WorldWideScience

Sample records for astroglial c-myc overexpression

  1. Astroglial c-Myc overexpression predisposes mice to primary malignant gliomas

    DEFF Research Database (Denmark)

    Jensen, Niels Aagaard; Pedersen, Karen-Marie; Lihme, Frederikke;

    2003-01-01

    Malignant astrocytomas are common human primary brain tumors that result from neoplastic transformation of astroglia or their progenitors. Here we show that deregulation of the c-Myc pathway in developing astroglia predisposes mice to malignant astrocytomas within 2-3 weeks of age. The geneticall...

  2. Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells.

    Science.gov (United States)

    Cho, Kyoung Bin; Cho, Min Kyong; Lee, Won Young; Kang, Keon Wook

    2010-07-28

    The c-myc gene is frequently overexpressed in human breast cancer and its target genes are involved in tumorigenesis. Epithelial mesenchymal transitions (EMT), where cells undergo a developmental switch from a polarized epithelial phenotype to a highly motile mesenchymal phenotype, are associated with invasion and motility of cancer cells. Basal E-cadherin expression was down-regulated in c-myc overexpressing MCF10A (c-myc-MCF10A) cells compared to GFP-overexpressing MCF10A (GFP-MCF10A) cells, while N-cadherin was distinctly increased in c-myc-MCF10A cells. Given that glycogen synthase kinase-3beta (GSK-3beta) and the snail axis have key roles in E-cadherin deregulation during EMT, we investigated the role of GSK-3beta/snail signaling pathways in the induction of EMT by c-myc overexpression. In contrast to GFP-MCF10A cells, both the transcriptional activity and the ubiquitination-dependent protein stability of snail were enhanced in c-myc-MCF10A cells, and this was reversed by GSK-3beta overexpression. We also found that c-myc overexpression inhibits GSK-3beta activity through activation of extracellular signal-regulated kinase (ERK). Inhibition of ERK by dominant negative mutant transfection or chemical inhibitor significantly suppressed snail gene transcription. These results suggest that c-myc overexpression during transformation of mammary epithelial cells (MEC) is involved in EMTs via ERK-dependent GSK-3beta inactivation and subsequent snail activation.

  3. Genetic and genomic analysis modeling of germline c-MYC overexpression and cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Nunes Virginia

    2008-01-01

    Full Text Available Abstract Background Germline genetic variation is associated with the differential expression of many human genes. The phenotypic effects of this type of variation may be important when considering susceptibility to common genetic diseases. Three regions at 8q24 have recently been identified to independently confer risk of prostate cancer. Variation at 8q24 has also recently been associated with risk of breast and colorectal cancer. However, none of the risk variants map at or relatively close to known genes, with c-MYC mapping a few hundred kilobases distally. Results This study identifies cis-regulators of germline c-MYC expression in immortalized lymphocytes of HapMap individuals. Quantitative analysis of c-MYC expression in normal prostate tissues suggests an association between overexpression and variants in Region 1 of prostate cancer risk. Somatic c-MYC overexpression correlates with prostate cancer progression and more aggressive tumor forms, which was also a pathological variable associated with Region 1. Expression profiling analysis and modeling of transcriptional regulatory networks predicts a functional association between MYC and the prostate tumor suppressor KLF6. Analysis of MYC/Myc-driven cell transformation and tumorigenesis substantiates a model in which MYC overexpression promotes transformation by down-regulating KLF6. In this model, a feedback loop through E-cadherin down-regulation causes further transactivation of c-MYC. Conclusion This study proposes that variation at putative 8q24 cis-regulator(s of transcription can significantly alter germline c-MYC expression levels and, thus, contribute to prostate cancer susceptibility by down-regulating the prostate tumor suppressor KLF6 gene.

  4. Driving gradual endogenous c-myc overexpression by flow-sorting: intracellular signaling and tumor cell phenotype correlate with oncogene expression

    DEFF Research Database (Denmark)

    Knudsen, Kasper Jermiin; Holm, G.M.N.; Krabbe, J.S.;

    2009-01-01

    Insulin-exposed rat mammary cancer cells were flow sorted based on a c-myc reporter plasmid encoding a destabilized green fluorescent protein. Sorted cells exhibited gradual increases in c-myc levels. Cells overexpressing c-myc by only 10% exhibited phenotypic changes attributable to c-myc overex...... an alternative modeling of the receptor-mediated carcinogenic process, compared to the currently used approaches of recombinant constitutive or conditional overexpression of oncogenic transmembrane receptor tyrosine kinases or oncogenic transcription factors....

