WorldWideScience

Sample records for astronaut-rover exploration strategies

  1. CRAFT: Collaborative Rover and Astronauts Future Technology

    Science.gov (United States)

    Da-Poian, V. D. P.; Koryanov, V. V. K.

    2018-02-01

    Our project is focusing on the relationship between astronauts and rovers to best work together during surface explorations. Robots will help and assist astronauts, and will also work autonomously. Our project is to develop this type of rover.

  2. The development of a virtual camera system for astronaut-rover planetary exploration.

    Science.gov (United States)

    Platt, Donald W; Boy, Guy A

    2012-01-01

    A virtual assistant is being developed for use by astronauts as they use rovers to explore the surface of other planets. This interactive database, called the Virtual Camera (VC), is an interactive database that allows the user to have better situational awareness for exploration. It can be used for training, data analysis and augmentation of actual surface exploration. This paper describes the development efforts and Human-Computer Interaction considerations for implementing a first-generation VC on a tablet mobile computer device. Scenarios for use will be presented. Evaluation and success criteria such as efficiency in terms of processing time and precision situational awareness, learnability, usability, and robustness will also be presented. Initial testing and the impact of HCI design considerations of manipulation and improvement in situational awareness using a prototype VC will be discussed.

  3. The University Rover Challenge: A competition highlighting Human and Robotic partnerships for exploration

    Science.gov (United States)

    Smith, Heather; Duncan, Andrew

    2016-07-01

    The University Rover Challenge began in 2006 with 4 American college teams competing, now in it's 10th year there are 63 teams from 12 countries registered to compete for the top rover designed to assist humans in the exploration of Mars. The Rovers compete aided by the University teams in four tasks (3 engineering and 1 science) in the Mars analog environment of the Utah Southern Desert in the United States. In this presentation we show amazing rover designs with videos demonstrating the incredible ingenuity, skill and determination of the world's most talented college students. We describe the purpose and results of each of the tasks: Astronaut Assistant, Rover Dexterity, Terrain maneuvering, and Science. We explain the evolution of the competition and common challenges faced by the robotic explorers

  4. Mars Exploration Rovers Propulsive Maneuver Design

    Science.gov (United States)

    Potts, Christopher L.; Raofi, Behzad; Kangas, Julie A.

    2004-01-01

    The Mars Exploration Rovers Spirit and Opportunity successfully landed respectively at Gusev Crater and Meridiani Planum in January 2004. The rovers are essentially robotic geologists, sent on a mission to search for evidence in the rocks and soil pertaining to the historical presence of water and the ability to possibly sustain life. In order to conduct NASA's 'follow the water' strategy on opposite sides of the planet Mars, an interplanetary journey of over 300 million miles culminated with historic navigation precision. Rigorous trajectory targeting and control was necessary to achieve the atmospheric entry requirements for the selected landing sites. The propulsive maneuver design challenge was to meet or exceed these requirements while preserving the necessary design margin to accommodate additional project concerns. Landing site flexibility was maintained for both missions after launch, and even after the first trajectory correction maneuver for Spirit. The final targeting strategy was modified to improve delivery performance and reduce risk after revealing constraining trajectory control characteristics. Flight results are examined and summarized for the six trajectory correction maneuvers that were planned for each mission.

  5. Slip Validation and Prediction for Mars Exploration Rovers

    Directory of Open Access Journals (Sweden)

    Jeng Yen

    2008-04-01

    Full Text Available This paper presents a novel technique to validate and predict the rover slips on Martian surface for NASA’s Mars Exploration Rover mission (MER. Different from the traditional approach, the proposed method uses the actual velocity profile of the wheels and the digital elevation map (DEM from the stereo images of the terrain to formulate the equations of motion. The six wheel speed from the empirical encoder data comprises the vehicle's velocity, and the rover motion can be estimated using mixed differential and algebraic equations. Applying the discretization operator to these equations, the full kinematics state of the rover is then resolved by the configuration kinematics solution in the Rover Sequencing and Visualization Program (RSVP. This method, with the proper wheel slip and sliding factors, produces accurate simulation of the Mars Exploration rovers, which have been validated with the earth-testing vehicle. This computational technique has been deployed to the operation of the MER rovers in the extended mission period. Particularly, it yields high quality prediction of the rover motion on high slope areas. The simulated path of the rovers has been validated using the telemetry from the onboard Visual Odometry (VisOdom. Preliminary results indicate that the proposed simulation is very effective in planning the path of the rovers on the high-slope areas.

  6. Planetary rovers robotic exploration of the solar system

    CERN Document Server

    Ellery, Alex

    2016-01-01

    The increasing adoption of terrain mobility – planetary rovers – for the investigation of planetary surfaces emphasises their central importance in space exploration. This imposes a completely new set of technologies and methodologies to the design of such spacecraft – and planetary rovers are indeed, first and foremost, spacecraft. This introduces vehicle engineering, mechatronics, robotics, artificial intelligence and associated technologies to the spacecraft engineer’s repertoire of skills. Planetary Rovers is the only book that comprehensively covers these aspects of planetary rover engineering and more. The book: • discusses relevant planetary environments to rover missions, stressing the Moon and Mars; • includes a brief survey of previous rover missions; • covers rover mobility, traction and control systems; • stresses the importance of robotic vision in rovers for both navigation and science; • comprehensively covers autonomous navigation, path planning and multi-rover formations on ...

  7. Rover exploration on the lunar surface; a science proposal for SELENE-B mission

    Science.gov (United States)

    Sasaki, S.; Kubota, T.; Akiyama, H.; Hirata, N.; Kunii, Y.; Matsumoto, K.; Okada, T.; Otake, M.; Saiki, K.; Sugihara, T.

    LUNARSURFACE:ASCIENCES. Sasaki (1), T. Kubota (2) , H. Akiyama (1) , N. Hirata (3), Y. Kunii (4), K. Matsumoto (5), T. Okada (2), M. Otake (3), K. Saiki (6), T. Sugihara (3) (1) Department of Earth and Planetary Science, Univ. Tokyo, (2) Institute of Space and Astronautical Sciences, (3) National Space Development Agency of Japan, (4) Department of Electrical and Electronic Engineering, Chuo Univ., (5) National Aerospace Laboratory of Japan, (6) Research Institute of Materials and Resources, Akita Univ. sho@eps.s.u -tokyo.ac.jp/Fax:+81-3-5841-4569 A new lunar landing mission (SELENE-B) is now in consideration in Japan. Scientific investigation plans using a rover are proposed. To clarify the origin and evolution of the moon, the early crustal formation and later mare volcanic processes are still unveiled. We proposed two geological investigation plans: exploration of a crater central peak to discover subsurface materials and exploration of dome-cone structures on young mare region. We propose multi-band macro/micro camera using AOTF, X-ray spectrometer/diffractometer and gamma ray spectrometer. Since observation of rock fragments in brecciaed rocks is necessary, the rover should have cutting or scraping mechanism of rocks. In our current scenario, landing should be performed about 500m from the main target (foot of a crater central peak or a cone/dome). After the spectral survey by multi-band camera on the lander, the rover should be deployed for geological investigation. The rover should make a short (a few tens meter) round trip at first, then it should perform traverse observation toward the main target. Some technological investigations on SELENE-B project will be also presented.

  8. Design of Mobility System for Ground Model of Planetary Exploration Rover

    Directory of Open Access Journals (Sweden)

    Younkyu Kim

    2012-12-01

    Full Text Available In recent years, a number of missions have been planned and conducted worldwide on the planets such as Mars, which involves the unmanned robotic exploration with the use of rover. The rover is an important system for unmanned planetary exploration, performing the locomotion and sample collection and analysis at the exploration target of the planetary surface designated by the operator. This study investigates the development of mobility system for the rover ground model necessary to the planetary surface exploration for the benefit of future planetary exploration mission in Korea. First, the requirements for the rover mobility system are summarized and a new mechanism is proposed for a stable performance on rough terrain which consists of the passive suspension system with 8 wheeled double 4-bar linkage (DFBL, followed by the performance evaluation for the mechanism of the mobility system based on the shape design and simulation. The proposed mobility system DFBL was compared with the Rocker-Bogie suspension system of US space agency National Aeronautics and Space Administration and 8 wheeled mobility system CRAB8 developed in Switzerland, using the simulation to demonstrate the superiority with respect to the stability of locomotion. On the basis of the simulation results, a general system configuration was proposed and designed for the rover manufacture.

  9. Accessing Information on the Mars Exploration Rovers Mission

    Science.gov (United States)

    Walton, J. D.; Schreiner, J. A.

    2005-12-01

    In January 2004, the Mars Exploration Rovers (MER) mission successfully deployed two robotic geologists - Spirit and Opportunity - to opposite sides of the red planet. Onboard each rover is an array of cameras and scientific instruments that send data back to Earth, where ground-based systems process and store the information. During the height of the mission, a team of about 250 scientists and engineers worked around the clock to analyze the collected data, determine a strategy and activities for the next day and then carefully compose the command sequences that would instruct the rovers in how to perform their tasks. The scientists and engineers had to work closely together to balance the science objectives with the engineering constraints so that the mission achieved its goals safely and quickly. To accomplish this coordinated effort, they adhered to a tightly orchestrated schedule of meetings and processes. To keep on time, it was critical that all team members were aware of what was happening, knew how much time they had to complete their tasks, and could easily access the information they need to do their jobs. Computer scientists and software engineers at NASA Ames Research Center worked closely with the mission managers at the Jet Propulsion Laboratory (JPL) to create applications that support the mission. One such application, the Collaborative Information Portal (CIP), helps mission personnel perform their daily tasks, whether they work inside mission control or the science areas at JPL, or in their homes, schools, or offices. With a three-tiered, service-oriented architecture (SOA) - client, middleware, and data repository - built using Java and commercial software, CIP provides secure access to mission schedules and to data and images transmitted from the Mars rovers. This services-based approach proved highly effective for building distributed, flexible applications, and is forming the basis for the design of future mission software systems. Almost two

  10. Martian methane plume models for defining Mars rover methane source search strategies

    Science.gov (United States)

    Nicol, Christopher; Ellery, Alex; Lynch, Brian; Cloutis, Ed

    2018-07-01

    The detection of atmospheric methane on Mars implies an active methane source. This introduces the possibility of a biotic source with the implied need to determine whether the methane is indeed biotic in nature or geologically generated. There is a clear need for robotic algorithms which are capable of manoeuvring a rover through a methane plume on Mars to locate its source. We explore aspects of Mars methane plume modelling to reveal complex dynamics characterized by advection and diffusion. A statistical analysis of the plume model has been performed and compared to analyses of terrestrial plume models. Finally, we consider a robotic search strategy to find a methane plume source. We find that gradient-based techniques are ineffective, but that more sophisticated model-based search strategies are unlikely to be available in near-term rover missions.

  11. Ambler - An autonomous rover for planetary exploration

    Science.gov (United States)

    Bares, John; Hebert, Martial; Kanade, Takeo; Krotkov, Eric; Mitchell, Tom

    1989-01-01

    The authors are building a prototype legged rover, called the Ambler (loosely an acronym for autonomous mobile exploration robot) and testing it on full-scale, rugged terrain of the sort that might be encountered on the Martian surface. They present an overview of their research program, focusing on locomotion, perception, planning, and control. They summarize some of the most important goals and requirements of a rover design and describe how locomotion, perception, and planning systems can satisfy these requirements. Since the program is relatively young (one year old at the time of writing) they identify issues and approaches and describe work in progress rather than report results. It is expected that many of the technologies developed will be applicable to other planetary bodies and to terrestrial concerns such as hazardous waste assessment and remediation, ocean floor exploration, and mining.

  12. Rover Technologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop and mature rover technologies supporting robotic exploration including rover design, controlling rovers over time delay and for exploring . Technology...

  13. Mars Exploration Rover Spirit End of Mission Report

    Science.gov (United States)

    Callas, John L.

    2015-01-01

    The Mars Exploration Rover (MER) Spirit landed in Gusev crater on Mars on January 4, 2004, for a prime mission designed to last three months (90 sols). After more than six years operating on the surface of Mars, the last communication received from Spirit occurred on Sol 2210 (March 22, 2010). Following the loss of signal, the Mars Exploration Rover Project radiated over 1400 commands to Mars in an attempt to elicit a response from the rover. Attempts were made utilizing Deep Space Network X-Band and UHF relay via both Mars Odyssey and the Mars Reconnaissance Orbiter. Search and recovery efforts concluded on July 13, 2011. It is the MER project's assessment that Spirit succumbed to the extreme environmental conditions experienced during its fourth winter on Mars. Focusing on the time period from the end of the third Martian winter through the fourth winter and end of recovery activities, this report describes possible explanations for the loss of the vehicle and the extent of recovery efforts that were performed. It offers lessons learned and provides an overall mission summary.

  14. Using Wind Driven Tumbleweed Rovers to Explore Martian Gully Features

    Science.gov (United States)

    Antol, Jeffrey; Woodard, Stanley E.; Hajos, Gregory A.; Heldmann, Jennifer L.; Taylor, Bryant D.

    2005-01-01

    Gully features have been observed on the slopes of numerous Martian crater walls, valleys, pits, and graben. Several mechanisms for gully formation have been proposed, including: liquid water aquifers (shallow and deep), melting ground ice, snow melt, CO2 aquifers, and dry debris flow. Remote sensing observations indicate that the most likely erosional agent is liquid water. Debate concerns the source of this water. Observations favor a liquid water aquifer as the primary candidate. The current strategy in the search for life on Mars is to "follow the water." A new vehicle known as a Tumbleweed rover may be able to conduct in-situ investigations in the gullies, which are currently inaccessible by conventional rovers. Deriving mobility through use of the surface winds on Mars, Tumbleweed rovers would be lightweight and relatively inexpensive thus allowing multiple rovers to be deployed in a single mission to survey areas for future exploration. NASA Langley Research Center (LaRC) is developing deployable structure Tumbleweed concepts. An extremely lightweight measurement acquisition system and sensors are proposed for the Tumbleweed rover that greatly increases the number of measurements performed while having negligible mass increase. The key to this method is the use of magnetic field response sensors designed as passive inductor-capacitor circuits that produce magnetic field responses whose attributes correspond to values of physical properties for which the sensors measure. The sensors do not need a physical connection to a power source or to data acquisition equipment resulting in additional weight reduction. Many of the sensors and interrogating antennae can be directly placed on the Tumbleweed using film deposition methods such as photolithography thus providing further weight reduction. Concepts are presented herein for methods to measure subsurface water, subsurface metals, planetary winds and environmental gases.

  15. Mars Exploration Rover Heat Shield Recontact Analysis

    Science.gov (United States)

    Raiszadeh, Behzad; Desai, Prasun N.; Michelltree, Robert

    2011-01-01

    The twin Mars Exploration Rover missions landed successfully on Mars surface in January of 2004. Both missions used a parachute system to slow the rover s descent rate from supersonic to subsonic speeds. Shortly after parachute deployment, the heat shield, which protected the rover during the hypersonic entry phase of the mission, was jettisoned using push-off springs. Mission designers were concerned about the heat shield recontacting the lander after separation, so a separation analysis was conducted to quantify risks. This analysis was used to choose a proper heat shield ballast mass to ensure successful separation with low probability of recontact. This paper presents the details of such an analysis, its assumptions, and the results. During both landings, the radar was able to lock on to the heat shield, measuring its distance, as it descended away from the lander. This data is presented and is used to validate the heat shield separation/recontact analysis.

  16. Red rover: inside the story of robotic space exploration, from genesis to the mars rover curiosity

    CERN Document Server

    Wiens, Roger

    2013-01-01

    In its eerie likeness to Earth, Mars has long captured our imaginations—both as a destination for humankind and as a possible home to extraterrestrial life. It is our twenty-first century New World; its explorers robots, shipped 350 million miles from Earth to uncover the distant planet’s secrets.Its most recent scout is Curiosity—a one-ton, Jeep-sized nuclear-powered space laboratory—which is now roving the Martian surface to determine whether the red planet has ever been physically capable of supporting life. In Red Rover, geochemist Roger Wiens, the principal investigator for the ChemCam laser instrument on the rover and veteran of numerous robotic NASA missions, tells the unlikely story of his involvement in sending sophisticated hardware into space, culminating in the Curiosity rover's amazing journey to Mars.In so doing, Wiens paints the portrait of one of the most exciting scientific stories of our time: the new era of robotic space exploration. Starting with NASA’s introduction of the Discovery...

  17. Mission-directed path planning for planetary rover exploration

    Science.gov (United States)

    Tompkins, Paul

    2005-07-01

    Robotic rovers uniquely benefit planetary exploration---they enable regional exploration with the precision of in-situ measurements, a combination impossible from an orbiting spacecraft or fixed lander. Mission planning for planetary rover exploration currently utilizes sophisticated software for activity planning and scheduling, but simplified path planning and execution approaches tailored for localized operations to individual targets. This approach is insufficient for the investigation of multiple, regionally distributed targets in a single command cycle. Path planning tailored for this task must consider the impact of large scale terrain on power, speed and regional access; the effect of route timing on resource availability; the limitations of finite resource capacity and other operational constraints on vehicle range and timing; and the mutual influence between traverses and upstream and downstream stationary activities. Encapsulating this reasoning in an efficient autonomous planner would allow a rover to continue operating rationally despite significant deviations from an initial plan. This research presents mission-directed path planning that enables an autonomous, strategic reasoning capability for robotic explorers. Planning operates in a space of position, time and energy. Unlike previous hierarchical approaches, it treats these dimensions simultaneously to enable globally-optimal solutions. The approach calls on a near incremental search algorithm designed for planning and re-planning under global constraints, in spaces of higher than two dimensions. Solutions under this method specify routes that avoid terrain obstacles, optimize the collection and use of rechargable energy, satisfy local and global mission constraints, and account for the time and energy of interleaved mission activities. Furthermore, the approach efficiently re-plans in response to updates in vehicle state and world models, and is well suited to online operation aboard a robot

  18. Microbiological cleanliness of the Mars Exploration Rover spacecraft

    Science.gov (United States)

    Newlin, L.; Barengoltz, J.; Chung, S.; Kirschner, L.; Koukol, R.; Morales, F.

    2002-01-01

    Planetary protection for Mars missions is described, and the approach being taken by the Mars Exploration Rover Project is discussed. Specific topics include alcohol wiping, dry heat microbial reduction, microbiological assays, and the Kennedy Space center's PHSF clean room.

  19. An Analog Rover Exploration Mission for Education and Outreach

    Science.gov (United States)

    Moores, John; Campbell, Charissa L.; Smith, Christina L.; Cooper, Brittney A.

    2017-10-01

    This abstract describes an analog rover exploration mission designed as an outreach program for high school and undergraduate students. This program is used to teach them about basic mission control operations, how to manage a rover as if it were on another planetary body, and employing the rover remotely to complete mission objectives. One iteration of this program has been completed and another is underway. In both trials, participants were shown the different operation processes involved in a real-life mission. Modifications were made to these processes to decrease complexity and better simulate a mission control environment in a short time period (three 20-minute-long mission “days”). In the first run of the program, participants selected a landing site, what instruments would be on the rover - subject to cost, size, and weight limitations - and were randomly assigned one of six different mission operations roles, each with specific responsibilities. For example, a Science Planner/Integrator (SPI) would plan science activities whilst a Rover Engineer (RE) would keep on top of rover constraints. Planning consisted of a series of four meetings to develop and verify the current plan, pre-plan the next day's activities and uplink the activities to the “rover” (a human colleague). Participants were required to attend certain meetings depending upon their assigned role. To conclude the mission, students viewed the site to understand any differences between remote viewing and reality in relation to the rover. Another mission is currently in progress with revisions from the earlier run to improve the experience. This includes broader roles and meetings and pre-selecting the landing site and rover. The new roles are: Mission Lead, Rover Engineer and Science Planner. The SPI role was previously popular so most of the students were placed in this category. The meetings were reduced to three but extended in length. We are also planning to integrate this program

  20. Human Exploration using Real-Time Robotic Operations (HERRO): A space exploration strategy for the 21st century

    Science.gov (United States)

    Schmidt, George R.; Landis, Geoffrey A.; Oleson, Steven R.

    2012-11-01

    This paper presents an exploration strategy for human missions beyond Low Earth Orbit (LEO) and the Moon that combines the best features of human and robotic spaceflight. This "Human Exploration using Real-time Robotic Operations" (HERRO) strategy refrains from placing humans on the surfaces of the Moon and Mars in the near-term. Rather, it focuses on sending piloted spacecraft and crews into orbit around Mars and other exploration targets of interest, and conducting astronaut exploration of the surfaces using telerobots and remotely-controlled systems. By eliminating the significant communications delay or "latency" with Earth due to the speed of light limit, teleoperation provides scientists real-time control of rovers and other sophisticated instruments. This in effect gives them a "virtual presence" on planetary surfaces, and thus expands the scientific return at these destinations. HERRO mitigates several of the major issues that have hindered the progress of human spaceflight beyond Low Earth Orbit (LEO) by: (1) broadening the range of destinations for near-term human missions; (2) reducing cost and risk through less complexity and fewer man-rated elements; (3) offering benefits of human-equivalent in-situ cognition, decision-making and field-work on planetary bodies; (4) providing a simpler approach to returning samples from Mars and planetary surfaces; and (5) facilitating opportunities for international collaboration through contribution of diverse robotic systems. HERRO provides a firm justification for human spaceflight—one that expands the near-term capabilities of scientific exploration while providing the space transportation infrastructure needed for eventual human landings in the future.

  1. The Athena Science Payload for the 2003 Mars Exploration Rovers

    Science.gov (United States)

    Squyres, S. W.; Arvidson, R. E.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Haskin, L.; Herkenhoff, K.

    2001-01-01

    The Athena Mars rover payload is a suite of scientific instruments and tools for geologic exploration of the martian surface. It is designed to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition. (2) Determine the elemental and mineralogical composition of martian surface materials, including soils, rock surfaces, and rock interiors. (3) Determine the fine-scale textural properties of these materials. Two identical copies of the Athena payload will be flown in 2003 on the two Mars Exploration Rovers. The payload is at a high state of maturity, and first copies of several of the instruments have already been built and tested for flight.

  2. Mission Operations of the Mars Exploration Rovers

    Science.gov (United States)

    Bass, Deborah; Lauback, Sharon; Mishkin, Andrew; Limonadi, Daniel

    2007-01-01

    A document describes a system of processes involved in planning, commanding, and monitoring operations of the rovers Spirit and Opportunity of the Mars Exploration Rover mission. The system is designed to minimize command turnaround time, given that inherent uncertainties in terrain conditions and in successful completion of planned landed spacecraft motions preclude planning of some spacecraft activities until the results of prior activities are known by the ground-based operations team. The processes are partitioned into those (designated as tactical) that must be tied to the Martian clock and those (designated strategic) that can, without loss, be completed in a more leisurely fashion. The tactical processes include assessment of downlinked data, refinement and validation of activity plans, sequencing of commands, and integration and validation of sequences. Strategic processes include communications planning and generation of long-term activity plans. The primary benefit of this partition is to enable the tactical portion of the team to focus solely on tasks that contribute directly to meeting the deadlines for commanding the rover s each sol (1 sol = 1 Martian day) - achieving a turnaround time of 18 hours or less, while facilitating strategic team interactions with other organizations that do not work on a Mars time schedule.

  3. Archiving Data From the 2003 Mars Exploration Rover Mission

    Science.gov (United States)

    Arvidson, R. E.

    2002-12-01

    The two Mars Exploration Rovers will touch down on the red planet in January 2004 and each will operate for at least 90 sols, traversing hundreds of meters across the surface and acquiring data from the Athena Science Payload (mast-based multi-spectral, stereo-imaging data and emission spectra; arm-based in-situ Alpha Particle X-Ray (APXS) and Mössbauer Spectroscopy, microscopic imaging, coupled with use of a rock abrasion tool) at a number of locations. In addition, the rovers will acquire science and engineering data along traverses to characterize terrain properties and perhaps be used to dig trenches. An "Analyst's Notebook" concept has been developed to capture, organize, archive and distribute raw and derived data sets and documentation (http://wufs.wustl.edu/rover). The Notebooks will be implemented in ways that will allow users to "playback" the mission, using executed commands to drive animated views of rover activities, and pop-up windows to show why particular observations were acquired, along with displays of raw and derived data products. In addition, the archive will include standard Planetary Data System files and software for processing to higher-level products. The Notebooks will exist both as an online system and as a set of distributable Digital Video Discs or other appropriate media. The Notebooks will be made available through the Planetary Data System within six months after the end of observations for the relevant rovers.

  4. Conceptual studies on the integration of a nuclear reactor system to a manned rover for Mars missions. Final Report, Feb. 1989 - Nov. 1990

    International Nuclear Information System (INIS)

    El-genk, M.S.; Morley, N.J.

    1991-07-01

    Multiyear civilian manned missions to explore the surface of Mars are thought by NASA to be possible early in the next century. Expeditions to Mars, as well as permanent bases, are envisioned to require enhanced piloted vehicles to conduct science and exploration activities. Piloted rovers, with 30 kWe user net power (for drilling, sampling and sample analysis, onboard computer and computer instrumentation, vehicle thermal management, and astronaut life support systems) in addition to mobility are being considered. The rover design, for this study, included a four car train type vehicle complete with a hybrid solar photovoltaic/regenerative fuel cell auxiliary power system (APS). This system was designed to power the primary control vehicle. The APS supplies life support power for four astronauts and a limited degree of mobility allowing the primary control vehicle to limp back to either a permanent base or an accent vehicle. The results showed that the APS described above, with a mass of 667 kg, was sufficient to provide live support power and a top speed of five km/h for 6 hours per day. It was also seen that the factors that had the largest effect on the APS mass were the life support power, the number of astronauts, and the PV cell efficiency. The topics covered include: (1) power system options; (2) rover layout and design; (3) parametric analysis of total mass and power requirements for a manned Mars rover; (4) radiation shield design; and (5) energy conversion systems

  5. An Overview of Wind-Driven Rovers for Planetary Exploration

    Science.gov (United States)

    Hajos, Gregory A.; Jones, Jack A.; Behar, Alberto; Dodd, Micheal

    2005-01-01

    The use of in-situ propulsion is considered enabling technology for long duration planetary surface missions. Most studies have focused on stored energy from chemicals extracted from the soil or the use of soil chemicals to produce photovoltaic arrays. An older form of in-situ propulsion is the use of wind power. Recent studies have shown potential for wind driven craft for exploration of Mars, Titan and Venus. The power of the wind, used for centuries to power wind mills and sailing ships, is now being applied to modern land craft. Efforts are now underway to use the wind to push exploration vehicles on other planets and moons in extended survey missions. Tumbleweed rovers are emerging as a new type of wind-driven science platform concept. Recent investigations by the National Aeronautics and Space Administration (NASA) and Jet Propulsion Laboratory (JPL) indicate that these light-weight, mostly spherical or quasi-spherical devices have potential for long distance surface exploration missions. As a power boat has unique capabilities, but relies on stored energy (fuel) to move the vessel, the Tumbleweed, like the sailing ships of the early explorers on earth, uses an unlimited resource the wind to move around the surface of Mars. This has the potential to reduce the major mass drivers of robotic rovers as well as the power generation and storage systems. Jacques Blamont of JPL and the University of Paris conceived the first documented Mars wind-blown ball in 1977, shortly after the Viking landers discovered that Mars has a thin CO2 atmosphere with relatively strong winds. In 1995, Jack Jones, et al, of JPL conceived of a large wind-blown inflated ball for Mars that could also be driven and steered by means of a motorized mass hanging beneath the rolling axis of the ball. A team at NASA Langley Research Center started a biomimetic Tumbleweed design study in 1998. Wind tunnel and CFD analysis were applied to a variety of concepts to optimize the aerodynamic

  6. Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers

    Science.gov (United States)

    Trease, Brian; Arvidson, Raymond; Lindemann, Randel; Bennett, Keith; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine; Van Dyke, Lauren

    2011-01-01

    To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover (MER) project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting tool, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction Simulator), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using MSC-Adams dynamic modeling software. Newly modeled terrain-rover interactions include the rut-formation effect of deformable soils, using the classical Bekker-Wong implementation of compaction resistances and bull-dozing effects. The paper presents the details and implementation of the model with two case studies based on actual MER telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.

  7. A Lunar L2-Farside Exploration and Science Mission Concept with the ORion Multi-Purpose Crew Vehicle and a Teleoperated Lander/Rover

    Science.gov (United States)

    Burns, Jack O.; Kring, David; Norris, Scott; Hopkins, Josh; Lazio, Joseph; Kasper, Justin

    2012-01-01

    A novel concept is presented in this paper for a human mission to the lunar L2 (Lagrange) point that would be a proving ground for future exploration missions to deep space while also overseeing scientifically important investigations. In an L2 halo orbit above the lunar farside, the astronauts would travel 15% farther from Earth than did the Apollo astronauts and spend almost three times longer in deep space. Such missions would validate the Orion MPCV's life support systems, would demonstrate the high-speed re-entry capability needed for return from deep space, and would measure astronauts' radiation dose from cosmic rays and solar flares to verify that Orion would provide sufficient protection, as it is designed to do. On this proposed mission, the astronauts would teleoperate landers and rovers on the unexplored lunar farside, which would obtain samples from the geologically interesting farside and deploy a low radio frequency telescope. Sampling the South Pole-Aitkin basin (one of the oldest impact basins in the solar system) is a key science objective of the 2011 Planetary Science Decadal Survey. Observations of the Universe's first stars/galaxies at low radio frequencies are a priority of the 2010 Astronomy & Astrophysics Decadal Survey. Such telerobotic oversight would also demonstrate capability for human and robotic cooperation on future, more complex deep space missions.

  8. RAT magnet experiment on the Mars Exploration Rovers: Spirit and Opportunity beyond sol 500

    DEFF Research Database (Denmark)

    Leer, Kristoffer; Goetz, Walter; Chan, Marjorie A.

    2011-01-01

    The Rock Abrasion Tool (RAT) magnet experiment on the Mars Exploration Rovers was designed to collect dust from rocks ground by the RAT of the two rovers on the surface of Mars. The dust collected on the magnets is now a mixture of dust from many grindings. Here the new data from the experiment...

  9. The Scale of Exploration: Planetary Missions Set in the Context of Tourist Destinations on Earth

    Science.gov (United States)

    Garry, W. B.; Bleacher, L. V.; Bleacher, J. E.; Petro, N. E.; Mest, S. C.; Williams, S. H.

    2012-03-01

    What if the Apollo astronauts explored Washington, DC, or the Mars Exploration Rovers explored Disney World? We present educational versions of the traverse maps for Apollo and MER missions set in the context of popular tourist destinations on Earth.

  10. Conceptual Design and Architecture of Mars Exploration Rover (MER) for Seismic Experiments Over Martian Surfaces

    Science.gov (United States)

    Garg, Akshay; Singh, Amit

    2012-07-01

    Keywords: MER, Mars, Rover, Seismometer Mars has been a subject of human interest for exploration missions for quite some time now. Both rover as well as orbiter missions have been employed to suit mission objectives. Rovers have been preferentially deployed for close range reconnaissance and detailed experimentation with highest accuracy. However, it is essential to strike a balance between the chosen science objectives and the rover operations as a whole. The objective of this proposed mechanism is to design a vehicle (MER) to carry out seismic studies over Martian surface. The conceptual design consists of three units i.e. Mother Rover as a Surrogate (Carrier) and Baby Rovers (two) as seeders for several MEMS-based accelerometer / seismometer units (Nodes). Mother Rover can carry these Baby Rovers, having individual power supply with solar cells and with individual data transmission capabilities, to suitable sites such as Chasma associated with Valles Marineris, Craters or Sand Dunes. Mother rover deploys these rovers in two opposite direction and these rovers follow a triangulation pattern to study shock waves generated through firing tungsten carbide shells into the ground. Till the time of active experiments Mother Rover would act as a guiding unit to control spatial spread of detection instruments. After active shock experimentation, the babies can still act as passive seismometer units to study and record passive shocks from thermal quakes, impact cratering & landslides. Further other experiments / payloads (XPS / GAP / APXS) can also be carried by Mother Rover. Secondary power system consisting of batteries can also be utilized for carrying out further experiments over shallow valley surfaces. The whole arrangement is conceptually expected to increase the accuracy of measurements (through concurrent readings) and prolong life cycle of overall experimentation. The proposed rover can be customised according to the associated scientific objectives and further

  11. Simulations of the magnetic properties experiment on Mars Exploration Rovers

    International Nuclear Information System (INIS)

    Gunnlaugsson, H. P.; Worm, E. S.; Bertelsen, P.; Goetz, W.; Kinch, K.; Madsen, M. B.; Merrison, J. P.; Nornberg, P.

    2005-01-01

    We present some of the main findings from simulation studies of the Magnetic Properties Experiment on the Mars Exploration Rovers. The results suggest that the dust has formed via mechanical breakdown of surface rocks through the geological history of the planet, and that liquid water need not have played any significant role in the dust formation processes.

  12. Mars Exploration Rovers Launch Performance and TCM-1 Maneuver Design

    Science.gov (United States)

    Kangas, Julie A.; Potts, Christopher L.; Raofi, Behzad

    2004-01-01

    The Mars Exploration Rover (MER) project successfully landed two identical rovers on Mars in order to remotely conduct geologic investigations, including characterization of rocks and soils that may hold clues to past water activity. Two landing sites, Gusev crater and Meridiani Planum, were selected out of nearly 200 candidate sites after balancing science returns and flight system engineering and safety. Precise trajectory targeting and control was necessary to achieve the atmospheric entry requirements for the selected landing sites within the flight system constraints. This paper discusses the expected and achieved launch vehicle performance and the impacts of that performance on the first Trajectory Correction Maneuver (TCM-1) while maintaining targeting flexibility in accommodating additional project concerns about landing site safety and possible in-flight retargeting to alternate landing sites.

  13. Recent Accomplishments in Mars Exploration: The Rover Perspective

    Science.gov (United States)

    McLennan, S. M.; McSween, H. Y.

    2018-04-01

    Mobile rovers have revolutionized our understanding of Mars geology by identifying habitable environments and addressing critical questions related to Mars science. Both the advances and limitations of rovers set the scene for Mars Sample Return.

  14. Data Management for Mars Exploration Rovers

    Science.gov (United States)

    Snyder, Joseph F.; Smyth, David E.

    2004-01-01

    Data Management for the Mars Exploration Rovers (MER) project is a comprehensive system addressing the needs of development, test, and operations phases of the mission. During development of flight software, including the science software, the data management system can be simulated using any POSIX file system. During testing, the on-board file system can be bit compared with files on the ground to verify proper behavior and end-to-end data flows. During mission operations, end-to-end accountability of data products is supported, from science observation concept to data products within the permanent ground repository. Automated and human-in-the-loop ground tools allow decisions regarding retransmitting, re-prioritizing, and deleting data products to be made using higher level information than is available to a protocol-stack approach such as the CCSDS File Delivery Protocol (CFDP).

  15. Multi-rover navigation on the lunar surface

    Science.gov (United States)

    Dabrowski, Borys; Banaszkiewicz, Marek

    2008-07-01

    The paper presents a method of determination an accurate position of a target (rover, immobile sensor, astronaut) on surface of the Moon or other celestial body devoid of navigation infrastructure (like Global Positioning System), by using a group of self-calibrating rovers, which serves as mobile reference points. The rovers are equipped with low-precision clocks synchronized by external broadcasting signal, to measure the moments of receiving radio signals sent by localized target. Based on the registered times, distances between transmitter and receivers installed on beacons are calculated. Each rover determines and corrects its own absolute position and orientation by using odometry navigation and measurements of relative distances and angles to other mobile reference points. Accuracy of navigation has been improved by the use of a calibration algorithm based on the extended Kalman filter, which uses internal encoder readings as inputs and relative measurements of distances and orientations between beacons as feedback information. The key idea in obtaining reliable values of absolute position and orientation of beacons is to first calibrate one of the rovers, using the remaining ones as reference points and then allow the whole group to move together and calibrate all the rovers in-motion. We consider a number of cases, in which basic modeling parameters such as terrain roughness, formation size and shape as well as availability of distance and angle measurements are varied.

  16. Enhancing the Meaningfulness of Work for Astronauts on Long Duration Space Exploration Missions.

    Science.gov (United States)

    Britt, Thomas W; Sytine, Anton; Brady, Ashley; Wilkes, Russ; Pittman, Rebecca; Jennings, Kristen; Goguen, Kandice

    2017-08-01

    Numerous authors have identified the stressors likely to be encountered on long duration space exploration missions (e.g., to Mars), including the possibility of significant crises, separation from family, boredom/monotony, and interpersonal conflict. Although many authors have noted that meaningful work may be beneficial for astronauts on these missions, none have detailed the sources of meaningful work for astronauts and how these sources may differ between astronauts. The present article identifies how engagement in meaningful work during long duration missions may mitigate the adverse effects of demands and increase the potential for benefits resulting from the missions. Semistructured interviews were conducted with nine NASA personnel, including astronauts, flight directors, and flight surgeons. Questions addressed sources of meaning for astronauts, characteristics of tasks that enhance vs. detract from meaning, and recommendations for enhancing meaning. Personnel mentioned contributing to humanity and the next generation, contributing to the mission, and exploration as the most meaningful aspects of their work. Characteristics of tasks that enhanced meaning included using a variety of skills, feeling personal control over their schedule, autonomy in the execution of tasks, and understanding the importance of the experiments conducted on the mission. Top recommendations to sustain meaning were insuring social needs were met through such activities as the strategic use of social media, giving astronauts autonomy as well as structure, and conducting training during transit. Implications are addressed for tailoring meaning-based interventions for astronauts participating on long duration missions and assessing the effectiveness of these interventions.Britt TW, Sytine A, Brady A, Wilkes R, Pittman R, Jennings K, Goguen K. Enhancing the meaningfulness of work for astronauts on long duration space exploration missions. Aerosp Med Hum Perform. 2017; 88(8):779-783.

  17. Astronaut Clothing for Exploration Missions

    Science.gov (United States)

    Poritz, Darwin H.; Orndoff, Evelyne; Kaspranskiy, Rustem R.; Schesinger, Thilini; Byrne, Vicky

    2016-01-01

    Astronaut clothes for exploration missions beyond low Earth orbit need to satisfy several challenges not met by the currently-used mostly-cotton clothing. A laundering system is not expected to be available, and thus soiled garments must be trashed. Jettisoning waste does not seem feasible at this time. The cabin oxygen concentration is expected to be higher than standard, and thus fabrics must better resist ignition and burning. Fabrics need to be identified that reduce logistical mass, that can be worn longer before disposal, that are at least as comfortable as cotton, and that resist ignition or that char immediately after ignition. Human factors and psychology indicate that crew well-being and morale require a variety of colors and styles to accommodate personal identity and preferences. Over the past four years, the Logistics Reduction Project under NASA's Advanced Exploration Systems Program has sponsored the Advanced Clothing System Task to conduct several ground studies and one ISS study. These studies have evaluated length of wear and personal preferences of commercially-available exercise- and routine-wear garments made from several fabrics (cotton, polyester, Merino wool, and modacrylic), woven and knitted. Note that Merino wool and modacrylic char like cotton in ambient air, while polyester unacceptably melts. This paper focuses on the two components of an International Space Station study, onboard and on the ground, with astronauts and cosmonauts. Fabrics were randomized to participants. Length of wear was assessed by statistical survival analysis, and preference by exact binomial confidence limits. Merino wool and modacrylic t-shirts were worn longer on average than polyester t-shirts. Interestingly, self-assessed preferences were inconsistent with length-of-wear behavior, as polyester was preferred to Merino wool and modacrylic.

  18. The Mars Astrobiology Explorer-Cacher (MAX-C): a potential rover mission for 2018. Final report of the Mars Mid-Range Rover Science Analysis Group (MRR-SAG) October 14, 2009.

    Science.gov (United States)

    2010-03-01

    This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission.

  19. Photometric Observations of Soils and Rocks at the Mars Exploration Rover Landing Sites

    Science.gov (United States)

    Johnson, J. R.; Arvidson, R. A.; Bell, J. F., III; Farrand, W.; Guinness, E.; Johnson, M.; Herkenhoff, K. E.; Lemmon, M.; Morris, R. V.; Seelos, F., IV

    2005-01-01

    The Panoramic Cameras (Pancam) on the Spirit and Opportunity Mars Exploration Rovers have acquired multispectral reflectance observations of rocks and soils at different incidence, emission, and phase angles that will be used for photometric modeling of surface materials. Phase angle coverage at both sites extends from approx. 0 deg. to approx. 155 deg.

  20. Scientific Results of the Mars Exploration Rovers Spirit and Opportunity

    Science.gov (United States)

    Banerdt, W. B.

    2006-08-01

    NASA's Mars Exploration Rover project launched two robotic geologists, Spirit and Opportunity, toward Mars in June and July of 2003, reaching Mars the following January. The science objectives for this mission are focused on delineating the geologic history for two locations on Mars, with an emphasis on the history of water. Although they were designed for a 90-day mission, both rovers have lasted more than two years on the surface and each has covered more than four miles while investigating Martian geology. Spirit was targeted to Gusev Crater, a 300-km diameter impact basin that was suspected to be the site of an ancient lake. Initial investigations of the plains in the vicinity of the landing site found no evidence of such a lake, but were instead consistent with unaltered (by water) basaltic plains. But after a 3-km trek to an adjacent range of hills it found a quite different situation, with abundant chemical and morphological evidence for a complex geological history. Opportunity has been exploring Meridiani Planum, which was known from orbital data to contain the mineral hematite, which generally forms in the presence of water. The rocks exposed in Meridiani are highly chemically altered, and appear to have been exposed to significant amounts of water. By descending into the 130-m diameter Endurance Crater, Opportunity was able to analyze a 10-m vertical section of this rock unit, which showed significant gradations in chemistry and morphology.

  1. Brake Failure from Residual Magnetism in the Mars Exploration Rover Lander Petal Actuator

    Science.gov (United States)

    Jandura, Louise

    2004-01-01

    In January 2004, two Mars Exploration Rover spacecraft arrived at Mars. Each safely delivered an identical rover to the Martian surface in a tetrahedral lander encased in airbags. Upon landing, the airbags deflated and three Lander Petal Actuators opened the three deployable Lander side petals enabling the rover to exit the Lander. Approximately nine weeks prior to the scheduled launch of the first spacecraft, one of these mission-critical Lander Petal Actuators exhibited a brake stuck-open failure during its final flight stow at Kennedy Space Center. Residual magnetism was the definitive conclusion from the failure investigation. Although residual magnetism was recognized as an issue in the design, the lack of an appropriately specified lower bound on brake drop-out voltage inhibited the discovery of this problem earlier in the program. In addition, the brakes had more unit-to-unit variation in drop-out voltage than expected, likely due to a larger than expected variation in the magnetic properties of the 15-5 PH stainless steel brake plates. Failure analysis and subsequent rework of two other Lander Petal Actuators with marginal brakes was completed in three weeks, causing no impact to the launch date.

  2. Propulsive maneuver design for the Mars Exploration Rover mission

    Science.gov (United States)

    Potts, Christopher L.; Kangas, Julie A.; Raofi, Behzad

    2006-01-01

    Starting from approximately 150 candidate Martian landing sites, two distinct sites have been selected for further investigation by sophisticated rovers. The two rovers, named 'Spirit' and 'Opportunity', begin the surface mission respectively to Gusec Crater and Meridiani Planum in January 2004. the rovers are essentially robotic geologists, sent on a mission to research for evidence in the rocks and soil pertaining to the historical presence of water and the ability to possibly sustain life. Before this scientific search can commence, precise trajectory targeting and control is necessary to achieve the entry requirements for the selected landing sites within the constraints of the flight system. The maneuver design challenge is to meet or exceed these requirements while maintaining the necessary design flexibility to accommodate additional project concerns. Opportunities to improve performance and reduce risk based on trajectory control characteristics are also evaluated.

  3. (Nearly) Seven Years on Mars: Adventure, Adversity, and Achievements with the NASA Mars Exploration Rovers Spirit and Opportunity

    Science.gov (United States)

    Bell, J. F.; Mars Exploration Rover Science; Engineering Teams

    2010-12-01

    NASA successfully landed twin rovers, Spirit and Opportunity, on Mars in January 2004, in the most ambitious mission of robotic exploration attempted to that time. Each rover is outfitted as a robot field geologist with an impressive array of scientific instruments--cameras, spectrometers, other sensors--designed to investigate the composition and geologic history of two distinctly-different landing sites. The sites were chosen because of their potential to reveal clues about the past history of water and climate on Mars, and thus to provide tests of the hypothesis that the planet may once have been an abode for life. In this presentation I will review the images, spectra, and chemical/mineralogic information that the rover team has been acquiring from the landing sites and along the rovers' 7.7 and 22.7 km traverse paths, respectively. The data and interpretations have been widely shared with the public and the scientific community through web sites, frequent press releases, and scientific publications, and they provide quantitative evidence that liquid water has played a role in the modification of the Martian surface during the earliest part of the planet's history. At the Spirit site in Gusev Crater, the role of water appears to have been relatively minor in general, although the recent discovery of enigmatic hydrated sulfate salt and amorphous silica deposits suggests that locally there may have been significant water-rock interactions, and perhaps even sustained hydrothermal activity. At the Opportunity site in Meridiani Planum, geologic and mineralogic evidence suggests that liquid water was stable at the surface and shallow subsurface for significant periods of early Martian geologic history. An exciting implication from both missions is that localized environments on early Mars may have been "habitable" by some terrestrial standards. As of early September 2010, the rovers had operated for 2210 and 2347 Martian days (sols), respectively, with the Spirit

  4. Ground Truthing Orbital Clay Mineral Observations with the APXS Onboard Mars Exploration Rover Opportunity

    Science.gov (United States)

    Schroeder, C.; Gellert, R.; VanBommel, S.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. S.; Yen, A. S.

    2016-01-01

    NASA's Mars Exploration Rover Opportunity has been exploring approximately 22 km diameter Endeavour crater since 2011. Its rim segments predate the Hesperian-age Burns formation and expose Noachian-age material, which is associated with orbital Fe3+-Mg-rich clay mineral observations [1,2]. Moving to an orders of magnitude smaller instrumental field of view on the ground, the clay minerals were challenging to pinpoint on the basis of geochemical data because they appear to be the result of near-isochemical weathering of the local bedrock [3,4]. However, the APXS revealed a more complex mineral story as fracture fills and so-called red zones appear to contain more Al-rich clay minerals [5,6], which had not been observed from orbit. These observations are important to constrain clay mineral formation processes. More detail will be added as Opportunity is heading into her 10th extended mission, during which she will investigate Noachian bedrock that predates Endeavour crater, study sedimentary rocks inside Endeavour crater, and explore a fluid-carved gully. ESA's ExoMars rover will land on Noachian-age Oxia Planum where abundant Fe3+-Mg-rich clay minerals have been observed from orbit, but the story will undoubtedly become more complex once seen from the ground.

  5. Getting to the Heart of Cardiovascular Risk Assessment in Astronauts for Exploration Class Missions

    Science.gov (United States)

    Elgart, S. R.; Shavers, M. R.; Chappell, L.; Milder, C. M.; Huff, J. L.; Semones, E. J.; Simonsen, L. C.; Patel, Z. S.

    2017-01-01

    average expected 70 years of age in the general population. Remarkably, all 41 living early astronauts outlived our calculated expected age at death for members of their birth cohort; furthermore, 13 of the 20 deceased astronauts who did not die in NASA/non-NASA accidents exceeded this age. There was no difference in IHD between the astronaut cohort and the comparison population; therefore, it is not possible to associate IHD mortality with radiation in that astronaut cohort. As NASA looks toward future exploration-class missions, early astronaut cohorts provide a convenient option for assessing these risks and for developing mitigation strategies. However, many challenges still exist when assessing such limited evidence, including small cohort size, health and lifestyle confounders (such as smoking and drinking), the high accident mortality rate, and the fact that many of these astronauts are still alive, outliving many of their birth-cohort peers. Future analysis should include a longitudinal study, monitoring cases as they occur in the cohort. As this cohort is currently followed-up over time, and as more IHD cases are anticipated in a population of this age, this type of study is not as resource-intensive as would normally be the case.

  6. Cerebellum Augmented Rover Development

    Science.gov (United States)

    King, Matthew

    2005-01-01

    Bio-Inspired Technologies and Systems (BITS) are a very natural result of thinking about Nature's way of solving problems. Knowledge of animal behaviors an be used in developing robotic behaviors intended for planetary exploration. This is the expertise of the JFL BITS Group and has served as a philosophical model for NMSU RioRobolab. Navigation is a vital function for any autonomous system. Systems must have the ability to determine a safe path between their current location and some target location. The MER mission, as well as other JPL rover missions, uses a method known as dead-reckoning to determine position information. Dead-reckoning uses wheel encoders to sense the wheel's rotation. In a sandy environment such as Mars, this method is highly inaccurate because the wheels will slip in the sand. Improving positioning error will allow the speed of an autonomous navigating rover to be greatly increased. Therefore, local navigation based upon landmark tracking is desirable in planetary exploration. The BITS Group is developing navigation technology based upon landmark tracking. Integration of the current rover architecture with a cerebellar neural network tracking algorithm will demonstrate that this approach to navigation is feasible and should be implemented in future rover and spacecraft missions.

  7. Design of a nuclear-powered rover for lunar or Martian exploration

    International Nuclear Information System (INIS)

    Trellue, H.R.; Trautner, R.; Houts, M.G.; Poston, D.I.; Giovig, K.; Baca, J.A.; Lipinski, R.J.

    1998-08-01

    To perform more advanced studies on the surface of the moon or Mars, a rover must provide long-term power (≥10 kW e ). However, a majority of rovers in the past have been designed for much lower power levels (i.e., on the order of watts) or for shorter operating periods using stored power. Thus, more advanced systems are required to generate additional power. One possible design for a more highly powered rover involves using a nuclear reactor to supply energy to the rover and material from the surface of the moon or Mars to shield the electronics from high neutron fluxes and gamma doses. Typically, one of the main disadvantages of using a nuclear-powered rover is that the required shielding would be heavy and expensive to include as part of the payload on a mission. Obtaining most of the required shielding material from the surface of the moon or Mars would reduce the cost of the mission and still provide the necessary power. This paper describes the basic design of a rover that uses the Heatpipe Power System (HPS) as an energy source, including the shielding and reactor control issues associated with the design. It also discusses briefly the amount of power that can be produced by other power methods (solar/photovoltaic cells, radioisotope power supplies, dynamic radioisotope power systems, and the production of methane or acetylene fuel from the surface of Mars) as a comparison to the HPS

  8. Identifying the "Right Stuff": An Exploration-Focused Astronaut Job Analysis

    Science.gov (United States)

    Barrett, J. D.; Holland, A. W.; Vessey, W. B.

    2015-01-01

    Industrial and organizational (I/O) psychologists play a key role in NASA astronaut candidate selection through the identification of the competencies necessary to successfully engage in the astronaut job. A set of psychosocial competencies, developed by I/O psychologists during a prior job analysis conducted in 1996 and updated in 2003, were identified as necessary for individuals working and living in the space shuttle and on the International Space Station (ISS). This set of competencies applied to the space shuttle and applies to current ISS missions, but may not apply to longer-duration or long-distance exploration missions. With the 2015 launch of the first 12- month ISS mission and the shift in the 2020s to missions beyond low earth orbit, the type of missions that astronauts will conduct and the environment in which they do their work will change dramatically, leading to new challenges for these crews. To support future astronaut selection, training, and research, I/O psychologists in NASA's Behavioral Health and Performance (BHP) Operations and Research groups engaged in a joint effort to conduct an updated analysis of the astronaut job for current and future operations. This project will result in the identification of behavioral competencies critical to performing the astronaut job, along with relative weights for each of the identified competencies, through the application of job analysis techniques. While this job analysis is being conducted according to job analysis best practices, the project poses a number of novel challenges. These challenges include the need to identify competencies for multiple mission types simultaneously, to evaluate jobs that have no incumbents as they have never before been conducted, and working with a very limited population of subject matter experts. Given these challenges, under the guidance of job analysis experts, we used the following methods to conduct the job analysis and identify the key competencies for current and

  9. Automation &robotics for future Mars exploration

    Science.gov (United States)

    Schulte, W.; von Richter, A.; Bertrand, R.

    2003-04-01

    Automation and Robotics (A&R) are currently considered as a key technology for Mars exploration. initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. Kayser-Threde led the study AROMA (Automation &Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals was to define new developments and to maintain the competitiveness of European industry within this field. We present a summary of the A&R study in respect to a particular system: The Autonomous Research Island (ARI). In the Mars exploration scenario initially a robotic outpost system lands at pre-selected sites in order to search for life forms and water and to analyze the surface, geology and atmosphere. A&R systems, i.e. rovers and autonomous instrument packages, perform a number of missions with scientific and technology development objectives on the surface of Mars as part of preparations for a human exploration mission. In the Robotic Outpost Phase ARI is conceived as an automated lander which can perform in-situ analysis. It consists of a service module and a micro-rover system for local investigations. Such a system is already under investigation and development in other TRP activities. The micro-rover system provides local mobility for in-situ scientific investigations at a given landing or deployment site. In the long run ARI supports also human Mars missions. An astronaut crew would travel larger distances in a pressurized rover on Mars. Whenever interesting features on the surface are identified, the crew would interrupt the travel and perform local investigations. In order to save crew time ARI could be deployed by the astronauts to perform time-consuming investigations as for example in-situ geochemistry analysis of rocks/soil. Later, the crew could recover the research island for refurbishment and deployment at another

  10. Paleo-environmental Setting of the Murray Formation of Aeolis Mons, Gale Crater, Mars, as Explored by the Curiosity Rover

    Science.gov (United States)

    Lewis, K. W.; Fedo, C.; Grotzinger, J. P.; Gupta, S.; Stein, N.; Rivera-Hernandez, F.; Watkins, J. A.; Banham, S.; Edgett, K. S.; Minitti, M. E.; Schieber, J.; Edgar, L. A.; Siebach, K. L.; Stack, K.; Newsom, H. E.; House, C. H.; Sumner, D. Y.; Vasavada, A. R.

    2017-12-01

    Since landing, the Mars Science Laboratory Curiosity rover climbed 300 meters in elevation from the floor of north Gale crater up the lower northwest flank of Aeolis Mons ("Mount Sharp"). Nearly 200 meters of this ascent was accomplished in the 1.5 years alone, as the rover was driven up-section through the sedimentary rocks of the informally designated "Murray" formation. This unit comprises a large fraction of the lower strata of Mt. Sharp along the rover traverse. Our exploration of the Murray formation reveals a diverse suite of fine-grained facies. Grain sizes range from finer grains than can be resolved by the MAHLI imager (particles bearing Vera Rubin Ridge, continues to reveal the complex and long-lived depositional history of the Gale crater basin.

  11. Planetary Science Training for NASA's Astronauts: Preparing for Future Human Planetary Exploration

    Science.gov (United States)

    Bleacher, J. E.; Evans, C. A.; Graff, T. G.; Young, K. E.; Zeigler, R.

    2017-02-01

    Astronauts selected in 2017 and in future years will carry out in situ planetary science research during exploration of the solar system. Training to enable this goal is underway and is flexible to accommodate an evolving planetary science vision.

  12. The Design of Two Nano-Rovers for Lunar Surface Exploration in the Context of the Google Lunar X Prize

    Science.gov (United States)

    Gill, E.; Honfi Camilo, L.; Kuystermans, P.; Maas, A. S. B. B.; Buutfeld, B. A. M.; van der Pols, R. H.

    2008-09-01

    This paper summarizes a study performed by ten students at the Delft University of Technology on a lunar exploration vehicle suited for competing in the Google Lunar X Prize1. The design philosophy aimed at a quick and simple design process, to comply with the mission constraints. This is achieved by using conventional technology and performing the mission with two identical rovers, increasing reliability and simplicity of systems. Both rovers are however capable of operating independently. The required subsystems have been designed for survival and operation on the lunar surface for an estimated mission lifetime of five days. This preliminary study shows that it is possible for two nano-rovers to perform the basic exploration tasks. The mission has been devised such that after launch the rovers endure a 160 hour voyage to the Moon after which they will land on Sinus Medii with a dedicated lunar transfer/lander vehicle. The mission outline itself has the two nano-rovers travelling in the same direction, moving simultaneously. This mission characteristic allows a quick take-over of the required tasks by the second rover in case of one rover breakdown. The main structure of the rovers will consist of Aluminium 2219 T851, due to its good thermal properties and high hardness. Because of the small dimensions of the rovers, the vehicles will use rigid caterpillar tracks as locomotion system. The track systems are sealed from lunar dust using closed track to prevent interference with the mechanisms. This also prevents any damage to the electronics inside the tracks. For the movement speed a velocity of 0.055 m/s has been determined. This is about 90% of the maximum rover velocity, allowing direct control from Earth. The rovers are operated by a direct control loop, involving the mission control center. In order to direct the rovers safely, a continuous video link with the Earth is necessary to assess its immediate surroundings. Two forward pointing navigational cameras

  13. NASA Mars 2020 Rover Mission: New Frontiers in Science

    Science.gov (United States)

    Calle, Carlos I.

    2014-01-01

    The Mars 2020 rover mission is the next step in NASAs robotic exploration of the red planet. The rover, based on the Mars Science Laboratory Curiosity rover now on Mars, will address key questions about the potential for life on Mars. The mission would also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.Like the Mars Science Laboratory rover, which has been exploring Mars since 2012, the Mars 2020 spacecraft will use a guided entry, descent, and landing system which includes a parachute, descent vehicle, and, during the provides the ability to land a very large, heavy rover on the surface of Mars in a more precise landing area. The Mars 2020 mission is designed to accomplish several high-priority planetary science goals and will be an important step toward meeting NASAs challenge to send humans to Mars in the 2030s. The mission will conduct geological assessments of the rover's landing site, determine the habitability of the environment, search for signs of ancient Martian life, and assess natural resources and hazards for future human explorers. The science instruments aboard the rover also will enable scientists to identify and select a collection of rock and soil samples that will be stored for potential return to Earth in the future. The rover also may help designers of a human expedition understand the hazards posed by Martian dust and demonstrate how to collect carbon dioxide from the atmosphere, which could be a valuable resource for producing oxygen and rocket fuel.

  14. Assessment of Mars Exploration Rover Landing Site Predictions

    Science.gov (United States)

    Golombek, M. P.

    2005-05-01

    Comprehensive analyses of remote sensing data during the 3-year effort to select the Mars Exploration Rover landing sites at Gusev crater and Meridiani Planum correctly predicted the safe and trafficable surfaces explored by the two rovers. Gusev crater was predicted to be a relatively low relief surface that was comparably dusty, but less rocky than the Viking landing sites. Available data for Meridiani Planum indicated a very flat plain composed of basaltic sand to granules and hematite that would look completely unlike any of the existing landing sites with a dark, low albedo surface, little dust and very few rocks. Orbital thermal inertia measurements of 315 J m-2 s-0.5 K-1 at Gusev suggested surfaces dominated by duricrust to cemented soil-like materials or cohesionless sand or granules, which is consistent with observed soil characteristics and measured thermal inertias from the surface. THEMIS thermal inertias along the traverse at Gusev vary from 285 at the landing site to 330 around Bonneville rim and show systematic variations that can be related to the observed increase in rock abundance (5-30%). Meridiani has an orbital bulk inertia of ~200, similar to measured surface inertias that correspond to observed surfaces dominated by 0.2 mm sand size particles. Rock abundance derived from orbital thermal differencing techniques suggested that Meridiani Planum would have very low rock abundance, consistent with the rock free plain traversed by Opportunity. Spirit landed in an 8% orbital rock abundance pixel, consistent with the measured 7% of the surface covered by rocks >0.04 m diameter at the landing site, which is representative of the plains away from craters. The orbital albedo of the Spirit traverse varies from 0.19 to 0.30, consistent with surface measurements in and out of dust devil tracks. Opportunity is the first landing in a low albedo portion of Mars as seen from orbit, which is consistent with the dark, dust-free surface and measured albedos. The

  15. Mars Exploration Rovers Landing Dispersion Analysis

    Science.gov (United States)

    Knocke, Philip C.; Wawrzyniak, Geoffrey G.; Kennedy, Brian M.; Desai, Prasun N.; Parker, TImothy J.; Golombek, Matthew P.; Duxbury, Thomas C.; Kass, David M.

