organizational of the requests. The goal of this project is to analyse user behaviour by mining enriched web access log data. With the continued growth and proliferation of e-commerce, Web services, and Web-based information systems, the volumes of click stream and user data collected by Web-based organizations in their daily operations has reached astronomical proportions. This information can be exploited in various ways, such as enhancing the effectiveness of websites or developing directed web marketing campaigns. The discovered patterns are usually represented as collections of pages, objects, or re-sources that are frequently accessed by groups of users with common needs or interests. The focus of this paper is to provide an overview how to use frequent pattern techniques for discovering different types of patterns in a Web log database. In this paper we will focus on finding association as a data mining technique to extract potentially useful knowledge from web usage data. I implemented in Java, using NetBeans IDE, a program for identification of pages’ association from sessions. For exemplification, we used the log files from a commercial web site.

  11. Where Galactic Snakes Live

    Science.gov (United States)

    2006-01-01

    This infrared image from NASA's Spitzer Space Telescope shows what astronomers are referring to as a 'snake' (upper left) and its surrounding stormy environment. The sinuous object is actually the core of a thick, sooty cloud large enough to swallow dozens of solar systems. In fact, astronomers say the 'snake's belly' may be harboring beastly stars in the process of forming. The galactic creepy crawler to the right of the snake is another thick cloud core, in which additional burgeoning massive stars might be lurking. The colorful regions below the two cloud cores are less dense cloud material, in which dust has been heated by starlight and glows with infrared light. Yellow and orange dots throughout the image are monstrous developing stars; the red star on the 'belly' of the snake is 20 to 50 times as massive as our sun. The blue dots are foreground stars. The red ball at the bottom left is a 'supernova remnant,' the remains of massive star that died in a fiery blast. Astronomers speculate that radiation and winds from the star before it died, in addition to a shock wave created when it exploded, might have played a role in creating the snake. Spitzer was able to spot the two black cloud cores using its heat-seeking infrared vision. The objects are hiding in the dusty plane of our Milky Way galaxy, invisible to optical telescopes. Because their heat, or infrared light, can sneak through the dust, they first showed up in infrared images from past missions. The cloud cores are so thick with dust that if you were to somehow transport yourself into the middle of them, you would see nothing but black, not even a star in the sky. Now, that's spooky! Spitzer's new view of the region provides the best look yet at the massive embryonic stars hiding inside the snake. Astronomers say these observations will ultimately help them better understand how massive stars form. By studying the clustering and range of masses of the stellar embryos, they hope to determine if the stars

  12. Astronomy Against Terrorism: an Educational Astronomical Observatory Project in Peru

    Science.gov (United States)

    Ishitsuka, M.; Montes, H.; Kuroda, T.; Morimoto, M.; Ishitsuka, J.

    2003-05-01

    The Cosmos Coronagraphic Observatory was completely destroyed by terrorists in 1988. In 1995, in coordination with the Minister of Education of Peru, a project to construct a new Educational Astronomical Observatory has been executed. The main purpose of the observatory is to promote an interest in basic space sciences in young students from school to university levels, through basic astronomical studies and observations. The planned observatory will be able to lodge 25 visitors; furthermore an auditorium, a library and a computer room will be constructed to improve the interest of people in astronomy. Two 15-cm refractor telescopes, equipped with a CCD camera and a photometer, will be available for observations. Also a 6-m dome will house a 60-cm class reflector telescope, which will be donated soon, thanks to a fund collected and organized by the Nishi-Harima Astronomical Observatory in Japan. In addition a new modern planetarium donated by the Government of Japan will be installed in Lima, the capital of Peru. These installations will be widely open to serve the requirements of people interested in science.

  13. Sports Stars: Analyzing the Performance of Astronomers at Visualization-based Discovery

    Science.gov (United States)

    Fluke, C. J.; Parrington, L.; Hegarty, S.; MacMahon, C.; Morgan, S.; Hassan, A. H.; Kilborn, V. A.

    2017-05-01

    In this data-rich era of astronomy, there is a growing reliance on automated techniques to discover new knowledge. The role of the astronomer may change from being a discoverer to being a confirmer. But what do astronomers actually look at when they distinguish between “sources” and “noise?” What are the differences between novice and expert astronomers when it comes to visual-based discovery? Can we identify elite talent or coach astronomers to maximize their potential for discovery? By looking to the field of sports performance analysis, we consider an established, domain-wide approach, where the expertise of the viewer (i.e., a member of the coaching team) plays a crucial role in identifying and determining the subtle features of gameplay that provide a winning advantage. As an initial case study, we investigate whether the SportsCode performance analysis software can be used to understand and document how an experienced Hi astronomer makes discoveries in spectral data cubes. We find that the process of timeline-based coding can be applied to spectral cube data by mapping spectral channels to frames within a movie. SportsCode provides a range of easy to use methods for annotation, including feature-based codes and labels, text annotations associated with codes, and image-based drawing. The outputs, including instance movies that are uniquely associated with coded events, provide the basis for a training program or team-based analysis that could be used in unison with discipline specific analysis software. In this coordinated approach to visualization and analysis, SportsCode can act as a visual notebook, recording the insight and decisions in partnership with established analysis methods. Alternatively, in situ annotation and coding of features would be a valuable addition to existing and future visualization and analysis packages.

  14. Sustainable Mining Environment: Technical Review of Post-mining Plans

    Directory of Open Access Journals (Sweden)

    Restu Juniah

    2017-12-01

    Full Text Available The mining industry exists because humans need mining commodities to meet their daily needs such as motor vehicles, mobile phones, electronic equipment and others. Mining commodities as mentioned in Government Regulation No. 23 of 2010 on Implementation of Mineral and Coal Mining Business Activities are radioactive minerals, metal minerals, nonmetallic minerals, rocks and coal. Mineral and coal mining is conducted to obtain the mining commodities through production operations. Mining and coal mining companies have an obligation to ensure that the mining environment in particular after the post production operation or post mining continues. The survey research aims to examine technically the post-mining plan in coal mining of PT Samantaka Batubara in Indragiri Hulu Regency of Riau Province towards the sustainability of the mining environment. The results indicate that the post-mining plan of PT Samantaka Batubara has met the technical aspects required in post mining planning for a sustainable mining environment. Postponement of post-mining land of PT Samantaka Batubara for garden and forest zone. The results of this study are expected to be useful and can be used by stakeholders, academics, researchers, practitioners and associations of mining, and the environment.

  15. Focus on astronomical predictable events

    DEFF Research Database (Denmark)

    Jacobsen, Aase Roland

    2006-01-01

    At the Steno Museum Planetarium we have for many occasions used a countdown clock to get focus om astronomical events. A countdown clock can provide actuality to predictable events, for example The Venus Transit, Opportunity landing on Mars and The Solar Eclipse. The movement of the clock attracs...... the public and makes a point of interest in a small exhibit area. A countdown clock can be simple, but it is possible to expand the concept to an eye-catching part of a museum....

  16. The South African Astronomical Observatory

    International Nuclear Information System (INIS)

    1988-01-01

    The geographical position, climate and equipment at the South African Astronomical Observatory (SAAO), together with the enthusiasm and efforts of SAAO scientific and technical staff and of visiting scientists, have enabled the Observatory to make a major contribution to the fields of astrophysics and cosmology. During 1987 the SAAO has been involved in studies of the following: supernovae; galaxies, including Seyfert galaxies; celestial x-ray sources; magellanic clouds; pulsating variables; galatic structure; binary star phenomena; nebulae; interstellar matter and stellar astrophysics

  17. SPITZER OBSERVATIONS OF THE λ ORIONIS CLUSTER. II. DISKS AROUND SOLAR-TYPE AND LOW-MASS STARS

    International Nuclear Information System (INIS)

    Hernandez, Jesus; Morales-Calderon, Maria; Calvet, Nuria; Hartmann, L.; Muzerolle, J.; Gutermuth, R.; Luhman, K. L.; Stauffer, J.

    2010-01-01

    We present IRAC/MIPS Spitzer Space Telescope observations of the solar-type and the low-mass stellar population of the young (∼5 Myr) λ Orionis cluster. Combining optical and Two Micron All Sky Survey photometry, we identify 436 stars as probable members of the cluster. Given the distance (450 pc) and the age of the cluster, our sample ranges in mass from 2 M sun to objects below the substellar limit. With the addition of the Spitzer mid-infrared data, we have identified 49 stars bearing disks in the stellar cluster. Using spectral energy distribution slopes, we place objects in several classes: non-excess stars (diskless), stars with optically thick disks, stars with 'evolved disks' (with smaller excesses than optically thick disk systems), and 'transitional disk' candidates (in which the inner disk is partially or fully cleared). The disk fraction depends on the stellar mass, ranging from ∼6% for K-type stars (R C - J C - J>4). We confirm the dependence of disk fraction on stellar mass in this age range found in other studies. Regarding clustering levels, the overall fraction of disks in the λ Orionis cluster is similar to those reported in other stellar groups with ages normally quoted as ∼5 Myr.

  18. Contract Mining versus Owner Mining

    African Journals Online (AJOL)

    Owner

    mining companies can concentrate on their core businesses while using specialists for ... 2 Definition of Contract and Owner. Mining ... equipment maintenance, scheduling and budgeting ..... No. Region. Amount Spent on. Contract Mining. ($ billion). Percent of. Total. 1 ... cost and productivity data based on a large range.

  19. The War's Positive Impact on the Canadian Astronomical Community

    Science.gov (United States)

    Broughton, Peter

    2015-01-01

    At the beginning of WWI, the Canadian astronomical community was tiny and astrophysical research was just beginning. By the end of the war, the country had established the forerunner of its National Research Council and had the world's largest fully operational telescope, thanks to the late entry of the USA into the conflict. By 1918, Canada was on the verge of making significant contributions to science.In spite of the immense loss of life in this pointless war, I am aware of only one casualty affecting Canadian professional astronomers, and that was the indirect death of James Chant, son of University of Toronto's only professor of astronomy. Other Canadian astronomers, including Tom Parker, Bert Topham, and Harry Plaskett were on active service; each of their stories is unique.Among those engaged in scientific work during the war were two Canadians temporarily in England: John McLennan whose helium research for dirigibles led him to establish a cryogenic lab in Toronto where the green line in the spectrum of the aurora was identified in 1925, and Allie Douglas who worked as a statistician in the War Office. Later work with Eddington led her to become his biographer and to her distinction as the first person in Canada to earn a PhD in astronomy (in 1926).

  20. Optimization of mining design of Hongwei uranium mine

    International Nuclear Information System (INIS)

    Wu Sanmao; Yuan Baixiang

    2012-01-01

    Combined with the mining conditions of Hongwei uranium mine, optimization schemes for hoisting cage, mine drainge,ore transport, mine wastewater treatment, power-supply system,etc are put forward in the mining design of the mine. Optimized effects are analyzed from the aspects of technique, economy, and energy saving and reducing emissions. (authors)

  1. Spitzer Observations of a 24 μm Shadow: Bok Globule CB 190

    Science.gov (United States)

    Stutz, Amelia M.; Bieging, John H.; Rieke, George H.; Shirley, Yancy L.; Balog, Zoltan; Gordon, Karl D.; Green, Elizabeth M.; Keene, Jocelyn; Kelly, Brandon C.; Rubin, Mark; Werner, Michael W.

    2007-08-01

    We present Spitzer observations of the dark globule CB 190 (LDN 771). We observe a roughly circular 24 μm shadow with a 70" radius. The extinction profile of this shadow matches the profile derived from 2MASS photometry at the outer edges of the globule and reaches a maximum of ~32 visual magnitudes at the center. The corresponding mass of CB 190 is ~10 Msolar. Our 12CO and 13CO J=2-1 data over a 10'×10' region centered on the shadow show a temperature ~10 K. The thermal continuum indicates a similar temperature for the dust. The molecular data also show evidence of freezeout onto dust grains. We estimate a distance to CB 190 of 400 pc using the spectroscopic parallax of a star associated with the globule. Bonnor-Ebert fits to the density profile, in conjunction with this distance, yield ξmax=7.2, indicating that CB 190 may be unstable. The high temperature (56 K) of the best-fit Bonnor-Ebert model is in contradiction with the CO and thermal continuum data, leading to the conclusion that the thermal pressure is not enough to prevent free-fall collapse. We also find that the turbulence in the cloud is inadequate to support it. However, the cloud may be supported by the magnetic field, if this field is at the average level for dark globules. Since the magnetic field will eventually leak out through ambipolar diffusion, it is likely that CB 190 is collapsing or in a late precollapse stage. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407.

  2. Letters from Augustin Hallerstein, an eighteenth century Jesuit astronomer in Beijing

    Science.gov (United States)

    Juznic, Stanislav

    2008-11-01

    Augustin Hallerstein (1703-1774) was the last astronomer sent to Beijing by the Society of Jesus. He left Europe for China in his mid-thirties, and continued to send letters back home until he died thirty-five years later. These letters and reports contained important information on Chinese astronomy, and were read in the courts of Europe; many were also published. Hallerstein was one of the most important European astronomers in Beijing, his European publications surpassing those of his predecessors.

  3. C++, objected-oriented programming, and astronomical data models

    Science.gov (United States)

    Farris, A.

    1992-01-01

    Contemporary astronomy is characterized by increasingly complex instruments and observational techniques, higher data collection rates, and large data archives, placing severe stress on software analysis systems. The object-oriented paradigm represents a significant new approach to software design and implementation that holds great promise for dealing with this increased complexity. The basic concepts of this approach will be characterized in contrast to more traditional procedure-oriented approaches. The fundamental features of objected-oriented programming will be discussed from a C++ programming language perspective, using examples familiar to astronomers. This discussion will focus on objects, classes and their relevance to the data type system; the principle of information hiding; and the use of inheritance to implement generalization/specialization relationships. Drawing on the object-oriented approach, features of a new database model to support astronomical data analysis will be presented.

  4. Remote observatories for amateur astronomers using high-powered telescopes from home

    CERN Document Server

    Hubbell, Gerald R; Billard, Linda M

    2015-01-01

    Amateur astronomers who want to enhance their capabilities to contribute to science need look no farther than this guide to using remote observatories.  The contributors cover how to build your own remote observatory as well as the existing infrastructure of commercial networks of remote observatories that are available to the amateur. They provide specific advice on which programs to use based on your project objectives and offer practical project suggestions. Remotely controlled observatories have many advantages—the most obvious that the observer does not have to be physically present to carry out observations. Such an observatory can also be used more fully because its time can be scheduled and usefully shared among several astronomers working on different observing projects. More and more professional-level observatories are open to use by amateurs in this way via the Internet, and more advanced amateur astronomers can even build their own remote observatories for sharing among members of a society ...

  5. Communicating the Science of Global Warming — the Role of Astronomers

    Science.gov (United States)

    Bennett, Jeffrey

    2018-06-01

    Global Warming is one of the most important and issues of our times, yet it is widely misunderstood among the general public (and politicians!). The American Astronomical Society has already joined many other scientific organizations in advocating for action on global warming (by supporting the AGU statement on global warming), but we as astronomers can do much more. The high public profile of astronomy gives us a unique platform — and credibility as scientists — for doing our part to educate the public about the underlying science of global warming. And while astronomers are not climate scientists, we use the same basic physics, and many aspects of global warming science come directly from astronomy, including the ways in which we measure the heat-absorbing potential of carbon dioxide and the hard evidence of greenhouse warming provided by studies of Venus. In this session, I will briefly introduce a few methods for communicating about global warming that I believe you will find effective in your own education efforts.

  6. LOCAL BENCHMARKS FOR THE EVOLUTION OF MAJOR-MERGER GALAXIES-SPITZER OBSERVATIONS OF A K-BAND SELECTED SAMPLE

    International Nuclear Information System (INIS)

    Xu, C. Kevin; Cheng Yiwen; Lu Nanyao; Mazzarella, Joseph M.; Cutri, Roc; Domingue, Donovan; Huang Jiasheng; Gao Yu; Sun, W.-H.; Surace, Jason

    2010-01-01

    We present Spitzer observations for a sample of close major-merger galaxy pairs (KPAIR sample) selected from cross-matches between the Two Micron All Sky Survey and Sloan Digital Sky Survey Data Release 3. The goals are to study the star formation activity in these galaxies and to set a local bench mark for the cosmic evolution of close major mergers. The Spitzer KPAIR sample (27 pairs, 54 galaxies) includes all spectroscopically confirmed spiral-spiral (S+S) and spiral-elliptical (S+E) pairs in a parent sample that is complete for primaries brighter than K = 12.5 mag, projected separations of 5 h -1 kpc ≤ s ≤ 20 h -1 kpc, and mass ratios ≤2.5. The Spitzer data, consisting of images in seven bands (3.6, 4.5, 5.8, 8, 24, 70, 160 μm), show very diversified IR emission properties. Compared to single spiral galaxies in a control sample, only spiral galaxies in S+S pairs show significantly enhanced specific star formation rate (sSFR = SFR/M), whereas spiral galaxies in S+E pairs do not. Furthermore, the SFR enhancement of spiral galaxies in S+S pairs is highly mass-dependent. Only those with M ∼> 10 10.5 M sun show significant enhancement. Relatively low-mass (M ∼ 10 10 M sun ) spirals in S+S pairs have about the same SFR/M compared to their counterparts in the control sample, while those with 10 11 M sun have on average a ∼3 times higher SFR/M than single spirals. There is evidence for a correlation between the global star formation activities (but not the nuclear activities) of the component galaxies in massive S+S major-merger pairs (the H olmberg effect ) . There is no significant difference in the SFR/M between the primaries and the secondaries, nor between spirals of SEP KPAIR =2.54 x 10 -4 (M sun yr -1 Mpc -3 ).

  7. VizieR Online Data Catalog: IR-bright MSX sources in the SMC with Spitzer/IRS (Kraemer+, 2017)

    Science.gov (United States)

    Kraemer, K. E.; Sloan, G. C.; Wood, P. R.; Jones, O. C.; Egan, M. P.

    2017-07-01

    Our original set of infrared spectra of MSX SMC sources was obtained in Spitzer Cycle 1 (Program ID 3277, P.I. M. Egan). This program included 35 targets from the MSX SMC catalog. 24 targets were discussed in previous papers; this paper examines the remaining 11 sources in the sample. We also selected 4 objects in the MSX SMC catalog with similar photometric characteristics in an effort to uncover additional sources with crystalline dust. We observed these targets in Spitzer Cycle 3 (Program ID 30355, P.I. J. Houck). See tables 1 and 2 for observation data and basic properties of the targets. Table 3 lists 20 additional MSX SMC sources that were observed by other Spitzer IRS programs. Overall, 59 MSX SMC sources were observed with the IRS. The spectra were observed using the low-resolution modules of the IRS, Short-Low (SL) and Long-Low (LL), which provided spectra in the 5-14 and 14-37um ranges, respectively, at a resolution between ~60 and 120. For 10 evolved stars with oxygen-rich dust in our Cycle 1 program, we obtained spectra from 0.45 to 1.03um with the Double-Beam Spectrograph at the 2.3m telescope of the Australian National University at Siding Spring Observatory. A 0.45-0.89um spectrum for one of the stars in program 30355 was also observed. These spectra have a resolution of 10Å. Tables 5-7: catalog based on the 243 sources detected in the MSX survey of the SMC, updated with positions and photometry from more recent space-based missions and ground-based surveys. See the Appendix section for more details. The SMC catalog from MSX consists of the 243 sources in the main MSX catalog (Egan+ 2003, see V/114) that lie within the region 7°

  8. A SPITZER SURVEY OF PROTOPLANETARY DISK DUST IN THE YOUNG SERPENS CLOUD : HOW DO DUST CHARACTERISTICS EVOLVE WITH TIME?

    NARCIS (Netherlands)

    Oliveira, Isa; Pontoppidan, Klaus M.; Merin, Bruno; van Dishoeck, Ewine F.; Lahuis, Fred; Geers, Vincent C.; Jorgensen, Jes K.; Olofsson, Johan; Augereau, Jean-Charles; Brown, Joanna M.

    2010-01-01

    We present Spitzer InfraRed Spectrograph (IRS) mid-infrared (5-35 mu m) spectra of a complete flux-limited sample (>= 3 mJy at 8 mu m) of young stellar object (YSO) candidates selected on the basis of their infrared colors in the Serpens Molecular Cloud. Spectra of 147 sources are presented and

  9. Astronomical Instruments in India

    Science.gov (United States)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  10. SPITZER AS A MICROLENS PARALLAX SATELLITE: MASS MEASUREMENT FOR THE OGLE-2014-BLG-0124L PLANET AND ITS HOST STAR

    Energy Technology Data Exchange (ETDEWEB)

    Udalski, A.; Skowron, J.; Kozłowski, S.; Poleski, R.; Pietrukowicz, P.; Pietrzyński, G.; Szymański, M. K.; Mróz, P.; Soszyński, I.; Ulaczyk, K.; Wyrzykowski, Ł. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Gould, A.; Zhu, W.; Pogge, R. W. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Carey, S. [Spitzer Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Han, C. [Department of Physics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Calchi Novati, S. [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-02-01

    We combine Spitzer and ground-based observations to measure the microlens parallax vector π{sub E}, and thus the mass and distance of OGLE-2014-BLG-0124L, making it the first microlensing planetary system with a space-based parallax measurement. The planet and star have masses of m ∼ 0.5 M {sub jup} and M ∼ 0.7 M {sub ☉} and are separated by a ∼ 3.1 AU in projection. The main source of uncertainty in all of these numbers (approximately 30%, 30%, and 20%) is the relatively poor measurement of the Einstein radius θ{sub E}, rather than uncertainty in π{sub E}, which is measured with 2.5% precision. This compares to 22% based on OGLE data alone, implying that the Spitzer data provide not only a substantial improvement in the precision of the π{sub E} measurement, but also the first independent test of a ground-based π{sub E} measurement.

  11. Surface Mines, Other - Longwall Mining Panels

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Coal mining has occurred in Pennsylvania for over a century. A method of coal mining known as Longwall Mining has become more prevalent in recent decades. Longwall...

  12. Block iterative restoration of astronomical images with the massively parallel processor

    International Nuclear Information System (INIS)

    Heap, S.R.; Lindler, D.J.

    1987-01-01

    A method is described for algebraic image restoration capable of treating astronomical images. For a typical 500 x 500 image, direct algebraic restoration would require the solution of a 250,000 x 250,000 linear system. The block iterative approach is used to reduce the problem to solving 4900 121 x 121 linear systems. The algorithm was implemented on the Goddard Massively Parallel Processor, which can solve a 121 x 121 system in approximately 0.06 seconds. Examples are shown of the results for various astronomical images

  13. New knowledge in determining the astronomical orientation of Incas object in Ollantaytambo, Peru

    Science.gov (United States)

    Hanzalová, K.; Klokočník, J.; Kostelecký, J.