  5. Co-overexpression of bcl-2 and c-myc in uterine cervix carcinomas and premalignant lesions

    Directory of Open Access Journals (Sweden)

    Z. Protrka

    2011-03-01

    Full Text Available To establish the role of co-overexpression of bcl-2 and c-myc protooncogenes in uterine cervix carcinogenesis, we examined 138 tissue samples of low grade cervical squamous intraepithelial lesions (SIL, high grade SIL, portio vaginalis uteri (PVU carcinoma in situ and PVU carcinoma invasive, stage IA-IIA (study group and 36 samples without SIL or malignancy (control group. The expression of bcl-2 and c-myc was detected immunohistochemically using a monoclonal antibody. Fisher’s exact test (P<0.05 was used to assess statistical significance. Overexpression of bcl-2 was found to increase in direct relation to the grade of the cervical lesions. High sensitivity was of great diagnostic significance for the detection of these types of changes in the uterine cervix. On the basis of high predictive values it can be said that in patients with bcl-2 overexpression there is a great possibility that they have premalignant or malignant changes in the uterine cervix. Co-overexpression of bcl-2 and c-myc oncogenes was found only in patients with PVU invasive carcinoma (6/26-23.0%. Statistically significant difference was not found in the frequency of co-overexpression in patients with PVU invasive carcinoma in relation to the control group (Fisher’s test; P=0.064. The method's sensitivity of determining these oncogenes with the aim of detecting PVU invasive carcinoma was 23%, while specificity was 72.2%. On the basis of high predictive values (100%, speaking in statistical terms, it can be concluded that all patients with co-overexpression of bcl-2 and c-myc oncogenes will have PVU invasive carcinoma. We confirmed in our research that co-overexpression of bcl-2 and c-myc oncogenes was increased only in PVU invasive carcinoma. However, a more extensive series of samples and additional tests are required to establish the prognostic significance of bcl-2 and c-myc co-overexpression in cervical carcinogenesis.

  6. Tissue array for Tp53, C-myc, CCND1 gene over-expression in different tumors

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To rapidly detect molecular alterations in different malignancies and investigate the possible role of Tp53, C-myc, and CCND1 genes in development of tumors in human organs and their adjacent normal tissues, as well as the possible relation between well- and poorly-differentiated tumors. METHODS: A tissue array consisting of seven different tumors was generated. The tissue array included 120 points of esophagus, 120 points of stomach, 80 points of rectum, 60 points of thyroid gland, 100 points of mammary gland, 80 points ofliver, and 80 points of colon. Expressions of Tp53, C-myc, and CCND1 were determined by RNA in situ hybridization. 3' terminal digoxin-labeled anti-sense single stranded oligonucleotide and locked nucleic acid modifying probe were used.RESULTS: The expression level of Tp53 gene was higher in six different carcinoma tissue samples than in paracancerous tissue samples with the exception in colon carcinoma tissue samples (P < 0.05). The expression level of CCND1 gene was significantly different in different carcinoma tissue samples with the exception in esophagus and colon carcinoma tissue samples. The expression level of C-myc gene was different in esophagus carcinoma tissue samples (x2 = 18.495, P = 0.000), stomach carcinoma tissue samples (x2 = 23.750, P = 0.000), and thyroid gland tissue samples (x2 = 10.999, P = 0.004). The intensity of signals was also different in different carcinoma tissue samples and paracancerous tissue samples.CONCLUSION: Over-expression of the Tp53, CCND1, and C-myc genes appears to play a role in development of human cancer by regulating the expression of mRNA. Tp53, CCND1 and C-myc genes are significantly correlated with the development of different carcinomas.