    2004-01-01

    Landing dispersion estimates for the Mars Exploration Rover missions were key elements in the site targeting process and in the evaluation of landing risk. This paper addresses the process and results of the landing dispersion analyses performed for both Spirit and Opportunity. The several contributors to landing dispersions (navigation and atmospheric uncertainties, spacecraft modeling, winds, and margins) are discussed, as are the analysis tools used. JPL's MarsLS program, a MATLAB-based landing dispersion visualization and statistical analysis tool, was used to calculate the probability of landing within hazardous areas. By convolving this with the probability of landing within flight system limits (in-spec landing) for each hazard area, a single overall measure of landing risk was calculated for each landing ellipse. In-spec probability contours were also generated, allowing a more synoptic view of site risks, illustrating the sensitivity to changes in landing location, and quantifying the possible consequences of anomalies such as incomplete maneuvers. Data and products required to support these analyses are described, including the landing footprints calculated by NASA Langley's POST program and JPL's AEPL program, cartographically registered base maps and hazard maps, and flight system estimates of in-spec landing probabilities for each hazard terrain type. Various factors encountered during operations, including evolving navigation estimates and changing atmospheric models, are discussed and final landing points are compared with approach estimates.

  16. Hybrid Aerial/Rover Vehicle

    Science.gov (United States)

    Bachelder, Aaron

    2003-01-01

    A proposed instrumented robotic vehicle called an "aerover" would fly, roll along the ground, and/or float on bodies of liquid, as needed. The aerover would combine features of an aerobot (a robotic lighter-than-air balloon) and a wheeled robot of the "rover" class. An aerover would also look very much like a variant of the "beach-ball" rovers. Although the aerover was conceived for use in scientific exploration of Titan (the largest moon of the planet Saturn), the aerover concept could readily be adapted to similar uses on Earth.

  17. Scout Rover Applications for Forward Acquisition of Soil and Terrain Data

    Science.gov (United States)

    Sonsalla, R.; Ahmed, M.; Fritsche, M.; Akpo, J.; Voegele, T.

    2014-04-01

    As opposed to the present mars exploration missions future mission concepts ask for a fast and safe traverse through vast and varied expanses of terrain. As seen during the Mars Exploration Rover (MER) mission the rovers suffered a lack of detailed soil and terrain information which caused Spirit to get permanently stuck in soft soil. The goal of the FASTER1 EU-FP7 project is to improve the mission safety and the effective traverse speed for planetary rover exploration by determining the traversability of the terrain and lowering the risk to enter hazardous areas. To achieve these goals, a scout rover will be used for soil and terrain sensing ahead of the main rover. This paper describes a highly mobile, and versatile micro scout rover that is used for soil and terrain sensing and is able to co-operate with a primary rover as part of the FASTER approach. The general reference mission idea and concept is addressed within this paper along with top-level requirements derived from the proposed ESA/NASA Mars Sample Return mission (MSR) [4]. Following the mission concept and requirements [3], a concept study for scout rover design and operations has been performed [5]. Based on this study the baseline for the Coyote II rover was designed and built as shown in Figure 1. Coyote II is equipped with a novel locomotion concept, providing high all terrain mobility and allowing to perform side-to-side steering maneuvers which reduce the soil disturbance as compared to common skid steering [6]. The rover serves as test platform for various scout rover application tests ranging from locomotion testing to dual rover operations. From the lessons learned from Coyote II and for an enhanced design, a second generation rover (namely Coyote III) as shown in Figure 2 is being built. This rover serves as scout rover platform for the envisaged FASTER proof of concept field trials. The rover design is based on the test results gained by the Coyote II trials. Coyote III is equipped with two

  18. Searching for Life with Rovers: Exploration Methods & Science Results from the 2004 Field Campaign of the "Life in the Atacama" Project and Applications to Future Mars Missions

    Science.gov (United States)

    Cabrol, N. A.a; Wettergreen, D. S.; Whittaker, R.; Grin, E. A.; Moersch, J.; Diaz, G. Chong; Cockell, C.; Coppin, P.; Dohm, J. M.; Fisher, G.

    2005-01-01

    The Life In The Atacama (LITA) project develops and field tests a long-range, solarpowered, automated rover platform (Zo ) and a science payload assembled to search for microbial life in the Atacama desert. Life is barely detectable over most of the driest desert on Earth. Its unique geological, climatic, and biological evolution have created a unique training site for designing and testing exploration strategies and life detection methods for the robotic search for life on Mars.

  19. Mars rover local navigation and hazard avoidance

    Science.gov (United States)

    Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.

    1989-01-01

    A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.

  20. Real‐Time Measurement of Wheel Performance on a Rover

    Data.gov (United States)

    National Aeronautics and Space Administration — Wind-blown sand on Mars produces a high risk of entrapment for Mars rovers. This was evident when the Mars Exploration Rover Spirit was immobilized in a wind blown...

  1. A Modular Re-configurable Rover System

    Science.gov (United States)

    Bouloubasis, A.; McKee, G.; Active Robotics Lab

    In this paper we present the novel concepts incorporated in a planetary surface exploration rover design that is currently under development. The Multitasking Rover (MTR) aims to demonstrate functionality that will cover many of the current and future needs such as rough-terrain mobility, modularity and upgradeability [1]. The rover system has enhanced mobility characteristics. It operates in conjunction with Science Packs (SPs) and Tool Packs (TPs) - modules attached to the main frame of the rover, which are either special tools or science instruments and alter the operation capabilities of the system. To date, each rover system design is very much task driven for example, the scenario of cooperative transportation of extended payloads [2], comprises two rovers each equipped with a manipulator dedicated to the task [3]. The MTR approach focuses mostly on modularity and upgradeability presenting at the same time a fair amount of internal re-configurability for the sake of rough terrain stability. The rover itself does not carry any scientific instruments or tools. To carry out the scenario mentioned above, the MTR would have to locate and pick-up a TP with the associated manipulator. After the completion of the task the TP could be put away to a storage location enabling the rover to utilize a different Pack. The rover will not only offer mobility to these modules, but also use them as tools, transforming its role and functionality. The advantage of this approach is that instead of sending a large number of rovers to perform a variety of tasks, a smaller number of MTRs could be deployed with a large number of SPs/TPs, offering multiples of the functionality at a reduced payload. Two SPs or TPs (or a combination of) can be carried and deployed. One of the key elements in the design of the four wheeled rover, lies within its suspension system. It comprises a linear actuator located within each leg and also an active differential linking the two shoulders. This novel

  2. Rover deployment system for lunar landing mission

    Science.gov (United States)

    Sutoh, Masataku; Hoshino, Takeshi; Wakabayashi, Sachiko

    2017-09-01

    For lunar surface exploration, a deployment system is necessary to allow a rover to leave the lander. The system should be as lightweight as possible and stored retracted when launched. In this paper, two types of retractable deployment systems for lunar landing missions, telescopic- and fold-type ramps, are discussed. In the telescopic-type system, a ramp is stored with the sections overlapping and slides out during deployment. In the fold-type system, it is stored folded and unfolds for the deployment. For the development of these ramps, a design concept study and structural analysis were conducted first. Subsequently, ramp deployment and rover release tests were performed using the developed ramp prototypes. Through these tests, the validity of their design concepts and functions have been confirmed. In the rover release test, it was observed that the developed lightweight ramp was sufficiently strong for a 50-kg rover to descend. This result suggests that this ramp system is suitable for the deployment of a 300-kg-class rover on the Moon, where the gravity is about one-sixth that on Earth. The lightweight and sturdy ramp developed in this study will contribute to both safe rover deployment and increase of lander/rover payload.

  3. Exploration of Mars with the ChemCam LIBS Instrument and the Curiosity Rover

    Science.gov (United States)

    Newsom, Horton E.

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity rover landed on Mars in August 2012, and has been exploring the planet ever since. Dr. Horton E. Newsom will discuss the MSL's design and main goal, which is to characterize past environments that may have been conducive to the evolution and sustainability of life. He will also discuss Curiosity's science payload, and remote sensing, analytical capabilities, and direct discoveries of the Chemistry & Camera (ChemCam) instrument, which is the first Laser Induced Breakdown Spectrometer (LIBS) to operate on another planetary surface and determine the chemistry of the rocks and soils.

  4. Processing of Mars Exploration Rover Imagery for Science and Operations Planning

    Science.gov (United States)

    Alexander, Douglass A.; Deen, Robert G.; Andres, Paul M.; Zamani, Payam; Mortensen, Helen B.; Chen, Amy C.; Cayanan, Michael K.; Hall, Jeffrey R.; Klochko, Vadim S.; Pariser, Oleg; hide

    2006-01-01

    The twin Mars Exploration Rovers (MER) delivered an unprecedented array of image sensors to the Mars surface. These cameras were essential for operations, science, and public engagement. The Multimission Image Processing Laboratory (MIPL) at the Jet Propulsion Laboratory was responsible for the first-order processing of all of the images returned by these cameras. This processing included reconstruction of the original images, systematic and ad hoc generation of a wide variety of products derived from those images, and delivery of the data to a variety of customers, within tight time constraints. A combination of automated and manual processes was developed to meet these requirements, with significant inheritance from prior missions. This paper describes the image products generated by MIPL for MER and the processes used to produce and deliver them.

  5. Astronauts For Hire The Emergence of a Commercial Astronaut Corps

    CERN Document Server

    Seedhouse, Erik

    2012-01-01

    The spaceflight industry is being revolutionized. It is no longer the sole preserve of professional astronauts working on government-funded manned spaceflight programs. As private companies are being encouraged to build and operate launch vehicles, and even spacecraft that can be hired on a contract basis, a new breed of astronauts is coming into being. Astronauts for Hire describes how this commercial astronaut corps will be selected and trained. It provides a unique insight into the kinds of missions and tasks that the astronauts will be involved in, from suborbital science missions to commercial trips to low Earth orbit. The book also describes the new fleet of commercial spaceships being developed - reusable rocket-propelled vehicles that will offer quick, routine, and affordable access to the edge of space. The author also explores the possibility of private enterprise establishing interplanetary spaceports, lunar bases, and outposts on the surface of Mars.

  6. Martian Surface Mineralogy from Rovers with Spirit, Opportunity, and Curiosity

    Science.gov (United States)

    Morris, Richard V.

    2016-01-01

    Beginning in 2004, NASA has landed three well-instrumented rovers on the equatorial martian surface. The Spirit rover landed in Gusev crater in early January, 2004, and the Opportunity rover landed on the opposite side of Mars at Meridian Planum 21 days later. The Curiosity rover landed in Gale crater to the west of Gusev crater in August, 2012. Both Opportunity and Curiosity are currently operational. The twin rovers Spirit and Opportunity carried Mossbauer spectrometers to determine the oxidation state of iron and its mineralogical composition. The Curiosity rover has an X-ray diffraction instrument for identification and quantification of crystalline materials including clay minerals. Instrument suites on all three rovers are capable of distinguishing primary rock-forming minerals like olivine, pyroxene and magnetite and products of aqueous alteration in including amorphous iron oxides, hematite, goethite, sulfates, and clay minerals. The oxidation state of iron ranges from that typical for unweathered rocks and soils to nearly completely oxidized (weathered) rocks and soils as products of aqueous and acid-sulfate alteration. The in situ rover mineralogy also serves as ground-truth for orbital observations, and orbital mineralogical inferences are used for evaluating and planning rover exploration.

  7. In Situ Visible to Short Wavelength Imaging Spectroscopy with the Ultra Compact Imaging Spectrometer (UCIS): Case Studies from the Mars Exploration Rovers

    Science.gov (United States)

    Blaney, D.; Mouroulis, P.; Green, R.; Rodriguez, J.; Sellar, G.; Van Gorp, B.; Wilson, D.

    2011-01-01

    In Situ imaging spectroscopy provides a way to address complex questions of geological evolution for both aqueous and igneous processes by mapping mineral composition at the spatial scale of rocks and outcrops. Examination of locations studied by the Mars Exploration Rovers Spirit and Opportunity can provide examples of the potential utility and define the needed measurement requirements. A compact instrument is needed to be able to adequately address these science questions from a rover platform. The Ultra Compact Imaging Spectrometer (UCIS) is an instrument designed to address the science need and implementation constraints.

  8. Virtual Astronaut for Scientific Visualization—A Prototype for Santa Maria Crater on Mars

    Directory of Open Access Journals (Sweden)

    Edward A. Guinness

    2012-12-01

    Full Text Available To support scientific visualization of multiple-mission data from Mars, the Virtual Astronaut (VA creates an interactive virtual 3D environment built on the Unity3D Game Engine. A prototype study was conducted based on orbital and Opportunity Rover data covering Santa Maria Crater in Meridiani Planum on Mars. The VA at Santa Maria provides dynamic visual representations of the imaging, compositional, and mineralogical information. The VA lets one navigate through the scene and provides geomorphic and geologic contexts for the rover operations. User interactions include in-situ observations visualization, feature measurement, and an animation control of rover drives. This paper covers our approach and implementation of the VA system. A brief summary of the prototype system functions and user feedback is also covered. Based on external review and comments by the science community, the prototype at Santa Maria has proven the VA to be an effective tool for virtual geovisual analysis.

  9. The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers

    Science.gov (United States)

    Rieder, R.; Gellert, R.; Brückner, J.; Klingelhöfer, G.; Dreibus, G.; Yen, A.; Squyres, S. W.

    2003-11-01

    The new alpha particle X-ray spectrometer (APXS) is part of the Athena payload of the two Mars Exploration Rovers (MER). The APXS sensor head is attached to the turret of the instrument deployment device (IDD) of the rover. The APXS is a very light-weight instrument for determining the major and minor elemental composition of Martian soils, rocks, and other geological materials at the MER landing sites. The sensor head has simply to be docked by the IDD on the surface of the selected sample. X-ray radiation, excited by alpha particles and X rays of the radioactive sources, is recorded by a high-resolution X-ray detector. The X-ray spectra show elements starting from sodium up to yttrium, depending on their concentrations. The backscattered alpha spectra, measured by a ring of detectors, provide additional data on carbon and oxygen. By means of a proper calibration, the elemental concentrations are derived. Together with data from the two other Athena instruments mounted on the IDD, the samples under investigation can be fully characterized. Key APXS objectives are the determination of the chemistry of crustal rocks and soils and the examination of water-related deposits, sediments, or evaporates. Using the rock abrasion tool attached to the IDD, issues of weathering can be addressed by measuring natural and abraded surfaces of rocks.

  10. Positive-Buoyancy Rover for Under Ice Mobility

    Science.gov (United States)

    Leichty, John M.; Klesh, Andrew T.; Berisford, Daniel F.; Matthews, Jaret B.; Hand, Kevin P.

    2013-01-01

    A buoyant rover has been developed to traverse the underside of ice-covered lakes and seas. The rover operates at the ice/water interface and permits direct observation and measurement of processes affecting freeze- over and thaw events in lake and marine environments. Operating along the 2- D ice-water interface simplifies many aspects of underwater exploration, especially when compared to submersibles, which have difficulty in station-keeping and precision mobility. The buoyant rover consists of an all aluminum body with two aluminum sawtooth wheels. The two independent body segments are sandwiched between four actuators that permit isolation of wheel movement from movement of the central tether spool. For normal operations, the wheels move while the tether spool feeds out line and the cameras on each segment maintain a user-controlled fixed position. Typically one camera targets the ice/water interface and one camera looks down to the lake floor to identify seep sources. Each wheel can be operated independently for precision turning and adjustments. The rover is controlled by a touch- tablet interface and wireless goggles enable real-time viewing of video streamed from the rover cameras. The buoyant rover was successfully deployed and tested during an October 2012 field campaign to investigate methane trapped in ice in lakes along the North Slope of Alaska.

  11. Exomars 2018 Rover Pasteur Payload

    Science.gov (United States)

    Debus, Andre; Bacher, M.; Ball, A.; Barcos, O.; Bethge, B.; Gaubert, F.; Haldemann, A.; Lindner, R.; Pacros, A.; Trautner, R.; Vag, J.

    ars programme is a joint ESA-NASA program having exobiology as one of the key science objectives. It is divided into 2 missions: the first mission is ESA-led with an ESA orbiter and an ESA Entry, Descent and Landing (EDL) demonstrator, launched in 2016 by NASA, and the second mission is NASA-led, launched in 2018 by NASA carrying an ESA rover and a NASA rover both deployed by a single NASA EDL system. For ESA, the ExoMars programme will demonstrate key flight and in situ enabling technologies in support of the European ambitions for future exploration missions, as outlined in the Aurora Declaration. While the ExoMars 2016 mission will accomplish a technological objective (Entry, Descent and Landing of a payload on the surface) and a Scientific objective (investigation of Martian atmospheric trace gases and their sources, focussing particularly on methane), the ExoMars 2018 ESA Rover will carry a comprehensive and coherent suite of analytical instruments dedicated to exobiology and geology research: the Pasteur Payload (PPL). This payload includes a selection of complementary instruments, having the following goals: to search for signs of past and present life on Mars and to investigate the water/geochemical environment as a function of depth in the shallow subsurface. The ExoMars Rover includes a drill for accessing underground materials, and a Sample Preparation and Distribution System. The Rover will travel several kilometres looking for sites warranting further investigation, where it will collect and analyse samples from within outcrops and from the subsurface for traces of complex organic molecules. In addition to further details on this Exomars 2018 rover mission, this presentation will focus on the scientific objectives and the instruments needed to achieve them, including details of how the Pasteur Payload as a whole addresses Mars research objectives.

  12. Autonomous Rover Traverse and Precise Arm Placement on Remotely Designated Targets

    Science.gov (United States)

    Felder, Michael; Nesnas, Issa A.; Pivtoraiko, Mihail; Kelly, Alonzo; Volpe, Richard

    2011-01-01

    Exploring planetary surfaces typically involves traversing challenging and unknown terrain and acquiring in-situ measurements at designated locations using arm-mounted instruments. We present field results for a new implementation of an autonomous capability that enables a rover to traverse and precisely place an arm-mounted instrument on remote targets. Using point-and-click mouse commands, a scientist designates targets in the initial imagery acquired from the rover's mast cameras. The rover then autonomously traverse the rocky terrain for a distance of 10 - 15 m, tracks the target(s) of interest during the traverse, positions itself for approaching the target, and then precisely places an arm-mounted instrument within 2-3 cm from the originally designated target. The rover proceeds to acquire science measurements with the instrument. This work advances what has been previously developed and integrated on the Mars Exploration Rovers by using algorithms that are capable of traversing more rock-dense terrains, enabling tight thread-the-needle maneuvers. We integrated these algorithms on the newly refurbished Athena Mars research rover and fielded them in the JPL Mars Yard. We conducted 43 runs with targets at distances ranging from 5 m to 15 m and achieved a success rate of 93% for placement of the instrument within 2-3 cm.

  13. Overview of the magnetic properties experiments on the Mars Exploration Rovers

    DEFF Research Database (Denmark)

    Madsen, M. B.; Goetz, W.; Bertelsen, P.

    2009-01-01

    , while the weakly magnetic one is bright red. Images returned by the Microscopic Imager reveal the formation of magnetic chains diagnostic of magnetite-rich grains with substantial magnetization (>8 Am-2 kg(-1)). On the basis of Mossbauer spectra the dust contains magnetite, olivine, pyroxene......The Mars Exploration Rovers have accumulated airborne dust on different types of permanent magnets. Images of these magnets document the dynamics of dust capture and removal over time. The strongly magnetic subset of airborne dust appears dark brown to black in Panoramic Camera (Pancam) images......, and nanophase oxides in varying proportions, depending on wind regime and landing site. The dust contains a larger amount of ferric iron (Fe3+/Fe-tot similar to 0.6) than rocks in the Gusev plains (similar to 0.1-0.2) or average Gusev soil (similar to 0.3). Alpha Particle X-Ray Spectrometer data of the dust...

  14. Assessment of Spatial Navigation and Docking Performance During Simulated Rover Tasks

    Science.gov (United States)

    Wood, S. J.; Dean, S. L.; De Dios, Y. E.; Moore, S. T.

    2010-01-01

    INTRODUCTION: Following long-duration exploration transits, pressurized rovers will enhance surface mobility to explore multiple sites across Mars and other planetary bodies. Multiple rovers with docking capabilities are envisioned to expand the range of exploration. However, adaptive changes in sensorimotor and cognitive function may impair the crew s ability to safely navigate and perform docking tasks shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify post-flight decrements in spatial navigation and docking performance during a rover simulation. METHODS: Eight crewmembers returning from the International Space Station will be tested on a motion simulator during four pre-flight and three post-flight sessions over the first 8 days following landing. The rover simulation consists of a serial presentation of discrete tasks to be completed within a scheduled 10 min block. The tasks are based on navigating around a Martian outpost spread over a 970 sq m terrain. Each task is subdivided into three components to be performed as quickly and accurately as possible: (1) Perspective taking: Subjects use a joystick to indicate direction of target after presentation of a map detailing current orientation and location of the rover with the task to be performed. (2) Navigation: Subjects drive the rover to the desired location while avoiding obstacles. (3) Docking: Fine positioning of the rover is required to dock with another object or align a camera view. Overall operator proficiency will be based on how many tasks the crewmember can complete during the 10 min time block. EXPECTED RESULTS: Functionally relevant testing early post-flight will develop evidence regarding the limitations to early surface operations and what countermeasures are needed. This approach can be easily adapted to a wide variety of simulated vehicle designs to provide sensorimotor assessments for other operational and civilian populations.

  15. Volatiles and Isotopes and the Exploration of Ancient and Modern Martian Habitability with the Curiosity Rover

    Science.gov (United States)

    Mhaffy, P. R.

    2015-01-01

    The Mars Science Laboratory Mission was designed to pave the way for the study of life beyond Earth through a search for a habitable environment in a carefully selected landing site on Mars. Its ongoing exploration of Gale Crater with the Curiosity Rover has provided a rich data set that revealed such an environment in an ancient lakebed [1]. Volatile and isotope measurements of both the atmosphere and solids contribute to our growing understanding of both modern and ancient environments.

  16. Bringing Terramechanics to bear on Planetary Rover Design

    Science.gov (United States)

    Richter, L.

    2007-08-01

    Thus far, planetary rovers have been successfully operated on the Earth's moon and on Mars. In particular, the two NASA Mars Exploration Rovers (MERs) ,Spirit' and ,Opportunity' are still in sustained daily operations at two sites on Mars more than 3 years after landing there. Currently, several new planetary rover missions are in development targeting Mars (the US Mars Science Lab vehicle for launch in 2009 and ESA's ExoMars rover for launch in 2013), with lunar rover missions under study by China and Japan for launches around 2012. Moreover, the US Constellation program is preparing pre-development of lunar rovers for initially unmanned and, subsequently, human missions to the Moon with a corresponding team dedicated to mobility system development having been set up at the NASA Glenn Research Center. Given this dynamic environment, it was found timely to establish an expert group on off-the-road mobility as relevant for robotic vehicles that would involve individuals representing the various on-going efforts on the different continents. This was realized through the International Society of Terrain-Vehicle Systems (ISTVS), a research organisation devoted to terramechanics and to the ,science' of off-the-road vehicle development which as a result is just now establishing a Technical Group on Terrestrial and Planetary Rovers. Members represent space-related as well as military research institutes and universities from the US, Germany, Italy, and Japan. The group's charter for 2007 is to define its objectives, functions, organizational structure and recommended research objectives to support planetary rover design and development. Expected areas of activity of the ISTVS-sponsored group include: the problem of terrain specification for planetary rovers; identification of limitations in modelling of rover mobility; a survey of existing rover mobility testbeds; the consolidation of mobility predictive models and their state of validation; sensing and real

  17. A Rover Mobility Platform with Autonomous Capability to Enable Mars Sample Return

    Science.gov (United States)

    Fulford, P.; Langley, C.; Shaw, A.

    2018-04-01

    The next step in understanding Mars is sample return. In Fall 2016, the CSA conducted an analogue deployment using the Mars Exploration Science Rover. An objective was to demonstrate the maturity of the rover's guidance, navigation, and control.

  18. Lunar Surface Scenarios: Habitation and Life Support Systems for a Pressurized Rover

    Science.gov (United States)

    Anderson, Molly; Hanford, Anthony; Howard, Robert; Toups, Larry

    2006-01-01

    Pressurized rovers will be a critical component of successful lunar exploration to enable safe investigation of sites distant from the outpost location. A pressurized rover is a complex system with the same functions as any other crewed vehicle. Designs for a pressurized rover need to take into account significant constraints, a multitude of tasks to be performed inside and out, and the complexity of life support systems to support the crew. In future studies, pressurized rovers should be given the same level of consideration as any other vehicle occupied by the crew.

  19. Mars Exploration Rover Pancam Photometric Data QUBs: Definition and Example Uses.

    Science.gov (United States)

    Soderblom, J. M.; Bell, J. F.; Arvidson, R. E.; Johnson, J. R.; Johnson, M. J.; Seelos, F. P.

    2004-12-01

    Pancam multi-spectral observations acquired at the Mars Exploration Rover Spirit and Opportunity landing sites are being assembled into a multi-layer format know as a QUB. For any given pixel in a Pancam image the QUB will contain values for the radiance factor, incidence (i), emission (e), and phase (g) angles, X, Y, and Z distance in a rover-based coordinate system, disparity in number of pixels between the left and right eye images and range data. Good range data is required for the generation of a Pancam QUB. The radiance factor (I/F, where I is the measured scene radiance on sensor and π F is the incident solar irradiance) is calculated using a combination of preflight calibration data and information obtained from near-simultaneous observations of an onboard reflectance calibration target. The range, X, Y, Z and disparity data, and i, e, and g are calculated using routines developed by JPL's MIPL and Cornell. When possible, these data have been interpolated to maximize parameter coverage; a map of non-interpolated data is also included in each QUB. QUBs should prove very useful in photometric studies (e.g., Johnson et al.; Seelos, et al., this conference), detailed spectral analyses (e.g., Bell et al., this conference), and detailed topographic/DTM studies. Here we present two examples of the utilization of the information contained in Pancam QUBs. In one example we remove the photometric variability from spectra collected from multiple facets of a rock using knowledge of i, e, g and derived photometric functions. This is necessary if one wishes to conduct comparative studies of observations acquired under varying geometries and lighting conditions. In another example we present an analysis using the discrete ordinate multiple scattering radiative transfer code DISORT where we separate the atmosphere and surface contributions of the surface reflectance.

  20. Pressurized Lunar Rover (PLR)

    Science.gov (United States)

    Creel, Kenneth; Frampton, Jeffrey; Honaker, David; McClure, Kerry; Zeinali, Mazyar; Bhardwaj, Manoj; Bulsara, Vatsal; Kokan, David; Shariff, Shaun; Svarverud, Eric

    The objective of this project was to design a manned pressurized lunar rover (PLR) for long-range transportation and for exploration of the lunar surface. The vehicle must be capable of operating on a 14-day mission, traveling within a radius of 500 km during a lunar day or within a 50-km radius during a lunar night. The vehicle must accommodate a nominal crew of four, support two 28-hour EVA's, and in case of emergency, support a crew of six when near the lunar base. A nominal speed of ten km/hr and capability of towing a trailer with a mass of two mt are required. Two preliminary designs have been developed by two independent student teams. The PLR 1 design proposes a seven meter long cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, lighting, robotic arms, tools, and equipment for exploratory experiments. The rover uses a simple mobility system with six wheels on the main vehicle and two on the trailer. The nonpressurized trailer contains a modular radioisotope thermoelectric generator (RTG) supplying 6.5 kW continuous power. A secondary energy storage for short-term peak power needs is provided by a bank of lithium-sulfur dioxide batteries. The life support system is partly a regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center allowing the center to be used as a safe haven during solar flares. The PLR 1 has a total mass of 6197 kg. It has a top speed of 18 km/hr and is capable of towing three metric tons, in addition to the RTG trailer. The PLR 2 configuration consists of two four-meter diameter, cylindrical hulls which are passively connected by a flexible passageway, resulting in the overall vehicle length of 11 m. The vehicle is driven by eight independently suspended wheels. The dual-cylinder concept allows articulated as well as double

  1. Mars 2020 Rover SHERLOC Calibration Target

    Science.gov (United States)

    Graff, Trevor; Fries, Marc; Burton, Aaron; Ross, Amy; Larson, Kristine; Garrison, Dan; Calaway, Mike; Tran, Vinh; Bhartia, Roh; Beegle, Luther

    2016-01-01

    The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument is a deep ultraviolet (UV) Raman Fluorescence instrument selected as part of the Mars 2020 rover instrument suite. SHERLOC will be mounted on the rover arm and its primary role is to identify carbonaceous species in martian samples. The SHERLOC instrument requires a calibration target which is being designed and fabricated at JSC as part of our continued science participation in Mars robotic missions. The SHERLOC calibration target will address a wide range of NASA goals to include basic science of interest to both the Science Mission Directorate and Human Exploration and Operations Mission Directorate.

  2. Curiosity rover LEGO® version could land soon

    Science.gov (United States)

    Showstack, Randy

    2012-09-01

    Now that NASA's Curiosity rover has landed on Mars, a smaller LEGO® plastic brick construction version could be landing in toy stores. Less than 2 weeks after Curiosity set down on 5 August, a LEGO® set concept model designed by a mechanical and aerospace engineer who worked on the real rover garnered its 10,000th supporter on the Web site of CUUSOO, a Japanese partner of the LEGO® group. That milestone triggered a company review that began in September 2012 to test the model's “playability, safety, and ft with the LEGO® brand,” according to a congratulatory statement from the company to designer Stephen Pakbaz. Pakbaz told Eos that he has been an avid LEGO® and space exploration fan for most of his life. “For me, creating a LEGO® model of Curiosity using my firsthand knowledge of the rover was inevitable. What I enjoyed most was being able to faithfully replicate and subsequently demonstrate the rocker-bogie suspension system to friends, family, and coworkers,” he noted, referring to the suspension system that allows the rover to climb over obstacles while keeping its wheels on the ground. Pakbaz, who is currently with Orbital Sciences Corporation, was involved with aspects of the rover while working at the Jet Propulsion Laboratory from 2007 to 2011 as a mechanical engineer.

  3. Space radiation and astronaut safety

    CERN Document Server

    Seedhouse, Erik

    2018-01-01

    This brief explores the biological effects of long-term radiation on astronauts in deep space. As missions progress beyond Earth's orbit and away from the protection of its magnetic shielding, astronauts risk constant exposure to higher levels of galactic cosmic rays and solar particle events. The text concisely addresses the full spectrum of biomedical consequences from exposure to space radiation and goes on to present possible ways to mitigate such dangers and protect astronauts within the limitations of existing technologies.

  4. GIS Methodology for Planning Planetary-Rover Operations

    Science.gov (United States)

    Powell, Mark; Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang

    2007-01-01

    A document describes a methodology for utilizing image data downlinked from cameras aboard a robotic ground vehicle (rover) on a remote planet for analyzing and planning operations of the vehicle and of any associated spacecraft. Traditionally, the cataloging and presentation of large numbers of downlinked planetary-exploration images have been done by use of two organizational methods: temporal organization and correlation between activity plans and images. In contrast, the present methodology involves spatial indexing of image data by use of the computational discipline of geographic information systems (GIS), which has been maturing in terrestrial applications for decades, but, until now, has not been widely used in support of exploration of remote planets. The use of GIS to catalog data products for analysis is intended to increase efficiency and effectiveness in planning rover operations, just as GIS has proven to be a source of powerful computational tools in such terrestrial endeavors as law enforcement, military strategic planning, surveying, political science, and epidemiology. The use of GIS also satisfies the need for a map-based user interface that is intuitive to rover-activity planners, many of whom are deeply familiar with maps and know how to use them effectively in field geology.

  5. Safeguarding the Health of the NASA Astronaut Community: the Need for Expanded Medical Monitoring for Former NASA Astronauts Under the Astronaut Occupational Health Program

    Science.gov (United States)

    Rossi, Meredith; Lee, Lesley; Wear, Mary; Van Baalen, Mary; Rhodes, Bradley

    2016-01-01

    The astronaut community is unique, and may be disproportionately exposed to occupational hazards not commonly seen in other communities. The extent to which the demands of the astronaut occupation and exposure to spaceflight-related hazards affect the health of the astronaut population over the life course is not completely known. Provision of health screening services to active and former astronauts ensures individual, mission, and community health and safety. Currently, the NASA Johnson Space Center (JSC) Flight Medicine Clinic (FMC) provides extensive medical monitoring to active astronauts throughout their careers. Upon retirement, astronauts may voluntarily return to the JSC FMC for an annual preventive exam. However, current retiree monitoring includes only selected screening tests, representing an opportunity for augmentation. The potential latent health effects of spaceflight demand an expanded framework of testing for former astronauts. The need is two-fold: screening tests widely recommended for other aging communities are necessary for astronauts to rule out conditions resulting from the natural aging process (e.g., colonoscopy, mammography), as opposed to conditions resulting directly from the astronaut occupation; and increased breadth of monitoring services will improve the understanding of occupational health risks and longitudinal health of the astronaut community, past, present, and future. To meet this need, NASA has begun an extensive exploration of the overall approach, cost, and policy implications of expanding existing medical monitoring under the Astronaut Occupational Health program for former NASA astronauts.

  6. Radiation shield analysis for a manned Mars rover

    International Nuclear Information System (INIS)

    Morley, N.J.; ElGenk, M.S.

    1991-01-01

    Radiation shielding for unmanned space missions has been extensively studied; however, designs of man-rated shields are minimal. Engle et al.'s analysis of a man-rated, multilayered shield composed of two and three cycles (a cycle consists of a tungsten and a lithium hydride layer) is the basis for the work reported in this paper. The authors present the results of a recent study of shield designs for a manned Mars rover powered by a 500-kW(thermal) nuclear reactor. A train-type rover vehicle was developed, which consists of four cars and is powered by an SP-100-type nuclear reactor heat source. The maximum permissible dose rate (MPD) from all sources is given by the National Council on Radiation Protection and Measurements as 500 mSv/yr (50 rem/yr) A 3-yr Mars mission (2-yr round trip and 1-yr stay) will deliver a 1-Sv natural radiation dose without a solar particle event, 450 mSv/yr in flight, and an additional 100 mSv on the planet surface. An anomalously large solar particle event could increase the natural radiation dose for unshielded astronauts on the Martian surface to 200 mSv. This limits the MPD to crew members from the nuclear reactor to 300 mSv

  7. Fault-Tolerant Control Strategy for Steering Failures in Wheeled Planetary Rovers

    Directory of Open Access Journals (Sweden)

    Alexandre Carvalho Leite

    2012-01-01

    Full Text Available Fault-tolerant control design of wheeled planetary rovers is described. This paper covers all steps of the design process, from modeling/simulation to experimentation. A simplified contact model is used with a multibody simulation model and tuned to fit the experimental data. The nominal mode controller is designed to be stable and has its parameters optimized to improve tracking performance and cope with physical boundaries and actuator saturations. This controller was implemented in the real rover and validated experimentally. An impact analysis defines the repertory of faults to be handled. Failures in steering joints are chosen as fault modes; they combined six fault modes and a total of 63 possible configurations of these faults. The fault-tolerant controller is designed as a two-step procedure to provide alternative steering and reuse the nominal controller in a way that resembles a crab-like driving mode. Three fault modes are injected (one, two, and three failed steering joints in the real rover to evaluate the response of the nonreconfigured and reconfigured control systems in face of these faults. The experimental results justify our proposed fault-tolerant controller very satisfactorily. Additional concluding comments and an outlook summarize the lessons learned during the whole design process and foresee the next steps of the research.

  8. Learning from the Mars Rover Mission: Scientific Discovery, Learning and Memory

    Science.gov (United States)

    Linde, Charlotte

    2005-01-01

    Purpose: Knowledge management for space exploration is part of a multi-generational effort. Each mission builds on knowledge from prior missions, and learning is the first step in knowledge production. This paper uses the Mars Exploration Rover mission as a site to explore this process. Approach: Observational study and analysis of the work of the MER science and engineering team during rover operations, to investigate how learning occurs, how it is recorded, and how these representations might be made available for subsequent missions. Findings: Learning occurred in many areas: planning science strategy, using instrumen?s within the constraints of the martian environment, the Deep Space Network, and the mission requirements; using software tools effectively; and running two teams on Mars time for three months. This learning is preserved in many ways. Primarily it resides in individual s memories. It is also encoded in stories, procedures, programming sequences, published reports, and lessons learned databases. Research implications: Shows the earliest stages of knowledge creation in a scientific mission, and demonstrates that knowledge management must begin with an understanding of knowledge creation. Practical implications: Shows that studying learning and knowledge creation suggests proactive ways to capture and use knowledge across multiple missions and generations. Value: This paper provides a unique analysis of the learning process of a scientific space mission, relevant for knowledge management researchers and designers, as well as demonstrating in detail how new learning occurs in a learning organization.

  9. A multitasking behavioral control system for the Robotic All Terrain Lunar Exploration Rover (RATLER)

    Science.gov (United States)

    Klarer, P.

    1994-01-01

    An alternative methodology for designing an autonomous navigation and control system is discussed. This generalized hybrid system is based on a less sequential and less anthropomorphic approach than that used in the more traditional artificial intelligence (AI) technique. The architecture is designed to allow both synchronous and asynchronous operations between various behavior modules. This is accomplished by intertask communications channels which implement each behavior module and each interconnection node as a stand-alone task. The proposed design architecture allows for construction of hybrid systems which employ both subsumption and traditional AI techniques as well as providing for a teleoperator's interface. Implementation of the architecture is planned for the prototype Robotic All Terrain Lunar Explorer Rover (RATLER) which is described briefly.

  10. Energy Management of the Multi-Mission Space Exploration Vehicle Using a Goal-Oriented Control System

    Science.gov (United States)

    Braman, Julia M. B.; Wagner, David A.

    2010-01-01

    Safe human exploration in space missions requires careful management of limited resources such as breathable air and stored electrical energy. Daily activities for astronauts must be carefully planned with respect to such resources, and usage must be monitored as activities proceed to ensure that they can be completed while maintaining safe resource margins. Such planning and monitoring can be complex because they depend on models of resource usage, the activities being planned, and uncertainties. This paper describes a system - and the technology behind it - for energy management of the NASA-Johnson Space Center's Multi-Mission Space Exploration Vehicles (SEV), that provides, in an onboard advisory mode, situational awareness to astronauts and real-time guidance to mission operators. This new capability was evaluated during this year's Desert RATS (Research and Technology Studies) planetary exploration analog test in Arizona. This software aided ground operators and crew members in modifying the day s activities based on the real-time execution of the plan and on energy data received from the rovers.

  11. Assessment of Proficiency During Simulated Rover Operations Following Long-Duration Spaceflight

    Science.gov (United States)

    Wood, S. J.; Dean, S. L.; De Dios, Y. E.; MacDougall, H. G.; Moore, S. T.

    2011-01-01

    Following long-duration space travel, pressurized rovers will enhance crew mobility to explore Mars and other planetary surfaces. Adaptive changes in sensorimotor function may limit the crew s proficiency when performing some rover operations shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify postflight decrements in operational proficiency in a motion-based rover simulation after International Space Station (ISS) expeditions. Given that postflight performance will also be influenced by the level of preflight proficiency attained, a ground-based normative study was conducted to characterize the acquisition of skills over multiple sessions.

  12. Geoscience Training for NASA Astronaut Candidates

    Science.gov (United States)

    Young, K. E.; Evans, C. A.; Bleacher, J. E.; Graff, T. G.; Zeigler, R.

    2017-01-01

    After being selected to the astronaut office, crewmembers go through an initial two year training flow, astronaut candidacy, where they learn the basic skills necessary for spaceflight. While the bulk of astronaut candidate training currently centers on the multiple subjects required for ISS operations (EVA skills, Russian language, ISS systems, etc.), training also includes geoscience training designed to train crewmembers in Earth observations, teach astronauts about other planetary systems, and provide field training designed to investigate field operations and boost team skills. This training goes back to Apollo training and has evolved to support ISS operations and future exploration missions.

  13. Determining best practices in reconnoitering sites for habitability potential on Mars using a semi-autonomous rover: A GeoHeuristic Operational Strategies Test.

    Science.gov (United States)

    Yingst, R A; Berger, J; Cohen, B A; Hynek, B; Schmidt, M E

    2017-03-01

    We tested science operations strategies developed for use in remote mobile spacecraft missions, to determine whether reconnoitering a site of potential habitability prior to in-depth study (a walkabout-first strategy) can be a more efficient use of time and resources than the linear approach commonly used by planetary rover missions. Two field teams studied a sedimentary sequence in Utah to assess habitability potential. At each site one team commanded a human "rover" to execute observations and conducted data analysis and made follow-on decisions based solely on those observations. Another team followed the same traverse using traditional terrestrial field methods, and the results of the two teams were compared. Test results indicate that for a mission with goals similar to our field case, the walkabout-first strategy may save time and other mission resources, while improving science return. The approach enabled more informed choices and higher team confidence in choosing where to spend time and other consumable resources. The walkabout strategy may prove most efficient when many close sites must be triaged to a smaller subset for detailed study or sampling. This situation would arise when mission goals include finding, identifying, characterizing or sampling a specific material, feature or type of environment within a certain area.

  14. A multitasking behavioral control system for the Robotic All-Terrain Lunar Exploration Rover (RATLER)

    Science.gov (United States)

    Klarer, Paul

    1993-01-01

    An approach for a robotic control system which implements so called 'behavioral' control within a realtime multitasking architecture is proposed. The proposed system would attempt to ameliorate some of the problems noted by some researchers when implementing subsumptive or behavioral control systems, particularly with regard to multiple processor systems and realtime operations. The architecture is designed to allow synchronous operations between various behavior modules by taking advantage of a realtime multitasking system's intertask communications channels, and by implementing each behavior module and each interconnection node as a stand-alone task. The potential advantages of this approach over those previously described in the field are discussed. An implementation of the architecture is planned for a prototype Robotic All Terrain Lunar Exploration Rover (RATLER) currently under development and is briefly described.

  15. A Polar Rover for Large-Scale Scientific Surveys: Design, Implementation and Field Test Results

    Directory of Open Access Journals (Sweden)

    Yuqing He

    2015-10-01

    Full Text Available Exploration of polar regions is of great importance to scientific research. Unfortunately, due to the harsh environment, most of the regions on the Antarctic continent are still unreachable for humankind. Therefore, in 2011, the Chinese National Antarctic Research Expedition (CHINARE launched a project to design a rover to conduct large-scale scientific surveys on the Antarctic. The main challenges for the rover are twofold: one is the mobility, i.e., how to make a rover that could survive the harsh environment and safely move on the uneven, icy and snowy terrain; the other is the autonomy, in that the robot should be able to move at a relatively high speed with little or no human intervention so that it can explore a large region in a limit time interval under the communication constraints. In this paper, the corresponding techniques, especially the polar rover's design and autonomous navigation algorithms, are introduced in detail. Subsequently, an experimental report of the fields tests on the Antarctic is given to show some preliminary evaluation of the rover. Finally, experiences and existing challenging problems are summarized.

  16. The Proposed Mars Astrobiology Explorer - Cacher [MAX-C] Rover: First Step in a Potential Sample Return Campaign

    Science.gov (United States)

    Allen, Carlton C.; Beaty, David W.

    2010-01-01

    Sample return from Mars has been advocated by numerous scientific advisory panels for over 30 years, most prominently beginning with the National Research Council s [1] strategy for the exploration of the inner solar system, and most recently by the Mars Exploration Program Analysis Group (MEPAG s) Next Decade Science Analysis Group [2]. Analysis of samples here on Earth would have enormous advantages over in situ analyses in producing the data quality needed to address many of the complex scientific questions the community has posed about Mars. Instead of a small, predetermined set of analytical techniques, state of the art preparative and instrumental resources of the entire scientific community could be applied to the samples. The analytical emphasis could shift as the meaning of each result becomes better appreciated. These arguments apply both to igneous rocks and to layered sedimentary materials, either of which could contain water and other volatile constituents. In 2009 MEPAG formed the Mid-Range Rover Science Analysis Group (MRR-SAG) to formulate a mission concept that would address two general objectives: (1) conduct high-priority in situ science and (2) make concrete steps towards the potential return of samples to Earth. This analysis resulted in a mission concept named the Mars Astrobiology Explorer-Cacher (MAX-C), which was envisioned for launch in the 2018 opportunity. After extensive discussion, this group concluded that by far the most definitive contribution to sample return by this mission would be to collect and cache, in an accessible location, a suite of compelling samples that could potentially be recovered and returned by a subsequent mission. This would have the effect of separating two of the essential functions of MSR, the acquisition of the sample collection and its delivery to martian orbit, into two missions.

  17. Use of Geochemistry Data Collected by the Mars Exploration Rover Spirit in Gusev Crater to Teach Geomorphic Zonation through Principal Components Analysis

    Science.gov (United States)

    Rodrigue, Christine M.

    2011-01-01

    This paper presents a laboratory exercise used to teach principal components analysis (PCA) as a means of surface zonation. The lab was built around abundance data for 16 oxides and elements collected by the Mars Exploration Rover Spirit in Gusev Crater between Sol 14 and Sol 470. Students used PCA to reduce 15 of these into 3 components, which,…

  18. Haughton-Mars Project/NASA 2006 Lunar Medical Contingency Simulation: Equipment and Methods for Medical Evacuation of an Injured Crewmember

    Science.gov (United States)

    Chappell, S. P.; Scheuring, R. A.; Jones, J. A.; Lee, P.; Comtois, J. M.; Chase, T.; Gernhardt M.; Wilkinson, N.

    2007-01-01

    Introduction: Achieving NASA's Space Exploration Vision scientific objectives will require human access into cratered and uneven terrain for the purpose of sample acquisition to assess geological, and perhaps even biological features and experiments. Operational risk management is critical to safely conduct the anticipated tasks. This strategy, along with associated contingency plans, will be a driver of EVA system requirements. Therefore, a medical contingency EVA scenario was performed with the Haughton-Mars Project/NASA to develop belay and medical evacuation techniques for exploration and rescue respectively. Methods: A rescue system to allow two rescuer astronauts to evacuate one in incapacitated astronaut was evaluated. The systems main components were a hard-bottomed rescue litter, hand-operated winch, rope, ground picket anchors, and a rover-winch attachment adapter. Evaluation was performed on 15-25deg slopes of dirt with embedded rock. The winch was anchored either by adapter to the rover or by pickets hammered into the ground. The litter was pulled over the surface by rope attached to the winch. Results: The rescue system was utilized effectively to extract the injured astronaut up a slope and to a waiting rover for transport to a simulated habitat for advanced medical care, although several challenges to implementation were identified and overcome. Rotational stabilization of the winch was found to be important to get maximize mechanical advantage from the extraction system. Discussion: Further research and testing needs to be performed to be able to fully consider synergies with the other Exploration surface systems, in conducting contingency operations. Structural attachment points on the surface EVA suits may be critical to assist in incapacitated evacuation. Such attach points could be helpful in microgravity incapacitated crewmember transport as well. Wheeled utility carts or wheels that may be attachable to a litter may also aid in extraction and

  19. Designing Interfaces for Astronaut Autonomy in Space

    Science.gov (United States)

    Hillenius, Steve

    2015-01-01

    As we move towards human deep space missions, astronauts will no longer be able to say, Houston, we have a problem. The restricted contact with mission control because of the incredible distance from Earth will require astronauts to make autonomous decisions. How will astronauts take on the roles of mission control? This is an area of active research that has far reaching implications for the future of distant spaceflight. Come to this talk to hear how we are using design and user research to come up with innovative solutions for astronauts to effectively explore the Moon, Mars, and beyond.

  20. Frost on Mars Rover Opportunity

    Science.gov (United States)

    2004-01-01

    Frost can form on surfaces if enough water is present and the temperature is sufficiently low. On each of NASA's Mars Exploration Rovers, the calibration target for the panoramic camera provides a good place to look for such events. A thin frost was observed by Opportunity's panoramic camera on the rover's 257th sol (Oct. 13, 2004) 11 minutes after sunrise (left image). The presence of the frost is most clearly seen on the post in the center of the target, particularly when compared with the unsegmented outer ring of the target, which is white. The post is normally black. For comparison, note the difference in appearance in the image on the right, taken about three hours later, after the frost had dissipated. Frost has not been observed at Spirit, where the amount of atmospheric water vapor is observed to be appreciably lower. Both images were taken through a filter centered at a wavelength of 440 nanometers (blue).

  1. Exomars 2018 Rover Pasteur Payload Sample Analysis

    Science.gov (United States)

    Debus, Andre; Bacher, M.; Ball, A.; Barcos, O.; Bethge, B.; Gaubert, F.; Haldemann, A.; Kminek, G.; Lindner, R.; Pacros, A.; Rohr, T.; Trautner, R.; Vago, J.

    The ExoMars programme is a joint ESA-NASA program having exobiology as one of the key science objectives. It is divided into 2 missions: the first mission is ESA-led with an ESA orbiter and an ESA Entry, Descent and Landing (EDL) demonstrator, launched in 2016 by NASA, and the second mission is NASA-led, launched in 2018 by NASA including an ESA rover and a NASA rover both deployed by a single NASA EDL system. For ESA, the ExoMars programme will demonstrate key flight and in situ enabling technologies in support of the European ambitions for future exploration missions, as outlined in the Aurora Declaration. The ExoMars 2018 ESA Rover will carry a comprehensive and coherent suite of analytical instruments dedicated to exobiology and geology research: the Pasteur Payload (PPL). This payload includes a selection of complementary instruments, having the following goals: to search for signs of past and present life on Mars and to investigate the water/geochemical environment as a function of depth in the shallow subsurface. The ExoMars Rover will travel several kilometres searching for sites warranting further investigation. The Rover includes a drill and a Sample Preparation and Distribution System which will be used to collect and analyse samples from within outcrops and from the subsurface. The Rover systems and instruments, in particular those located inside the Analytical Laboratory Drawer must meet many stringent requirements to be compatible with exobiologic investigations: the samples must be maintained in a cold and uncontaminated environment, requiring sterile and ultraclean preparation of the instruments, to preserve volatile materials and to avoid false positive results. The value of the coordinated observations suggests that a significant return on investment is to be expected from this complex development. We will present the challenges facing the ExoMars PPL, and the plans for sending a robust exobiology laboratory to Mars in 2018.

  2. Evolution of space drones for planetary exploration: A review

    Science.gov (United States)

    Hassanalian, M.; Rice, D.; Abdelkefi, A.

    2018-02-01

    In the past decade, there has been a tendency to design and fabricate drones which can perform planetary exploration. Generally, there are various ways to study space objects, such as the application of telescopes and satellites, launching robots and rovers, and sending astronauts to the targeted solar bodies. However, due to the advantages of drones compared to other approaches in planetary exploration, ample research has been carried out by different space agencies in the world, including NASA to apply drones in other solar bodies. In this review paper, several studies which have been performed on space drones for planetary exploration are consolidated and discussed. Design and fabrication challenges of space drones, existing methods for their flight tests, different methods for deployment and planet entry, and various navigation and control approaches are reviewed and discussed elaborately. Limitations of applying space drones, proposed solutions for future space drones, and recommendations are also presented and discussed.

  3. Development of "Remotely Operated Vehicles for Education and Research" (ROVERs)

    Science.gov (United States)

    Gaines, J. E.; Bland, G.; Bydlowski, D.

    2017-12-01

    The University of South Florida is a team member for the AREN project which develops educational technologies for data acquisition. "Remotely Operated Vehicles for Education and Research" (ROVERs) are floatable data acquisition systems used for Earth science measurements. The USF partnership was productive in the first year, resulting in new autonomous ROVER platforms being developed and used during a 5 week STEM summer camp by middle school youth. ROVERs were outfitted with GPS and temperature sensors and programmed to move forward, backwards, and to turn autonomously using the National Instruments myRIO embedded system. GLOBE protocols were used to collect data. The outreach program's structure lended itself to accomplishing an essential development effort for the AREN project towards the use of the ROVER platform in informal educational settings. A primary objective of the partnership is curriculum development to integrate GLOBE protocols and NASA technology and hardware/ROVER development wher new ROVER platforms are explored. The USF partnership resulted in two design prototypes for ROVERs, both of which can be created from recyclable materials for flotation and either 3D printed or laser cut components. In addition, both use the National Instruments myRIO for autonomous control. We will present two prototypes designed for use during the USF outreach program, the structure of the program, and details on the fabrication of prototype Z during the program by middle school students. Considering the 5-year objective of the AREN project is to "develop approaches, learning plans, and specific tools that can be affordably implemented nationwide (globally)", the USF partnership is key as it contributes to each part of the objective in a unique and impactful way.

  4. Comparative Field Tests of Pressurised Rover Prototypes

    Science.gov (United States)

    Mann, G. A.; Wood, N. B.; Clarke, J. D.; Piechochinski, S.; Bamsey, M.; Laing, J. H.

    The conceptual designs, interior layouts and operational performances of three pressurised rover prototypes - Aonia, ARES and Everest - were field tested during a recent simulation at the Mars Desert Research Station in Utah. A human factors experiment, in which the same crew of three executed the same simulated science mission in each of the three vehicles, yielded comparative data on the capacity of each vehicle to safely and comfortably carry explorers away from the main base, enter and exit the vehicle in spacesuits, perform science tasks in the field, and manage geological and biological samples. As well as offering recommendations for design improvements for specific vehicles, the results suggest that a conventional Sports Utility Vehicle (SUV) would not be suitable for analog field work; that a pressurised docking tunnel to the main habitat is essential; that better provisions for spacesuit storage are required; and that a crew consisting of one driver/navigator and two field science crew specialists may be optimal. From a field operations viewpoint, a recurring conflict between rover and habitat crews at the time of return to the habitat was observed. An analysis of these incidents leads to proposed refinements of operational protocols, specific crew training for rover returns and again points to the need for a pressurised docking tunnel. Sound field testing, circulating of results, and building the lessons learned into new vehicles is advocated as a way of producing ever higher fidelity rover analogues.

  5. Real-Time Science Operations to Support a Lunar Polar Volatiles Rover Mission

    Science.gov (United States)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Mattes, Greg; Ennico, Kimberly; Fritzler, Erin; Marinova, Margarita M.; McMurray, Robert; Morse, Stephanie; Roush, Ted L.; hide

    2014-01-01

    Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the approx. 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field

  6. A Raman Spectrometer for the ExoMars 2020 Rover

    Science.gov (United States)

    Moral, A. G.; Rull, F.; Maurice, S.; Hutchinson, I.; Canora, C. P.; Seoane, L.; Rodríguez, P.; Canchal, R.; Gallego, P.; Ramos, G.; López, G.; Prieto, J. A. R.; Santiago, A.; Santamaría, P.; Colombo, M.; Belenguer, T.; Forni, O.

    2017-09-01

    The Raman project is devoted to the development of a Raman spectrometer and the support science associated for the rover EXOMARS mission to be launched in 2020. ExoMars is a double mission with two different launch opportunities, first one launched in March 2016 allowed to put in orbit the TGO with the communication system for the next mission. And the second one in 2020, deploying a rover which includes for the first time in the robotic exploration of Mars, a drill capable to obtain samples from the subsurface up to 2 meters depth. These samples will be crushed into a fine powder and delivered to the analytical instruments suite inside the rover by means of a dosing station. The EQM has been already qualified under a very demanding thermo mechanical environment, and under EMC tests, finally achieving required scientific performances. The RLS Engineering and Qualification Model has been manufactured and is expected to be delivered by May 2017, after a full qualification testing campaign developed during 2016 Q4, and 2017 Q1. It will finally delivered to ESA, by July 2017. December 2017 at TAS-I premises will do RLS FM delivery to ESA, for its final integration on the ExoMars 2020 Rover.

  7. Integrating the Teaching of Space Science, Planetary Exploration And Robotics In Elementary And Middle School with Mars Rover Models

    Science.gov (United States)

    Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.

    2005-05-01

    The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system

  8. Preparing to Test Rover Mobility

    Science.gov (United States)

    2005-01-01

    Rover engineers prepare a mixture of sandy and powdery materials to simulate some difficult Mars driving conditions inside a facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The tests in early May 2005 were designed to help plan the best way for the rover Opportunity to drive off of a soft-sand dune that the rover dug itself into the previous week.

  9. Reconfigurable Autonomy for Future Planetary Rovers

    Science.gov (United States)

    Burroughes, Guy

    Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.

  10. A Four-Wheel-Rhombus-Arranged Mobility System for a New Lunar Robotic Rover

    Directory of Open Access Journals (Sweden)

    Guilin Wen

    2013-10-01

    Full Text Available Different from traditional ground vehicles, planetary robotic rovers with limited weight and power need to travel in unfamiliar and extremely arduous environments. In this paper, a newly developed four-wheel-rhombus-arranged (FWRA mobility system is presented as a lunar robotic rover with high mobility and a low-weight structure. The mobility system integrates independent active suspensions with a passive rotary link structure. The active suspension with swing arms improves the rover's capacity to escape from a trapped environment whereas the passive rotary link structure guarantees continuous contact between the four wheels and the terrain. The four-wheel-three-axis rhombus configuration of the mobility system gives a high degree of lightweight structure because it has a simple mechanism with the minimum number of wheels among wheeled rovers with three-axis off-road mobility. The performance evaluation of the lightweight nature of the structure, manoeuvrability and the mobility required in a planetary exploring environment are illustrated by theoretical analysis and partly shown by experiments on the developed rover prototype.

  11. Mars Science Laboratory Rover System Thermal Test

    Science.gov (United States)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.

    2012-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.

  12. VESsel GENeration Analysis (VESGEN): Innovative Vascular Mappings for Astronaut Exploration Health Risks and Human Terrestrial Medicine

    Science.gov (United States)

    Parsons-Wingerter, Patricia; Kao, David; Valizadegan, Hamed; Martin, Rodney; Murray, Matthew C.; Ramesh, Sneha; Sekaran, Srinivaas

    2017-01-01

    Currently, astronauts face significant health risks in future long-duration exploration missions such as colonizing the Moon and traveling to Mars. Numerous risks include greatly increased radiation exposures beyond the low earth orbit (LEO) of the ISS, and visual and ocular impairments in response to microgravity environments. The cardiovascular system is a key mediator in human physiological responses to radiation and microgravity. Moreover, blood vessels are necessarily involved in the progression and treatment of vascular-dependent terrestrial diseases such as cancer, coronary vessel disease, wound-healing, reproductive disorders, and diabetes. NASA developed an innovative, globally requested beta-level software, VESsel GENeration Analysis (VESGEN) to map and quantify vascular remodeling for application to astronaut and terrestrial health challenges. VESGEN mappings of branching vascular trees and networks are based on a weighted multi-parametric analysis derived from vascular physiological branching rules. Complex vascular branching patterns are determined by biological signaling mechanisms together with the fluid mechanics of multi-phase laminar blood flow.

  13. The Geologic Exploration of the Bagnold Dune Field at Gale Crater by the Curiosity Rover.

    Science.gov (United States)

    Chojnacki, Matthew; Fenton, Lori K

    2017-11-01

    The Mars Science Laboratory rover Curiosity engaged in a monthlong campaign investigating the Bagnold dune field in Gale crater. What represents the first in situ investigation of a dune field on another planet has resulted in a number of discoveries. Collectively, the Curiosity rover team has compiled the most comprehensive survey of any extraterrestrial aeolian system visited to date with results that yield important insights into a number of processes, including sediment transport, bed form morphology and structure, chemical and physical composition of aeolian sand, and wind regime characteristics. These findings and more are provided in detail by the JGR-Planets Special Issue Curiosity's Bagnold Dunes Campaign, Phase I.