    2014-06-01

    This paper deals about astronomical orientation of Incas objects in Ollantaytambo, which is located about 35 km southeast from Machu Picchu, about 40 km northwest from Cusco, and lies in the Urubamba valley. Everybody writing about Ollantaytambo, shoud read Protzen (1993). He devoted his monograph to description and interpretation of that locality. Book of Salazar and Salazar (2005) deals, among others, with the orientation of objects in Ollantaytambo with respect to the cardinal direction. Zawaski and Malville (2007) documented astronomical context of major monuments of nine sites in Peru, including Ollantaytambo. We tested astronomical orientation in these places and confirm or disprove hypothesis about purpose of Incas objects. For assessment orientation of objects we used our measurements and also satellite images on Google Earth and digital elevation model from ASTER. The satellite images used to approximate estimation of astronomical orientation. The digital elevation model is useful in the mountains, where we need the really horizon for a calculation of sunset and sunrise on specific days (solstices), which were for Incas people very important. By Incas is very famous that they worshiped the Sun. According to him they determined when to plant and when to harvest the crop. In this paper we focused on Temple of the Sun, also known the Wall of six monoliths. We tested which astronomical phenomenon is connected with this Temple. First, we tested winter solstice sunrise and the rides of the Pleiades for the epochs 2000, 1500 and 1000 A.D. According with our results the Temple isn't connected neither with winter solstice sunrise nor with the Pleiades. Then we tested also winter solstice sunset. We tried to use the line from an observation point near ruins of the Temple of Sun, to west-north, in direction to sunset. The astronomical azimuth from this point was about 5° less then we need. From this results we found, that is possible to find another observation

  14. New knowledge in determining the astronomical orientation of Incas object in Ollantaytambo, Peru

    Directory of Open Access Journals (Sweden)

    K. Hanzalová

    2014-06-01

    Full Text Available This paper deals about astronomical orientation of Incas objects in Ollantaytambo, which is located about 35 km southeast from Machu Picchu, about 40 km northwest from Cusco, and lies in the Urubamba valley. Everybody writing about Ollantaytambo, shoud read Protzen (1993. He devoted his monograph to description and interpretation of that locality. Book of Salazar and Salazar (2005 deals, among others, with the orientation of objects in Ollantaytambo with respect to the cardinal direction. Zawaski and Malville (2007 documented astronomical context of major monuments of nine sites in Peru, including Ollantaytambo. We tested astronomical orientation in these places and confirm or disprove hypothesis about purpose of Incas objects. For assessment orientation of objects we used our measurements and also satellite images on Google Earth and digital elevation model from ASTER. The satellite images used to approximate estimation of astronomical orientation. The digital elevation model is useful in the mountains, where we need the really horizon for a calculation of sunset and sunrise on specific days (solstices, which were for Incas people very important. By Incas is very famous that they worshiped the Sun. According to him they determined when to plant and when to harvest the crop. In this paper we focused on Temple of the Sun, also known the Wall of six monoliths. We tested which astronomical phenomenon is connected with this Temple. First, we tested winter solstice sunrise and the rides of the Pleiades for the epochs 2000, 1500 and 1000 A.D. According with our results the Temple isn't connected neither with winter solstice sunrise nor with the Pleiades. Then we tested also winter solstice sunset. We tried to use the line from an observation point near ruins of the Temple of Sun, to west-north, in direction to sunset. The astronomical azimuth from this point was about 5° less then we need. From this results we found, that is possible to find another

  15. Unusual Slowly Rotating Brown Dwarfs Discovered through Precision Spitzer Photometry

    Science.gov (United States)

    Heinze, Aren; Metchev, S.

    2014-01-01

    Many brown dwarfs exhibit low-amplitude rotationally modulated variability due to photospheric inhomogeneities caused by condensate clouds in their atmospheres. The Spitzer Space Telescope 'Weather on Other Worlds' (WoW) project has monitored 44 brown dwarfs at unprecedented photometric precision from space. We present one of several important new results from WoW: the discovery of brown dwarfs with unexpectedly slow rotation periods. While most brown dwarfs have periods of 2-12 hours, we have identified two with well-constrained periods of 13±1 and >20 hours, respectively, and 2 others that show more tentative evidence of longer than 20-hour periods. By serving as almost non-rotating standards, these objects will allow more accurate calibration of spectroscopic measurements of brown dwarfs' projected rotational velocities. The existence of such slowly-rotating objects also constrains models of brown dwarf formation and angular momentum evolution.

  16. Inferring Temperature Inversions in Hot Jupiters Via Spitzer Emission Spectroscopy

    Science.gov (United States)

    Garhart, Emily; Deming, Drake; Mandell, Avi

    2016-10-01

    We present a systematic study of 35 hot Jupiter secondary eclipses, including 16 hot Jupiters never before characterized via emission, observed at the 3.6 μm and 4.5 μm bandpasses of Warm Spitzer in order to classify their atmospheric structure, namely, the existence of temperature inversions. This is a robust study in that these planets orbit stars with a wide range of compositions, temperatures, and activity levels. This diverse sample allows us to investigate the source of planetary temperature inversions, specifically, its correlation with stellar irradiance and magnetic activity. We correct for systematic and intra-pixel sensitivity effects with a pixel level decorrelation (PLD) method described in Deming et al. (2015). The relationship between eclipse depths and a best-fit blackbody function versus stellar activity, a method described in Knutson et al. (2010), will ultimately enable us to appraise the current hypotheses of temperature inversions.

  17. AstroFrauenNetzwerk Survey Results - Career situation of female astronomers in Germany

    Science.gov (United States)

    Fohlmeister, J.; Helling, Ch.

    2012-04-01

    We survey the job situation of women in astronomy in Germany and of German women abroad and review indicators for their career development. Our sample includes women astronomers from all academic levels from doctoral students to professors, as well as female astronomers who have left the field. We find that networking and human support are among the most important factors for success. Experience shows that students should carefully choose their supervisor and collect practical knowledge abroad. We reflect the private situation of female German astronomers and find that prejudices are abundant, and are perceived as discriminating. We identify reasons why women are more likely than men to quit astronomy after they obtain their PhD degree. We give recommendations to young students on what to pay attention to in order to be on the successful path in astronomy.

  18. Application for trackless mining technique in Benxi uranium mine

    International Nuclear Information System (INIS)

    Chen Bingguo

    1998-01-01

    The author narrates the circumstances achieving constructional target in Benxi Uranium Mine under relying on advance of science and technology and adopting small trackless mining equipment, presents the application of trackless mining equipment at mining small mine and complex mineral deposit and discusses the unique superiority of trackless mining technique in development work, mining preparation work and backstoping

  19. The Selection and Protection of Optical Astronomical Observing Sites in China

    Science.gov (United States)

    Wenjing, Jin; Bai, Jinming; Yao, Yongqiang

    2015-03-01

    Before 1950 there are two observatories, Shanghai and Purple Mountain Astronomical Observatories (SHAO and PMO), and two observing stations, Qingdao and Kunming stations in China. With the requirements of astronomical research, two observatories, Beijing and Shaanxi Astronomical Observatories (BAO and SXAO) and two artificial satellite stations, Urumqi and Changchun, were established about 1960. Based on the current management, now there are 4 observatories, SHAO, PMO, NAOC(National Astronomical Observatories), which was grouped from BAO, YNAO and 2 others, as well as XAO (Xinjiang Astronomical Observatory). The optical 1-2 m class telescopes are being operated at former four observatories. SXAO is changed as National Time Service Center. Because of city expansion as well as the traveling and economic developments, these observatories are suffered severe light pollution. For example, Zo Ce is located at the suburb of Shanghai city. A 40 cm double astrograph was installed in 1900 and a 1.56 m optical reflector have been operated since November 1987. In 1994 the seeing is better than 1 and the night sky brightness in V is about 19 mag/arcsec 2, stars fainter than 20 mag with CCD are visibles. In 2007 a large playground was built in Zô Cè area. The light pollution is severe gradually. The night sky brightness has been increased to 15.8 mag/arcsec 2. The other observatories have similar situation. New site surveys and found new stations to solve the problem. Except the solar and radio stations of each Astronomical Observatory, now there are 3 optical observing sites at PMO (Hong-He, Xu-Yi and Yaoan), 2 at SHAO (Zô Cè and Tian Huang Ping) and 2 at YNAO (Kunming and Gao-Mei-Gu) as well as 1 optical observing site at BAO (Xing-Long). The best observing site is Gao-Mei-Gu, which is selected as the optical observing site of YNAO and where atmospheric turbulence distribution is 0.11 near ground with heights from 6.5m to 2.7m during night. Sky brightness in B and V band

  20. BOOK REVIEW: The Wandering Astronomer

    Science.gov (United States)

    Swinbank, Elizabeth

    2000-09-01

    Fans of Patrick Moore will like this book. I enjoyed it more than I expected, having anticipated a collection of personal anecdotes of the type favoured by certain tedious after-dinner speakers. Some of the 41 short items it contains do tend towards that category, but there are also some nuggets which might enliven your physics teaching. For example, did you know that, in a murder trial in 1787, the defendant's belief that the Sun was inhabited was cited as evidence of his insanity? This was despite his views being shared by many astronomers of the day including William Herschel. Or that Clyde Tombaugh had a cat called Pluto after the planet he discovered, which was itself named by an eleven-year-old girl? Another gem concerns a brief flurry, in the early 1990s, over a suspected planet orbiting a pulsar; variations in the arrival time of its radio pulses indicated the presence of an orbiting body. These shifts were later found to arise from an error in a computer program that corrected for the Earth's motion. The programmer had assumed a circular orbit for the Earth whereas it is actually elliptical. The book is clearly intended for amateur astronomers and followers of Patrick Moore's TV programmes. There is plenty of astronomy, with an emphasis on the solar system, but very little astrophysics. The author's metricophobia means that quantities are given in imperial units throughout, with metric equivalents added in brackets (by an editor, I suspect) which can get irritating, particularly as powers-of-ten notation is avoided. It is quite a novelty to see the temperature for hydrogen fusion quoted as 18 000 000 °F (10 000 000 °C). By way of contrast, astronomical terms are used freely - ecliptic, first-magnitude star, and so on. Such terms are defined in a glossary at the end, but attention is not drawn to this and I only stumbled across it by chance. Patrick Moore obviously knows his public, and this book will serve them well. For physics teachers and students

  1. Mining engineer requirements in a German coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Rauhut, F J

    1985-10-01

    Basic developments in German coal mines, new definitions of working areas of mining engineers, and groups of requirements in education are discussed. These groups include: requirements of hard-coal mining at great depth and in extended collieries; application of process technology and information systems in semi-automated mines; thinking in processes and systems; organizational changes; future requirements of mining engineers; responsibility of the mining engineer for employees and society.

  2. A Virtual Astronomical Research Machine in No Time (VARMiNT)

    Science.gov (United States)

    Beaver, John

    2012-05-01

    We present early results of using virtual machine software to help make astronomical research computing accessible to a wider range of individuals. Our Virtual Astronomical Research Machine in No Time (VARMiNT) is an Ubuntu Linux virtual machine with free, open-source software already installed and configured (and in many cases documented). The purpose of VARMiNT is to provide a ready-to-go astronomical research computing environment that can be freely shared between researchers, or between amateur and professional, teacher and student, etc., and to circumvent the often-difficult task of configuring a suitable computing environment from scratch. Thus we hope that VARMiNT will make it easier for individuals to engage in research computing even if they have no ready access to the facilities of a research institution. We describe our current version of VARMiNT and some of the ways it is being used at the University of Wisconsin - Fox Valley, a two-year teaching campus of the University of Wisconsin System, as a means to enhance student independent study research projects and to facilitate collaborations with researchers at other locations. We also outline some future plans and prospects.

  3. Harvey Butcher: a passion for astronomical instrumentation

    Science.gov (United States)

    Bhathal, Ragbir

    2014-11-01

    This paper covers some aspects of the scientific life of Harvey Butcher who was the Director of the Research School for Astronomy and Astrophysics at the Australian National University in Canberra from September 2007 to January 2013. He has made significant contributions to research on the evolution of galaxies, nucleosynthesis, and on the design and implementation of advanced astronomical instrumentation including LOFAR (Low Frequency Array Radio telescope). He is well known for his discovery of the Butcher-Oemler effect. Before coming to Australia he was the Director of the Netherlands Foundation for Research in Astronomy from September 1991 to January 2007. In 2005 he was awarded a Knighthood in the Order of the Netherlands Lion for contributions to interdisciplinary science, innovation and public outreach.This paper is based on an interview conducted by the author with Harvey Butcher for the National Project on Significant Australian Astronomers sponsored by the National Library of Australia. Except otherwise stated, all quotations used in this paper are from the Butcher interview which has been deposited in the Oral History Archives of the National Library.

  4. Test facility for astronomical x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Lewis, Robert A.; Bordas, J.

    1990-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has to appro......Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions; however, the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area while still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes, is described. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  5. Sketching the moon an astronomical artist's guide

    CERN Document Server

    Handy, Richard; McCague, Thomas; Rix, Erika; Russell, Sally

    2012-01-01

    Soon after you begin studying the sky through your small telescope or binoculars, you will probably be encouraged by others to make sketches of what you see. Sketching is a time-honored tradition in amateur astronomy and dates back to the earliest times, when telescopes were invented. Even though we have lots of new imaging technologies nowadays, including astrophotography, most observers still use sketching to keep a record of what they see, make them better observers, and in hopes of perhaps contributing something to the body of scientific knowledge about the Moon. Some even sketch because it satisfies their artistic side. The Moon presents some unique challenges to the astronomer-artist, the Moon being so fond of tricks of the light. Sketching the Moon: An Astronomical Artist’s Guide, by five of the best lunar observer-artists working today, will guide you along your way and help you to achieve really high-quality sketches. All the major types of lunar features are covered, with a variety of sketching te...

  6. SAADA: Astronomical Databases Made Easier

    Science.gov (United States)

    Michel, L.; Nguyen, H. N.; Motch, C.

    2005-12-01

    Many astronomers wish to share datasets with their community but have not enough manpower to develop databases having the functionalities required for high-level scientific applications. The SAADA project aims at automatizing the creation and deployment process of such databases. A generic but scientifically relevant data model has been designed which allows one to build databases by providing only a limited number of product mapping rules. Databases created by SAADA rely on a relational database supporting JDBC and covered by a Java layer including a lot of generated code. Such databases can simultaneously host spectra, images, source lists and plots. Data are grouped in user defined collections whose content can be seen as one unique set per data type even if their formats differ. Datasets can be correlated one with each other using qualified links. These links help, for example, to handle the nature of a cross-identification (e.g., a distance or a likelihood) or to describe their scientific content (e.g., by associating a spectrum to a catalog entry). The SAADA query engine is based on a language well suited to the data model which can handle constraints on linked data, in addition to classical astronomical queries. These constraints can be applied on the linked objects (number, class and attributes) and/or on the link qualifier values. Databases created by SAADA are accessed through a rich WEB interface or a Java API. We are currently developing an inter-operability module implanting VO protocols.

  7. Procesos para una Astronomía que le aporte a Colombia

    OpenAIRE

    Duque Escobar, Gonzalo

    2011-01-01

    Se ha validado el Plan Nacional de Desarrollo Tecnológico en Astronomía 2011-2030, para el Plan Estratégico 2009-2012 de la Comisión Colombiana del Espacio CCE, por el Grupo de Astronáutica, Astronomía y Medicina Aeroespacial. Esperamos que el grupo de astrónomos convocado, responsable de la investigación centrado en procesos científicos existentes y no en distractores, pueda señalar las acciones pertinentes e identificar los recursos necesarios, para hacer viable un desarrollo científico y t...

  8. NASA/IPAC Infrared Science Archive (IRSA) in the 2020s.

    Science.gov (United States)

    Desai, Vandana; Rebull, Luisa M.; IRSA Team

    2018-06-01

    I will discuss challenges faced by IRSA in the next decade due to changes in our user base: the dissolution of wavelength boundaries among astronomers, and the education of astronomers as data scientists. While the fraction of astronomers who use infrared data has increased drastically in the era of Spitzer, Herschel, and WISE, most people who do science with those data sets don’t use infrared data exclusively or identify as “Infrared astronomers”. Our archive, and others, need to be responsive to the needs of an increasingly multiwavelength community, and those exploring time domain astronomy. That means making the archives interlink seamlessly, while preserving expert knowledge so that data don’t get misused. As astronomical data sets grow in volume, users will increasingly expect server side resources, including both storage and analysis resources. These expectations come with a host of ramifications, from cost to security. Our archives must be built to satisfy the needs of both the power user and the beginning astronomer. I will discuss how IRSA plans to meet the evolving needs of our user community.

  9. Explaining formation of Astronomical Jets using Dynamic Universe Model

    Science.gov (United States)

    Naga Parameswara Gupta, Satyavarapu

    2016-07-01

    Astronomical jets are observed from the centres of many Galaxies including our own Milkyway. The formation of such jet is explained using SITA simulations of Dynamic Universe Model. For this purpose the path traced by a test neutron is calculated and depicted using a set up of one densemass of the mass equivalent to mass of Galaxy center, 90 stars with similar masses of stars near Galaxy center, mass equivalents of 23 Globular Cluster groups, 16 Milkyway parts, Andromeda and Triangulum Galaxies at appropriate distances. Five different kinds of theoretical simulations gave positive results The path travelled by this test neutron was found to be an astronomical jet emerging from Galaxy center. This is another result from Dynamic Universe Model. It solves new problems like a. Variable Mass Rocket Trajectory Problem b. Explaining Very long baseline interferometry (VLBI) observations c. Astronomical jets observed from Milkyway Center d. Prediction of Blue shifted Galaxies e. Explaining Pioneer Anomaly f. Prediction of New Horizons satellite trajectory etc. Dynamic Universe Model never reduces to General relativity on any condition. It uses a different type of mathematics based on Newtonian physics. This mathematics used here is simple and straightforward. As there are no differential equations present in Dynamic Universe Model, the set of equations give single solution in x y z Cartesian coordinates for every point mass for every time step

  10. La astronomía: ciencia olvidada en la escuela, ¿cómo recuperarla?

    OpenAIRE

    Aranzazu Zea, Daniel Alejandro

    2013-01-01

    Resumen: Esta propuesta tiene la intención de diseñar una cartilla para la enseñanza de la astronomía en la básica primaria, principalmente en el Colegio Santo Domingo de Guzmán, ubicado en el sector de Zamora, Bello. Se inicia la propuesta debido a que en el Colegio la astronomía no es un tema de mucha importancia en la enseñanza y es muy poca la transversalización con las diferentes áreas de la institución. La astronomía es vista como algo aparte de todas las asignaturas, sin saber la gran ...

  11. Mining Together : Large-Scale Mining Meets Artisanal Mining, A Guide for Action

    OpenAIRE

    World Bank

    2009-01-01

    The present guide mining together-when large-scale mining meets artisanal mining is an important step to better understanding the conflict dynamics and underlying issues between large-scale and small-scale mining. This guide for action not only points to some of the challenges that both parties need to deal with in order to build a more constructive relationship, but most importantly it sh...

  12. Radio Recombination Lines Their Physics and Astronomical Applications

    CERN Document Server

    Gordon, MA

    2008-01-01

    Includes the history of RRL detections, the astrophysics underlying their intensities and line shapes including topics like departures from LTE and Stark broadening, the maximum possible size of an atom, and descriptions of the astronomical topics for which RRLs have proved to be effective tools.

  13. Radio astronomical interferometry and x-ray's computerized tomography

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, L F [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia

    1982-01-01

    Radio astronomical interferometry and computerized tomography are techniques of great importance for astronomy and medicine, respectively. In this paper we emphasize that both techniques are based on the same mathematical principles, and present them as an example of interaction between basic and applied science.

  14. Metal-Containing Molecules Beyond the Solar System: a Laboratory and Radio Astronomical Perspective

    Science.gov (United States)

    Ziurys, L. M.

    2010-06-01

    Although the history of interstellar molecules began around 1970, with the millimeter-wave detection of CO in the Orion Nebula, metal-containing species have been somewhat elusive for astronomical searches. Only in the past two decades have metal-bearing molecules been identified in space, starting with metal halides (NaCl, KCl, AlCl, and AlF), and then metal cyanide and isocyanide species (MgNC, MgCN, NaCN, and AlNC). Moreover, the metal-containing molecules seemed to be present in a single astronomical object: the envelope of a dying, carbon-rich star, IRC+10216. However, with improvements both in laboratory spectroscopy and telescope sensitivity, it is becoming clear that the relevance of metal-containing species in astrophysics is increasing. Metal oxide and hydroxide species, such as AlO and AlOH, have recently been identified in interstellar space. Metal-containing molecules are now being found in other astronomical sources, such as the oxygen-rich shell surrounding VY Canis Majoris, a supergiant star. These new astronomical discoveries will be presented, as well as the laboratory measurements that made them possible. New directions in rotational spectroscopy of metal-bearing molecules will also be discussed.

  15. Improving the Determination of Eastern Elongations of Planetary Satellites in the Astronomical Almanac

    Science.gov (United States)

    Rura, Christopher; Stollberg, Mark

    2018-01-01

    The Astronomical Almanac is an annual publication of the US Naval Observatory (USNO) and contains a wide variety of astronomical data used by astronomers worldwide as a general reference or for planning observations. Included in this almanac are the times of greatest eastern and northern elongations of the natural satellites of the planets, accurate to 0.1 hour UT. The production code currently used to determine elongation times generates X and Y coordinates for each satellite (16 total) in 5 second intervals. This consequentially caused very large data files, and resulted in the program devoted to determining the elongation times to be computationally intensive. To make this program more efficient, we wrote a Python program to fit a cubic spline to data generated with a 6-minute time step. This resulted in elongation times that were found to agree with those determined from the 5 second data currently used in a large number of cases and was tested for 16 satellites between 2017 and 2019. The accuracy of this program is being tested for the years past 2019 and, if no problems are found, the code will be considered for production of this section of The Astronomical Almanac.

  16. Astronomers Gain Clues About Fundamental Physics

    Science.gov (United States)

    2005-12-01

    An international team of astronomers has looked at something very big -- a distant galaxy -- to study the behavior of things very small -- atoms and molecules -- to gain vital clues about the fundamental nature of our entire Universe. The team used the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) to test whether the laws of nature have changed over vast spans of cosmic time. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) "The fundamental constants of physics are expected to remain fixed across space and time; that's why they're called constants! Now, however, new theoretical models for the basic structure of matter indicate that they may change. We're testing these predictions." said Nissim Kanekar, an astronomer at the National Radio Astronomy Observatory (NRAO), in Socorro, New Mexico. So far, the scientists' measurements show no change in the constants. "We've put the most stringent limits yet on some changes in these constants, but that's not the end of the story," said Christopher Carilli, another NRAO astronomer. "This is the exciting frontier where astronomy meets particle physics," Carilli explained. The research can help answer fundamental questions about whether the basic components of matter are tiny particles or tiny vibrating strings, how many dimensions the Universe has, and the nature of "dark energy." The astronomers were looking for changes in two quantities: the ratio of the masses of the electron and the proton, and a number physicists call the fine structure constant, a combination of the electron charge, the speed of light and the Planck constant. These values, considered fundamental physical constants, once were "taken as time independent, with values given once and forever" said German particle physicist Christof Wetterich. However, Wetterich explained, "the viewpoint of modern particle theory has changed in recent years," with ideas such as

  17. Astronomical tunings of the Oligocene-Miocene transition from Pacific Ocean Site U1334 and implications for the carbon cycle

    NARCIS (Netherlands)

    Beddow, Helen M.; Liebrand, Diederik; Wilson, Douglas S.; Hilgen, Frits J.; Sluijs, Appy; Wade, Bridget S.; Lourens, Lucas J.

    2018-01-01

    Astronomical tuning of sediment sequences requires both unambiguous cycle pattern recognition in climate proxy records and astronomical solutions, as well as independent information about the phase relationship between these two. Here we present two different astronomically tuned age models for the

  18. NEW DEBRIS DISKS AROUND YOUNG, LOW-MASS STARS DISCOVERED WITH THE SPITZER SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Plavchan, Peter; Werner, M. W.; Stapelfeldt, K. R.; Chen, C. H.; Su, K. Y. L.; Stauffer, J. R.; Song, I.

    2009-01-01

    We present 24 μm and 70 μm Multiband Imaging Photometer for Spitzer (MIPS) observations of 70 A through M-type dwarfs with estimated ages from 8 Myr to 1.1 Gyr, as part of a Spitzer guaranteed time program, including a re-analysis of some previously published source photometry. Our sample is selected from stars with common youth indicators such as lithium abundance, X-ray activity, chromospheric activity, and rapid rotation. We compare our MIPS observations to empirically derived K s -[24] colors as a function of the stellar effective temperature to identify 24 μm and 70 μm excesses. We place constraints or upper limits on dust temperatures and fractional infrared luminosities with a simple blackbody dust model. We confirm the previously published 70 μm excesses for HD 92945, HD 112429, and AU Mic, and provide updated flux density measurements for these sources. We present the discovery of 70 μm excesses for five stars: HD 7590, HD 10008, HD 59967, HD 73350, and HD 135599. HD 135599 is also a known Spitzer IRS (InfraRed Spectrograph) excess source, and we confirm the excess at 24 μm. We also present the detection of 24 μm excesses for 10 stars: HD 10008, GJ 3400A, HD 73350, HD 112429, HD 123998, HD 175742, AT Mic, BO Mic, HD 358623 and Gl 907.1. We find that large 70 μm excesses are less common around stars with effective temperatures of less than 5000 K (3.7 +7.6 -1.1 %) than around stars with effective temperatures between 5000 K and 6000 K (21.4 +9.5 -5.7 %), despite the cooler stars having a younger median age in our sample (12 Myr vs. 340 Myr). We find that the previously reported excess for TWA 13A at 70 μm is due to a nearby background galaxy, and the previously reported excess for HD 177724 is due to saturation of the near-infrared photometry used to predict the mid-infrared stellar flux contribution. In the Appendix, we present an updated analysis of dust grain removal timescales due to grain-grain collisions and radiation pressure, Poynting

  19. Support for the Astronomically Calibrated 40Ar/39Ar Age of Fish Canyon Sanidine

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Storey, Michael; Zeeden, Christian

    2011-01-01

    al. (2008) determined an astronomically calibrated 40Ar/39Ar age of 28.201 0.046 Ma (2), relative to the indirect astronomically tuned Moroccan Melilla Basin Messâdit section. Here, we provide independent verification for the Kuiper, et al. (2008) FCs age using sanidines extracted from the A1 tephra...

