WorldWideScience

Sample records for astroloy

  1. Hydrogen environment embrittlement of astroloy and Udimet 700 (nickel-base) and V-57 (iron-base) superalloys

    Science.gov (United States)

    Gray, H. R.; Joyce, J. P.

    1975-01-01

    The sensitivity to hydrogen environment embrittlement of three superalloys was determined. Astroloy forgings were resistant to embrittlement during smooth tensile, notched tensile, and creep testing in 3.5-MN/sq m hydrogen over the range 23 to 760 C. The notched tensile strength of Udimet 700 bar stock in hydrogen at 23 C was only 50 percent of the baseline value in helium. Forgings of V-57 were not significantly embrittled by hydrogen during smooth tensile testing over the range 23 to 675 C; creep and rupture lives of V-57 were degraded by hydrogen. Postcreep tensile ductility of V-57 was reduced by 40 percent after creep exposure in hydrogen.

  2. On the Role of Modified Post Weld Heat Treatment in Eliminating Incipient Melting of Non-equilibrium Product Resulting During Solid-State Welding of Astroloy

    Science.gov (United States)

    Oluwasegun, K. M.; Olawale, J. O.; Adio, S. A.; Isadare, D. A.; Daniyan, A. A.

    2016-06-01

    The formation of non-equilibrium phases as a result of segregation during solidification of castings or in the welds of nickel-based superalloys has been a major concern limiting the enhancement of the optimal heat treatment procedure that could have improved the performance of the superalloys to their full potential strength in service. Much consideration has not been given to the dissolution of the non-equilibrium products resulting from welding of nickel-based superalloys. The present work on astroloy shows how non-equilibrium welding products could be completely eliminated by a modified post weld heat treatment procedure.

  3. Low cycle fatigue of PM/HIP astroloy

    Energy Technology Data Exchange (ETDEWEB)

    Choe, S.J.; Stoloff, N.S.; Duquette, D.J. (Rensselaer Polytechnic Institute, Troy, NY (USA))

    Low cycle fatigue and creep-fatigue-environment interactions of PM/HIP Astrology were studied at 650 C and 725 C. Total strain range was varied from 1.5% to 2.7% at a frequency of 0.3Hz. Creep-fatigue tests were performed with 2 min. or 5 min. tensile hold times. All tests were run in high purity argon in an attempt to minimize environmental effects. Employing a tensile hold was more damaging than raising temperature by 75 C. Slopes of Coffin-Manson plots were nearly independent of temperature and hold time. Raising temperature from 650 C to 725 C did not change the transgranular (TG) crack propagation mode, whereas employing hold times caused TG+IG propagation. All samples displayed multiple fracture origins associated with inclusions located at the specimen surface; pre-existing pores did not affect fatigue crack initiation. Examination of secondary cracks showed no apparent creep damage. Oxidation in high purity argon appeared to be the major factor in LCF life degradation due to hold times.

  4. Hydrogen environment embrittlement of turbine disk alloys. [for space shuttle auxiliary power unit

    Science.gov (United States)

    Gray, H. R.; Joyce, J. P.

    1976-01-01

    Astroloy and V-57, two candidate turbine disk alloys for the auxiliary power unit (APU) of the space shuttle propulsion and power system were tested for their resistance to embrittlement in hydrogen environments. Samples of both these nickel-base alloys were subjected to notch and smooth tensile testing and to creep testing in hydrogen. The high resistance exhibited by Astroloy forgings to embrittlement by hydrogen is attributed to the microstructure produced by forging and also to the special heat treatment schedule. V-57 turbine disks successfully completed short-time performance testing in the experimental APU. The use of the Astroloy, however, would permit increasing turbine inlet temperature and the rotational speed beyond those possible with V-57.

  5. Effects of fine porosity on the fatigue behavior of a powder metallurgy superalloy

    Science.gov (United States)

    Miner, R. V.; Dreshfield, R. L.

    1980-01-01

    Hot-isostatically-pressed powder-metallurgy Astroloy was obtained which contained 1.4 percent porosity at the grain boundaries produced by argon entering the powder container during pressing. This material was tested at 650 C in fatigue, creep-fatigue, tension, and stress-rupture and the results compared with data on sound Astroloy. They influenced fatigue crack initiation and produced a more intergranular mode of propagation but fatigue life was not drastically reduced. Fatigue behavior of the porous material showed typical correlation with tensile behavior. The plastic strain range-life relation was reduced proportionately with the reduction in tensile ductility, but the elastic strain range-life relation was changed little.