  14. The new V8-Diesel engine for Land Rover; Der neue V8-Dieselmotor fuer Land Rover

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Roland [Ford Sued-Amerika (Brazil); Gruenert, Thomas; Turner, Paul [Ford Motor Company, Dagenham (United Kingdom)

    2007-04-15

    After the launch of the 2.7-l TDV6 diesel engine for Jaguar, Land Rover and PSA in the spring of 2004, here is a new member of the engine family. The new 3.6-l TDV8 Diesel engine was developed for Land Rover's Range Rover and Range Rover Sport models. The premium market segment positioning demands the best possible attributes from the engine, particularly torque as well as engine acoustics. According to the Land Rover specific requirements, the engine is fully off road capable and can be used in all world markets. The engine fulfills the Euro 4 emissions requirements and will be available with a regulated particle filter. (orig.)

  15. Enhancing astronaut performance using sensorimotor adaptability training

    OpenAIRE

    Bloomberg, Jacob J.; Peters, Brian T.; Cohen, Helen S.; Mulavara, Ajitkumar P.

    2015-01-01

    Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the bal...

  16. Middleware and Web Services for the Collaborative Information Portal of NASA's Mars Exploration Rovers Mission

    Science.gov (United States)

    Sinderson, Elias; Magapu, Vish; Mak, Ronald

    2004-01-01

    We describe the design and deployment of the middleware for the Collaborative Information Portal (CIP), a mission critical J2EE application developed for NASA's 2003 Mars Exploration Rover mission. CIP enabled mission personnel to access data and images sent back from Mars, staff and event schedules, broadcast messages and clocks displaying various Earth and Mars time zones. We developed the CIP middleware in less than two years time usins cutting-edge technologies, including EJBs, servlets, JDBC, JNDI and JMS. The middleware was designed as a collection of independent, hot-deployable web services, providing secure access to back end file systems and databases. Throughout the middleware we enabled crosscutting capabilities such as runtime service configuration, security, logging and remote monitoring. This paper presents our approach to mitigating the challenges we faced, concluding with a review of the lessons we learned from this project and noting what we'd do differently and why.

  17. Mars Rover Model Celebration: Using Planetary Exploration To Enrich STEM Teaching In Elementary And Middle School

    Science.gov (United States)

    Bering, E. A.; Ramsey, J.; Dominey, W.; Kapral, A.; Carlson, C.; Konstantinidis, I.; James, J.; Sweaney, S.; Mendez, R.

    2011-12-01

    The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. The recent NASA Mars Rover missions capture the imagination of children, as NASA missions have done for decades. The University of Houston is in the process of developing a prototype of a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model rover. The existing prototype program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students will design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. The model will be a mock-up, constructed at a minimal cost from art supplies. The students will build the models as part of a project on Mars. The students will be given design criteria for a rover and will do basic research on Mars that will determine the objectives and features of their rover. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The program culminates in a capstone event held at the University of Houston (or other central location in the other communities that will be involved

  18. Laser-powered Martian rover

    Science.gov (United States)

    Harries, W. L.; Meador, W. E.; Miner, G. A.; Schuster, Gregory L.; Walker, G. H.; Williams, M. D.

    1989-01-01

    Two rover concepts were considered: an unpressurized skeleton vehicle having available 4.5 kW of electrical power and limited to a range of about 10 km from a temporary Martian base and a much larger surface exploration vehicle (SEV) operating on a maximum 75-kW power level and essentially unrestricted in range or mission. The only baseline reference system was a battery-operated skeleton vehicle with very limited mission capability and range and which would repeatedly return to its temporary base for battery recharging. It was quickly concluded that laser powering would be an uneconomical overkill for this concept. The SEV, on the other hand, is a new rover concept that is especially suited for powering by orbiting solar or electrically pumped lasers. Such vehicles are visualized as mobile habitats with full life-support systems onboard, having unlimited range over the Martian surface, and having extensive mission capability (e.g., core drilling and sampling, construction of shelters for protection from solar flares and dust storms, etc.). Laser power beaming to SEV's was shown to have the following advantages: (1) continuous energy supply by three orbiting lasers at 2000 km (no storage requirements as during Martian night with direct solar powering); (2) long-term supply without replacement; (3) very high power available (MW level possible); and (4) greatly enhanced mission enabling capability beyond anything currently conceived.

  19. Automation Rover for Extreme Environments

    Science.gov (United States)

    Sauder, Jonathan; Hilgemann, Evan; Johnson, Michael; Parness, Aaron; Hall, Jeffrey; Kawata, Jessie; Stack, Kathryn

    2017-01-01

    Almost 2,300 years ago the ancient Greeks built the Antikythera automaton. This purely mechanical computer accurately predicted past and future astronomical events long before electronics existed1. Automata have been credibly used for hundreds of years as computers, art pieces, and clocks. However, in the past several decades automata have become less popular as the capabilities of electronics increased, leaving them an unexplored solution for robotic spacecraft. The Automaton Rover for Extreme Environments (AREE) proposes an exciting paradigm shift from electronics to a fully mechanical system, enabling longitudinal exploration of the most extreme environments within the solar system.

  20. Researches on hazard avoidance cameras calibration of Lunar Rover

    Science.gov (United States)

    Li, Chunyan; Wang, Li; Lu, Xin; Chen, Jihua; Fan, Shenghong

    2017-11-01

    Lunar Lander and Rover of China will be launched in 2013. It will finish the mission targets of lunar soft landing and patrol exploration. Lunar Rover has forward facing stereo camera pair (Hazcams) for hazard avoidance. Hazcams calibration is essential for stereo vision. The Hazcam optics are f-theta fish-eye lenses with a 120°×120° horizontal/vertical field of view (FOV) and a 170° diagonal FOV. They introduce significant distortion in images and the acquired images are quite warped, which makes conventional camera calibration algorithms no longer work well. A photogrammetric calibration method of geometric model for the type of optical fish-eye constructions is investigated in this paper. In the method, Hazcams model is represented by collinearity equations with interior orientation and exterior orientation parameters [1] [2]. For high-precision applications, the accurate calibration model is formulated with the radial symmetric distortion and the decentering distortion as well as parameters to model affinity and shear based on the fisheye deformation model [3] [4]. The proposed method has been applied to the stereo camera calibration system for Lunar Rover.

  1. INTERNATIONAL CORPORATE RELATIONS : Strategic Alliance and M&A : The Case of Honda, Rover and BMW

    OpenAIRE

    勝二, 俊和; ショウジ, トシカズ; TOSHIKAZU, SHOJI

    1998-01-01

    The primary objective of the dissertation is to compare and contrast two strategies of international corporate relations; "strategic alliances" and "mergers and acquisitions". The focus would be on Honda, Rover and BMW which exhibited characteristics, strengths and weaknesses of both "strategic alliances" and "mergers and acquisitions" The thesis will also demonstrate how the BMW deal caused instability and thus made the alliance vulnerable. When companies like Honda, Rover and BMW adopt eith...

  2. Applied design methodology for lunar rover elastic wheel

    Science.gov (United States)

    Cardile, Diego; Viola, Nicole; Chiesa, Sergio; Rougier, Alessandro

    2012-12-01

    In recent years an increasing interest in the Moon surface operations has been experienced. In the future robotic and manned missions of Moon surface exploration will be fundamental in order to lay the groundwork for more ambitious space exploration programs. Surface mobility systems will be the key elements to ensure an efficient and safe Moon exploration. Future lunar rovers are likely to be heavier and able to travel longer distances than the previously developed Moon rover systems. The Lunar Roving Vehicle (LRV) is the only manned rover, which has so far been launched and used on the Moon surface. Its mobility system included flexible wheels that cannot be scaled to the heavier and longer range vehicles. Thus the previously developed wheels are likely not to be suitable for the new larger vehicles. Taking all these considerations into account, on the basis of the system requirements and assumptions, several wheel concepts have been discussed and evaluated through a trade-off analysis. Semi-empirical equations have been utilized to predict the wheel geometrical characteristics, as well as to estimate the motion resistances and the ability of the system to generate thrust. A numerical model has also been implemented, in order to define more into the details the whole wheel design, in terms of wheel geometry and physical properties. As a result of the trade-off analysis, the ellipse wheel concept has shown the best behavior in terms of stiffness, mass budget and dynamic performance. The results presented in the paper have been obtained in cooperation with Thales Alenia Space-Italy and Sicme motori, in the framework of a regional program called STEPS . STEPS-Sistemi e Tecnologie per l'EsPlorazione Spaziale is a research project co-financed by Piedmont Region and firms and universities of the Piedmont Aerospace District in the ambit of the P.O.R-F.E.S.R. 2007-2013 program.

  3. Circolo enogastronomico "Della Rovere" = The Della Rovere Club

    Index Scriptorium Estoniae

    2012-01-01

    Della Rovere Klubist, mis on Itaalia Önogastronoomiliste Ühenduste Föderatsiooni ja Euroopa Önogastronoomia Vennaskondade Nõukogu liige ja mille missiooniks on kohalike traditsioonide säilitamine, erinevate toiduainete omaduste tutvustamine, veinikultuuri õpetamine jne

  4. Advances in Autonomous Systems for Missions of Space Exploration

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    applications. One notable example of such missions are those to explore for the existence of water on planets such as Mars and the moons of Jupiter. It is clear that water does not exist on the surfaces of such bodies, but may well be located at some considerable depth below the surface, thus requiring a subsurface drilling capability. Subsurface drilling on planetary surfaces will require a robust autonomous control and analysis system, currently a major challenge, but within conceivable reach of planned technology developments. This paper will focus on new and innovative software for remote, autonomous, space systems flight operations, including flight test results, lessons learned, and implications for the future. An additional focus will be on technologies for planetary exploration using autonomous systems and astronaut-assistance systems that employ new spoken language technology. Topics to be presented will include a description of key autonomous control concepts, illustrated by the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New software for autonomous science data acquisition for planetary exploration will also be described, as well as advanced systems for safe planetary landings. Current results of autonomous planetary drilling system research will be presented. A key thrust within NASA is to develop technologies that will leverage the capabilities of human astronauts during planetary surface explorations. One such technology is spoken dialogue interfaces, which would allow collaboration with semi-autonomous agents that are engaged in activities that are normally accomplished using language, e.g., astronauts in space suits interacting with groups of semi-autonomous rovers and other

  5. International testing of a Mars rover prototype

    Science.gov (United States)

    Kemurjian, Alexsandr Leonovich; Linkin, V.; Friedman, L.

    1993-03-01

    Tests on a prototype engineering model of the Russian Mars 96 Rover were conducted by an international team in and near Death Valley in the United States in late May, 1992. These tests were part of a comprehensive design and testing program initiated by the three Russian groups responsible for the rover development. The specific objectives of the May tests were: (1) evaluate rover performance over different Mars-like terrains; (2) evaluate state-of-the-art teleoperation and autonomy development for Mars rover command, control and navigation; and (3) organize an international team to contribute expertise and capability on the rover development for the flight project. The range and performance that can be planned for the Mars mission is dependent on the degree of autonomy that will be possible to implement on the mission. Current plans are for limited autonomy, with Earth-based teleoperation for the nominal navigation system. Several types of television systems are being investigated for inclusion in the navigation system including panoramic camera, stereo, and framing cameras. The tests used each of these in teleoperation experiments. Experiments were included to consider use of such TV data in autonomy algorithms. Image processing and some aspects of closed-loop control software were also tested. A micro-rover was tested to help consider the value of such a device as a payload supplement to the main rover. The concept is for the micro-rover to serve like a mobile hand, with its own sensors including a television camera.

  6. Using Planning, Scheduling and Execution for Autonomous Mars Rover Operations

    Science.gov (United States)

    Estlin, Tara A.; Gaines, Daniel M.; Chouinard, Caroline M.; Fisher, Forest W.; Castano, Rebecca; Judd, Michele J.; Nesnas, Issa A.

    2006-01-01

    With each new rover mission to Mars, rovers are traveling significantly longer distances. This distance increase raises not only the opportunities for science data collection, but also amplifies the amount of environment and rover state uncertainty that must be handled in rover operations. This paper describes how planning, scheduling and execution techniques can be used onboard a rover to autonomously generate and execute rover activities and in particular to handle new science opportunities that have been identified dynamically. We also discuss some of the particular challenges we face in supporting autonomous rover decision-making. These include interaction with rover navigation and path-planning software and handling large amounts of uncertainty in state and resource estimations. Finally, we describe our experiences in testing this work using several Mars rover prototypes in a realistic environment.

  7. Critical Spacecraft-to-Earth Communications for Mars Exploration Rover (MER) entry, descent and landing

    Science.gov (United States)

    Hurd, William J.; Estabrook, Polly; Racho, Caroline S.; Satorius, Edgar H.

    2002-01-01

    For planetary lander missions, the most challenging phase of the spacecraft to ground communications is during the entry, descent, and landing (EDL). As each 2003 Mars Exploration Rover (MER) enters the Martian atmosphere, it slows dramatically. The extreme acceleration and jerk cause extreme Doppler dynamics on the X-band signal received on Earth. When the vehicle slows sufficiently, the parachute is deployed, causing almost a step in deceleration. After parachute deployment, the lander is lowered beneath the parachute on a bridle. The swinging motion of the lander imparts high Doppler dynamics on the signal and causes the received signal strength to vary widely, due to changing antenna pointing angles. All this time, the vehicle transmits important health and status information that is especially critical if the landing is not successful. Even using the largest Deep Space Network antennas, the weak signal and high dynamics render it impossible to conduct reliable phase coherent communications. Therefore, a specialized form of frequency-shift-keying will be used. This paper describes the EDL scenario, the signal conditions, the methods used to detect and frequency-track the carrier and to detect the data modulation, and the resulting performance estimates.

  8. Nomad rover field experiment, Atacama Desert, Chile 1. Science results overview

    Science.gov (United States)

    Cabrol, N. A.; Thomas, G.; Witzke, B.

    2001-04-01

    Nomad was deployed for a 45 day traverse in the Atacama Desert, Chile, during the summer of 1997. During this traverse, 1 week was devoted to science experiments. The goal of the science experiments was to test different planetary surface exploration strategies that included (1) a Mars mission simulation, (2) a science on the fly experiment, where the rover was kept moving 75% of the operation time. (The goal of this operation was to determine whether or not successful interpretation of the environment is related to the time spent on a target. The role of mobility in helping the interpretation was also assessed.) (3) a meteorite search using visual and instrumental methods to remotely identify meteorites in extreme environments, and (4) a time-delay experiment with and without using the panospheric camera. The results were as follow: the remote science team positively identified the main characteristics of the test site geological environment. The science on the fly experiment showed that the selection of appropriate targets might be even more critical than the time spent on a study area to reconstruct the history of a site. During the same operation the science team members identified and sampled a rock from a Jurassic outcrop that they proposed to be a fossil. The presence of paleolife indicators in this rock was confirmed later by laboratory analysis. Both visual and instrumental modes demonstrated the feasibility, in at least some conditions, of carrying out a field search for meteorites by using remote-controlled vehicles. Finally, metrics collected from the observation of the science team operations, and the use team members made of mission data, provided critical information on what operation sequences could be automated on board rovers in future planetary surface explorations.

  9. Maps of the Martian Landing Sites and Rover Traverses: Viking 1 and 2, Mars Pathfinder, and Phoenix Landers, and the Mars Exploration Rovers.

    Science.gov (United States)

    Parker, T. J.; Calef, F. J., III; Deen, R. G.; Gengl, H.

    2016-12-01

    The traverse maps produced tactically for the MER and MSL rover missions are the first step in placing the observations made by each vehicle into a local and regional geologic context. For the MER, Phoenix and MSL missions, 25cm/pixel HiRISE data is available for accurately localizing the vehicles. Viking and Mars Pathfinder, however, relied on Viking Orbiter images of several tens of m/pixel to triangulate to horizon features visible both from the ground and from orbit. After Pathfinder, MGS MOC images became available for these landing sites, enabling much better correlations to horizon features and localization predictions to be made, that were then corroborated with HiRISE images beginning 9 years ago. By combining topography data from MGS, Mars Express, and stereo processing of MRO CTX and HiRISE images into orthomosaics (ORRs) and digital elevation models (DEMs), it is possible to localize all the landers and rover positions to an accuracy of a few tens of meters with respect to the Mars global control net, and to better than half a meter with respect to other features within a HiRISE orthomosaic. JPL's MIPL produces point clouds of the MER Navcam stereo images that can be processed into 1cm/pixel ORR/DEMs that are then georeferenced to a HiRISE/CTX base map and DEM. This allows compilation of seamless mosaics of the lander and rover camera-based ORR/DEMs with the HiRISE ORR/DEM that can be viewed in 3 dimensions with GIS programs with that capability. We are re-processing the Viking Lander, Mars Pathfinder, and Phoenix lander data to allow similar ORR/DEM products to be made for those missions. For the fixed landers and Spirit, we will compile merged surface/CTX/HiRISE ORR/DEMs, that will enable accurate local and regional mapping of these landing sites, and allow comparisons of the results from these missions to be made with current and future surface missions.

  10. Low Cost Mars Surface Exploration: The Mars Tumbleweed

    Science.gov (United States)

    Antol, Jeffrey; Calhoun, Philip; Flick, John; Hajos, Gregory; Kolacinski, Richard; Minton, David; Owens, Rachel; Parker, Jennifer

    2003-01-01

    The "Mars Tumbleweed," a rover concept that would utilize surface winds for mobility, is being examined as a low cost complement to the current Mars exploration efforts. Tumbleweeds carrying microinstruments would be driven across the Martian landscape by wind, searching for areas of scientific interest. These rovers, relatively simple, inexpensive, and deployed in large numbers to maximize coverage of the Martian surface, would provide a broad scouting capability to identify specific sites for exploration by more complex rover and lander missions.

  11. Management of Asymptomatic Renal Stones in Astronauts

    Science.gov (United States)

    Reyes, David; Locke, James

    2016-01-01

    significance. However, a small asymptomatic MRM or stone within the renal collecting system may become symptomatic, and so affect launch and flight schedules, cause incapacitation during flight, and ultimately require medical evacuation. For exploration class missions, evacuation is unlikely. The new screening and management algorithm allows better management of mission risks, and will define the true incidence of renal stones in U.S. astronauts. This information will be used to refine future screening, countermeasures and treatment methods; and will also inform the needed capabilities to be flown on exploration-class missions.

  12. Rover waste assay system

    International Nuclear Information System (INIS)

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J.

    1997-01-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched 235 U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for 137 Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs

  13. VNIR Multispectral Observations of Rocks at Spirit of St. Louis Crater and Marathon Valley on Th Rim of Endeavour Crater Made by the Opportunity Rover Pancam

    Science.gov (United States)

    Farrand, W. H.; Johnson, J. R.; Bell, J. F., III; Mittlefehldt, D.W.

    2016-01-01

    The Mars Exploration Rover Opportunity has been exploring the western rim of the 22 km diameter Endeavour crater since August, 2011. Recently, Opportunity has reached a break in the Endeavour rim that the rover team has named Mara-thon Valley. This is the site where orbital observations from the MRO CRISM imaging spectrometer indicated the presence of iron smectites. On the outer western portion of Marathon Valley, Opportunity explored the crater-form feature dubbed Spirit of St. Louis (SoSL) crater. This presentation describes the 430 to 1009 nm (VNIR) reflectance, measured by the rover's Pancam, of rock units present both at Spirit of St. Louis and within Marathon Valley.

  14. Novel Rock Detection Intelligence for Space Exploration Based on Non-Symbolic Algorithms and Concepts

    Science.gov (United States)

    Yildirim, Sule; Beachell, Ronald L.; Veflingstad, Henning

    2007-01-01

    Future space exploration can utilize artificial intelligence as an integral part of next generation space rover technology to make the rovers more autonomous in performing mission objectives. The main advantage of the increased autonomy through a higher degree of intelligence is that it allows for greater utilization of rover resources by reducing the frequency of time consuming communications between rover and earth. In this paper, we propose a space exploration application of our research on a non-symbolic algorithm and concepts model. This model is based on one of the most recent approaches of cognitive science and artificial intelligence research, a parallel distributed processing approach. We use the Mars rovers. Sprit and Opportunity, as a starting point for proposing what rovers in the future could do if the presented model of non-symbolic algorithms and concepts is embedded in a future space rover. The chosen space exploration application for this paper, novel rock detection, is only one of many potential space exploration applications which can be optimized (through reduction of the frequency of rover-earth communications. collection and transmission of only data that is distinctive/novel) through the use of artificial intelligence technology compared to existing approaches.

  15. Lunar ground penetrating radar: Minimizing potential data artifacts caused by signal interaction with a rover body

    Science.gov (United States)

    Angelopoulos, Michael; Redman, David; Pollard, Wayne H.; Haltigin, Timothy W.; Dietrich, Peter

    2014-11-01

    Ground-penetrating radar (GPR) is the leading geophysical candidate technology for future lunar missions aimed at mapping shallow stratigraphy (lunar materials, as well as its small size and lightweight components, make it a very attractive option from both a scientific and engineering perspective. However, the interaction between a GPR signal and the rover body is poorly understood and must be investigated prior to a space mission. In doing so, engineering and survey design strategies should be developed to enhance GPR performance in the context of the scientific question being asked. This paper explores the effects of a rover (simulated with a vertical metal plate) on GPR results for a range of heights above the surface and antenna configurations at two sites: (i) a standard GPR testing site with targets of known position, size, and material properties, and; (ii) a frozen lake for surface reflectivity experiments. Our results demonstrate that the GPR antenna configuration is a key variable dictating instrument design, with the XX polarization considered optimal for minimizing data artifact generation. These findings could thus be used to help guide design requirements for an eventual flight instrument.

  16. Visualisation of very high resolution Martian topographic data and its application on landing site selection and rover route navigation

    Science.gov (United States)

    Kim, J.; Lin, S.; Hong, J.; Park, D.; Yoon, S.; Kim, Y.

    2010-12-01

    High resolution satellite imagery acquired from orbiters are able to provide detailed topographic information and therefore are recognised as an important tool for investigating planetary and terrestrial topography. The heritage of in-orbit high resolution imaging technology is now implemented in a series of Martian Missions, such as HiRISE (High Resolution Imaging Science Experiment) and CTX (Context Camera) onboard the MRO (Mars Reconnaissance Orbiter). In order to fully utilise the data derived from image systems carried on various Mars orbiters, the generalised algorithms of image processing and photogrammetric Mars DTM extraction have been developed and implemented by Kim and Muller (2009), in which non-rigorous sensor model and hierarchical geomatics control were employed. Due to the successful “from medium to high” control strategy performed during processing, stable horizontal and vertical photogrammetric accuracy of resultant Mars DTM was achievable when compared with MOLA (Mars Obiter Laser Altimeter) DTM. Recently, the algorithms developed in Kim and Muller (2009) were further updated by employing advanced image matcher and improved sensor model. As the photogrammetric qualities of the updated topographic products are verified and the spatial solution can be up to sub-meter scale, they are of great value to be exploited for Martian rover landing site selection and rover route navigation. To this purpose, the DTMs and ortho-rectified imagery obtained from CTX and HiRISE covering potential future rovers and existing MER (Mars Exploration Rover) landing sites were firstly processed. For landing site selection, the engineering constraints such as slope and surface roughness were computed from DTMs. In addition, the combination of virtual topography and the estimated rover location was able to produce a sophisticated environment simulation of rover’s landing site. Regarding the rover navigation, the orbital DTMs and the images taken from cameras

  17. Lunar surface exploration using mobile robots

    Science.gov (United States)

    Nishida, Shin-Ichiro; Wakabayashi, Sachiko

    2012-06-01

    A lunar exploration architecture study is being carried out by space agencies. JAXA is carrying out research and development of a mobile robot (rover) to be deployed on the lunar surface for exploration and outpost construction. The main target areas for outpost construction and lunar exploration are mountainous zones. The moon's surface is covered by regolith. Achieving a steady traversal of such irregular terrain constitutes the major technical problem for rovers. A newly developed lightweight crawler mechanism can effectively traverse such irregular terrain because of its low contact force with the ground. This fact was determined on the basis of the mass and expected payload of the rover. This paper describes a plan for Japanese lunar surface exploration using mobile robots, and presents the results of testing and analysis needed in their development. This paper also gives an overview of the lunar exploration robot to be deployed in the SELENE follow-on mission, and the composition of its mobility, navigation, and control systems.

  18. Onboard autonomous mineral detectors for Mars rovers

    Science.gov (United States)

    Gilmore, M. S.; Bornstein, B.; Castano, R.; Merrill, M.; Greenwood, J.

    2005-12-01

    Mars rovers and orbiters currently collect far more data than can be downlinked to Earth, which reduces mission science return; this problem will be exacerbated by future rovers of enhanced capabilities and lifetimes. We are developing onboard intelligence sufficient to extract geologically meaningful data from spectrometer measurements of soil and rock samples, and thus to guide the selection, measurement and return of these data from significant targets at Mars. Here we report on techniques to construct mineral detectors capable of running on current and future rover and orbital hardware. We focus on carbonate and sulfate minerals which are of particular geologic importance because they can signal the presence of water and possibly life. Sulfates have also been discovered at the Eagle and Endurance craters in Meridiani Planum by the Mars Exploration Rover (MER) Opportunity and at other regions on Mars by the OMEGA instrument aboard Mars Express. We have developed highly accurate artificial neural network (ANN) and Support Vector Machine (SVM) based detectors capable of identifying calcite (CaCO3) and jarosite (KFe3(SO4)2(OH)6) in the visible/NIR (350-2500 nm) spectra of both laboratory specimens and rocks in Mars analogue field environments. To train the detectors, we used a generative model to create 1000s of linear mixtures of library end-member spectra in geologically realistic percentages. We have also augmented the model to include nonlinear mixing based on Hapke's models of bidirectional reflectance spectroscopy. Both detectors perform well on the spectra of real rocks that contain intimate mixtures of minerals, rocks in natural field environments, calcite covered by Mars analogue dust, and AVIRIS hyperspectral cubes. We will discuss the comparison of ANN and SVM classifiers for this task, technical challenges (weathering rinds, atmospheric compositions, and computational complexity), and plans for integration of these detectors into both the Coupled Layer

  19. Rover waste assay system

    Energy Technology Data Exchange (ETDEWEB)

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched {sup 235}U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for {sup 137}Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs.

  20. Rover-Based Instrumentation and Scientific Investigations During the 2012 Analog Field Test on Mauna Kea Volcano, Hawaii

    Science.gov (United States)

    Graham, L. D.; Graff, T. G.

    2013-01-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) were recently completed on Mauna Kea Volcano, Hawaii. Scientific investigations, scientific input, and operational constraints were tested in the context of existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration [1]. Several investigations were conducted by the rover mounted instruments to determine key geophysical and geochemical properties of the site, as well as capture the geological context of the area and the samples investigated. The rover traverse and associated science investigations were conducted over a three day period on the southeast flank of the Mauna Kea Volcano, Hawaii. The test area was at an elevation of 11,500 feet and is known as "Apollo Valley" (Fig. 1). Here we report the integration and operation of the rover-mounted instruments, as well as the scientific investigations that were conducted.

  1. Astronautics and Aeronautics, 1979-1984: A chronology

    Science.gov (United States)

    Janson, Bette R.; Ritchie, Eleanor H.

    1989-01-01

    This volume of the Astronautics and Aeronautics series covers 1979 through 1984. The series provides a chronological presentation of all significant events and developments in space exploration and the administration of the space program during the period covered.

  2. An Interactive Astronaut-Robot System with Gesture Control

    Directory of Open Access Journals (Sweden)

    Jinguo Liu

    2016-01-01

    Full Text Available Human-robot interaction (HRI plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM is employed to recognize hand gestures and particle swarm optimization (PSO algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL have been selected and used to test and validate the performance of the proposed system.

  3. Potential of Probing the Lunar Regolith using Rover-Mounted Ground Penetrating Radar: Moses Lake Dune Field Analog Study

    Science.gov (United States)

    Horz, F.; Heggy, E.; Fong, T.; Kring, D.; Deans, M.; Anglade, A.; Mahiouz, K.; Bualat, M.; Lee, P.; Bluethmann, W.

    2009-01-01

    Probing radars have been widely recognized by the science community to be an efficient tool to explore lunar subsurface providing a unique capability to address several scientific and operational issues. A wideband (200 to 1200 MHz) Ground Penetrating Radar (GPR) mounted on a surface rover can provide high vertical resolution and probing depth from few tens of centimeters to few tens of meters depending on the sounding frequency and the ground conductivity. This in term can provide a better understand regolith thickness, elemental iron concentration (including ilmenite), volatile presence, structural anomalies and fracturing. All those objectives are of important significance for understanding the local geology and potential sustainable resources for future landing sites in particular exploring the thickness, structural heterogeneity and potential volatiles presence in the lunar regolith. While the operation and data collection of GPR is a straightforward case for most terrestrial surveys, it is a challenging task for remote planetary study especially on robotic platforms due to the complexity of remote operation in rough terrains and the data collection constrains imposed by the mechanical motion of the rover and limitation in data transfer. Nevertheless, Rover mounted GPR can be of great support to perform systematic subsurface surveys for a given landing site as it can provide scientific and operational support in exploring subsurface resources and sample collections which can increase the efficiency of the EVA activities for potential human crews as part of the NASA Constellation Program. In this study we attempt to explore the operational challenges and their impact on the EVA scientific return for operating a rover mounted GPR in support of potential human activity on the moon. In this first field study, we mainly focused on the ability of GPR to support subsurface sample collection and explore shallow subsurface volatiles.

  4. Den danske astronaut

    DEFF Research Database (Denmark)

    Jakobsen, Lars Sejersgård

    2014-01-01

    Undervisningsmateriale til mellemtrinnet om raketter, astronauter og rummet lavet for Planetariet i anledning af opsendelsen af den første danske astronaut, Andreas Mogensen, til Den Internationale Rumstation (ISS) i sensommeren 2015......Undervisningsmateriale til mellemtrinnet om raketter, astronauter og rummet lavet for Planetariet i anledning af opsendelsen af den første danske astronaut, Andreas Mogensen, til Den Internationale Rumstation (ISS) i sensommeren 2015...

  5. Den danske astronaut

    DEFF Research Database (Denmark)

    Jakobsen, Lars Sejersgård

    2014-01-01

    Undervisningsmateriale til udskolingen om raketter, astronauter og rummet lavet for Planetariet i anledning af opsendelsen af den første danske astronaut, Andreas Mogensen, til Den Internationale Rumstation (ISS) i sensommeren 2015......Undervisningsmateriale til udskolingen om raketter, astronauter og rummet lavet for Planetariet i anledning af opsendelsen af den første danske astronaut, Andreas Mogensen, til Den Internationale Rumstation (ISS) i sensommeren 2015...

  6. The Mars 2020 Rover Mission: EISD Participation in Mission Science and Exploration

    Science.gov (United States)

    Fries, M.; Bhartia, R.; Beegle, L.; Burton, A. S.; Ross, A.

    2014-01-01

    The Mars 2020 Rover mission will search for potential biosignatures on the martian surface, use new techniques to search for and identify tracelevel organics, and prepare a cache of samples for potential return to Earth. Identifying trace organic compounds is an important tenet of searching for potential biosignatures. Previous landed missions have experienced difficulty identifying unambiguously martian, unaltered organic compounds, possibly because any organic species have been destroyed on heating in the presence of martian perchlorates and/or other oxidants. The SHERLOC instrument on Mars 2020 will use ultraviolet (UV) fluorescence and Raman spectroscopy to identify trace organic compounds without heating the samples.

  7. Acquisition of Skill Proficiency Over Multiple Sessions of a Novel Rover Simulation

    Science.gov (United States)

    Dean, S. L.; DeDios,Y. E.; MacDougall, H. G.; Moore, S. T.; Wood, S. J.

    2011-01-01

    Following long-duration exploration transits, adaptive changes in sensorimotor function may impair the crew's ability to safely perform manual control tasks such as operating pressurized rovers. Postflight performance will also be influenced by the level of preflight skill proficiency they have attained. The purpose of this study was to characterize the acquisition of skills in a motion-based rover simulation over multiple sessions, and to investigate the effects of varying the simulation scenarios. METHODS: Twenty healthy subjects were tested in 5 sessions, with 1-3 days between sessions. Each session consisted of a serial presentation of 8 discrete tasks to be completed as quickly and accurately as possible. Each task consisted of 1) perspective-taking, using a map that defined a docking target, 2) navigation toward the target around a Martian outpost, and 3) docking a side hatch of the rover to a visually guided target. The simulator utilized a Stewart-type motion base (CKAS, Australia), single-seat cabin with triple scene projection covering 150 deg horizontal by 50 deg vertical, and joystick controller. Subjects were randomly assigned to a control group (tasks identical in the first 4 sessions) or a varied-practice group. The dependent variables for each task included accuracy toward the target and time to completion. RESULTS: The greatest improvements in time to completion occurred during the docking phase. The varied-practice group showed more improvement in perspective-taking accuracy. Perspective-taking accuracy was also affected by the relative orientation of the rover to the docking target. Skill acquisition was correlated with self-ratings of previous gaming experience. DISCUSSION: Varying task selection and difficulty will optimize the preflight acquisition of skills when performing novel operational tasks. Simulation of operational manual control will provide functionally relevant evidence regarding the impact of sensorimotor adaptation on early

  8. Feasibility study of astronaut standardized career dose limits in LEO and the outlook for BLEO

    Science.gov (United States)

    McKenna-Lawlor, Susan; Bhardwaj, A.; Ferrari, Franco; Kuznetsov, Nikolay; Lal, A. K.; Li, Yinghui; Nagamatsu, Aiko; Nymmik, Rikho; Panasyuk, Michael; Petrov, Vladislav; Reitz, Guenther; Pinsky, Lawrence; Muszaphar Shukor, Sheikh; Singhvi, A. K.; Straube, Ulrich; Tomi, Leena; Townsend, Lawrence

    2014-11-01

    Cosmic Study Group SG 3.19/1.10 was established in February 2013 under the aegis of the International Academy of Astronautics to consider and compare the dose limits adopted by various space agencies for astronauts in Low Earth Orbit. A preliminary definition of the limits that might later be adopted by crews exploring Beyond Low Earth Orbit was, in addition, to be made. The present paper presents preliminary results of the study reported at a Symposium held in Turin by the Academy in July 2013. First, an account is provided of exposure limits assigned by various partner space agencies to those of their astronauts that work aboard the International Space Station. Then, gaps in the scientific and technical information required to safely implement human missions beyond the shielding provided by the geomagnetic field (to the Moon, Mars and beyond) are identified. Among many recommendations for actions to mitigate the health risks potentially posed to personnel Beyond Low Earth Orbit is the development of a preliminary concept for a Human Space Awareness System to: provide for crewed missions the means of prompt onboard detection of the ambient arrival of hazardous particles; develop a strategy for the implementation of onboard responses to hazardous radiation levels; support modeling/model validation that would enable reliable predictions to be made of the arrival of hazardous radiation at a distant spacecraft; provide for the timely transmission of particle alerts to a distant crewed vehicle at an emergency frequency using suitably located support spacecraft. Implementation of the various recommendations of the study can be realized based on a two pronged strategy whereby Space Agencies/Space Companies/Private Entrepreneurial Organizations etc. address the mastering of required key technologies (e.g. fast transportation; customized spacecraft design) while the International Academy of Astronautics, in a role of handling global international co-operation, organizes

  9. The neurovestibular challenges of astronauts and balance patients: some past countermeasures and two alternative approaches to elicitation, assessment and mitigation

    Directory of Open Access Journals (Sweden)

    Ben Lawson

    2016-11-01

    Full Text Available Astronauts and vestibular patients face analogous challenges to orientation function due to adaptive exogenous (weightlessness-induced or endogenous (pathology-induced alterations in the processing of acceleration stimuli. Given some neurovestibular similarities between these challenges, both affected groups may benefit from shared research approaches and adaptation measurement/improvement strategies. This paper reviews various past strategies and introduces two plausible ground-based approaches, the first of which is a method for eliciting and assessing vestibular adaptation-induced imbalance. Second, we review a strategy for mitigating imbalance associated with vestibular pathology and fostering readaptation. In discussing the first strategy (for imbalance assessment, we review a pilot study wherein imbalance was elicited (among healthy subjects via an adaptive challenge that caused a temporary/reversible disruption. The surrogate vestibular deficit was caused by a brief period of movement-induced adaptation to an altered (rotating gravitoinertial frame of reference. This elicited adaptation and caused imbalance when head movements were made after reentry into the normal (non-rotating frame of reference. We also review a strategy for fall mitigation, viz., a prototype tactile sway feedback device for aiding balance/recovery after disruptions caused by vestibular pathology. We introduce the device and review a preliminary exploration of its effectiveness in aiding clinical balance rehabilitation (discussing the implications for healthy astronauts. Both strategies reviewed in this paper represent cross-disciplinary research spin-offs: the ground-based vestibular challenge and tactile cueing display were derived from aeromedical research to benefit military aviators suffering from flight simulator-relevant aftereffects or inflight spatial disorientation, respectively. These strategies merit further evaluation using clinical and astronaut

  10. Human Exploration Using Real-Time Robotic Operations (HERRO)- Crew Telerobotic Control Vehicle (CTCV) Design

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.; Burke, Laura; Chato, David; Fincannon, James; Landis, Geoff; Sandifer, Carl; Warner, Joe; Williams, Glenn; Colozza, Tony; hide

    2010-01-01

    The HERRO concept allows real time investigation of planets and small bodies by sending astronauts to orbit these targets and telerobotically explore them using robotic systems. Several targets have been put forward by past studies including Mars, Venus, and near Earth asteroids. A conceptual design study was funded by the NASA Innovation Fund to explore what the HERRO concept and it's vehicles would look like and what technological challenges need to be met. This design study chose Mars as the target destination. In this way the HERRO studies can define the endpoint design concepts for an all-up telerobotic exploration of the number one target of interest Mars. This endpoint design will serve to help planners define combined precursor telerobotics science missions and technology development flights. A suggested set of these technologies and demonstrator missions is shown in Appendix B. The HERRO concept includes a crewed telerobotics orbit vehicle as well three Truck rovers, each supporting two teleoperated geologist robots Rockhounds (each truck/Rockhounds set is landed using a commercially launched aeroshell landing system.) Options include a sample ascent system teamed with an orbital telerobotic sample rendezvous and return spacecraft (S/C) (yet to be designed). Each truck rover would be landed in a science location with the ability to traverse a 100 km diameter area, carrying the Rockhounds to 100 m diameter science areas for several week science activities. The truck is not only responsible for transporting the Rockhounds to science areas, but also for relaying telecontrol and high-res communications to/from the Rockhound and powering/heating the Rockhound during the non-science times (including night-time). The Rockhounds take the place of human geologists by providing an agile robotic platform with real-time telerobotics control to the Rockhound from the crew telerobotics orbiter. The designs of the Truck rovers and Rockhounds will be described in other

  11. Astronautics and aeronautics, 1976. A chronology

    Science.gov (United States)

    Ritchie, E. H.

    1984-01-01

    A chronology of events concerning astronautics and aeronautics for the year 1976 is presented. Some of the many and varied topics include the aerospace industry, planetary exploration, space transportation system, defense department programs, politics, and aerospace medicine. The entries are organized by the month and presented in a news release format.

  12. Night Rover Challenge

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Night Rover Challenge was to foster innovations in energy storage technology. Specifically, this challenge asked competitors to create an energy...

  13. Assessment of Astronaut Hand Function Using a Robotic Exoskeleton

    Data.gov (United States)

    National Aeronautics and Space Administration — An extended period of space exploration has deleterious effects on the neuromuscular system. Sensorimotor impairments can hinder an astronaut's performance by...

  14. Evaluation of IEEE 802.11g and 802.16 for Lunar Surface Exploration Missions Using MACHETE Simulations

    Science.gov (United States)

    Segui, John; Jennings, Esther; Vyas, Hemali

    2009-01-01

    In this paper, we investigated the suitability of terrestrial wireless networking technologies for lunar surface exploration missions. Specifically, the scenario we considered consisted of two teams of collaborating astronauts, one base station and one rover, where the base station and the rover have the capability of acting as relays. We focused on the evaluation of IEEE 802.11g and IEEE 802.16 protocols, simulating homogeneous 802.11g network, homogeneous 802.16 network, and heterogeneous network using both 802.11g and 802.16. A mix of traffic flows were simulated, including telemetry, caution and warning, voice, command and file transfer. Each traffic type had its own distribution profile, data volume, and priority. We analyzed the loss and delay trade-offs of these wireless protocols with various link-layer options. We observed that 802.16 network managed the channel better than an 802.11g network due to controlled infrastructure and centralized scheduling. However, due to the centralized scheduling, 802.16 also had a longer delay. The heterogeneous (hybrid) of 802.11/802.16 achieved a better balance of performance in terms of data loss and delay compared to using 802.11 or 802.16 alone.

  15. In-motion initial alignment and positioning with INS/CNS/ODO integrated navigation system for lunar rovers

    Science.gov (United States)

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang; Liu, Ming

    2017-06-01

    Many countries have been paying great attention to space exploration, especially about the Moon and the Mars. Autonomous and high-accuracy navigation systems are needed for probers and rovers to accomplish missions. Inertial navigation system (INS)/celestial navigation system (CNS) based navigation system has been used widely on the lunar rovers. Initialization is a particularly important step for navigation. This paper presents an in-motion alignment and positioning method for lunar rovers by INS/CNS/odometer integrated navigation. The method can estimate not only the position and attitude errors, but also the biases of the accelerometers and gyros using the standard Kalman filter. The differences between the platform star azimuth, elevation angles and the computed star azimuth, elevation angles, and the difference between the velocity measured by odometer and the velocity measured by inertial sensors are taken as measurements. The semi-physical experiments are implemented to demonstrate that the position error can reduce to 10 m and attitude error is within 2″ during 5 min. The experiment results prove that it is an effective and attractive initialization approach for lunar rovers.

  16. Major accomplishments of America's nuclear rocket program (ROVER)

    International Nuclear Information System (INIS)

    Finseth, J.L.

    1991-01-01

    The United States embarked on a program to develop nuclear rocket engines in 1955. This program was known as project Rover. Initially nuclear rockets were considered as a potential backup for intercontinental ballistic missile propulsion but later proposed applications included both a lunar second stage as well as use in manned-Mars flights. Under the Rover program, 19 different reactors were built and tested during the period of 1959-1969. Additionally, several cold flow (non-fuelled) reactors were tested as well as a nuclear fuels test cell. The Rover program was terminated in 1973, due to budget constraints and an evolving political climate. The Rover program would have led to the development of a flight engine had the program continued through a logical continuation. The Rover program was responsible for a number of technological achievements. The successful operation of nuclear rocket engines on a system level represents the pinnacle of accomplishment. This paper will discuss the engine test program as well as several subsystems

  17. Automated Planning and Scheduling for Planetary Rover Distributed Operations

    Science.gov (United States)

    Backes, Paul G.; Rabideau, Gregg; Tso, Kam S.; Chien, Steve

    1999-01-01

    Automated planning and Scheduling, including automated path planning, has been integrated with an Internet-based distributed operations system for planetary rover operations. The resulting prototype system enables faster generation of valid rover command sequences by a distributed planetary rover operations team. The Web Interface for Telescience (WITS) provides Internet-based distributed collaboration, the Automated Scheduling and Planning Environment (ASPEN) provides automated planning and scheduling, and an automated path planner provided path planning. The system was demonstrated on the Rocky 7 research rover at JPL.

  18. Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover

    Science.gov (United States)

    Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.

    2012-01-01

    This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.

  19. SEI power source alternatives for rovers and other multi-kWe distributed surface applications

    Science.gov (United States)

    Bents, David J.; Kohout, L. L.; Mckissock, Barbara I.; Rodriguez, C. D.; Withrow, C. A.; Colozza, A.; Hanlon, James C.; Schmitz, Paul C.

    1991-01-01

    To support the Space Exploration Initiative (SEI), a study was performed to investigate power system alternatives for the rover vehicles and servicers that were subsequently generated for each of these rovers and servicers, candidate power sources incorporating various power generation and energy storage technologies were identified. The technologies were those believed most appropriate to the SEI missions, and included solar, electrochemical, and isotope systems. The candidates were characterized with respect to system mass, deployed area, and volume. For each of the missions a preliminary selection was made. Results of this study depict the available power sources in light of mission requirements as they are currently defined.

  20. Mission X: Train Like an Astronaut Challenge

    Science.gov (United States)

    Lloyd, Charles W.

    2016-01-01

    The Mission X: Train Like an Astronaut Challenge was developed in 2011 to encourage proper exercise and nutrition at an early age by teaching young people to live and eat like space explorers. The strong correlation between an unhealthy childhood diet and adolescent fitness, and the onset of chronic diseases as an adult is the catalyst for Mission X. Mission X is dedicated to assisting people on a global scale to live healthier lifestyles and learn about human space exploration. The Mission X: Train Like an Astronaut 2015 (MX15) International Challenge hosted almost 40,000 children on 800 teams, 28 countries affiliated with 12 space agencies. The MX15 website included 17 languages. MX15, the fifth annual international fitness challenges sponsored by the NASA Human Research Program worked with the European Space Agency and other space agencies from around the world. In comparison to MX14, MX15 expanded to include four additional new countries, increased the number of students by approximately 68% and the number of teams by 29%. Chile' and South Korea participated in the new fall Astro Charlie Walk Around the Earth Challenge. Pre-challenge training materials were made more readily available from the website. South Korea completed a prospective assessment of the usability of the MX content for improving health and fitness in 212 preschool children and their families. Mission X is fortunate to have the support of the NASA, ESA and JAXA astronaut corps. In MX15, they participated in the opening and closing events as well as while on-board the International Space Station. Italian Astronaut Samantha Cristoretti participated as the MX15 Astronaut Ambassador for health and fitness providing the opening video and other videos from ISS. United Kingdom Astronaut Tim Peake and US Astronaut Kate Rubins have agreed to be the MX Ambassadors for 2016 and 2017 respectively. The MX15 International Working Group Face-to-Face meeting and Closing Event were held at the Agenzia Spaziale

  1. Harnessing functional food strategies for the health challenges of space travel—Fermented soy for astronaut nutrition

    Science.gov (United States)

    Buckley, Nicole D.; Champagne, Claude P.; Masotti, Adriana I.; Wagar, Lisa E.; Tompkins, Thomas A.; Green-Johnson, Julia M.

    2011-04-01

    Astronauts face numerous health challenges during long-duration space missions, including diminished immunity, bone loss and increased risk of radiation-induced carcinogenesis. Changes in the intestinal flora of astronauts may contribute to these problems. Soy-based fermented food products could provide a nutritional strategy to help alleviate these challenges by incorporating beneficial lactic acid bacteria, while reaping the benefits of soy isoflavones. We carried out strain selection for the development of soy ferments, selecting strains of lactic acid bacteria showing the most effective growth and fermentation ability in soy milk ( Streptococcus thermophilus ST5, Bifidobacterium longum R0175 and Lactobacillus helveticus R0052). Immunomodulatory bioactivity of selected ferments was assessed using an in vitro challenge system with human intestinal epithelial and macrophage cell lines, and selected ferments show the ability to down-regulate production of the pro-inflammatory cytokine interleukin-8 following challenge with tumour necrosis factor-alpha. The impact of fermentation on vitamin B1 and B6 levels and on isoflavone biotransformation to agluconic forms was also assessed, with strain variation-dependent biotransformation ability detected. Overall this suggests that probiotic bacteria can be successfully utilized to develop soy-based fermented products targeted against health problems associated with long-term space travel.

  2. Using Multi-Core Systems for Rover Autonomy

    Science.gov (United States)

    Clement, Brad; Estlin, Tara; Bornstein, Benjamin; Springer, Paul; Anderson, Robert C.

    2010-01-01

    Task Objectives are: (1) Develop and demonstrate key capabilities for rover long-range science operations using multi-core computing, (a) Adapt three rover technologies to execute on SOA multi-core processor (b) Illustrate performance improvements achieved (c) Demonstrate adapted capabilities with rover hardware, (2) Targeting three high-level autonomy technologies (a) Two for onboard data analysis (b) One for onboard command sequencing/planning, (3) Technologies identified as enabling for future missions, (4)Benefits will be measured along several metrics: (a) Execution time / Power requirements (b) Number of data products processed per unit time (c) Solution quality

  3. NASA Astronaut Occupational Surveillance Program and Lifetime Surveillance of Astronaut Health, LSAH, Astronaut Exposures and Risk in the Terrestrial and Spaceflight Environment

    Science.gov (United States)

    Keprta, Sean R.; Tarver, William; Van Baalen, Mary; McCoy, Torin

    2015-01-01

    United States Astronauts have a very unique occupational exposure profile. In order to understand these risks and properly address them, the National Aeronautics and Atmospheric Administration, NASA, originally created the Longitudinal Study of Astronaut Health, LSAH. The first LSAH was designed to address a variety of needs regarding astronaut health and included a 3 to 1 terrestrial control population in order to compare United States "earth normal" disease and aging to that of a microgravity exposed astronaut. Over the years that program has been modified, now termed Lifetime Surveillance of Astronaut Health, still LSAH. Astronaut spaceflight exposures have also changed, with the move from short duration shuttle flights to long duration stays on international space station and considerable terrestrial training activities. This new LSAH incorporates more of an occupational health and medicine model to the study of occupationally exposed astronauts. The presentation outlines the baseline exposures and monitoring of the astronaut population to exposures, both terrestrial, and in space.

  4. The Athena Mars Rover Science Payload

    Science.gov (United States)

    Squyes, S. W.; Arvidson, R.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Klingelhoefer, G.; Haskin, L.

    1998-01-01

    The Mars Surveyor missions that will be launched in April of 2001 will include a highly capable rover that is a successor to the Mars Pathfinder mission's Sojourner rover. The design goals for this rover are a total traverse distance of at least 10 km and a total lifetime of at least one Earth year. The rover's job will be to explore a site in Mars' ancient terrain, searching for materials likely to preserve a record of ancient martian water, climate, and possibly biology. The rover will collect rock and soil samples, and will store them for return to Earth by a subsequent Mars Surveyor mission in 2005. The Athena Mars rover science payload is the suite of scientific instruments and sample collection tools that will be used to perform this job. The specific science objectives that NASA has identified for the '01 rover payload are to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition. (2) Determine the elemental and mineralogical composition of martian surface materials. (3) Determine the fine-scale textural properties of these materials. (4) Collect and store samples. The Athena payload has been designed to meet these objectives. The focus of the design is on field operations: making sure the rover can locate, characterize, and collect scientifically important samples in a dusty, dirty, real-world environment. The topography, morphology, and mineralogy of the scene around the rover will be revealed by Pancam/Mini-TES, an integrated imager and IR spectrometer. Pancam views the surface around the rover in stereo and color. It uses two high-resolution cameras that are identical in most respects to the rover's navigation cameras. The detectors are low-power, low-mass active pixel sensors with on-chip 12-bit analog-to-digital conversion. Filters provide 8-12 color spectral bandpasses over the spectral region from 0.4 to 1.1 micron Narrow-angle optics provide an angular resolution of 0

  5. Virtual Glovebox (VGX) Aids Astronauts in Pre-Flight Training

    Science.gov (United States)

    2003-01-01

    NASA's Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  6. A fundamental parameters approach to calibration of the Mars Exploration Rover Alpha Particle X-ray Spectrometer

    Science.gov (United States)

    Campbell, J. L.; Lee, M.; Jones, B. N.; Andrushenko, S. M.; Holmes, N. G.; Maxwell, J. A.; Taylor, S. M.

    2009-04-01

    The detection sensitivities of the Alpha Particle X-ray Spectrometer (APXS) instruments on the Mars Exploration Rovers for a wide range of elements were experimentally determined in 2002 using spectra of geochemical reference materials. A flight spare instrument was similarly calibrated, and the calibration exercise was then continued for this unit with an extended set of geochemical reference materials together with pure elements and simple chemical compounds. The flight spare instrument data are examined in detail here using a newly developed fundamental parameters approach which takes precise account of all the physics inherent in the two X-ray generation techniques involved, namely, X-ray fluorescence and particle-induced X-ray emission. The objectives are to characterize the instrument as fully as possible, to test this new approach, and to determine the accuracy of calibration for major, minor, and trace elements. For some of the lightest elements the resulting calibration exhibits a dependence upon the mineral assemblage of the geological reference material; explanations are suggested for these observations. The results will assist in designing the overall calibration approach for the APXS on the Mars Science Laboratory mission.

  7. Philosophy on astronaut protection: Perspective of an astronaut

    International Nuclear Information System (INIS)

    Baker, E.

    1997-01-01

    There are significant differences in the risks during the launch of a spacecraft, its journey, and its subsequent return to earth, as contrasted to the risks of latent cancers that may develop as a result of the associated radiation exposures. Once the spacecraft has landed, following a successful mission, the risks of accidental death are over. The risks of latent cancers, however, will remain with the astronauts for the rest of their lives. The same may be true for many of the effects of the space environment, including microgravity. Compounding the problem with respect to radiation are the large uncertainties accompanying the estimates of the associated latent cancer risks. In addition to radiation doses received as a result of being exposed in space, astronauts have received significant does of radiation in conjunction with medical examinations and experiments conducted to obtain data on the effects of the space environment on humans. The experiments were considered to be a part of the 'job' of being an astronaut, and the resulting doses were included in the medical records. Following this approach, the accompanying doses were counted against the career limits being imposed on each astronaut. As a result, volunteering for such experiments could cause an earlier termination of the career of an astronaut than would otherwise have occurred and add to the total radiation exposure, thereby increasing one's risk of subsequent illness. Through cooperative efforts, these does have been significantly reduced in recent years. In fact, one of the outcomes of these efforts has been the incorporation of the ALARA concept into the radiation protection program for the astronauts. The fact that a space mission has a range of risks, including some that are relatively large, is no justification for failing to reduce the accompanying radiation risk

  8. Astronaut Exposures to Ionizing Radiation in a Lightly-Shielded Spacesuit

    Science.gov (United States)

    Wilson, J. W.; Simonsen, L. C.; Shinn, J. L.; Kim, M.-H. Y.; Cucinotta, F. A.; Badavi, F. F.; Atwell, W.

    1999-01-01

    The normal working and living areas of the astronauts are designed to provide an acceptable level of protection against the hazards of ionizing radiation of the space environment. Still there are occasions when they must don a spacesuit designed mainly for environmental control and mobility and leave the confines of their better-protected domain. This is especially true for deep space exploration. The impact of spacesuit construction on the exposure of critical astronaut organs will be examined in the ionizing radiation environments of free space, the lunar surface and the Martian surface. The computerized anatomical male model is used to evaluate astronaut self-shielding factors and to determine space radiation exposures to critical radiosensitive human organs.

  9. APXS on board Chandrayaan-2 Rover

    Science.gov (United States)

    Shanmugam, M.; Sripada, V. S. Murty; Acharya, Y. B.; Goyal, S. K.

    2012-07-01

    Alpha Particle X-ray Spectrometer (APXS) is a well proven instrument for quantitative in situ elemental analysis of the planetary surfaces and has been successfully employed for Mars surface exploration. Chandrayaan-2, ISRO's second lunar mission having an Orbiter, Lander and Rover has provided an opportunity to explore the lunar surface with superior detectors such as Silicon Drift Detector (SDD) with energy resolution of about 150eV @ 5.9keV. The objective of the APXS instrument is to analyse several soil/rock samples along the rover traverse for the major elements with characteristic X-rays in 1 to 25keV range. The working principle of APXS involves measuring the intensity of characteristic X-rays emitted from the sample due to Alpha Particle Induced X-ray Emission (PIXE) and X-ray florescence (XRF) processes using suitable radioactive sources, allowing the determination of elements from Na to Br, spanning the energy range of 0.9 to 16keV. For this experiment ^{244}Cm radioactive source has been chosen which emits both Alpha particles (5.8MeV) and X-rays (14.1keV, 18keV). APXS uses six Alpha sources, each about 5mCi activity. Unlike Mars, lunar environment poses additional challenges due to the regolith and extreme surface temperature changes, to operate the APXS. Our APXS instrument consists of two packages namely APXS sensor head and APXS signal electronics. The sensor head assembly contains SDD, six alpha sources and front end electronic circuits such as preamplifier and shaper circuits and will be mounted on a robotic arm which on command brings the sensor head close to the lunar surface at a height of 35±10mm. SDD module to be used in the experiment has 30mm ^{2} active detector area with in-built peltier cooler and heat sink to maintain the detector at about -35°C. The detector is covered with 8 micron thick Be window which results in the low energy threshold of about 1keV. The size of the APXS sensor head is 70x70x70mm ^{3} (approx). APXS signal

  10. Risk-Aware Planetary Rover Operation: Autonomous Terrain Classification and Path Planning

    Science.gov (United States)

    Ono, Masahiro; Fuchs, Thoams J.; Steffy, Amanda; Maimone, Mark; Yen, Jeng

    2015-01-01

    Identifying and avoiding terrain hazards (e.g., soft soil and pointy embedded rocks) are crucial for the safety of planetary rovers. This paper presents a newly developed groundbased Mars rover operation tool that mitigates risks from terrain by automatically identifying hazards on the terrain, evaluating their risks, and suggesting operators safe paths options that avoids potential risks while achieving specified goals. The tool will bring benefits to rover operations by reducing operation cost, by reducing cognitive load of rover operators, by preventing human errors, and most importantly, by significantly reducing the risk of the loss of rovers.

  11. Criticality safety for deactivation of the Rover dry headend process

    International Nuclear Information System (INIS)

    Henrikson, D.J.

    1995-01-01

    The Rover dry headend process combusted Rover graphite fuels in preparation for dissolution and solvent extraction for the recovery of 235 U. At the end of the Rover processing campaign, significant quantities of 235 U were left in the dry system. The Rover Dry Headend Process Deactivation Project goal is to remove the remaining uranium bearing material (UBM) from the dry system and then decontaminate the cells. Criticality safety issues associated with the Rover Deactivation Project have been influenced by project design refinement and schedule acceleration initiatives. The uranium ash composition used for calculations must envelope a wide range of material compositions, and yet result in cost effective final packaging and storage. Innovative thinking must be used to provide a timely safety authorization basis while the project design continues to be refined

  12. Planetary rover robotics experiment in education: carbonate rock collecting experiment of the Husar-5 rover

    Science.gov (United States)

    Szalay, Kristóf; Lang, Ágota; Horváth, Tamás; Prajczer, Péter; Bérczi, Szaniszló

    2013-04-01

    Introduction: The new experiment for the Husar-5 educational space probe rover consists of steps of the technology of procedure of finding carbonate speci-mens among the rocks on the field. 3 main steps were robotized: 1) identification of carbonate by acid test, 2) measuring the gases liberated by acid, and 3) magnetic test. Construction of the experiment: The basis of the robotic realization of the experiment is a romote-controlled rover which can move on the field. Onto this rover the mechanism of the experiments were built from Technics LEGO elements and we used LEGO-motors for making move these experiments. The operation was coordinated by an NXT-brick which was suitable to programming. Fort he acetic-test the drops should be passed to the selected area. Passing a drop to a locality: From the small holder of the acid using densified gas we pump some drop onto the selected rock. We promote this process by pumpig the atmospheric gas into another small gas-container, so we have another higher pressure gas there. This is pumped into the acid-holder. The effect of the reaction is observed by a wireless onboard camera In the next step we can identify the the liberated gas by the gas sensor. Using it we can confirm the liberation of the CO2 gas without outer observer. The third step is the controll of the paramagnetic properties.. In measuring this feature a LEGO-compass is our instrumentation. We use a electric current gener-ated magnet. During the measurements both the coil and the gas-sensor should be positioned to be near to the surface. This means, that a lowering and an uplifting machinery should be constructed. Summary: The sequence of the measurement is the following. 1) the camera - after giving panorama images - turns toward the soil surface, 2) the dropping onto the rock surface 3) at the same time the gas-sensor starts to move down above the rock 4) the compass sensor also moves down on the arm which holds both the gas-sensor and the compass-sensor 5

  13. Performance of the Mechanically Pumped Fluid Loop Rover Heat Rejection System Used for Thermal Control of the Mars Science Laboratory Curiosity Rover on the Surface of Mars

    Science.gov (United States)

    Bhandari, Pradeep; Birur, Gajanana; Bame, David; Mastropietro, A. J.; Miller, Jennifer; Karlmann, Paul; Liu, Yuanming; Anderson, Kevin

    2013-01-01

    The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, required a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to +50 C range. The RHRS harnesses some of the waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer and supply it to the rover. This design is the first instance of use of a RHRS for thermal control of a rover or lander on the surface of a planet. After an extremely successful landing on Mars (August 5), the rover and the RHRS have performed flawlessly for close to an earth year (half the nominal mission life). This paper will share the performance of the RHRS on the Martian surface as well as compare it to its predictions.