  20. Alexander the Great's Tomb at Siwa: The Astronomical Orientation

    Science.gov (United States)

    Papathanassiou, M.; Souvaltzis, Em.; Souvaltzi, L.; Moussas, X.

    A preliminary report on the possible astronomical orientation of the Tomb of Alexander the Great, recently found and excavated by the greek archaeologist Liana Souvaltzi. The tomb is a greek building of doric style. Its enormous dimensions make it the largest amongst the found macedonian tombs (much bigger than the tomb of Philip II, Alexander's father). The tomb faces generally south---west and its orientation could be related either to the constellation of Centaurus or to the star Canopus. The walls of the two long sides of the building have strickingly different widhts. Moreover each wall has three doors (opposite in pairs) of slightly different sizes. We examine the possibility the openings of the doors and their assymetries to be designed and constructed according to some astronomical (solar or stellar) orientations.

  1. Viewing and imaging the solar system a guide for amateur astronomers

    CERN Document Server

    Clark, Jane

    2015-01-01

    Viewing and Imaging the Solar System: A Guide for Amateur Astronomers is for those who want to develop their ability to observe and image Solar System objects, including the planets and moons, the Sun, and comets and asteroids. They might be beginners, or they may have already owned and used an astronomical telescope for a year or more. Newcomers are almost always wowed by sights such as the rings of Saturn and the moons of Jupiter, but have little idea how to find these objects for themselves (with the obvious exceptions of the Sun and Moon). They also need guidance about what equipment to use, besides a telescope. This book is written by an expert on the Solar System, who has had a lot of experience with outreach programs, which teach others how to make the most of relatively simple and low-cost equipment. That does not mean that this book is not for serious amateurs. On the contrary, it is designed to show amateur astronomers, in a relatively light-hearted—and math-free way—how to become serious.

  2. Revisiting the Phase Curves of WASP-43b: Confronting Re-analyzed Spitzer Data with Cloudy Atmospheres

    Science.gov (United States)

    Mendonça, João M.; Malik, Matej; Demory, Brice-Olivier; Heng, Kevin

    2018-04-01

    Recently acquired Hubble and Spitzer phase curves of the short-period hot Jupiter WASP-43b make it an ideal target for confronting theory with data. On the observational front, we re-analyze the 3.6 and 4.5 μm Spitzer phase curves and demonstrate that our improved analysis better removes residual red noise due to intra-pixel sensitivity, which leads to greater fluxes emanating from the nightside of WASP-43b, thus reducing the tension between theory and data. On the theoretical front, we construct cloud-free and cloudy atmospheres of WASP-43b using our Global Circulation Model (GCM), THOR, which solves the non-hydrostatic Euler equations (compared to GCMs that typically solve the hydrostatic primitive equations). The cloud-free atmosphere produces a reasonable fit to the dayside emission spectrum. The multi-phase emission spectra constrain the cloud deck to be confined to the nightside and have a finite cloud-top pressure. The multi-wavelength phase curves are naturally consistent with our cloudy atmospheres, except for the 4.5 μm phase curve, which requires the presence of enhanced carbon dioxide in the atmosphere of WASP-43b. Multi-phase emission spectra at higher spectral resolution, as may be obtained using the James Webb Space Telescope, and a reflected-light phase curve at visible wavelengths would further constrain the properties of clouds in WASP-43b.

  3. A Mythological, Philosophical and Astronomical approach of our solar system

    Science.gov (United States)

    Drivas, Sotirios; Kastanidou, Sofia

    2016-04-01

    Teaching Geography in the first Class of Gymnasium - secondary education we will focus in Solar System: Astronomical approach: Students will look and find the astronomical data of the planets, they will make comparisons between the sizes of their radius, they will find the distance from the Sun, they will search the relative motion, they will calculate the gravity on each planet, etc. Mythological approach: We will search the names and meanings of the planets based on Greek mythological origin. Philosophical approach: Regarding the philosophical approach of the "solar system" we will look and find: • Why planets are called so? • How did planets get their names? • What are the periods of Greek astronomy? • What were the astronomical instruments of ancient Greeks and who did built them? • What were the Greek philosophers and astronomers? When did they live and what did they discover? • Which method did Eratosthenes of Cyrene apply about 206B.C. to serve a real measurement of the earth's radius? • What was the relationship between science and religion in ancient Greece? Literature approach: At the end of the program students will write their opinion in subject "Having a friend from another planet" based on the book of Antoine de Saint - Exupéry "The little prince". Law approach: A jurist working in Secondary Education will visits our school and engages students in the Space Law. Artistic approach: Students will create their own posters of our planetary system. The best posters will be posted on the school bulletin board to display their work. Visit: Students and teachers will visit the Observatory of Larissa where they will see how observatory works and talk with scientists about their job. They will look through telescopes and observe the sun.

  4. Astronomical Polarimetry with the RIT Polarization Imaging Camera

    Science.gov (United States)

    Vorobiev, Dmitry V.; Ninkov, Zoran; Brock, Neal

    2018-06-01

    In the last decade, imaging polarimeters based on micropolarizer arrays have been developed for use in terrestrial remote sensing and metrology applications. Micropolarizer-based sensors are dramatically smaller and more mechanically robust than other polarimeters with similar spectral response and snapshot capability. To determine the suitability of these new polarimeters for astronomical applications, we developed the RIT Polarization Imaging Camera to investigate the performance of these devices, with a special attention to the low signal-to-noise regime. We characterized the device performance in the lab, by determining the relative throughput, efficiency, and orientation of every pixel, as a function of wavelength. Using the resulting pixel response model, we developed demodulation procedures for aperture photometry and imaging polarimetry observing modes. We found that, using the current calibration, RITPIC is capable of detecting polarization signals as small as ∼0.3%. The relative ease of data collection, calibration, and analysis provided by these sensors suggest than they may become an important tool for a number of astronomical targets.

  5. Celestial delights the best astronomical events through 2020

    CERN Document Server

    Reddy, Francis

    2012-01-01

    Celestial Delights is the essential 'TV Guide' for the sky. Through extensive graphics integrated with an eight-year-long calendar of sky events, it provides a look at "don't miss" sky events, mostly for naked-eye and binocular observing. It is organized by ease of observation – lunar phases and the brighter planets come first, with solar eclipses, the aurora, and comets coming later. This third edition also includes a hefty dose of sky lore, astronomical history, and clear overviews of current science. It provides a handy reference to upcoming naked-eye events, with information broken out in clear and simple diagrams and tables that are cross-referenced against a detailed almanac for each year covered. This book puts a variety of information all in one place, presents it in a friendly way that does not require prior in-depth astronomical knowledge, and provides the context and historical background for understanding events that astronomy software or web sites lack.

  6. Visualization of Multi-mission Astronomical Data with ESASky

    Science.gov (United States)

    Baines, Deborah; Giordano, Fabrizio; Racero, Elena; Salgado, Jesús; López Martí, Belén; Merín, Bruno; Sarmiento, María-Henar; Gutiérrez, Raúl; Ortiz de Landaluce, Iñaki; León, Ignacio; de Teodoro, Pilar; González, Juan; Nieto, Sara; Segovia, Juan Carlos; Pollock, Andy; Rosa, Michael; Arviset, Christophe; Lennon, Daniel; O'Mullane, William; de Marchi, Guido

    2017-02-01

    ESASky is a science-driven discovery portal to explore the multi-wavelength sky and visualize and access multiple astronomical archive holdings. The tool is a web application that requires no prior knowledge of any of the missions involved and gives users world-wide simplified access to the highest-level science data products from multiple astronomical space-based astronomy missions plus a number of ESA source catalogs. The first public release of ESASky features interfaces for the visualization of the sky in multiple wavelengths, the visualization of query results summaries, and the visualization of observations and catalog sources for single and multiple targets. This paper describes these features within ESASky, developed to address use cases from the scientific community. The decisions regarding the visualization of large amounts of data and the technologies used were made to maximize the responsiveness of the application and to keep the tool as useful and intuitive as possible.

  7. The Spitzer survey of interstellar clouds in the Gould Belt. III. A multi-wavelength view of Corona Australis

    DEFF Research Database (Denmark)

    Peterson, Dawn E.; Caratti o Garatti, Alessio; Bourke, Tyler L.

    2011-01-01

    We present Spitzer Space Telescope IRAC and MIPS observations of a 0.85 deg2 field including the Corona Australis (CrA) star-forming region. At a distance of 130 pc, CrA is one of the closest regions known to be actively forming stars, particularly within its embedded association, the Coronet. Us...

  8. THE SPITZER SURVEY OF INTERSTELLAR CLOUDS IN THE GOULD BELT. III. A MULTI-WAVELENGTH VIEW OF CORONA AUSTRALIS

    International Nuclear Information System (INIS)

    Peterson, Dawn E.; Bourke, Tyler L.; Forbrich, Jan; Patten, Brian M.; Caratti o Garatti, Alessio; Gutermuth, Robert A.; Joergensen, Jes K.; Allen, Lori E.; Dunham, Michael M.; Harvey, Paul M.; Evans, Neal J.; MerIn, Bruno; Chapman, Nicholas L.; Cieza, Lucas A.; Huard, Tracy L.; Knez, Claudia; Prager, Brian

    2011-01-01

    We present Spitzer Space Telescope IRAC and MIPS observations of a 0.85 deg 2 field including the Corona Australis (CrA) star-forming region. At a distance of 130 pc, CrA is one of the closest regions known to be actively forming stars, particularly within its embedded association, the Coronet. Using the Spitzer data, we identify 51 young stellar objects (YSOs) in CrA which include sources in the well-studied Coronet cluster as well as sources distributed throughout the molecular cloud. Twelve of the YSOs discussed are new candidates, one of which is located in the Coronet. Known YSOs retrieved from the literature are also added to the list, and a total of 116 candidate YSOs in CrA are compiled. Based on these YSO candidates, the star formation rate is computed to be 12 M sun Myr -1 , similar to that of the Lupus clouds. A clustering analysis was also performed, finding that the main cluster core, consisting of 68 members, is elongated (having an aspect ratio of 2.36), with a circular radius of 0.59 pc and mean surface density of 150 pc -2 . In addition, we analyze outflows and jets in CrA by means of new CO and H 2 data. We present 1.3 mm interferometric continuum observations made with the Submillimeter Array (SMA) covering R CrA, IRS 5, IRS 7, and IRAS 18595-3712 (IRAS 32). We also present multi-epoch H 2 maps and detect jets and outflows, study their proper motions, and identify exciting sources. The Spitzer and ISAAC/VLT observations of IRAS 32 show a bipolar precessing jet, which drives a CO(2-1) outflow detected in the SMA observations. There is also clear evidence for a parsec-scale precessing outflow, which is east-west oriented and originates in the SMA 2 region and likely driven by SMA 2 or IRS 7A.

  9. Observations of Hot-Jupiter occultations combining Spitzer and Kepler photometry

    Directory of Open Access Journals (Sweden)

    Knutson H.

    2011-02-01

    Full Text Available We present the status of an ongoing program which aim at measuring occultations by their parent stars of transiting hot giant exoplanets discovered recently by Kepler. The observations are obtained in the near infrared with WarmSpitzer Space Telescope and at optical wavelengths by combining more than a year of Kepler photometry. The investigation consists of measuring the mid-occultation times and the relative occultation depths in each band-passes. Our measurements of occultations depths in the Kepler bandpass is turned into the determination of the optical geometric albedo Ag in this wavelength domain. The brightness temperatures of these planets are deduced from the infrared observations. We combine the optical and near infrared planetary emergent fluxes to obtain broad band emergent spectra of individual planet. We finally compare these spectra to hot Jupiter atmospheric models in order broadly distinguishing these atmospheres between different classes of models.

  10. Tribute to an Astronomer: The Work of Max Ernst on Wilhelm Tempel

    Science.gov (United States)

    Nazé, Yaël

    2016-05-01

    In 1964-1974, the German artist Max Ernst created, with the help of two friends, a series of works (books, movie, and paintings) related to the astronomer Wilhelm Tempel. Mixing actual texts by Tempel and artistic features, this series pays homage to the astronomer by recalling his life and discoveries. Moreover, the core of the project, the book Maximiliana or the Illegal Practice of Astronomy, actually depicts the way science works, making this work of art a most original tribute to a scientist.

  11. Using Modern Technologies to Capture and Share Indigenous Astronomical Knowledge

    Science.gov (United States)

    Nakata, Martin; Hamacher, Duane W.; Warren, John; Byrne, Alex; Pagnucco, Maurice; Harley, Ross; Venugopal, Srikumar; Thorpe, Kirsten; Neville, Richard; Bolt, Reuben

    2014-06-01

    Indigenous Knowledge is important for Indigenous communities across the globe and for the advancement of our general scientific knowledge. In particular, Indigenous astronomical knowledge integrates many aspects of Indigenous Knowledge, including seasonal calendars, navigation, food economics, law, ceremony, and social structure. Capturing, managing, and disseminating this knowledge in the digital environment poses a number of challenges, which we aim to address using a collaborative project emerging between experts in the higher education, library, archive and industry sectors. Using Microsoft's WorldWide Telescope and Rich Interactive Narratives technologies, we propose to develop software, media design, and archival management solutions to allow Indigenous communities to share their astronomical knowledge with the world on their terms and in a culturally sensitive manner.

  12. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    Science.gov (United States)

    Chang, Qingliang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737

  13. Available Tools and Challenges Classifying Cutting-Edge and Historical Astronomical Documents

    Science.gov (United States)

    Lagerstrom, Jill

    2015-08-01

    The STScI Library assists the Science Policies Division in evaluating and choosing scientific keywords and categories for proposals for the Hubble Space Telescope mission and the upcoming James Webb Space Telescope mission. In addition we are often faced with the question “what is the shape of the astronomical literature?” However, subject classification in astronomy in recent times has not been cultivated. This talk will address the available tools and challenges of classifying cutting-edge as well as historical astronomical documents. In at the process, we will give an overview of current and upcoming practices of subject classification in astronomy.

  14. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. I. CONTINUUM ANALYSIS OF UNRESOLVED TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Mittal, Tushar [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720-4767 (United States); Kuchner, Marc [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Forrest, William J.; Watson, Dan M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Lisse, Carey M. [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Manoj, P. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Sargent, Benjamin A., E-mail: cchen@stsci.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2014-04-01

    During the Spitzer Space Telescope cryogenic mission, Guaranteed Time Observers, Legacy Teams, and General Observers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates. We calibrated the spectra of 571 candidates, including 64 new IRAS and Multiband Imaging Photometer for Spitzer (MIPS) debris disks candidates, modeled their stellar photospheres, and produced a catalog of excess spectra for unresolved debris disks. For 499 targets with IRS excess but without strong spectral features (and a subset of 420 targets with additional MIPS 70 μm observations), we modeled the IRS (and MIPS data) assuming that the dust thermal emission was well-described using either a one- or two-temperature blackbody model. We calculated the probability for each model and computed the average probability to select among models. We found that the spectral energy distributions for the majority of objects (∼66%) were better described using a two-temperature model with warm (T {sub gr} ∼ 100-500 K) and cold (T {sub gr} ∼ 50-150 K) dust populations analogous to zodiacal and Kuiper Belt dust, suggesting that planetary systems are common in debris disks and zodiacal dust is common around host stars with ages up to ∼1 Gyr. We found that younger stars generally have disks with larger fractional infrared luminosities and higher grain temperatures and that higher-mass stars have disks with higher grain temperatures. We show that the increasing distance of dust around debris disks is inconsistent with self-stirred disk models, expected if these systems possess planets at 30-150 AU. Finally, we illustrate how observations of debris disks may be used to constrain the radial dependence of material in the minimum mass solar nebula.

  15. AstroWeb -- Internet Resources for Astronomers

    Science.gov (United States)

    Jackson, R. E.; Adorf, H.-M.; Egret, D.; Heck, A.; Koekemoer, A.; Murtagh, F.; Wells, D. C.

    AstroWeb is a World Wide Web (WWW) interface to a collection of Internet accessible resources aimed at the astronomical community. The collection currently contains more than 1000 WWW, Gopher, Wide Area Information System (WAIS), Telnet, and Anonymous FTP resources, and it is still growing. AstroWeb provides the additional value-added services: categorization of each resource; descriptive paragraphs for some resources; searchable index of all resource information; 3 times daily search for ``dead'' or ``unreliable'' resources.

  16. Astronomical Image Compression Techniques Based on ACC and KLT Coder

    Directory of Open Access Journals (Sweden)

    J. Schindler

    2011-01-01

    Full Text Available This paper deals with a compression of image data in applications in astronomy. Astronomical images have typical specific properties — high grayscale bit depth, size, noise occurrence and special processing algorithms. They belong to the class of scientific images. Their processing and compression is quite different from the classical approach of multimedia image processing. The database of images from BOOTES (Burst Observer and Optical Transient Exploring System has been chosen as a source of the testing signal. BOOTES is a Czech-Spanish robotic telescope for observing AGN (active galactic nuclei and the optical transient of GRB (gamma ray bursts searching. This paper discusses an approach based on an analysis of statistical properties of image data. A comparison of two irrelevancy reduction methods is presented from a scientific (astrometric and photometric point of view. The first method is based on a statistical approach, using the Karhunen-Loeve transform (KLT with uniform quantization in the spectral domain. The second technique is derived from wavelet decomposition with adaptive selection of used prediction coefficients. Finally, the comparison of three redundancy reduction methods is discussed. Multimedia format JPEG2000 and HCOMPRESS, designed especially for astronomical images, are compared with the new Astronomical Context Coder (ACC coder based on adaptive median regression.

  17. Extracting meaning from astronomical telegrams

    Science.gov (United States)

    Graham, Matthew; Conwill, L.; Djorgovski, S. G.; Mahabal, A.; Donalek, C.; Drake, A.

    2011-01-01

    The rapidly emerging field of time domain astronomy is one of the most exciting and vibrant new research frontiers, ranging in scientific scope from studies of the Solar System to extreme relativistic astrophysics and cosmology. It is being enabled by a new generation of large synoptic digital sky surveys - LSST, PanStarrs, CRTS - that cover large areas of sky repeatedly, looking for transient objects and phenomena. One of the biggest challenges facing these is the automated classification of transient events, a process that needs machine-processible astronomical knowledge. Semantic technologies enable the formal representation of concepts and relations within a particular domain. ATELs (http://www.astronomerstelegram.org) are a commonly-used means for reporting and commenting upon new astronomical observations of transient sources (supernovae, stellar outbursts, blazar flares, etc). However, they are loose and unstructured and employ scientific natural language for description: this makes automated processing of them - a necessity within the next decade with petascale data rates - a challenge. Nevertheless they represent a potentially rich corpus of information that could lead to new and valuable insights into transient phenomena. This project lies in the cutting-edge field of astrosemantics, a branch of astroinformatics, which applies semantic technologies to astronomy. The ATELs have been used to develop an appropriate concept scheme - a representation of the information they contain - for transient astronomy using aspects of natural language processing. We demonstrate that it is possible to infer the subject of an ATEL from the vocabulary used and to identify previously unassociated reports.

  18. Strasbourg Astronomical Data Center (CDS

    Directory of Open Access Journals (Sweden)

    F Genova

    2013-01-01

    Full Text Available The Centre de Donnees astronomiques de Strasbourg (CDS, created in 1972, has been a pioneer in the dissemination of digital scientific data. Ensuring sustainability for several decades has been a major issue because science and technology evolve continuously and the data flow increases endlessly. The paper briefly describes CDS activities, major services, and its R&D strategy to take advantage of new technologies. The next frontiers for CDS are the new Web 2.0/3.0 paradigm and, at a more general level, global interoperability of astronomical on-line resources in the Virtual Observatory framework.

  19. Proceedings of the VI Serbian-Bulgarian Astronomical Conference, May 7 - 11 2008, Belgrade, Serbia

    Science.gov (United States)

    Dimitrijević, M. S.; Tsvetkov, M.; Popović, L. C.; Golev, V.

    2009-07-01

    The Sixth Serbian-Bulgarian Astronomical Conference was organized by Belgrade Astronomical Observatory, and held in Belgrade, in the building of Mathematical Faculty in Jagiceva Street, from 75th to 11th May 2008. Co-organizers were Mathematical Faculty, Astronomical Society "Rudjer Boskovic", Institute of Astronomy of the Bulgarian Academy of Sciences (BAS), Space Research Institute of BAS and Department of Astronomy of the University of Sofia. Co-chairmen of the Scientific Organizing Committee were Milan Dimitrijevic and Milcho Tsvetkov and Co-vice chairmen Luka C. Popovic and Valeri Golev. Chair of the Local Organizing Committee was Andjelka Kovacevic. The conference [was] attended by 58 participants. From Serbia were 36, from Belgrade Astronomical Observatory, Mathematical Faculty, Faculty of Sciences from Nis, Institute of Physics from Zemum, High School for pedagogues of occupational studies from Aleksinac, Faculty of Sciences from Kragujevac, Mathematical Institute of Serbian Academy of Sciences and Arts, Astronomical Society "Rudjer Boskovic" and Astronomical Society "Magellanic Cloud." From Bulgaria were present 17 colleagues: Svetlana Boeva, Ana Borisova, Momchil Dechev, Peter Duchlev, Lostadinka Koleva, Georgi Petrov, Vasil Popov, Konstatin Stavrev, Katya Ysvetkova and Milcho Tsvetkov from Institute of Astronomy of BAS, Rumen Bogdanovski and Krasmimira Ianova from Space Research Institute of BAS, Georgi R. Ivanov, Georgi Petrov and Grigor Nikolov from Department of Astronomy, Sofia University "St Kliment Ohridski,", Yavor Chapanov from Central Laboratory for Geodesy of BAS and Petya Pavlova from Technical University of Sofia, Branch Plovdiv. Besides participants from Serbia and Bulgaria the Conference [was] attended [by] Vlado Milicevic from Canada, Jan Vondrak from Czech Republic, Aytap Sezer from Turkey and Tetyana Sergeeva and Alexandr Sergeev from Ukraine. On the Conference were presented 13 invited lectures, 22 short talks and 35 posters, in total

  20. Astronomical Alignments in a Neolithic Chinese Site?

    Science.gov (United States)

    Nelson, S.; Stencel, R. E.

    1997-12-01

    In the Manchurian province of Liaoning, near 41N19' and 119E30', exist ruins of a middle Neolithic society (2500 to 4000 BC) known as the Hongshan culture. This location, called Niuheliang, is comprised of 16 locations with monumental structures scattered over 80 square kilometers of hills. Most are stone burial structures that contain jade artifacts implying wealth and power. One structure is unique in being unusually shaped and containing oversized effigies of goddess figures. This structure also has a commanding view of the surrounding landscape. The presence of decorated pottery, jade and worked copper suggests the Hongshan people were sophisticated artisans and engaged in long-distance trading. During 1997, we've conducted a course at Denver as part of our Core Curriculum program for upper division students, that has examined the astronomical and cultural aspects of the Niuheliang site, to attempt to determine whether these contemporaries of the builders of Stonehenge may have included astronomical alignments into their constructions. The preliminary result of our studies suggests that certain monuments have potential for lunar standstill observation from the "goddess temple". For updates on these results, please see our website: www.du.edu/ rstencel/core2103.html.

  1. Integrating the IA2 Astronomical Archive in the VO: The VO-Dance Engine

    Science.gov (United States)

    Molinaro, M.; Laurino, O.; Smareglia, R.

    2012-09-01

    Virtual Observatory (VO) protocols and standards are getting mature and the astronomical community asks for astrophysical data to be easily reachable. This means data centers have to intensify their efforts to provide the data they manage not only through proprietary portals and services but also through interoperable resources developed on the basis of the IVOA (International Virtual Observatory Alliance) recommendations. Here we present the work and ideas developed at the IA2 (Italian Astronomical Archive) data center hosted by the INAF-OATs (Italian Institute for Astrophysics - Trieste Astronomical Observatory) to reach this goal. The core point is the development of an application that from existing DB and archive structures can translate their content to VO compliant resources: VO-Dance (written in Java). This application, in turn, relies on a database (potentially DBMS independent) to store the translation layer information of each resource and auxiliary content (UCDs, field names, authorizations, policies, etc.). The last token is an administrative interface (currently developed using the Django python framework) to allow the data center administrators to set up and maintain resources. This deployment, platform independent, with database and administrative interface highly customizable, means the package, when stable and easily distributable, can be also used by single astronomers or groups to set up their own resources from their public datasets.