  6. Determination of laser shock treatment conditions for fatigue testing of Ni-based superalloys

    International Nuclear Information System (INIS)

    It is envisaged that laser shock surface treatment may be used to surface harden and improve the mechanical properties of materials by inducing compressive stresses. This study deals with its application to the high performance aeronautical Ni-based superalloy Astroloy for turbine discs and its effect on low-cycle fatigue resistance. X-ray diffraction was used to measure the surface and in-depth stress distributions. The prominent features of laser shock processing have been studied by an analytical approach to the main physical phenomena occurring successively during the impact. This led to an adequate treatment of conventionnal cylindrical low-cycle fatigue specimens. Fatigue tests were then conducted on Astroloy at 550 C. These showed the beneficial effect of laser shock processing. (orig.)

  7. Determination of laser shock treatment conditions for fatigue testing of Ni-based superalloys

    OpenAIRE

    Forget, P.; Jeandin, Michel; Jeandin, M.; Lyoret, A.

    1993-01-01

    It is envisaged that laser shock surface treatment may be used to surface harden and improve the mechanical properties of materials by inducing compressive stresses. This study deals with its application to the high performance aeronautical Ni-based superalloy Astroloy for turbine discs and its effect on low-cycle fatigue resistance. X-ray diffraction was used to measure the surface and in-depth stress distributions. The prominent features of laser shock processing have been studied by an ana...

  8. Powder metallurgy processing of high strength turbine disk alloys

    Science.gov (United States)

    Evans, D. J.

    1976-01-01

    Using vacuum-atomized AF2-1DA and Mar-M432 powders, full-scale gas turbine engine disks were fabricated by hot isostatically pressing (HIP) billets which were then isothermally forged using the Pratt & Whitney Aircraft GATORIZING forging process. While a sound forging was produced in the AF2-1DA, a container leak had occurred in the Mar-M432 billet during HIP. This resulted in billet cracking during forging. In-process control procedures were developed to identify such leaks. The AF2-1DA forging was heat treated and metallographic and mechanical property evaluation was performed. Mechanical properties exceeded those of Astroloy, one of the highest temperature capability turbine disk alloys presently used.

  9. Effect of thermally induced porosity on an as-HIP powder metallurgy superalloy

    Science.gov (United States)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1979-01-01

    The impact of thermally induced porosity on the mechanical properties of an as-hot-isostatically-pressed and heat treated pressing made from low carbon Astroloy was determined. Porosity in the disk-shape pressing studied ranged from 2.6 percent at the bore to 1.4 percent at the rim. Tensile, yield strength, ductility, and rupture life of the rim of the porous pressing was only slightly inferior to the rim of sound pressings. The strength, ductility, and rupture life of the bore of the porous pressing was severely degraded compared to sound pressings. At strain ranges typical of commercial jet engine designs, the rim of the porous pressing had slightly inferior fatigue life to sound pressings.

  10. Atomic-scale investigations of grain boundary segregation in astrology with a three dimensional atom-probe

    Energy Technology Data Exchange (ETDEWEB)

    Blavette, D. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut Universitaire de France (France); Letellier, L. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Duval, P. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Guttmann, M. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut de Recherches de la Siderurgie Francaise (IRSID), 57 - Maizieres-les-Metz (France)

    1996-08-01

    Both conventional and 3D atom-probes were applied to the investigation of grain-boundary (GB) segregation phenomena in two-phase nickel base superalloys Astroloy. 3D images as provided by the tomographic atom-probe reveal the presence of a strong segregation of both boron and molybdenum at grain-boundaries. Slight carbon enrichment is also detected. Considerable chromium segregation is exhibited at {gamma}`-{gamma}` grain-boundaries. All these segregants are distributed in a continuous manner along the boundary over a width close to 0.5 nm. Experiments show that segregation occurs during cooling and more probably between 1000 C and 800 C. Boron and molybdenum GB enrichments are interpreted as due to an equilibrium type-segregation while chromium segregation is thought to be induced by {gamma}` precipitation at GB`s and stabilised by the presence of boron. No segregation of zirconium is detected. (orig.)

  11. N18, Powder metallurgy superalloy for disks: Development and applications

    Science.gov (United States)

    Guedou, J. Y.; Lautridou, J. C.; Honnorat, Y.