  14. Autonomous navigation and control of a Mars rover

    Science.gov (United States)

    Miller, D. P.; Atkinson, D. J.; Wilcox, B. H.; Mishkin, A. H.

    1990-01-01

    A Mars rover will need to be able to navigate autonomously kilometers at a time. This paper outlines the sensing, perception, planning, and execution monitoring systems that are currently being designed for the rover. The sensing is based around stereo vision. The interpretation of the images use a registration of the depth map with a global height map provided by an orbiting spacecraft. Safe, low energy paths are then planned through the map, and expectations of what the rover's articulation sensors should sense are generated. These expectations are then used to ensure that the planned path is correctly being executed.

  15. Train Like an Astronaut Educational Outreach

    Science.gov (United States)

    Garcia, Yamil L.; Lloyd, Charles; Reeves, Katherine M.; Abadie, Laurie J.

    2012-01-01

    In an effort to reduce the incidence of childhood obesity, the National Aeronautics and Space Administration (NASA), capitalizing on the theme of human spaceflight developed two educational outreach programs for children ages 8-12. To motivate young "fit explorers," the Train Like an Astronaut National (TLA) program and the Mission X: Train Like an Astronaut International Fitness Challenge (MX) were created. Based on the astronauts' physical training, these programs consist of activities developed by educators and experts in the areas of space life sciences and fitness. These Activities address components of physical fitness. The educational content hopes to promote students to pursue careers in science, technology, engineering, and math (STEM) fields. At the national level, in partnership with First Lady Michelle Obama's Let?s Move! Initiative, the TLA program consists of 10 physical and 2 educational activities. The program encourages families, schools, and communities to work collaboratively in order to reinforce in children and their families the importance of healthy lifestyle habits In contrast, the MX challenge is a cooperative outreach program involving numerous space agencies and other international partner institutions. During the six-week period, teams of students from around the world are challenged to improve their physical fitness and collectively accumulate points by completing 18 core activities. During the 2011 pilot year, a t otal of 137 teams and more than 4,000 students from 12 countries participated in the event. MX will be implemented within 24 countries during the 2012 challenge. It is projected that 7,000 children will "train like an astronaut".

  16. Astronautics and aeronautics, 1972. [a chronology of events

    Science.gov (United States)

    1974-01-01

    Important events of the U. S. space program during 1972 are recorded in a chronology which encompasses all NASA, NASA related, and international cooperative efforts in aeronautics and astronautics. Personnel and budget concerns are documented, along with the major developments in aircraft research, manned space flight, and interplanetary exploration.

  17. MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION

    OpenAIRE

    J. Dong; Z. Sun; W. Rao; Y. Jia; L. Meng; C. Wang; B. Chen

    2017-01-01

    An orbiter and a descent module will be delivered to Mars in the Chinese first Mars exploration mission. The descent module is composed of a landing platform and a rover. The module will be released into the atmosphere by the orbiter and make a controlled landing on Martian surface. After landing, the rover will egress from the platform to start its science mission. The rover payloads mainly include the subsurface radar, terrain camera, multispectral camera, magnetometer, anemometer to achiev...

  18. Determining best practices in reconnoitering sites for habitability potential on Mars using a semi-autonomous rover: A GeoHeuristic Operational Strategies Test

    Science.gov (United States)

    Yingst, R.A.; Berger, J.; Cohen, B.A.; Hynek, B.; Schmidt, M.E.

    2017-01-01

    We tested science operations strategies developed for use in remote mobile spacecraft missions, to determine whether reconnoitering a site of potential habitability prior to in-depth study (a walkabout-first strategy) can be a more efficient use of time and resources than the linear approach commonly used by planetary rover missions. Two field teams studied a sedimentary sequence in Utah to assess habitability potential. At each site one team commanded a human “rover” to execute observations and conducted data analysis and made follow-on decisions based solely on those observations. Another team followed the same traverse using traditional terrestrial field methods, and the results of the two teams were compared. Test results indicate that for a mission with goals similar to our field case, the walkabout-first strategy may save time and other mission resources, while improving science return. The approach enabled more informed choices and higher team confidence in choosing where to spend time and other consumable resources. The walkabout strategy may prove most efficient when many close sites must be triaged to a smaller subset for detailed study or sampling. This situation would arise when mission goals include finding, identifying, characterizing or sampling a specific material, feature or type of environment within a certain area. PMID:29307922

  19. Conducting Planetary Field Geology on EVA: Lessons from the 2010 DRATS Geologist Crewmembers

    Science.gov (United States)

    Young, Kelsey E.; Bleacher, J. E.; Hurtado, J. M., Jr.; Rice, J.; Garry, W. B.; Eppler, D.

    2011-01-01

    In order to prepare for the next phase of planetary surface exploration, the Desert Research and Technology Studies (DRATS) field program seeks to test the next generation of technology needed to explore other surfaces. The 2010 DRATS 14-day field campaign focused on the simultaneous operation of two habitatable rovers, or Space Exploration Vehicles (SEVs). Each rover was crewed by one astronaut/commander and one geologist, with a change in crews on day seven of the mission. This shift change allowed for eight crew members to test the DRATS technology and operational protocols [1,2]. The insights presented in this abstract represent the crew s thoughts on lessons learned from this field season, as well as potential future testing concepts.

  20. Enhancing astronaut performance using sensorimotor adaptability training.

    Science.gov (United States)

    Bloomberg, Jacob J; Peters, Brian T; Cohen, Helen S; Mulavara, Ajitkumar P

    2015-01-01

    Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments-enhancing their ability to "learn to learn." We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts.

  1. Temperature dependence of the hyperfine parameters of the iron bearing phases in the Moessbauer spectra collected by the Mars Exploration Rover Spirit

    International Nuclear Information System (INIS)

    Van Cromphaut, Caroline; Resende, Valdirene G. de; De Grave, Eddy; Vandenberghe, Robert E.

    2009-01-01

    This contribution focuses on the Moessbauer spectra acquired by the Mars Exploration Rover Spirit which carried a MIMOS II Moessbauer spectrometer. Only those spectra which present a reasonable statistical quality were selected to for this study. Twenty five Moessbauer spectra have been considered. Common phases identified from the temperature dependent hyperfine parameters are olivine, pyroxene, hematite and magnetite. It is believed that the applied analysis method has provided accurate values for the various hyperfine data averaged over single 10 K temperature intervals in the range 210-260 K. The obtained results, to some extent forced to evolve consistently over the various ΔT intervals considered for a given soil/rock target, are in many cases different from previously published data. Possible reasons for these differences will be discussed.

  2. Dust Accumulation and Solar Panel Array Performance on the Mars Exploration Rover (MER) Project

    Science.gov (United States)

    Turgay, Eren H.

    2004-01-01

    One of the most fundamental design considerations for any space vehicle is its power supply system. Many options exist, including batteries, fuel cells, nuclear reactors, radioisotopic thermal generators (RTGs), and solar panel arrays. Solar arrays have many advantages over other types of power generation. They are lightweight and relatively inexpensive, allowing more mass and funding to be allocated for other important devices, such as scientific instruments. For Mars applications, solar power is an excellent option, especially for long missions. One might think that dust storms would be a problem; however, while dust blocks some solar energy, it also scatters it, making it diffuse rather than beamed. Solar cells are still able to capture this diffuse energy and convert it into substantial electrical power. For these reasons, solar power was chosen to be used on the 1997 Mars Pathfinder mission. The success of this mission set a precedent, as NASA engineers have selected solar power as the energy system of choice for all future Mars missions, including the Mars Exploration Rover (MER) Project. Solar sells have their drawbacks, however. They are difficult to manufacture and are relatively fragile. In addition, solar cells are highly sensitive to different parts of the solar spectrum, and finding the correct balance is crucial to the success of space missions. Another drawback is that the power generated is not a constant with respect to time, but rather changes with the relative angle to the sun. On Mars, dust accumulation also becomes a factor. Over time, dust settles out of the atmosphere and onto solar panels. This dust blocks and shifts the frequency of the incoming light, degrading solar cell performance. My goal is to analyze solar panel telemetry data from the two MERs (Spirit and Opportunity) in an effort to accurately model the effect of dust accumulation on solar panels. This is no easy process due to the large number of factors involved. Changing solar

  3. A Lab-on-Chip Design for Miniature Autonomous Bio-Chemoprospecting Planetary Rovers

    Science.gov (United States)

    Santoli, S.

    The performance of the so-called ` Lab-on-Chip ' devices, featuring micrometre size components and employed at present for carrying out in a very fast and economic way the extremely high number of sequence determinations required in genomic analyses, can be largely improved as to further size reduction, decrease of power consumption and reaction efficiency through development of nanofluidics and of nano-to-micro inte- grated systems. As is shown, such new technologies would lead to robotic, fully autonomous, microwatt consumption and complete ` laboratory on a chip ' units for accurate, fast and cost-effective astrobiological and planetary exploration missions. The theory and the manufacturing technologies for the ` active chip ' of a miniature bio/chemoprospecting planetary rover working on micro- and nanofluidics are investigated. The chip would include micro- and nanoreactors, integrated MEMS (MicroElectroMechanical System) components, nanoelectronics and an intracavity nanolaser for highly accurate and fast chemical analysis as an application of such recently introduced solid state devices. Nano-reactors would be able to strongly speed up reaction kinetics as a result of increased frequency of reactive collisions. The reaction dynamics may also be altered with respect to standard macroscopic reactors. A built-in miniature telemetering unit would connect a network of other similar rovers and a central, ground-based or orbiting control unit for data collection and transmission to an Earth-based unit through a powerful antenna. The development of the ` Lab-on-Chip ' concept for space applications would affect the economy of space exploration missions, as the rover's ` Lab-on-Chip ' development would link space missions with the ever growing terrestrial market and business concerning such devices, largely employed in modern genomics and bioinformatics, so that it would allow the recoupment of space mission costs.

  4. Astronaut Demographic Database: Everything You Want to Know About Astronauts and More

    Science.gov (United States)

    Keeton, Kathryn; Patterson, Holly

    2011-01-01

    A wealth of information regarding the astronaut population is available that could be especially useful to researchers. However, until now, it has been difficult to obtain that information in a systematic way. Therefore, this "astronaut database" began as a way for researchers within the Behavioral Health and Performance Group to keep track of the ever growing astronaut corps population. Before our effort, compilation of such data could be found, but not in a way that was easily acquired or accessible. One would have to use internet search engines, read through lengthy and potentially inaccurate informational sites, or read through astronaut biographies compiled by NASA. Astronauts are a unique class of individuals and, by examining such information, which we dubbed "Demographics," we hoped to find some commonalities that may be useful for other research areas and future research topics. By organizing the information pertaining to astronauts1 in a formal, unified catalog, we believe we have made the information more easily accessible, readily useable, and user friendly. Our end goal is to provide this database to others as a highly functional resource within the research community. Perhaps the database can eventually be an official, published document for researchers to gain full access.

  5. Improvements to the Ionizing Radiation Risk Assessment Program for NASA Astronauts

    Science.gov (United States)

    Semones, E. J.; Bahadori, A. A.; Picco, C. E.; Shavers, M. R.; Flores-McLaughlin, J.

    2011-01-01

    To perform dosimetry and risk assessment, NASA collects astronaut ionizing radiation exposure data from space flight, medical imaging and therapy, aviation training activities and prior occupational exposure histories. Career risk of exposure induced death (REID) from radiation is limited to 3 percent at a 95 percent confidence level. The Radiation Health Office at Johnson Space Center (JSC) is implementing a program to integrate the gathering, storage, analysis and reporting of astronaut ionizing radiation dose and risk data and records. This work has several motivations, including more efficient analyses and greater flexibility in testing and adopting new methods for evaluating risks. The foundation for these improvements is a set of software tools called the Astronaut Radiation Exposure Analysis System (AREAS). AREAS is a series of MATLAB(Registered TradeMark)-based dose and risk analysis modules that interface with an enterprise level SQL Server database by means of a secure web service. It communicates with other JSC medical and space weather databases to maintain data integrity and consistency across systems. AREAS is part of a larger NASA Space Medicine effort, the Mission Medical Integration Strategy, with the goal of collecting accurate, high-quality and detailed astronaut health data, and then securely, timely and reliably presenting it to medical support personnel. The modular approach to the AREAS design accommodates past, current, and future sources of data from active and passive detectors, space radiation transport algorithms, computational phantoms and cancer risk models. Revisions of the cancer risk model, new radiation detection equipment and improved anthropomorphic computational phantoms can be incorporated. Notable hardware updates include the Radiation Environment Monitor (which uses Medipix technology to report real-time, on-board dosimetry measurements), an updated Tissue-Equivalent Proportional Counter, and the Southwest Research Institute

  6. Astronaut Aldrin is photographed by Astronaut Armstrong on the Moon

    Science.gov (United States)

    1969-01-01

    Apollo 11 Onboard Film -- The deployment of scientific experiments by Astronaut Edwin Aldrin Jr. is photographed by Astronaut Neil Armstrong. Man's first landing on the Moon occurred today at 4:17 p.m. as Lunar Module 'Eagle' touched down gently on the Sea of Tranquility on the east side of the Moon.

  7. Preface: The Chang'e-3 lander and rover mission to the Moon

    Science.gov (United States)

    Ip, Wing-Huen; Yan, Jun; Li, Chun-Lai; Ouyang, Zi-Yuan

    2014-12-01

    The Chang'e-3 (CE-3) lander and rover mission to the Moon was an intermediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultraviolet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar subsurface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing procedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.

  8. A Mars orbiter/rover/penetrator mission for the 1984 opportunity

    Science.gov (United States)

    Hastrup, R.; Driver, J.; Nagorski, R.

    1977-01-01

    A point design mission is described that utilizes the 1984 opportunity to extend the exploration of Mars after the successful Viking operations and provide the additional scientific information needed before conducting a sample return mission. Two identical multi-element spacecraft are employed, each consisting of (1) an orbiter, (2) a Viking-derived landing system that delivers a heavily instrumented, semi-autonomous rover, and (3) three penetrators deployed from the approach trajectory. Selection of the orbit profiles requires consideration of several important factors in order to satisfy all of the mission goals.

  9. Exploring the Factors Contributing to Stress and Coping Strategies ...

    African Journals Online (AJOL)

    Exploring the Factors Contributing to Stress and Coping Strategies of Nurses at ... explore the factors contributing to nurses' stress and related coping strategies used ... of staff and materials, facing death and dying, dissatisfaction with the work ...

  10. Surface-based 3D measurements of small aeolian bedforms on Mars and implications for estimating ExoMars rover traversability hazards

    Science.gov (United States)

    Balme, Matt; Robson, Ellen; Barnes, Rob; Butcher, Frances; Fawdon, Peter; Huber, Ben; Ortner, Thomas; Paar, Gerhard; Traxler, Christoph; Bridges, John; Gupta, Sanjeev; Vago, Jorge L.

    2018-04-01

    Recent aeolian bedforms comprising loose sand are common on the martian surface and provide a mobility hazard to Mars rovers. The ExoMars rover will launch in 2020 to one of two candidate sites: Mawrth Vallis or Oxia Planum. Both sites contain numerous aeolian bedforms with simple ripple-like morphologies. The larger examples are 'Transverse Aeolian Ridges' (TARs), which stereo imaging analyses have shown to be a few metres high and up to a few tens of metres across. Where they occur, TARs therefore present a serious, but recognized and avoidable, rover mobility hazard. There also exists a population of smaller bedforms of similar morphology, but it is unknown whether these bedforms will be traversable by the ExoMars rover. We informally refer to these bedforms as "mini-TARs", as they are about an order of magnitude smaller than most TARs observed to date. They are more abundant than TARs in the Oxia Planum site, and can be pervasive in areas. The aim of this paper is to estimate the heights of these features, which are too small to measured using High Resolution Imaging Science Experiment (HiRISE) Digital Elevation Models (DEMs), from orbital data alone. Thereby, we aim to increase our knowledge of the hazards in the proposed ExoMars landing sites. We propose a methodology to infer the height of these mini-TARs based on comparisons with similar features observed by previous Mars rovers. We use rover-based stereo imaging from the NASA Mars Exploration Rover (MER) Opportunity and PRo3D software, a 3D visualisation and analysis tool, to measure the size and height of mini-TARs in the Meridiani Planum region of Mars. These are good analogues for the smaller bedforms at the ExoMars rover candidate landing sites. We show that bedform height scales linearly with length (as measured across the bedform, perpendicular to the crest ridge) with a ratio of about 1:15. We also measured the lengths of many of the smaller aeolian bedforms in the ExoMars rover Oxia Planum

  11. Astronauts' menu problem.

    Science.gov (United States)

    Lesso, W. G.; Kenyon, E.

    1972-01-01

    Consideration of the problems involved in choosing appropriate menus for astronauts carrying out SKYLAB missions lasting up to eight weeks. The problem of planning balanced menus on the basis of prepackaged food items within limitations on the intake of calories, protein, and certain elements is noted, as well as a number of other restrictions of both physical and arbitrary nature. The tailoring of a set of menus for each astronaut on the basis of subjective rankings of each food by the astronaut in terms of a 'measure of pleasure' is described, and a computer solution to this problem by means of a mixed integer programming code is presented.

  12. Preliminary Dynamic Feasibility and Analysis of a Spherical, Wind-Driven (Tumbleweed), Martian Rover

    Science.gov (United States)

    Flick, John J.; Toniolo, Matthew D.

    2005-01-01

    The process and findings are presented from a preliminary feasibility study examining the dynamics characteristics of a spherical wind-driven (or Tumbleweed) rover, which is intended for exploration of the Martian surface. The results of an initial feasibility study involving several worst-case mobility situations that a Tumbleweed rover might encounter on the surface of Mars are discussed. Additional topics include the evaluation of several commercially available analysis software packages that were examined as possible platforms for the development of a Monte Carlo Tumbleweed mission simulation tool. This evaluation lead to the development of the Mars Tumbleweed Monte Carlo Simulator (or Tumbleweed Simulator) using the Vortex physics software package from CM-Labs, Inc. Discussions regarding the development and evaluation of the Tumbleweed Simulator, as well as the results of a preliminary analysis using the tool are also presented. Finally, a brief conclusions section is presented.

  13. Astronautics and psychology: recommendations for the psychological training of astronauts.

    Science.gov (United States)

    Haupt, G F

    1991-11-01

    The methods presently applied in the psychological training of astronauts are based on the principle of ensuring maximum performance of astronauts during missions. The shortcomings are obvious since those undergoing training provide nothing but the best ability to cope with Earth problem situations and add simply an experience of space problem situations as they are presently conceived. Earth attitudes and Earth behaviour remain and are simply modified. Through the utilization of interdisciplinary space knowledge a much higher degree of problem anticipation could be achieved and the astronaut be psychologically transformed into a space-being. This would at the same time stimulate interdisciplinary space research. The interdisciplinary space knowledge already available suggests that space requires not only physical and mental adjustments, but a profoundly new relationship with life.

  14. Radiation Exposure and Mortality from Cardiovascular Disease and Cancer in Early NASA Astronauts: Space for Exploration

    Science.gov (United States)

    Elgart, S. R.; Little, M. P.; Campbell, L. J.; Milder, C. M.; Shavers, M. R.; Huff, J. L.; Patel, Z. S.

    2018-01-01

    Of the many possible health challenges posed during extended exploratory missions to space, the effects of space radiation on cardiovascular disease and cancer are of particular concern. There are unique challenges to estimating those radiation risks; care and appropriate and rigorous methodology should be applied when considering small cohorts such as the NASA astronaut population. The objective of this work was to establish whether there is evidence for excess cardiovascular disease or cancer mortality in an early NASA astronaut cohort and determine if a correlation exists between space radiation exposure and mortality.

  15. Enhancing Astronaut Performance using Sensorimotor Adaptability Training

    Directory of Open Access Journals (Sweden)

    Jacob J Bloomberg

    2015-09-01

    Full Text Available Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments - enhancing their ability to learn to learn. We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts.

  16. The Challenges in Applying Magnetroesistive Sensors on the 'Curiosity' Rover

    Science.gov (United States)

    Johnson, Michael R.

    2013-01-01

    Magnetoresistive Sensors were selected for use on the motor encoders throughout the Curiosity Rover for motor position feedback devices. The Rover contains 28 acuators with a corresponding number of encoder assemblies. The environment on Mars provides opportunities for challenges to any hardware design. The encoder assemblies presented several barriers that had to be vaulted in order to say the rover was ready to fly. The environment and encoder specific design features provided challenges that had to be solved in time to fly.

  17. 2D/3D Visual Tracker for Rover Mast

    Science.gov (United States)

    Bajracharya, Max; Madison, Richard W.; Nesnas, Issa A.; Bandari, Esfandiar; Kunz, Clayton; Deans, Matt; Bualat, Maria

    2006-01-01

    A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems

  18. Dynamic modeling and mobility analysis of the transforming roving-rolling explorer (TRREx) as it Traverses Rugged Martian Terrain

    Science.gov (United States)

    Edwin, Lionel E.; Mazzoleni, Andre P.

    2016-03-01

    All planetary surface exploration missions thus far have employed traditional rovers with a rocker-bogie suspension. These rovers can navigate moderately rough and flat terrain, but are not designed to traverse rugged terrain with steep slopes. The fact is, however, that the most scientifically interesting missions require exploration platforms with capabilities for navigating such types of rugged terrain. This issue motivates the development of new kinds of rovers that take advantage of the latest advances in robotic technologies to traverse rugged terrain efficiently. This work analyzes one such rover concept called the Transforming Roving-Rolling Explorer (TRREx) that is principally aimed at addressing the above issue. Biologically inspired by the way the armadillo curls up into a ball when threatened, and the way the golden wheel spider uses the dynamic advantages of a sphere to roll down hills when escaping danger, the TRREx rover can traverse like a traditional 6-wheeled rover over conventional terrain, but can also transform itself into a sphere, when necessary, to travel down steep inclines, or navigate rough terrain. This paper investigates the mobility of the TRREx when it is in its rolling mode, i.e. when it is a sphere and can steer itself through actuations that shift its center of mass to achieve the desired direction of roll. A mathematical model describing the dynamics of the rover in this spherical configuration is presented, and actuated rolling is demonstrated through computer simulation. Parametric analyzes that investigate the rover's mobility as a function of its design parameters are also presented. This work highlights the contribution of the spherical rolling mode to the enhanced mobility of the TRREx rover and how it could enable challenging surface exploration missions in the future.

  19. What We Might Know About Gusev Crater if the Mars Exploration Rover Spirit Mission were Coupled with a Mars Sample Return Mission

    Science.gov (United States)

    Morris, Richard V.

    2008-01-01

    The science instruments on the Mars Exploration Rover (MER) Spirit have provided an enormous amount of chemical and mineralogical data during more than 1450 sols of exploration at Gusev crater. The Moessbauer (MB) instrument identified 10 Fe-bearing phases at Gusev Crater: olivine, pyroxene, ilmenite, chromite, and magnetite as primary igneous phases and nanophase ferric oxide (npOx), goethite, hematite, a ferric sulfate, and pyrite/marcusite as secondary phases. The Miniature Thermal Emission Spectrometer (Mini-TES) identified some of these Fe-bearing phases (olivine and pyroxene), non- Fe-bearing phases (e.g., feldspar), and an amorphous high-SiO2 phase near Home Plate. Chemical data from the Alpha Particle X-Ray Spectrometer (APXS) provided the framework for rock classification, chemical weathering/alteration, and mineralogical constraints. APXS-based mineralogical constraints include normative calculations (with Fe(3+)/FeT from MB), elemental associations, and stoichiometry (e.g., 90% SiO2 implicates opalline silica). If Spirit had cached a set of representative samples and if those samples were returned to the Earth for laboratory analysis, what value is added by Mars Sample return (MSR) over and above the mineralogical and chemical data provided by MER?

  20. Astronaut training ground

    OpenAIRE

    2000-01-01

    "While most NPS graduates are still assigned to sea missions, so many are venturing into the "Final Frontier" that NPS is among the top four schools in producing future astronauts. Since moving to Monterey from the Naval Academy in 1951, NPS has already graduated 35 astronauts, some of whom have flown Space Shuttle missions..."

  1. Astronaut exposure to space radiation - Space Shuttle experience

    International Nuclear Information System (INIS)

    Atwell, W.

    1990-01-01

    Space Shuttle astronauts are exposed to both the trapped radiation and the galactic cosmic radiation environments. In addition, the sun periodically emits high-energy particles which could pose a serious threat to flight crews. NASA adheres to federal regulations and recommended exposure limits for radiation protection and has established a radiological health and risk assessment program. Using models of the space radiation environment, a Shuttle shielding model, and an anatomical human model, crew exposure estimates are made for each Shuttle flight. The various models are reviewed. Dosimeters are worn by each astronaut and are flown at several fixed locations to obtain inflight measurements. The dosimetry complement is discussed in detail. A comparison between the premission calculations and measurements is presented. Extrapolation of Shuttle experience to long-duration exposure is explored. 14 refs

  2. Calculation of Radiation Protection Quantities and Analysis of Astronaut Orientation Dependence

    Science.gov (United States)

    Clowdsley, Martha S.; Nealy, John E.; Atwell, William; Anderson, Brooke M.; Luetke, Nathan J.; Wilson, John W.

    2006-01-01

    Health risk to astronauts due to exposure to ionizing radiation is a primary concern for exploration missions and may become the limiting factor for long duration missions. Methodologies for evaluating this risk in terms of radiation protection quantities such as dose, dose equivalent, gray equivalent, and effective dose are described. Environment models (galactic cosmic ray and solar particle event), vehicle/habitat geometry models, human geometry models, and transport codes are discussed and sample calculations for possible lunar and Mars missions are used as demonstrations. The dependence of astronaut health risk, in terms of dosimetric quantities, on astronaut orientation within a habitat is also examined. Previous work using a space station type module exposed to a proton spectrum modeling the October 1989 solar particle event showed that reorienting the astronaut within the module could change the calculated dose equivalent by a factor of two or more. Here the dose equivalent to various body tissues and the whole body effective dose due to both galactic cosmic rays and a solar particle event are calculated for a male astronaut in two different orientations, vertical and horizontal, in a representative lunar habitat. These calculations also show that the dose equivalent at some body locations resulting from a solar particle event can vary by a factor of two or more, but that the dose equivalent due to galactic cosmic rays has a much smaller (<15%) dependence on astronaut orientation.

  3. Autonomously Generating Operations Sequences for a Mars Rover Using Artificial Intelligence-Based Planning

    Science.gov (United States)

    Sherwood, R.; Mutz, D.; Estlin, T.; Chien, S.; Backes, P.; Norris, J.; Tran, D.; Cooper, B.; Rabideau, G.; Mishkin, A.; Maxwell, S.

    2001-07-01

    This article discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from high-level science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This artificial intelligence (AI)-based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules. An automated planning and scheduling system encodes rover design knowledge and uses search and reasoning techniques to automatically generate low-level command sequences while respecting rover operability constraints, science and engineering preferences, environmental predictions, and also adhering to hard temporal constraints. This prototype planning system has been field-tested using the Rocky 7 rover at JPL and will be field-tested on more complex rovers to prove its effectiveness before transferring the technology to flight operations for an upcoming NASA mission. Enabling goal-driven commanding of planetary rovers greatly reduces the requirements for highly skilled rover engineering personnel. This in turn greatly reduces mission operations costs. In addition, goal-driven commanding permits a faster response to changes in rover state (e.g., faults) or science discoveries by removing the time-consuming manual sequence validation process, allowing rapid "what-if" analyses, and thus reducing overall cycle times.

  4. A New Vehicle for Planetary Surface Exploration: The Mars Tumbleweed

    Science.gov (United States)

    Antol, Jeffrey

    2005-01-01

    The surface of Mars is currently being explored with a combination of orbiting spacecraft, stationary landers and wheeled rovers. However, only a small portion of the Martian surface has undergone in-situ examination. Landing sites must be chosen to insure the safety of the vehicles (and human explorers) and provide the greatest opportunity for mission success. While wheeled rovers provide the ability to move beyond the landing sites, they are also limited in their ability to traverse rough terrain; therefore, many scientifically interesting sites are inaccessible by current vehicles. In order to access these sites, a capability is needed that can transport scientific instruments across varied Martian terrain. A new "rover" concept for exploring the Martian surface, known as the Mars Tumbleweed, will derive mobility through use of the surface winds on Mars, much like the Tumbleweed plant does here on Earth. Using the winds on Mars, a Tumbleweed rover could conceivably travel great distances and cover broad areas of the planetary surface. Tumbleweed vehicles would be designed to withstand repeated bouncing and rolling on the rock covered Martian surface and may be durable enough to explore areas on Mars such as gullies and canyons that are currently inaccessible by conventional rovers. Achieving Mars wind-driven mobility; however, is not a minor task. The density of the atmosphere on Mars is approximately 60-80 times less than that on Earth and wind speeds are typically around 2-5 m/s during the day, with periodic winds of 10 m/s to 20 m/s (in excess of 25 m/s during seasonal dust storms). However, because of the Martian atmosphere#s low density, even the strongest winds on Mars equate to only a gentle breeze on Earth. Tumbleweed rovers therefore need to be relatively large (4-6 m in diameter), very lightweight (10-20 kg), and equipped with lightweight, low-power instruments. This paper provides an overview of the Tumbleweed concept, presents several notional design

  5. Astronaut Joseph Kerwin takes blood sample from Astronaut Charles Conrad

    Science.gov (United States)

    1973-01-01

    Scientist-Astronaut Joseph P. Kerwin (right), Skylab 2 science pilot and a doctor of medicine, takes a blood sample from Astronaut Charles Conrad Jr., Sylab 2 commander, as seen in this reproduction taken from a color television transmission made by a TV camera aboard the Skylab 1 and 2 space station cluster in Earth orbit. The blood sampling was part of the Skylab Hematology and Immunology Experiment M110 series.

  6. Panoramic 3d Vision on the ExoMars Rover

    Science.gov (United States)

    Paar, G.; Griffiths, A. D.; Barnes, D. P.; Coates, A. J.; Jaumann, R.; Oberst, J.; Gao, Y.; Ellery, A.; Li, R.

    .r.t. fields of view, ranging capability (distance measurement capability), data rate, necessity of calibration targets, hardware & data interfaces to other subsystems (e.g. navigation) as well as accuracy impacts of sensor design and compression ratio. • Geometric Calibration: The geometric properties of the individual cameras including various spectral filters, their mutual relations and the dynamic geometrical relation between rover frame and cameras - with the mast in between - are precisely described by a calibration process. During surface operations these relations will be continuously checked and updated by photogrammetric means, environmental influences such as temperature, pressure and the Mars gravity will be taken into account. • Surface Mapping: Stereo imaging using the WAC stereo pair is used for the 3d reconstruction of the rover vicinity to identify, locate and characterize potentially interesting spots (3-10 for an experimental cycle to be performed within approx. 10-30 sols). The HRC is used for high resolution imagery of these regions of interest to be overlaid on the 3d reconstruction and potentially refined by shape-from-shading techniques. A quick processing result is crucial for time critical operations planning, therefore emphasis is laid on the automatic behaviour and intrinsic error detection mechanisms. The mapping results will be continuously fused, updated and synchronized with the map used by the navigation system. The surface representation needs to take into account the different resolutions of HRC and WAC as well as uncommon or even unexpected image acquisition modes such as long range, wide baseline stereo from different rover positions or escape strategies in the case of loss of one of the stereo camera heads. • Panorama Mosaicking: The production of a high resolution stereoscopic panorama nowadays is state-of-art in computer vision. However, certain 2 challenges such as the need for access to accurate spherical coordinates, maintenance

  7. Absolute Navigation Information Estimation for Micro Planetary Rovers

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2016-03-01

    Full Text Available This paper provides algorithms to estimate absolute navigation information, e.g., absolute attitude and position, by using low power, weight and volume Microelectromechanical Systems-type (MEMS sensors that are suitable for micro planetary rovers. Planetary rovers appear to be easily navigable robots due to their extreme slow speed and rotation but, unfortunately, the sensor suites available for terrestrial robots are not always available for planetary rover navigation. This makes them difficult to navigate in a completely unexplored, harsh and complex environment. Whereas the relative attitude and position can be tracked in a similar way as for ground robots, absolute navigation information, unlike in terrestrial applications, is difficult to obtain for a remote celestial body, such as Mars or the Moon. In this paper, an algorithm called the EASI algorithm (Estimation of Attitude using Sun sensor and Inclinometer is presented to estimate the absolute attitude using a MEMS-type sun sensor and inclinometer, only. Moreover, the output of the EASI algorithm is fused with MEMS gyros to produce more accurate and reliable attitude estimates. An absolute position estimation algorithm has also been presented based on these on-board sensors. Experimental results demonstrate the viability of the proposed algorithms and the sensor suite for low-cost and low-weight micro planetary rovers.

  8. First results from the Mojave Volatiles Prospector (MVP) Field Campaign, a Lunar Polar Rover Mission Analog

    Science.gov (United States)

    Heldmann, J. L.; Colaprete, A.; Cook, A.; Deans, M. C.; Elphic, R. C.; Lim, D. S. S.; Skok, J. R.

    2014-12-01

    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal to produce critical knowledge for conducting robotic exploration of the Moon. MVP will feed science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. MVP achieves these goals through a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural and a priori unknown environment within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon. The MVP field site is the Mojave Desert, selected for its low, naturally occurring water abundance. The Mojave typically has on the order of 2-6% water, making it a suitable lunar analog for this field test. MVP uses the Near Infrared and Visible Spectrometer Subsystem (NIRVSS), Neutron Spectrometer Subsystem (NSS), and a downward facing GroundCam camera on the KREX-2 rover to investigate the relationship between the distribution of volatiles and soil crust variation. Through this investigation, we mature robotic in situ instruments and concepts of instrument operations, improve ground software tools for real time science, and carry out publishable research on the water cycle and its connection to geomorphology and mineralogy in desert environments. A lunar polar rover mission is unlike prior space missions and requires a new concept of operations. The rover must navigate 3-5 km of terrain and examine multiple sites in in just ~6 days. Operational decisions must be made in real time, requiring constant situational awareness, data analysis and rapid turnaround decision support tools. This presentation will focus on the first science results and operational architecture findings from the MVP field deployment relevant to a lunar polar rover mission.

  9. European astronaut training in Houston.

    Science.gov (United States)

    Chiarenza, O

    1993-11-01

    Three European astronauts are currently training as Space Shuttle Mission Specialists at NASA's Johnson Space Center in Houston. Two of the astronauts, Maurizio Cheli and Jean-Francois Clervoy, recently became members of NASA's 'astronaut pool' and have entered the Advanced Training phase. The third one, Claude Nicollier, is now preparing for the mission to service the Hubble Space Telescope in December.

  10. Identity at work: Exploring strategies for Identity Work

    Directory of Open Access Journals (Sweden)

    Byron G. Adams

    2012-01-01

    Full Text Available Orientation: This study explored strategies for identity work that are central to the negotiation and regulation of employee work identity.Research purpose: The main aim of this study was to explore employee narratives and identify the strategies available to them in the process of identity work, as they defined themselves at work.Motivation for the study: As there is a scarcity of research on identity work in South Africa, this study wanted to advance knowledge about identity work and the strategies used for regulating and negotiating an identity at work by exploring these constructs in this context.Research design, approach and method: A qualitative research process formed the basis for this study. Nineteen employees from a global manufacturing company participated in two semi-structured in-depth interviews. Grounded theory was applied to analyse and interpret the data.Main findings: Nine strategies for identity work were identified and categorised into four broad themes (personal philosophies; relationships; career management and negotiating balance.Practical/managerial implications: Employees followed various strategies for defining themselves at work and this may have some implications for employee work engagement and productivity.Contribution/value-add: This study expands on current theoretical knowledge of identity work, and provides insights into the strategies people use to regulate and negotiate their identities at work. 

  11. Evaluation of different frontier-based multi-robot exploration strategies

    Directory of Open Access Journals (Sweden)

    Benkrid Abdenour

    2016-01-01

    Full Text Available In this paper, we focus on the problem of exploring an unknown environment by a team of mobile robots. The main objective is to compare four different coordination strategies based on frontier concept (boundaries between unexplored and explored open areas and analyze their performance in term of assignment quality, overall exploration time and computational complexity. In order to provide a suitable qualitative study we used three optimization criteria. Each strategy has been implemented and tested extensively in computerized simulation.

  12. Worms to astronauts: Canadian Space Agency approach to life sciences in support of exploration

    Science.gov (United States)

    Buckley, Nicole; Johnson-Green, Perry; Lefebvre, Luc

    As the pace of human exploration of space is accelerated, the need to address the challenges of long-duration human missions becomes imperative. Working with limited resources, we must determine the most effective way to meet this challenge. A great deal of science management centres on "applied" versus "basic" research as the cornerstone of a program. We have chosen to largely ignore such a labeling of science and concentrate on quality, as determined by peer review, as the primary criterion for science selection. Space Life Sciences is a very young science and access to space continues to be difficult. Because we have few opportunities for conducting science, and space life science is very challenging, we are comfortable maintaining a very high bar for selection. In order to ensure adequate depth to our community we have elected to concentrate our efforts. Working in concert with members of the community, we have identified specific areas of focus that are chosen by their importance in space, but also according to Canada's strength in the terrestrial counterpart of the research. It is hoped that through a balanced but highly competitive program with the emphasis on quality, Canadian scientists can contribute to making space a safer, more welcoming place for our astronauts.

  13. Astronautics Degrees for Space Industry

    Science.gov (United States)

    Gruntman, M.; Brodsky, R.; Erwin, D.; Kunc, J.

    The Astronautics Program (http://astronautics.usc.edu) of the University of Southern California (USC) offers a full set of undergraduate and graduate degree programs in Aerospace Engineering with emphasis in Astronautics. The Bachelor of Science degree program in Astronautics combines basic science and engineering classes with specialized astronautics classes. The Master of Science degree program in Astronautics offers classes in various areas of space technology. The Certificate in Astronautics targets practicing engineers and scientists who enter space-related fields and/or who want to obtain training in specific space-related areas. Many specialized graduate classes are taught by adjunct faculty working at the leading space companies. The Master of Science degree and Certificate are available through the USC Distance Education Network (DEN). Today, the Internet allows us to reach students anywhere in the world through webcasting. The majority of our graduate students, as well as those pursuing the Certificate, work full time as engineers in the space industry and government research and development centers. The new world of distance learning presents new challenges and opens new opportunities. We show how the transformation of distance learning and particularly the introduction of webcasting transform organization of the program and class delivery. We will describe in detail the academic focus of the program, student reach, and structure of program components. Program development is illustrated by the student enrollment dynamics and related industrial trends; the lessons learned emphasize the importance of feedback from the students and from the space industry.

  14. Mission control team structure and operational lessons learned from the 2009 and 2010 NASA desert RATS simulated lunar exploration field tests

    Science.gov (United States)

    Bell, Ernest R.; Badillo, Victor; Coan, David; Johnson, Kieth; Ney, Zane; Rosenbaum, Megan; Smart, Tifanie; Stone, Jeffry; Stueber, Ronald; Welsh, Daren; Guirgis, Peggy; Looper, Chris; McDaniel, Randall

    2013-10-01

    The NASA Desert Research and Technology Studies (Desert RATS) is an annual field test of advanced concepts, prototype hardware, and potential modes of operation to be used on human planetary surface space exploration missions. For the 2009 and 2010 NASA Desert RATS field tests, various engineering concepts and operational exercises were incorporated into mission timelines with the focus of the majority of daily operations being on simulated lunar geological field operations and executed in a manner similar to current Space Shuttle and International Space Station missions. The field test for 2009 involved a two week lunar exploration simulation utilizing a two-man rover. The 2010 Desert RATS field test took this two week simulation further by incorporating a second two-man rover working in tandem with the 2009 rover, as well as including docked operations with a Pressurized Excursion Module (PEM). Personnel for the field test included the crew, a mission management team, engineering teams, a science team, and the mission operations team. The mission operations team served as the core of the Desert RATS mission control team and included certified NASA Mission Operations Directorate (MOD) flight controllers, former flight controllers, and astronaut personnel. The backgrounds of the flight controllers were in the areas of Extravehicular Activity (EVA), onboard mechanical systems and maintenance, robotics, timeline planning (OpsPlan), and spacecraft communicator (Capcom). With the simulated EVA operations, mechanized operations (the rover), and expectations of replanning, these flight control disciplines were especially well suited for the execution of the 2009 and 2010 Desert RATS field tests. The inclusion of an operations team has provided the added benefit of giving NASA mission operations flight control personnel the opportunity to begin examining operational mission control techniques, team compositions, and mission scenarios. This also gave the mission operations

  15. Developing Science Operations Concepts for the Future of Planetary Surface Exploration

    Science.gov (United States)

    Young, K. E.; Bleacher, J. E.; Rogers, A. D.; McAdam, A.; Evans, C. A.; Graff, T. G.; Garry, W. B.; Whelley,; Scheidt, S.; Carter, L.; hide

    2017-01-01

    Through fly-by, orbiter, rover, and even crewed missions, National Aeronautics and Space Administration (NASA) has been extremely successful in exploring planetary bodies throughout our Solar System. The focus on increasingly complex Mars orbiter and rover missions has helped us understand how Mars has evolved over time and whether life has ever existed on the red planet. However, large strategic knowledge gaps (SKGs) still exist in our understanding of the evolution of the Solar System (e.g. the Lunar Exploration Analysis Group, Small Bodies Analysis Group, and Mars Exploration Program Analysis Group). Sending humans to these bodies is a critical part of addressing these SKGs in order to transition to a new era of planetary exploration by 2050.

  16. Cross-Coupled Control for All-Terrain Rovers

    Directory of Open Access Journals (Sweden)

    Giulio Reina

    2013-01-01

    Full Text Available Mobile robots are increasingly being used in challenging outdoor environments for applications that include construction, mining, agriculture, military and planetary exploration. In order to accomplish the planned task, it is critical that the motion control system ensure accuracy and robustness. The achievement of high performance on rough terrain is tightly connected with the minimization of vehicle-terrain dynamics effects such as slipping and skidding. This paper presents a cross-coupled controller for a 4-wheel-drive/4-wheel-steer robot, which optimizes the wheel motors’ control algorithm to reduce synchronization errors that would otherwise result in wheel slip with conventional controllers. Experimental results, obtained with an all-terrain rover operating on agricultural terrain, are presented to validate the system. It is shown that the proposed approach is effective in reducing slippage and vehicle posture errors.

  17. Rover's Wheel Churns Up Bright Martian Soil

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. Spirit acquired this mosaic with the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters. The view presented here is an approximately true-color rendering.

  18. (abstract) Telecommunications for Mars Rovers and Robotic Missions

    Science.gov (United States)

    Cesarone, Robert J.; Hastrup, Rolf C.; Horne, William; McOmber, Robert

    1997-01-01

    Telecommunications plays a key role in all rover and robotic missions to Mars both as a conduit for command information to the mission and for scientific data from the mission. Telecommunications to the Earth may be accomplished using direct-to-Earth links via the Deep Space Network (DSN) or by relay links supported by other missions at Mars. This paper reviews current plans for missions to Mars through the 2005 launch opportunity and their capabilities in support of rover and robotic telecommunications.

  19. Nuclear thermal rocket workshop reference system Rover/NERVA

    International Nuclear Information System (INIS)

    Borowski, S.K.

    1991-01-01

    The Rover/NERVA engine system is to be used as a reference, against which each of the other concepts presented in the workshop will be compared. The following topics are reviewed: the operational characteristics of the nuclear thermal rocket (NTR); the accomplishments of the Rover/NERVA programs; and performance characteristics of the NERVA-type systems for both Mars and lunar mission applications. Also, the issues of ground testing, NTR safety, NASA's nuclear propulsion project plans, and NTR development cost estimates are briefly discussed

  20. Electrostatic Spectrometer for Mars Rover Wheel

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a simple electrostatic spectrometer that can be mounted on the wheels of a Mars rover to continuously and unobtrusively determine the mineral composition and...

  1. A Battery Health Monitoring Framework for Planetary Rovers

    Science.gov (United States)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2014-01-01

    Batteries have seen an increased use in electric ground and air vehicles for commercial, military, and space applications as the primary energy source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries must be carefully monitored such that the battery health can be determined, and end of discharge and end of usable life events may be accurately predicted. For planetary rovers, battery health estimation and prediction is critical to mission planning and decision-making. We develop a model-based approach utilizing computaitonally efficient and accurate electrochemistry models of batteries. An unscented Kalman filter yields state estimates, which are then used to predict the future behavior of the batteries and, specifically, end of discharge. The prediction algorithm accounts for possible future power demands on the rover batteries in order to provide meaningful results and an accurate representation of prediction uncertainty. The framework is demonstrated on a set of lithium-ion batteries powering a rover at NASA.

  2. Reporters Interview Family of Apollo 11 Astronaut Neil Armstrong

    Science.gov (United States)

    1969-01-01

    Newsmen talked with the wife and sons of Apollo 11 astronaut Neil A. Armstrong after the successful launch of Apollo 11 on its trajectory to the moon. The Apollo 11 mission, the first lunar landing mission, launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  3. Apollo 11 Astronaut Neil Armstrong During Lunar Rock Collection Training

    Science.gov (United States)

    1969-01-01

    In this photograph, Apollo 11 astronaut Neil A. Armstrong uses a geologist's hammer in selecting rock specimens during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas. Armstrong, alongside astronaut Edwin (Buzz) Aldrin, practiced gathering rock specimens using special lunar geological tools in preparation for the first Lunar landing. Mission was accomplished in July of the same year. Aboard the Marshall Space Fight center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of Armstrong, commander; Aldrin, Lunar Module pilot; and a third astronaut Michael Collins, Command Module pilot. Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin, while Collins remained in lunar orbit. The crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. The lunar surface exploration was concluded in 2½ hours.

  4. Autonomous Vision-Based Tethered-Assisted Rover Docking

    Science.gov (United States)

    Tsai, Dorian; Nesnas, Issa A.D.; Zarzhitsky, Dimitri

    2013-01-01

    Many intriguing science discoveries on planetary surfaces, such as the seasonal flows on crater walls and skylight entrances to lava tubes, are at sites that are currently inaccessible to state-of-the-art rovers. The in situ exploration of such sites is likely to require a tethered platform both for mechanical support and for providing power and communication. Mother/daughter architectures have been investigated where a mother deploys a tethered daughter into extreme terrains. Deploying and retracting a tethered daughter requires undocking and re-docking of the daughter to the mother, with the latter being the challenging part. In this paper, we describe a vision-based tether-assisted algorithm for the autonomous re-docking of a daughter to its mother following an extreme terrain excursion. The algorithm uses fiducials mounted on the mother to improve the reliability and accuracy of estimating the pose of the mother relative to the daughter. The tether that is anchored by the mother helps the docking process and increases the system's tolerance to pose uncertainties by mechanically aligning the mating parts in the final docking phase. A preliminary version of the algorithm was developed and field-tested on the Axel rover in the JPL Mars Yard. The algorithm achieved an 80% success rate in 40 experiments in both firm and loose soils and starting from up to 6 m away at up to 40 deg radial angle and 20 deg relative heading. The algorithm does not rely on an initial estimate of the relative pose. The preliminary results are promising and help retire the risk associated with the autonomous docking process enabling consideration in future martian and lunar missions.

  5. UWB Technology and Applications on Space Exploration

    Science.gov (United States)

    Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    Ultra-wideband (UWB), also known as impulse or carrier-free radio technology, is one promising new technology. In February 2002, the Federal Communications Commission (FCC) approved the deployment of this technology. It is increasingly recognized that UWB technology holds great potential to provide significant benefits in many terrestrial and space applications such as precise positioning/tracking and high data rate mobile wireless communications. This talk presents an introduction to UWB technology and some applications on space exploration. UWB is characterized by several uniquely attractive features, such as low impact on other RF systems due to its extremely low power spectral densities, immunity to interference from narrow band RF systems due to its ultra-wide bandwidth, multipath immunity to fading due to ample multipath diversity, capable of precise positioning due to fine time resolution, capable of high data rate multi-channel performance. The related FCC regulations, IEEE standardization efforts and industry activities also will be addressed in this talk. For space applications, some projects currently under development at NASA Johnson Space Center will be introduced. These include the UWB integrated communication and tracking system for Lunar/Mars rover and astronauts, UWB-RFID ISS inventory tracking, and UWB-TDOA close-in high resolution tracking for potential applications on robonaut.

  6. Mission X: Train Like an Astronaut Pilot Study

    Science.gov (United States)

    Lloyd, Charles W.; Olivotto, C.; Boese, A.; Spiero, F.; Galoforo, G.; Niihori, M.

    2011-01-01

    Mission X: Train Like an Astronaut is an international educational challenge focusing on fitness and nutrition as we encourage students to "train like an astronaut." Teams of students (aged 8-12) learn principles of healthy eating and exercise, compete for points by finishing training modules, and get excited about their future as "fit explorers." The 18 core exercises (targeting strength, endurance, coordination, balance, spatial awareness, and more) involve the same types of skills that astronauts learn in their training and use in spaceflight. This first-of-its-kind cooperative outreach program has allowed 14 space agencies and various partner institutions to work together to address quality health/fitness education, challenge students to be more physically active, increase awareness of the importance of lifelong health and fitness, teach students how fitness plays a vital role in human performance for exploration, and inspire and motivate students to pursue careers in STEM fields. The project was initiated in 2009 in response to a request by the International Space Life Sciences Working Group. USA, Netherlands, Italy, France, Germany, Austria, Colombia, Spain, and United Kingdom hosted teams for the pilot this past spring, and Japan held a modified version of the challenge. Several more agencies provided input into the preparations. Competing on 131 teams, more than 3700 students from 40 cities worldwide participated in the first round of Mission X. OUTCOMES AND BEST PRACTICES Members of the Mission X core team will highlight the outcomes of this international educational outreach pilot project, show video highlights of the challenge, provide the working group s initial assessment of the project and discuss the future potential of the effort. The team will also discuss ideas and best practices for international partnership in education outreach efforts from various agency perspectives and experiences

  7. Pilot-plant development of a Rover waste calcination flowsheet

    International Nuclear Information System (INIS)

    Birrer, S.A.

    1978-04-01

    Results of eight runs, six using the 10-cm dia and two using the 30-cm dia pilot-plant calciners, in which simulated first-cycle Rover waste was calcined, are described. Results of the tests showed that a feed blend consisting of one volume simulated first-cycle Rover waste and one or two volumes simulated first-cycle zirconium waste could not be successfully calcined. 5 figs., 8 tables

  8. Global partnerships: Expanding the frontiers of space exploration education

    Science.gov (United States)

    MacLeish, Marlene Y.; Akinyede, Joseph O.; Goswami, Nandu; Thomson, William A.

    2012-11-01

    Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the "inspirational and educational value of space exploration" [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics' (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2]. Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives. This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed

  9. A Virtual Simulation Environment for Lunar Rover: Framework and Key Technologies

    Directory of Open Access Journals (Sweden)

    Yan-chun Yang

    2008-11-01

    Full Text Available Lunar rover development involves a large amount of validation works in realistic operational conditions, including its mechanical subsystem and on-board software. Real tests require equipped rover platform and a realistic terrain. It is very time consuming and high cost. To improve the development efficiency, a rover simulation environment called RSVE that affords real time capabilities with high fidelity has been developed. It uses fractional Brown motion (fBm technique and statistical properties to generate lunar surface. Thus, various terrain models for simulation can be generated through changing several parameters. To simulate lunar rover evolving on natural and unstructured surface with high realism, the whole dynamics of the multi-body systems and complex interactions with soft ground is integrated in this environment. An example for path planning algorithm and controlling algorithm testing in this environment is tested. This simulation environment runs on PC or Silicon Graphics.

  10. A Virtual Simulation Environment for Lunar Rover: Framework and Key Technologies

    Directory of Open Access Journals (Sweden)

    Yan-chun Yang

    2008-06-01

    Full Text Available Lunar rover development involves a large amount of validation works in realistic operational conditions, including its mechanical subsystem and on-board software. Real tests require equipped rover platform and a realistic terrain. It is very time consuming and high cost. To improve the development efficiency, a rover simulation environment called RSVE that affords real time capabilities with high fidelity has been developed. It uses fractional Brown motion (fBm technique and statistical properties to generate lunar surface. Thus, various terrain models for simulation can be generated through changing several parameters. To simulate lunar rover evolving on natural and unstructured surface with high realism, the whole dynamics of the multi-body systems and complex interactions with soft ground is integrated in this environment. An example for path planning algorithm and controlling algorithm testing in this environment is tested. This simulation environment runs on PC or Silicon Graphics.

  11. Preface: The Chang'e-3 lander and rover mission to the Moon

    International Nuclear Information System (INIS)

    Ip Wing-Huen; Yan Jun; Li Chun-Lai; Ouyang Zi-Yuan

    2014-01-01

    The Chang'e-3 (CE-3) lander and rover mission to the Moon was an intermediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultraviolet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar subsurface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing procedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions

  12. Astronautics and Aeronautics, 1986-1990: A Chronology

    Science.gov (United States)

    Gawdiak, Ihor Y.; Miro, Ramon J.; Stueland, Sam

    1997-01-01

    This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the LibrarY of Congress for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1996-1990 and continues the series of annual chronologies published by NASA. The present volume returns to the format used in the Astronautics and Aeronautics, 1979-1984: A Chronology volume. It also integrates in a single table the information presented in two or three previous publications.

  13. Astronautics and Aeronautics, 1991-1995: A Chronology

    Science.gov (United States)

    Gawdiak, Ihor Y. (Compiler); Shetland, Charles (Compiler)

    2000-01-01

    This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the Library of Congress and RSIS for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1991-1995 and continues the series of annual chronologies published by NASA. The present volume uses the format of the previous edition of this series, Astronautics and Aeronautics, 1986-1990: A Chronology. It also integrates, in the appendices, information presented in previous publication

  14. Astronauts Exercising in Space Video

    Science.gov (United States)

    2001-01-01

    To minimize the effects of weightlessness and partial gravity, astronauts use several counter measures to maintain health and fitness. One counter measure is exercise to help reduce or eliminate muscle atrophy and bone loss, and to improve altered cardiovascular function. This video shows astronauts on the International Space Station (ISS) using the stationary Cycle/ Ergometer Vibration Isolation System (CVIS), the Treadmill Vibration Isolation System (TVIS), and the resistance exercise device. These technologies and activities will be crucial to keeping astronauts healthy and productive during the long missions to the Moon. Mars, and beyond.

  15. Estimation and Control for Autonomous Coring from a Rover Manipulator

    Science.gov (United States)

    Hudson, Nicolas; Backes, Paul; DiCicco, Matt; Bajracharya, Max

    2010-01-01

    A system consisting of a set of estimators and autonomous behaviors has been developed which allows robust coring from a low-mass rover platform, while accommodating for moderate rover slip. A redundant set of sensors, including a force-torque sensor, visual odometry, and accelerometers are used to monitor discrete critical and operational modes, as well as to estimate continuous drill parameters during the coring process. A set of critical failure modes pertinent to shallow coring from a mobile platform is defined, and autonomous behaviors associated with each critical mode are used to maintain nominal coring conditions. Autonomous shallow coring is demonstrated from a low-mass rover using a rotary-percussive coring tool mounted on a 5 degree-of-freedom (DOF) arm. A new architecture of using an arm-stabilized, rotary percussive tool with the robotic arm used to provide the drill z-axis linear feed is validated. Particular attention to hole start using this architecture is addressed. An end-to-end coring sequence is demonstrated, where the rover autonomously detects and then recovers from a series of slip events that exceeded 9 cm total displacement.

  16. Dual-EKF-Based Real-Time Celestial Navigation for Lunar Rover

    Directory of Open Access Journals (Sweden)

    Li Xie

    2012-01-01

    Full Text Available A key requirement of lunar rover autonomous navigation is to acquire state information accurately in real-time during its motion and set up a gradual parameter-based nonlinear kinematics model for the rover. In this paper, we propose a dual-extended-Kalman-filter- (dual-EKF- based real-time celestial navigation (RCN method. The proposed method considers the rover position and velocity on the lunar surface as the system parameters and establishes a constant velocity (CV model. In addition, the attitude quaternion is considered as the system state, and the quaternion differential equation is established as the state equation, which incorporates the output of angular rate gyroscope. Therefore, the measurement equation can be established with sun direction vector from the sun sensor and speed observation from the speedometer. The gyro continuous output ensures the algorithm real-time operation. Finally, we use the dual-EKF method to solve the system equations. Simulation results show that the proposed method can acquire the rover position and heading information in real time and greatly improve the navigation accuracy. Our method overcomes the disadvantage of the cumulative error in inertial navigation.

  17. Requirements and Designs for Mars Rover RTGs

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred; Shirbacheh, M; Sankarankandath, V

    2012-01-19

    The current-generation RTGs (both GPHS and MOD) are designed for operation in a vacuum environment. The multifoil thermal insulation used in those RTGs only functions well in a good vacuum. Current RTGs are designed to operate with an inert cover gas before launch, and to be vented to space vacuum after launch. Both RTGs are sealed with a large number of metallic C-rings. Those seals are adequate for retaining the inert-gas overpressure during short-term launch operations, but would not be adequate to prevent intrusion of the Martian atmospheric gases during long-term operations there. Therefore, for the Mars Rover application, those RTGs just be modified to prevent the buildup of significant pressures of Mars atmosphere or of helium (from alpha decay of the fuel). In addition, a Mars Rover RTG needs to withstand a long-term dynamic environment that is much more severe than that seen by an RTG on an orbiting spacecraft or on a stationary planetary lander. This paper describes a typical Rover mission, its requirements, the environment it imposes on the RTG, and a design approach for making the RTG operable in such an environment. Specific RTG designs for various thermoelectric element alternatives are presented.; Reference CID #9268 and CID #9276.

  18. Soft-Robotic Rover with Electrodynamic Power Scavenging

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a rover architecture for Europa and other planetary environments where soft robotics enables scientific investigation or human-precursor missions that...

  19. The astronaut of 1988. [training and selection

    Science.gov (United States)

    Slayton, D. K.

    1973-01-01

    Past space exploration history is reviewed for a projection of requirements in astronaut training and selection in 1988. The categories of talent required for those space missions are listed as test pilots and operational pilots for the test phase of programs; flight engineers and mechanics for Space Shuttle and Space Stations; medical doctors as experimentators and crew members; medical technicians and nurses for support medical service; veterinarians and veterinary technicians; physisits, chemists and geologists; and military men and administrators. Multinational crews and participation of both sexes are anticipated.

  20. Identity at work: Exploring strategies for Identity Work

    Directory of Open Access Journals (Sweden)

    Byron G. Adams

    2012-09-01

    Research purpose: The main aim of this study was to explore employee narratives and identify the strategies available to them in the process of identity work, as they defined themselves at work. Motivation for the study: As there is a scarcity of research on identity work in South Africa, this study wanted to advance knowledge about identity work and the strategies used for regulating and negotiating an identity at work by exploring these constructs in this context. Research design, approach and method: A qualitative research process formed the basis for this study. Nineteen employees from a global manufacturing company participated in two semi-structured in-depth interviews. Grounded theory was applied to analyse and interpret the data. Main findings: Nine strategies for identity work were identified and categorised into four broad themes (personal philosophies; relationships; career management and negotiating balance. Practical/managerial implications: Employees followed various strategies for defining themselves at work and this may have some implications for employee work engagement and productivity. Contribution/value-add: This study expands on current theoretical knowledge of identity work, and provides insights into the strategies people use to regulate and negotiate their identities at work.