  2. The Material Culture of Nineteenth-Century Astrometry, its Circulation and Heritage at the Astronomical Observatory of Lisbon

    Science.gov (United States)

    Raposo, Pedro

    The Astronomical Observatory of Lisbon was founded in 1857 in the sequence of a controversy on stellar parallax measurements involving astronomers from the Observatory of Paris and the Observatory of Pulkovo. The development of this discussion led the contenders to recognize Lisbon as a suitable place to carry out this kind of measurements and to foster the field of stellar astronomy. Some local actors strived to keep up with this wave of international interest and establish a first-rank astronomical institution in the Portuguese capital. In order to fulfil this goal, correspondence was intensively exchanged with leading foreign astronomers and instrument makers. Besides, a Portuguese Navy officer bound to become the first director of the new institution was commissioned to visit several observatories and instrument workshops abroad, and to spend a few years in Pulkovo as a trainee astronomer. Although founded with generous financial support from the Portuguese crown and lavishly equipped and constructed, the Observatory of Lisbon was later affected by limiting budgets and a shortage of qualified personnel. Nevertheless, local efforts to improve instruments as well as observation and calculation techniques enabled its astronomers to yield important contributions to positional astronomy, especially towards the end of the nineteenth century and the beginnings of the twentieth century. The original instruments and spaces of the Observatory of Lisbon, strongly modelled on those of Pulkovo, are very well preserved, constituting an outstanding extant example of a mid-nineteenth century advanced observatory. The history they embody testifies the connectedness of the astronomical heritage worldwide.

  3. Training Young Astronomers in EPO: An Update on the AAS Astronomy Ambassadors Program

    Science.gov (United States)

    Fraknoi, A.; Fienberg, R. T.; Gurton, S.; Schmitt, A. H.; Schatz, D.; Prather, E. E.

    2014-07-01

    The American Astronomical Society, with organizations active in EPO, has launched professional-development workshops and a community of practice to help improve early-career astronomers' ability to communicate effectively. Called “Astronomy Ambassadors,” the program provides mentoring and training for participants, from advanced undergraduates to beginning faculty. By learning to implement effective EPO strategies, Ambassadors become better teachers, meeting presenters, and representatives of our science to the public and government. Because young astronomers are a more diverse group than those who now do most outreach, they help the astronomy community present a more multicultural and gender-balanced face to the public, enabling underserved groups to see themselves as scientists. Ambassadors are given a library of outreach activities and materials, including many developed by cooperating organizations such as the ASP, plus some that have been created by Andrew Fraknoi specifically for this program.

  4. 30 CFR 819.21 - Auger mining: Protection of underground mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: Protection of underground mining. 819.21 Section 819.21 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... STANDARDS-AUGER MINING § 819.21 Auger mining: Protection of underground mining. Auger holes shall not extend...

  5. A Comparison of BLISS and PLD on Low-SNR WASP-29b Spitzer Observations

    Science.gov (United States)

    Challener, Ryan; Harrington, Joseph; Cubillos, Patricio E.; Blecic, Jasmina; Deming, Drake; Hellier, Coel

    2018-01-01

    We present an analysis of Spitzer secondary eclipse observations of exoplanet WASP-29b. WASP-29b is a Saturn-sized, short-period exoplanet with mass 0.24 ± 0.02 Jupiter masses and radius 0.84 ± 0.06 Jupiter radii (Hellier et al., 2010). We measure eclipse depths and midpoints using our Photometry for Orbits, Eclipses, and Transits (POET) code, which does photometry and light-curve modeling with a BiLinearly Interpolated Subpixel Sensitivity (BLISS) map, and our Zen Eliminates Noise (ZEN) code, which takes POET photometry and applies Pixel-Level Decorrelation (PLD). BLISS creates a physical map of pixel gain variations, and is thereby independent of any astrophysical effects. PLD takes a mathematical approach, using relative variations in pixel values near the target to eliminate position-correlated noise. The results are consistent between the methods, except in one outlier observation where neither model could effectively remove correlated noise in the light curve. Using the eclipse timings, along with previous transit observations and radial velocity data, we further refine the orbit of WASP-29b, and, when excluding the outlier, determine an eccentricity between 0.037 and 0.056. We performed atmospheric retrieval with our Bayesian Atmospheric Radiative Transfer (BART) code but find that, when the outlier is discarded, the planet is consistent with a blackbody, and molecular abundances cannot be constrained. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  6. Astronomers Get New Tools for Gravitational-Wave Detection

    Science.gov (United States)

    2010-01-01

    Teamwork between gamma-ray and radio astronomers has produced a breakthrough in finding natural cosmic tools needed to make the first direct detections of the long-elusive gravitational waves predicted by Albert Einstein nearly a century ago. An orbiting gamma-ray telescope has pointed radio astronomers to specific locations in the sky where they can discover new millisecond pulsars. Millisecond pulsars, rapidly-spinning superdense neutron stars, can serve as extremely precise and stable natural clocks. Astronomers hope to detect gravitational waves by measuring tiny changes in the pulsars' rotation caused by the passage of the gravitational waves. To do this, they need a multitude of millisecond pulsars dispersed widely throughout the sky. However, nearly three decades after the discovery of the first millisecond pulsar, only about 150 of them had been found, some 90 of those clumped tightly in globular star clusters and thus unusable for detecting gravitational waves. The problem was that millisecond pulsars could only be discovered through arduous, computing-intensive searches of small portions of sky. "We've probably found far less than one percent of the millisecond pulsars in the Milky Way Galaxy," said Scott Ransom of the National Radio Astronomy Observatory (NRAO). The breakthrough came when an instrument aboard NASA's Fermi Gamma-Ray Space Telescope began surveying the sky in 2008. This instrument located hundreds of gamma-ray-emitting objects throughout our Galaxy, and astronomers suspected many of these could be millisecond pulsars. Paul Ray of the Naval Research Laboratory initiated an international collaboration to use radio telescopes to confirm the identity of these objects as millisecond pulsars. "The data from Fermi were like a buried-treasure map," Ransom said. "Using our radio telescopes to study the objects located by Fermi, we found 17 millisecond pulsars in three months. Large-scale searches had taken 10-15 years to find that many," Ransom

  7. Contract Mining versus Owner Mining – The Way Forward | Suglo ...

    African Journals Online (AJOL)

    Ghana Mining Journal ... By contracting out one or more of their mining operations, the mining companies can concentrate on their core businesses. This paper reviews ... The general trends in the mining industry show that contract mining will be the way forward for most mines under various circumstances in the future.

  8. Astronomical virtual observatory and the place and role of Bulgarian one

    Science.gov (United States)

    Petrov, Georgi; Dechev, Momchil; Slavcheva-Mihova, Luba; Duchlev, Peter; Mihov, Bojko; Kochev, Valentin; Bachev, Rumen

    2009-07-01

    Virtual observatory could be defined as a collection of integrated astronomical data archives and software tools that utilize computer networks to create an environment in which research can be conducted. Several countries have initiated national virtual observatory programs that combine existing databases from ground-based and orbiting observatories, scientific facility especially equipped to detect and record naturally occurring scientific phenomena. As a result, data from all the world's major observatories will be available to all users and to the public. This is significant not only because of the immense volume of astronomical data but also because the data on stars and galaxies has been compiled from observations in a variety of wavelengths-optical, radio, infrared, gamma ray, X-ray and more. In a virtual observatory environment, all of this data is integrated so that it can be synthesized and used in a given study. During the autumn of the 2001 (26.09.2001) six organizations from Europe put the establishment of the Astronomical Virtual Observatory (AVO)-ESO, ESA, Astrogrid, CDS, CNRS, Jodrell Bank (Dolensky et al., 2003). Its aims have been outlined as follows: - To provide comparative analysis of large sets of multiwavelength data; - To reuse data collected by a single source; - To provide uniform access to data; - To make data available to less-advantaged communities; - To be an educational tool. The Virtual observatory includes: - Tools that make it easy to locate and retrieve data from catalogues, archives, and databases worldwide; - Tools for data analysis, simulation, and visualization; - Tools to compare observations with results obtained from models, simulations and theory; - Interoperability: services that can be used regardless of the clients computing platform, operating system and software capabilities; - Access to data in near real-time, archived data and historical data; - Additional information - documentation, user-guides, reports

  9. Astronomical Research with the MicroObservatory Net

    Science.gov (United States)

    Brecher, K.; Sadler, P.; Gould, R.; Leiker, S.; Antonucci, P.; Deutsch, F.

    1997-05-01

    We have developed a fully integrated automated astronomical telescope system which combines the imaging power of a cooled CCD, with a self-contained and weatherized 15 cm reflecting optical telescope and mount. The MicroObservatory Net consists of five of these telescopes. They are currently being deployed around the world at widely distributed longitudes. Remote access to the MicroObservatories over the Internet has now been implemented. Software for computer control, pointing, focusing, filter selection as well as pattern recognition have all been developed as part of the project. The telescopes can be controlled in real time or in delay mode, from a Macintosh, PC or other computer using Web-based software. The Internet address of the telescopes is http://cfa- www.harvard.edu/cfa/sed/MicroObservatory/MicroObservatory.html. In the real-time mode, individuals have access to all of the telescope control functions without the need for an `on-site' operator. Users can sign up for a specific period of ti me. In the batch mode, users can submit requests for delayed telescope observations. After a MicroObservatory completes a job, the user is automatically notified by e-mail that the image is available for viewing and downloading from the Web site. The telescopes were designed for classroom instruction, as well as for use by students and amateur astronomers for original scientific research projects. We are currently examining a variety of technical and educational questions about the use of the telescopes including: (1) What are the best approaches to scheduling real-time versus batch mode observations? (2) What criteria should be used for allocating telescope time? (3) With deployment of more than one telescope, is it advantageous for each telescope to be used for just one type of observation, i.e., some for photometric use, others for imaging? And (4) What are the most valuable applications of the MicroObservatories in astronomical research? Support for the Micro

  10. SPITZER OBSERVATIONS OF YOUNG RED QUASARS

    International Nuclear Information System (INIS)

    Urrutia, Tanya; Lacy, Mark; Spoon, Henrik; Glikman, Eilat; Petric, Andreea; Schulz, Bernhard

    2012-01-01

    We present mid-infrared spectra and photometry of 13 redshift 0.4 < z < 1 dust reddened quasars obtained with Spitzer IRS and MIPS. We compare properties derived from their infrared spectral energy distributions (intrinsic active galactic nucleus (AGN) luminosity and far-infrared luminosity from star formation) to the host luminosities and morphologies from Hubble Space Telescope imaging, and black hole masses estimated from optical and/or near-infrared spectroscopy. Our results are broadly consistent with models in which most dust reddened quasars are an intermediate phase between a merger-driven starburst triggering a completely obscured AGN, and a normal, unreddened quasar. We find that many of our objects have high accretion rates, close to the Eddington limit. These objects tend to fall below the black hole mass-bulge luminosity relation as defined by local galaxies, whereas most of our low accretion rate objects are slightly above the local relation, as typical for normal quasars at these redshifts. Our observations are therefore most readily interpreted in a scenario in which galaxy stellar mass growth occurs first by about a factor of three in each merger/starburst event, followed sometime later by black hole growth by a similar amount. We do not, however, see any direct evidence for quasar feedback affecting star formation in our objects, for example, in the form of a relationship between accretion rate and star formation. Five of our objects, however, do show evidence for outflows in the [O III]5007 Å emission line profile, suggesting that the quasar activity is driving thermal winds in at least some members of our sample.

  11. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kryukova, E.; Megeath, S. T.; Allen, T. S. [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Pipher, J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Allen, L. E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Myers, P. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Muzerolle, J. [Space Telescope Science Institute, Baltimore, MD (United States)

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity

  12. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Kryukova, E.; Megeath, S. T.; Allen, T. S.; Gutermuth, R. A.; Pipher, J.; Allen, L. E.; Myers, P. C.; Muzerolle, J.

    2012-01-01

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 μm spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 μm), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L ☉ and show a tail extending toward luminosities above 100 L ☉ . The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L ☉ . Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those

  13. The Astronomical Instrument, So-Gahui Invented During King Sejong Period

    Science.gov (United States)

    Lee, Yong-Sam Lee; Kim, Sang-Hyuk

    2002-09-01

    So-ganui, namely small simplified armillary sphere, was invented as an astronomical instrument by Lee Cheon, Jeong Cho, Jung In-Ji under 16 years' rule of King Sejong. We collect records and observed data on So-ganui. It is designed to measure position of celestial sphere and to determine time. It also can be transformed equatorial to horizontal, and horizontal to equatorial coordinate. It can measure the right ascension, declination, altitude and azimuth. It is composed of Sayu-hwan (Four displacements), Jeokdo-hwan (Equatorial dial), Baekgak-hwan (Ring with one hundred-interval quarters), Gyuhyeong (Sighting aliadade), Yongju (Dragon-pillar) and Bu (Stand). So-ganui was used conveniently portable surveying as well as astronomical instrument and possible to determine time during day and night.

  14. Selection of mining method for No.3 uranium ore body in the independent mining area at a uranium mine

    International Nuclear Information System (INIS)

    Ding Fulong; Ding Dexin; Ye Yongjun

    2010-01-01

    Mining operation in the existed mining area at a uranium mine is near completion and it is necessary to mine the No.3 uranium ore body in another mining area at the mine. This paper, based on the geological conditions, used analogical method for analyzing the feasible methods and the low cost and high efficiency mining method was suggested for the No.3 ore body in the independent mining area at the uranium mine. (authors)

  15. Stereoscopy in Astronomical Visualizations to Support Learning at Informal Education Settings

    Science.gov (United States)

    Price, Aaron; Lee, Hee-Sun

    2015-08-01

    Stereoscopy has been used in science education for 100 years. Recent innovations in low cost technology as well as trends in the entertainment industry have made stereoscopy popular among educators and audiences alike. However, experimental studies addressing whether stereoscopy actually impacts science learning are limited. Over the last decade, we have conducted a series of quasi-experimental and experimental studies on how children and adult visitors in science museums and planetariums learned about the structure and function of highly spatial scientific objects such as galaxies, supernova, etc. We present a synthesis of the results from these studies and implications for stereoscopic visualization development. The overall finding is that the impact of stereoscopy on perceptions of scientific objects is limited when presented as static imagery. However, when presented as full motion films, a significantly positive impact was detected. To conclude, we present a set of stereoscopic design principles that can help design astronomical stereoscopic films that support deep and effective learning. Our studies cover astronomical content such as the engineering of and imagery from the Mars rovers, artistic stereoscopic imagery of nebulae and a high-resolution stereoscopic film about how astronomers measure and model the structure of our galaxy.

  16. ULTRAVIOLET+INFRARED STAR FORMATION RATES: HICKSON COMPACT GROUPS WITH SWIFT AND SPITZER

    International Nuclear Information System (INIS)

    Tzanavaris, P.; Hornschemeier, A. E.; Immler, S.; Gallagher, S. C.; Johnson, K. E.; Reines, A. E.; Gronwall, C.; Hoversten, E.; Charlton, J. C.

    2010-01-01

    We present Swift UVOT ultraviolet (UV; 1600-3000 A) data with complete three-band UV photometry for a sample of 41 galaxies in 11 nearby ( -1 ) Hickson Compact Groups (HCGs) of galaxies. We use UVOT uvw2-band (2000 A) photometry to estimate the dust-unobscured component, SFR UV , of the total star formation rate, SFR TOTAL . We use Spitzer MIPS 24 μm photometry to estimate SFR IR , the component of SFR TOTAL that suffers dust extinction in the UV and is re-emitted in the IR. By combining the two components, we obtain SFR TOTAL estimates for all HCG galaxies. We obtain total stellar mass, M * , estimates by means of Two Micron All Sky Survey K s -band luminosities, and use them to calculate specific star formation rates, SSFR ≡ SFR TOTAL /M * . SSFR values show a clear and significant bimodality, with a gap between low (∼ -11 yr -1 ) and high-SSFR (∼>1.2 x 10 -10 yr -1 ) systems. We compare this bimodality to the previously discovered bimodality in α IRAC , the MIR activity index from a power-law fit to the Spitzer IRAC 4.5-8 μm data for these galaxies. We find that all galaxies with α IRAC ≤ 0 ( >0) are in the high- (low-) SSFR locus, as expected if high levels of star-forming activity power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. Consistent with this finding, all elliptical/S0 galaxies are in the low-SSFR locus, while 22 out of 24 spirals/irregulars are in the high-SSFR locus, with two borderline cases. We further divide our sample into three subsamples (I, II, and III) according to decreasing H I richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and α IRAC bimodality, 12 out of 15 type I (11 out of 12 type III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. We use the Spitzer Infrared Nearby Galaxy Survey (SINGS) to construct a comparison subsample of galaxies that (1) match HCG galaxies in J-band total

  17. Leslie Peltier, Amateur Astronomer and Observer Extraordinaire

    Science.gov (United States)

    Corbin, B. G.

    2003-12-01

    Leslie Copus Peltier, (Jan. 2, 1900-May 10, 1980) was called "the world's greatest non-professional astronomer" by none other than Harlow Shapley, and also referred to as the "the world's greatest living amateur astronomer". He began observing variable stars on March 1, 1918 with an observation of R. Leonis and at the time of his death had made a total of 132,123 observations of variable stars. These were reported to the AAVSO on a consecutive monthly basis stretching from 1918 to his death in 1980. As of October 2003, he was still on AAVSO's list of the top 25 observers in its history. Born on a farm near Delphos, Ohio, his parents were well read and their home was filled with books on different subjects, including nature guides. As a young man he studied the flora and fauna of the area and in 1915 began his study of the heavens with Vega being the first star he identified. After the purchase of a 2-inch spyglass, his observations of variable stars began to be noticed by professional astronomers and the AAVSO loaned him a 4-inch Mogey refractor; shortly thereafter Henry Norris Russell of Princeton loaned him via the AAVSO a 6-inch refractor, a comet seeker of short focus. He discovered 12 comets, 10 of which carry his name, and 6 novae or recurring novae. His design of the "Merry-Go-Round Observatory" was a novel approach with the whole observatory revolving around the observer while seated in his observing chair. Miami University (Ohio) later donated to him their 12-inch Clark refractor with its dome. His first book, Starlight Nights: The Adventures of a Star-Gazer, appeared in 1965. This autobiography, an ode to the joys of observing both the night sky and nature, was written in beautifully descriptive language that helped lead countless readers into astronomy. Departing from astronomy, in 1977 he published The Place on Jennings Creek. Written in the style of the 19th century naturalist, the book was devoted to his family's home, Brookhaven, and its natural

  18. Massive Young Stellar Objects in the Galactic Center. 1; Spectroscopic Identification from Spitzer/IRS Observations

    Science.gov (United States)

    An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C. Adwin; Robitaille, Thomas P.; Schultheis, Mathias; Cotera, Angela S.; Smith, Howard A.; Stolovy, Susan R.

    2011-01-01

    We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic Center (GC). Our sample of 107 YSO candidates was selected based on IRAC colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone (CMZ), which spans the central approximately 300 pc region of the Milky Way Galaxy. We obtained IRS spectra over 5 micron to 35 micron using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4 micron shoulder on the absorption profile of 15 micron CO2 ice, suggestive of CO2 ice mixed with CH30H ice on grains. This 15.4 micron shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that 9 massive YSOs also reveal molecular gas-phase absorption from C02, C2H2, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8 - 23 solar Mass, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of approximately 0.07 solar mass/yr at the GC.

  19. COLORS OF ELLIPTICALS FROM GALEX TO SPITZER

    Energy Technology Data Exchange (ETDEWEB)

    Schombert, James M., E-mail: jschombe@uoregon.edu [Department of Physics, University of Oregon, Eugene, OR 97403 (United States)

    2016-12-01

    Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from the Galaxy Evolution Explorer ( GALEX ), Sloan Digital Sky Survey (SDSS), Two Micron All-Sky Survey (2MASS), and Spitzer to cover the filters NUV , ugri , JHK and 3.6 μ m. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are not composed of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color–magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyr stellar population with no evidence of stars younger than 10 Gyr. The [Fe/H] values that match galaxy colors range from −0.5 to +0.4, much higher (and older) than population characteristics deduced from Lick/IDS line-strength system studies, indicating an inconsistency between galaxy colors and line indices values for reasons unknown. The NUV colors have unusual behavior, signaling the rise and fall of the UV upturn with elliptical luminosity. Models with blue horizontal branch tracks can reproduce this behavior, indicating the UV upturn is strictly a metallicity effect.

  20. COLORS OF ELLIPTICALS FROM GALEX TO SPITZER

    International Nuclear Information System (INIS)

    Schombert, James M.

    2016-01-01

    Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from the Galaxy Evolution Explorer ( GALEX ), Sloan Digital Sky Survey (SDSS), Two Micron All-Sky Survey (2MASS), and Spitzer to cover the filters NUV , ugri , JHK and 3.6 μ m. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are not composed of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color–magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyr stellar population with no evidence of stars younger than 10 Gyr. The [Fe/H] values that match galaxy colors range from −0.5 to +0.4, much higher (and older) than population characteristics deduced from Lick/IDS line-strength system studies, indicating an inconsistency between galaxy colors and line indices values for reasons unknown. The NUV colors have unusual behavior, signaling the rise and fall of the UV upturn with elliptical luminosity. Models with blue horizontal branch tracks can reproduce this behavior, indicating the UV upturn is strictly a metallicity effect.

  1. Spitzer/JWST Cross Calibration: IRAC Observations of Potential Calibrators for JWST

    Science.gov (United States)

    Carey, Sean J.; Gordon, Karl D.; Lowrance, Patrick; Ingalls, James G.; Glaccum, William J.; Grillmair, Carl J.; E Krick, Jessica; Laine, Seppo J.; Fazio, Giovanni G.; Hora, Joseph L.; Bohlin, Ralph

    2017-06-01

    We present observations at 3.6 and 4.5 microns using IRAC on the Spitzer Space Telescope of a set of main sequence A stars and white dwarfs that are potential calibrators across the JWST instrument suite. The stars range from brightnesses of 4.4 to 15 mag in K band. The calibration observations use a similar redundancy to the observing strategy for the IRAC primary calibrators (Reach et al. 2005) and the photometry is obtained using identical methods and instrumental photometric corrections as those applied to the IRAC primary calibrators (Carey et al. 2009). The resulting photometry is then compared to the predictions based on spectra from the CALSPEC Calibration Database (http://www.stsci.edu/hst/observatory/crds/calspec.html) and the IRAC bandpasses. These observations are part of an ongoing collaboration between IPAC and STScI investigating absolute calibration in the infrared.

  2. Mingantu, 18th-Century Mongol Astronomer and Radioheliograph Namesake

    Science.gov (United States)

    Pasachoff, Jay M.

    2013-01-01

    The 18th-century Mongol astronomer Mingantu (1692-1765) has been honored with a city named after him and a nearby solar telescope array. During the IAU/Beijing, my wife and I went to the new Chinese solar radioheliograph, the Mingantu Observing Station, in Inner Mongolia, ~400 km northwest of Beijing, a project of the National Astronomical Observatories, Chinese Academy of Sciences. It currently contains 40 dishes each 4.5 m across, with a correlator from Beijing. Within a year, 60 2-m dishes will be added. We passed by the 12-century ruins of Xanadu (about 20 km north of Zhangbei) about halfway. The radioheliograph is in a plane about 1 km across, forming a three-armed spiral for interferometric solar mapping, something colleagues and I had carried out with the Jansky Very Large Array, taking advantage of the lunar occultation before annularity at the 20 May 2012 solar eclipse. In the central square of Mingantu city, a statue ~10-m high of the Mongol astronomer Mingantu appears. Its base bears a plaque ~1-m high of IAU Minor Planet Circular MPC 45750 announcing the naming in 2002 of asteroid 28242 Mingantu, discovered at a Chinese observatory in 1999. Mingantu carried out orbital calculations, mapping, mathematical work on infinite series, and other scientific research. He is honored by a modern museum behind the statue. The museum's first 40% describes Mingantu and his work, and is followed by some artifacts of the region from thousands of years ago. The final, large room contains a two-meter-square scale model of the radioheliograph, flat-screen televisions running Solar Dynamics Observatory and other contemporary visualizations, orreries and other objects, and large transparencies of NASA and other astronomical imagery. See my post at http://www.skyandtelescope.com/community/skyblog/newsblog/ specfically Astro-Sightseeing_in_Inner_Mongolia-167712965.html. We thank Yihua Yan for arranging the visit and Wang Wei (both NAOC) for accompanying us. My solar research

  3. Spitzer IRS (8-30 micron) Spectra of Basaltic Asteroids 1459 Magnya and 956 Elisa: Mineralogy and Thermal Properties

    Science.gov (United States)

    Lim, Lucy F.; Emery, J. P.; Moskovitz, N. A.