    1993-08-01

    The preliminary industrial development of a powder metallurgy (PM) superalloy, designated N18, for disk applications has been completed. This alloy exhibits good overall mechanical properties after appro-priate processing of the material. These properties have been measured on both isothermally forged and extruded billets, as well as on specimens cut from actual parts. The temperature capability of the alloy is about 700 °C for long-term applications and approximately 750 °C for short-term use because of micro-structural instability. Further improvements in creep and crack propagation properties, without signifi-cant reduction in tensile strength, are possible through appropriate thermomechanical processing, which results in a large controlled grain size. Spin pit tests on subscale disks have confirmed that the N18 alloy has a higher resistance than PM Astroloy and is therefore an excellent alloy for modern turbine disk ap-plications.

  12. Effects of thermally induced porosity on an as-HIP powder metallurgy superalloy

    Science.gov (United States)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1980-01-01

    The effect of thermally induced porosity on the mechanical properties of an as-hot-isostatically pressed and heat-treated pressing made from low carbon Astroloy is examined. Tensile, stress-rupture, creep, and low cycle fatigue tests were performed and the results were compared with industrial acceptance criteria. It is shown that the porous pressing has a porosity gradient from the rim to the bore with the bore having 1-1/2% greater porosity. Mechanical properties of the test ring below acceptance level are tensile reduction in area at room temperature and 538 C and time for 0.1% creep at 704 C. It is also found that the strength, ductility, and rupture life of the rim are slightly inferior to those of the rim of the sound pressings, while those of the bore are generally below the acceptable level. At strain ranges typical of commercial aircraft engines, the low cycle fatigue life of the rim of the porous pressings is slightly lower than that of the sound pressings.

  13. Evaluation of powder metallurgy superalloy disk materials

    Science.gov (United States)

    Evans, D. J.

    1975-01-01

    A program was conducted to develop nickel-base superalloy disk material using prealloyed powder metallurgy techniques. The program included fabrication of test specimens and subscale turbine disks from four different prealloyed powders (NASA-TRW-VIA, AF2-1DA, Mar-M-432 and MERL 80). Based on evaluation of these specimens and disks, two alloys (AF2-1DA and Mar-M-432) were selected for scale-up evaluation. Using fabricating experience gained in the subscale turbine disk effort, test specimens and full scale turbine disks were formed from the selected alloys. These specimens and disks were then subjected to a rigorous test program to evaluate their physical properties and determine their suitability for use in advanced performance turbine engines. A major objective of the program was to develop processes which would yield alloy properties that would be repeatable in producing jet engine disks from the same powder metallurgy alloys. The feasibility of manufacturing full scale gas turbine engine disks by thermomechanical processing of pre-alloyed metal powders was demonstrated. AF2-1DA was shown to possess tensile and creep-rupture properties in excess of those of Astroloy, one of the highest temperature capability disk alloys now in production. It was determined that metallographic evaluation after post-HIP elevated temperature exposure should be used to verify the effectiveness of consolidation of hot isostatically pressed billets.

  14. Results of the Electron-Beam Button Melting of very clean Ni-base superalloys for the identification of nonmetallic inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Hauner, F.; Stephan, H.; Stumpp, H.

    1986-02-01

    The reliability of components made of high strength materials is substantially influenced by their cleanliness. For example, the ductility, the fatigue-characteristics and the stress resistance of high strength alloys can be improved by increasing the cleanliness along with decreasing the inclusion size to below 25 ..mu..m. For the analysis of such high clean alloys with decreasing size of nonmetallic inclusions, the metallographic texting methods become troublesome and inexact for a dependable quality control. The Electron-Beam Button Melt Test offers a possibility for the examination and qualification of the small amounts of different inclusions in the high clean materials. During a process-controlled melting procedure, inclusions of high density sink to the bottom of a water-cooled copper crucible. Low density inclusions float to the pool surface and are concentrated in the upper center of the button by means of a controlled solidification of the melting pool. For the utilization of the process in the production quality control, development and research, we have developed the Electron-Beam Button Melting Furnace ES 1/07/30 B. In this paper we will present results of the application of the ES1/07/30 B. In this paper we will present results of the application of the ES 1/07/30 B to the EB-Button melting of the Ni-Base Superalloys IN718 and Astroloy. (orig.).