  1. The Development of the Chemin Mineralogy Instrument and Its Deployment on Mars (and Latest Results from the Mars Science Laboratory Rover Curiosity)

    Science.gov (United States)

    Blake, David F.

    2014-01-01

    The CheMin instrument (short for "Chemistry and Mineralogy") on the Mars Science Laboratory rover Curiosity is one of two "laboratory quality" instruments on board the Curiosity rover that is exploring Gale crater, Mars. CheMin is an X-ray diffractometer that has for the first time returned definitive and fully quantitative mineral identifications of Mars soil and drilled rock. I will describe CheMin's 23-year development from an idea to a spacecraft qualified instrument, and report on some of the discoveries that Curiosity has made since its entry, descent and landing on Aug. 6, 2012, including the discovery and characterization of the first habitable environment on Mars.

  2. Apollo 11 Astronaut Armstrong Arrives at the Flight Crew Training Building

    Science.gov (United States)

    1969-01-01

    In this photograph, Apollo 11 astronaut Neil Armstrong walks to the flight crew training building at the NASA Kennedy Space Center (KSC) in Florida, one week before the nation's first lunar landing mission. The Apollo 11 mission launched from KSC via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  3. Rover's Wheel Churns Up Bright Martian Soil (Vertical)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. The image is presented here as a vertical projection, as if looking straight down, and in false color, which brings out subtle color differences.

  4. The last of NASA's original pilot astronauts expanding the space frontier in the late sixties

    CERN Document Server

    Shayler, David J

    2017-01-01

    Resulting from the authors’ deep research into these two pre-Shuttle astronaut groups, many intriguing and untold stories behind the selection process are revealed in the book. The often extraordinary backgrounds and personal ambitions of these skilled pilots, chosen to continue NASA’s exploration and knowledge of the space frontier, are also examined. In April 1966 NASA selected 19 pilot astronauts whose training was specifically targeted to the Apollo lunar landing missions and the Earth-orbiting Skylab space station. Three years later, following the sudden cancellation of the USAF’s highly classified Manned Orbiting Laboratory (MOL) project, seven military astronauts were also co-opted into NASA’s space program. This book represents the final chapter by the authors in the story of American astronaut selections prior to the era of the Space Shuttle. Through personal interviews and original NASA documentation, readers will also gain a true insight into a remarkable age of space travel as it unfolded ...

  5. Mesoscale modeling of the water vapor cycle at Mawrth Vallis: a Mars2020 and ExoMars exploration rovers high-priority landing site

    Science.gov (United States)

    Pla-García, Jorge

    2017-04-01

    . During this transition, there is surface convergence into the rising branch (similar to the inter-tropical convergence zone on Earth), and dual Hadley cells with one circulation in each hemisphere. At this time, the mean surface winds flow from the high latitudes to equator in both hemispheres, providing the possibility for a direct vapor connection [5, 6]. It is likely that transient waves (e.g., storm systems) as well as boundary currents associated with planetary-scale stationary waves could advect and mix water equatorward, along the surface, in opposition to the Hadley Cell. Conclusion: We are studying whether moist air in northern spring/summer makes it to the surface of Mawrth at Ls 90, Ls 140 and Ls 180, three periods with high column abundance of water vapor at mid/high latitudes. The objective is to determine if the circulation (mean or regional) is favorable for the transport of water vapor from the north polar cap to MV where it might activate hygroscopic salts and/or chlorides [7]. Relative humidity at those different seasons is estimated to test for consistency with column abundances derived from orbit observations. If moist air makes it to MV during Ls90, 140 and/or 180, it should be a go-to site due to enhanced habitability implications. References: [1] Pla-García, J., & Rafkin, S. C., 2015: Meteorological predictions for Mars 2020 Exploration Rov-er high-priority landing sites throug MRAMS Mesoscale Modeling. In EGU General Assembly Conference Abstracts (Vol. 17, p. 12605). [2] Rafkin, S. C. R., Haberle, R. M., and T. I. Michaels, 2001: The Mars Regional Atmospheric Modeling System (MRAMS): Model description and selected simulations. Icarus, 151, 228-256. [3] Rafkin, S. C. R., M. R. V. Sta. Maria, and T. I. Michaels, 2002: Simulation of the atmospheric thermal circulation of a martian volcano using a mesoscale numerical model. Nature, 419, 697-699. [4] Jakosky, B.M., and C.B. Farmer, 1982: The seasonal and global behavior of water vapor in the Mars

  6. ATHLETE: Lunar Cargo Handling for International Lunar Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2010-01-01

    As part of the Human-Robot Systems Project within the NASA Exploration Technology Development Program, the Jet Propulsion Laboratory is developing a vehicle called ATHLETE: the All-Terrain Hex-Limbed Extra-Terrestrial Explorer. The basic idea of ATHLETE is to have six relatively small wheels on the ends of legs. The small wheels and associated drive actuators are much less massive than the larger wheels and gears needed for an "all terrain" vehicle that cannot "walk" out of extreme terrain. The mass savings for the wheels and wheel actuators is greater than the mass penalty of the legs, for a net mass savings. Starting in 2009, NASA became engaged in detailed architectural studies for international discussions with the European Space Agency (ESA), the Japanese Space Agency (JAXA), and the Canadian Space Agency (CSA) under the auspices of the International Architecture Working Group (IAWG). ATHLETE is considered in most of the campaign options considered, providing a way to offload cargo from large Altair-class landers (having a cargo deck 6+ meters above the surface) as well as offloading international landers launched on Ariane-5 or H-2 launch vehicles. These international landers would carry provisions as well as scientific instruments and/or small rovers that would be used by international astronauts as part of an international effort to explore the moon.Work described in this paper includes architectural studies in support of the international missions as well as field testing of a half-scale ATHLETE prototype performing cargo offloading from a lander mockup, along with multi-kilometer traverse, climbing over greater than 1 m rocks, tool use, etc.

  7. Mars Rover Model Celebration: Developing Inquiry Based Lesson Plans to Teach Planetary Science In Elementary And Middle School

    Science.gov (United States)

    Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.; Dominey, W.; Ramsey, J.; Konstantinidis, I.; James, J.; Sweaney, S.; Mendez, R.

    2012-12-01

    The recent NASA Mars Rover missions capture the imagination of children, as NASA missions have done for decades. The University of Houston is in the process of developing a prototype of a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model rover. The existing prototype program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students will design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. The model will be a mock-up, constructed at a minimal cost from art supplies. The students will build the models as part of a project on Mars. The students will be given design criteria for a rover and will do basic research on Mars that will determine the objectives and features of their rover. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the development of a detailed set of new 5E lesson plans to

  8. The real-time control of planetary rovers through behavior modification

    Science.gov (United States)

    Miller, David P.

    1991-01-01

    It is not yet clear of what type, and how much, intelligence is needed for a planetary rover to function semi-autonomously on a planetary surface. Current designs assume an advanced AI system that maintains a detailed map of its journeys and the surroundings, and that carefully calculates and tests every move in advance. To achieve these abilities, and because of the limitations of space-qualified electronics, the supporting rover is quite sizable, massing a large fraction of a ton, and requiring technology advances in everything from power to ground operations. An alternative approach is to use a behavior driven control scheme. Recent research has shown that many complex tasks may be achieved by programming a robot with a set of behaviors and activation or deactivating a subset of those behaviors as required by the specific situation in which the robot finds itself. Behavior control requires much less computation than is required by tradition AI planning techniques. The reduced computation requirements allows the entire rover to be scaled down as appropriate (only down-link communications and payload do not scale under these circumstances). The missions that can be handled by the real-time control and operation of a set of small, semi-autonomous, interacting, behavior-controlled planetary rovers are discussed.

  9. Rover's Wheel Churns Up Bright Martian Soil (False Color)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. The image is presented here in false color that is used to bring out subtle differences in color.

  10. Hematopoietic Stem Cell Therapy to Countermeasure Cancer in Astronauts during Exploration of Deep Space

    Science.gov (United States)

    Ohi, S.; Kindred, R. P.; Roach, A-N.; Edossa, A.; Kim, B. C.; Gonda, S. R.; Emami, K.

    2004-01-01

    Exposure to cosmic radiation can cause chromosomal mutations, which may lead to cancer in astronauts engaged in space exploration. Therefore, our goals are to develop countermeasures to prevent space-induced cancer using hematopoietic stem cell therapy (HSCT) and gene therapy. This presentation focuses on HSCT for cancer. Our previous experiments on a simulated, space-induced immuno-deficiency model (mouse hind limb unloading ) indicated that transplanted hematopoietic stem cells (HSCs) could enhance the host's immunity by effectively eliminating bacterial infection (Ohi S, et. al. J Grav Physiol 10, P63-64, 2003; Ohi S, et. al. Proceedings of the Space Technology and Applications International Forum (STAIF) . American Institute of Physics, New York, pp. 938-950, 2004). Hence, we hypothesized that the HSCs might be effective in combating cancer as well. Studies of cocultured mouse HSCs with beta-galactosidase marked rat gliosarcoma spheroids (9L/lacZ), a cancer model, indicated antagonistic interactions , resulting in destruction of the spheroids by HSCs. Trypan Blue dye-exclusion assays were consistent with the conclusion. These results show potential usehlness of HSCT for cancer. Currently, the NASA Hydrodynamic Focusing Bioreactor (HFB), a space analog tissue/cell culture system, is being used to study invasion of the gliosarcoma (GS) spheroids into mouse brain with or without co-cultured HSCs. This may simulate the metastasis of gliosarcoma to brain. There is a tendency for the HSCs to inhibit invasion of GS spheroids into brain, as evidenced by the X-gal staining.

  11. Exploration of Extreme Terrain Using a Polyhedral Rover

    Data.gov (United States)

    National Aeronautics and Space Administration — Exploring celestial bodies with extreme terrains in our solar system, like Mars, Europa, Enceladus, and asteroids, are of great importance to NASA because these...

  12. Identification of Psychological Stresses for Astronauts and Cosmonauts

    Science.gov (United States)

    Marsh, Melinda

    As humans continue to explore and expand in the solar system, psychological problems brought about by high stress of living in the space environment will continue to increase. Unfortunately, due to many reasons, including relative difficulties with gaining access to astronauts and cosmonauts and to gather psychological data from them regarding stressors, this area is not very well known and discussed. Five astronauts and cosmonauts from three space agencies: ESA, RSA, and JAXA were unoffi- cially surveyed regarding their experiences with ten general categories of psychological stressors as well as eight subcategories of interpersonal conflict stressors accepted in space related community of psychologists. The two subjects in space for longer periods of time reported more stressors and were likely to rate stressors as having a greater effect on the chance of mission failure. Shorter duration flyers reported nearly all general stressors were likely to increase in the event of a longer duration space flight. With the increased interest in long duration spaceflight, psychological stressors are more likely to affect mission success.

  13. Mars Sample Return - Launch and Detection Strategies for Orbital Rendezvous

    Science.gov (United States)

    Woolley, Ryan C.; Mattingly, Richard L.; Riedel, Joseph E.; Sturm, Erick J.

    2011-01-01

    This study sets forth conceptual mission design strategies for the ascent and rendezvous phase of the proposed NASA/ESA joint Mars Sample Return Campaign. The current notional mission architecture calls for the launch of an acquisition/cache rover in 2018, an orbiter with an Earth return vehicle in 2022, and a fetch rover and ascent vehicle in 2024. Strategies are presented to launch the sample into a coplanar orbit with the Orbiter which facilitate robust optical detection, orbit determination, and rendezvous. Repeating ground track orbits exist at 457 and 572 km which provide multiple launch opportunities with similar geometries for detection and rendezvous.

  14. Mars Sample Return: Launch and Detection Strategies for Orbital Rendezvous

    Science.gov (United States)

    Woolley, Ryan C.; Mattingly, Richard L.; Riedel, Joseph E.; Sturm, Erick J.

    2011-01-01

    This study sets forth conceptual mission design strategies for the ascent and rendezvous phase of the proposed NASA/ESA joint Mars Sample Return Campaign. The current notional mission architecture calls for the launch of an acquisition/ caching rover in 2018, an Earth return orbiter in 2022, and a fetch rover with ascent vehicle in 2024. Strategies are presented to launch the sample into a nearly coplanar orbit with the Orbiter which would facilitate robust optical detection, orbit determination, and rendezvous. Repeating ground track orbits existat 457 and 572 km which would provide multiple launch opportunities with similar geometries for detection and rendezvous.

  15. Rover's Wheel Churns Up Bright Martian Soil (Stereo)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. Multiple images taken with Spirit's panoramic camera are combined here into a stereo view that appears three-dimensional when seen through red-blue glasses, with the red lens on the left.

  16. Measuring Soil Moisture in Skeletal Soils Using a COSMOS Rover

    Science.gov (United States)

    Medina, C.; Neely, H.; Desilets, D.; Mohanty, B.; Moore, G. W.

    2017-12-01

    The presence of coarse fragments directly influences the volumetric water content of the soil. Current surface soil moisture sensors often do not account for the presence of coarse fragments, and little research has been done to calibrate these sensors under such conditions. The cosmic-ray soil moisture observation system (COSMOS) rover is a passive, non-invasive surface soil moisture sensor with a footprint greater than 100 m. Despite its potential, the COSMOS rover has yet to be validated in skeletal soils. The goal of this study was to validate measurements of surface soil moisture as taken by a COSMOS rover on a Texas skeletal soil. Data was collected for two soils, a Marfla clay loam and Chinati-Boracho-Berrend association, in West Texas. Three levels of data were collected: 1) COSMOS surveys at three different soil moistures, 2) electrical conductivity surveys within those COSMOS surveys, and 3) ground-truth measurements. Surveys with the COSMOS rover covered an 8000-h area and were taken both after large rain events (>2") and a long dry period. Within the COSMOS surveys, the EM38-MK2 was used to estimate the spatial distribution of coarse fragments in the soil around two COSMOS points. Ground truth measurements included coarse fragment mass and volume, bulk density, and water content at 3 locations within each EM38 survey. Ground-truth measurements were weighted using EM38 data, and COSMOS measurements were validated by their distance from the samples. There was a decrease in water content as the percent volume of coarse fragment increased. COSMOS estimations responded to both changes in coarse fragment percent volume and the ground-truth volumetric water content. Further research will focus on creating digital soil maps using landform data and water content estimations from the COSMOS rover.

  17. Educating Astronauts About Conservation Biology

    Science.gov (United States)

    Robinson, Julie A.

    2001-01-01

    This article reviews the training of astronauts in the interdisciplinary work of conservation biology. The primary responsibility of the conservation biologist at NASA is directing and supporting the photography of the Earth and maintaining the complete database of the photographs. In order to perform this work, the astronauts who take the pictures must be educated in ecological issues.

  18. STS-71 astronauts training in Russia

    Science.gov (United States)

    1994-01-01

    Astronauts Norman E. Thagard and Bonnie J. Dunbar in cosmonaut space suits in the Training Simulator Facility at the Gagarin Cosmonaut Training Center (Star City), near Moscow, Russia. In March 1995, astronaut Thagard is scheduled to be launched in a Russ

  19. STS-71 astronauts before egress training

    Science.gov (United States)

    1994-01-01

    Astronaut Robert L. Gibson (left), STS-71 mission commander, converses with two crew mates prior to emergency egress training in the Systems Integration Facility at JSC. Astronaut Bonnie J. Dunbar and Gregory J. Harbaugh are attired in training versions o

  20. Analysis of Solar-Heated Thermal Wadis to Support Extended-Duration Lunar Exploration

    Science.gov (United States)

    Balasubramaniam, R.; Wegeng, R. S.; Gokoglu, S. A.; Suzuki, N. H.; Sacksteder, K. R.

    2010-01-01

    The realization of the renewed exploration of the Moon presents many technical challenges; among them is the survival of lunar surface assets during periods of darkness when the lunar environment is very cold. Thermal wadis are engineered sources of stored solar energy using modified lunar regolith as a thermal storage mass that can enable the operation of lightweight robotic rovers or other assets in cold, dark environments without incurring potential mass, cost, and risk penalties associated with various onboard sources of thermal energy. Thermal wadi-assisted lunar rovers can conduct a variety of long-duration missions including exploration site surveys; teleoperated, crew-directed, or autonomous scientific expeditions; and logistics support for crewed exploration. This paper describes a thermal analysis of thermal wadi performance based on the known solar illumination of the moon and estimates of producible thermal properties of modified lunar regolith. Analysis was performed for the lunar equatorial region and for a potential Outpost location near the lunar south pole. The results are presented in some detail in the paper and indicate that thermal wadis can provide the desired thermal energy reserve, with significant margin, for the survival of rovers or other equipment during periods of darkness.

  1. Uranium exploration planning and strategy

    International Nuclear Information System (INIS)

    Smith, A.Y.; Tauchid, M.

    1991-01-01

    A country may decide to begin uranium exploration for any of the following three reasons: 1. To meet the needs of a domestic nuclear power programme; 2. To supply uranium as a commodity to the world market in order to earn foreign exchange; 3. To acquire national information on the country's mineral resource planning. In any of these cases, a country must make some basic decisions regarding the means and modes whereby the uranium exploration will be carried out - by national organizations exclusively; by state organizations in joint venture with outside interests by foreign interests under the control of national regulations. Most uranium exploration is carried out following an exploration strategy in which the programme is divided into a series of steps or stages. Each of the phases is designed to eliminate areas of low potential to contain uranium deposits, while focusing attention on areas of higher potential that will be explored in greater detail at higher cost in the subsequent phase. The methods used in each phase are selected to provide the maximum information at the minimum cost so that at the end of each phase a decision can be made whether to continue to the next phase of stop. Because uranium exploration is a high cost high risk activity, governments must make decisions at the outset whether they wish to carry our the work alone and whether they can support the costs involved, or whether they wish to attract foreign investors to help absorb the costs and therefore the risks. In either case, major policy decisions are required to be made to establish the legal and fiscal environment in which the programm will be carried out. (author). 4 refs, 4 figs

  2. Shoulder Injury Incidence Rates in NASA Astronauts

    Science.gov (United States)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Foy, Millennia; Wear, Mary L.; Van Baalen, Mary

    2014-01-01

    Evaluation of the astronaut shoulder injury rates began with an operational concern at the Neutral Buoyancy Laboratory (NBL) during Extravehicular Activity (EVA) training. An astronaut suffered a shoulder injury during an NBL training run and commented that it was possibly due to a hardware issue. During the subsequent investigation, questions arose regarding the rate of shoulder injuries in recent years and over the entire history of the astronaut corps.

  3. Astronaut Training using Virtual Reality in a Neutrally Buoyant Environment

    OpenAIRE

    Everson, Timothy; McDermott, Christopher; Kain, Aaron; Fernandez, Cesar; Horan, Ben

    2017-01-01

    Astronauts undergo significant training in preparation for operating in space. In the past governments have been driving space exploration through ventures such as the National Aeronautics and Space Administration (NASA), however more recently new private companies have formed such as SpaceX who are designing commercially viable and reusable spacecraft. As such, the economics of space travel are more important than ever, and there is a logical need to research affordable and effective trainin...

  4. A space exploration strategy that promotes international and commercial participation

    Science.gov (United States)

    Arney, Dale C.; Wilhite, Alan W.; Chai, Patrick R.; Jones, Christopher A.

    2014-01-01

    NASA has created a plan to implement the Flexible Path strategy, which utilizes a heavy lift launch vehicle to deliver crew and cargo to orbit. In this plan, NASA would develop much of the transportation architecture (launch vehicle, crew capsule, and in-space propulsion), leaving the other in-space elements open to commercial and international partnerships. This paper presents a space exploration strategy that reverses that philosophy, where commercial and international launch vehicles provide launch services. Utilizing a propellant depot to aggregate propellant on orbit, smaller launch vehicles are capable of delivering all of the mass necessary for space exploration. This strategy has benefits to the architecture in terms of cost, schedule, and reliability.

  5. Moon bound choosing and preparing NASA's lunar astronauts

    CERN Document Server

    Burgess, Colin

    2013-01-01

    Often lost in the shadow of the first group of astronauts for the Mercury missions, the second and third groups included the leading figures for NASA's activities for the following two decades. “Moon Bound” complements the author’s recently published work, “Selecting the Mercury Seven” (2011), extending the story of the men who helped to launch human spaceflight and broaden the American space program. Although the initial 1959 group became known as the legendary pioneering Mercury astronauts, the astronauts of Groups 2 and 3 gave us many household names. Sixteen astronauts from both groups traveled to the Moon in Project Apollo, with several actually walking on the Moon, one of them being Neil Armstrong. This book draws on interviews to tell the astronauts' personal stories and recreate the drama of that time. It describes the process by which they were selected as astronauts and explains how the criteria had changed since the first group. “Moon Bound” is divided into two parts, recounting the b...

  6. Pancam and microscopic imager observations of dust on the Spirit Rovers

    DEFF Research Database (Denmark)

    Vaughan....[], Alicia F.; Johnson, Jeffrey R.; Walter, Goetz

    2010-01-01

    This work describes dust deposits on the Spirit Rover over 2000 sols through examination of Pancam and Microscopic Imager observations of specific locations on the rover body, including portions of the solar array, Pancam and Mini-TES calibration targets, and the magnets. This data set reveals...... the three "cleaning events" experienced by Spirit to date, the spectral properties of dust, and the tendency of dust particles to form aggregates 100 um and larger...

  7. Low urinary albumin excretion in astronauts during space missions

    DEFF Research Database (Denmark)

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina

    2003-01-01

    BACKGROUND: Physiological changes occur in man during space missions also at the renal level. Proteinuria was hypothesized for space missions but research data are missing. METHODS: Urinary albumin, as an index of proteinuria, and other variables were analyzed in 4 astronauts during space missions...... onboard the MIR station and on the ground (control). Mission duration before first urine collection in the four astronauts was 4, 26, 26, and 106 days, respectively. On the ground, data were collected 2 months before mission in two astronauts, 6 months after in the other astronauts. A total of twenty......-two 24-hour urine collections were obtained in space (n per astronaut = 1-14) and on the ground (n per astronaut = 2-12). Urinary albumin was measured by radioimmunoassay. For each astronaut, mean of data in space and on the ground was defined as individual average. RESULTS: The individual averages of 24...

  8. Exploring recruitment strategies to hire occupational therapists.

    Science.gov (United States)

    Mulholland, Susan; Derdall, Michele

    2005-02-01

    Recruitment issues in occupational therapy have been a long-standing concern for the profession. This descriptive study explored the strategies currently being used by employers to recruit occupational therapists for employment purposes. An 18-item survey was mailed to 251 sites where occupational therapists work in Alberta and Saskatchewan. There was a 64% response rate and data from 130 surveys were analyzed. The results indicate that employers continue to rely on a wide variety of strategies for advertising and recruiting, the most prevalent being word of mouth, postings at universities, and providing student fieldwork placements. In turn, the most effective recruitment strategies were listed as word of mouth, advertising in the general media, and providing student fieldwork placements. Various examples of financial incentives offered by employers were also listed. Many participants identified recent changes in recruitment strategies such as making a move towards web site job postings. PRACTICE IMPLICATIONS. The results suggest strategies for employers to target for recruiting occupational therapists and illustrate to both employers and students the importance of fieldwork in recruitment and hiring.

  9. Comparing Exploration Strategies for Q-learning in Random Stochastic Mazes

    NARCIS (Netherlands)

    Tijsma, Arryon; Drugan, Madalina; Wiering, Marco

    2016-01-01

    Balancing the ratio between exploration and exploitation is an important problem in reinforcement learning. This paper evaluates four different exploration strategies combined with Q-learning using random stochastic mazes to investigate their performances. We will compare: UCB-1, softmax,

  10. An update on Lab Rover: A hospital material transporter

    Science.gov (United States)

    Mattaboni, Paul

    1994-01-01

    The development of a hospital material transporter, 'Lab Rover', is described. Conventional material transport now utilizes people power, push carts, pneumatic tubes and tracked vehicles. Hospitals are faced with enormous pressure to reduce operating costs. Cyberotics, Inc. developed an Autonomous Intelligent Vehicle (AIV). This battery operated service robot was designed specifically for health care institutions. Applications for the AIV include distribution of clinical lab samples, pharmacy drugs, administrative records, x-ray distribution, meal tray delivery, and certain emergency room applications. The first AIV was installed at Lahey Clinic in Burlington, Mass. Lab Rover was beta tested for one year and has been 'on line' for an additional 2 years.

  11. The Preparation for and Execution of Engineering Operations for the Mars Curiosity Rover Mission

    Science.gov (United States)

    Samuels, Jessica A.

    2013-01-01

    The Mars Science Laboratory Curiosity Rover mission is the most complex and scientifically packed rover that has ever been operated on the surface of Mars. The preparation leading up to the surface mission involved various tests, contingency planning and integration of plans between various teams and scientists for determining how operation of the spacecraft (s/c) would be facilitated. In addition, a focused set of initial set of health checks needed to be defined and created in order to ensure successful operation of rover subsystems before embarking on a two year science journey. This paper will define the role and responsibilities of the Engineering Operations team, the process involved in preparing the team for rover surface operations, the predefined engineering activities performed during the early portion of the mission, and the evaluation process used for initial and day to day spacecraft operational assessment.

  12. Exploring Business Strategy in Health Information Exchange Organizations.

    Science.gov (United States)

    Langabeer, James R; Champagne, Tiffany

    2016-01-01

    Unlike consumer goods industries, healthcare has been slow to implement technolo gies that support exchange of data in patients' health records. This results in avoid able medication errors, avoidable hospital readmissions, unnecessary duplicate testing, and other inefficient or wasteful practices. Community-based regional health information exchange (HIE) organizations have evolved in response to federal aims to encourage interoperability, yet little is known about their strategic approach. We use the lens of institutional and strategic management theories to empirically explore the differences in business strategies deployed in HIEs that are, to date, financially sustainable versus those that are not. We developed a 20-question survey targeted to CEOs to assess HIE business strategies. Our sample consisted of 60 community-based exchanges distributed throughout the United States, and we achieved a 58% response rate. Questions centered on competitive strategy and financial sustainability. We relied on logistic regression methods to explore relationships between variables. Our regression identified characteristics common to sustainable organizations. We defined sustainability as revenues exceeding operational costs. Seventeen of the 35 organizations (49%) defined themselves as currently sustainable. Focus and cost leadership strategies were significantly associated with sustainability. Growth strate gies, which were much more common than other strategies, were not associated with sustainability. We saw little evidence of a differentiation strategy (i.e., the basis of competition whereby the attributes of a product or service are unmatched by rivals). Most CEOs had a relatively optimistic outlook, with 60% stating they were confident of surviving over the next 5 years; however, nearly 9% of the organizations were in some phase of divestiture or exit from the market. HIEs are evolving differently based on local leadership decisions, yet their strategic approach is

  13. National Aeronautics and Space Administration Exploration Systems Interim Strategy

    Science.gov (United States)

    2004-01-01

    Contents include the following: 1. The Exploration Systems Mission Directorate within NASA. Enabling the Vision for Space Exploration. The Role of the Directorate. 2. Strategic Context and Approach. Corporate Focus. Focused, Prioritized Requirements. Spiral Transformation. Management Rigor. 3. Achieving Directorate Objectives. Strategy to Task Process. Capability Development. Research and Technology Development. 4. Beyond the Horizon. Appendices.

  14. Hybrid Force Control Based on ICMAC for an Astronaut Rehabilitative Training Robot

    Directory of Open Access Journals (Sweden)

    Lixun Zhang

    2012-08-01

    Full Text Available A novel Astronaut Rehabilitative Training Robot (ART based on a cable-driven mechanism is represented in this paper. ART, a typical passive force servo system, can help astronauts to bench press in a microgravity environment. The purpose of this paper is to design controllers to eliminate the surplus force caused by an astronaut's active movements. Based on the dynamics modelling of the cable-driven unit, a hybrid force controller based on improved credit assignment CMAC (ICMAC is presented. A planning method for the cable tension is proposed so that the dynamic load produced by the ART can realistically simulate the gravity and inertial force of the barbell in a gravity environment. Finally, MATLAB simulation results of the man-machine cooperation system are provided in order to verify the effectiveness of the proposed control strategy. The simulation results show that the hybrid control method based on the structure invariance principle can inhibit the surplus force and that ICMAC can improve the dynamic performance of the passive force servo system. Furthermore, the hybrid force controller based on ICMAC can ensure the stability of the system.

  15. Digital Astronaut Photography: A Discovery Dataset for Archaeology

    Science.gov (United States)

    Stefanov, William L.

    2010-01-01

    Astronaut photography acquired from the International Space Station (ISS) using commercial off-the-shelf cameras offers a freely-accessible source for high to very high resolution (4-20 m/pixel) visible-wavelength digital data of Earth. Since ISS Expedition 1 in 2000, over 373,000 images of the Earth-Moon system (including land surface, ocean, atmospheric, and lunar images) have been added to the Gateway to Astronaut Photography of Earth online database (http://eol.jsc.nasa.gov ). Handheld astronaut photographs vary in look angle, time of acquisition, solar illumination, and spatial resolution. These attributes of digital astronaut photography result from a unique combination of ISS orbital dynamics, mission operations, camera systems, and the individual skills of the astronaut. The variable nature of astronaut photography makes the dataset uniquely useful for archaeological applications in comparison with more traditional nadir-viewing multispectral datasets acquired from unmanned orbital platforms. For example, surface features such as trenches, walls, ruins, urban patterns, and vegetation clearing and regrowth patterns may be accentuated by low sun angles and oblique viewing conditions (Fig. 1). High spatial resolution digital astronaut photographs can also be used with sophisticated land cover classification and spatial analysis approaches like Object Based Image Analysis, increasing the potential for use in archaeological characterization of landscapes and specific sites.

  16. Is autonomic modulation different between European and Chinese astronauts?

    Science.gov (United States)

    Liu, Jiexin; Li, Yongzhi; Verheyden, Bart; Chen, Shanguang; Chen, Zhanghuang; Gai, Yuqing; Liu, Jianzhong; Gao, Jianyi; Xie, Qiong; Yuan, Ming; Li, Qin; Li, Li; Aubert, André E

    2015-01-01

    The objective was to investigate autonomic control in groups of European and Chinese astronauts and to identify similarities and differences. Beat-to-beat heart rate and finger blood pressure, brachial blood pressure, and respiratory frequency were measured from 10 astronauts (five European taking part in three different space missions and five Chinese astronauts taking part in two different space missions). Data recording was performed in the supine and standing positions at least 10 days before launch, and 1, 3, and 10 days after return. Cross-correlation analysis of heart rate and systolic pressure was used to assess cardiac baroreflex modulation. A fixed breathing protocol was performed to measure respiratory sinus arrhythmia and low-frequency power of systolic blood pressure variability. Although baseline cardiovascular parameters before spaceflight were similar in all astronauts in the supine position, a significant increase in sympathetic activity and a decrease in vagal modulation occurred in the European astronauts when standing; spaceflight resulted in a remarkable vagal decrease in European astronauts only. Similar baseline supine and standing values for heart rate, mean arterial pressure, and respiratory frequency were shown in both groups. Standing autonomic control was based on a balance of higher vagal and sympathetic modulation in European astronauts. Post-spaceflight orthostatic tachycardia was observed in all European astronauts, whereas post-spaceflight orthostatic tachycardia was significantly reduced in Chinese astronauts. The basis for orthostatic intolerance is not apparent; however, many possibilities can be considered and need to be further investigated, such as genetic diversities between races, astronaut selection, training, and nutrition, etc.

  17. Is autonomic modulation different between European and Chinese astronauts?

    Directory of Open Access Journals (Sweden)

    Jiexin Liu

    Full Text Available The objective was to investigate autonomic control in groups of European and Chinese astronauts and to identify similarities and differences.Beat-to-beat heart rate and finger blood pressure, brachial blood pressure, and respiratory frequency were measured from 10 astronauts (five European taking part in three different space missions and five Chinese astronauts taking part in two different space missions. Data recording was performed in the supine and standing positions at least 10 days before launch, and 1, 3, and 10 days after return. Cross-correlation analysis of heart rate and systolic pressure was used to assess cardiac baroreflex modulation. A fixed breathing protocol was performed to measure respiratory sinus arrhythmia and low-frequency power of systolic blood pressure variability.Although baseline cardiovascular parameters before spaceflight were similar in all astronauts in the supine position, a significant increase in sympathetic activity and a decrease in vagal modulation occurred in the European astronauts when standing; spaceflight resulted in a remarkable vagal decrease in European astronauts only. Similar baseline supine and standing values for heart rate, mean arterial pressure, and respiratory frequency were shown in both groups. Standing autonomic control was based on a balance of higher vagal and sympathetic modulation in European astronauts.Post-spaceflight orthostatic tachycardia was observed in all European astronauts, whereas post-spaceflight orthostatic tachycardia was significantly reduced in Chinese astronauts. The basis for orthostatic intolerance is not apparent; however, many possibilities can be considered and need to be further investigated, such as genetic diversities between races, astronaut selection, training, and nutrition, etc.

  18. Astronaut Neil A. Armstrong Undergoes Communications Systems Final Check

    Science.gov (United States)

    1969-01-01

    Dunned in his space suit, mission commander Neil A. Armstrong does a final check of his communications system before before the boarding of the Apollo 11 mission. Launched via a Saturn V launch vehicle, the first manned lunar mission launched from the Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The 3-man crew aboard the flight consisted of astronauts Armstrong; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) Pilot. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. Meanwhile, astronaut Collins piloted the CM in a parking orbit around the Moon. During a 2½ hour surface exploration, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  19. Scientific field training for human planetary exploration

    Science.gov (United States)

    Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.

    2010-05-01

    Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved

  20. Development of the science instrument CLUPI: the close-up imager on board the ExoMars rover

    Science.gov (United States)

    Josset, J.-L.; Beauvivre, S.; Cessa, V.; Martin, P.

    2017-11-01

    First mission of the Aurora Exploration Programme of ESA, ExoMars will demonstrate key flight and in situ enabling technologies, and will pursue fundamental scientific investigations. Planned for launch in 2013, ExoMars will send a robotic rover to the surface of Mars. The Close-UP Imager (CLUPI) instrument is part of the Pasteur Payload of the rover fixed on the robotic arm. It is a robotic replacement of one of the most useful instruments of the field geologist: the hand lens. Imaging of surfaces of rocks, soils and wind drift deposits at high resolution is crucial for the understanding of the geological context of any site where the Pasteur rover may be active on Mars. At the resolution provided by CLUPI (approx. 15 micrometer/pixel), rocks show a plethora of surface and internal structures, to name just a few: crystals in igneous rocks, sedimentary structures such as bedding, fracture mineralization, secondary minerals, details of the surface morphology, sedimentary bedding, sediment components, surface marks in sediments, soil particles. It is conceivable that even textures resulting from ancient biological activity can be visualized, such as fine lamination due to microbial mats (stromatolites) and textures resulting from colonies of filamentous microbes, potentially present in sediments and in palaeocavitites in any rock type. CLUPI is a complete imaging system, consisting of an APS (Active Pixel Sensor) camera with 27° FOV optics. The sensor is sensitive to light between 400 and 900 nm with 12 bits digitization. The fixed focus optics provides well focused images of 4 cm x 2.4 cm rock area at a distance of about 10 cm. This challenging camera system, less than 200g, is an independent scientific instrument linked to the rover on board computer via a SpaceWire interface. After the science goals and specifications presentation, the development of this complex high performance miniaturized imaging system will be described.

  1. Cancer Risk in Astronauts: A Constellation of Uncommon Consequences

    Science.gov (United States)

    Milder, Caitlin M.; Elgart, S. Robin; Chappell, Lori; Charvat, Jaqueline M.; Van Baalen, Mary; Huff, Janice L.; Semones, Edward J.

    2017-01-01

    Excess cancers resulting from external radiation exposures have been noted since the early 1950s, when a rise in leukemia rates was first reported in young atomic bomb survivors [1]. Further studies in atomic bomb survivors, cancer patients treated with radiotherapy, and nuclear power plant workers have confirmed that radiation exposure increases the risk of not only leukemia, but also a wide array of solid cancers [2,3]. NASA has long been aware of this risk and limits astronauts' risk of exposure-induced death (REID) from cancer by specifying permissible mission durations (PMD) for astronauts on an individual basis. While cancer is present among astronauts, current data does not suggest any excess of known radiation-induced cancers relative to a comparable population of U.S. adults; however, very uncommon cancers have been diagnosed in astronauts including nasopharyngeal cancer, lymphoma of the brain, and acral myxoinflammatory fibroblastic sarcoma. In order to study cancer risk in astronauts, a number of obstacles must be overcome. Firstly, several factors make the astronaut cohort considerably different from the cohorts that have previously been studied for effects resulting from radiation exposure. The high rate of accidents and the much healthier lifestyle of astronauts compared to the U.S. population make finding a suitable comparison population a problematic task. Space radiation differs substantially from terrestrial radiation exposures studied in the past; therefore, analyses of galactic cosmic radiation (GCR) in animal models must be conducted and correctly applied to the human experience. Secondly, a large enough population of exposed astronauts must exist in order to obtain the data necessary to see any potential statistically significant differences between the astronauts and the control population. Thirdly, confounders and effect modifiers, such as smoking, diet, and other space stressors, must be correctly identified and controlled for in those

  2. Fast Optical Hazard Detection for Planetary Rovers Using Multiple Spot Laser Triangulation

    Science.gov (United States)

    Matthies, L.; Balch, T.; Wilcox, B.

    1997-01-01

    A new laser-based optical sensor system that provides hazard detection for planetary rovers is presented. It is anticipated that the sensor can support safe travel at speeds up to 6cm/second for large (1m) rovers in full sunlight on Earth or Mars. The system overcomes limitations in an older design that require image differencing ot detect a laser stripe in full sun.

  3. Medically induced amenorrhea in female astronauts.

    Science.gov (United States)

    Jain, Varsha; Wotring, Virginia E

    2016-01-01

    Medically induced amenorrhea can be achieved through alterations in the normal regulatory hormones via the adoption of a therapeutic agent, which prevents menstrual flow. Spaceflight-related advantages for medically induced amenorrhea differ according to the time point in the astronaut's training schedule. Pregnancy is contraindicated for many pre-flight training activities as well as spaceflight, therefore effective contraception is essential. In addition, the practicalities of menstruating during pre-flight training or spaceflight can be challenging. During long-duration missions, female astronauts have often continuously taken the combined oral contraceptive pill to induce amenorrhea. Long-acting reversible contraceptives (LARCs) are safe and reliable methods used to medically induce amenorrhea terrestrially but as of yet, not extensively used by female astronauts. If LARCs were used, daily compliance with an oral pill is not required and no upmass or trash would need disposal. Military studies have shown that high proportions of female personnel desire amenorrhea during deployment; better education has been recommended at recruitment to improve uptake and autonomous decision-making. Astronauts are exposed to similar austere conditions as military personnel and parallels can be drawn with these results. Offering female astronauts up-to-date, evidence-based, comprehensive education, in view of the environment in which they work, would empower them to make informed decisions regarding menstrual suppression while respecting their autonomy.

  4. Rim Structure, Stratigraphy, and Aqueous Alteration Exposures Along Opportunity Rover's Traverse of the Noachian Endeavour Crater

    Science.gov (United States)

    Crumpler, L.S.; Arvidson, R. E.; Golombek, M.; Grant, J. A.; Jolliff, B. L.; Mittlefehldt, D. W.

    2017-01-01

    The Mars Exploration Rover Opportunity has traversed 10.2 kilometers along segments of the west rim of the 22-kilometer-diameter Noachian Endeavour impact crater as of sol 4608 (01/09/17). The stratigraphy, attitude of units, lithology, and degradation state of bedrock outcrops exposed on the crater rim have been examined in situ and placed in geologic context. Structures within the rim and differences in physical properties of the identified lithologies have played important roles in localizing outcrops bearing evidence of aqueous alteration.

  5. A vision system for a Mars rover

    Science.gov (United States)

    Wilcox, Brian H.; Gennery, Donald B.; Mishkin, Andrew H.; Cooper, Brian K.; Lawton, Teri B.; Lay, N. Keith; Katzmann, Steven P.

    1988-01-01

    A Mars rover must be able to sense its local environment with sufficient resolution and accuracy to avoid local obstacles and hazards while moving a significant distance each day. Power efficiency and reliability are extremely important considerations, making stereo correlation an attractive method of range sensing compared to laser scanning, if the computational load and correspondence errors can be handled. Techniques for treatment of these problems, including the use of more than two cameras to reduce correspondence errors and possibly to limit the computational burden of stereo processing, have been tested at JPL. Once a reliable range map is obtained, it must be transformed to a plan view and compared to a stored terrain database, in order to refine the estimated position of the rover and to improve the database. The slope and roughness of each terrain region are computed, which form the basis for a traversability map allowing local path planning. Ongoing research and field testing of such a system is described.

  6. Not all coping strategies are created equal: a mixed methods study exploring physicians' self reported coping strategies

    Directory of Open Access Journals (Sweden)

    Wallace Jean E

    2010-07-01

    Full Text Available Abstract Background Physicians experience workplace stress and draw on different coping strategies. The primary goal of this paper is to use interview data to explore physicians' self reported coping strategies. In addition, questionnaire data is utilized to explore the degree to which the coping strategies are used and are associated with feelings of emotional exhaustion, a key symptom of burnout. Methods This mixed methods study explores factors related to physician wellness within a large health region in Western Canada. This paper focuses on the coping strategies that physicians use in response to work-related stress. The qualitative component explores physicians' self reported coping strategies through open ended interviews of 42 physicians representing diverse medical specialties and settings (91% response rate. The major themes extracted from the qualitative interviews were used to construct 12 survey items that were included in the comprehensive quantitative questionnaire. Questionnaires were sent to all eligible physicians in the health region with 1178 completed surveys (40% response rate. Questionnaire items were used to measure how often physicians draw on the various coping strategies. Feelings of burnout were also measured in the survey by 5 items from the Emotional Exhaustion subscale of the revised Maslach Burnout Inventory. Results Major themes identified from the interviews include coping strategies used at work (e.g., working through stress, talking with co-workers, taking a time out, using humor and after work (e.g., exercise, quiet time, spending time with family. Analysis of the questionnaire data showed three often used workplace coping strategies were positively correlated with feeling emotionally exhausted (i.e., keeping stress to oneself (r = .23, concentrating on what to do next (r = .16, and going on as if nothing happened (r = .07. Some less often used workplace coping strategies (e.g., taking a time out and all

  7. The Application of Leap Motion in Astronaut Virtual Training

    Science.gov (United States)

    Qingchao, Xie; Jiangang, Chao

    2017-03-01

    With the development of computer vision, virtual reality has been applied in astronaut virtual training. As an advanced optic equipment to track hand, Leap Motion can provide precise and fluid tracking of hands. Leap Motion is suitable to be used as gesture input device in astronaut virtual training. This paper built an astronaut virtual training based Leap Motion, and established the mathematics model of hands occlusion. At last the ability of Leap Motion to handle occlusion was analysed. A virtual assembly simulation platform was developed for astronaut training, and occlusion gesture would influence the recognition process. The experimental result can guide astronaut virtual training.

  8. Multiphoton tomography of astronauts

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Pietruszka, Anna; Bückle, Rainer; Gerlach, Nicole; Heinrich, Ulrike

    2015-03-01

    Weightlessness may impair the astronaut's health conditions. Skin impairments belong to the most frequent health problems during space missions. Within the Skin B project, skin physiological changes during long duration space flights are currently investigated on three European astronauts that work for nearly half a year at the ISS. Measurements on the hydration, the transepidermal water loss, the surface structure, elasticity and the tissue density by ultrasound are conducted. Furthermore, high-resolution in vivo histology is performed by multiphoton tomography with 300 nm spatial and 200 ps temporal resolution. The mobile certified medical tomograph with a flexible 360° scan head attached to a mechano-optical arm is employed to measure two-photon autofluorescence and SHG in the volar forearm of the astronauts. Modification of the tissue architecture and of the fluorescent biomolecules NAD(P)H, keratin, melanin and elastin are detected as well as of SHG-active collagen. Thinning of the vital epidermis, a decrease of the autofluoresence intensity, an increase in the long fluorescence lifetime, and a reduced skin ageing index SAAID based on an increased collagen level in the upper dermis have been found. Current studies focus on recovery effects.

  9. Data Processing and Primary results of Lunar Penetrating Radar on Board the Chinese Yutu Rover

    Science.gov (United States)

    Su, Yan; Xing, Shuguo; Feng, Jianqing; Dai, Shun; Ding, Chunyu; Xiao, Yuan; Zhang, Hongbo; Zhao, Shu; Xue, Xiping; Zhang, Xiaoxia; Liu, Bin; Yao, Meijuan; Li, Chunlai

    2015-04-01

    Radar is an attractive and powerful technique to observe the Moon. Radar mapping of the Moon's topography was first done by the Arecibo telescope at a wave- length of 70 cm in 1964 (Thompson & Dyce 1966). Chang'e-3 (CE-3) was successfully launched on 2013 December 2, and the landing place is in Mare Imbrium, about 40km south of the 6km diameter Laplace F crater, at 44.1214ON, 19.5116OW. The Lunar ground-Penetrating Radar (LPR) is one of scientific payloads of the Yutu rover, aiming to achieve the first direct measurements and explore the lunar subsurface structure. Compared with ALSE and LRS, LPR works at higher frequencies of 60 MHz and 500 MHz. Thus it can probe regions with shallower depth including the regolith and lunar crust at higher range resolution. The LPR uses one transmitting and one receiving dipole antenna for 60 MHz which are installed at the back of the rover. For 500 MHz, one transmitting and two bow-tie receiving antennas are attached to the bottom of the rover. It transmits a pulsed signal and receives the radar echo signal along the path that the Yutu rover traverses. The free space range resolutions are ~ 50 cm and ~ 25 m for 60 MHz and 500 MHz respectively. The radar data stop being sampled and are sent back to Earth when Yutu is stationary. Observations are simultaneously carried out at frequencies of 60 MHz and 500 MHz. Since the Yutu rover had severe problems during its second lunar day, it is pity that the Yutu rover only transversed a limited distance of 114.8m. In total, 566 MB of data were obtained. The scientific data are archived and distributed by National Astronomical Observatories, Chinese Academy of Sciences. Data processing has been done in order to eliminate the effect of the instrument. To obtain clear radar images, more data processing need to be applied such as coordinate transformation, data editing, background removal, the operations of smoothing and gain resetting. The radar signal could detect hundreds of meters deep at

  10. Exploring Metacognitive Strategies and Hypermedia Annotations on Foreign Language Reading

    Science.gov (United States)

    Shang, Hui-Fang

    2017-01-01

    The effective use of reading strategies has been recognized as an important way to increase reading comprehension in hypermedia environments. The purpose of the study was to explore whether metacognitive strategy use and access to hypermedia annotations facilitated reading comprehension based on English as a foreign language students' proficiency…

  11. Space Shuttle Underside Astronaut Communications Performance Evaluation

    Science.gov (United States)

    Hwu, Shian U.; Dobbins, Justin A.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

    2005-01-01

    The Space Shuttle Ultra High Frequency (UHF) communications system is planned to provide Radio Frequency (RF) coverage for astronauts working underside of the Space Shuttle Orbiter (SSO) for thermal tile inspection and repairing. This study is to assess the Space Shuttle UHF communication performance for astronauts in the shadow region without line-of-sight (LOS) to the Space Shuttle and Space Station UHF antennas. To insure the RF coverage performance at anticipated astronaut worksites, the link margin between the UHF antennas and Extravehicular Activity (EVA) Astronauts with significant vehicle structure blockage was analyzed. A series of near-field measurements were performed using the NASA/JSC Anechoic Chamber Antenna test facilities. Computational investigations were also performed using the electromagnetic modeling techniques. The computer simulation tool based on the Geometrical Theory of Diffraction (GTD) was used to compute the signal strengths. The signal strength was obtained by computing the reflected and diffracted fields along the propagation paths between the transmitting and receiving antennas. Based on the results obtained in this study, RF coverage for UHF communication links was determined for the anticipated astronaut worksite in the shadow region underneath the Space Shuttle.

  12. Astronautics degrees for the space industry

    Science.gov (United States)

    Gruntman, M.; Brodsky, R. F.; Erwin, D. A.; Kunc, J. A.

    2004-01-01

    The Astronautics Program (http://astronautics.usc.edu) of the University of Southern California (USC) offers a full set of undergraduate and graduate degree programs in Aerospace Engineering with emphasis in Astronautics. The Bachelor of Science and Master of Science degree programs in Astronautics combine basic science and engineering classes with specialized classes in space technology. The Certificate in Astronautics targets practicing engineers and scientists who enter space-related fields and/or who want to obtain training in specific space-related areas. Many specialized graduate classes are taught by adjunct faculty working at the leading space companies. The Master of Science degree and Certificate are available entirely through the USC Distance Education Network (DEN). Today, the Internet allows us to reach students anywhere in the world through webcasting. The majority of our graduate students, as well as those pursuing the Certificate, work full time as engineers in the space industry and government research and development centers while earning their degrees. The new world of distance learning presents new challenges and opens new opportunities. Distance learning, and particularly the introduction of webcasting, transform the organization of the graduate program and class delivery. We describe in detail the program's academic focus, student reach, and structure of program components. Program development is illustrated by the student enrollment dynamics and related industrial trends; the lessons learned emphasize the importance of feedback from the students and from the space industry.

  13. Cardiovascular Disease Outcomes Among the NASA Astronaut Corps

    Science.gov (United States)

    Charvat, Jacqueline M.; Lee, Stuart M. C.; Wear, Mary L.; Stenger, Michael B.; Van Baalen, Mary

    2018-01-01

    BACKGROUND: Acute effects of spaceflight on the cardiovascular system have been studied extensively, but the combined chronic effects of spaceflight and aging are not well understood. Preparation for and participation in spaceflight activities are associated with changes in the cardiovascular system such as decreased carotid artery distensibility and decreased ventricular mass which may lead to an increased risk of cardiovascular disease. Additionally, astronauts who travel into space multiple times or for longer durations may be at an increased risk across their lifespan. To that end, the purpose of this study was to determine the incidence of common cardiovascular disease (CVD) outcomes among the NASA astronaut corps during their active career and through retirement. METHODS: Cardiovascular disease outcomes were defined as reports of any of the following: myocardial infarction (MI), revascularization procedures (coronary artery bypass graft surgery [CABG] or percutaneous coronary intervention [PCI]), hypertension, stroke or transient ischemic attack [TIA], heart failure, or total CVD (as defined by the AHA - combined outcome of MI, Angina Pectoris, heart failure, stroke, and hypertension). Each outcome was identified individually from review of NASA's Electronic Medical Record (EMR), EKG reports, and death certificates using ICD-9 codes as well as string searches of physician notes of astronaut exams that occurred between 1959 and 2016. RESULTS: Of 338 NASA astronauts selected as of 2016, 9 reported an MI, 12 reported a revascularization procedure, (7 PCI and 5 CABG), 4 reported Angina (without MI), 5 reported heart failure, 9 reported stroke/TIA, and 96 reported hypertension. Total CVD was reported in 105 astronauts. No astronaut who had an MI or revascularization procedure flew a spaceflight mission following the event. All MI, revascularization, and stroke events occurred in male astronauts. When reviewing astronaut ECG reports, abnormal ECG reports were found

  14. Inhalation Toxicity of Ground Lunar Dust Prepared from Apollo-14 Soil

    Science.gov (United States)

    James, John T.; Lam, Chiu-wing; Scully, Robert R.; Cooper, Bonnie L.

    2011-01-01

    Within the decade one or more space-faring nations intend to return humans to the moon for more in depth exploration of the lunar surface and subsurface than was conducted during the Apollo days. The lunar surface is blanketed with fine dust, much of it in the respirable size range (<10 micron). Eventually, there is likely to be a habitable base and rovers available to reach distant targets for sample acquisition. Despite designs that could minimize the entry of dust into habitats and rovers, it is reasonable to expect lunar dust to pollute both as operations progress. Apollo astronauts were exposed briefly to dust at nuisance levels, but stays of up to 6 months on the lunar surface are envisioned. Will repeated episodic exposures to lunar dust present a health hazard to those engaged in lunar exploration? Using rats exposed to lunar dust by nose-only inhalation, we set out to investigate that question.

  15. Engineering America's Current and Future Space Transportation Systems: 50 Years of Systems Engineering Innovation for Sustainable Exploration

    Science.gov (United States)

    Dmbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul

    2008-01-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States' (U.S.) capability for both crew and heavy cargo to low-Earth orbit to' construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle (Figure 1). The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion Crew Exploration Vehicle, while the heavy-lift Ares V will carry the Altair Lunar Lander and the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level test activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural integrity and to validate computer modeling and simulation (Figure 2), as well as the main propulsion test article analysis to be conducted in the Static Test Stand. These activities also will help prove and refine mission concepts of operation, while supporting the spectrum of design and development work being performed by Marshall's Engineering Directorate, ranging from launch vehicles and lunar rovers to scientific spacecraft and associated experiments

  16. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover

    International Nuclear Information System (INIS)

    Sobrado, J. M.; Martín-Soler, J.; Martín-Gago, J. A.

    2015-01-01

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration

  17. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover

    Energy Technology Data Exchange (ETDEWEB)

    Sobrado, J. M., E-mail: sobradovj@inta.es; Martín-Soler, J. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Martín-Gago, J. A. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Instituto de Ciencias de Materiales de Madrid (ICMM–CSIC), Cantoblanco, 28049 Madrid (Spain)

    2015-10-15

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration.

  18. Exploring Mars for Evidence of Habitable Environments and Life

    Science.gov (United States)

    DesMarais, David J.

    2014-01-01

    The climate of Mars has been more similar to that of Earth than has the climate of any other planet in our Solar System. But Mars still provides a valuable alternative example of how planetary processes and environments can affect the potential presence of life elsewhere. For example, although Mars also differentiated very early into a core, mantle and crust, it then evolved mostly if not completely without plate tectonics and has lost most of its early atmosphere. The Martian crust has been more stable than that of Earth, thus it has probably preserved a more complete record of its earliest history. Orbital observations determined that near-surface water was once pervasive. Orbiters have identified the following diverse aqueous sedimentary deposits: layered phyllosilicates, phyllosilicates in intracrater fans, plains sediments potentially harboring evaporitic minerals, deep phyllosilicates, carbonate-bearing deposits, intracrater clay-sulfate deposits, Meridiani-type layered deposits, valles-type layered deposits, hydrated silica-bearing deposits, and gypsum plains. These features, together with evidence of more vigorous past geologic activity, indicate that early climates were wetter and perhaps also somewhat warmer. The denser atmosphere that was required for liquid water to be stable on the surface also provided more substantial protection from radiation. Whereas ancient climates might have favored habitable environments at least in some localities, clearly much of the Martian surface for most of its history has been markedly less favorable for life. The combination of dry conditions, oxidizing surface environments and typically low rates of sedimentation are not conducive to the preservation of evidence of ancient environments and any biota. Thus a strategy is required whereby candidate sites are first identified and then characterized for their potential to preserve evidence of past habitable environments. Rovers are then sent to explore the most promising

  19. Radiation hazards to astronauts

    International Nuclear Information System (INIS)

    Bergmann, R.; Hajek, M.; Berger, T.; Reitz, G.; Bilski, P.; Puchalska, M.

    2009-01-01

    Reliable assessment of health risks to astronaut crews is pivotal in the design of future expeditions into interplanetary space and requires knowledge of absorbed radiation doses at the level of critical radiosensitive organs and tissues. Within the European MATROSHKA experiment, the dose profile in an anthropomorphic phantom body was investigated at intra- and extravehicular activities on the International Space Station. The effective scientific exploitation of obtained dosimetric data is ensured within the 7 th EU Framework Programme project HAMLET. Based on experimental data and radiation transport calculations, a three-dimensional model for the distribution of radiation dose in an astronaut's body shall be developed to further refine estimations of radiation risks on interplanetary long-term missions. (orig.)

  20. Astronaut Neil Armstrong during thermovacuum training

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, commander of the Apollo 11 lunar landing mission, is photographed during thermovacuum training in Chamber B of the Space Environment Simulation Laboratory, Building 32, Manned Spacecraft Center. He is wearing an Extravehicular Mobility Unit. The training simulated lunar surface vacuum and thermal conditions during astronaut operations outside the Lunar Module on the moon's surface. The mirror was used to reflect solar light.

  1. Japanese lunar robotics exploration by co-operation with lander and ...

    Indian Academy of Sciences (India)

    A lunar rover is expected to travel safely in a wide area and explore in detail. Japanese ... is proposed. The working group has been conducting feasibility study of advance technologies. .... CPUs are dedicated to the function of environment.

  2. Apollo 11 Astronaut Neil Armstrong Performs Ladder Practice

    Science.gov (United States)

    1969-01-01

    In preparation of the nation's first Lunar landing mission, Apollo 11 crew members underwent training activities to practice activities they would be performing during the mission. In this photograph, Neil Armstrong, donned in his space suit, practices getting back to the first rung of the ladder on the Lunar Module (LM). The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  3. Apollo 11 Astronaut Neil Armstrong Approaches Practice Helicopter

    Science.gov (United States)

    1969-01-01

    In preparation of the nation's first lunar landing mission, Apollo 11, crew members underwent training to practice activities they would be performing during the mission. In this photograph Neil Armstrong approaches the helicopter he flew to practice landing the Lunar Module (LM) on the Moon. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished

  4. Official portrait of astronaut Stephen S. Oswald

    Science.gov (United States)

    1992-01-01

    Official portrait of astronaut Stephen S. Oswald. Oswald, a member of Astronaut Class 11, wears launch and entry suit (LES) with launch and entry helmet (LEH) positioned at his side. In the background is the United States (U.S.) flag and a space shuttle orbiter model.

  5. Development of Disk Rover, wall-climbing robot using permanent magnet disk

    International Nuclear Information System (INIS)

    Hirose, Shigeo; Tsutsumitake; Hiroshi; Toyama, Ryousei; Kobayashi, Kengo.

    1992-01-01

    A new type of wall climbing robot, named Disk Rover, using permanent magnet disks are developed. The newly introduced permanent magnet disk is to rotate the magnet disk on the surface of wall with partly contacted posture. It allows to produce high magnetic attraction force compared with conventional permanent wheel which utilizes only a small portion of the magnet installed around the wheel. The optimum design of the magnetic wheel is done by using finit element method and it is shown that the magnetic attraction force vs. weight ratio can be designed about three times higher than conventional type magnet wheel. The developed Disk Rover is 25 kg in weight including controller and battery, about 685 mm in diameter, 239 mm in height and has a pair of permanent magnet disks. It is demonstrated by the experiments that the Disk Rover can move around on the surface of the wall quite smoothly by radio control and has payload of about its own weight. Several considerations are also done in order to surmount bead weld. (author)

  6. Mars Rover Curriculum: Teacher Self Reporting of Increased Frequency and Confidence in their Science and Language Arts Instruction

    Science.gov (United States)

    Bering, E. A.; Carlson, C.; Nieser, K.; Slagle, E.

    2013-12-01

    The University of Houston is in the process of developing a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model Mars rover. The program is called the Mars Rover Model Celebration (MRC). It focuses on students, teachers and parents in grades 3-8. Students design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. A total of 65 Mars Rover teachers from the 2012-2013 cohort were invited to complete the Mars Rover Teacher Evaluation Survey. The survey was administered online and could be taken at the convenience of the participant. In total, 29 teachers participated in the survey. Teachers were asked to rate their current level of confidence in their ability to teach specific topics within the Earth and Life Science realms, as well as their confidence in their ability to implement teaching strategies with their students. In addition, they were asked to rate the degree to which they felt their confidence increased in the past year as a result of their participation in the MRC program. The majority of teachers (81-90%) felt somewhat to very confident in their ability to effectively teach concepts related to earth and life sciences to their students. In addition, many of the teachers felt that their confidence in teaching these concepts increased somewhat to quite a bit as a result of their participation in the MRC program (54-88%). The most striking increase in this area was the reported 48% of teachers who felt their confidence in teaching 'Earth and the solar system and universe' increased 'Quite a bit' as a result of their participation in the MRC program. The vast majority of teachers (86-100%) felt somewhat to very confident in their ability to effectively implement all of the listed teaching strategies. In addition, the vast majority reported believing that their confidence increased somewhat to quite a bit as a result of their

  7. The Curiosity Mars Rover's Fault Protection Engine

    Science.gov (United States)

    Benowitz, Ed

    2014-01-01

    The Curiosity Rover, currently operating on Mars, contains flight software onboard to autonomously handle aspects of system fault protection. Over 1000 monitors and 39 responses are present in the flight software. Orchestrating these behaviors is the flight software's fault protection engine. In this paper, we discuss the engine's design, responsibilities, and present some lessons learned for future missions.