    2009-01-01

    We report preliminary results from Spitzer IRS (Infrared Spectrograph) spectroscopy of 956 Elisa, 1459 Magnya, and other small basaltic asteroids with the Spitzer IRS. Program targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vestoids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan. The preliminary thermal model (STM) fit to the 5--35 micron spectrum of 956 Elisa gives a radius of 5.4 +/- 0.3 km and a subsolar- point temperature of 282.2 +/- 0.5 K. This temperature corresponds to eta approximately equals 1.06 +/- 0.02, which is substantially higher than the eta approximately equals 0.756 characteristic of large main-belt asteroids. Unlike 4 Vesta and other large asteroids, therefore, 956 Elisa has significant thermal inertia in its surface layer. The wavelength of the Christiansen feature (emissivity maximum near 9 micron), the positions and shapes of the narrow maxima (10 micron, 11 micron) within the broad 9--14 micron silicate band, and the 19--20 micron minimum are consistent with features found in the laboratory spectra of diogenites and of low-Ca pyroxenes of similar composition (Wo<5, En50-En75).

  4. This Month in Astronomical History: Providing Context for the Advancement of Astronomy

    Science.gov (United States)

    Wilson, Teresa

    2018-01-01

    This Month in Astronomical History is a short (~500 word) illustrated column hosted on the AAS website (https://had.aas.org/resources/astro-history). Its mission is to highlight people and events that have shaped the development of astronomy to convey a historical context to current researchers, to provide a resource for education and public outreach programs seeking to incorporate a historical perspective, and to share the excitement of astronomy with the public. Knowing how the astronomical journey has proceeded thus far allows current professionals to map where to go next and how to get there. The column charts the first part of this journey by celebrating anniversaries of births, discoveries, and deaths, and the technological advances that made discoveries possible. A new “Further Reading” section encourages readers to pursue subjects in greater depth and strengthens the articles as classroom resources.In the months preceding the 21 August 2017 solar eclipse, the column featured astronomical bodies that come between Earth and the Sun: 2004 Venus transit, the 1878 solar eclipse, and the search for the hypothetical planet Vulcan. Venusian transits were an early but technically challenging way to measure the astronomical unit, now easily done with radar-ranging. Like this year’s event, eclipse chasing and citizen science were part of the 1878 experience. Newton’s Laws seemed to require a planet inside Mercury’s orbit, but General Relativity explained the behavior of Mercury without it. Studying each of these transiting bodies has expanded our knowledge and understanding of the universe differently. Transiting extrasolar planets remain to be explored in a future column. In September, an article on the discovery of Neptune followed the discussion of the non-existent Vulcan quite naturally and expanded on the brief mention of this event in relation to the discovery of Pluto. Suggestions for additional topics are always welcome.The Dudley Observatory

  5. SIP: A Web-Based Astronomical Image Processing Program

    Science.gov (United States)

    Simonetti, J. H.

    1999-12-01

    I have written an astronomical image processing and analysis program designed to run over the internet in a Java-compatible web browser. The program, Sky Image Processor (SIP), is accessible at the SIP webpage (http://www.phys.vt.edu/SIP). Since nothing is installed on the user's machine, there is no need to download upgrades; the latest version of the program is always instantly available. Furthermore, the Java programming language is designed to work on any computer platform (any machine and operating system). The program could be used with students in web-based instruction or in a computer laboratory setting; it may also be of use in some research or outreach applications. While SIP is similar to other image processing programs, it is unique in some important respects. For example, SIP can load images from the user's machine or from the Web. An instructor can put images on a web server for students to load and analyze on their own personal computer. Or, the instructor can inform the students of images to load from any other web server. Furthermore, since SIP was written with students in mind, the philosophy is to present the user with the most basic tools necessary to process and analyze astronomical images. Images can be combined (by addition, subtraction, multiplication, or division), multiplied by a constant, smoothed, cropped, flipped, rotated, and so on. Statistics can be gathered for pixels within a box drawn by the user. Basic tools are available for gathering data from an image which can be used for performing simple differential photometry, or astrometry. Therefore, students can learn how astronomical image processing works. Since SIP is not part of a commercial CCD camera package, the program is written to handle the most common denominator image file, the FITS format.

  6. Unveiling galaxies the role of images in astronomical discovery

    CERN Document Server

    Roy, Jean-René

    2017-01-01

    Galaxies are known as the building blocks of the universe, but arriving at this understanding has been a thousand-year odyssey. This journey is told through the lens of the evolving use of images as investigative tools. Initial chapters explore how early insights developed in line with new methods of scientific imaging, particularly photography. The volume then explores the impact of optical, radio and x-ray imaging techniques. The final part of the story discusses the importance of atlases of galaxies; how astronomers organised images in ways that educated, promoted ideas and pushed for new knowledge. Images that created confusion as well as advanced knowledge are included to demonstrate the challenges faced by astronomers and the long road to understanding galaxies. By examining developments in imaging, this text places the study of galaxies in its broader historical context, contributing to both astronomy and the history of science.

  7. Radio and Optical Telescopes for School Students and Professional Astronomers

    Science.gov (United States)

    Hosmer, Laura; Langston, G.; Heatherly, S.; Towner, A. P.; Ford, J.; Simon, R. S.; White, S.; O'Neil, K. L.; Haipslip, J.; Reichart, D.

    2013-01-01

    The NRAO 20m telescope is now on-line as a part of UNC's Skynet worldwide telescope network. The NRAO is completing integration of radio astronomy tools with the Skynet web interface. We present the web interface and astronomy projects that allow students and astronomers from all over the country to become Radio Astronomers. The 20 meter radio telescope at NRAO in Green Bank, WV is dedicated to public education and also is part of an experiment in public funding for astronomy. The telescope has a fantastic new web-based interface, with priority queuing, accommodating priority for paying customers and enabling free use of otherwise unused time. This revival included many software and hardware improvements including automatic calibration and improved time integration resulting in improved data processing, and a new ultra high resolution spectrometer. This new spectrometer is optimized for very narrow spectral lines, which will allow astronomers to study complex molecules and very cold regions of space in remarkable detail. In accordance with focusing on broader impacts, many public outreach and high school education activities have been completed with many confirmed future activities. The 20 meter is now a fully automated, powerful tool capable of professional grade results available to anyone in the world. Drop by our poster and try out real-time telescope control!

  8. Treatment of mine-water from decommissioning uranium mines

    International Nuclear Information System (INIS)

    Fan Quanhui

    2002-01-01

    Treatment methods for mine-water from decommissioning uranium mines are introduced and classified. The suggestions on optimal treatment methods are presented as a matter of experience with decommissioned Chenzhou Uranium Mine

  9. Managing distributed software development in the Virtual Astronomical Observatory

    Science.gov (United States)

    Evans, Janet D.; Plante, Raymond L.; Boneventura, Nina; Busko, Ivo; Cresitello-Dittmar, Mark; D'Abrusco, Raffaele; Doe, Stephen; Ebert, Rick; Laurino, Omar; Pevunova, Olga; Refsdal, Brian; Thomas, Brian

    2012-09-01

    The U.S. Virtual Astronomical Observatory (VAO) is a product-driven organization that provides new scientific research capabilities to the astronomical community. Software development for the VAO follows a lightweight framework that guides development of science applications and infrastructure. Challenges to be overcome include distributed development teams, part-time efforts, and highly constrained schedules. We describe the process we followed to conquer these challenges while developing Iris, the VAO application for analysis of 1-D astronomical spectral energy distributions (SEDs). Iris was successfully built and released in less than a year with a team distributed across four institutions. The project followed existing International Virtual Observatory Alliance inter-operability standards for spectral data and contributed a SED library as a by-product of the project. We emphasize lessons learned that will be folded into future development efforts. In our experience, a well-defined process that provides guidelines to ensure the project is cohesive and stays on track is key to success. Internal product deliveries with a planned test and feedback loop are critical. Release candidates are measured against use cases established early in the process, and provide the opportunity to assess priorities and make course corrections during development. Also key is the participation of a stakeholder such as a lead scientist who manages the technical questions, advises on priorities, and is actively involved as a lead tester. Finally, frequent scheduled communications (for example a bi-weekly tele-conference) assure issues are resolved quickly and the team is working toward a common vision.

  10. A SURVEY OF ASTRONOMICAL RESEARCH: A BASELINE FOR ASTRONOMICAL DEVELOPMENT

    International Nuclear Information System (INIS)

    Ribeiro, V. A. R. M.; Russo, P.; Cárdenas-Avendaño, A.

    2013-01-01

    Measuring scientific development is a difficult task. Different metrics have been put forward to evaluate scientific development; in this paper we explore a metric that uses the number of peer-reviewed, and when available non-peer-reviewed, research articles as an indicator of development in the field of astronomy. We analyzed the available publication record, using the Smithsonian Astrophysical Observatory/NASA Astrophysics Database System, by country affiliation in the time span between 1950 and 2011 for countries with a gross national income of less than 14,365 USD in 2010. This represents 149 countries. We propose that this metric identifies countries in ''astronomical development'' with a culture of research publishing. We also propose that for a country to develop in astronomy, it should invest in outside expert visits, send its staff abroad to study, and establish a culture of scientific publishing. Furthermore, we propose that this paper may be used as a baseline to measure the success of major international projects, such as the International Year of Astronomy 2009

  11. astroplan: Observation Planning for Astronomers

    Science.gov (United States)

    Morris, Brett

    2016-03-01

    Astroplan is an observation planning package for astronomers. It is an astropy-affiliated package which began as a Google Summer of Code project. Astroplan facilitates convenient calculation of common observational quantities, like target altitudes and azimuths, airmasses, and rise/set times. Astroplan also computes when targets are observable given various extensible observing constraints, for example: within a range of airmasses or altitudes, or at a given separation from the Moon. Astroplan is taught in the undergraduate programming for astronomy class, and enables observational Pre- MAP projects at the University of Washington. In the near future, we plan to implement scheduling capabilities in astroplan on top of the constraints framework.

  12. Visualizing Astronomical Data with Blender

    Science.gov (United States)

    Kent, Brian R.

    2014-01-01

    We present methods for using the 3D graphics program Blender in the visualization of astronomical data. The software's forte for animating 3D data lends itself well to use in astronomy. The Blender graphical user interface and Python scripting capabilities can be utilized in the generation of models for data cubes, catalogs, simulations, and surface maps. We review methods for data import, 2D and 3D voxel texture applications, animations, camera movement, and composite renders. Rendering times can be improved by using graphic processing units (GPUs). A number of examples are shown using the software features most applicable to various kinds of data paradigms in astronomy.

  13. 30 CFR 77.1712 - Reopening mines; notification; inspection prior to mining.

    Science.gov (United States)

    2010-07-01

    ... to mining. 77.1712 Section 77.1712 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... prior to mining. Prior to reopening any surface coal mine after it has been abandoned or declared... an authorized representative of the Secretary before any mining operations in such mine are...

  14. The Educational Activities of the Astronomical Society of the Pacific.

    Science.gov (United States)

    Fraknoi, Andrew

    1981-01-01

    Describes educational activities of the Astronomical Society of the Pacific including learning packets on various astronomy concepts, Morrison lectures, newspaper columns, teacher workshops, cosponsoring astronomy oriented lectures, and providing speakers for various groups. (DS)

  15. Strategies for personnel sustainable lifecycle at astronomical observatories and local industry development

    Science.gov (United States)

    Bendek, Eduardo A.; Leatherbee, Michael; Smith, Heather; Strappa, Valentina; Zinnecker, Hans; Perez, Mario

    2014-08-01

    Specialized manpower required to efficiently operate world-class observatories requires large investments in time and resources to train personnel in very specific areas of engineering. Isolation and distances to mayor cities pose a challenge to retain motivated and qualified personnel on the mountain. This paper presents strategies that we believe may be effective for retaining this specific know-how in the astronomy field; while at the same time develop a local support industry for observatory operations and astronomical instrumentation development. For this study we choose Chile as a research setting because it will host more than 60% of the world's ground based astronomical infrastructure by the end of the decade, and because the country has an underdeveloped industry for astronomy services. We identify the astronomical infrastructure that exists in the country as well as the major research groups and industrial players. We further identify the needs of observatories that could be outsourced to the local economy. As a result, we suggest spin-off opportunities that can be started by former observatory employees and therefore retaining the knowhow of experienced people that decide to leave on-site jobs. We also identify tools to facilitate this process such as the creation of a centralized repository of local capabilities and observatory needs, as well as exchange programs within astronomical instrumentation groups. We believe that these strategies will contribute to a positive work environment at the observatories, reduce the operation and development costs, and develop a new industry for the host country.

  16. Partnerships between Professional and Amateur Astronomers: A Shift in Research Paradigm

    Science.gov (United States)

    Yanamandra-Fisher, Padma A.; Orton, G. S.; Casquinha, P.; Coffelt, A.; Delcroix, M.; Go, C.; Hueso, R.; Jaeschke, W.; Kardasis, M.; Kraaikamp, E.; Morales, E.; Peach, D.; Rogers, J.; Wesley, A.; Willems, F.; Wilson, T.

    2012-10-01

    "Citizen Astronomy" can be thought of as the paradigm shift transforming the nature of observational astronomy. The night sky, with all its delights and mysteries, enthralls professional and amateur astronomers, and students who will form the next generation of scientists and engineers. These students are matriculating in an era of reduced funding for core competencies such as science, technology, mathematics and engineering (STEM) sciences and an ongoing general decline in these sciences. How then do we re-generate their interest and engage students while we perform cutting-edge planetary science in a fiscally constrained environment? One promising solution is to promote the emerging partnerships between professional and dedicated proficient amateur astronomers, that rely on creating a niche for long timeline of multispectral remote sensing. In the past decade, it is the collective observations and their analyses by the ever-increasing global network of amateur astronomers that has discovered interesting phenomena and provided the reference backdrop for observations by professional ground-based professional astronomers and spacecraft missions. We shall focus on our collaboration or "Citizen Astronomy: Jupiter and Saturn" for the past five years and illustrate the strong synergy between the two groups that has produced new scientific results. With the active inclusion and use of emerging social media (Facebook, Twitter, etc.), the near daily communication and updates (via email, Skype, Facebook) between the two groups is becoming a powerful tool for ground-based remote sensing. However, what is sorely lacking in this paradigm is the inclusion of teachers and students and, therefore, its inclusion in the secondary and tertiary classrooms. We will provide various scenarios to address this issue, and emphasize the various aspects of STEM learning/teaching that is necessary for students and teachers - all that can be performed at low cost; and showcase some of our

  17. The NASA Astrophysics Data System Free Access to the Astronomical Literature On-Line and through Email

    CERN Document Server

    Eichhorn, G; Grant, C S; Kurtz, M J; Murray, S S

    2001-01-01

    The Astrophysics Data System (ADS) provides access to the astronomical literature through the World Wide Web. It is a NASA funded project and access to all the ADS services is free to everybody world-wide.The ADS Abstract Service allows the searching of four databases with abstracts in Astronomy, Instrumentation, Physics/Geophysics, and the LANL Preprints with a total of over 2.2 million references. The system also provides access to reference and citation information, links to on-line data, electronic journal articles, and other on-line information. The ADS Article Service contains the articles for most of the astronomical literature back to volume 1. It contains the scanned pages of all the major journals (Astrophysical Journal, Astronomical Journal, Astronomy & Astrophysics, Monthly Notices of the Royal Astronomical Society, and Solar Physics), as well as most smaller journals back to volume 1. The ADS can be accessed through any web browser without signup or login. Alternatively an email interface is ...

  18. Acid mine drainage: mining and water pollution issues in British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The importance of protecting water quality and some of the problems associated with mineral development are described. Negative impacts of mining operations such as sedimentation, water disturbances, and water pollution from waste rock and tailings are considered. Mining wastes, types of water pollution from mining, the legacy of acid mine drainage, predicting acid mine drainage, preventing and mitigating acid mine drainage, examples from the past, and cyanide heap-leaching are discussed. The real costs of mining at the Telkwa open pit coal mine are assessed. British Columbia mines that are known for or are potentially acid generating are shown on a map. 32 refs., 10 figs.

  19. Professional- Amateur Astronomer Partnerships in Scientific Research: The Re-emergence of Jupiter's 5-Micron Hot Spots

    Science.gov (United States)

    Yanamandra-Fisher, P. A.

    2012-12-01

    The night sky, with all its delights and mysteries, enthrall professional and amateur astronomers alike. The discrete data sets acquired by professional astronomers via their approved observing programs at various national facilities are supplemented by the nearly daily observations of the same celestial object by amateur astronomers around the world. The emerging partnerships between professional and dedicated amateur astronomers rely on creating a niche for long timeline of multispectral remote sensing. "Citizen Astronomy" can be thought of as the paradigm shift transforming the nature of observational astronomy. In the past decade, it is the collective observations and their analyses by the ever-increasing global network of amateur astronomers that has discovered interesting phenomena and provided the reference backdrop for observations by ground-based professional astronomers and spacecraft missions. We shall present results from our collaborations to observe the recent global upheaval on Jupiter for the past five years and illustrate the strong synergy between the two groups. Global upheavals on Jupiter involve changes in the albedo of entire axisymmetric regions, lasting several years, with the last two occurring in 1989 and 2006. Against this backdrop of planetary-scale changes, discrete features such as the Great Red Spot (GRS), and other vortices exhibit changes on shorter spatial- and time-scales. One set of features we are currently tracking is the variability of the discrete equatorial 5-μm hot spots, semi-evenly spaced in longitude and confined to a narrow latitude band centered at 6.5°N (southern edge of the North Equatorial Belt, NEB), abundant in Voyager images (1980-1981). Tantalizingly similar patterns were observed in the visible (bright plumes and blue-gray regions), where reflectivity in the red is anti-correlated with 5-μm thermal radiance. During the recent NEB fade (2011 - early 2012), however, these otherwise ubiquitous features were

  20. World's fastest and most sensitive astronomical camera

    Science.gov (United States)

    2009-06-01

    The next generation of instruments for ground-based telescopes took a leap forward with the development of a new ultra-fast camera that can take 1500 finely exposed images per second even when observing extremely faint objects. The first 240x240 pixel images with the world's fastest high precision faint light camera were obtained through a collaborative effort between ESO and three French laboratories from the French Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers (CNRS/INSU). Cameras such as this are key components of the next generation of adaptive optics instruments of Europe's ground-based astronomy flagship facility, the ESO Very Large Telescope (VLT). ESO PR Photo 22a/09 The CCD220 detector ESO PR Photo 22b/09 The OCam camera ESO PR Video 22a/09 OCam images "The performance of this breakthrough camera is without an equivalent anywhere in the world. The camera will enable great leaps forward in many areas of the study of the Universe," says Norbert Hubin, head of the Adaptive Optics department at ESO. OCam will be part of the second-generation VLT instrument SPHERE. To be installed in 2011, SPHERE will take images of giant exoplanets orbiting nearby stars. A fast camera such as this is needed as an essential component for the modern adaptive optics instruments used on the largest ground-based telescopes. Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets, but frustrates astronomers, since it blurs the finest details of the images. Adaptive optics techniques overcome this major drawback, so that ground-based telescopes can produce images that are as sharp as if taken from space. Adaptive optics is based on real-time corrections computed from images obtained by a special camera working at very high speeds. Nowadays, this means many hundreds of times each second. The new generation instruments require these

  1. Discovering Massive z > 1 Galaxy Clusters with Spitzer and SPTpol

    Science.gov (United States)

    Bleem, Lindsey; Brodwin, Mark; Ashby, Matthew; Stalder, Brian; Klein, Matthias; Gladders, Michael; Stanford, Spencer; Canning, Rebecca

    2018-05-01

    We propose to obtain Spitzer/IRAC imaging of 50 high-redshift galaxy cluster candidates derived from two new completed SZ cluster surveys by the South Pole Telescope. Clusters from the deep SPTpol 500-square-deg main survey will extend high-redshift SZ cluster science to lower masses (median M500 2x10^14Msun) while systems drawn from the wider 2500-sq-deg SPTpol Extended Cluster Survey are some of the rarest most massive high-z clusters in the observable universe. The proposed small 10 h program will enable (1) confirmation of these candidates as high-redshift clusters, (2) measurements of the cluster redshifts (sigma_z/(1+z) 0.03), and (3) estimates of the stellar masses of the brightest cluster members. These observations will yield exciting and timely targets for the James Webb Space Telescope--and, combined with lower-z systems--will both extend cluster tests of dark energy to z>1 as well as enable studies of galaxy evolution in the richest environments for a mass-limited cluster sample from 0

  2. Astronomical technology - the past and the future. Karl Schwarzschild Award Lecture 2015

    Science.gov (United States)

    Appenzeller, I.

    2016-07-01

    The past fifty years have been an epoch of impressive progress in the field of astronomical technology. Practically all the technical tools, which we use today, have been developed during that time span. While the first half of this period has been dominated by advances in the detector technologies, during the past two decades innovative telescope concepts have been developed for practically all wavelength ranges where astronomical observations are possible. Further important advances can be expected in the next few decades. Based on the experience of the past, some of the main sources of technological progress can be identified.

  3. From research institution to astronomical museum: a history of the Stockholm Observatory

    Science.gov (United States)

    Yaskell, Steven Haywood

    2008-07-01

    The Royal Swedish Academy of Sciences (RSAS) (or Kungliga Vetenskapsakademien [KvA] in Swedish) founded 1739, opened its first permanent building, an astronomical and meteorological observatory, on 20 September 1753. This was situated at Brunkebergsåsen (formerly Observatorie Lunden, or Observatory Hill), on a high terrace in a northern quarter of Stockholm. This historic building is still sometimes called Gamla Observatoriet (the Old Observatory) and now is formally the Observatory Museum. This paper reviews the history of the Observatory from its function as a scientific astronomical institution to its relatively-recent relegation to museum status.

  4. Astronomers Anonymous Getting Help with the Puzzles and Pitfalls of Practical Astronomy

    CERN Document Server

    Ringwood, Steve

    2010-01-01

    In this entertaining parody of letters to a typical “lonely hearts” columnist, real-life expert and long-time astronomy columnist Steve Ringwood presents a sweeping overview of common questions and problems practical and amateur astronomers face, compiled from Ringwood's own experiences in the world of astronomy. His screamingly funny comments will keep you laughing out loud throughout, so be careful of reading this book in public! Written especially for troubled astronomers, but also accessible to anyone with an interest in space or astronomy, readers will easily recognize the difficulties they face and enjoy the humor being directed at them and their science.

  5. Responsible Mining: A Human Resources Strategy for Mine Development Project

    OpenAIRE

    Sampathkumar, Sriram (Ram)

    2012-01-01

    Mining is a global industry. Most mining companies operate internationally, often in remote, challenging environments and consequently frequently have respond to unusual and demanding Human Resource (HR) requirements. It is my opinion that the strategic imperative behind success in mining industry is responsible mining. The purpose of this paper is to examine how an effective HR strategy can be a competitive advantage that contributes to the success of a mining project in the global mining in...

  6. Nikolay N. Donitch - the astronomer

    Science.gov (United States)

    Gaina, Alex B.; Volyanskaya, M. Yu.