  15. Hydrogen environment embrittlement of turbine disk alloys

    International Nuclear Information System (INIS)

    Differences in reported data on properties of turbine disk materials are examined. Results confirm previous results that Udimet 700 bar stock is severely embrittled when tested in gaseous hydrogen. This extreme sensitivity to embrittlement of Udimet 700 is presumably related to its microstructure. Results that Astroloy forgings exhibit a high degree of resistance to hydrogen environment embrittlement during short-term testing, and possibly long-term testing are also confirmed. Therefore, this alloy could be considered for use as the turbine disk alloy for advanced versions of the APU, thereby permitting an increased turbine inlet temperature and/or higher rotational speed than possible with V-57. V-57 is an iron-base superalloy (stable austenitic stainless steel) and is a member of a class of alloys generally quite resistant to hydrogen environment embrittlement. The results of investigation demonstrate the good resistance of V-57 alloy to embrittlement only during short-term tensile testing. Significant reductions in creep and rupture lives, as well as post-creep residual ductility, were determined. Despite these laboratory results, V-57 turbine disks successfully completed short-time performance testing in the experimental APU

  16. Interpolation and extrapolation of creep rupture data by the Minimum Commitment Method. I - Focal-point convergence. II - Oblique translation. III - Analysis of multiheats

    Science.gov (United States)

    Manson, S. S.; Ensign, C. R.

    1978-01-01

    The framework in which minimum-commitment analyses of creep-rupture data can be implemented is outlined. The approach is termed the focal point convergence method (FPCM) because the basic parameter A, also known as stability factor, is geometrically the (imaginary) focal point of convergence of all isothermals when extended to the very long or very short times necessary for such convergence to occur. The method can be implemented either by manual-graphical analysis or by computer code. The method is illustrated in detail for the nickel-base alloy Astroloy, as well as for steels, other nickel-base alloys, and aluminum alloys. The minimum-commitment concept is extended to the analysis of creep-rupture data where each isothermal is generated by an oblique translation of the 'master curve' when plotted on log rupture time and log stress axes. The oblique translation method uses the same types of functions in the FPCM. Approaches for treating multiheats on the basis of the FPCM are discussed in detail.

  17. Development of fracture mechanics data for two hydrazine APU turbine wheel materials

    Science.gov (United States)

    Curbishley, G.

    1975-01-01

    The effects of high temperature, high pressure ammonia were measured on the fracture mechanics and fatigue properties of Astroloy and Rene' 41 turbine wheel materials. Also, the influence of protective coatings on these properties was investigated. Specimens of forged bar stock were subjected to LCF and HCF tests at 950 K (1250 F) and 3.4 MN/sq m (500 psig) pressure, in ammonia containing about 1.5 percent H2O. Aluminized samples (Chromizing Company's Al-870) and gold plated test bars were compared with uncoated specimens. Comparison tests were also run in air at 950 K (1250 F), but at ambient pressures. K sub IE and K sub TH were determined on surface flawed specimens in both the air and ammonia in both uncoated and gold plated conditions. Gold plated specimens exhibited better properties than uncoated samples, and aluminized test bars generally had lower properties. The fatigue properties of specimens tested in ammonia were higher than those tested in air, yet the K sub TH values of ammonia tested samples were lower than those tested in air. However, insufficient specimens were tested to develop significant design data.

  18. Status of the minimum-commitment method for creep-rupture applications

    International Nuclear Information System (INIS)

    A status report is presented of the Minimum Commitment Method for generalizing time--temperature parameter analysis of creep-rupture data. Two procedures have been developed, the Focal Point Convergence Method, based on the common intersection of all isothermals at an (imaginary) distant point, and the Oblique Translation Method, based on the assumption that all isothermals can be generated from a single master curve by oblique displacement. Both methods are illustrated for Astroloy, which is subject to a precipitation instability. While the procedure is outlined for individualizing the constants for a particular material, use of universalized constants based on material class has been found advantageous when insufficient information is available for a particularized analyses, or when the relationship among the isothermals does not clearly indicate need for such analysis. Results are presented for several materials analyzed by universalized constants. Application is also extended to treatment of multiheat sets. First the data are analyzed without regard to heat, and then each heat is fingerprinted according to performance relative to mean. Considerable reduction of scatter in heat-to-heat correlation is shown for one set of 304 steainless steel by a modification stress of each heat according to a power law