  8. EAC trains its first international astronaut class.

    Science.gov (United States)

    Bolender, Hans; Bessone, Loredana; Schoen, Andreas; Stevenin, Herve

    2002-11-01

    After several years of planning and preparation, ESA's ISS training programme has become operational. Between 26 August and 6 September, the European Astronaut Centre (EAC) near Cologne gave the first ESA advanced training course for an international ISS astronaut class. The ten astronauts who took part--two from NASA, four from Japan and four from ESA--had begun their advanced training programme back in 2001 with sessions at the Johnson Space Center (JSC) in Houston and at the Japanese Training Centre in Tsukuba. During their stay in Cologne, the ten astronauts participated in a total of 33 classroom lessons and hands-on training sessions, which gave them a detailed overview of the systems and subsystems of the Columbus module, the Automated Transfer Vehicle (ATV), and the related crew operations tasks. They were also introduced to the four ESA experiment facilities to be operated inside the Columbus module. After their first week of training at EAC, the astronauts were given the opportunity to see the flight model of the Columbus module being integrated at the site of ESA's ISS prime contractor, Astrium in Bremen. The second week of training at EAC included hands-on instruction on the Columbus Data Management System (DMS) using the recently installed Columbus Crew Training Facility. In preparation for the first advanced crew training session at EAC, two Training Readiness Reviews (TRR) were conducted there in June and August. These reviews were supported by training experts and astronauts from NASA, NASDA and CSA (Canada), who were introduced to ESA's advanced training concept and the development process, and then analysed and evaluated the training flow, content and instructional soundness of lessons and courses, as well as the fidelity of the training facilities and the skills of the ESA training instructors. The International Training Control Board (ITCB), made up of representatives from all of the ISS International Partners and mandated to control and

  9. COMPARISON OF CLASSICAL AND INTERACTIVE MULTI-ROBOT EXPLORATION STRATEGIES IN POPULATED ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Nassim Kalde

    2015-06-01

    Full Text Available Multi-robot exploration consists in coordinating robots for mapping an unknown environment. It raises several issues concerning task allocation, robot control, path planning and communication. We study exploration in populated environments, in which pedestrian flows can severely impact performances. However, humans have adaptive skills for taking advantage of these flows while moving. Therefore, in order to exploit these human abilities, we propose a novel exploration strategy that explicitly allows for human-robot interactions. Our model for exploration in populated environments combines the classical frontier-based strategy with our interactive approach. We implement interactions where robots can locally choose a human guide to follow and define a parametric heuristic to balance interaction and frontier assignments. Finally, we evaluate to which extent human presence impacts our exploration model in terms of coverage ratio, travelled distance and elapsed time to completion.

  10. Measuring planetary field parameters by scattered "SSSS" from the Husar-5 Rover

    Science.gov (United States)

    Lang, A.; Kocsis, A.; Balaskó, D.; Csóka, B.; Molnar, B.; Sztojka, A.; Bejó, M.; Joób, Z.

    2017-09-01

    HUSAR-5 Rover reloaded: 2 years ago the Hunveyor-Husar Team in our school made yet a similar project. The ground idea was, we try to keep step with the main trends in the space research, in our recent case with the so called MSSM (Micro Sized Space- Mothership) and NPSDR (Nano, Pico Space Devices and Robots). [1]Of course, we do not want to scatter the smaller probe-cubes from a mothership, but from the Husar rover, and to do it on the planetary surface after landing. We have fabricated the rover with the ejecting tower and we have shown it on the EPSC 2015.The word "reloaded" means not only a new shape of the bullets, but a new mission with a new team. There are more pupils working in this project. The new bullets "SSSS" will be printed by a 3D printer.The microcontroller in bullets can be programmed with Arduino, so the "new generation" is able to do it.

  11. a Performance Comparison of Feature Detectors for Planetary Rover Mapping and Localization

    Science.gov (United States)

    Wan, W.; Peng, M.; Xing, Y.; Wang, Y.; Liu, Z.; Di, K.; Teng, B.; Mao, X.; Zhao, Q.; Xin, X.; Jia, M.

    2017-07-01

    Feature detection and matching are key techniques in computer vision and robotics, and have been successfully implemented in many fields. So far there is no performance comparison of feature detectors and matching methods for planetary mapping and rover localization using rover stereo images. In this research, we present a comprehensive evaluation and comparison of six feature detectors, including Moravec, Förstner, Harris, FAST, SIFT and SURF, aiming for optimal implementation of feature-based matching in planetary surface environment. To facilitate quantitative analysis, a series of evaluation criteria, including distribution evenness of matched points, coverage of detected points, and feature matching accuracy, are developed in the research. In order to perform exhaustive evaluation, stereo images, simulated under different baseline, pitch angle, and interval of adjacent rover locations, are taken as experimental data source. The comparison results show that SIFT offers the best overall performance, especially it is less sensitive to changes of image taken at adjacent locations.

  12. A PERFORMANCE COMPARISON OF FEATURE DETECTORS FOR PLANETARY ROVER MAPPING AND LOCALIZATION

    Directory of Open Access Journals (Sweden)

    W. Wan

    2017-07-01

    Full Text Available Feature detection and matching are key techniques in computer vision and robotics, and have been successfully implemented in many fields. So far there is no performance comparison of feature detectors and matching methods for planetary mapping and rover localization using rover stereo images. In this research, we present a comprehensive evaluation and comparison of six feature detectors, including Moravec, Förstner, Harris, FAST, SIFT and SURF, aiming for optimal implementation of feature-based matching in planetary surface environment. To facilitate quantitative analysis, a series of evaluation criteria, including distribution evenness of matched points, coverage of detected points, and feature matching accuracy, are developed in the research. In order to perform exhaustive evaluation, stereo images, simulated under different baseline, pitch angle, and interval of adjacent rover locations, are taken as experimental data source. The comparison results show that SIFT offers the best overall performance, especially it is less sensitive to changes of image taken at adjacent locations.

  13. Low-latency Science Exploration of Planetary Bodies: a Demonstration Using ISS in Support of Mars Human Exploration

    Science.gov (United States)

    Thronson, Harley A.; Valinia, Azita; Bleacher, Jacob; Eigenbrode, Jennifer; Garvin, Jim; Petro, Noah

    2014-01-01

    We summarize a proposed experiment to use the International Space Station to formally examine the application and validation of low-latency telepresence for surface exploration from space as an alternative, precursor, or potentially as an adjunct to astronaut "boots on the ground." The approach is to develop and propose controlled experiments, which build upon previous field studies and which will assess the effects of different latencies (0 to 500 msec), task complexity, and alternate forms of feedback to the operator. These experiments serve as an example of a pathfinder for NASA's roadmap of missions to Mars with low-latency telerobotic exploration as a precursor to astronaut's landing on the surface to conduct geological tasks.

  14. Strategy for the Explorer program for solar and space physics

    International Nuclear Information System (INIS)

    1984-01-01

    Contents include: executive summary; the Explorer program - background and current status; strategy - level of activity; solar-terrestrial research (solar physics, space plasma physics, and upper atmospheric physics)

  15. Members of House Committee on Science and Astronautics Visited MSFC

    Science.gov (United States)

    1962-01-01

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather first-hand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Marned Space Flight. Headed by Representative Olin E. Teague of Texas, other members were James G. Fulton, Pennsylvania; Ken Heckler, West Virginia; R. Walter Riehlman, New York; Richard L. Roudebush,, Indiana; John W. Davis, Georgia; James C. Corman, California; Joseph Waggoner, Louisiana; J. Edgar Chenoweth, Colorado; and William G. Bray, Indiana.

  16. Robotic vehicles for planetary exploration

    Science.gov (United States)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    1992-01-01

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  17. Radiation monitoring system for astronauts

    International Nuclear Information System (INIS)

    Thomson, I.; MacKay, G.; Ng, A.; Tomi, L.

    1996-01-01

    Astronauts in space are constantly under the bombardment of radiation particles from trapped electrons, and trapped proton. In addition, cosmic rays, while penetrating the spacecraft shell, generate secondary radiation of neutrons. As astronauts' stay in space is getting longer, the need for a real-time radiation monitoring device has become critical. Thermoluminescent dosemeter (TLD), used onboard both the MIR and the Space Transportation System (STS), cannot provide real-time dose reading. This paper describes a real-time direct read-out device, currently under development, which can measure skin, eye, and Blood Forming Organ (BFO) doses separately. (author)

  18. An Update on Mortality in the U.S. Astronaut Corps: 1959-2009

    Science.gov (United States)

    Amirian, E.; Clark, April; Halm, Melissa; Hartnett, Heather

    2009-01-01

    Although it has now been over 50 years since mankind first ventured into space, the long-term health impacts of human space flight remain largely unknown. Identifying factors that affect survival and prognosis among those who participate in space flight is vitally important, as the era of commercial space flight approaches and NASA prepares for missions to Mars. The Longitudinal Study of Astronaut Health is a prospective study designed to examine trends in astronaut morbidity and mortality. The purpose of this analysis was to describe and explore predictors of overall and cause-specific mortality among individuals selected for the U.S. astronaut corps. All U.S. astronauts (n=321), regardless of flight status, were included in this analysis. Death certificate searches were conducted to ascertain vital status and cause of death through April 2009. Data were collected from medical records and lifestyle questionnaires. Multivariable Cox regression modeling was used to calculate the mortality hazard associated with embarking on space flight, adjusted for sex, race, and age at selection. Between 1959 and 2009, there were 39 (12.1%) deaths. Of these deaths, 18 (42.2%) were due to occupational accidents; 7 (17.9%) were due to other accidents; 6 (15.4%) were attributable to cancer; 6 (15.4%) resulted from cardiovascular/circulatory diseases; and 2 (5.1%) were from other causes. Participation in space flight did not significantly increase mortality hazard over time (adjusted hazard ratio=0.57; 95% confidence interval=0.26-1.26. Because our results are based on a small sample size, future research that includes payload specialists, other space flight participants, and international crew members is warranted to maximize statistical power.

  19. Interaction Challenges in Human-Robot Space Exploration

    Science.gov (United States)

    Fong, Terrence; Nourbakhsh, Illah

    2005-01-01

    In January 2004, NASA established a new, long-term exploration program to fulfill the President's Vision for U.S. Space Exploration. The primary goal of this program is to establish a sustained human presence in space, beginning with robotic missions to the Moon in 2008, followed by extended human expeditions to the Moon as early as 2015. In addition, the program places significant emphasis on the development of joint human-robot systems. A key difference from previous exploration efforts is that future space exploration activities must be sustainable over the long-term. Experience with the space station has shown that cost pressures will keep astronaut teams small. Consequently, care must be taken to extend the effectiveness of these astronauts well beyond their individual human capacity. Thus, in order to reduce human workload, costs, and fatigue-driven error and risk, intelligent robots will have to be an integral part of mission design.

  20. Automation and Robotics for space operation and planetary exploration

    Science.gov (United States)

    Montemerlo, Melvin D.

    1990-01-01

    This paper presents a perspective of Automation and Robotics (A&R) research and developments at NASA in terms of its history, its current status, and its future. It covers artificial intelligence, telerobotics and planetary rovers, and it encompasses ground operations, operations in earth orbit, and planetary exploration.

  1. Regional Scale Modelling for Exploring Energy Strategies for Africa

    International Nuclear Information System (INIS)

    Welsch, M.

    2015-01-01

    KTH Royal Institute of Technology was founded in 1827 and it is the largest technical university in Sweden with five campuses and Around 15,000 students. KTH-dESA combines an outstanding knowledge in the field of energy systems analysis. This is demonstrated by the successful collaborations with many (UN) organizations. Regional Scale Modelling for Exploring Energy Strategies for Africa include Assessing renewable energy potentials; Analysing investment strategies; ) Assessing climate resilience; Comparing electrification options; Providing web-based decision support; and Quantifying energy access. It is conclude that Strategies required to ensure a robust and flexible energy system (-> no-regret choices); Capacity investments should be in line with national & regional strategies; Climate change important to consider, as it may strongly influence the energy flows in a region; Long-term models can help identify robust energy investment strategies and pathways that Can help assess future markets and profitability of individual projects

  2. STS-71 astronauts and cosmonauts during egress training

    Science.gov (United States)

    1994-01-01

    Astronaut Robert L. Gibson (arms folded, near center) STS-71 mission commander, joins several crew mates during a briefing preceding emergency egress training in the Systems Integration Facility at JSC. Astronauts Bonnie J. Dunbar and Gregory J. Harbaugh

  3. Reflectance conversion methods for the VIS/NIR imaging spectrometer aboard the Chang'E-3 lunar rover: based on ground validation experiment data

    International Nuclear Information System (INIS)

    Liu Bin; Liu Jian-Zhong; Zhang Guang-Liang; Zou Yong-Liao; Ling Zong-Cheng; Zhang Jiang; He Zhi-Ping; Yang Ben-Yong

    2013-01-01

    The second phase of the Chang'E Program (also named Chang'E-3) has the goal to land and perform in-situ detection on the lunar surface. A VIS/NIR imaging spectrometer (VNIS) will be carried on the Chang'E-3 lunar rover to detect the distribution of lunar minerals and resources. VNIS is the first mission in history to perform in-situ spectral measurement on the surface of the Moon, the reflectance data of which are fundamental for interpretation of lunar composition, whose quality would greatly affect the accuracy of lunar element and mineral determination. Until now, in-situ detection by imaging spectrometers was only performed by rovers on Mars. We firstly review reflectance conversion methods for rovers on Mars (Viking landers, Pathfinder and Mars Exploration rovers, etc). Secondly, we discuss whether these conversion methods used on Mars can be applied to lunar in-situ detection. We also applied data from a laboratory bidirectional reflectance distribution function (BRDF) using simulated lunar soil to test the availability of this method. Finally, we modify reflectance conversion methods used on Mars by considering differences between environments on the Moon and Mars and apply the methods to experimental data obtained from the ground validation of VNIS. These results were obtained by comparing reflectance data from the VNIS measured in the laboratory with those from a standard spectrometer obtained at the same time and under the same observing conditions. The shape and amplitude of the spectrum fits well, and the spectral uncertainty parameters for most samples are within 8%, except for the ilmenite sample which has a low albedo. In conclusion, our reflectance conversion method is suitable for lunar in-situ detection.

  4. Infrared Spectrometer for ExoMars: A Mast-Mounted Instrument for the Rover

    Science.gov (United States)

    Korablev, Oleg I.; Dobrolensky, Yurii; Evdokimova, Nadezhda; Fedorova, Anna A.; Kuzmin, Ruslan O.; Mantsevich, Sergei N.; Cloutis, Edward A.; Carter, John; Poulet, Francois; Flahaut, Jessica; Griffiths, Andrew; Gunn, Matthew; Schmitz, Nicole; Martín-Torres, Javier; Zorzano, Maria-Paz; Rodionov, Daniil S.; Vago, Jorge L.; Stepanov, Alexander V.; Titov, Andrei Yu.; Vyazovetsky, Nikita A.; Trokhimovskiy, Alexander Yu.; Sapgir, Alexander G.; Kalinnikov, Yurii K.; Ivanov, Yurii S.; Shapkin, Alexei A.; Ivanov, Andrei Yu.

    2017-07-01

    ISEM (Infrared Spectrometer for ExoMars) is a pencil-beam infrared spectrometer that will measure reflected solar radiation in the near infrared range for context assessment of the surface mineralogy in the vicinity of the ExoMars rover. The instrument will be accommodated on the mast of the rover and will be operated together with the panoramic camera (PanCam), high-resolution camera (HRC). ISEM will study the mineralogical and petrographic composition of the martian surface in the vicinity of the rover, and in combination with the other remote sensing instruments, it will aid in the selection of potential targets for close-up investigations and drilling sites. Of particular scientific interest are water-bearing minerals, such as phyllosilicates, sulfates, carbonates, and minerals indicative of astrobiological potential, such as borates, nitrates, and ammonium-bearing minerals. The instrument has an ˜1° field of view and covers the spectral range between 1.15 and 3.30 μm with a spectral resolution varying from 3.3 nm at 1.15 μm to 28 nm at 3.30 μm. The ISEM optical head is mounted on the mast, and its electronics box is located inside the rover's body. The spectrometer uses an acousto-optic tunable filter and a Peltier-cooled InAs detector. The mass of ISEM is 1.74 kg, including the electronics and harness. The science objectives of the experiment, the instrument design, and operational scenarios are described.

  5. Implementing a Science-driven Mars Exploration Program

    Science.gov (United States)

    Garvin, J. B.

    2001-12-01

    NASA's newly restructured Mars Exploration Program (MEP) was developed on the basis of the goals, objectives, investigations, and prioritizations established by the Mars Exploration Payload Analysis Group (as summarized previously by Greeley et al., 2001). The underlying scientific strategy is linked to common threads which include the many roles water has played on and within Mars as a "system". The implementation strategy that has been adopted relies heavily on an ever-sharpening program of reconnaissance, beginning with the legacy of the Mars Global Surveyor, continuing with the multispectral and compositional observations of the Mars Odyssey orbiter, and extending to a first step in surface-based reconnaissance with the 2003 Mars Exploration Rovers. The results of MGS and Odyssey will serve to focus the trade space of localities where the record, for example, of persistent surface water may have been preserved in a mineralogical sense. The 2005 Mars Reconnaissance Orbiter will further downselect the subset of sites on Mars where evidence of depositional patterns and aqueous mineralogies (i.e., diagenetic minerals) are most striking at scales as fine as tens to hundreds of meters. Reconnaissance will move to the surface and shallow subsurface in 2007 with the Mars "Smart Lander" (MSL), at which time an extensive array of mobile scientific exploration tools will be used to examine a locality at 10km traverse scales, ultimately asking scientific questions which can be classed as paleobiological (i.e., life inference). Further orbital reconnaissance may be undertaken in 2009, perhaps involving targeted multi-wavelength SAR imaging, in anticipation of a precisely targeted Mars Sample Return mission as early as 2011. This sequence of core program MEP missions will be amplified by the selection of PI-led SCOUT missions, starting in 2007, and continuing every other Mars launch opportunity.

  6. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit

    Science.gov (United States)

    Chancellor, Jeffery C.; Scott, Graham B. I.; Sutton, Jeffrey P.

    2014-01-01

    Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS) decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO). Shielding is an effective countermeasure against solar particle events (SPEs), but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR) nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other “omics” areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts. PMID:25370382

  7. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit

    Directory of Open Access Journals (Sweden)

    Jeffery C. Chancellor

    2014-09-01

    Full Text Available Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO. Shielding is an effective countermeasure against solar particle events (SPEs, but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other “omics” areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts.

  8. Screening and Management of Asymptomatic Renal Stones in Astronauts

    Science.gov (United States)

    Reyes, David; Locke, James; Sargsyan, Ashot; Garcia, Kathleen

    2017-01-01

    Management guidelines were created to screen and manage asymptomatic renal stones in U.S. astronauts. The true risk for renal stone formation in astronauts due to the space flight environment is unknown. Proper management of this condition is crucial to mitigate health and mission risks. The NASA Flight Medicine Clinic electronic medical record and the Lifetime Surveillance of Astronaut Health databases were reviewed. An extensive review of the literature and current aeromedical standards for the monitoring and management of renal stones was also done. This work was used to develop a screening and management protocol for renal stones in astronauts that is relevant to the spaceflight operational environment. In the proposed guidelines all astronauts receive a yearly screening and post-flight renal ultrasound using a novel ultrasound protocol. The ultrasound protocol uses a combination of factors, including: size, position, shadow, twinkle and dispersion properties to confirm the presence of a renal calcification. For mission-assigned astronauts, any positive ultrasound study is followed by a low-dose renal computed tomography scan and urologic consult. Other specific guidelines were also created. A small asymptomatic renal stone within the renal collecting system may become symptomatic at any time, and therefore affect launch and flight schedules, or cause incapacitation during a mission. Astronauts in need of definitive care can be evacuated from the International Space Station, but for deep space missions evacuation is impossible. The new screening and management algorithm has been implemented and the initial round of screening ultrasounds is under way. Data from these exams will better define the incidence of renal stones in U.S. astronauts, and will be used to inform risk mitigation for both short and long duration spaceflights.

  9. Methodology for astronaut reconditioning research.

    Science.gov (United States)

    Beard, David J; Cook, Jonathan A

    2017-01-01

    Space medicine offers some unique challenges, especially in terms of research methodology. A specific challenge for astronaut reconditioning involves identification of what aspects of terrestrial research methodology hold and which require modification. This paper reviews this area and presents appropriate solutions where possible. It is concluded that spaceflight rehabilitation research should remain question/problem driven and is broadly similar to the terrestrial equivalent on small populations, such as rare diseases and various sports. Astronauts and Medical Operations personnel should be involved at all levels to ensure feasibility of research protocols. There is room for creative and hybrid methodology but careful systematic observation is likely to be more achievable and fruitful than complex trial based comparisons. Multi-space agency collaboration will be critical to pool data from small groups of astronauts with the accepted use of standardised outcome measures across all agencies. Systematic reviews will be an essential component. Most limitations relate to the inherent small sample size available for human spaceflight research. Early adoption of a co-operative model for spaceflight rehabilitation research is therefore advised. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Advanced biosensors for monitoring astronauts' health during long-duration space missions.

    Science.gov (United States)

    Roda, Aldo; Mirasoli, Mara; Guardigli, Massimo; Zangheri, Martina; Caliceti, Cristiana; Calabria, Donato; Simoni, Patrizia

    2018-07-15

    Long-duration space missions pose important health concerns for astronauts, especially regarding the adverse effects of microgravity and exposure to high-energy cosmic rays. The long-term maintenance of crew health and performance mainly relies on prevention, early diagnoses, condition management, and medical interventions in situ. In-flight biosensor diagnostic devices and medical procedures must use few resources and operate in a microgravity environment, which complicates the collection and management of biological samples. Moreover, the biosensors must be certified for in-flight operation according to strict design and safety regulations. Herein, we report on the state of the art and recent advances in biosensing diagnostic instrumentation for monitoring astronauts' health during long-duration space missions, including portable and wearable biosensors. We discuss perspectives on new-format biosensors in autonomous space clinics. We also describe our own work in developing biosensing devices for non-invasively diagnosing space-related diseases, and how they are used in long-duration missions. Finally, we discuss the benefits of space exploration for Earth-based medicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Psychological training of German science astronauts.

    Science.gov (United States)

    Manzey, D; Schiewe, A

    1992-07-01

    Although the significance of psychosocial issues of manned space flights has been discussed very often in recent literature, up to now, very few attempts have been made in North-America or Europe to provide astronaut candidates or spacecrew members with some kind of psychological training. As a first attempt in this field, a psychological training program for science astronauts is described, which has been developed by the German Aerospace Research Establishment and performed as part of the mission-independent biomedical training of the German astronauts' team. In contrast to other training concepts, this training program focused not only on skills needed to cope with psychosocial issues regarding long-term stays in space, but also on skills needed to cope with the different demands during the long pre-mission phase. Topics covered in the training were "Communication and Cooperation", "Stress-Management", "Coping with Operational Demands", "Effective Problem Solving in Groups", and "Problem-Oriented Team Supervision".

  12. Effects of Spaceflight on Astronaut Brain Structure as Indicated on MRI.

    Science.gov (United States)

    Roberts, Donna R; Albrecht, Moritz H; Collins, Heather R; Asemani, Davud; Chatterjee, A Rano; Spampinato, M Vittoria; Zhu, Xun; Chimowitz, Marc I; Antonucci, Michael U

    2017-11-02

    There is limited information regarding the effects of spaceflight on the anatomical configuration of the brain and on cerebrospinal fluid (CSF) spaces. We used magnetic resonance imaging (MRI) to compare images of 18 astronauts' brains before and after missions of long duration, involving stays on the International Space Station, and of 16 astronauts' brains before and after missions of short duration, involving participation in the Space Shuttle Program. Images were interpreted by readers who were unaware of the flight duration. We also generated paired preflight and postflight MRI cine clips derived from high-resolution, three-dimensional imaging of 12 astronauts after long-duration flights and from 6 astronauts after short-duration flights in order to assess the extent of narrowing of CSF spaces and the displacement of brain structures. We also compared preflight ventricular volumes with postflight ventricular volumes by means of an automated analysis of T 1 -weighted MRIs. The main prespecified analyses focused on the change in the volume of the central sulcus, the change in the volume of CSF spaces at the vertex, and vertical displacement of the brain. Narrowing of the central sulcus occurred in 17 of 18 astronauts after long-duration flights (mean flight time, 164.8 days) and in 3 of 16 astronauts after short-duration flights (mean flight time, 13.6 days) (P<0.001). Cine clips from a subgroup of astronauts showed an upward shift of the brain after all long-duration flights (12 astronauts) but not after short-duration flights (6 astronauts) and narrowing of CSF spaces at the vertex after all long-duration flights (12 astronauts) and in 1 of 6 astronauts after short-duration flights. Three astronauts in the long-duration group had optic-disk edema, and all 3 had narrowing of the central sulcus. A cine clip was available for 1 of these 3 astronauts, and the cine clip showed upward shift of the brain. Narrowing of the central sulcus, upward shift of the brain

  13. Autonomous navigation and mobility for a planetary rover

    Science.gov (United States)

    Miller, David P.; Mishkin, Andrew H.; Lambert, Kenneth E.; Bickler, Donald; Bernard, Douglas E.

    1989-01-01

    This paper presents an overview of the onboard subsystems that will be used in guiding a planetary rover. Particular emphasis is placed on the planning and sensing systems and their associated costs, particularly in computation. Issues that will be used in evaluating trades between the navigation system and mobility system are also presented.

  14. NASA Curiosity rover hits organic pay dirt on Mars

    Science.gov (United States)

    Voosen, Paul

    2018-06-01

    Since NASA's Curiosity rover landed on Mars in 2012, it has sifted samples of soil and ground-up rock for signs of organic molecules—the complex carbon chains that on Earth form the building blocks of life. Past detections have been so faint that they could be just contamination. Now, samples taken from two different drill sites on an ancient lakebed have yielded complex organic macromolecules that look strikingly similar to kerogen, the goopy fossilized building blocks of oil and gas on Earth. At a few dozen parts per million, the detected levels are 100 times higher than previous finds, but scientists still cannot say whether they have origins in biology or geology. The discovery positions scientists to begin searching for direct evidence of past life on Mars and bolsters the case for returning rock samples from the planet, an effort that begins with the Mars 2020 rover.

  15. Chromatographic, Spectroscopic and Mass Spectrometric Approaches for Exploring the Habitability of Mars in 2012 and Beyond with the Curiosity Rover

    Science.gov (United States)

    Mahaffy, Paul

    2012-01-01

    The Sample Analysis at Mars (SAM) suite of instruments on the Curiosity Rover of Mars Science Laboratory Mission is designed to provide chemical and isotopic analysis of organic and inorganic volatiles for both atmospheric and solid samples. The goals of the science investigation enabled by the gas chromatograph mass spectrometer and tunable laser spectrometer instruments of SAM are to work together with the other MSL investigations is to quantitatively assess habitability through a series of chemical and geological measurements. We describe the multi-column gas chromatograph system employed on SAM and the approach to extraction and analysis of organic compounds that might be preserved in ancient martian rocks.

  16. A New Capability for Automated Target Selection and Sampling for use with Remote Sensing Instruments on the MER Rovers

    Science.gov (United States)

    Castano, R.; Estlin, T.; Anderson, R. C.; Gaines, D.; Bornstein, B.; de Granville, C.; Tang, B.; Thompson, D.; Judd, M.

    2008-12-01

    The Onboard Autonomous Science Investigation System (OASIS) evaluates geologic data gathered by a planetary rover. The system is designed to operate onboard a rover identifying and reacting to serendipitous science opportunities, such as rocks with novel properties. OASIS operates by analyzing data the rover gathers, and then using machine learning techniques, prioritizing the data based on criteria set by the science team. This prioritization can be used to organize data for transmission back to Earth and it can be used to search for specific targets it has been told to find by the science team. If one of these targets is found, it is identified as a new science opportunity and a "science alert" is sent to a planning and scheduling system. After reviewing the rover's current operational status to ensure that it has enough resources to complete its traverse and act on the new science opportunity, OASIS can change the command sequence of the rover in order to obtain additional science measurements. Currently, OASIS is being applied on a new front. OASIS is providing a new rover mission technology that enables targeted remote-sensing science in an automated fashion during or after rover traverses. Currently, targets for remote sensing instruments, especially narrow field-of-view instruments (such as the MER Mini- TES spectrometer or the 2009 MSL ChemCam spectrometer) must be selected manually based on imagery already on the ground with the operations team. OASIS will enable the rover flight software to analyze imagery onboard in order to autonomously select and sequence targeted remote-sensing observations in an opportunistic fashion. We are in the process of scheduling an onboard MER experiment to demonstrate the OASIS capability in early 2009.

  17. MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION

    Directory of Open Access Journals (Sweden)

    J. Dong

    2017-07-01

    Full Text Available An orbiter and a descent module will be delivered to Mars in the Chinese first Mars exploration mission. The descent module is composed of a landing platform and a rover. The module will be released into the atmosphere by the orbiter and make a controlled landing on Martian surface. After landing, the rover will egress from the platform to start its science mission. The rover payloads mainly include the subsurface radar, terrain camera, multispectral camera, magnetometer, anemometer to achieve the scientific investigation of the terrain, soil characteristics, material composition, magnetic field, atmosphere, etc. The landing process is divided into three phases (entry phase, parachute descent phase and powered descent phase, which are full of risks. There exit lots of indefinite parameters and design constrain to affect the selection of the landing sites and phase switch (mortaring the parachute, separating the heat shield and cutting off the parachute. A number of new technologies (disk-gap-band parachute, guidance and navigation, etc. need to be developed. Mars and Earth have gravity and atmosphere conditions that are significantly different from one another. Meaningful environmental conditions cannot be recreated terrestrially on earth. A full-scale flight validation on earth is difficult. Therefore the end-to-end simulation and some critical subsystem test must be considered instead. The challenges above and the corresponding design solutions are introduced in this paper, which can provide reference for the Mars exploration mission.

  18. Undergraduate Astronautics at the United States Naval Academy.

    Science.gov (United States)

    Bagaria, William J.

    1991-01-01

    The aerospace engineering curriculum at the U.S. Naval Academy which includes an astronautical and an aeronautical track is described. The objective of the program is to give students the necessary astronautical engineering background to perform a preliminary spacecraft design during the last semester of the program. (KR)

  19. Determination of the Risk of Radiation-Associated Circulatory and Cancer Disease Mortality in a NASA Early Astronaut Cohort

    Science.gov (United States)

    Elgart, S. R.; Chappell, L.; Milder, C. M.; Shavers, M. R.; Huff, J. L.; Little, M.; Patel, Z. S.

    2017-01-01

    radiation exposure effects on mortality in NASA astronauts. In addition to a comprehensive longitudinal study of NASA astronauts, a research strategy of low dose epidemiology data integration with cell and animal studies should be utilized for space radiation risk assessment in the astronauts.

  20. 78 FR 19742 - Centennial Challenges: 2014 Night Rover Challenge

    Science.gov (United States)

    2013-04-02

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-032] Centennial Challenges: 2014 Night... Centennial Challenges 2014 Night Rover Challenge. SUMMARY: This notice is issued in accordance with 51 U.S.C.... Centennial Challenges is a program of prize competitions to stimulate innovation in technologies of interest...

  1. Epstein-Barr virus shedding by astronauts during space flight

    Science.gov (United States)

    Pierson, D. L.; Stowe, R. P.; Phillips, T. M.; Lugg, D. J.; Mehta, S. K.

    2005-01-01

    Patterns of Epstein-Barr virus (EBV) reactivation in 32 astronauts and 18 healthy age-matched control subjects were characterized by quantifying EBV shedding. Saliva samples were collected from astronauts before, during, and after 10 space shuttle missions of 5-14 days duration. At one time point or another, EBV was detected in saliva from each of the astronauts. Of 1398 saliva specimens from 32 astronauts, polymerase chain reaction analysis showed that 314 (23%) were positive for EBV DNA. Examination by flight phase showed that 29% of the saliva specimens collected from 28 astronauts before flight were positive for EBV DNA, as were 16% of those collected from 25 astronauts during flight and 16% of those collected after flight from 23 astronauts. The mean number of EBV copies from samples taken during the flights was 417 per mL, significantly greater (p<.05) than the number of viral copies from the preflight (40) and postflight (44) phases. In contrast, the control subjects shed EBV DNA with a frequency of 3.7% and mean number of EBV copies of 40 per mL of saliva. Ten days before flight and on landing day, titers of antibody to EBV viral capsid antigen were significantly (p<.05) greater than baseline levels. On landing day, urinary levels of cortisol and catecholamines were greater than their preflight values. In a limited study (n=5), plasma levels of substance P and other neuropeptides were also greater on landing day. Increases in the number of viral copies and in the amount of EBV-specific antibody were consistent with EBV reactivation before, during, and after space flight.

  2. Titan LEAF: A Sky Rover Granting Targeted Access to Titan's Lakes and Plains

    Science.gov (United States)

    Ross, Floyd; Lee, Greg; Sokol, Daniel; Goldman, Benjamin; Bolisay, Linden

    2016-10-01

    Northrop Grumman, in collaboration with L'Garde Inc. and Global Aerospace Corporation (GAC), has been developing the Titan Lifting Entry Atmospheric Flight (T-LEAF) sky rover to roam the atmosphere and observe at close quarters the lakes and plains of Titan. T-LEAF also supports surface exploration and science by providing precision delivery of in situ instruments to the surface.T-LEAF is a maneuverable, buoyant air vehicle. Its aerodynamic shape provides its maneuverability, and its internal helium envelope reduces propulsion power requirements and also the risk of crashing. Because of these features, T-LEAF is not restricted to following prevailing wind patterns. This freedom of mobility allows it be commanded to follow the shorelines of Titan's methane lakes, for example, or to target very specific surface locations.T-LEAF utilizes a variable power propulsion system, from high power at ~200W to low power at ~50W. High power mode uses the propellers and control surfaces for additional mobility and maneuverability. It also allows the vehicle to hover over specific locations for long duration surface observations. Low power mode utilizes GAC's Titan Winged Aerobot (TWA) concept, currently being developed with NASA funding, which achieves guided flight without the use of propellers or control surfaces. Although slower than high powered flight, this mode grants increased power to science instruments while still maintaining control over direction of travel.Additionally, T-LEAF is its own entry vehicle, with its leading edges protected by flexible thermal protection system (f-TPS) materials already being tested by NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) group. This f-TPS technology allows T-LEAF to inflate in space, like HIAD, and then enter the atmosphere fully deployed. This approach accommodates entry velocities from as low as ~1.8 km/s if entering from Titan orbit, up to ~6 km/s if entering directly from Saturn orbit, like the Huygens probe

  3. Electrical power technology for robotic planetary rovers

    Science.gov (United States)

    Bankston, C. P.; Shirbacheh, M.; Bents, D. J.; Bozek, J. M.

    1993-01-01

    Power technologies which will enable a range of robotic rover vehicle missions by the end of the 1990s and beyond are discussed. The electrical power system is the most critical system for reliability and life, since all other on board functions (mobility, navigation, command and data, communications, and the scientific payload instruments) require electrical power. The following are discussed: power generation, energy storage, power management and distribution, and thermal management.

  4. Autonomous Warplanes: NASA Rovers Lead the Way

    Science.gov (United States)

    2016-04-01

    Warplanes NASA Rovers Lead the Way Michael R. Schroer Major, Air National Guard Wright Flyer No. 54 Air University Press Air Force Research Institute...between most airports across the continent proved an excellent further education in aviation. Piloting a business jet on a weeklong, 11- hop trek across...Research con- ducted by the National Aeronautics and Space Administration ( NASA ) offers useful lessons for the development of future military RPAs

  5. Astronaut Stephen Oswald and fellow crew members on middeck

    Science.gov (United States)

    1995-01-01

    Astronaut Stephen S. Oswald (center), STS-67 mission commander, is seen with two of his fellow crew members and an experiment which required a great deal of his time on the middeck of the Earth orbiting Space Shuttle Endeavour. Astronaut John M. Grunsfeld inputs mission data on a computer while listening to a cassette. Astronaut William G. Gregory (right edge of frame), pilot, consults a check list. The Middeck Active Control Experiment (MACE), not in use here, can be seen in upper center.

  6. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    Science.gov (United States)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  7. Balance in Astronauts Performing Jumps, Walking and Quiet Stance Following Spaceflight

    Science.gov (United States)

    Reschke, Millard F.; Bloomberg, J. J.; Wood, S. J.; Harm, D. L.

    2011-01-01

    Introduction: Both balance and locomotor ataxia is severe in astronauts returning from spaceflight with serious implications for unassisted landings. As a part of an ongoing effort to demonstrate the functional significance of the postflight ataxia problem our laboratory has evaluated jumping, walking heel-to-toe and quite stance balance immediately following spaceflight. Methods: Six astronauts from 12-16 day flights and three from 6-month flights were asked to perform three self-initiated two-footed jumps from a 30-cm-high platform, walking for 10 steps (three trials) placing the feet heel to toe in tandem, arms folded across the chest and the eyes closed, and lastly, recover from a simulated fall by standing from a prone position on the floor and with eyes open maintain a quiet stance for 3 min with arms relaxed along the side of the body and feet comfortably positioned on a force plate. Crewmembers were tested twice before flight, on landing day (short-duration), and days 1, 6, and 30 following all flight durations. Results/Conclusions: Many of astronauts tested fell on their first postflight jump but recovered by the third jump showing a rapid learning progression. Changes in take-off strategy were clearly evident in duration of time in the air between the platform and the ground (significant reduction in time to land), and also in increased asymmetry in foot latencies on take-off postflight. During the tandem heel-to-toe walking task there was a significant decrease in percentage of correct steps on landing day (short-duration crew) and on first day following landing (long-duration) with only partial recovery the following day. Astronauts for both short and long duration flight times appeared to be unaware of foot position relative to their bodies or the floor. During quite stance most of crewmembers tested exhibited increased stochastic activity (larger short-term COP diffusion coefficients postflight in all planes and increases in mean sway speed).

  8. Microbial Ecology of a Crewed Rover Traverse in the Arctic: Low Microbial Dispersal and Implications for Planetary Protection on Human Mars Missions.

    Science.gov (United States)

    Schuerger, Andrew C; Lee, Pascal

    2015-06-01

    Between April 2009 and July 2011, the NASA Haughton-Mars Project (HMP) led the Northwest Passage Drive Expedition (NWPDX), a multi-staged long-distance crewed rover traverse along the Northwest Passage in the Arctic. In April 2009, the HMP Okarian rover was driven 496 km over sea ice along the Northwest Passage, from Kugluktuk to Cambridge Bay, Nunavut, Canada. During the traverse, crew members collected samples from within the rover and from undisturbed snow-covered surfaces around the rover at three locations. The rover samples and snow samples were stored at subzero conditions (-20°C to -1°C) until processed for microbial diversity in labs at the NASA Kennedy Space Center, Florida. The objective was to determine the extent of microbial dispersal away from the rover and onto undisturbed snow. Interior surfaces of the rover were found to be associated with a wide range of bacteria (69 unique taxa) and fungi (16 unique taxa). In contrast, snow samples from the upwind, downwind, uptrack, and downtrack sample sites exterior to the rover were negative for both bacteria and fungi except for two colony-forming units (cfus) recovered from one downwind (1 cfu; site A4) and one uptrack (1 cfu; site B6) sample location. The fungus, Aspergillus fumigatus (GenBank JX517279), and closely related bacteria in the genus Brevibacillus were recovered from both snow (B. agri, GenBank JX517278) and interior rover surfaces. However, it is unknown whether the microorganisms were deposited onto snow surfaces at the time of sample collection (i.e., from the clothing or skin of the human operator) or via airborne dispersal from the rover during the 12-18 h layovers at the sites prior to collection. Results support the conclusion that a crewed rover traveling over previously undisturbed terrain may not significantly contaminate the local terrain via airborne dispersal of propagules from the vehicle.

  9. Microbial Ecology of a Crewed Rover Traverse in the Arctic: Low Microbial Dispersal and Implications for Planetary Protection on Human Mars Missions

    Science.gov (United States)

    Schuerger, Andrew C.; Lee, Pascal

    2015-01-01

    Between April 2009 and July 2011, the NASA Haughton-Mars Project (HMP) led the Northwest Passage Drive Expedition (NWPDX), a multi-staged long-distance crewed rover traverse along the Northwest Passage in the Arctic. In April 2009, the HMP Okarian rover was driven 496 km over sea ice along the Northwest Passage, from Kugluktuk to Cambridge Bay, Nunavut, Canada. During the traverse, crew members collected samples from within the rover and from undisturbed snow-covered surfaces around the rover at three locations. The rover samples and snow samples were stored at subzero conditions (-20C to -1C) until processed for microbial diversity in labs at the NASA Kennedy Space Center, Florida. The objective was to determine the extent of microbial dispersal away from the rover and onto undisturbed snow. Interior surfaces of the rover were found to be associated with a wide range of bacteria (69 unique taxa) and fungi (16 unique taxa). In contrast, snow samples from the upwind, downwind, uptrack, and downtrack sample sites exterior to the rover were negative for both bacteria and fungi except for two colony-forming units (cfus) recovered from one downwind (1 cfu; site A4) and one uptrack (1 cfu; site B6) sample location. The fungus, Aspergillus fumigatus (GenBank JX517279), and closely related bacteria in the genus Brevibacillus were recovered from both snow (B. agri, GenBank JX517278) and interior rover surfaces. However, it is unknown whether the microorganisms were deposited onto snow surfaces at the time of sample collection (i.e., from the clothing or skin of the human operator) or via airborne dispersal from the rover during the 12-18 h layovers at the sites prior to collection. Results support the conclusion that a crewed rover traveling over previously undisturbed terrain may not significantly contaminate the local terrain via airborne dispersal of propagules from the vehicle. Key Words: Planetary protection-Contamination-Habitability-Haughton Crater-Mars. Astrobiology

  10. Reducing Risk and Increasing Exploration Payoff with Symbiotic Rover Pairs

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary explorations missions avoid the destinations that offer the greatest scientific payout because these destinations come with a risk too great for a primary...

  11. Latent Virus Reactivation in Astronauts and Shingles Patients

    Science.gov (United States)

    Mehta, Satish K.; Cohrs, Randall J.; Gilden, Donald H.; Tyring, Stephen K.; Castro, Victoria A.; Ott, C. Mark; Pierson, Duane L.

    2010-01-01

    Spaceflight is a uniquely stressful environment with astronauts experiencing a variety of stressors including: isolation and confinement, psychosocial, noise, sleep deprivation, anxiety, variable gravitational forces, and increased radiation. These stressors are manifested through the HPA and SAM axes resulting in increased stress hormones. Diminished T-lymphocyte functions lead to reactivation of latent herpesviruses in astronauts during spaceflight. Herpes simplex virus reactivated with symptoms during spaceflight whereas Epstein-Barr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate and are shed without symptoms. EBV and VZV are shed in saliva and CMV in the urine. The levels of EBV shed in astronauts increased 10-fold during the flight; CMV and VZV are not typically shed in low stressed individuals, but both were shed in astronauts during spaceflight. All herpes viruses were detected by polymerase chain reaction (PCR) assay. Culturing revealed that VZV shed in saliva was infectious virus. The PCR technology was extended to test saliva of 54 shingles patients. All shingles patients shed VZV in their saliva, and the levels followed the course of the disease. Viremia was also found to be common during shingles. The technology may be used before zoster lesions appear allowing for prevention of disease. The technology may be used for rapid detection of VZV in doctors offices. These studies demonstrated the value of applying technologies designed for astronauts to people on Earth.

  12. The Use of Nanomaterials to Achieve NASA's Exploration Program Power Goals

    Science.gov (United States)

    Jeevarajan, J.

    2009-01-01

    This slide presentation reviews the power requirements for the space exploration and the lunar surface mobility programs. It includes information about the specifications for high energy batteries and the power requirements for lunar rovers, lunar outposts, lunar ascent module, and the lunar EVA suit.

  13. Applications of Surface Penetrating Radar for Mars Exploration

    Science.gov (United States)

    Li, H.; Li, C.; Ran, S.; Feng, J.; Zuo, W.

    2015-12-01

    Surface Penetrating Radar (SPR) is a geophysical method that uses electromagnetic field probe the interior structure and lithological variations of a lossy dielectric materials, it performs quite well in dry, icy and shallow-soil environments. The first radar sounding of the subsurface of planet was carried out by Apollo Lunar Sounder Experiment (ALSE) of the Apollo 17 in 1972. ALSE provided very precise information about the moon's topography and revealed structures beneath the surface in both Mare Crisium and Mare Serenitatis. Russian Mars'92 was the first Mars exploration mission that tried to use SPR to explore martian surface, subsurface and ionosphere. Although Mars'96 launch failed in 1996, Russia(Mars'98, cancelled in 1998; Phobos-Grunt, launch failed in 2011), ESA(Mars Express, succeeded in 2003; Netlander, cancelled in 2003; ExoMars 2018) and NASA(MRO, succeeded in 2005; MARS 2020) have been making great effects to send SPR to Mars, trying to search for the existence of groundwater and life in the past 20 years. So far, no Ground Penetrating Radar(GPR) has yet provided in situ observations on the surface of Mars. In December 2013, China's CE-3 lunar rover (Yuto) equipped with a GPR made the first direct measurement of the structure and depth of the lunar soil, and investigation of the lunar crust structure along the rover path. China's Mars Exploration Program also plans to carry the orbiting radar sounder and rover GPR to characterize the nature of subsurface water or ices and the layered structure of shallow subsurface of Mars. SPR can provide diversity of applications for Mars exploration , that are: to map the distribution of solid and liquid water in the upper portions of the Mars' crust; to characterize the subsurface geologic environment; to investigate the planet's subsurface to better understand the evolution and habitability of Mars; to perform the martain ionosphere sounding. Based on SPR's history and achievements, combined with the

  14. Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale crater, Mars

    Science.gov (United States)

    Stack, Kathryn M.; Edwards, Christopher; Grotzinger, J. P.; Gupta, S.; Sumner, D.; Edgar, Lauren; Fraeman, A.; Jacob, S.; LeDeit, L.; Lewis, K.W.; Rice, M.S.; Rubin, D.; Calef, F.; Edgett, K.; Williams, R.M.E.; Williford, K.H.

    2016-01-01

    This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity’s Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.

  15. Three astronauts inside Command Module Simulator during Apollo Simulation

    Science.gov (United States)

    1968-01-01

    Three astronauts inside the Command Module Simulator in bldg 5 during an Apollo Simulation. Left to right are Astronauts Thomas P. Stafford, commander; John W. Young, command module pilot; and Eugene A. Cernan, lunar module pilot.

  16. Astronauts Armstrong and Scott arrive at Hickam Field, Hawaii

    Science.gov (United States)

    1966-01-01

    Astronauts Neil A. Armstrong (center), command pilot, and David R. Scott, pilot, arrive at Hickam Field, Hawaii on their way from Naha, Okinawa, to Cape Kennedy, Florida. Astronaut Walter M. Schirra Jr. is at extreme left.

  17. The Mars Hand Lens Imager (MAHLI) aboard the Mars rover, Curiosity

    Science.gov (United States)

    Edgett, K. S.; Ravine, M. A.; Caplinger, M. A.; Ghaemi, F. T.; Schaffner, J. A.; Malin, M. C.; Baker, J. M.; Dibiase, D. R.; Laramee, J.; Maki, J. N.; Willson, R. G.; Bell, J. F., III; Cameron, J. F.; Dietrich, W. E.; Edwards, L. J.; Hallet, B.; Herkenhoff, K. E.; Heydari, E.; Kah, L. C.; Lemmon, M. T.; Minitti, M. E.; Olson, T. S.; Parker, T. J.; Rowland, S. K.; Schieber, J.; Sullivan, R. J.; Sumner, D. Y.; Thomas, P. C.; Yingst, R. A.

    2009-08-01

    The Mars Science Laboratory (MSL) rover, Curiosity, is expected to land on Mars in 2012. The Mars Hand Lens Imager (MAHLI) will be used to document martian rocks and regolith with a 2-megapixel RGB color CCD camera with a focusable macro lens mounted on an instrument-bearing turret on the end of Curiosity's robotic arm. The flight MAHLI can focus on targets at working distances of 20.4 mm to infinity. At 20.4 mm, images have a pixel scale of 13.9 μm/pixel. The pixel scale at 66 mm working distance is about the same (31 μm/pixel) as that of the Mars Exploration Rover (MER) Microscopic Imager (MI). MAHLI camera head placement is dependent on the capabilities of the MSL robotic arm, the design for which presently has a placement uncertainty of ~20 mm in 3 dimensions; hence, acquisition of images at the minimum working distance may be challenging. The MAHLI consists of 3 parts: a camera head, a Digital Electronics Assembly (DEA), and a calibration target. The camera head and DEA are connected by a JPL-provided cable which transmits data, commands, and power. JPL is also providing a contact sensor. The camera head will be mounted on the rover's robotic arm turret, the DEA will be inside the rover body, and the calibration target will be mounted on the robotic arm azimuth motor housing. Camera Head. MAHLI uses a Kodak KAI-2020CM interline transfer CCD (1600 x 1200 active 7.4 μm square pixels with RGB filtered microlenses arranged in a Bayer pattern). The optics consist of a group of 6 fixed lens elements, a movable group of 3 elements, and a fixed sapphire window front element. Undesired near-infrared radiation is blocked using a coating deposited on the inside surface of the sapphire window. The lens is protected by a dust cover with a Lexan window through which imaging can be ac-complished if necessary, and targets can be illuminated by sunlight or two banks of two white light LEDs. Two 365 nm UV LEDs are included to search for fluores-cent materials at night. DEA

  18. Apollo 16 astronauts in Apollo Command Module Mission Simulator

    Science.gov (United States)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, participates in extravehicular activity (EVA) training in bldg 5 at the Manned Spacecraft Center (MSC). In the right background is Astronaut Charles M. Duke Jr., lunar module pilot. They are inside the Apollo Command Module Mission Simulator (31046); Mattingly (right foreground) and Duke (right backgroung) in the Apollo Command Module Mission Simulator for EVA simulation and training. Astronaut John W. Young, commander, can be seen in the left background (31047).

  19. Trailblazing Medicine Sustaining Explorers During Interplanetary Missions

    CERN Document Server

    Seedhouse, Erik

    2011-01-01

    To prepare for the day when astronauts leave low-Earth orbit for long-duration exploration missions, space medicine experts must develop a thorough understanding of the effects of microgravity on the human body, as well as ways of mitigating them. To gain a complete understanding of the effects of space on the human body and to create tools and technologies required for successful exploration, space medicince will become an increasingly collaborative discipline incorporating the skills of physicians, biomedical scientists, engineers, and mission planners. Trailblazing Medicine examines the future of space medicine in relation to human space exploration; describes what is necessary to keep a crew alive in space, including the use of surgical robots, surface-based telemedicine, and remote emergency care; discusses bioethical problems such as euthanasia, sex, and precautionary surgery; investigates the medical challenges faced by interplanetary astronauts; details the process of human hibernation.

  20. Characterizing Fractures Across the Astronaut Corps: Preliminary Findings from Population-Level Analysis

    Science.gov (United States)

    Rossi, Meredith M.; Charvat, Jacqueline; Sibonga, Jean; Sieker, Jeremy

    2017-01-01

    Despite evidence of bone loss during spaceflight and operational countermeasures to mitigate this loss, the subsequent risk of fracture among astronauts is not known. The physiologic process of diminished bone density and bone recovery during or following spaceflight is multifactorial. Such factors as age, sex, fracture history, and others may combine to increase fracture risk among astronauts. As part of the 2016 Bone Research and Clinical Advisory Panel (RCAP), the authors analyzed data collected on 338 NASA astronauts to describe the demographics, bone-relevant characteristics, and fracture history of the astronaut population. The majority of the population are male (n=286, 84.6%), have flown at least one mission (n=306, 90.5%), and were between the ages of 30 and 49 at first mission (n=296, 96.7% of those with at least one mission). Of the 338 astronauts, 241 (71.3%) experienced a fracture over the course of their lifetime. One hundred and five (43.5%) of these 241 astronauts only experienced a fracture prior to being selected into the Astronaut Corps, whereas 53 (22.0%) only experienced a fracture after selection as an astronaut. An additional 80 astronauts (33.2%) had both pre- and post-selection fractures. The remaining 3 astronauts had a fracture of unknown date, which could not be categorized as pre- or post-selection. Among the 133 astronauts with at least one post-selection fracture, males comprised 90.2% (n=120) compared to 84.5% of the entire Corps, and females accounted for 9.8% (n=13) compared to 15.4% of the Corps. Ninety-seven of the 133 astronauts with post-selection fractures (72.9%) had one fracture event, 22 (16.5%) had two fractures, and 14 (10.5%) had three or more fractures. Some astronauts with multiple fractures suffered these in a single event, such as an automobile accident. The 133 astronauts with a post-selection fracture accounted for a total of 188 fracture events. One hundred and four (78.2%) of astronauts with post

  1. Wind-Driven Erosion and Exposure Potential at Mars 2020 Rover Candidate-Landing Sites

    Science.gov (United States)

    Chojnacki, Matthew; Banks, Maria; Urso, Anna

    2018-01-01

    Aeolian processes have likely been the predominant geomorphic agent for most of Mars’ history and have the potential to produce relatively young exposure ages for geologic units. Thus, identifying local evidence for aeolian erosion is highly relevant to the selection of landing sites for future missions, such as the Mars 2020 Rover mission that aims to explore astrobiologically relevant ancient environments. Here we investigate wind-driven activity at eight Mars 2020 candidate-landing sites to constrain erosion potential at these locations. To demonstrate our methods, we found that contemporary dune-derived abrasion rates were in agreement with rover-derived exhumation rates at Gale crater and could be employed elsewhere. The Holden crater candidate site was interpreted to have low contemporary erosion rates, based on the presence of a thick sand coverage of static ripples. Active ripples at the Eberswalde and southwest Melas sites may account for local erosion and the dearth of small craters. Moderate-flux regional dunes near Mawrth Vallis were deemed unrepresentative of the candidate site, which is interpreted to currently be experiencing low levels of erosion. The Nili Fossae site displayed the most unambiguous evidence for local sand transport and erosion, likely yielding relatively young exposure ages. The downselected Jezero crater and northeast Syrtis sites had high-flux neighboring dunes and exhibited substantial evidence for sediment pathways across their ellipses. Both sites had relatively high estimated abrasion rates, which would yield young exposure ages. The downselected Columbia Hills site lacked evidence for sand movement, and contemporary local erosion rates are estimated to be relatively low. PMID:29568719

  2. Wind-Driven Erosion and Exposure Potential at Mars 2020 Rover Candidate-Landing Sites

    Science.gov (United States)

    Chojnacki, Matthew; Banks, Maria; Urso, Anna

    2018-02-01

    Aeolian processes have likely been the predominant geomorphic agent for most of Mars' history and have the potential to produce relatively young exposure ages for geologic units. Thus, identifying local evidence for aeolian erosion is highly relevant to the selection of landing sites for future missions, such as the Mars 2020 Rover mission that aims to explore astrobiologically relevant ancient environments. Here we investigate wind-driven activity at eight Mars 2020 candidate-landing sites to constrain erosion potential at these locations. To demonstrate our methods, we found that contemporary dune-derived abrasion rates were in agreement with rover-derived exhumation rates at Gale crater and could be employed elsewhere. The Holden crater candidate site was interpreted to have low contemporary erosion rates, based on the presence of a thick sand coverage of static ripples. Active ripples at the Eberswalde and southwest Melas sites may account for local erosion and the dearth of small craters. Moderate-flux regional dunes near Mawrth Vallis were deemed unrepresentative of the candidate site, which is interpreted to currently be experiencing low levels of erosion. The Nili Fossae site displayed the most unambiguous evidence for local sand transport and erosion, likely yielding relatively young exposure ages. The downselected Jezero crater and northeast Syrtis sites had high-flux neighboring dunes and exhibited substantial evidence for sediment pathways across their ellipses. Both sites had relatively high estimated abrasion rates, which would yield young exposure ages. The downselected Columbia Hills site lacked evidence for sand movement, and contemporary local erosion rates are estimated to be relatively low.

  3. Features of the marketing strategy of oil and gas companies in exploration drilling

    Science.gov (United States)

    Sharf, I.; Malanina, V.; Kamynina, L.

    2014-08-01

    The implementation of national and regional programs for the development of new oil and gas provinces of Eastern Siberia poses the challenge of increasing geological exploration. The current drilling service companies' market structure, as well as the strategic task of search and exploration effectiveness requires qualitatively new approaches for choosing a contractor. The proposed strategy to select a contractor based on comprehensive analysis of certain groups of industrial, financial, infrastructural criteria allows not only to optimize the costs of exploration activities, but also to minimize preventively the risks of a poor geological exploration. The authors' SWOT- analysis of the marketing strategy of "Gazprom neft" for choosing a contractor outlined the problem of imperfection of the Russian legislation in the sphere of activities of service companies in the oil and gas sector.

  4. Astronaut training for STS 41-D mission

    Science.gov (United States)

    1984-01-01

    Astronauts David C. Leestma and Kathryn D. Sullivan, two of three 41-D mission specialists, rehearse some of the duties they will be performing on their flight. Dr. Sullivan holds the Krimsky rule against her cheekbones as part of an ongoing Shuttle study on near vision acuity. Astronaut Leestma reviews a flight data file flipbook. They are seated on the floor of the Space Shuttle Simulator, in front of the forward middeck lockers.

  5. Atrial Arrhythmias in Astronauts. Summary of a NASA Summit

    Science.gov (United States)

    Barr, Yael; Watkins, Sharmila; Polk, J. D.

    2011-01-01

    This slide presentation reviews the findings of a panel of heart experts brought together to study if atrial arrhythmias more prevalent in astronauts, and potential risk factors that may predispose astronauts to atrial arrhythmias. The objective of the panel was to solicit expert opinion on screening, diagnosis, and treatment options, identify gaps in knowledge, and propose relevant research initiatives. While Atrial Arrhythmias occur in approximately the same percents in astronauts as in the general population, they seem to occur at younger ages in astronauts. Several reasons for this predisposition were given: gender, hypertension, endurance training, and triggering events. Potential Space Flight-Related Risk factors that may play a role in precipitating lone atrial fibrillation were reviewed. There appears to be no evidence that any variable of the space flight environment increases the likelihood of developing atrial arrhythmias during space flight.

  6. MSR Fetch Rover Capability Development at the Canadian Space Agency

    Science.gov (United States)

    Picard, M.; Hipkin, V.; Gingras, D.; Allard, P.; Lamarche, T.; Rocheleau, S. G.; Gemme, S.

    2018-04-01

    Describes Fetch Rover technology testing during CSA's 2016 Mars Sample Return Analogue Deployment which demonstrated autonomous navigation to 'cache depots' of M-2020-like sample tubes, acquisition of six such tubes, and transfer to a MAV mock up.