    1999-08-01

    The article is devoted to milestones of life and scientific activity of the eminent astronomer Nikolay Nikolaevich Donitch (Nicolae N. Donici) (1874-1956), a graduate from the Odessa (Novorossiski) university. He was a wellknown expert in the field of reseacrh of objects of Solar system. A person highly cultured, which built the first in Bessarabia (actually a part of the Republic of Moldova) observatory. He was borne in Kishinev (Chisinau) in a nobles family of notable Moldavian landersmen. N.D. graduated from the Richelieu lyceym in Odessa and afterwards, in 1897, graduated from the Odessa (Novorossiysky) University. A.K. Kononovich (1850-1910)headed the chair of astronomy and the Observatory at that time - a foremost authority in the field of astrophysics and stellar astronomy. Many of his disciples became eminent scientists of their time. N. Donitch was among them. N.D. worked till 1918 at Pulkovo Observatory and became a master in the field of studying of such phenomena as solar and lunar eclipses. To observe the Sun N.D., could afford to design and manufacture a spectroheliograph, the first in Russia, with the assistance of a famous Odessa mechanic J.A. Timchenko. This instrument enabled him to obtain topquality photos of the Sun's surface and prominences. It was mounted together with coelostat in the private observatory of N.D. , built in the village Staryie Doubossary in 1908. Besides the heliograoph, the observatory was equiped with a five inch refractor-equatorial with numerous instruments for various observations. Of the other instruments should be mentioned : "a comet triplet" - an instrument consisting of guiding refractor, a photographic camera and a spectrograph with an objective prism. N.D. was lucky enough to observe rare astronomical phenomena. He observed the transit of Mercury through the disk of the Sun on November 14, 1907 and showed the athmosphere absence around this planet, observed the Halley's comet in 1910, the bright Pons-Winneke comet

  7. A MID-INFRARED IMAGING SURVEY OF SUBMILLIMETER-SELECTED GALAXIES WITH THE SPITZER SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Hainline, Laura J.; Blain, A. W.; Smail, Ian; Frayer, D. T.; Chapman, S. C.; Ivison, R. J.; Alexander, D. M.

    2009-01-01

    We present Spitzer-IRAC and MIPS mid-IR observations of a sample of 73 radio-detected submillimeter-selected galaxies (SMGs) with spectroscopic redshifts, the largest such sample published to date. From our data, we find that IRAC colors of SMGs are much more uniform as compared with rest-frame UV and optical colors, and z>1.5 SMGs tend to be redder in their mid-IR colors than both field galaxies and lower-z SMGs. However, the IRAC colors of the SMGs overlap those of field galaxies sufficiently that color-magnitude and color-color selection criteria suggested in the literature to identify SMG counterparts produce ambiguous counterparts within an 8'' radius in 20%-35% of cases. We use a rest-frame J-H versus H-K color-color diagram and a S 24 /S 8.0 versus S 8.0 /S 4.5 color-color diagram to determine that 13%-19% of our sample are likely to contain active galactic nuclei which dominate their mid-IR emission. We observe in the rest-frame JHK colors of our sample that the rest-frame near-IR emission of SMGs does not resemble that of the compact nuclear starburst observed in local ultraluminous IR galaxies and is consistent with more widely distributed star formation. We take advantage of the fact that many high-z galaxy populations selected at different wavelengths are detected by Spitzer to carry out a brief comparison of mid-IR properties of SMGs to UV-selected high-z galaxies, 24 μm-selected galaxies, and high-z radio galaxies, and find that SMGs have mid-IR fluxes and colors which are consistent with being more massive and more reddened than UV-selected galaxies, while the IRAC colors of SMGs are most similar to powerful high-z radio galaxies.

  8. The High Road to Astronomical Photometric Precision : Differential Photometry

    NARCIS (Netherlands)

    Milone, E. F.; Pel, Jan Willem

    2011-01-01

    Differential photometry offers the most precise method for measuring the brightness of astronomical objects. We attempt to demonstrate why this should be the case, and then describe how well it has been done through a review of the application of differential techniques from the earliest visual

  9. Penn State astronomical image processing system

    International Nuclear Information System (INIS)

    Truax, R.J.; Nousek, J.A.; Feigelson, E.D.; Lonsdale, C.J.

    1987-01-01

    The needs of modern astronomy for image processing set demanding standards in simultaneously requiring fast computation speed, high-quality graphic display, large data storage, and interactive response. An innovative image processing system was designed, integrated, and used; it is based on a supermicro architecture which is tailored specifically for astronomy, which provides a highly cost-effective alternative to the traditional minicomputer installation. The paper describes the design rationale, equipment selection, and software developed to allow other astronomers with similar needs to benefit from the present experience. 9 references

  10. Far-infrared spectrophotometer for astronomical observations

    Science.gov (United States)

    Moseley, H.; Silverberg, R. F.

    1981-01-01

    A liquid-helium-cooled far infrared spectrophotometer was built and used to make low resolution observations of the continua of several kinds of astronomical objects using the Kuiper Airborne Observatory. This instrument fills a gap in both sensitivity to continuum sources and spectral resolution between the broadband photometers with lambda/Delta lambda approximately 1 and spectrometers with lambda/Delta lambda greater than 50. While designed primarily to study planetary nebulae, the instrument permits study of the shape of the continua of many weak sources which cannot easily be observed with high resolution systems.

  11. Le Verrier magnificent and detestable astronomer

    CERN Document Server

    Lequeux, James

    2013-01-01

    Le Verrier was a superb scientist. His discovery of Neptune in 1846 made him the most famous astronomer of his time. He produced a complete theory of the motions of the planets which served as a basis for planetary ephemeris for a full century. Doing this, he discovered an anomaly in the motion of Mercury which later became the first proof of General Relativity. He also founded European meteorology. However his arrogance and bad temper created many enemies, and he was even fired from his position of Director of the Paris Observatory.

  12. The astronomical revolution Copernicus, Kepler, Borelli

    CERN Document Server

    Koyre, Alexandre

    2013-01-01

    Originally published in English in 1973. This volume traces the development of the revolution which so drastically altered man's view of the universe in the sixteenth and seventeenth centuries. The ""astronomical revolution"" was accomplished in three stages, each linked with the work of one man. With Copernicus, the sun became the centre of the universe. With Kepler, celestial dynamics replaced the kinematics of circles and spheres used by Copernicus. With Borelli the unification of celestial and terrestrial physics was completed by abandonment of the circle in favour the straight line to inf

  13. The Astronomical Pulse of Global Extinction Events

    Directory of Open Access Journals (Sweden)

    David F.V. Lewis

    2006-01-01

    Full Text Available The linkage between astronomical cycles and the periodicity of mass extinctions is reviewed and discussed. In particular, the apparent 26 million year cycle of global extinctions may be related to the motion of the solar system around the galaxy, especially perpendicular to the galactic plane. The potential relevance of Milankovitch cycles is also explored in the light of current evidence for the possible causes of extinction events over a geological timescale.

  14. Astrophysics is easy! an introduction for the amateur astronomer

    CERN Document Server

    Inglis, Mike

    2007-01-01

    With some justification, many amateur astronomers believe astrophysics is a very difficult subject, requiring at least degree-level mathematics to understand it properly. This isn’t necessarily the case. Mike Inglis' quantitative approach to the subject explains all aspects of astrophysics in simple terms and cuts through the incomprehensible mathematics with which this fascinating subject is all too often associated. Astrophysics is Easy! begins by looking at the H-R diagram and other basic tools of astrophysics, then ranges across the universe, from a first look at the interstellar medium and nebulae, through the birth, evolution and death of stars, to the physics of galaxies and clusters of galaxies. A unique feature of this book is the way that Dr. Inglis lists example objects for practical observation at every stage, so that practical astronomers can go and look at the object or objects under discussion – using only easily-available commercial amateur equipment.

  15. Extending mine life

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Mine layouts, new machines and techniques, research into problem areas of ground control and so on, are highlighted in this report on extending mine life. The main resources taken into account are coal mining, uranium mining, molybdenum and gold mining

  16. THE ORIGIN OF THE INFRARED EMISSION IN RADIO GALAXIES. II. ANALYSIS OF MID- TO FAR-INFRARED SPITZER OBSERVATIONS OF THE 2JY SAMPLE

    NARCIS (Netherlands)

    Dicken, D.; Tadhunter, C.; Axon, D.; Morganti, R.; Inskip, K. J.; Holt, J.; Delgado, R. Gonzalez; Groves, B.

    2009-01-01

    We present an analysis of deep mid- to far-infrared (MFIR) Spitzer photometric observations of the southern 2Jy sample of powerful radio sources (0.05

  17. Astronomers Detect Powerful Bursting Radio Source Discovery Points to New Class of Astronomical Objects

    Science.gov (United States)

    2005-03-01

    Astronomers at Sweet Briar College and the Naval Research Laboratory (NRL) have detected a powerful new bursting radio source whose unique properties suggest the discovery of a new class of astronomical objects. The researchers have monitored the center of the Milky Way Galaxy for several years and reveal their findings in the March 3, 2005 edition of the journal, “Nature”. This radio image of the central region of the Milky Way Galaxy holds a new radio source, GCRT J1745-3009. The arrow points to an expanding ring of debris expelled by a supernova. CREDIT: N.E. Kassim et al., Naval Research Laboratory, NRAO/AUI/NSF Principal investigator, Dr. Scott Hyman, professor of physics at Sweet Briar College, said the discovery came after analyzing some additional observations from 2002 provided by researchers at Northwestern University. “"We hit the jackpot!” Hyman said referring to the observations. “An image of the Galactic center, made by collecting radio waves of about 1-meter in wavelength, revealed multiple bursts from the source during a seven-hour period from Sept. 30 to Oct. 1, 2002 — five bursts in fact, and repeating at remarkably constant intervals.” Hyman, four Sweet Briar students, and his NRL collaborators, Drs. Namir Kassim and Joseph Lazio, happened upon transient emission from two radio sources while studying the Galactic center in 1998. This prompted the team to propose an ongoing monitoring program using the National Science Foundation’s Very Large Array (VLA) radio telescope in New Mexico. The National Radio Astronomy Observatory, which operates the VLA, approved the program. The data collected, laid the groundwork for the detection of the new radio source. “Amazingly, even though the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths,” NRL astronomer Dr. Joseph Lazio pointed out, “very little has been done to look for radio bursts, which are often easier for astronomical objects to produce

  18. Astronomical Data in Undergraduate courses

    Science.gov (United States)

    Clarkson, William I.; Swift, Carrie; Hughes, Kelli; Burke, Christopher J. F.; Burgess, Colin C.; Elrod, Aunna V.; Howard, Brittany; Stahl, Lucas; Matzke, David; Bord, Donald J.

    2016-06-01

    We present status and plans for our ongoing efforts to develop data analysis and problem-solving skills through Undergraduate Astronomy instruction. While our initiatives were developed with UM-Dearborn’s student body primarily in mind, they should be applicable for a wide range of institution and of student demographics. We focus here on two strands of our effort.Firstly, students in our Introductory Astronomy (ASTR 130) general-education course now perform several “Data Investigations”, in which they interrogate the Hubble Legacy Archive to illustrate important course concepts. This was motivated in part by the realization that typical public data archives now include tools to interrogate the observations that are sufficiently accessible that introductory astronomy students can use them to perform real science, albeit mostly at a descriptive level. We are continuing to refine these investigations, and, most importantly, to critically assess their effectiveness in terms of the student learning outcomes we wish to achieve. This work is supported by grant HST-EO-13758, provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.Secondly, at the advanced-undergraduate level, students taking courses in our Astronomy minor are encouraged to gain early experience in techniques of astronomical observation and analysis that are used by professionals. We present two example projects from the Fall 2015 iteration of our upper-division course ASTR330 (The Cosmic Distance Ladder), one involving Solar System measurements, the second producing calibrated aperture photometry. For both projects students conducted, analysed, and interpreted observations using our 0.4m campus telescope, and used many of the same analysis tools as professional astronomers. This work is supported partly from a Research Initiation and Seed grant from the

  19. SPATIAL VARIATIONS OF PAH PROPERTIES IN M17SW REVEALED BY SPITZER /IRS SPECTRAL MAPPING

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Chuo-ku, Sagamihara 252-5210 (Japan); Kaneda, H.; Ishihara, D.; Oyabu, S.; Suzuki, T.; Nishimura, A.; Kohno, M. [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Onaka, T.; Ohashi, S. [Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nagayama, T.; Matsuo, M. [Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Umemoto, T.; Minamidani, T.; Fujita, S. [Nobeyama Radio Observatory, National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS), 462-2, Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Tsuda, Y., E-mail: yamagish@ir.isas.jaxa.jp [Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-0042 (Japan)

    2016-12-20

    We present Spitzer /IRS mid-infrared spectral maps of the Galactic star-forming region M17 as well as IRSF/SIRIUS Br γ and Nobeyama 45 m/FOREST {sup 13}CO ( J = 1–0) maps. The spectra show prominent features due to polycyclic aromatic hydrocarbons (PAHs) at wavelengths of 6.2, 7.7, 8.6, 11.3, 12.0, 12.7, 13.5, and 14.2  μ m. We find that the PAH emission features are bright in the region between the H ii region traced by Br γ and the molecular cloud traced by {sup 13}CO, supporting that the PAH emission originates mostly from photo-dissociation regions. Based on the spatially resolved Spitzer /IRS maps, we examine spatial variations of the PAH properties in detail. As a result, we find that the interband ratio of PAH 7.7  μ m/PAH 11.3  μ m varies locally near M17SW, but rather independently of the distance from the OB stars in M17, suggesting that the degree of PAH ionization is mainly controlled by local conditions rather than the global UV environments determined by the OB stars in M17. We also find that the interband ratios of the PAH 12.0  μ m, 12.7  μ m, 13.5  μ m, and 14.2  μ m features to the PAH 11.3  μ m feature are high near the M17 center, which suggests structural changes of PAHs through processing due to intense UV radiation, producing abundant edgy irregular PAHs near the M17 center.

  20. PPARC: Grid technology helps astronomers keep pace with the Universe

    CERN Multimedia

    2003-01-01

    "Intelligent Agent" computer programs are roaming the Internet and watching the skies. These programs, using Grid computing technology, will help astronomers detect some of the most dramatic events in the universe, such as massive supernova explosions (1 page).

  1. Laboratory measurements and astronomical search for the HSO radical.

    Science.gov (United States)

    Cazzoli, Gabriele; Lattanzi, Valerio; Kirsch, Till; Gauss, Jürgen; Tercero, Belén; Cernicharo, José; Puzzarini, Cristina

    2016-07-01

    Despite the fact that many sulfur-bearing molecules, ranging from simple diatomic species up to astronomical complex molecules, have been detected in the interstellar medium, the sulfur chemistry in space is largely unknown and a depletion in the abundance of S-containing species has been observed in the cold, dense interstellar medium (ISM). The chemical form of the missing sulfur has yet to be identified. For these reasons, in view of the fact that there is a large abundance of triatomic species harbouring sulfur, oxygen, and hydrogen, we decided to investigate the HSO radical in the laboratory to try its astronomical detection. High-resolution measurements of the rotational spectrum of the HSO radical were carried out within a frequency range well up into the THz region. Subsequently, a rigorous search for HSO in the two most studied high-mass star-forming regions, Orion KL and Sagittarius (Sgr) B2, and in the cold dark cloud Barnard 1 (B1-b) was performed. The frequency coverage and the spectral resolution of our measurements allowed us to improve and extend the existing dataset of spectroscopic parameters, thus enabling accurate frequency predictions up to the THz range. These were used to derive the synthetic spectrum of HSO, by means of the MADEX code, according to the physical parameters of the astronomical source under consideration. For all sources investigated, the lack of HSO lines above the confusion limit of the data is evident. The derived upper limit to the abundance of HSO clearly indicates that this molecule does not achieve significant abundances in either the gas phase or in the ice mantles of dust grains.

  2. MONITORING OF MINING

    Directory of Open Access Journals (Sweden)

    Berislav Šebečić

    1996-12-01

    Full Text Available The way mining was monitored in the past depended on knowledge, interest and the existing legal regulations. Documentary evidence about this work can be found in archives, libraries and museums. In particular, there is the rich archival material (papers and books concerning the work of the one-time Imperial and Royal Mining Captaincies in Zagreb, Zadar, Klagenfurt and Split, A minor part of the documentation has not yet been transferred to Croatia. From mining handbooks and books we can also find out about mining in Croatia. In the context of Austro-Hungary. For example, we can find out that the first governorships in Zagreb and Zadar headed the Ban, Count Jelacic and Baron Mamula were also the top mining authorities, though this, probably from political motives, was suppressed in the guides and inventories or the Mining Captaincies. At the end of the 1850s, Croatia produced 92-94% of sea salt, up to 8.5% of sulphur, 19.5% of asphalt and 100% of oil for the Austro-Hungarian empire. From data about mining in the Split Mining Captaincy, prepared for the Philadephia Exhibition, it can be seen that in the exploratory mining operations in which there were 33,372 independent mines declared in 1925 they were looking mainly for bauxite (60,0%, then dark coal (19,0%, asphalts (10.3% and lignites (62%. In 1931, within the area covered by the same captaincy, of 74 declared mines, only 9 were working. There were five coal mines, three bauxite mines and one for asphalt. I suggest that within state institution, the Mining Captaincy or Authority be renewed, or that a Mining and Geological Authority be set ap, which would lead to the more complete affirmation of Croatian mining (the paper is published in Croatian.

  3. The Moon in Close-up A Next Generation Astronomer's Guide

    CERN Document Server

    Wilkinson, John

    2010-01-01

    Information collected by recent space probes sent to explore the Moon by the USA, the European Space Agency, Japan, China and India has changed our knowledge and understanding of the Moon, particularly its geology, since the Apollo missions. This book presents those findings in a way that will be welcomed by amateur astronomers, students, educators and anyone interested in the Moon. Enhanced by many colour photos, it combines newly acquired scientific understanding with detailed descriptions and labelled photographic maps of the lunar surface. Guided by observation methods explained in the book and 17 Study Areas presented and carefully explained in the last chapter, amateur astronomers can observe these features from Earth using telescopes and binoculars. Readers who consult the photographic maps will gain a better understanding about the Moon’s topography and geology. The book is rounded out by a helpful glossary.

  4. Astronomers Unveiling Life's Cosmic Origins

    Science.gov (United States)

    2009-02-01

    the study of interstellar chemistry," Remijan said. Astronomers have already identified more than 150 molecules in interstellar space in the past 40 years, including complex organic compounds such as sugars and alcohols. "This is a major change in how we search for molecules in space," Remijan explained. "Before, people decided beforehand which molecules they were looking for, then searched in a very narrow band of radio frequencies emitted by those molecules. In this GBT survey, we've observed a wide range of frequencies, collected the data and immediately made it publicly available. Scientists anywhere can 'mine' this resource to find new molecules," he said. Another key development, presented by Crystal Brogan of the NRAO, showed that highly-detailed images of "protoclusters" of massive young stars reveal a complex mix of stars in different stages of formation, complicated gas motions, and numerous chemical clues to the physical conditions in such stellar nurseries. "We saw a much more complex picture than we had expected and now have new questions to answer," she said. Using the Smithsonian Astrophysical Observatory's Submillimeter Array (SMA) in Hawaii, Brogan and her colleagues studied a nebula 5,500 light-years from Earth in the constellation Scorpius where stars significantly more massive than our Sun are forming. "It's essential to understand what's going on in systems like this because most stars, Sun-like stars included, form in clusters," Brogan said. "The most massive stars in the cluster have a tremendous impact on the formation and environment of the rest of the cluster, including the less-massive stars and their planets," Brogan said, adding that "if we want to understand how solar systems that could support life form and evolve, we need to know how these giant stars affect their environment." Also, Brogan said, the massive young stars are surrounded by "hot cores" that include copious organic material that later may be spewed into interstellar space

  5. A Direct Imaging Survey of Spitzer-detected Debris Disks: Occurrence of Giant Planets in Dusty Systems

    Science.gov (United States)

    Meshkat, Tiffany; Mawet, Dimitri; Bryan, Marta L.; Hinkley, Sasha; Bowler, Brendan P.; Stapelfeldt, Karl R.; Batygin, Konstantin; Padgett, Deborah; Morales, Farisa Y.; Serabyn, Eugene; Christiaens, Valentin; Brandt, Timothy D.; Wahhaj, Zahed

    2017-12-01

    We describe a joint high-contrast imaging survey for planets at the Keck and Very Large Telescope of the last large sample of debris disks identified by the Spitzer Space Telescope. No new substellar companions were discovered in our survey of 30 Spitzer-selected targets. We combine our observations with data from four published surveys to place constraints on the frequency of planets around 130 debris disk single stars, the largest sample to date. For a control sample, we assembled contrast curves from several published surveys targeting 277 stars that do not show infrared excesses. We assumed a double power-law distribution in mass and semimajor axis (SMA) of the form f(m,a)={{Cm}}α {a}β , where we adopted power-law values and logarithmically flat values for the mass and SMA of planets. We find that the frequency of giant planets with masses 5-20 M Jup and separations 10-1000 au around stars with debris disks is 6.27% (68% confidence interval 3.68%-9.76%), compared to 0.73% (68% confidence interval 0.20%-1.80%) for the control sample of stars without disks. These distributions differ at the 88% confidence level, tentatively suggesting distinctness of these samples. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  6. Spitzer Infrared Spectrograph Observations of the Galactic Center: Quantifying the Extreme Ultraviolet/Soft X-ray Fluxes

    Science.gov (United States)

    Simpson, Janet P.

    2018-04-01

    It has long been shown that the extreme ultraviolet spectrum of the ionizing stars of H II regions can be estimated by comparing the observed line emission to detailed models. In the Galactic Center (GC), however, previous observations have shown that the ionizing spectral energy distribution (SED) of the local photon field is strange, producing both very low excitation ionized gas (indicative of ionization by late O stars) and also widespread diffuse emission from atoms too highly ionized to be found in normal H II regions. This paper describes the analysis of all GC spectra taken by Spitzer's Infrared Spectrograph and downloaded from the Spitzer Heritage Archive. In it, H II region densities and abundances are described, and serendipitously discovered candidate planetary nebulae, compact shocks, and candidate young stellar objects are tabulated. Models were computed with Cloudy, using SEDs from Starburst99 plus additional X-rays, and compared to the observed mid-infrared forbidden and recombination lines. The ages inferred from the model fits do not agree with recent proposed star formation sequences (star formation in the GC occurring along streams of gas with density enhancements caused by close encounters with the black hole, Sgr A*), with Sgr B1, Sgr C, and the Arches Cluster being all about the same age, around 4.5 Myr old, with similar X-ray requirements. The fits for the Quintuplet Cluster appear to give a younger age, but that could be caused by higher-energy photons from shocks from stellar winds or from a supernova.

  7. Gold-Mining

    DEFF Research Database (Denmark)

    Raaballe, J.; Grundy, B.D.

    2002-01-01

      Based on standard option pricing arguments and assumptions (including no convenience yield and sustainable property rights), we will not observe operating gold mines. We find that asymmetric information on the reserves in the gold mine is a necessary and sufficient condition for the existence...... of operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...

  8. Towards a robust and consistent middle Eocene astronomical timescale

    Science.gov (United States)

    Boulila, Slah; Vahlenkamp, Maximilian; De Vleeschouwer, David; Laskar, Jacques; Yamamoto, Yuhji; Pälike, Heiko; Kirtland Turner, Sandra; Sexton, Philip F.; Westerhold, Thomas; Röhl, Ursula

    2018-03-01

    Until now, the middle Eocene has remained a poorly constrained interval of efforts to produce an astrochronological timescale for the entire Cenozoic. This has given rise to a so-called "Eocene astronomical timescale gap" (Vandenberghe et al., 2012). A high-resolution astrochronological calibration for this interval has proven to be difficult to realize, mainly because carbonate-rich deep-marine sequences of this age are scarce. In this paper, we present records from middle Eocene carbonate-rich sequences from the North Atlantic Southeast Newfoundland Ridge (IODP Exp. 342, Sites U1408 and U1410), of which the cyclical sedimentary patterns allow for an orbital calibration of the geologic timescale between ∼38 and ∼48 Ma. These carbonate-rich cyclic sediments at Sites U1408 and U1410 were deposited as drift deposits and exhibit prominent lithological alternations (couplets) between greenish nannofossil-rich clay and white nannofossil ooze. The principal lithological couplet is driven by the obliquity of Earth's axial tilt, and the intensity of their expression is modulated by a cyclicity of about 173 kyr. This cyclicity corresponds to the interference of secular frequencies s3 and s6 (related to the precession of nodes of the Earth and Saturn, respectively). This 173-kyr obliquity amplitude modulation cycle is exceptionally well recorded in the XRF (X-ray fluorescence)-derived Ca/Fe ratio. In this work, we first demonstrate the stability of the (s3-s6) cycles using the latest astronomical solutions. Results show that this orbital component is stable back to at least 50 Ma, and can thus serve as a powerful geochronometer in the mid-Eocene portion of the Cenozoic timescale. We then exploit this potential by calibrating the geochronology of the recovered middle Eocene timescale between magnetic polarity Chrons C18n.1n and C21n. Comparison with previous timescales shows similarities, but also notable differences in durations of certain magnetic polarity chrons. We

  9. Astronomical Plate Archives and Binary Blazars Studies

    Czech Academy of Sciences Publication Activity Database

    Hudec, René

    2011-01-01

    Roč. 32, 1-2 (2011), s. 91-95 ISSN 0250-6335. [Conference on Multiwavelength Variability of Blazars. Guangzhou, 22,09,2010-24,09,2010] R&D Projects: GA ČR GA205/08/1207 Grant - others:GA ČR(CZ) GA102/09/0997; MŠMT(CZ) ME09027 Institutional research plan: CEZ:AV0Z10030501 Keywords : astronomical plates * plate archives archives * binary blazars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.400, year: 2011

  10. The mining methods at the Fraisse mine

    International Nuclear Information System (INIS)

    Heurley, P.; Vervialle, J.P.

    1985-01-01

    The Fraisse mine is one of the four underground mines of the La Crouzille mining divisions of Cogema. Faced with the necessity to mechanize its workings, this mine also had to satisfy a certain number of stringent demands. This has led to concept of four different mining methods for the four workings at present in active operation at this pit, which nevertheless preserve the basic ideas of the methods of top slicing under concrete slabs (TSS) or horizontal cut-and-fill stopes (CFS). An electric scooptram is utilized. With this type of vehicle the stringent demands for the introduction of means for fire fighting and prevention are reduced to a minimum. Finally, the dimensions of the vehicles and the operation of these methods result in a net-to-gross tonnages of close to 1, i.e. a maximum output, combined with a minimum of contamination [fr

  11. Old Star's "Rebirth" Gives Astronomers Surprises

    Science.gov (United States)

    2005-04-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope are taking advantage of a once-in-a-lifetime opportunity to watch an old star suddenly stir back into new activity after coming to the end of its normal life. Their surprising results have forced them to change their ideas of how such an old, white dwarf star can re-ignite its nuclear furnace for one final blast of energy. Sakurai's Object Radio/Optical Images of Sakurai's Object: Color image shows nebula ejected thousands of years ago. Contours indicate radio emission. Inset is Hubble Space Telescope image, with contours indicating radio emission; this inset shows just the central part of the region. CREDIT: Hajduk et al., NRAO/AUI/NSF, ESO, StSci, NASA Computer simulations had predicted a series of events that would follow such a re-ignition of fusion reactions, but the star didn't follow the script -- events moved 100 times more quickly than the simulations predicted. "We've now produced a new theoretical model of how this process works, and the VLA observations have provided the first evidence supporting our new model," said Albert Zijlstra, of the University of Manchester in the United Kingdom. Zijlstra and his colleagues presented their findings in the April 8 issue of the journal Science. The astronomers studied a star known as V4334 Sgr, in the constellation Sagittarius. It is better known as "Sakurai's Object," after Japanese amateur astronomer Yukio Sakurai, who discovered it on February 20, 1996, when it suddenly burst into new brightness. At first, astronomers thought the outburst was a common nova explosion, but further study showed that Sakurai's Object was anything but common. The star is an old white dwarf that had run out of hydrogen fuel for nuclear fusion reactions in its core. Astronomers believe that some such stars can undergo a final burst of fusion in a shell of helium that surrounds a core of heavier nuclei such as carbon and oxygen. However, the

  12. Astronomical Heritage and Aboriginal People: Conflicts and Possibilities

    Science.gov (United States)

    López, Alejandro Martín

    2016-10-01

    In this presentation we address issues relating to the astronomical heritage of contemporary aboriginal groups and other minorities. We deal specially with intangible astronomical heritage and its particularities. Also, we study (from ethnographic experience with Aboriginal groups, Creoles and Europeans in the Argentine Chaco) the conflicts referring to the different ways in which the natives' knowledge and practice are categorized by the natives themselves, by scientists, state politicians, professional artists and NGOs. Furthermore, we address several cases that illustrate these kinds of conflicts. We aim to analyze the complexities of patrimonial policies when they are applied to practices and representations of contemporary communities involved in power relations with national states and the global system. The essentialization of identities, the folklorization of representations and practices, and the fossilization of aboriginal peoples are some of the risks of applying the label ``cultural heritage'' without a careful consideration of each specific case. In particular we suggest possible ways in which the international scientific community could collaborate to improve the agenda of national states instead of reproducing colonial prejudices. In this way, we aim to contribute to the promotion of respect for ethnic and religious minorities.

  13. Databases of Publications and Observations as a Part of the Crimean Astronomical Virtual Observatory

    Directory of Open Access Journals (Sweden)

    Shlyapnikov A.

    2015-12-01

    Full Text Available We describe the main principles of formation of databases (DBs with information about astronomical objects and their physical characteristics derived from observations obtained at the Crimean Astrophysical Observatory (CrAO and published in the “Izvestiya of the CrAO” and elsewhere. Emphasis is placed on the DBs missing from the most complete global library of catalogs and data tables, VizieR (supported by the Center of Astronomical Data, Strasbourg. We specially consider the problem of forming a digital archive of observational data obtained at the CrAO as an interactive DB related to database objects and publications. We present examples of all our DBs as elements integrated into the Crimean Astronomical Virtual Observatory. We illustrate the work with the CrAO DBs using tools of the International Virtual Observatory: Aladin, VOPlot, VOSpec, in conjunction with the VizieR and Simbad DBs.

  14. Mined-out land

    International Nuclear Information System (INIS)

    Reinsalu, Enno; Toomik, Arvi; Valgma, Ingo

    2002-01-01

    Estonian mineral resources are deposited in low depth and mining fields are large, therefore vast areas are affected by mining. There are at least 800 deposits with total area of 6,000 km 2 and about the same number of underground mines, surface mines, peat fields, quarries, and sand and gravel pits. The deposits cover more than 10% of Estonian mainland. The total area of operating mine claims exceeds 150 km 2 that makes 0.3 % of Estonian area. The book is written mainly for the people who are living or acting in the area influenced by mining. The observations and research could benefit those who are interested in geography and environment, who follow formation and look of mined-out landscapes. The book contains also warnings for careless people on and under the surface of the mined-out land. Part of the book contains results of the research made in 1968-1993 by the first two authors working at the Estonian branch of A.Skochinsky Institute of Mining. Since 1990, Arvi Toomik continued this study at the Northeastern section of the Institute of Ecology of Tallinn Pedagogical University. Enno Reinsalu studied aftereffects of mining at the Mining Department of Tallinn Technical University from 1998 to 2000. Geographical Information System for Mining was studied by Ingo Valgma within his doctoral dissertation, and this book is one of the applications of his study

  15. An Application for Data Preprocessing and Models Extractions in Web Usage Mining

    Directory of Open Access Journals (Sweden)

    Claudia Elena DINUCA

    2011-11-01

    Full Text Available Web servers worldwide generate a vast amount of information on web users’ browsing activities. Several researchers have studied these so-called clickstream or web access log data to better understand and characterize web users. The goal of this application is to analyze user behaviour by mining enriched web access log data. With the continued growth and proliferation of e-commerce, Web services, and Web-based information systems, the volumes of click stream and user data collected by Web-based organizations in their daily operations has reached astronomical proportions. This information can be exploited in various ways, such as enhancing the effectiveness of websites or developing directed web marketing campaigns. The discovered patterns are usually represented as collections of pages, objects, or re-sources that are frequently accessed by groups of users with common needs or interests. In this paper we will focus on displaying the way how it was implemented the application for data preprocessing and extracting different data models from web logs data, finding association as a data mining technique to extract potentially useful knowledge from web usage data. We find different data models navigation patterns by analysing the log files of the web-site. I implemented the application in Java using NetBeans IDE. For exemplification, I used the log files data from a commercial web site www.nice-layouts.com.

  16. Trust Mines

    Science.gov (United States)

    The United States and the Navajo Nation entered into settlement agreements that provide funds to conduct investigations and any needed cleanup at 16 of the 46 priority mines, including six mines in the Northern Abandoned Uranium Mine Region.

  17. Astronomers Travel in Time and Space with Light

    Science.gov (United States)

    Mather, John C.

    2016-01-01

    This is an excerpt of John Mather's in a book titled: INSPIRED BY LIGHT, Reflections from the International Year of Light 2015. It was produced in January 2016 by SPIE, the European Physical Society (EPS), and The Abdus Salam International Centre for Theoretical Physics (ICTP) to commemorate the International Year of Light and Light-based Technologies 2015. The excerpt discusses how astronomers use light.

  18. Web Mining

    Science.gov (United States)

    Fürnkranz, Johannes

    The World-Wide Web provides every internet citizen with access to an abundance of information, but it becomes increasingly difficult to identify the relevant pieces of information. Research in web mining tries to address this problem by applying techniques from data mining and machine learning to Web data and documents. This chapter provides a brief overview of web mining techniques and research areas, most notably hypertext classification, wrapper induction, recommender systems and web usage mining.

  19. Data mining, mining data : energy consumption modelling

    Energy Technology Data Exchange (ETDEWEB)

    Dessureault, S. [Arizona Univ., Tucson, AZ (United States)

    2007-09-15

    Most modern mining operations are accumulating large amounts of data on production and business processes. Data, however, provides value only if it can be translated into information that appropriate users can utilize. This paper emphasized that a new technological focus should emerge, notably how to concentrate data into information; analyze information sufficiently to become knowledge; and, act on that knowledge. Researchers at the Mining Information Systems and Operations Management (MISOM) laboratory at the University of Arizona have created a method to transform data into action. The data-to-action approach was exercised in the development of an energy consumption model (ECM), in partnership with a major US-based copper mining company, 2 software companies, and the MISOM laboratory. The approach begins by integrating several key data sources using data warehousing techniques, and increasing the existing level of integration and data cleaning. An online analytical processing (OLAP) cube was also created to investigate the data and identify a subset of several million records. Data mining algorithms were applied using the information that was isolated by the OLAP cube. The data mining results showed that traditional cost drivers of energy consumption are poor predictors. A comparison was made between traditional methods of predicting energy consumption and the prediction formed using data mining. Traditionally, in the mines for which data were available, monthly averages of tons and distance are used to predict diesel fuel consumption. However, this article showed that new information technology can be used to incorporate many more variables into the budgeting process, resulting in more accurate predictions. The ECM helped mine planners improve the prediction of energy use through more data integration, measure development, and workflow analysis. 5 refs., 11 figs.

  20. Mining with communities

    International Nuclear Information System (INIS)

    Veiga, Marcello M.; Scoble, Malcolm; McAllister, Mary Louise

    2001-01-01

    To be considered as sustainable, a mining community needs to adhere to the principles of ecological sustainability, economic vitality and social equity. These principles apply over a long time span, covering both the life of the mine and post-mining closure. The legacy left by a mine to the community after its closure is emerging as a significant aspect of its planning. Progress towards sustainability is made when value is added to a community with respect to these principles by the mining operation during its life cycle. This article presents a series of cases to demonstrate the diverse potential challenges to achieving a sustainable mining community. These case studies of both new and old mining communities are drawn mainly from Canada and from locations abroad where Canadian companies are now building mines. The article concludes by considering various approaches that can foster sustainable mining communities and the role of community consultation and capacity building. (author)

  1. Ideate about building green mine of uranium mining and metallurgy

    International Nuclear Information System (INIS)

    Shi Zuyuan

    2012-01-01

    Analysing the current situation of uranium mining and metallurgy; Setting up goals for green uranium mining and metallurgy, its fundamental conditions, Contents and measures. Putting forward an idea to combine green uranium mining and metallurgy with the state target for green mining, and keeping its own characteristics. (author)

  2. NASA Telescopes Help Identify Most Distant Galaxy Cluster

    Science.gov (United States)

    2011-01-01

    WASHINGTON -- Astronomers have uncovered a burgeoning galactic metropolis, the most distant known in the early universe. This ancient collection of galaxies presumably grew into a modern galaxy cluster similar to the massive ones seen today. The developing cluster, named COSMOS-AzTEC3, was discovered and characterized by multi-wavelength telescopes, including NASA's Spitzer, Chandra and Hubble space telescopes, and the ground-based W.M. Keck Observatory and Japan's Subaru Telescope. "This exciting discovery showcases the exceptional science made possible through collaboration among NASA projects and our international partners," said Jon Morse, NASA's Astrophysics Division director at NASA Headquarters in Washington. Scientists refer to this growing lump of galaxies as a proto-cluster. COSMOS-AzTEC3 is the most distant massive proto-cluster known, and also one of the youngest, because it is being seen when the universe itself was young. The cluster is roughly 12.6 billion light-years away from Earth. Our universe is estimated to be 13.7 billion years old. Previously, more mature versions of these clusters had been spotted at 10 billion light-years away. The astronomers also found that this cluster is buzzing with extreme bursts of star formation and one enormous feeding black hole. "We think the starbursts and black holes are the seeds of the cluster," said Peter Capak of NASA's Spitzer Science Center at the California Institute of Technology in Pasadena. "These seeds will eventually grow into a giant, central galaxy that will dominate the cluster -- a trait found in modern-day galaxy clusters." Capak is first author of a paper appearing in the Jan. 13 issue of the journal Nature. Most galaxies in our universe are bound together into clusters that dot the cosmic landscape like urban sprawls, usually centered around one old, monstrous galaxy containing a massive black hole. Astronomers thought that primitive versions of these clusters, still forming and clumping

  3. SPITZER OBSERVATIONS OF WHITE DWARFS: THE MISSING PLANETARY DEBRIS AROUND DZ STARS

    International Nuclear Information System (INIS)

    Xu, S.; Jura, M.

    2012-01-01

    We report a Spitzer/Infrared Array Camera search for infrared excesses around white dwarfs, including 14 newly observed targets and 16 unpublished archived stars. We find a substantial infrared excess around two warm white dwarfs—J220934.84+122336.5 and WD 0843+516, the latter apparently being the hottest white dwarf known to display a close-in dust disk. Extending previous studies, we find that the fraction of white dwarfs with dust disks increases as the star's temperature increases; for stars cooler than 10,000 K, even the most heavily polluted ones do not have ∼1000 K dust. There is tentative evidence that the dust disk occurrence is correlated with the volatility of the accreted material. In the Appendix, we modify a previous analysis to clarify how Poynting-Robertson drag might play an important role in transferring materials from a dust disk into a white dwarf's atmosphere.

  4. Social big data mining

    CERN Document Server

    Ishikawa, Hiroshi

    2015-01-01

    Social Media. Big Data and Social Data. Hypotheses in the Era of Big Data. Social Big Data Applications. Basic Concepts in Data Mining. Association Rule Mining. Clustering. Classification. Prediction. Web Structure Mining. Web Content Mining. Web Access Log Mining, Information Extraction and Deep Web Mining. Media Mining. Scalability and Outlier Detection.

  5. Mining and mining authorities in Saarland 2016. Mining economy, mining technology, occupational safety, environmental protection, statistics, mining authority activities. Annual report; Bergbau und Bergbehoerden im Saarland 2016. Bergwirtschaft, Bergtechnik, Arbeitsschutz, Umweltschutz, Statistiken, Taetigkeiten der Bergbehoerden. Jahresbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    The annual report of the Saarland Upper Mining Authority provides an insight into the activities of mining authorities. Especially, the development of the black coal mining, safety and technology of mining as well as the correlation between mining and environment are stressed.

  6. Progress on the New York State Observatory: a new 12-meter astronomical telescope

    Science.gov (United States)

    Sebring, T.; O'Dea, C.; Baum, S.; Teran, J.; Loewen, N.; Stutzki, C.; Egerman, R.; Bonomi, G.

    2014-07-01

    Over the past two years, the New York Astronomical Corporation (NYAC), the business arm of the Astronomical Society of New York (ASNY), has continued planning and technical studies toward construction of a 12-meter class optical telescope for the use of all New York universities and research institutions. Four significant technical studies have been performed investigating design opportunities for the facility, the dome, the telescope optics, and the telescope mount. The studies were funded by NYAC and performed by companies who have provided these subsystems for large astronomical telescopes in the past. In each case, innovative and cost effective approaches were identified, developed, analyzed, and initial cost estimates developed. As a group, the studies show promise that this telescope could be built at historically low prices. As the project continues forward, NYAC intends to broaden the collaboration, pursue funding, to continue to develop the telescope and instrument designs, and to further define the scientific mission. The vision of a historically large telescope dedicated to all New York institutions continues to grow and find new adherents.

  7. The CO2 Abundance in Comets C2012 K1 (PanSTARRS), C2012 K5 (LINEAR), and 290P Jager as Measured with Spitzer

    Science.gov (United States)

    McKay, Adam J.; Kelley, Michael S.P.; Cochran, Anita L.; Bodewits, Dennis; DiSanti, Michael A.; Dello Russo, Neil; Lisse, Carey M.

    2015-01-01

    Carbon dioxide is one of the most abundant ices present in comets and is therefore important for understanding cometary composition and activity. We present analysis of observations of CO2 and [O I] emission in three comets to measure the CO2 abundance and evaluate the possibility of employing observations of [O I] emission in comets as a proxy for CO2. We obtained NIR imaging sensitive to CO2 of comets C/2012 K1 (PanSTARRS), C/2012 K5 (LINEAR), and 290P/Jager with the IRAC instrument on Spitzer. We acquired observations of [O I] emission in these comets with the ARCES echelle spectrometer mounted on the 3.5-m telescope at Apache Point Observatory and observations of OH with the Swift observatory (PanSTARRS) and with Keck HIRES (Jager). The CO2/H2O ratios derived from the Spitzer images are 12.6 +/- 1.3% (PanSTARRS), 28.9 +/- 3.6% (LINEAR), and 31.3 +/- 4.2% (Jager). These abundances are derived under the assumption that contamination from CO emission is negligible. The CO2 abundance for PanSTARRS is close to the average abundance measured in comets at similar heliocentric distance to date, while the abundances measured for LINEAR and Jager are significantly larger than the average abundance. From the coma morphology observed in PanSTARRS and the assumed gas expansion velocity, we derive a rotation period for the nucleus of about 9.2 h. Comparison of H2O production rates derived from ARCES and Swift data, as well as other observations, suggest the possibility of sublimation from icy grains in the inner coma. We evaluate the possibility that the [O I] emission can be employed as a proxy for CO2 by comparing CO2/H2O ratios inferred from the [O I] lines to those measured directly by Spitzer. We find that for PanSTARRS we can reproduce the observed CO2 abundance to an accuracy of approximately 20%. For LINEAR and Jager, we were only able to obtain upper limits on the CO2 abundance inferred from the [O I] lines. These upper limits are consistent with the CO2 abundances

  8. Astronomers Make First Images With Space Radio Telescope

    Science.gov (United States)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  9. 75 FR 17529 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines

    Science.gov (United States)

    2010-04-06

    ... High-Voltage Continuous Mining Machine Standard for Underground Coal Mines AGENCY: Mine Safety and... of high-voltage continuous mining machines in underground coal mines. It also revises MSHA's design...-- Underground Coal Mines III. Section-by-Section Analysis A. Part 18--Electric Motor-Driven Mine Equipment and...

  10. International astronomical remote present observation on IRC.

    Science.gov (United States)

    Ji, Kaifan; Cao, Wenda; Song, Qian

    On March 6 - 7, 1997, an international astronomical remote present observation (RPO) was made on Internet Relay Chat (IRC) for the first time. Seven groups in four countries, China, United States, Canada and Great Britain, used the 1 meter telescope of Yunnan observatory together by the way of remote present observation. Within minutes, images were "On-line" by FTP, and every one was able to get them by anonymous ftp and discuss them on IRC from different widely separated sites.

  11. Astronomically speaking a dictionary of quotations on astronomy and physics

    CERN Document Server

    Gaither, CC

    2003-01-01

    To understand the history, accomplishments, failures, and meanings of astronomy requires a knowledge of what has been said about astronomy by philosophers, novelists, playwrights, poets, scientists, and laymen. With this in mind, Astronomically Speaking: A Dictionary of Quotations on Astronomy and Physics serves as a guide to what has been said about astronomy through the ages. Containing approximately 1,550 quotations and numerous illustrations, this resource is the largest compilation of astronomy and astrophysics quotations published to date.Devoted to astronomy and the closely related areas of mathematics and physics, this resource helps form an accurate picture of these interconnected disciplines. It is designed as an aid for general readers with little knowledge of astronomy who are interested in astronomical topics. Students can use the book to increase their understanding of the complexity and richness that exists in scientific disciplines. In addition, experienced scientists will find it as a handy s...

  12. Mine water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Komissarov, S V

    1980-10-01

    This article discusses composition of chemical compounds dissolved or suspended in mine waters in various coal basins of the USSR: Moscow basin, Kuzbass, Pechora, Kizelovsk, Karaganda, Donetsk and Chelyabinsk basins. Percentage of suspended materials in water depending on water source (water from water drainage system of dust suppression system) is evaluated. Pollution of mine waters with oils and coli bacteria is also described. Recommendations on construction, capacity of water settling tanks, and methods of mine water treatment are presented. In mines where coal seams 2 m or thicker are mined a system of two settling tanks should be used: in the upper one large grains are settled, in the lower one finer grains. The upper tank should be large enough to store mine water discharged during one month, and the lower one to store water discharged over two months. Salty waters from coal mines mining thin coal seams should be treated in a system of water reservoirs from which water evaporates (if climatic conditions permit). Mine waters from mines with thin coal seams but without high salt content can be treated in a system of long channels with water plants, which increase amount of oxygen in treated water. System of biological treatment of waste waters from mine wash-houses and baths is also described. Influence of temperature, sunshine and season of the year on efficiency of mine water treatment is also assessed. (In Russian)

  13. Uranium mining

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The economic and environmental sustainability of uranium mining has been analysed by Monash University researcher Dr Gavin Mudd in a paper that challenges the perception that uranium mining is an 'infinite quality source' that provides solutions to the world's demand for energy. Dr Mudd says information on the uranium industry touted by politicians and mining companies is not necessarily inaccurate, but it does not tell the whole story, being often just an average snapshot of the costs of uranium mining today without reflecting the escalating costs associated with the process in years to come. 'From a sustainability perspective, it is critical to evaluate accurately the true lifecycle costs of all forms of electricity production, especially with respect to greenhouse emissions, ' he says. 'For nuclear power, a significant proportion of greenhouse emissions are derived from the fuel supply, including uranium mining, milling, enrichment and fuel manufacture.' Dr Mudd found that financial and environmental costs escalate dramatically as the uranium ore is used. The deeper the mining process required to extract the ore, the higher the cost for mining companies, the greater the impact on the environment and the more resources needed to obtain the product. I t is clear that there is a strong sensitivity of energy and water consumption and greenhouse emissions to ore grade, and that ore grades are likely to continue to decline gradually in the medium to long term. These issues are critical to the current debate over nuclear power and greenhouse emissions, especially with respect to ascribing sustainability to such activities as uranium mining and milling. For example, mining at Roxby Downs is responsible for the emission of over one million tonnes of greenhouse gases per year and this could increase to four million tonnes if the mine is expanded.'

  14. Internet technologies in the mining industry. Towards unattended mining systems

    Energy Technology Data Exchange (ETDEWEB)

    Krzykawski, Michal [FAMUR Group, Katowice (Poland)

    2009-08-27

    Global suppliers of longwall systems focus mainly on maximising the efficiency of the equipment they manufacture. Given the fact that, since 2004, coal demand on world markets has been constantly on the increase, even during an economic downturn, this endeavour seems fully justified. However, it should be remembered that maximum efficiency must be accompanied by maximum safety of all underground operations. This statement is based on the belief that the mining industry, which exploits increasingly deep and dangerous coal beds, faces the necessity to implement comprehensive IT systems for managing all mining processes and, in the near future, to use unmanned mining systems, fully controllable from the mine surface. The computerisation of mines is an indispensable element of the development of the world mining industry, a belief which has been put into practice with e-mine, developed by the FAMUR Group. (orig.)

  15. In the Jungle of Astronomical On--line Data Services

    Science.gov (United States)

    Egret, D.

    The author tried to survive in the jungle of astronomical on--line data services. In order to find efficient answers to common scientific data retrieval requests, he had to collect many pieces of information, in order to formulate typical user scenarios, and try them against a number of different data bases, catalogue services, or information systems. He discovered soon how frustrating treasure coffers may be when their keys are not available, but he realized also that nice widgets and gadgets are of no help when the information is not there. And, before long, he knew he would have to navigate through several systems because no one was yet offering a general answer to all his questions. I will present examples of common user scenarios and show how they were tested against a number of services. I will propose some elements of classification which should help the end-user to evaluate how adequate the different services may be for providing satisfying answers to specific queries. For that, many aspects of the user interaction will be considered: documentation, access, query formulation, functionalities, qualification of the data, overall efficiency, etc. I will also suggest possible improvements to the present situation: the first of them being to encourage system managers to increase collaboration between one another, for the benefit of the whole astronomical community. The subjective review I will present, is based on publicly available astronomical on--line services from the U.S. and from Europe, most of which (excepting the newcomers) were described in ``Databases and On-Line Data in Astronomy", (Albrecht & Egret, eds, 1991): this includes databases (such as NED and Simbad ), catalog services ( StarCat , DIRA , XCatScan , etc.), and information systems ( ADS and ESIS ).