  7. Initial Incidence of White Matter Hyperintensities on MRI in Astronauts

    Science.gov (United States)

    Norcross, Jason; Sherman, Paul; McGuire, Steve; Kochunov, Peter

    2016-01-01

    Introduction: Previous literature has described the increase in white matter hyperintensity (WMH) burden associated with hypobaric exposure in the U-2 and altitude chamber operating personnel. Although astronauts have similar hypobaric exposure pressures to the U2 pilot population, astronauts have far fewer exposures and each exposure would be associated with a much lower level of decompression stress due to rigorous countermeasures to prevent decompression sickness. Therefore, we postulated that the WMH burden in the astronaut population would be less than in U2 pilots. Methods: Twenty-one post-flight de-identified astronaut MRIs (5 mm slice thickness FLAIR sequences) were evaluated for WMH count and volume. The only additional data provided was an age range of the astronauts (43-57) and if they had ever performed an EVA (13 yes, 8 no). Results: WMH count in these 21 astronaut MRI was 21.0 +/- 24.8 (mean+/- SD) and volume was 0.382 +/- 0.602 ml, which was significantly higher than previously published results for the U2 pilots. No significant differences between EVA and no EVA groups existed. Age range of astronaut population is not directly comparable to the U2 population. Discussion: With significantly less frequent (sometimes none) and less stressful hypobaric exposures, yet a much higher incidence of increased WMH, this indicates the possibility of additional mechanisms beyond hypobaric exposure. This increase unlikely to be attributable just to the differences in age between astronauts and U2 pilots. Forward work includes continuing review of post-flight MRI and evaluation of pre to post flight MRI changes if available. Data mining for potential WMH risk factors includes collection of age, sex, spaceflight experience, EVA hours, other hypobaric exposures, hyperoxic exposures, radiation, high performance aircraft experience and past medical history. Finally, neurocognitive and vision/eye results will be evaluated for any evidence of impairment linked to

  8. Psychometric Personality Differences Between Candidates in Astronaut Selection.

    Science.gov (United States)

    Mittelstädt, Justin M; Pecena, Yvonne; Oubaid, Viktor; Maschke, Peter

    This paper investigates personality traits as potential factors for success in an astronaut selection by comparing personality profiles of unsuccessful and successful astronaut candidates in different phases of the ESA selection procedure. It is further addressed whether personality traits could predict an overall assessment rating at the end of the selection. In 2008/2009, ESA performed an astronaut selection with 902 candidates who were either psychologically recommended for mission training (N = 46) or failed in basic aptitude (N = 710) or Assessment Center and interview testing (N = 146). Candidates completed the Temperament Structure Scales (TSS) and the NEO Personality Inventory Revised (NEO-PI-R). Those candidates who failed in basic aptitude testing showed higher levels of Neuroticism (M = 49.8) than the candidates who passed that phase (M = 45.4 and M = 41.6). Additionally, candidates who failed in basic testing had lower levels of Agreeableness (M = 132.9) than recommended candidates (M = 138.1). TSS scales for Achievement (r = 0.19) and Vitality (r = 0.18) showed a significant correlation with the overall assessment rating given by a panel board after a final interview. Results indicate that a personality profile similar to Helmreich's "Right Stuff" is beneficial in astronaut selection. Influences of test anxiety on performance are discussed. Mittelstädt JM, Pecena Y, Oubaid V, Maschke P. Psychometric personality differences between candidates in astronaut selection. Aerosp Med Hum Perform. 2016; 87(11):933-939.

  9. An Overview of Uranium Exploration Strategy in India

    Energy Technology Data Exchange (ETDEWEB)

    Chaki, A., E-mail: director.amd@gov.in [Atomic Minerals Directorate for Exploration and Research, Hyderabad (India)

    2014-05-15

    Uranium exploration in India dates back from 1949 and the first mineralized area was located in the early 1950s in Singhbhum Shear Zone (SSZ), eastern India. Since then, a number of potential and promising uranium provinces have been established in India. The potential uranium provinces include SSZ, Dongargarh, Aravalli, Siwalik belt, Mahadek basin, south-western and northern parts of Cuddapah basin, North Delhi Fold Belt, Bhima and Kaladgi basins. The promising uranium provinces are Proterozoic Chhattisgarh, Indravati, Gwalior, Vindhyan, Shillong basins, Gondwana basins of Central India and semi-arid regions of western Rajasthan. With the establishment of large tonnage-high grade Lower-middle Proterozoic unconformity deposits in Canada and Australia, there was a paradigm shift in the exploration strategy towards the Proterozoic basins of India. The discovery of unconformity related uranium mineralisation in the northern part of Proterozoic Cuddapah basin in southern India in 1991 and discovery of few deposits in the province has opened the avenues for finding of similar deposits in Cuddapah and other 13 Proterozoic basins in India. As a sequel, Proterozoic Bhima basin in southern India has been recognized as a potential target for uranium mineralization, where a low tonnage medium grade deposit has been established and mine development works are in progress. Sustained exploration efforts in other Proterozoic basins have yielded success in a few basins such as Deshnur area in Kaladgi Basin of southern India. Considerable uranium resources have been established in Proterozoic Cuddapah and Bhima basins. Apart from northern parts of Cuddapah and Bhima basins, areas in the southwestern part of Cuddapah basin for stratabound type, where a mine is under construction; Proterozoic Kaladgi basin for vein type; Cretaceous Mahadek basin for sandstone type and the North Delhi Fold belt for vein type of mineralization have been prioritized as potential areas for exploration

  10. Combustion strategy : United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Greenhalgh, D. [Heriot-Watt Univ., Edingburgh, Scotland (United Kingdom). School of Engineering and Physical Sciences

    2009-07-01

    The United Kingdom's combustion strategy was briefly presented. Government funding sources for universities were listed. The United Kingdom Research Councils that were listed included the Arts and Humanities Research Council (AHRC) and the Biotechnology and Biological Sciences Research Council (BBSRC); the Engineering and Physical Sciences Research Council (EPSRC); the Economic and Social Research Council; the Medical Research Council; the Natural Environment Research Council; and the Science and Technology Facilities Council. The EPSRC supported 65 grants worth 30.5 million pounds. The combustion industry was noted to be dominated by three main players of which one was by far the largest. The 3 key players were Rolls-Royce; Jaguar Land Rover; and Doosan Babcock. Industry and government involvement was also discussed for the BIS Technology Strategy Board, strategy technology areas, and strategy application areas.

  11. Features of the marketing strategy of oil and gas companies in exploration drilling

    International Nuclear Information System (INIS)

    Sharf, I; Kamynina, L; Malanina, V

    2014-01-01

    The implementation of national and regional programs for the development of new oil and gas provinces of Eastern Siberia poses the challenge of increasing geological exploration. The current drilling service companies' market structure, as well as the strategic task of search and exploration effectiveness requires qualitatively new approaches for choosing a contractor. The proposed strategy to select a contractor based on comprehensive analysis of certain groups of industrial, financial, infrastructural criteria allows not only to optimize the costs of exploration activities, but also to minimize preventively the risks of a poor geological exploration. The authors' SWOT- analysis of the marketing strategy of ''Gazprom neft'' for choosing a contractor outlined the problem of imperfection of the Russian legislation in the sphere of activities of service companies in the oil and gas sector

  12. Technical and regulatory review of the Rover nuclear fuel process for use on Fort St. Vrain fuel

    International Nuclear Information System (INIS)

    Hertzler, T.

    1993-02-01

    This report describes the results of an analysis for processing and final disposal of Fort St. Vrain (FSV) irradiated fuel in Rover-type equipment or technologies. This analysis includes an evaluation of the current Rover equipment status and the applicability of this technology in processing FSV fuel. The analyses are based on the physical characteristics of the FSV fuel and processing capabilities of the Rover equipment. Alternate FSV fuel disposal options are also considered including fuel-rod removal from the block, disposal of the empty block, or disposal of the entire fuel-containing block. The results of these analyses document that the current Rover hardware is not operable for any purpose, and any effort to restart this hardware will require extensive modifications and re-evaluation. However, various aspects of the Rover technology, such as the successful fluid-bed burner design, can be applied with modification to FSV fuel processing. The current regulatory climate and technical knowledge are not adequately defined to allow a complete analysis and conclusion with respect to the disposal of intact fuel blocks with or without the fuel rods removed. The primary unknowns include the various aspects of fuel-rod removal from the block, concentration of radionuclides remaining in the graphite block after rod removal, and acceptability of carbon in the form of graphite in a high level waste repository

  13. Exploring Parental Involvement Strategies Utilized by Middle School Interdisciplinary Teams

    Science.gov (United States)

    Robbins, Chris; Searby, Linda

    2013-01-01

    Adolescents present a unique collection of characteristics and challenges which middle school interdisciplinary teams were designed to address. This article describes a research study which explored parental involvement strategies employed by interdisciplinary teaching teams from three very different middle schools: an affluent suburban school, a…

  14. ExoGeoLab Pilot Project for Landers, Rovers and Instruments

    Science.gov (United States)

    Foing, Bernard

    2010-05-01

    We have developed a pilot facility with a Robotic Test Bench (ExoGeoLab) and a Mobile Lab Habitat (ExoHab). They can be used to validate concepts and external instruments from partner institutes. The ExoGeoLab research incubator project, has started in the frame of a collaboration between ILEWG (International Lunar Exploration working Group http://sci.esa.int/ilewg), ESTEC, NASA and academic partners, supported by a design and control desk in the European Space Incubator (ESI), as well as infrastructure. ExoGeoLab includes a sequence of technology and research pilot project activities: - Data analysis and interpretation of remote sensing and in-situ data, and merging of multi-scale data sets - Procurement and integration of geophysical, geo-chemical and astrobiological breadboard instruments on a surface station and rovers - Integration of cameras, environment and solar sensors, Visible and near IR spectrometer, Raman spectrometer, sample handling, cooperative rovers - Delivery of a generic small planetary lander demonstrator (ExoGeoLab lander, Sept 2009) as a platform for multi-instruments tests - Research operations and exploitation of ExoGeoLab test bench for various conceptual configurations, and support for definition and design of science surface packages (Moon, Mars, NEOs, outer moons) - Field tests of lander, rovers and instruments in analogue sites (Utah MDRS 2009 & 2010, Eifel volcanic park in Sept 2009, and future campaigns). Co-authors, ILEWG ExoGeoLab & ExoHab Team: B.H. Foing(1,11)*#, C. Stoker(2,11)*, P. Ehrenfreund(10,11), L. Boche-Sauvan(1,11)*, L. Wendt(8)*, C. Gross(8, 11)*, C. Thiel(9)*, S. Peters(1,6)*, A. Borst(1,6)*, J. Zavaleta(2)*, P. Sarrazin(2)*, D. Blake(2), J. Page(1,4,11), V. Pletser(5,11)*, E. Monaghan(1)*, P. Mahapatra(1)#, A. Noroozi(3), P. Giannopoulos(1,11) , A. Calzada(1,6,11), R. Walker(7), T. Zegers(1, 15) #, G. Groemer(12)# , W. Stumptner(12)#, B. Foing(2,5), J. K. Blom(3)#, A. Perrin(14)#, M. Mikolajczak(14)#, S. Chevrier(14

  15. AIAA Educator Academy - Mars Rover Curriculum: A 6 week multidisciplinary space science based curriculum

    Science.gov (United States)

    Henriquez, E.; Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.

    2013-12-01

    The Curiosity mission has captured the imagination of children, as NASA missions have done for decades. The AIAA and the University of Houston have developed a flexible curriculum program that offers children in-depth science and language arts learning culminating in the design and construction of their own model rover. The program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students learn to research Mars in order to pick a science question about Mars that is of interest to them. They learn principles of spacecraft design in order to build a model of a Mars rover to carry out their mission on the surface of Mars. The model is a mock-up, constructed at a minimal cost from art supplies. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the structure and organization of the 6 week curriculum. A set of 30 new 5E lesson plans have been written to support this project as a classroom activity. The challenge of developing interactive

  16. Reasoning with inaccurate spatial knowledge. [for Planetary Rover

    Science.gov (United States)

    Doshi, Rajkumar S.; White, James E.; Lam, Raymond; Atkinson, David J.

    1988-01-01

    This paper describes work in progress on spatial planning for a semiautonomous mobile robot vehicle. The overall objective is to design a semiautonomous rover to plan routes in unknown, natural terrains. The approach to spatial planning involves deduction of common-sense spatial knowledge using geographical information, natural terrain representations, and assimilation of new and possibly conflicting terrain information. This report describes the ongoing research and implementation.

  17. CFD Analysis for Assessing the Effect of Wind on the Thermal Control of the Mars Science Laboratory Curiosity Rover

    Science.gov (United States)

    Bhandari, Pradeep; Anderson, Kevin

    2013-01-01

    The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, requires a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to 50 C range. The RHRS harnesses some of the waste heat generated from the rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 W of electrical power while generating waste heat equivalent to approximately 2000 W. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer. Winds on Mars can be as fast as 15 m/s for extended periods. They can lead to significant heat loss from the MMRTG and the hot plates due to convective heat pick up from these surfaces. Estimation of this convective heat loss cannot be accurately and adequately achieved by simple textbook based calculations because of the very complicated flow fields around these surfaces, which are a function of wind direction and speed. Accurate calculations necessitated the employment of sophisticated Computational Fluid Dynamics (CFD) computer codes. This paper describes the methodology and results of these CFD calculations. Additionally, these results are compared to simple textbook based calculations that served as benchmarks and sanity checks for them. And finally, the overall RHRS system performance predictions will be shared to show how these results affected the overall rover thermal performance.

  18. Motivational profile of astronauts at the International Space Station

    Science.gov (United States)

    Brcic, Jelena

    2010-11-01

    Research has demonstrated that the motive triad of needs for achievement, power, and affiliation can predict variables such as occupational success and satisfaction, innovation, aggressiveness, susceptibility to illness, cooperation, conformity, and many others. The present study documents the motivational profiles of astronauts at three stages of their expedition. Thematic content analysis was employed for references to Winter's well-established motive markers in narratives (media interviews, journals, and oral histories) of 46 astronauts participating in International Space Station (ISS) expeditions. Significant pre-flight differences were found in relation to home agency and job status. NASA astronauts, compared with those from the Russian Space Agency, are motivated by higher need for power, as are commanders in comparison to flight engineers. The need for affiliation motive showed a significant change from pre-flight to in-flight stages. The implications of the relationship between the motivational profile of astronauts and the established behavioural correlates of such profiles are discussed.

  19. Trajectory optimization for lunar rover performing vertical takeoff vertical landing maneuvers in the presence of terrain

    Science.gov (United States)

    Ma, Lin; Wang, Kexin; Xu, Zuhua; Shao, Zhijiang; Song, Zhengyu; Biegler, Lorenz T.

    2018-05-01

    This study presents a trajectory optimization framework for lunar rover performing vertical takeoff vertical landing (VTVL) maneuvers in the presence of terrain using variable-thrust propulsion. First, a VTVL trajectory optimization problem with three-dimensional kinematics and dynamics model, boundary conditions, and path constraints is formulated. Then, a finite-element approach transcribes the formulated trajectory optimization problem into a nonlinear programming (NLP) problem solved by a highly efficient NLP solver. A homotopy-based backtracking strategy is applied to enhance the convergence in solving the formulated VTVL trajectory optimization problem. The optimal thrust solution typically has a "bang-bang" profile considering that bounds are imposed on the magnitude of engine thrust. An adaptive mesh refinement strategy based on a constant Hamiltonian profile is designed to address the difficulty in locating the breakpoints in the thrust profile. Four scenarios are simulated. Simulation results indicate that the proposed trajectory optimization framework has sufficient adaptability to handle VTVL missions efficiently.

  20. Astronaut John W. Young during water egress training

    Science.gov (United States)

    1966-01-01

    Astronaut John W. Young, prime crew command pilot for the Gemini 10 space flight, sits in Static Article 5 during water egress training activity on board the NASA Motor Vessel Retriever. The SA-5 will be placed in the water and he and Astronaut Michael Collins, will then practice egress and water survival techniques. At right is Gordon Harvey, Spacecraft Operations Branch, Flight Crew Support Division.

  1. IAC-11.E1-7.-A1.8.5 The Mission X: Train Like an Astronaut pilot study

    Science.gov (United States)

    Lloyd, Charles W.

    2012-12-01

    Mission X: Train Like an Astronaut is an international educational challenge focusing on fitness and nutrition as we encourage students to "train like an astronaut." Teams of students (aged 8-12) learn principles of healthy eating and exercise, compete for points by finishing training modules, and get excited about their future as "fit explorers." The 18 core exercises (targeting strength, endurance, coordination, balance, spatial awareness, and more) involve the same types of skills that astronauts learn in their training and use in spaceflight. This first-of-its-kind cooperative outreach program has allowed 11 space agencies and various partner institutions to work together to address quality health/fitness education, challenge students to be more physically active, increase awareness of the importance of lifelong health and fitness, teach students how fitness plays a vital role in human performance for exploration, and to inspire and motivate students to pursue careers in science, technology, engineering and math (STEM) fields. The project was initiated in 2009 in response to a request by the International Space Life Sciences Working Group. USA, Netherlands, Italy, France, Germany, Austria, Colombia, Spain, Belgium, Czech Republic and United Kingdom hosted teams for the pilot in the spring of 2010, and Japan held a modified version of the challenge. Several more agencies provided input into the preparations. Competing in 137 teams, more than 4000 students from over 40 cities worldwide participated in the first round of Mission X.

  2. Game-based evaluation of personalized support for astronauts in long duration missions

    NARCIS (Netherlands)

    Smets, N.J.J.M.; Abbing, M.S.; Neerincx, M.A.; Lindenberg, J.; Oostendorp, H. van

    2008-01-01

    Long duration missions set high requirements for personalized astronaut support that takes into account the social, cognitive and affective state of the astronaut. Such support should be tested as thoroughly as possible before deployment into space. The in-orbit influences of the astronaut's state

  3. Large-area Soil Moisture Surveys Using a Cosmic-ray Rover: Approaches and Results from Australia

    Science.gov (United States)

    Hawdon, A. A.; McJannet, D. L.; Renzullo, L. J.; Baker, B.; Searle, R.

    2017-12-01

    Recent improvements in satellite instrumentation has increased the resolution and frequency of soil moisture observations, and this in turn has supported the development of higher resolution land surface process models. Calibration and validation of these products is restricted by the mismatch of scales between remotely sensed and contemporary ground based observations. Although the cosmic ray neutron soil moisture probe can provide estimates soil moisture at a scale useful for the calibration and validation purposes, it is spatially limited to a single, fixed location. This scaling issue has been addressed with the development of mobile soil moisture monitoring systems that utilizes the cosmic ray neutron method, typically referred to as a `rover'. This manuscript describes a project designed to develop approaches for undertaking rover surveys to produce soil moisture estimates at scales comparable to satellite observations and land surface process models. A custom designed, trailer-mounted rover was used to conduct repeat surveys at two scales in the Mallee region of Victoria, Australia. A broad scale survey was conducted at 36 x 36 km covering an area of a standard SMAP pixel and an intensive scale survey was conducted over a 10 x 10 km portion of the broad scale survey, which is at a scale equivalent to that used for national water balance modelling. We will describe the design of the rover, the methods used for converting neutron counts into soil moisture and discuss factors controlling soil moisture variability. We found that the intensive scale rover surveys produced reliable soil moisture estimates at 1 km resolution and the broad scale at 9 km resolution. We conclude that these products are well suited for future analysis of satellite soil moisture retrievals and finer scale soil moisture models.

  4. Low-Latency Science Exploration of Planetary Bodies: How ISS Might Be Used as Part of a Low-Latency Analog Campaign for Human Exploration

    Science.gov (United States)

    Thronson, Harley; Valinia, Azita; Bleacher, Jacob; Eigenbrode, Jennifer; Garvin, Jim; Petro, Noah

    2014-01-01

    We suggest that the International Space Station be used to examine the application and validation of low-latency telepresence for surface exploration from space as an alternative, precursor, or potentially as an adjunct to astronaut "boots on the ground." To this end, controlled experiments that build upon and complement ground-based analog field studies will be critical for assessing the effects of different latencies (0 to 500 milliseconds), task complexity, and alternate forms of feedback to the operator. These experiments serve as an example of a pathfinder for NASA's roadmap of missions to Mars with low-latency telerobotic exploration as a precursor to astronaut's landing on the surface to conduct geological tasks.

  5. Astronaut John Young in Command Module Simulator during Apollo Simulation

    Science.gov (United States)

    1968-01-01

    Astronaut John W. Young, command module pilot, inside the Command Module Simulator in bldg 5 during an Apollo Simulation. Astronauts Thomas P. Stafford, commander and Eugene A. Cernan, lunar module pilot are out of the view.

  6. The Astronaut-Athlete: Optimizing Human Performance in Space.

    Science.gov (United States)

    Hackney, Kyle J; Scott, Jessica M; Hanson, Andrea M; English, Kirk L; Downs, Meghan E; Ploutz-Snyder, Lori L

    2015-12-01

    It is well known that long-duration spaceflight results in deconditioning of neuromuscular and cardiovascular systems, leading to a decline in physical fitness. On reloading in gravitational environments, reduced fitness (e.g., aerobic capacity, muscular strength, and endurance) could impair human performance, mission success, and crew safety. The level of fitness necessary for the performance of routine and off-nominal terrestrial mission tasks remains an unanswered and pressing question for scientists and flight physicians. To mitigate fitness loss during spaceflight, resistance and aerobic exercise are the most effective countermeasure available to astronauts. Currently, 2.5 h·d, 6-7 d·wk is allotted in crew schedules for exercise to be performed on highly specialized hardware on the International Space Station (ISS). Exercise hardware provides up to 273 kg of loading capability for resistance exercise, treadmill speeds between 0.44 and 5.5 m·s, and cycle workloads from 0 and 350 W. Compared to ISS missions, future missions beyond low earth orbit will likely be accomplished with less vehicle volume and power allocated for exercise hardware. Concomitant factors, such as diet and age, will also affect the physiologic responses to exercise training (e.g., anabolic resistance) in the space environment. Research into the potential optimization of exercise countermeasures through use of dietary supplementation, and pharmaceuticals may assist in reducing physiological deconditioning during long-duration spaceflight and have the potential to enhance performance of occupationally related astronaut tasks (e.g., extravehicular activity, habitat construction, equipment repairs, planetary exploration, and emergency response).

  7. Scaling up high throughput field phenotyping of corn and soy research plots using ground rovers

    Science.gov (United States)

    Peshlov, Boyan; Nakarmi, Akash; Baldwin, Steven; Essner, Scott; French, Jasenka

    2017-05-01

    Crop improvement programs require large and meticulous selection processes that effectively and accurately collect and analyze data to generate quality plant products as efficiently as possible, develop superior cropping and/or crop improvement methods. Typically, data collection for such testing is performed by field teams using hand-held instruments or manually-controlled devices. Although steps are taken to reduce error, the data collected in such manner can be unreliable due to human error and fatigue, which reduces the ability to make accurate selection decisions. Monsanto engineering teams have developed a high-clearance mobile platform (Rover) as a step towards high throughput and high accuracy phenotyping at an industrial scale. The rovers are equipped with GPS navigation, multiple cameras and sensors and on-board computers to acquire data and compute plant vigor metrics per plot. The supporting IT systems enable automatic path planning, plot identification, image and point cloud data QA/QC and near real-time analysis where results are streamed to enterprise databases for additional statistical analysis and product advancement decisions. Since the rover program was launched in North America in 2013, the number of research plots we can analyze in a growing season has expanded dramatically. This work describes some of the successes and challenges in scaling up of the rover platform for automated phenotyping to enable science at scale.

  8. Astronaut Voss Works in the Destiny Laboratory

    Science.gov (United States)

    2001-01-01

    In this photograph, Astronaut James Voss, flight engineer of Expedition Two, performs a task at a work station in the International Space Station (ISS) Destiny Laboratory, or U.S. Laboratory, as Astronaut Scott Horowitz, STS-105 mission commander, floats through the hatchway leading to the Unity node. After spending five months aboard the orbital outpost, the ISS Expedition Two crew was replaced by Expedition Three and returned to Earth aboard the STS-105 Space Shuttle Discovery on August 22, 2001. The Orbiter Discovery was launched from the Kennedy Space Center on August 10, 2001.

  9. Astronautics and Aeronautics: A Chronology, 1996-2000

    Science.gov (United States)

    Lewis, Marieke; Swanson, Ryan

    2009-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in United States and foreign aeronautics and astronautics. It covers the years 1996 through 2000. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  10. Astronautics and Aeronautics: A Chronology, 2001-2005

    Science.gov (United States)

    Ivey, William Noel; Lewis, Marieke

    2010-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in U.S. and foreign aeronautics and astronautics. It covers the years 2001 through 2005. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  11. Temazepam, but not zolpidem, causes orthostatic hypotension in astronauts after spaceflight

    Science.gov (United States)

    Shi, Shang-Jin; Garcia, Kathleen M.; Meck, Janice V.

    2003-01-01

    Insomnia is a common symptom, not only in the adult population but also in many astronauts. Hypnotics, such as temazepam (a benzodiazepine) and zolpidem (an imidazopyridine), are often taken to relieve insomnia. Temazepam has been shown clinically to have hemodynamic side effects, particularly in the elderly; however, the mechanism is not clear. Zolpidem does not cause hemodynamic side effects. The purpose of this study was to determine whether the use of different hypnotics during spaceflight might contribute significantly to the high incidence of postflight orthostatic hypotension, and to compare the findings in astronauts with clinical research. Astronauts were separated into three groups: control (n = 40), temazepam (15 or 30 mg; n = 9), and zolpidem (5 or 10 mg; n = 8). In this study, temazepam and zolpidem were only taken the night before landing. The systolic and diastolic blood pressures and heart rates of the astronauts were measured during stand tests before spaceflight and on landing day. On landing day, systolic pressure decreased significantly and heart rate increased significantly in the temazepam group, but not in the control group or in the zolpidem group. Temazepam may aggravate orthostatic hypotension after spaceflight when astronauts are hemodynamically compromised. Temazepam should not be the initial choice as a sleeping aid for astronauts. These results in astronauts may help to explain the hemodynamic side effects in the elderly who are also compromised. Zolpidem may be a better choice as a sleeping aid in these populations.

  12. Pressure and Relative Humidity Measurement Devices for Mars 2020 Rover

    Science.gov (United States)

    Hieta, M.; Genzer, M.; Nikkanen, T.; Haukka, H.; Harri, A.-M.; Polkko, J.; Rodriguez-Manfredi, J. A.

    2017-09-01

    One of the scientific payloads onboard the NASA Mars 2020 rover mission is Mars Environmental Dynamic Analyzer (MEDA): a set of environmental sensors for Mars surface weather measurements. Finnish Meteorological Institute (FMI) provides a pressure measurement device (MEDA PS) and a relative humidity measurement device (MEDA HS) for MEDA.

  13. HAMLET -Human Model MATROSHKA for Radiation Exposure Determination of Astronauts -Current status and results

    Science.gov (United States)

    Reitz, Guenther; Berger, Thomas; Bilski, Pawel; Burmeister, Soenke; Labrenz, Johannes; Hager, Luke; Palfalvi, Jozsef K.; Hajek, Michael; Puchalska, Monika; Sihver, Lembit

    The exploration of space as seen in specific projects from the European Space Agency (ESA) acts as groundwork for human long duration space missions. One of the main constraints for long duration human missions is radiation. The radiation load on astronauts and cosmonauts in space (as for the ISS) is a factor of 100 higher than the natural radiation on Earth and will further increase should humans travel to Mars. In preparation for long duration space missions it is important to evaluate the impact of space radiation in order to secure the safety of the astronauts and minimize their radiation risks. To determine the radiation risk on humans one has to measure the radiation doses to radiosensitive organs within the human body. One way to approach this is the ESA facility MATROSHKA (MTR), under the scientific and project lead of DLR. It is dedicated to determining the radiation load on astronauts within and outside the International Space Station (ISS), and was launched in January 2004. MTR is currently preparing for its fourth experimental phase inside the Japanese Experimental Module (JEM) in summer 2010. MTR, which mimics a human head and torso, is an anthropomorphic phantom containing over 6000 radiation detectors to determine the depth dose and organ dose distribution in the body. It is the largest international research initiative ever performed in the field of space dosimetry and combines the expertise of leading research institutions around the world, thereby generating a huge pool of data of potentially immense value for research. Aiming at optimal scientific exploitation, the FP7 project HAMLET aims to process and compile the data acquired individually by the participating laboratories of the MATROSHKA experiment. Based on experimental input from the MATROSHKA experiment phases as well as on radiation transport calculations, a three-dimensional model for the distribution of radiation dose in an astronaut's body will be built up. The scientific achievements

  14. Essays on the History of Rocketry and Astronautics: Proceedings of the Third through the Sixth History Symposia of the International Academy of Astronautics, volume 1

    Science.gov (United States)

    Hall, R. C. (Editor)

    1977-01-01

    This two volume publication presents the proceedings of the third through sixth history symposia of the International Academy of Astronautics. Thirty-nine papers are divided into four categories: (1) Early Solid Propellant Rocketry; (2) Rocketry and Astronautics: Concepts, Theory, and Analyses after 1880; (3) The Development of Liquid and Solid Propellant Rockets from 1880 to 1945; and (4) Rocketry and Astronautics after 1945. Categories 1 and 2 will be found in volume 1 and the remainder in volume 2. Among other diciplines, Rocketry and Astronautics encompasses the physical and engineering sciences including fluid mechanics, thermodynamics, vibration theory, structural mechanics, and celestial mechanics. Papers presented in these two volumes range from those of empirical experimenters who used the time-honored cut and try methods to scientists wielding theoretical principles. The work traces the coupling of the physical and engineering sciences, industrial advances, and state support that produced the awesome progress in rocketry and astronautics for the most part within living memory. The proceedings of the four symposia present in these two volumes contain information on the work of leading investigators and their associates carried out in the first two-thirds of the twentieth century.

  15. Spaceflight Modulates Gene Expression in Astronauts

    Data.gov (United States)

    National Aeronautics and Space Administration — Astronauts are exposed to a unique combination of stressors during spaceflight which leads to alterations in their physiology and potentially increases their...

  16. Orion Powered Flight Guidance Burn Options for Near Term Exploration

    Science.gov (United States)

    Fill, Tom; Goodman, John; Robinson, Shane

    2018-01-01

    NASA's Orion exploration spacecraft will fly more demanding mission profiles than previous NASA human flight spacecraft. Missions currently under development are destined for cislunar space. The EM-1 mission will fly unmanned to a Distant Retrograde Orbit (DRO) around the Moon. EM-2 will fly astronauts on a mission to the lunar vicinity. To fly these missions, Orion requires powered flight guidance that is more sophisticated than the orbital guidance flown on Apollo and the Space Shuttle. Orion's powered flight guidance software contains five burn guidance options. These five options are integrated into an architecture based on a proven shuttle heritage design, with a simple closed-loop guidance strategy. The architecture provides modularity, simplicity, versatility, and adaptability to future, yet-to-be-defined, exploration mission profiles. This paper provides a summary of the executive guidance architecture and details the five burn options to support both the nominal and abort profiles for the EM-1 and EM-2 missions.

  17. Former Astronaut Neil A. Armstrong Visits MSFC

    Science.gov (United States)

    2007-01-01

    Among several other NASA dignitaries, former astronaut Neil A. Armstrong visited the Marshall Space Flight Center (MSFC) in attendance of the annual NASA Advisory Council Meeting. While here, Mr. Armstrong was gracious enough to allow the casting of his footprint. This casting will join those of other astronauts on display at the center. Armstrong was first assigned to astronaut status in 1962. He served as command pilot for the Gemini 8 mission, launched March 16, 1966, and performed the first successful docking of two vehicles in space. In 1969, Armstrong was commander of Apollo 11, the first manned lunar landing mission, and gained the distinction of being the first man to land a craft on the Moon and the first man to step on its surface. Armstrong subsequently held the position of Deputy Associate Administrator for Aeronautics, NASA Headquarters Office of Advanced Research and Technology, from 1970 to 1971. He resigned from NASA in 1971. Pictured with Armstrong is MSFC employee Daniel McFall, who assisted with the casting procedure.

  18. Exploring coping strategies of business leaders during an economic downturn

    Directory of Open Access Journals (Sweden)

    Marlise van Zyl

    2012-11-01

    Full Text Available As a large part of South Africa’s economy is based on the mining industry, this research focused on exploring the coping strategies of business leaders in the mining industry during an economic downturn. Using qualitative research within a constructivist-interpretive paradigm, the researchers sought a deeper understanding of how mining leaders cope during an economic downturn. A purposive sample of seven executive mining leaders of different mining houses was interviewed and data was analysed using Atlas.ti. A conceptual framework for understanding coping strategies at the individual, group and organisational levels for business leaders during an economic downturn was developed and is discussed here. This study contributed to theory and practice by focusing on coping responses to specific situations within a specific context instead of on general coping strategies.

  19. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    Science.gov (United States)

    Laughlin, M. S.; Murry, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies.

  20. Atacama Rover Astrobiology Drilling Studies: Roving to Find Subsurface Preserved Biomarkers

    Science.gov (United States)

    Glass, B.; Davila, A.; Parro, V.; Quinn, R.; Willis, P.; Brinckerhoff, W.; DiRuggiero, J.; Williams, M.; Bergman, D.; Stoker, C.

    2016-05-01

    The ARADS project is a NASA PSTAR that will drill into a Mars analog site in search of biomarkers. Leading to a field test of an integrated rover-drill system with four prototype in-situ instruments for biomarker detection and analysis.

  1. Extravehicular mobility unit training and astronaut injuries

    Science.gov (United States)

    Strauss, Samuel; Krog, Ralph L.; Feiveson, Alan H.

    2005-01-01

    BACKGROUND: Astronaut spacewalk training can result in a variety of symptom complaints and possible injuries. This study quantified and characterized signs, symptoms, and injuries resulting from extravehicular activity spacesuit training at NASA's Neutral Buoyancy Laboratory, Johnson Space Center, Houston, TX, immersion facility. METHODS: We identified the frequency and incidence of symptoms by location, mechanisms of injury, and effective countermeasures. Recommendations were made to improve injury prevention, astronaut training, test preparation, and training hardware. At the end of each test, a questionnaire was completed documenting signs and symptoms, mechanisms of injury, and countermeasures. RESULTS: Of the 770 tests, there were 190 in which suit symptoms were reported (24.6%). There were a total of 352 reported suit symptom comments. Of those symptoms, 166 were in the hands (47.16%), 73 were in the shoulders (20.7%), and 40 were in the feet (11.4%). Others ranged from 6.0% to 0.28%, respectively, from the legs, arms, neck, trunk, groin, and head. Causal mechanisms for the hands included moisture and hard glove contacts resulting in fingernail injuries; in the shoulders, hard contact with suit components and strain mechanisms; and in the feet, hard boot contact. The severity of symptoms was highest in the shoulders, hands, and feet. CONCLUSIONS: Most signs and symptoms were mild, self-limited, of brief duration, and were well controlled by available countermeasures. Some represented the potential for significant injury with consequences affecting astronaut health and performance. Correction of extravehicular activity training-related injuries requires a multidisciplinary approach to improve prevention, medical intervention, astronaut training, test planning, and suit engineering.

  2. Astronaut Wendy Lawrence participates in training session in the CCT

    Science.gov (United States)

    1994-01-01

    Seated in the pilot's seat of a JSC Shuttle trainer, astronaut Wendy B. Lawrence, STS-67 flight engineer, participates in a training session. The 1992 astronaut class graduate is in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory.

  3. Astronauts Armstrong and Aldrin study rock samples during field trip

    Science.gov (United States)

    1969-01-01

    Astronaut Neil Armstrong, commander of the Apollo 11 lunar landing mission, and Astronaut Edwin Aldrin, Lunar module pilot for Apollo 11, study rock samples during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas.

  4. Eating in space--from an astronaut's perspective

    Science.gov (United States)

    Kerwin, Joseph; Seddon, Rhea

    2002-01-01

    Food systems and meal components are constantly under review and development at the National Aerospace and Space Administration. The goal of this work is to generate a diet that meets the nutrient requirements of astronauts and satiates them. The constraints involved in shorter- and longer-term missions are described. The insight provided by observations of astronauts from the Skylab and Shuttle eras will allow researchers to consider the fact that, for any nutritional regimen to work, it must consider the limitations and taste buds of the individuals involved. Otherwise, the best diet design generated by their work may never be consumed.

  5. Problems of psychological monitoring in astronaut training.

    Science.gov (United States)

    Morgun, V V

    1997-10-01

    Monitoring of the goal-oriented psychological changes of a man during professional training is necessary. The level development of the astronaut psychic features is checked by means of psychological testing with the final aim to evaluate each professionally important psychological qualities and to evaluate in general. The list of psychological features needed for evaluation is determined and empirically selected weight factors based on wide statistical sampling is introduced. Accumulation of psychological test results can predict an astronaut's ability of solving complicated problems in a flight mission. It can help to correct the training process and reveal weakness.

  6. Robotic exploration of the solar system

    CERN Document Server

    Ulivi, Paolo

    In Robotic Exploration of the Solar System, Paolo Ulivi and David Harland provide a comprehensive account of the design and managment of deep-space missions, the spacecraft involved - some flown, others not - their instruments, and their scientific results. This third volume in the series covers launches in the period 1997 to 2003 and features: - a chapter entirely devoted to the Cassini-Huygens mission to Saturn; - coverage of planetary missions of the period, including the Deep Space 1 mission and the Stardust and Hayabusa sample returns from comets and asteroids; - extensive coverage of Mars exploration, the failed 1999 missions, Mars Odyssey, Mars Express, and the twin rovers Spirit and Opportunity. The story will continue in Part 4.

  7. TU Berlin Rover Family for Terrestrial Testing of Complex Planetary Mission Scenarios

    Science.gov (United States)

    Kryza, L.; Brieß, K.

    2018-04-01

    The TU Berlin has developed a family of planetary rovers for educational use and research activities. The paper will introduce these cost-effective systems, which can be used for analogue mission demonstration on Earth.

  8. Exploring the Listening Process to Inform the Development of Strategy Awareness-Raising Materials

    Science.gov (United States)

    Blanco, Maria; Guisado, Juan J.

    2012-01-01

    This article reports on a small-scale qualitative study aimed at exploring the listening process in a group of Spanish beginners in a UK higher education context. The specific aim of the study was to inform the development of materials for listening strategy awareness-raising activities. The exploration was focused on identifying (a) strategies…

  9. Astronaut James Lovell checks body temperature with oral temperature probe

    Science.gov (United States)

    1965-01-01

    Gemini 7 pilot Astronaut James A. Lovell Jr. has temperature check with oral temperature probe attached to his space suit during final preflight preparations for the Gemini 7 space mission. The temperature probe allows doctors to monitor astronauts body temperature at any time during the mission.

  10. Exploring self-regulatory strategies for eating behaviour in Danish adolescents

    DEFF Research Database (Denmark)

    Nureeva, Liliya; Brunsø, Karen; Lähteenmäki, Liisa

    2016-01-01

    – Focusing on improving adolescents’ self-regulatory skills in the domain of eating behaviour is a promising approach in developing future interventions. Originality/value – The present article explores self-regulatory strategies for eating behaviour in adolescence and discusses their relevance.......Purpose – Healthy eating behaviour in adolescence may be negatively affected by lack of self-regulation. The purpose of this paper is to discuss strategies for regulating eating behaviour as formulated by adolescents themselves. Design/methodology/approach – Self-regulatory strategies were elicited...... with concept mapping, which is a group-based method. Three meetings were conducted with each of four school classes in Denmark. Participants in the 12-15-year age group were recruited for the study. At the first meeting, participants had to complete the phrase “Things I can do to ensure my healthy eating are...

  11. Origins of astronautics in Switzerland

    Science.gov (United States)

    Wadlis, A.

    1977-01-01

    Swiss contributions to astronautics are recounted. Scientists mentioned include: Bernoulli and Euler for their early theoretical contributions; the balloonist, Auguste Piccard; J. Ackeret, for his contributions to the study of aerodynamics; the rocket propulsion pioneer, Josef Stemmer; and the Swiss space scientists, Eugster, Stettbacker, Zwicky, and Schurch.

  12. Space station astronauts discuss life in space during AGU interview

    Science.gov (United States)

    Showstack, Randy

    2012-07-01

    Just one day after China's Shenzhou-9 capsule, carrying three Chinese astronauts, docked with the Tiangong-1 space lab on 18 June, Donald Pettit, a NASA astronaut on the International Space Station (ISS), said it is “a step in the right direction” that more people are in space. “Before they launched, there were six people in space,” he said, referring to those on ISS, “and there are 7 billion people on Earth.” The astronauts were “like one in a billion. Now there are nine people in space,” Pettit said during a 19 June interview that he and two other astronauts onboard ISS had with AGU. Pettit continued, “So the gradient of human beings going into space is moving in the right direction. We need to change these numbers so that more and more human beings can call space their home so we can expand off of planet Earth and move out into our solar system.”

  13. Astronauts under high supervision

    International Nuclear Information System (INIS)

    Debiar, A.; Loverini, M.J.; Annibal, M.

    1997-01-01

    The CEA radiobiology and radio-pathology laboratory, together with the CNES (the French space agency), have carried out Biodose, a study on the Mir space station astronauts, which objective was to study the processes and mechanisms of the chromosomal damages induced by cosmic radiations, through physical and biological dosimetric experiments. Results are summarized, which show the unusual nature of the chromosomal abnormalities due to heavy ions

  14. Aircrew Discourse: Exploring Strategies of Information and Action Management

    Science.gov (United States)

    Irwin, Cheryl M.; Veinott, Elizabeth S.; Shafto, Michael G. (Technical Monitor)

    1995-01-01

    This paper explores methodology issues encountered in the analysis of flightcrew communications in aviation simulation research. Examples are provided by two recent studies which are compared on three issues: level of analysis, data definition, and interpretation of the results. The data discussed were collected in a study comparing two levels of aircraft automation. The first example is an investigation of how pilots' information transfer strategies differed as a function of automation during low and high-workload flight phases. The second study focuses on how crews managed actions in the two aircraft during a ten minute, high-workload flight segment. Results indicated that crews in the two aircraft differed in their strategies of information and action management. The differences are discussed in terms of their operational and research significance.

  15. Existential risks: exploring a robust risk reduction strategy.

    Science.gov (United States)

    Jebari, Karim

    2015-06-01

    A small but growing number of studies have aimed to understand, assess and reduce existential risks, or risks that threaten the continued existence of mankind. However, most attention has been focused on known and tangible risks. This paper proposes a heuristic for reducing the risk of black swan extinction events. These events are, as the name suggests, stochastic and unforeseen when they happen. Decision theory based on a fixed model of possible outcomes cannot properly deal with this kind of event. Neither can probabilistic risk analysis. This paper will argue that the approach that is referred to as engineering safety could be applied to reducing the risk from black swan extinction events. It will also propose a conceptual sketch of how such a strategy may be implemented: isolated, self-sufficient, and continuously manned underground refuges. Some characteristics of such refuges are also described, in particular the psychosocial aspects. Furthermore, it is argued that this implementation of the engineering safety strategy safety barriers would be effective and plausible and could reduce the risk of an extinction event in a wide range of possible (known and unknown) scenarios. Considering the staggering opportunity cost of an existential catastrophe, such strategies ought to be explored more vigorously.

  16. Nevada Test Site craters used for astronaut training

    Science.gov (United States)

    Moore, H. J.

    1977-01-01

    Craters produced by chemical and nuclear explosives at the Nevada Test Site were used to train astronauts before their lunar missions. The craters have characteristics suitable for reconnaissance-type field investigations. The Schooner test produced a crater about 300 m across and excavated more than 72 m of stratigraphic section deposited in a fairly regular fashion so that systematic observations yield systematic results. Other features common on the moon, such as secondary craters and glass-coated rocks, are present at Schooner crater. Smaller explosive tests on Buckboard Mesa excavated rocks from three horizontal alteration zones within basalt flows so that the original sequence of the zones could be determined. One crater illustrated the characteristics of craters formed across vertical boundaries between rock units. Although the exercises at the Nevada Test Site were only a small part of the training of the astronauts, voice transcripts of Apollo missions 14, 16, and 17 show that the exercises contributed to astronaut performance on the moon.

  17. Orion's Powered Flight Guidance Burn Options for Near Term Exploration Missions

    Science.gov (United States)

    Fill, Thomas; Goodman, John; Robinson, Shane

    2018-01-01

    NASA's Orion exploration spacecraft will fly more demanding mission profiles than previous NASA human flight spacecraft. Missions currently under development are destined for cislunar space. The EM-1 mission will fly unmanned to a Distant Retrograde Orbit (DRO) around the Moon. EM-2 will fly astronauts on a mission to the lunar vicinity. To fly these missions, Orion requires powered flight guidance that is more sophisticated than the orbital guidance flown on Apollo and the Space Shuttle. Orion's powered flight guidance software contains five burn guidance options. These five options are integrated into an architecture based on a proven shuttle heritage design, with a simple closed-loop guidance strategy. The architecture provides modularity, simplicity, versatility, and adaptability to future, yet-to-be-defined, exploration mission profiles. This paper provides a summary of the executive guidance architecture and details the five burn options to support both the nominal and abort profiles for the EM-1 and EM-2 missions.

  18. Strategy and perspective for uranium exploration in Egypt

    International Nuclear Information System (INIS)

    Hassan, M.A.; Salman, A.B.; Assaf, H.S.; Mahdy, M.M.

    1995-01-01

    Uranium exploration started in Egypt about three decades ago. This was performed by applying integrated airborne and ground radiometric prospecting. The latter was conducted upon selected areas having rather favorable geological criteria. These activities resulted in the discovery of great numbers of radiometric anomalies, with several uranium occurrences in various geologic environments in granitic and sedimentary rocks. Some of these uranium occurrences show good potential for developing into workable uranium deposits. Small-scale exploratory tunnelling and drilling works have been carried out at some of these occurrences. Leaching studies and pilot experiments were carried out on technological samples to evaluate ore's suitability for uranium extraction. However, no assured reserves of uranium have been reached yet. The demands for uranium to satisfy the near future Egyptian nuclear power generation necessitates some development in the national strategy for uranium exploration. This will be achieved through intense programmes for ground geophysics and drilling from surface and underground mining works, in addition to radon emanometry and logging of oil and gas wells. Moreover, non conventional procedures for uranium extraction such as heap-leaching may be followed to exploit small-scale uranium deposits. In this developed strategy, the present uranium occurrences are modellized and categorized following the IAEA classification. The characteristics of the present uranium occurrences will be utilized in prospecting new areas. Subsidiary resources in phosphorites, black sands and rare metal deposits could supply additional quantities of uranium, in addition to thorium and rare earth elements. (author). 34 refs, 4 figs, 1 tab

  19. Pancam and Microscopic Imager observations of dust on the Spirit Rover: Cleaning events, spectral properties, and aggregates

    Science.gov (United States)

    Vaughan, Alicia F.; Johnson, Jeffrey R.; Herkenhoff, Kenneth E.; Sullivan, Robert; Landis, Geoffrey A.; Goetz, Walter; Madsen, Morten B.

    2010-01-01

    This work describes dust deposits on the Spirit Rover over 2000 sols through examination of Pancam and Microscopic Imager observations of specific locations on the rover body, including portions of the solar array, Pancam and Mini-TES calibration targets, and the magnets. This data set reveals the three "cleaning events" experienced by Spirit to date, the spectral properties of dust, and the tendency of dust particles to form aggregates 100 um and larger.

  20. Intraocular Lens Use in an Astronaut During Long Duration Spaceflight.

    Science.gov (United States)

    Mader, Thomas H; Gibson, C Robert; Schmid, Josef F; Lipsky, William; Sargsyan, Ashot E; Garcia, Kathleen; Williams, Jeffrey N

    2018-01-01

    The purpose of this paper is to report the first use of an intraocular lens (IOL) in an astronaut during long duration spaceflight (LDSF). An astronaut developed a unilateral cataract and underwent phacoemulsification with insertion of an acrylic IOL. Approximately 15 mo later he flew on a Soyuz spacecraft to the International Space Station (ISS), where he successfully completed a 6-mo mission. Ocular examination, including ultrasound (US), was performed before, during, and after his mission and he was questioned regarding visual changes during each portion of his flight. We documented no change in IOL position during his space mission. This astronaut reported excellent and stable vision during liftoff, entry into microgravity (MG), 6 mo on the ISS, descent, and landing. Our results suggest that modern IOLs are stable, effective, and well tolerated during LDSF.Mader TH, Gibson CR, Schmid JF, Lipsky W, Sargsyan AE, Garcia K, Williams JN. Intraocular lens use in an astronaut during long duration spaceflight. Aerosp Med Hum Perform. 2018; 89(1):63-65.

  1. Spaceflight modulates gene expression in the whole blood of astronauts.

    Science.gov (United States)

    Barrila, Jennifer; Ott, C Mark; LeBlanc, Carly; Mehta, Satish K; Crabbé, Aurélie; Stafford, Phillip; Pierson, Duane L; Nickerson, Cheryl A

    2016-01-01

    Astronauts are exposed to a unique combination of stressors during spaceflight, which leads to alterations in their physiology and potentially increases their susceptibility to disease, including infectious diseases. To evaluate the potential impact of the spaceflight environment on the regulation of molecular pathways mediating cellular stress responses, we performed a first-of-its-kind pilot study to assess spaceflight-related gene-expression changes in the whole blood of astronauts. Using an array comprised of 234 well-characterized stress-response genes, we profiled transcriptomic changes in six astronauts (four men and two women) from blood preserved before and immediately following the spaceflight. Differentially regulated transcripts included those important for DNA repair, oxidative stress, and protein folding/degradation, including HSP90AB1 , HSP27 , GPX1 , XRCC1 , BAG-1 , HHR23A , FAP48 , and C-FOS . No gender-specific differences or relationship to number of missions flown was observed. This study provides a first assessment of transcriptomic changes occurring in the whole blood of astronauts in response to spaceflight.

  2. Synergistic action of gravity and temperature on the motor system within the lifespan: a "Baby Astronaut" hypothesis.

    Science.gov (United States)

    Meigal, Alexander Yu

    2013-03-01

    Here we describe GATO (gravity, age, thermoregulation, and oxygenation) hypothesis (or a "Baby Astronaut" hypothesis) which we suggest to explain synergistic effect of these factors on the motor system. Taken separately, microgravity (in spaceflight, G~0), the early age, heat and hypoxia exert identical effect on the motor system. We posit that synergy of these factors originate from their synchronicity during intrauterine immersion (analog microgravity) of the fetus in warm hypoxic condition. We further postulate three successive motor adaptive strategies, driven lifelong by gravity as the key factor. The first by age, fetal/microgravity (FM)-strategy, induced by the intrauterine immersion of the fetus, is based on domination of fast type muscle fibers. After birth, thought to be analog for landing from orbit, newborn is subjected to combined influence of cooler ambient temperature, normoxia, and 1G Earth gravity, which cooperatively form a slower GE-strategy. Eventually, healthy ageing results in further domination of slow type muscle fibers that forms the slowest (SL)-strategy. Our hypothesis implies that specific sensory conditions may substitute for each other owing to their synergistic action on the motor system. According to GATO hypothesis heating and hypoxia may be considered as "pro-microgravity" factors, while cold and hyperoxia - as "pro-gravity" ones. As such, cold may act as a partial "surrogate" for gravity, estimated as ~0.2G. That may have potential to elaborate countermeasures for muscle atrophy in astronauts either on-board in long-term spaceflight or for post-flight rehabilitation. Based on GATO hypothesis, predictions on muscle remodeling caused by illumination, sound/noise, and gravidity are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Development of a computational model for astronaut reorientation.

    Science.gov (United States)

    Stirling, Leia; Willcox, Karen; Newman, Dava

    2010-08-26

    The ability to model astronaut reorientations computationally provides a simple way to develop and study human motion control strategies. Since the cost of experimenting in microgravity is high, and underwater training can lead to motions inappropriate for microgravity, these techniques allow for motions to be developed and well-understood prior to any microgravity exposure. By including a model of the current space suit, we have the ability to study both intravehicular and extravehicular activities. We present several techniques for rotating about the axes of the body and show that motions performed by the legs create a greater net rotation than those performed by the arms. Adding a space suit to the motions was seen to increase the resistance torque and limit the available range of motion. While rotations about the body axes can be performed in the current space suit, the resulting motions generated a reduced rotation when compared to the unsuited configuration. 2010 Elsevier Ltd. All rights reserved.

  4. Haige astronaut venitab Atlantise missiooni / Liisi Poll

    Index Scriptorium Estoniae

    Poll, Liisi, 1980-

    2008-01-01

    Saksamaa astronaut ei saanud haiguse tõttu minna avakosmosesse, mistõttu lükkus edasi ka Euroopa Kosmoseagentuuri laborimooduli paigaldamine rahvusvahelisse kosmosejaama (ISS). Lisa: Teaduslabor Columbos

  5. Apollo 11 astronaut Neil Armstrong suits up before launch

    Science.gov (United States)

    1969-01-01

    Apollo 11 Commander Neil Armstrong prepares to put on his helmet with the assistance of a spacesuit technician during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A Armstrong and Michael Collins, will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  6. Apollo 11 astronaut Neil Armstrong looks over flight plans

    Science.gov (United States)

    1969-01-01

    Apollo 11 Commander Neil Armstrong is looking over flight plans while being assisted by a spacesuit technician during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A. Armstrong and Michael Collins will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  7. EAC training and medical support for International Space Station astronauts.

    Science.gov (United States)

    Messerschmid, E; Haignere, J P; Damian, K; Damann, V

    2000-11-01

    The operation of the International Space Station (ISS) will be a global multilateral endeavour. Each International Partner will be responsible for the operation of its elements and for providing a crew complement proportional to its share of the overall resources. The preparations of the European Astronaut Centre to furnish training and medical support for the ISS astronauts are described.

  8. High-LET particle exposure of Skylab astronauts

    International Nuclear Information System (INIS)

    Benton, E.V.; Peterson, D.D.; Bailey, J.V.; Parnell, T.

    1977-01-01

    High-LET particle radiation was registered in nuclear track recording plastic dosimeters worn on the wrists of Skylab astronauts and located in a heavily shielded film vault. The mission-average planar flux of high-LET particles with LET >= 100 keV/micron . tissue has been determined to be 2.7 +- 0.6 particles/cm 2 . day . 2π sr and 0.34 +- 0.4 particles/cm 2 . day . 2π sr, respectively, for the nine astronauts and for the film vault. Comparison of results representative of a wide range of shielding depths reveals that the magnitude and slope of the integral LET spectrum of high-LET particles inside spacecraft are proportional to the amount of shielding. (author)

  9. Biological dosimetry in astronauts

    International Nuclear Information System (INIS)

    Durante, M.

    1996-01-01

    Due to the unavoidable presence of ionizing radiation in space, astronauts are classified as radiation workers. I fact, dose rate in space is considerably higher than on earth. Radiation dose absorbed after one day in space is close to the dose received by all natural sources, excluding radon, in one year on earth. Large solar particle events can considerably increase this dose, and could even be life threatening for an inadequately protected crew

  10. Low computation vision-based navigation for a Martian rover

    Science.gov (United States)

    Gavin, Andrew S.; Brooks, Rodney A.

    1994-01-01

    Construction and design details of the Mobot Vision System, a small, self-contained, mobile vision system, are presented. This system uses the view from the top of a small, roving, robotic vehicle to supply data that is processed in real-time to safely navigate the surface of Mars. A simple, low-computation algorithm for constructing a 3-D navigational map of the Martian environment to be used by the rover is discussed.

  11. Determining spherical lens correction for astronaut training underwater.

    Science.gov (United States)

    Porter, Jason; Gibson, C Robert; Strauss, Samuel

    2011-09-01

    To develop a model that will accurately predict the distance spherical lens correction needed to be worn by National Aeronautics and Space Administration astronauts while training underwater. The replica space suit's helmet contains curved visors that induce refractive power when submersed in water. Anterior surface powers and thicknesses were measured for the helmet's protective and inside visors. The impact of each visor on the helmet's refractive power in water was analyzed using thick lens calculations and Zemax optical design software. Using geometrical optics approximations, a model was developed to determine the optimal distance spherical power needed to be worn underwater based on the helmet's total induced spherical power underwater and the astronaut's manifest spectacle plane correction in air. The validity of the model was tested using data from both eyes of 10 astronauts who trained underwater. The helmet's visors induced a total power of -2.737 D when placed underwater. The required underwater spherical correction (FW) was linearly related to the spectacle plane spherical correction in air (FAir): FW = FAir + 2.356 D. The mean magnitude of the difference between the actual correction worn underwater and the calculated underwater correction was 0.20 ± 0.11 D. The actual and calculated values were highly correlated (r = 0.971) with 70% of eyes having a difference in magnitude of astronauts. The model accurately predicts the actual values worn underwater and can be applied (more generally) to determine a suitable spectacle lens correction to be worn behind other types of masks when submerged underwater.

  12. Exploring Unanticipated Consequences of Strategy Amongst Stakeholder Segments: The Case of a European Revenue Service

    NARCIS (Netherlands)

    Money, K.G.; Hillenbrand, C.; Henseler, J.; Da Camara, N.

    2012-01-01

    This article applies FIMIX-PLS segmentation methodology to detect and explore unanticipated reactions to organisational strategy among stakeholder segments. For many large organisations today, the tendency to apply a “one-size-fits-all” strategy to members of a stakeholder population, commonly

  13. Biomechanical Modeling, Simulation, and Comparison of Human Arm Motion to Mitigate Astronaut Task during Extra Vehicular Activity

    OpenAIRE

    B. Vadiraj; S. N. Omkar; B. Kapil Bharadwaj; Yash Vardhan Gupta

    2016-01-01

    During manned exploration of space, missions will require astronaut crewmembers to perform Extra Vehicular Activities (EVAs) for a variety of tasks. These EVAs take place after long periods of operations in space, and in and around unique vehicles, space structures and systems. Considering the remoteness and time spans in which these vehicles will operate, EVA system operations should utilize common worksites, tools and procedures as much as possible to increase the efficiency of training and...

  14. Astronaut Dale Gardner holds up for sale sign after EVA

    Science.gov (United States)

    1984-01-01

    Astronaut Dale A. Gardner, having just completed the major portion of his second extravehicular activity (EVA) period in three days, holds up a 'for sale' sign. Astronaut Joseph P. ALlen IV, who also participated in the two EVA's, is reflected in Gardner's helmet visor. A portion of each of two recovered satellites is in the lower right corner, with Westar nearer Discovery's aft.

  15. Astronauts Cooper and Conrad prepare cameras during visual acuity tests

    Science.gov (United States)

    1965-01-01

    Astronauts L. Gordon Cooper Jr. (left), command pilot, and Charles Conrad Jr., pilot, the prime crew of the Gemini 5 space flight, prepare their cameras while aboard a C-130 aircraft flying near Laredo. The two astronauts are taking part in a series of visual acuity experiments to aid them in learning to identify known terrestrial features under controlled conditions.