  16. The Red Rectangle: An Astronomical Example of Mach Bands?

    Science.gov (United States)

    Brecher, K.

    2005-12-01

    Recently, the Hubble Space Telescope (HST) produced spectacular images of the "Red Rectangle". This appears to be a binary star system undergoing recurrent mass loss episodes. The image-processed HST photographs display distinctive diagonal lightness enhancements. Some of the visual appearance undoubtedly arises from actual variations in the luminosity distribution of the light of the nebula itself, i.e., due to limb brightening. Psychophysical enhancement similar to the Vasarely or pyramid effect also seems to be involved in the visual impression conveyed by the HST images. This effect is related to Mach bands (as well as to the Chevreul and Craik-O'Brien-Cornsweet effects). The effect can be produced by stacking concentric squares (or other geometrical figures such as rectangles or hexagons) of linearly increasing or decreasing size and lightness, one on top of another. We have constructed controllable Flash applets of this effect as part of the NSF supported "Project LITE: Light Inquiry Through Experiments". They can be found in the vision section of the LITE web site at http://lite.bu.edu. Mach band effects have previously been seen in medical x-ray images. Here we report for the first time the possibility that such effects play a role in the interpretation of astronomical images. Specifically, we examine to what extent the visual impressions of the Red Rectangle and other extended astronomical objects are purely physical (photometric) in origin and to what degree they are enhanced by psychophysical processes. To help assess the relative physical and psychophysical contributions to the perceived lightness effects, we have made use of a center-surround (Difference of Gaussians) filter we developed for MatLab. We conclude that local (lateral inhibition) and longer range human visual perception effects probably do contribute to the lightness features seen in astronomical objects like the Red Rectangle. Project LITE is supported by NSF Grant # DUE-0125992.

  17. Sky as a bridge: Astronomical interactions in Eurasia through the ages

    Science.gov (United States)

    Kochhar, Rajesh Kumar

    2015-08-01

    Since the sky constituted common heritage for the whole humankind, astronomical thoughts, prescriptions, apparatus and tools developed in a particular cultural area were monitored by others and selectively assimilated. The fact that an artificial unit of time, the seven-day week, came to be used in the whole world is a powerful illustration of the world-wide transmission of astronomical ideas.Historical facts here are interpreted in a framework, called Cultural Copernicanism which asserts that no cultural, geographical or ethnic area can be deemed to be a benchmark to be used to evaluate and judge others. This framework manifestly rejects Euro-centrism as well as anti-Euro-centrism. At the same time, astronomy is viewed as a multi-stage intellectual cumulus where each stage builds on the previous one and carries the subject forward.Post-Alexandrian developments brought about a synthesis between classical Greek intellectual tradition and the accomplishments of the still older Egyptian and Mesopotamian civilizations. The Greco-Babylonian inputs in turn vitalized Indian astronomy which along with cosmological ideas, travelled to East Asia (China, Korea, Japan in that order) and Tibet as part of the Buddhist package. Indian astronomical theory was noticed in the area now called the Middle East, but did not significantly influence local developments. The fact that the popular English term algorithm comes from a place name in Central Asia and that Europe designated Indian-origin numerals as Arabic numerals tells us about the role Muslim Cultural Zone has historically played in the intellectual development of Europe.In an earlier era, transmission of astronomical knowledge and ideas in general occurred in an un-self-conscious manner. In relatively recent times, however, considerations of origins, borrowings and priorities were introduced as part of colonial historiography. Thus, in the early 19th century, when Urdu school text books were being prepared under British

  18. Constructing Concept Schemes From Astronomical Telegrams Via Natural Language Clustering

    Science.gov (United States)

    Graham, Matthew; Zhang, M.; Djorgovski, S. G.; Donalek, C.; Drake, A. J.; Mahabal, A.

    2012-01-01

    The rapidly emerging field of time domain astronomy is one of the most exciting and vibrant new research frontiers, ranging in scientific scope from studies of the Solar System to extreme relativistic astrophysics and cosmology. It is being enabled by a new generation of large synoptic digital sky surveys - LSST, PanStarrs, CRTS - that cover large areas of sky repeatedly, looking for transient objects and phenomena. One of the biggest challenges facing these is the automated classification of transient events, a process that needs machine-processible astronomical knowledge. Semantic technologies enable the formal representation of concepts and relations within a particular domain. ATELs (http://www.astronomerstelegram.org) are a commonly-used means for reporting and commenting upon new astronomical observations of transient sources (supernovae, stellar outbursts, blazar flares, etc). However, they are loose and unstructured and employ scientific natural language for description: this makes automated processing of them - a necessity within the next decade with petascale data rates - a challenge. Nevertheless they represent a potentially rich corpus of information that could lead to new and valuable insights into transient phenomena. This project lies in the cutting-edge field of astrosemantics, a branch of astroinformatics, which applies semantic technologies to astronomy. The ATELs have been used to develop an appropriate concept scheme - a representation of the information they contain - for transient astronomy using hierarchical clustering of processed natural language. This allows us to automatically organize ATELs based on the vocabulary used. We conclude that we can use simple algorithms to process and extract meaning from astronomical textual data.

  19. "Zhizneopisanie" astronomia N. N. Pavlova, im samim napisannoe %t Astronomer N. N. Pavlov's autobiography

    Science.gov (United States)

    Zhukov, V. Yu.

    This document called by the author "the life story" is written for the human resources department. It is a document intended for the official departmental purposes. At the same time there is something facinating about this documentary testimony about the epoch and the man. This short autobiography describes the early years of the Pulkovo astronomer N. N. Pavlov that fell on hard times of the Civil War. In the years between the World War I and the World War II he was awarded Mendeleyev Prize. He defended his doctorate dissertation after the evacuation from Leningrad. He was one fo the first Pulkovo astronomers to return to Leningrad in order to start reconstruction of the observatory that had been completely ruined during the war. Astronomer N. N. Pavlov renewed the Time Service in the city. N. N. Pavlov was a successful scientist and an outstanding person, all his life was devoted to science.

  20. Authentic Astronomical Discovery in Planetariums: Bringing Data to Domes

    Science.gov (United States)

    Wyatt, Ryan Jason; Subbarao, Mark; Christensen, Lars; Emmons, Ben; Hurt, Robert

    2018-01-01

    Planetariums offer a unique opportunity to disseminate astronomical discoveries using data visualization at all levels of complexity: the technical infrastructure to display data and a sizeable cohort of enthusiastic educators to interpret results. “Data to Dome” is an initiative the International Planetarium Society to develop our community’s capacity to integrate data in fulldome planetarium systems—including via open source software platforms such as WorldWide Telescope and OpenSpace. We are cultivating a network of planetarium professionals who integrate data into their presentations and share their content with others. Furthermore, we propose to shorten the delay between discovery and dissemination in planetariums. Currently, the “latest science” is often presented days or weeks after discoveries are announced, and we can shorten this to hours or even minutes. The Data2Dome (D2D) initiative, led by the European Southern Observatory, proposes technical infrastructure and data standards that will streamline content flow from research institutions to planetariums, offering audiences a unique opportunity to access to the latest astronomical data in near real time.

  1. Weird astronomical theories of the solar system and beyond

    CERN Document Server

    Seargent, David

    2016-01-01

    After addressing strange cosmological hypotheses in Weird Universe, David Seargent tackles the no-less bizarre theories closer to home. Alternate views on the Solar System's formation, comet composition, and the evolution of life on Earth are only some of the topics he addresses in this new work. Although these ideas exist on the fringe of mainstream astronomy, they can still shed light on the origins of life and the evolution of the planets. Continuing the author's series of books popularizing strange astronomy facts and knowledge, Weird Astronomical Theories presents an approachable exploration of the still mysterious questions about the origin of comets, the pattern of mass extinctions on Earth, and more. The alternative theories discussed here do not come from untrained amateurs. The scientists whose work is covered includes the mid-20th century Russian S. K. Vsekhsvyatskii, cosmologist Max Tegmark, British astronomers Victor Clube and William Napier, and American Tom Van Flandern, a special...

  2. Far infrared extinction coefficients of minerals of interest for astronomical observations

    International Nuclear Information System (INIS)

    Hasegawa, H.

    1984-01-01

    Far infrared extinction coefficients of mineral grains of interest for astronomical observations have been measured. The measured mineral species are: amorphous carbon, high temperature magnesium silicates, hydrous silicates, iron oxides, and amorphous silicates. (author)

  3. Astronomers Discover Six-Image Gravitational Lens

    Science.gov (United States)

    2001-08-01

    An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard

  4. Brightness Variations of Sun-like Stars: The Mystery Deepens - Astronomers facing Socratic "ignorance"

    Science.gov (United States)

    2009-12-01

    An extensive study made with ESO's Very Large Telescope deepens a long-standing mystery in the study of stars similar to the Sun. Unusual year-long variations in the brightness of about one third of all Sun-like stars during the latter stages of their lives still remain unexplained. Over the past few decades, astronomers have offered many possible explanations, but the new, painstaking observations contradict them all and only deepen the mystery. The search for a suitable interpretation is on. "Astronomers are left in the dark, and for once, we do not enjoy it," says Christine Nicholls from Mount Stromlo Observatory, Australia, lead author of a paper reporting the study. "We have obtained the most comprehensive set of observations to date for this class of Sun-like stars, and they clearly show that all the possible explanations for their unusual behaviour just fail." The mystery investigated by the team dates back to the 1930s and affects about a third of Sun-like stars in our Milky Way and other galaxies. All stars with masses similar to our Sun become, towards the end of their lives, red, cool and extremely large, just before retiring as white dwarfs. Also known as red giants, these elderly stars exhibit very strong periodic variations in their luminosity over timescales up to a couple of years. "Such variations are thought to be caused by what we call 'stellar pulsations'," says Nicholls. "Roughly speaking, the giant star swells and shrinks, becoming brighter and dimmer in a regular pattern. However, one third of these stars show an unexplained additional periodic variation, on even longer timescales - up to five years." In order to find out the origin of this secondary feature, the astronomers monitored 58 stars in our galactic neighbour, the Large Magellanic Cloud, over two and a half years. They acquired spectra using the high resolution FLAMES/GIRAFFE spectrograph on ESO's Very Large Telescope and combined them with images from other telescopes [1

  5. IAU Public Astronomical Organisations Network

    Science.gov (United States)

    Canas, Lina; Cheung, Sze Leung

    2015-08-01

    The Office for Astronomy Outreach has devoted intensive means to create and support a global network of public astronomical organisations around the world. Focused on bringing established and newly formed amateur astronomy organizations together, providing communications channels and platforms for disseminating news to the global community and the sharing of best practices and resources among these associations around the world. In establishing the importance that these organizations have for the dissemination of activities globally and acting as key participants in IAU various campaigns social media has played a key role in keeping this network engaged and connected. Here we discuss the implementation process of maintaining this extensive network, the processing and gathering of information and the interactions between local active members at a national and international level.

  6. How to Make the Dream Come True: The Astronomers' Data Manifesto

    Directory of Open Access Journals (Sweden)

    Ray P Norris

    2007-03-01

    Full Text Available Astronomy is one of the most data-intensive of the sciences. Data technology is accelerating the quality and effectiveness of its research, and the rate of astronomical discovery is higher than ever. As a result, many view astronomy as being in a "Golden Age," and projects such as the Virtual Observatory are amongst the most ambitious data projects in any field of science. But these powerful tools will be impotent unless the data on which they operate are of matching quality. Astronomy, like other fields of science, therefore needs to establish and agree on a set of guiding principles for the management of astronomical data. To focus this process, we are constructing a "data manifesto," which proposes guidelines to maximise the rate and cost-effectiveness of scientific discovery.

  7. SPITZER OBSERVATIONS OF PASSIVE AND STAR-FORMING EARLY-TYPE GALAXIES: AN INFRARED COLOR-COLOR SEQUENCE

    International Nuclear Information System (INIS)

    Temi, Pasquale; Brighenti, Fabrizio; Mathews, William G.

    2009-01-01

    We describe the infrared properties of a large sample of early-type galaxies, comparing data from the Spitzer archive with Ks-band emission from the Two Micron All Sky Survey. While most representations of this data result in correlations with large scatter, we find a remarkably tight relation among colors formed by ratios of luminosities in Spitzer-Multiband Imaging Photometer bands (24, 70, and 160 μm) and the Ks band. Remarkably, this correlation among E and S0 galaxies follows that of nearby normal galaxies of all morphological types. In particular, the tight infrared color-color correlation for S0 galaxies alone follows that of the entire Hubble sequence of normal galaxies, roughly in order of galaxy type from ellipticals to spirals to irregulars. The specific star formation rate (SFR) of S0 galaxies estimated from the 24 μm luminosity increases with decreasing K-band luminosity (or stellar mass) from essentially zero, as with most massive ellipticals, to rates typical of irregular galaxies. Moreover, the luminosities of the many infrared-luminous S0 galaxies can significantly exceed those of the most luminous (presumably post-merger) E galaxies. SFRs in the most infrared-luminous S0 galaxies approach 1-10 solar masses per year. Consistently, with this picture we find that while most early-type galaxies populate an infrared red sequence, about 24% of the objects (mostly S0s) are in an infrared blue cloud together with late-type galaxies. For those early-type galaxies also observed at radio frequencies, we find that the far-infrared luminosities correlate with the mass of neutral and molecular hydrogen, but the scatter is large. This scatter suggests that the star formation may be intermittent or that similar S0 galaxies with cold gaseous disks of nearly equal mass can have varying radial column density distributions that alter the local and global SFRs.

  8. An astronomical age for the Bishop Tuff and concordance with radioisotopic dates

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Zeeden, Christian; Storey, Michael

    2014-01-01

    The Bishop Tuff forms a key stratigraphic horizon for synchronization of Quaternary sedimentary records in North America. The unit stratigraphically overlies the Matuyama-Brunhes geomagnetic polarity reversal by several thousand years; high-precision dating of this tuff may be valuable for regional...... and global correlation of records. The Quaternary time scale is anchored by 40Ar/39Ar ages on lava flows and ash layers where available, with stage boundaries and geomagnetic reversals including astronomically tuned records. However, astronomical dating has not yet validated the high-precision 238U/206Pb...... ages, including new single crystal 40Ar/39Ar sanidine fusion analyses presented here, which demonstrates that concordance through multiple dating techniques is achievable within the Quaternary...

  9. Requirements and opportunities for mining engineers in the mining industry abroad

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, E

    1987-04-09

    The decline of the German mining industry and the increasing industrialization of mining is forcing ever greater numbers of young German mining graduates to build their careers abroad. The requirements for this - apart from the technical qualifications are a good knowledge of foreign languages and a readiness to leave Germany for a long time, even for ever. If the young mining graduate accepts these conditions, numerous professional opportunities will open up for him, both with German mining companies with interests abroad, in mining supply companies and consultancy firms and with foreign companies. 6 references.

  10. Mining

    Directory of Open Access Journals (Sweden)

    Khairullah Khan

    2014-09-01

    Full Text Available Opinion mining is an interesting area of research because of its applications in various fields. Collecting opinions of people about products and about social and political events and problems through the Web is becoming increasingly popular every day. The opinions of users are helpful for the public and for stakeholders when making certain decisions. Opinion mining is a way to retrieve information through search engines, Web blogs and social networks. Because of the huge number of reviews in the form of unstructured text, it is impossible to summarize the information manually. Accordingly, efficient computational methods are needed for mining and summarizing the reviews from corpuses and Web documents. This study presents a systematic literature survey regarding the computational techniques, models and algorithms for mining opinion components from unstructured reviews.

  11. PREVENTION OF ACID MINE DRAINAGE GENERATION FROM OPEN-PIT MINE HIGHWALLS

    Science.gov (United States)

    Exposed, open pit mine highwalls contribute significantly to the production of acid mine drainage (AMD) thus causing environmental concerns upon closure of an operating mine. Available information on the generation of AMD from open-pit mine highwalls is very limit...

  12. FITS Liberator: Image processing software

    Science.gov (United States)

    Lindberg Christensen, Lars; Nielsen, Lars Holm; Nielsen, Kaspar K.; Johansen, Teis; Hurt, Robert; de Martin, David

    2012-06-01

    The ESA/ESO/NASA FITS Liberator makes it possible to process and edit astronomical science data in the FITS format to produce stunning images of the universe. Formerly a plugin for Adobe Photoshop, the current version of FITS Liberator is a stand-alone application and no longer requires Photoshop. This image processing software makes it possible to create color images using raw observations from a range of telescopes; the FITS Liberator continues to support the FITS and PDS formats, preferred by astronomers and planetary scientists respectively, which enables data to be processed from a wide range of telescopes and planetary probes, including ESO's Very Large Telescope, the NASA/ESA Hubble Space Telescope, NASA's Spitzer Space Telescope, ESA's XMM-Newton Telescope and Cassini-Huygens or Mars Reconnaissance Orbiter.

  13. Infrared Astronomical Satellite (IRAS) Catalogs and Atlases. Explanatory Supplement

    Science.gov (United States)

    Beichman, C. A. (Editor); Neugebauer, G. (Editor); Habing, H. J. (Editor); Clegg, P. E. (Editor); Chester, T. J. (Editor)

    1985-01-01

    The Infrared Astronomical Satellite (IRAS) mission is described. An overview of the mission, a description of the satellite and its telescope system, and a discussion of the mission design, requirements, and inflight modifications are given. Data reduction, flight tests, flux reconstruction and calibration, data processing, and the formats of the IRAS catalogs and atlases are also considered.

  14. A direction of developing a mining method and mining complexes

    Energy Technology Data Exchange (ETDEWEB)

    Gabov, V.V.; Efimov, I.A. [St. Petersburg State Mining Institute, St. Petersburg (Russian Federation). Vorkuta Branch

    1996-12-31

    The analyses of a mining method as a main factor determining the development stages of mining units is presented. The paper suggests a perspective mining method which differs from the known ones by following peculiarities: the direction selectivity of cuts with regard to coal seams structure; the cutting speed, thickness and succession of dusts. This method may be done by modulate complexes (a shield carrying a cutting head for coal mining), their mining devices being supplied with hydraulic drive. An experimental model of the module complex has been developed. 2 refs.

  15. Categorization of alternative astronomical and scientifical conceptions of the teachers from the north coast of São Paulo

    Science.gov (United States)

    Gonzaga, E. P.

    2016-05-01

    This work deals with the analysis of scientific and alternative astronomical concepts found in the responses of teachers who teach classes Science, Geography and Physic in Basic Education (BE) of the state of the North Coast of São Paulo and how to address the alternative astronomical concepts with students from students Fundamental Education (FE) and Medium Education (ME). Bringing the legal documents regarding the Astronomy in BE, within the national and the São Paulo regions curriculum level, also with rationed researches to the teacher's formation, conceptual errors in books, knowledge non-formal spaces, alternative concepts, Astronomical studies and content analysis for fundamental theoretical. The task executed with the teachers was done via Technical Orientations (TO), promoted by the Director of Education (DE) from Caraguatatuba and region, with the premise to threat the continuous formation giving moments of discussion, practical activities and using the Digital Mobile Planetarium (DMP) with non-formal spaces of knowledge to the Astronomical studies gathering data via questions. Within the analysis of the answers analysis by the teachers, tables were created with the categories that highlight actual situations on the astronomical studies in the North Coast of São Paulo, and demarked the possible paths where the continuous formation will be followed in the future. Aspects checked in the survey were highlighted; such as teachers understand that they need continuing education; teachers have scientific astronomical views on various aspects know to teach concepts of Astronomy at BE; TO is a viable option as continued training and the use of DMP as no formal teaching and learning.

  16. A SPITZER MIPS STUDY OF 2.5-2.0 M{sub Sun} STARS IN SCORPIUS-CENTAURUS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Christine H.; Bitner, Martin [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Pecaut, Mark; Mamajek, Eric E. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Su, Kate Y. L., E-mail: cchen@stsci.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2012-09-10

    We have obtained Spitzer Space Telescope Multiband Imaging Photometer for Spitzer (MIPS) 24 {mu}m and 70 {mu}m observations of 215 nearby, Hipparcos B- and A-type common proper-motion single and binary systems in the nearest OB association, Scorpius-Centaurus. Combining our MIPS observations with those of other ScoCen stars in the literature, we estimate 24 {mu}m B+A-type disk fractions of 17/67 (25{sup +6}{sub -5}%), 36/131 (27{sup +4}{sub -4}%), and 23/95 (24{sup +5}{sub -4}%) for Upper Scorpius ({approx}11 Myr), Upper Centaurus Lupus ({approx}15 Myr), and Lower Centaurus Crux ({approx}17 Myr), respectively, somewhat smaller disk fractions than previously obtained for F- and G-type members. We confirm previous IRAS excess detections and present new discoveries of 51 protoplanetary and debris disk systems, with fractional infrared luminosities ranging from L{sub IR}/L{sub *} = 10{sup -6} to 10{sup -2} and grain temperatures ranging from T{sub gr} = 40 to 300 K. In addition, we confirm that the 24 {mu}m and 70 {mu}m excesses (or fractional infrared luminosities) around B+A-type stars are smaller than those measured toward F+G-type stars and hypothesize that the observed disk property dependence on stellar mass may be the result of a higher stellar companion fraction around B- and A-type stars at 10-200 AU. Finally, we note that the majority of the ScoCen 24 {mu}m excess sources also possess 12 {mu}m excess, indicating that Earth-like planets may be forming via collisions in the terrestrial planet zone at {approx}10-100 Myr.

  17. 30 CFR 780.27 - Reclamation plan: Surface mining near underground mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Reclamation plan: Surface mining near underground mining. 780.27 Section 780.27 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL...

  18. Minimizing the Impact of Mining Activities for Sustainable Mined-Out ...

    African Journals Online (AJOL)

    Minimizing the Impact of Mining Activities for Sustainable Mined-Out Area ... sensing and Geographical Information System (GIS) in assessing environmental impact of ... Keywords: Solid mineral, Impact assessment, Mined-out area utilization, ...

  19. Archveyor{trademark} automated mining system - implementation at the Conant mine

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, W.J. [Arch of Illinois, Percy, IL (United States)

    1997-12-01

    Arch Mineral Corporation, through the Arch Technology Department, has developed an automated continuous haulage mining system called the `Archveyor{trademark}`. The original technology came from a Russian patent. Kloeckner-Becorit (K-B) further developed the system and called it the `Mobile Conveyor`. This system was utilized in both coal and trona mines in the United States and Canada. Consolidation Coal designed their version of this continuous haulage system, called the `Tramveyor`. The Tramveyor is presently operating in their Dilworth Mine, in Pennsylvania. This system has no computer guidance system related to the continuous miner or the Tramveyor. Arch Mineral Corporation has further developed this continuous haulage mining system. Their system is a programmable, logic-controlled (PLC) automated mining system. A highwall version of the Archveyor{trademark} is being operated at Arch of Wyoming near Hanna, Wyoming. This paper introduces the first underground version of Archveyor{trademark} to be implemented at Conant Mine in southern Illinois. During the development process, the Archveyor{trademark} mining system consists of a continuous miner, a bolter car, the Archveyor{trademark} (itself), a stageloader, and an operator`s cab. During the secondary mining process the bolter car is taken out of the system.

  20. A buyer's and user's guide to astronomical telescopes and binoculars

    CERN Document Server

    Mullaney, James

    2014-01-01

    Amateur astronomers of all skill levels are always contemplating their next telescope, and this book points the way to the most suitable instruments. Similarly, those who are buying their first telescopes – and these days not necessarily a low-cost one – will be able to compare and contrast different types and manufacturers. This revised new guide provides an extensive overview of binoculars and telescopes. It includes detailed up-to-date information on sources, selection and use of virtually every major type, brand, and model on today’s market, a truly invaluable treasure-trove of information and helpful advice for all amateur astronomers. Originally written in 2006, much of the first edition is inevitably now out of date, as equipment advances and manufacturers come and go. This second edition not only updates all the existing sections but adds two new ones: Astro-imaging and Professional-Amateur collaboration. Thanks to the rapid and amazing developments that have been made in digital cameras it is...