  16. Some psychological and engineering aspects of the extravehicular activity of astronauts.

    Science.gov (United States)

    Khrunov, E V

    1973-01-01

    One of the main in-flight problems being fulfilled by astronauts is the preparation for and realization of egress into open space for the purpose of different kinds of extravehicular activity, such as, the performance of scientific experiments, repairing and dismantling operations etc. The astronaut's activity outside the space vehicle is the most difficult item of the space flight programme, which is complicated by a number of space factors affecting a man, viz. dynamic weightlessness, work in a space suit under conditions of excessive pressure, difficulties of space orientation etc. The peculiarities mentioned require special training of the cosmonaut. The physical training involves a series of exercises forming the body-control habits necessary for work in a state of weightlessness. In a new kind of training use is made of equipment simulating the state of weightlessness. From analysis of the available data and the results of my own investigations during ground training and the Soyuz 4 and 5 flights one can establish the following peculiarities of the astronaut's extravehicular activity: (1) Operator response lag in the planned algorithm; (ii) systematic appearance of some stereotype errors in the mounting and dismantling of the outer equipment and in scientific-technical experiments; (iii) a high degree of emotional strain and 30-35% decrease in in-flight working capacity of the astronaut compared with the ground training data; (iv) a positive influence of space adaptation on the cosmonaut and the efficiency of his work in open space; (v) the necessity for further engineering and psychological analysis of the astronaut's activity under conditions of the long space flight of the multi-purpose orbital station. One of the main reasons for the above peculiarities is the violation of the control-coordination functions of the astronaut in the course of the dynamical operations. The paper analyses the extravehicular activity of the astronaut and presents some

  17. Radiation hazards to astronauts; Strahlengefahren fuer Astronauten

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, R.; Hajek, M. [Inst. of Atomic and Subatomic Physics, Vienna Univ. of Tech. (Austria); Berger, T.; Reitz, G. [Inst. of Aerospace Medicine, German Aerospace Center (Germany); Bilski, P. [Henryk Niewodniczanski Inst. of Nuclear Physics, Polish Academy of Sciences (Poland); Puchalska, M. [Henryk Niewodniczanski Inst. of Nuclear Physics, Polish Academy of Sciences (Poland); Dept. of Applied Physics, Chalmers Univ. of Tech. (Sweden)

    2009-07-01

    Reliable assessment of health risks to astronaut crews is pivotal in the design of future expeditions into interplanetary space and requires knowledge of absorbed radiation doses at the level of critical radiosensitive organs and tissues. Within the European MATROSHKA experiment, the dose profile in an anthropomorphic phantom body was investigated at intra- and extravehicular activities on the International Space Station. The effective scientific exploitation of obtained dosimetric data is ensured within the 7{sup th} EU Framework Programme project HAMLET. Based on experimental data and radiation transport calculations, a three-dimensional model for the distribution of radiation dose in an astronaut's body shall be developed to further refine estimations of radiation risks on interplanetary long-term missions. (orig.)

  18. Correlating multispectral imaging and compositional data from the Mars Exploration Rovers and implications for Mars Science Laboratory

    Science.gov (United States)

    Anderson, Ryan B.; Bell, James F.

    2013-03-01

    In an effort to infer compositional information about distant targets based on multispectral imaging data, we investigated methods of relating Mars Exploration Rover (MER) Pancam multispectral remote sensing observations to in situ alpha particle X-ray spectrometer (APXS)-derived elemental abundances and Mössbauer (MB)-derived abundances of Fe-bearing phases at the MER field sites in Gusev crater and Meridiani Planum. The majority of the partial correlation coefficients between these data sets were not statistically significant. Restricting the targets to those that were abraded by the rock abrasion tool (RAT) led to improved Pearson’s correlations, most notably between the red-blue ratio (673 nm/434 nm) and Fe3+-bearing phases, but partial correlations were not statistically significant. Partial Least Squares (PLS) calculations relating Pancam 11-color visible to near-IR (VNIR; ∼400-1000 nm) “spectra” to APXS and Mössbauer element or mineral abundances showed generally poor performance, although the presence of compositional outliers led to improved PLS results for data from Meridiani. When the Meridiani PLS model for pyroxene was tested by predicting the pyroxene content of Gusev targets, the results were poor, indicating that the PLS models for Meridiani are not applicable to data from other sites. Soft Independent Modeling of Class Analogy (SIMCA) classification of Gusev crater data showed mixed results. Of the 24 Gusev test regions of interest (ROIs) with known classes, 11 had >30% of the pixels in the ROI classified correctly, while others were mis-classified or unclassified. k-Means clustering of APXS and Mössbauer data was used to assign Meridiani targets to compositional classes. The clustering-derived classes corresponded to meaningful geologic and/or color unit differences, and SIMCA classification using these classes was somewhat successful, with >30% of pixels correctly classified in 9 of the 11 ROIs with known classes. This work shows that

  19. Simulated Partners and Collaborative Exercise (SPACE to boost motivation for astronauts: study protocol

    Directory of Open Access Journals (Sweden)

    Deborah L. Feltz

    2016-11-01

    Full Text Available Abstract Background Astronauts may have difficulty adhering to exercise regimens at vigorous intensity levels during long space missions. Vigorous exercise is important for aerobic and musculoskeletal health during space missions and afterwards. A key impediment to maintaining vigorous exercise is motivation. Finding ways to motivate astronauts to exercise at levels necessary to mitigate reductions in musculoskeletal health and aerobic capacity have not been explored. The focus of Simulated Partners and Collaborative Exercise (SPACE is to use recently documented motivation gains in task groups to heighten the exercise experience for participants, similar in age and fitness to astronauts, for vigorous exercise over a 6-month exercise regimen. A secondary focus is to determine the most effective features in simulated exercise partners for enhancing enjoyment, self-efficacy, and social connectedness. The aims of the project are to (1 Create software-generated (SG exercise partners and interface software with a cycle ergometer; (2 Pilot test design features of SG partners within a video exercise game (exergame, and (3 Test whether exercising with an SG partner over 24-week time period, compared to exercising alone, leads to greater work effort, aerobic capacity, muscle strength, exercise adherence, and enhanced psychological parameters. Methods/Design This study was approved by the Institutional Review Board (IRB. Chronic exercisers, between the ages 30 and 62, were asked to exercise on a cycle ergometer 6 days per week for 24 weeks using a routine consisting of alternating between moderate-intensity continuous and high-intensity interval sessions. Participants were assigned to one of three conditions: no partner (control, always faster SG partner, or SG partner who was not always faster. Participants were told they could vary cycle ergometer output to increase or decrease intensity during the sessions. Mean change in cycle ergometer power (watts

  20. Astronaut Glenn in the Friendship 7

    Science.gov (United States)

    1962-01-01

    Astronaut John Glenn in the Friendship 7 capsule during the first manned orbital flight, the MA-6 mission. Boosted by the Mercury-Atlas vehicle, a modified Atlas (intercontinental ballistic missile), the MA-6 mission lasted for 5 hours and orbited the Earth three times.

  1. Testing the efficiency of rover science protocols for robotic sample selection: A GeoHeuristic Operational Strategies Test

    Science.gov (United States)

    Yingst, R. A.; Bartley, J. K.; Chidsey, T. C.; Cohen, B. A.; Gilleaudeau, G. J.; Hynek, B. M.; Kah, L. C.; Minitti, M. E.; Williams, R. M. E.; Black, S.; Gemperline, J.; Schaufler, R.; Thomas, R. J.

    2018-05-01

    The GHOST field tests are designed to isolate and test science-driven rover operations protocols, to determine best practices. During a recent field test at a potential Mars 2020 landing site analog, we tested two Mars Science Laboratory data-acquisition and decision-making methods to assess resulting science return and sample quality: a linear method, where sites of interest are studied in the order encountered, and a "walkabout-first" method, where sites of interest are examined remotely before down-selecting to a subset of sites that are interrogated with more resource-intensive instruments. The walkabout method cost less time and fewer resources, while increasing confidence in interpretations. Contextual data critical to evaluating site geology was acquired earlier than for the linear method, and given a higher priority, which resulted in development of more mature hypotheses earlier in the analysis process. Combined, this saved time and energy in the collection of data with more limited spatial coverage. Based on these results, we suggest that the walkabout method be used where doing so would provide early context and time for the science team to develop hypotheses-critical tests; and that in gathering context, coverage may be more important than higher resolution.

  2. Astronaut suitability requirements and selection process; Uchu hikoshi tanjo eno michi (shishitsu yokyu)

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, H. [National Space Development Agency of Japan, Tokyo (Japan)

    1999-10-05

    Manned space activities at National Space Development Agency of Japan and the suitability requirements that an astronaut is supposed to satisfy are described. At the first phase, candidates have to participate in a manned space experiment utilizing a NASA space shuttle and, in 1985, Mori, Mukai, and Doi were selected to be payload specialists. At the second phase, Astronauts Wakata, Doi, and Mori were sent to the mission specialist training course, this being one of the jobs aboard a space shuttle, which was for preparing for the construction and operation of the international space station. In January, 1996, Astronaut Wakata performed extravehicular tool manipulation and so forth, and Astronaut Doi did the same in 1997. The endowments that an astronaut is expected to have include undoubted professionalism, adaptability to branches out of his field, adaptability to a prolonged stay in space, spirit of teamwork and coordination, and ability to perform wide range of duties aboard an international space station. (NEDO)

  3. Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover

    Science.gov (United States)

    Vago, Jorge L.; Westall, Frances; Pasteur Instrument Team; Pasteur Landing Team; Coates, Andrew J.; Jaumann, Ralf; Korablev, Oleg; Ciarletti, Valérie; Mitrofanov, Igor; Josset, Jean-Luc; De Sanctis, Maria Cristina; Bibring, Jean-Pierre; Rull, Fernando; Goesmann, Fred; Steininger, Harald; Goetz, Walter; Brinckerhoff, William; Szopa, Cyril; Raulin, François; Westall, Frances; Edwards, Howell G. M.; Whyte, Lyle G.; Fairén, Alberto G.; Bibring, Jean-Pierre; Bridges, John; Hauber, Ernst; Ori, Gian Gabriele; Werner, Stephanie; Loizeau, Damien; Kuzmin, Ruslan O.; Williams, Rebecca M. E.; Flahaut, Jessica; Forget, François; Vago, Jorge L.; Rodionov, Daniel; Korablev, Oleg; Svedhem, Håkan; Sefton-Nash, Elliot; Kminek, Gerhard; Lorenzoni, Leila; Joudrier, Luc; Mikhailov, Viktor; Zashchirinskiy, Alexander; Alexashkin, Sergei; Calantropio, Fabio; Merlo, Andrea; Poulakis, Pantelis; Witasse, Olivier; Bayle, Olivier; Bayón, Silvia; Meierhenrich, Uwe; Carter, John; García-Ruiz, Juan Manuel; Baglioni, Pietro; Haldemann, Albert; Ball, Andrew J.; Debus, André; Lindner, Robert; Haessig, Frédéric; Monteiro, David; Trautner, Roland; Voland, Christoph; Rebeyre, Pierre; Goulty, Duncan; Didot, Frédéric; Durrant, Stephen; Zekri, Eric; Koschny, Detlef; Toni, Andrea; Visentin, Gianfranco; Zwick, Martin; van Winnendael, Michel; Azkarate, Martín; Carreau, Christophe; ExoMars Project Team

    2017-07-01

    The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information.

  4. Discrete event simulation for exploring strategies: an urban water management case.

    Science.gov (United States)

    Huang, Dong-Bin; Scholz, Roland W; Gujer, Willi; Chitwood, Derek E; Loukopoulos, Peter; Schertenleib, Roland; Siegrist, Hansruedi

    2007-02-01

    This paper presents a model structure aimed at offering an overview of the various elements of a strategy and exploring their multidimensional effects through time in an efficient way. It treats a strategy as a set of discrete events planned to achieve a certain strategic goal and develops a new form of causal networks as an interfacing component between decision makers and environment models, e.g., life cycle inventory and material flow models. The causal network receives a strategic plan as input in a discrete manner and then outputs the updated parameter sets to the subsequent environmental models. Accordingly, the potential dynamic evolution of environmental systems caused by various strategies can be stepwise simulated. It enables a way to incorporate discontinuous change in models for environmental strategy analysis, and enhances the interpretability and extendibility of a complex model by its cellular constructs. It is exemplified using an urban water management case in Kunming, a major city in Southwest China. By utilizing the presented method, the case study modeled the cross-scale interdependencies of the urban drainage system and regional water balance systems, and evaluated the effectiveness of various strategies for improving the situation of Dianchi Lake.

  5. Mars' surface radiation environment measured with the Mars science laboratory's curiosity rover

    NARCIS (Netherlands)

    Hassler, D.M.; Zeitlin, C.; Wimmer-Schweingruber, R.F.; Ehresmann, B.; Rafkin, S.; Eigenbrode, J.L.; Brinza, D.E.; Weigle, G.; Böttcher, S.; Böhm, E.; Burmeister, S.; Guo, J.; Köhler, J.; Martin, C.; Reitz, G.; Cucinotta, F.A.; Kim, M.-H.; Grinspoon, D.; Bullock, M.A.; Posner, A.; Gómez-Elvira, J.; Vasavada, A.; Grotzinger, J.P.; MSL Science Team, the|info:eu-repo/dai/nl/292012217

    2014-01-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory’s Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose

  6. Astronaut C. Michael Foale is briefed on use of Sky Genie

    Science.gov (United States)

    1994-01-01

    Astronaut C. Michael Foale, STS-63 mission specialist, is briefed on the use of Sky Genie device by Karin L. Porter. The device would aid in emergency egress operations aboard a troubled Space Shuttle. Porter, an employee of Rockwell International, helps train astronauts in egress procedures at JSC's Shuttle mockup and integration laboratory.

  7. Technology transfer from the space exploration initiative

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Space exploration has demonstrated that it stimulates the national economy by creating new and improved products, increased employment, and provides a stimulus to education. The exploration of the Moon and Mars under the Space Exploration Initiative has the potential of accelerating this stimulates to the economy. It is difficult to identify all of the concrete ways this will be accomplished. However, many areas can be identified. The space exploration building blocks of power, propulsion, spacecraft, robotics, rovers, mining and manufacturing, communications, navigation, habitats, life support and infrastructures are reviewed to identify possible technology areas. For example, better means for working in hazardous areas and handling hazardous waste are potential outcomes of this initiative. Methods to produce higher quality goods and improve America's competitiveness in manufacturing will undoubtedly evolve from the need to produce products that must last many years in the harsh environments of space and planetary surfaces. Some ideas for technology transfer are covered in this paper

  8. Field trial of a dual-wavelength fluorescent emission (L.I.F.E.) instrument and the Magma White rover during the MARS2013 Mars analog mission.

    Science.gov (United States)

    Groemer, Gernot; Sattler, Birgit; Weisleitner, Klemens; Hunger, Lars; Kohstall, Christoph; Frisch, Albert; Józefowicz, Mateusz; Meszyński, Sebastian; Storrie-Lombardi, Michael; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Frischauf, Norbert; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ragonig, Christoph; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sams, Sebastian; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Soucek, Alexander; Stadler, Andrea; Stummer, Florian; Stumptner, Willibald; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    Abstract We have developed a portable dual-wavelength laser fluorescence spectrometer as part of a multi-instrument optical probe to characterize mineral, organic, and microbial species in extreme environments. Operating at 405 and 532 nm, the instrument was originally designed for use by human explorers to produce a laser-induced fluorescence emission (L.I.F.E.) spectral database of the mineral and organic molecules found in the microbial communities of Earth's cryosphere. Recently, our team had the opportunity to explore the strengths and limitations of the instrument when it was deployed on a remote-controlled Mars analog rover. In February 2013, the instrument was deployed on board the Magma White rover platform during the MARS2013 Mars analog field mission in the Kess Kess formation near Erfoud, Morocco. During these tests, we followed tele-science work flows pertinent to Mars surface missions in a simulated spaceflight environment. We report on the L.I.F.E. instrument setup, data processing, and performance during field trials. A pilot postmission laboratory analysis determined that rock samples acquired during the field mission exhibited a fluorescence signal from the Sun-exposed side characteristic of chlorophyll a following excitation at 405 nm. A weak fluorescence response to excitation at 532 nm may have originated from another microbial photosynthetic pigment, phycoerythrin, but final assignment awaits development of a comprehensive database of mineral and organic fluorescence spectra. No chlorophyll fluorescence signal was detected from the shaded underside of the samples.

  9. Astronaut training manual

    Science.gov (United States)

    Coleman, E. A.

    1980-01-01

    Scientific information from previous space flights, space medicine, exercise physiology, and sports medicine was used to prepare a physical fitness manual suitable for use by members of the NASA astronaut population. A variety of scientifically valid exercise programs and activities suitable for the development of physical fitness are provided. Programs, activities, and supportive scientific data are presented in a concise, easy to read format so as to permit the user to select his or her mode of training with confidence and devote time previously spent experimenting with training routines to preparation for space flight. The programs and activities included were tested and shown to be effective and enjoyable.

  10. Astronauts Ross and Helms at CAPCOM station during STS-61 simulations

    Science.gov (United States)

    1993-01-01

    Astronauts Jerry L. Ross and Susan J. Helms are pictured at the Spacecraft Communicators console during joint integrated simulations for the STS-61 mission. Astronauts assigned to extravehicular activity (EVA) tasks with the Hubble Space Telescope (HST) were simultaneously rehearsing in a neutral buoyancy tank at the Marshall Space Flight Center (MSFC) in Alabama.

  11. Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities

    Science.gov (United States)

    Lowes, Leslie; Lindstrom, Marilyn; Stockman, Stephanie; Scalice, Daniela; Allen, Jaclyn; Tobola, Kay; Klug, Sheri; Harmon, Art

    2004-01-01

    NASA's Solar System Exploration Program is entering an unprecedented period of exploration and discovery. Its goal is to understand the origin and evolution of the solar system and life within it. SSE missions are operating or in development to study the far reaches of our solar system and beyond. These missions proceed in sequence for each body from reconnaissance flybys through orbiters and landers or rovers to sample returns. SSE research programs develop new instruments, analyze mission data or returned samples, and provide experimental or theoretical models to aid in interpretation.

  12. Philosophy on astronaut protection: A physician's perspective

    International Nuclear Information System (INIS)

    Holloway, H.

    1997-01-01

    The National Aeronautics and Space Administration has a responsibility to assure that proper ethical standards are applied in establishing and applying limits for the control of radiation doses to the astronauts. Such a responsibility obviously includes assuring that the astronauts are properly informed of the hazards associated with individuals missions and that they agree to accept the associated risks. The responsibility, however, does not end there. It includes a need to discuss how to initiate a discourse for developing the related ethical standards and how to determine who should be involved in their establishment. To assure that such proper communications on matters that encompass the realms of policy, science, politics, and ethics. There is also a need to mesh public perceptions with those of the scientific and technical community. This will be a monumental undertaking

  13. Search for life on Mars in surface samples: Lessons from the 1999 Marsokhod rover field experiment

    Science.gov (United States)

    Newsom, Horton E.; Bishop, J.L.; Cockell, C.; Roush, T.L.; Johnson, J. R.

    2001-01-01

    The Marsokhod 1999 field experiment in the Mojave Desert included a simulation of a rover-based sample selection mission. As part of this mission, a test was made of strategies and analytical techniques for identifying past or present life in environments expected to be present on Mars. A combination of visual clues from high-resolution images and the detection of an important biomolecule (chlorophyll) with visible/near-infrared (NIR) spectroscopy led to the successful identification of a rock with evidence of cryptoendolithic organisms. The sample was identified in high-resolution images (3 times the resolution of the Imager for Mars Pathfinder camera) on the basis of a green tinge and textural information suggesting the presence of a thin, partially missing exfoliating layer revealing the organisms. The presence of chlorophyll bands in similar samples was observed in visible/NIR spectra of samples in the field and later confirmed in the laboratory using the same spectrometer. Raman spectroscopy in the laboratory, simulating a remote measurement technique, also detected evidence of carotenoids in samples from the same area. Laboratory analysis confirmed that the subsurface layer of the rock is inhabited by a community of coccoid Chroococcidioposis cyanobacteria. The identification of minerals in the field, including carbonates and serpentine, that are associated with aqueous processes was also demonstrated using the visible/NIR spectrometer. Other lessons learned that are applicable to future rover missions include the benefits of web-based programs for target selection and for daily mission planning and the need for involvement of the science team in optimizing image compression schemes based on the retention of visual signature characteristics. Copyright 2000 by the American Geophysical Union.

  14. Leisure time activities in space: A survey of astronauts and cosmonauts

    Science.gov (United States)

    Kelly, Alan D.; Kanas, Nick

    Questionnaires were returned from 54 astronauts and cosmonauts which addressed preferences for media and media-generated subjects that could be used to occupy leisure time in space. Ninety-three percent of the respondents had access to records or audio cassettes, and cosmonauts had greater access than astronauts to multiple media. Cosmonauts and long-duration space travelers reported that they missed various media more than their astronaut and short-duration counterparts. Media subjects that related to international events, national events and historical topics were rated as most preferable by all respondents and by several of the respondent groups. The findings are discussed in terms of their relevance for occupying free time during future long-duration manned space missions.

  15. Cosmonauts and astronauts during medical operations training

    Science.gov (United States)

    1994-01-01

    Cosmonaut Alexandr F. Poleshchuk (right) inventories medical supplies with Ezra D. Kucharz, medical operations trainer for Krug Life Sciences, Incorporated. Poleshchuk, a Mir reserve crew member, and a number of other cosmonauts and astronauts participati

  16. Astronauts Grissom and Young during water egress training in Gulf of Mexico

    Science.gov (United States)

    1965-01-01

    A technician adjusts the suit of Astronaut Virgil I. Grissom during water egress training operations in the Gulf of Mexico. Astronaut John W. Young (standing) observes. Grissom and Young are the prime crew for the Gemini-Titan 3 flight scheduled this spring.

  17. Nuclear Energy in Space Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1968-01-01

    Nuclear space programs under development by the Atomic Energy Commission are reviewed including the Rover Program, systems for nuclear rocket propulsion and, the SNAP Program, systems for generating electric power in space. The letters S-N-A-P stands for Systems for Nuclear Auxiliary Power. Some of the projected uses of nuclear systems in space are briefly discussed including lunar orbit, lunar transportation from lunar orbit to lunar surface and base stations; planetary exploration, and longer space missions. The limitations of other sources of energy such as solar, fuel cells, and electric batteries are discussed. The excitement and visionary possibilities of the Age of Space are discussed.

  18. Robot Tracking of Human Subjects in Field Environments

    Science.gov (United States)

    Graham, Jeffrey; Shillcutt, Kimberly

    2003-01-01

    Future planetary exploration will involve both humans and robots. Understanding and improving their interaction is a main focus of research in the Intelligent Systems Branch at NASA's Johnson Space Center. By teaming intelligent robots with astronauts on surface extra-vehicular activities (EVAs), safety and productivity can be improved. The EVA Robotic Assistant (ERA) project was established to study the issues of human-robot teams, to develop a testbed robot to assist space-suited humans in exploration tasks, and to experimentally determine the effectiveness of an EVA assistant robot. A companion paper discusses the ERA project in general, its history starting with ASRO (Astronaut-Rover project), and the results of recent field tests in Arizona. This paper focuses on one aspect of the research, robot tracking, in greater detail: the software architecture and algorithms. The ERA robot is capable of moving towards and/or continuously following mobile or stationary targets or sequences of targets. The contributions made by this research include how the low-level pose data is assembled, normalized and communicated, how the tracking algorithm was generalized and implemented, and qualitative performance reports from recent field tests.

  19. Astronaut Donald H. Peterson talks with others during training session STS-6

    Science.gov (United States)

    1982-01-01

    Astronaut Donald H. Peterson talks with Astronaut James P. Bagian (almost out of frame at right edge) during a training session for STS-6 crew members in the Shuttle mockup and integration laboratory. Petterson is wearing the shuttle flight suit and holding his helmet.

  20. Epoxy/UHMWPE Composite Hybridized with Gadolinium Nanoparticles for Space Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract Deep space radiations pose a major threat to the astronauts and their space craft during the long duration space exploration expeditions [1]. Ultra High...

  1. Official portrait of astronaut Ronald J. Grabe

    Science.gov (United States)

    1989-01-01

    Official portrait of Ronald J. Grabe, United States Air Force (USAF) Colonel, member of Astronaut Class 9 (1980), and space shuttle pilot. Grabe wears launch and entry suit (LES) with helmet displayed on table at his left.

  2. Astronaut Neil Armstrong participates in simulation training

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, Apollo 11 commander, participates in simulation training in preparation for the scheduled lunar landing mission. He is in the Apollo Lunar Module Mission SImulator in the Kennedy Space Center's Flight Crew Training Building.

  3. Morphing: A Novel Approach to Astronaut Suit Sizing

    Science.gov (United States)

    Margerum, Sarah; Clowers, Kurt; Rajulu, Sudhakar

    2006-01-01

    The fitting of a spacesuit to an astronaut is an iterative process consisting of two parts. The first uses anthropometric data to provide an approximation of the suit components that will fit the astronaut. The second part is the subjective fitting, where small adjustments are made based on the astronaut s preference. By providing a better approximation of the correct suit components, the entire fit process time can be reduced significantly. The goals of this project are twofold: (1) To evaluate the effectiveness of the existing sizing algorithm for the Mark III Hybrid suit and (2) to determine what additional components are needed in order to provide adequate sizing for the existing astronaut population. A single subject was scanned using a 3D whole-body scanner (VITUS 3D) in the Mark III suit in eight different poses and four subjects in minimal clothing were also scanned in similar poses. The 3D external body scans of the suit and the subject are overlaid and visually aligned in a customized MATLAB program. The suit components were contracted or expanded linearly along the subjects limbs to match the subjects segmental lengths. Two independent measures were obtained from the morphing program on four subjects and compared with the existing sizing information. Two of the four subjects were in correspondence with the sizing algorithm and morphing results. The morphing outcome for a third subject, incompatible with the suit, suggested that an additional arm element at least 6 inches smaller than the existing smallest suit component would need to be acquired. The morphing result of the fourth subject, deemed incompatible with the suit using the sizing algorithm, indicated a different suit configuration which would be compatible. This configuration matched with the existing suit fit check data.

  4. Digital Astronaut Project Biomechanical Models: Biomechanical Modeling of Squat, Single-Leg Squat and Heel Raise Exercises on the Hybrid Ultimate Lifting Kit (HULK)

    Science.gov (United States)

    Thompson, William K.; Gallo, Christopher A.; Crentsil, Lawton; Lewandowski, Beth E.; Humphreys, Brad T.; DeWitt, John K.; Fincke, Renita S.; Mulugeta, Lealem

    2015-01-01

    The NASA Digital Astronaut Project (DAP) implements well-vetted computational models to predict and assess spaceflight health and performance risks, and to enhance countermeasure development. The DAP Musculoskeletal Modeling effort is developing computational models to inform exercise countermeasure development and to predict physical performance capabilities after a length of time in space. For example, integrated exercise device-biomechanical models can determine localized loading, which will be used as input to muscle and bone adaptation models to estimate the effectiveness of the exercise countermeasure. In addition, simulations of mission tasks can be used to estimate the astronaut's ability to perform the task after exposure to microgravity and after using various exercise countermeasures. The software package OpenSim (Stanford University, Palo Alto, CA) (Ref. 1) is being used to create the DAP biomechanical models and its built-in muscle model is the starting point for the DAP muscle model. During Exploration missions, such as those to asteroids and Mars, astronauts will be exposed to reduced gravity for extended periods. Therefore, the crew must have access to exercise countermeasures that can maintain their musculoskeletal and aerobic health. Exploration vehicles may have very limited volume and power available to accommodate such capabilities, even more so than the International Space Station (ISS). The exercise devices flown on Exploration missions must be designed to provide sufficient load during the performance of various resistance and aerobic/anaerobic exercises while meeting potential additional requirements of limited mass, volume and power. Given that it is not practical to manufacture and test (ground, analog and/or flight) all candidate devices, nor is it always possible to obtain data such as localized muscle and bone loading empirically, computational modeling can estimate the localized loading during various exercise modalities performed on

  5. Cerebrovascular Accident Incidence in the NASA Astronaut Population

    Science.gov (United States)

    LaPelusa, Michael B.; Charvat, Jacqueline M.; Lee, Lesley R.; Wear, Mary L.; Van Baalen, Mary

    2016-01-01

    The development of atherosclerosis is strongly associated with an increased risk for cerebrovascular accidents (CVA), including stroke and transient ischemic attacks (TIA). Certain unique occupational exposures that individuals in the NASA astronaut corps face, specifically high-performance aircraft training, SCUBA training, and spaceflight, are hypothesized to cause changes to the cardiovascular system. These changes, which include (but are not limited to) oxidative damage as a result of radiation exposure and circadian rhythm disturbance, increased arterial stiffness, and increased carotid-intima-media thickness (CIMT), may contribute to the development of atherosclerosis and subsequent CVA. The purpose of this study was to review cases of CVA in the NASA astronaut corps and describe the comorbidities and occupational exposures associated with CVA.

  6. APOLLO 17 PRELAUNCH ASTRONAUT TRAINING

    Science.gov (United States)

    1972-01-01

    Apollo Command Module Pilot Evans, left, and Mission Commander Cernan, right, discuss their flight plans as each prepares to fly a T-38 jet aircraft at Patrick Air Force Base just south of the Spaceport. Astronauts Cernan and Evans flew the T-38 aircraft today on training flights over the Kennedy Space Center area to practice flying skills in preparation for upcoming launch to the Moon scheduled 12/06/72.

  7. NASA Astronaut Selection 2009: Behavioral Overview

    Science.gov (United States)

    Holland, A.; Sipes, W.; Bevan, G.; Schmidt, L.; Slack, K.; Moomaw, R.; Vanderark, S.

    2011-01-01

    Behavioral Health and Performance (BHP) is an operational group under medical sciences at NASA/Johnson Space Center. Astronaut applicant screening and assessment is one function of this group, along with psychological training, inflight behavioral support and family services. Direct BHP assessment spans 6-7 months of a 17-month overall selection process.

  8. Astronaut Ronald Sega in crew cabin

    Science.gov (United States)

    1994-01-01

    Astronaut Ronald M. Sega suspends himself in the weightlessness aboard the Space Shuttle Discovery's crew cabin, as the Remote Manipulator System (RMS) arm holds the Wake Shield Facility (WSF) aloft. The mission specialist is co-principle investigator on the the WSF project. Note the University of Colorado, Colorado Springs banner above his head.

  9. Astronaut Joseph Tanner is assisted into his EMU during training

    Science.gov (United States)

    1994-01-01

    Astronaut Joseph R. Tanner, STS-66 mission specialist, is assisted by Boeing suit expert Steve Voyles in donning the gloves for his extravehicular mobility unit (EMU) as he prepares to be submerged in a 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF). Though no extravehicular activity (EVA) is planned for the mission, at least two astronauts are trained to perform tasks that would require a space walk in the event of failure of remote systems.

  10. Marked exacerbation of orthostatic intolerance after long- vs. short-duration spaceflight in veteran astronauts

    Science.gov (United States)

    Meck, J. V.; Reyes, C. J.; Perez, S. A.; Goldberger, A. L.; Ziegler, M. G.

    2001-01-01

    OBJECTIVE: The incidence of postflight orthostatic intolerance after short-duration spaceflight is about 20%. However, the incidence after long-duration spaceflight was unknown. The purpose of this study was to test the hypothesis that orthostatic intolerance is more severe after long-duration than after short-duration flight. METHODS: We performed tilt tests on six astronauts before and after long-duration (129-190 days) spaceflights and compared these data with data obtained during stand tests before and after previous short-duration missions. RESULTS: Five of the six astronauts studied became presyncopal during tilt testing after long-duration flights. Only one had become presyncopal during stand testing after short-duration flights. We also compared the long-duration flight tilt test data to tilt test data from 20 different astronauts who flew on the short-duration Shuttle missions that delivered and recovered the astronauts to and from the Mir Space Station. Five of these 20 astronauts became presyncopal on landing day. Heart rate responses to tilt were no different between astronauts on long-duration flights and astronauts on short-duration flights, but long-duration subjects had lower stroke volumes and cardiac outputs than short-duration presyncopal subjects, suggesting a possible decrease in cardiac contractile function. One subject had subnormal norepinephrine release with upright posture after the long flight but not after the short flight. Plasma volume losses were not greater after long flights. CONCLUSION: Long-duration spaceflight markedly increases orthostatic intolerance, probably with multiple contributing factors.

  11. Spaceflight-induced changes in white matter hyperintensity burden in astronauts.

    Science.gov (United States)

    Alperin, Noam; Bagci, Ahmet M; Lee, Sang H

    2017-11-21

    To assess the effect of weightlessness and the respective roles of CSF and vascular fluid on changes in white matter hyperintensity (WMH) burden in astronauts. We analyzed prespaceflight and postspaceflight brain MRI scans from 17 astronauts, 10 who flew a long-duration mission on the International Space Station (ISS) and 7 who flew a short-duration mission on the Space Shuttle. Automated analysis methods were used to determine preflight to postflight changes in periventricular and deep WMH, CSF, and brain tissue volumes in fluid-attenuated inversion recovery and high-resolution 3-dimensional T1-weighted imaging. Differences between cohorts and associations between individual measures were assessed. The short-term reversibility of the identified preflight to postflight changes was tested in a subcohort of 5 long-duration astronauts who had a second postflight MRI scan 1 month after the first postflight scan. Significant preflight to postflight changes were measured only in the long-duration cohort and included only the periventricular WMH and ventricular CSF volumes. Changes in deep WMH and brain tissue volumes were not significant in either cohort. The increase in periventricular WMH volume was significantly associated with an increase in ventricular CSF volume (ρ = 0.63, p = 0.008). A partial reversal of these increases was observed in the long-duration subcohort with a 1-month follow-up scan. Long-duration exposure to microgravity is associated with an increase in periventricular WMH in astronauts. This increase was linked to an increase in ventricular CSF volume documented in ISS astronauts. There was no associated change in or abnormal levels of WMH volumes in deep white matter as reported in U-2 high-altitude pilots. © 2017 American Academy of Neurology.

  12. Applied Nanotechnology for Human Space Exploration

    Science.gov (United States)

    Yowell, Leonard L.

    2007-01-01

    A viewgraph presentation describing nanotechnology for human space exploration is shown. The topics include: 1) NASA's Strategic Vision; 2) Exploration Architecture; 3) Future Exploration Mission Requirements Cannot be met with Conventional Materials; 4) Nanomaterials: Single Wall Carbon Nanotubes; 5) Applied Nanotechnology at JSC: Fundamentals to Applications; 6) Technology Readiness Levels (TRL); 7) Growth, Modeling, Diagnostics and Production; 8) Characterization: Purity, Dispersion and Consistency; 9) Processing; 10) Nanoelectronics: Enabling Technologies; 11) Applications for Human Space Exploration; 12) Exploration Life Support: Atmosphere Revitalization System; 13) Advanced and Exploration Life Support: Regenerable CO2 Removal; 14) Exploration Life Support: Water Recovery; 15) Advanced Life Support: Water Disinfection/Recovery; 16) Power and Energy: Supercapacitors and Fuel Cells; 17) Nanomaterials for EMI Shielding; 18) Active Radiation Dosimeter; 19) Advanced Thermal Protection System (TPS) Repair; 20) Thermal Radiation and Impact Protection (TRIPS); 21) Nanotechnology: Astronaut Health Management; 22) JSC Nanomaterials Group Collaborations.

  13. Strategies For Human Exploration Leading To Human Colonization of Space

    Science.gov (United States)

    Smitherman, David; Everett, Harmon

    2009-01-01

    Enabling the commercial development of space is key to the future colonization of space and key to a viable space exploration program. Without commercial development following in the footsteps of exploration it is difficult to justify and maintain public interest in the efforts. NASA's exploration program has suffered from the lack of a good commercial economic strategy for decades. Only small advances in commercial space have moved forward, and only up to Earth orbit with the commercial satellite industry. A way to move beyond this phase is to begin the establishment of human commercial activities in space in partnership with the human exploration program. In 2007 and 2008, the authors researched scenarios to make space exploration and commercial space development more feasible as part of their graduate work in the Space Architecture Program at the Sasakawa International Center for Space Architecture at the University of Houston, Houston, Texas. Through this research it became apparent that the problems facing future colonization are much larger than the technology being developed or the international missions that our space agencies are pursuing. These issues are addressed in this paper with recommendations for space exploration, commercial development, and space policy that are needed to form a strategic plan for human expansion into space. In conclusion, the authors found that the current direction in space as carried out by our space agencies around the world is definitely needed, but is inadequate and incapable of resolving all of the issues that inhibit commercial space development. A bolder vision with strategic planning designed to grow infrastructures and set up a legal framework for commercial markets will go a long way toward enabling the future colonization of space.

  14. Lunar polar rover science operations: Lessons learned and mission architecture implications derived from the Mojave Volatiles Prospector (MVP) terrestrial field campaign

    Science.gov (United States)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Lim, Darlene; Deans, Matthew; Cook, Amanda; Roush, Ted; Skok, J. R.; Button, Nicole E.; Karunatillake, S.; Stoker, Carol; Marquez, Jessica J.; Shirley, Mark; Kobayashi, Linda; Lees, David; Bresina, John; Hunt, Rusty

    2016-08-01

    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal of producing critical knowledge for conducting robotic exploration of the Moon. Specifically, MVP focuses on studying a lunar mission analog to characterize the form and distribution of lunar volatiles. Although lunar volatiles are known to be present near the poles of the Moon, the three dimensional distribution and physical characteristics of lunar polar volatiles are largely unknown. A landed mission with the ability to traverse the lunar surface is thus required to characterize the spatial distribution of lunar polar volatiles. NASA's Resource Prospector (RP) mission is a lunar polar rover mission that will operate primarily in sunlit regions near a lunar pole with near-real time operations to characterize the vertical and horizontal distribution of volatiles. The MVP project was conducted as a field campaign relevant to the RP lunar mission to provide science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. To achieve these goals, the MVP project conducted a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural environment with an unknown volatile distribution within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon.

  15. Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu.

    Science.gov (United States)

    Zhang, Jinhai; Yang, Wei; Hu, Sen; Lin, Yangting; Fang, Guangyou; Li, Chunlai; Peng, Wenxi; Zhu, Sanyuan; He, Zhiping; Zhou, Bin; Lin, Hongyu; Yang, Jianfeng; Liu, Enhai; Xu, Yuchen; Wang, Jianyu; Yao, Zhenxing; Zou, Yongliao; Yan, Jun; Ouyang, Ziyuan

    2015-04-28

    We report the surface exploration by the lunar rover Yutu that landed on the young lava flow in the northeastern part of the Mare Imbrium, which is the largest basin on the nearside of the Moon and is filled with several basalt units estimated to date from 3.5 to 2.0 Ga. The onboard lunar penetrating radar conducted a 114-m-long profile, which measured a thickness of ∼5 m of the lunar regolith layer and detected three underlying basalt units at depths of 195, 215, and 345 m. The radar measurements suggest underestimation of the global lunar regolith thickness by other methods and reveal a vast volume of the last volcano eruption. The in situ spectral reflectance and elemental analysis of the lunar soil at the landing site suggest that the young basalt could be derived from an ilmenite-rich mantle reservoir and then assimilated by 10-20% of the last residual melt of the lunar magma ocean.

  16. Desert Rats 2010 Operations Tests: Insights from the Geology Crew Members

    Science.gov (United States)

    Bleacher, J. E.; Hurtado, J. M., Jr.; Young, K. E.; Rice, J.; Garry, W. B.; Eppler, D.

    2011-01-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of tests of NASA hardware and operations deployed in the high desert of Arizona. Conducted annually since 1997, these activities exercise planetary surface hardware and operations in relatively harsh conditions where long-distance, multi-day roving is achievable. Such activities not only test vehicle subsystems, they also stress communications and operations systems and enable testing of science operations approaches that advance human and robotic surface exploration capabilities. Desert RATS 2010 tested two crewed rovers designed as first-generation prototypes of small pressurized vehicles, consistent with exploration architecture designs. Each rover provided the internal volume necessary for crewmembers to live and work for periods up to 14 days, as well as allowing for extravehicular activities (EVAs) through the use of rear-mounted suit ports. The 2010 test was designed to simulate geologic science traverses over a 14-day period through a volcanic field that is analogous to volcanic terrains observed throughout the Solar System. The test was conducted between 31 August and 13 September 2010. Two crewmembers lived in and operated each rover for a week with a "shift change" on day 7, resulting in a total of eight test subjects for the two-week period. Each crew consisted of an engineer/commander and an experienced field geologist. Three of the engineer/commanders were experienced astronauts with at least one Space Shuttle flight. The field geologists were drawn from the scientific community, based on funded and published field expertise.

  17. Astronaut Gordon Cooper during flight tests

    Science.gov (United States)

    1963-01-01

    Astronaut L. Gordon Cooper, prime pilot for the Mercury-Atlas 9 mission, relaxes while waiting for weight and balance tests to begin (03974); Cooper prior to entering the Mercury Spacecraft for a series of simulated flight tests. During these tests NASA doctors, engineers and technicians monitor Cooper's performance (03975); Cooper undergoing suit pressurization tests (03976).

  18. Astronautics and aeronautics, 1978: A chronology

    Science.gov (United States)

    Janson, Bette R.

    1986-01-01

    This is the 18th in a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national and political as well as scientific and technical. This series is a reference work for historians, NASA personnel, government agencies, congressional staffs, and the media.

  19. Christer Fuglesang, a former CERN physicist-turned-astronaut

    CERN Multimedia

    NASA

    2006-01-01

    European Space Agency (ESA) astronaut Christer Fuglesang, STS-116 mission specialist, participates in the mission's second extravehicular activity (EVA) as construction resumes on the International Space Station. Image: NASA.

  20. Methods and decision making on a Mars rover for identification of fossils

    Science.gov (United States)

    Eberlein, Susan; Yates, Gigi

    1989-01-01

    A system for automated fusion and interpretation of image data from multiple sensors, including multispectral data from an imaging spectrometer is being developed. Classical artificial intelligence techniques and artificial neural networks are employed to make real time decision based on current input and known scientific goals. Emphasis is placed on identifying minerals which could indicate past life activity or an environment supportive of life. Multispectral data can be used for geological analysis because different minerals have characteristic spectral reflectance in the visible and near infrared range. Classification of each spectrum into a broad class, based on overall spectral shape and locations of absorption bands is possible in real time using artificial neural networks. The goal of the system is twofold: multisensor and multispectral data must be interpreted in real time so that potentially interesting sites can be flagged and investigated in more detail while the rover is near those sites; and the sensed data must be reduced to the most compact form possible without loss of crucial information. Autonomous decision making will allow a rover to achieve maximum scientific benefit from a mission. Both a classical rule based approach and a decision neural network for making real time choices are being considered. Neural nets may work well for adaptive decision making. A neural net can be trained to work in two steps. First, the actual input state is mapped to the closest of a number of memorized states. After weighing the importance of various input parameters, the net produces an output decision based on the matched memory state. Real time, autonomous image data analysis and decision making capabilities are required for achieving maximum scientific benefit from a rover mission. The system under development will enhance the chances of identifying fossils or environments capable of supporting life on Mars

  1. Conceptual Design and Dynamics Testing and Modeling of a Mars Tumbleweed Rover

    Science.gov (United States)

    Calhoun Philip C.; Harris, Steven B.; Raiszadeh, Behzad; Zaleski, Kristina D.

    2005-01-01

    The NASA Langley Research Center has been developing a novel concept for a Mars planetary rover called the Mars Tumbleweed. This concept utilizes the wind to propel the rover along the Mars surface, bringing it the potential to cover vast distances not possible with current Mars rover technology. This vehicle, in its deployed configuration, must be large and lightweight to provide the ratio of drag force to rolling resistance necessary to initiate motion from rest on the Mars surface. One Tumbleweed design concept that satisfies these considerations is called the Eggbeater-Dandelion. This paper describes the basic design considerations and a proposed dynamics model of the concept for use in simulation studies. It includes a summary of rolling/bouncing dynamics tests that used videogrammetry to better understand, characterize, and validate the dynamics model assumptions, especially the effective rolling resistance in bouncing/rolling dynamic conditions. The dynamics test used cameras to capture the motion of 32 targets affixed to a test article s outer structure. Proper placement of the cameras and alignment of their respective fields of view provided adequate image resolution of multiple targets along the trajectory as the test article proceeded down the ramp. Image processing of the frames from multiple cameras was used to determine the target positions. Position data from a set of these test runs was compared with results of a three dimensional, flexible dynamics model. Model input parameters were adjusted to match the test data for runs conducted. This process presented herein provided the means to characterize the dynamics and validate the simulation of the Eggbeater-Dandelion concept. The simulation model was used to demonstrate full scale Tumbleweed motion from a stationary condition on a flat-sloped terrain using representative Mars environment parameters.

  2. NPS Adds Another Astronaut Alumnus With NASA’s Newest Class

    OpenAIRE

    Kuska, Dale M.

    2013-01-01

    Article taken from the NPS website: http://www.nps.edu/About/News/NPS-Adds-Another-Astronaut-Alumnus-With-NASAs-Newest-Class.html When NASA Administrator Charles Bolden announced the latest class of NASA’s eight astronaut candidates, June 17, the Naval Postgraduate School (NPS) was able to add yet another space-traveling alumnus to its ranks, now totaling 41 and counting. Lt. Cmdr. Victor Glover, an F/A-18 combat pilot currently serving as a Legislative Fellow in the office of Senat...

  3. Salivary Varicella Zoster Virus in Astronauts and in Patients of Herpes Zoster

    Science.gov (United States)

    Mehta, Satish; Pierson, Duane L.

    2010-01-01

    Spaceflight is a uniquely stressful environment with astronauts experiencing a variety of stressors including: isolation and confinement, psychosocial, noise, sleep deprivation, anxiety, variable gravitational forces, and increased radiation. These stressors are manifested through the HPA and SAM axes resulting in increased stress hormones. Diminished T-lymphocyte functions lead to reactivation of latent herpes viruses in astronauts during spaceflight. Herpes simplex virus reactivated with symptoms during spaceflight whereas Epstein-Barr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate and are shed without symptoms. EBV and VZV are shed in saliva and CMV in the urine. The levels of EBV shed in astronauts increased 10-fold during the flight; CMV and VZV are not typically shed in low stressed individuals, but both were shed in astronauts during spaceflight. All herpesviruses were detected by polymerase chain reaction (PCR) assay. Culturing revealed that VZV shed in saliva was infectious virus. The PCR technology was extended to test saliva of 54 shingles patients. All shingles patients shed VZV in their saliva, and the levels followed the course of the disease. Viremia was also found to be common during shingles. The technology may be used before zoster lesions appear allowing for prevention of disease. The technology may be used for rapid detection of VZV in doctors? offices. These studies demonstrated the value of applying technologies designed for astronauts to people on Earth.

  4. Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover

    Science.gov (United States)

    Westall, Frances; Coates, Andrew J.; Jaumann, Ralf; Korablev, Oleg; Ciarletti, Valérie; Mitrofanov, Igor; Josset, Jean-Luc; De Sanctis, Maria Cristina; Bibring, Jean-Pierre; Goesmann, Fred; Steininger, Harald; Brinckerhoff, William; Szopa, Cyril; Raulin, François; Westall, Frances; Edwards, Howell G. M.; Whyte, Lyle G.; Fairén, Alberto G.; Bibring, Jean-Pierre; Bridges, John; Hauber, Ernst; Ori, Gian Gabriele; Werner, Stephanie; Loizeau, Damien; Kuzmin, Ruslan O.; Williams, Rebecca M. E.; Flahaut, Jessica; Forget, François; Rodionov, Daniel; Korablev, Oleg; Svedhem, Håkan; Sefton-Nash, Elliot; Kminek, Gerhard; Lorenzoni, Leila; Joudrier, Luc; Mikhailov, Viktor; Zashchirinskiy, Alexander; Alexashkin, Sergei; Calantropio, Fabio; Merlo, Andrea; Poulakis, Pantelis; Witasse, Olivier; Bayle, Olivier; Bayón, Silvia; Meierhenrich, Uwe; Carter, John; García-Ruiz, Juan Manuel; Baglioni, Pietro; Haldemann, Albert; Ball, Andrew J.; Debus, André; Lindner, Robert; Haessig, Frédéric; Monteiro, David; Trautner, Roland; Voland, Christoph; Rebeyre, Pierre; Goulty, Duncan; Didot, Frédéric; Durrant, Stephen; Zekri, Eric; Koschny, Detlef; Toni, Andrea; Visentin, Gianfranco; Zwick, Martin; van Winnendael, Michel; Azkarate, Martín; Carreau, Christophe

    2017-01-01

    Abstract The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information. Key Words: Biosignatures—ExoMars—Landing sites—Mars rover—Search for life. Astrobiology 17, 471–510.

  5. The design and engineering of curiosity how the Mars Rover performs its job

    CERN Document Server

    Lakdawalla, Emily

    2018-01-01

    This book describes the most complex machine ever sent to another planet: Curiosity. It is a one-ton robot with two brains, seventeen cameras, six wheels, nuclear power, and a laser beam on its head. No one human understands how all of its systems and instruments work. This essential reference to the Curiosity mission explains the engineering behind every system on the rover, from its rocket-powered jetpack to its radioisotope thermoelectric generator to its fiendishly complex sample handling system. Its lavishly illustrated text explains how all the instruments work -- its cameras, spectrometers, sample-cooking oven, and weather station -- and describes the instruments' abilities and limitations. It tells you how the systems have functioned on Mars, and how scientists and engineers have worked around problems developed on a faraway planet: holey wheels and broken focus lasers. And it explains the grueling mission operations schedule that keeps the rover working day in and day out.   .

  6. Astronaut Bonnie Dunbar watches crewmates during training

    Science.gov (United States)

    1994-01-01

    Astronaut Bonnie J. Dunbar, STS-71 mission specialist, smiles as she watches a crew mate (out of frame) make a simulated parachute landing in nearby water. The action came as part of an emergency bailout training session in the JSC Weightless Environment

  7. Distance and Size Perception in Astronauts during Long-Duration Spaceflight

    Directory of Open Access Journals (Sweden)

    Gilles Clément

    2013-12-01

    Full Text Available Exposure to microgravity during spaceflight is known to elicit orientation illusions, errors in sensory localization, postural imbalance, changes in vestibulo-spinal and vestibulo-ocular reflexes, and space motion sickness. The objective of this experiment was to investigate whether an alteration in cognitive visual-spatial processing, such as the perception of distance and size of objects, is also taking place during prolonged exposure to microgravity. Our results show that astronauts on board the International Space Station exhibit biases in the perception of their environment. Objects’ heights and depths were perceived as taller and shallower, respectively, and distances were generally underestimated in orbit compared to Earth. These changes may occur because the perspective cues for depth are less salient in microgravity or the eye-height scaling of size is different when an observer is not standing on the ground. This finding has operational implications for human space exploration missions.

  8. Incidence of Epstein-Barr Virus in Astronaut Saliva During Spaceflight

    Science.gov (United States)

    Payne, Deborah A.; Mehta, Satish K.; Tyring, Stephen K.; Stowe, Raymond P.; Pierson, Duane L.

    1998-01-01

    Astronauts experience psychological and physical stresses that may result in re-activation of latent viruses during spaceflight, potentially increasing the risk of disease among crew members. The shedding of Epstein-Barr virus (EBV) in the saliva of astronauts will increase during spaceflight. A total of 534 saliva specimens were collected from 11 EBV-seropositive astronauts before, during, and after four space shuttle missions. The presence of EBV DNA in saliva, assessed by polymerase chain reaction (PCR), was used to determine shedding patterns before, during, and after spaceflight. EBV DNA was detected more frequently before flight than during (p less than 0.001) or after (p less than 0.01) flight. No significant difference between the in-flight and postflight periods was detected in the frequency of occurrence of EBV DNA. The increased frequency of shedding of EBV before flight suggests that stress levels may be greater before launch than during or after spaceflight.

  9. Astronautics and aeronautics, 1985: A chronology

    Science.gov (United States)

    Janson, Bette R.

    1988-01-01

    This book is part of a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national, in political as well as scientific and technical areas. This series is an important reference work used by historians, NASA personnel, government agencies, and congressional staffs, as well as the media.

  10. Visual Prediction of Rover Slip: Learning Algorithms and Field Experiments

    Science.gov (United States)

    2008-01-01

    of the terrain slope [29]. The results are also specific to the vehicle. For example, a small design modification in the pattern of the wheels can...robot has two front differential drive wheels and two rear caster wheels . 2This difference is not directly relevant to the goals of this work. 22 Figure...rover pose and is a quantity which measures the lack of progress of a wheeled ground robot while traversing some terrain. A trivial example of large

  11. Characterization of Fillite as a planetary soil simulant in support of rover mobility assessment in high-sinkage/high-slip environments

    Science.gov (United States)

    Edwards, Michael

    This thesis presents the results of a research program characterizing a soil simulant called Fillite, which is composed of alumino-silicate hollow microspheres harvested from the pulverized fuel ash of coal-fired power plants. Fillite is available in large quantities at a reasonable cost and it is chemically inert. Fillite has been selected by the National Aeronautics and Space Administration (NASA) Glenn Research Center to simulate high-sinkage/high-slip environment in a large test bed such as the ones encountered by the Spirit rover on Mars in 2009 when it became entrapped in a pocket of soft, loose regolith on Mars. The terms high-sinkage and high-slip used here describe the interaction of soils with typical rover wheels. High-sinkage refers to a wheel sinking with little to no applied force while high-slip refers to a spinning wheel with minimal traction. Standard material properties (density, specific gravity, compression index, Young's modulus, and Poisson's ratio) of Fillite were determined from a series of laboratory tests conducted in general accordance with ASTM standards. Tests were also performed to determine some less standard material properties of Fillite such as the small strain shear wave velocity, maximum shear modulus, and several pressure-sinkage parameters for use in pressure-sinkage models. The experiments include an extensive series of triaxial compression tests, bender element tests, and normal and shear bevameter tests. The unit weight of Fillite on Earth ranges between 3.9 and 4.8 kN/m 3, which is similar to that of Martian regolith (about 3.7 -- 5.6 kN/m3) on Mars and close to the range of the unit weight of lunar regolith (about 1.4 -- 2.9 kN/m3) on the Moon. The data presented here support that Fillite has many physical and mechanical properties that are similar to what is known about Martian regolith. These properties are also comparable to lunar regolith. Fillite is quite dilatant; its peak and critical angles of internal friction are

  12. Latent Virus Reactivation in Space Shuttle Astronauts

    Science.gov (United States)

    Mehta, S. K.; Crucian, B. E.; Stowe, R. P.; Sams, C.; Castro, V. A.; Pierson, D. L.

    2011-01-01

    Latent virus reactivation was measured in 17 astronauts (16 male and 1 female) before, during, and after short-duration Space Shuttle missions. Blood, urine, and saliva samples were collected 2-4 months before launch, 10 days before launch (L-10), 2-3 hours after landing (R+0), 3 days after landing (R+14), and 120 days after landing (R+120). Epstein-Barr virus (EBV) DNA was measured in these samples by quantitative polymerase chain reaction. Varicella-zoster virus (VZV) DNA was measured in the 381 saliva samples and cytomegalovirus (CMV) DNA in the 66 urine samples collected from these subjects. Fourteen astronauts shed EBV DNA in 21% of their saliva samples before, during, and after flight, and 7 astronauts shed VZV in 7.4% of their samples during and after flight. It was interesting that shedding of both EBV and VZV increased during the flight phase relative to before or after flight. In the case of CMV, 32% of urine samples from 8 subjects contained DNA of this virus. In normal healthy control subjects, EBV shedding was found in 3% and VZV and CMV were found in less than 1% of the samples. The circadian rhythm of salivary cortisol measured before, during, and after space flight did not show any significant difference between flight phases. These data show that increased reactivation of latent herpes viruses may be associated with decreased immune system function, which has been reported in earlier studies as well as in these same subjects (data not reported here).

  13. From Homo Sapiens to Homo Cosmicus - Astronautics, Darwinism abd Historical Determinism

    Science.gov (United States)

    Tolkowsky, G.

    Since its inception in late-nineteenth century, astronautics has been viewed as a historical outcome of human evolution as well as a future driver thereof. The history of astronautics-related, evolutionary thought reveals a tension between the Darwinian notion of natural selection and that of homocosmic predestination - be it of dialectical materialistic or theological nature. One can detect the influence of this ideological diversity on the American and Soviet space programs.

  14. How can we protect astronauts from cosmic rays?

    International Nuclear Information System (INIS)

    Parker, E.

    2006-01-01

    Interplanetary astronauts would absorb more radiation in a single year than radiation workers are supposed to receive in a lifetime and as a consequence large number of them would develop radiation-related illnesses like cancer, cataract or would suffer from brain damage. In recognition to radiation threats, Nasa set up the space radiation shielding program in 2003. The first idea was to protect the astronauts by surrounding them with matter, by analogy of the earth's atmosphere but the problem of such a shield is its weight: the required mass would be at least 400 tons. The second proposal was to deflect the cosmic rays magnetically but the deflection of particles that have energies up to 2 GeV requires a magnetic field 600.000 times as strong as earth's equatorial field. Strong magnetic field may itself be dangerous. A more recent idea has been to give the spacecraft a positive charge which would repel any incoming positively charged nucleus. The drawback is that the ship will attract and accelerate negatively charged particles over distances as long as a few tens of thousands of kilometers. The result would be that the natural cosmic-ray flux would be replaced with a much more intense artificial one. At the present time the different solutions for protecting the astronauts from cosmic rays give little encouragement. (A.C.)

  15. Strategy Implementation through Hierarchical Couplings in a Management Control Package: An Explorative Case Study

    OpenAIRE

    van der Kolk, Berend; Schokker, Tom

    2016-01-01

    We examine how couplings of management control (MC) elements help to implement an organization’s strategy. Despite prior research stating that couplings between MC elements form fruitful soil for further research, empirical studies in this area are still scarce. We draw on coupling theory to explore three hierarchical relations between MC elements, and examine how these couplings help to implement the organization’s strategy. We conducted a single case study in a medium-sized Dutch municipali...

  16. Strategy of uranium exploration in Indonesia facing uranium price decreacing trend

    International Nuclear Information System (INIS)

    Karyono, H.S.

    1996-01-01

    Uranium oversupply in the last decade has caused uranium price decline and given bad impact to uranium exploration activities all over the world. Such an impact also inclusively affected Nuclear Minerals Development Centre (NMDC). As a consequence, the Centre has to reassess its strategies in order survive. This paper introduces the use of the Strategic Management Process Model to formulate new strategies through strategic planning, implementation, and control. two critical environmental factors i.e, national and international, that directly affect NMDC's activities, are discussed. In addition, strengths, weakness, opportunities, and threat's(SWOT) analysis are utilized to assess and formulate NMDC's strategic obyectives. Finally, three new organization strategic, including program's to scope and obyectives, organization structure and performance improvement, and international U market monitoring and review, are offered. (author). 8 refs; 6 figs

  17. Applying FastSLAM to Articulated Rovers

    Science.gov (United States)

    Hewitt, Robert Alexander

    This thesis presents the navigation algorithms designed for use on Kapvik, a 30 kg planetary micro-rover built for the Canadian Space Agency; the simulations used to test the algorithm; and novel techniques for terrain classification using Kapvik's LIDAR (Light Detection And Ranging) sensor. Kapvik implements a six-wheeled, skid-steered, rocker-bogie mobility system. This warrants a more complicated kinematic model for navigation than a typical 4-wheel differential drive system. The design of a 3D navigation algorithm is presented that includes nonlinear Kalman filtering and Simultaneous Localization and Mapping (SLAM). A neural network for terrain classification is used to improve navigation performance. Simulation is used to train the neural network and validate the navigation algorithms. Real world tests of the terrain classification algorithm validate the use of simulation for training and the improvement to SLAM through the reduction of extraneous LIDAR measurements in each scan.

  18. Astronaut John Glenn Enters Friendship 7

    Science.gov (United States)

    1962-01-01

    Astronaut John Glenn enters the Mercury spacecraft, Friendship 7, prior to the launch of MA-6 on February 20, 1961 and became the first American who orbited the Earth. The MA-6 mission was the first manned orbital flight boosted by the Mercury-Atlas vehicle, a modified Atlas ICBM (Intercontinental Ballistic Missile), lasted for five hours, and orbited the Earth three times.

  19. Astronaut Scott Parazynski during egress training

    Science.gov (United States)

    1994-01-01

    Astronaut Scott E. Parazynski looks at fellow STS-66 mission specialist Joseph R. Tanner, (foreground) during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  20. How Can "Weightless" Astronauts Be Weighed?

    Science.gov (United States)

    Carnicer, Jesus; Reyes, Francisco; Guisasola, Jenaro

    2012-01-01

    In introductory physics courses, within the context of studying Newton's laws, it is common to consider the problem of a body's "weight" when it is in free fall. The solution shows that the "weight" is zero and this leads to a discussion of the concept of weight. There are permanent free-fall situations such as astronauts in a spacecraft orbiting…