  7. Correlation of chromosomal polysomy with overexpression of c-myc and c-erbB-2 in primary nasopharyngeal carcinoma: Tissue microarray study

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Many genes may be involved in nasopharyngeal carcinoma (NPC) development and progression. Several known oncogenes, including c-myc and c-erb-B2, have been shown to have structural alteration and aberrant expression in NPC. Here, we constructed a tissue microarray to determine the status of c-myc and c-erbB-2 oncogenes at the DNA and protein levels using interphase fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) and to define the diagnostic, prognostic importance of the genetic changes. Results showed that amplification of c-myc and c-erbB-2 was not found in NPC. Polysomy 8 and 17 were observed in 43%-50% and 20%-27% of NPC tumors, respectively. Overexpressions of c-myc and c-erbB-2 oncoproteins were detected in 53.6% and 54.5% cases of NPC with polysomy 8 and 17, respectively. There was no significant correlation between c-myc and c-erbB-2 staining and the clinical stage. But overexpression of c-erbB-2 was associated with polysomy 17 in NPC. These findings suggest that chromosomal polysomy, not gene amplification, may be partially responsible for the upregulated expression of c-erbB-2 oncogene in NPC.

  8. DNA Damage, Apoptosis and C-myc, C-fos, and C-jun Overexpression Induced by Selenium in Rat Hepatocytes

    Institute of Scientific and Technical Information of China (English)

    RI-AN YU; CHENG-FENG YANG; XUE-MIN CHEN

    2006-01-01

    Objective To study the effects of selenium on DNA damage, apoptosis and c-myc, c-fos, and c-jun expression in rat hepatocytes. Methods Sodium selenite at the doses of 5, 10, and 20 μmol/kg was given to rats by i.p. and there were 5 male SD rats in each group. Hepatocellular DNA damage was detected by single cell gel electrophoresis (or comet assay).Hepatocellular apoptosis was determined by TUNEL (TdT-mediated dUTP nick end labelling) and flow cytometry. C-myc,c-fos, and c-jun expression in rat hepatocytes were assayed by Northern dot hybridization. C-myc, c-fos, and c-jun protein were detected by immunohistochemical method. Results At the doses of 5, 10, and 20 μmol/kg, DNA damage was induced by sodium selenite in rat hepatocytes and the rates of comet cells were 34.40%, 74.80%, and 91.40% respectively. Results also showed an obvious dose-response relationship between the rates of comet cells and the doses of sodium selenite (r=0.9501,P<0.01). Sodium selenite at the doses of 5, 10, and 20 μmol/kg caused c-myc, c-fos, and c-jun overexpression obviously. The positive brown-yellow signal for proteins of c-myc, c-fos, and c-jun was mainly located in the cytoplasm of hepatocytes with immunohistochemical method. TUNEL-positive cells were detected in selenium-treated rat livers. Apoptotic rates (%) of selenium-treated liver cells at the doses of 5, 10, and 20 μmol/kg were (3.72±1.76), (5.82±1.42), and (11.76±1.87) respectively, being much higher than those in the control. Besides an obvious dose-response relationship between apoptotic rates and the doses of sodium selenite (r=0.9897, P<0.01), these results displayed a close relationship between DNA damage rates and apoptotic rates, and the relative coefficient was 0.9021, P<0.01. Conclusion Selenium at 5-20 μmol/kg can induce DNA damage, apoptosis, and overexpression of c-myc, c-fos, and c-jun in rat hepatocytes.

  9. The Dysregulation of Polyamine Metabolism in Colorectal Cancer Is Associated with Overexpression of c-Myc and C/EBPβ rather than Enterotoxigenic Bacteroides fragilis Infection

    Directory of Open Access Journals (Sweden)

    Anastasiya V. Snezhkina

    2016-01-01

    Full Text Available Colorectal cancer is one of the most common cancers in the world. It is well known that the chronic inflammation can promote the progression of colorectal cancer (CRC. Recently, a number of studies revealed a potential association between colorectal inflammation, cancer progression, and infection caused by enterotoxigenic Bacteroides fragilis (ETBF. Bacterial enterotoxin activates spermine oxidase (SMO, which produces spermidine and H2O2 as byproducts of polyamine catabolism, which, in turn, enhances inflammation and tissue injury. Using qPCR analysis, we estimated the expression of SMOX gene and ETBF colonization in CRC patients. We found no statistically significant associations between them. Then we selected genes involved in polyamine metabolism, metabolic reprogramming, and inflammation regulation and estimated their expression in CRC. We observed overexpression of SMOX, ODC1, SRM, SMS, MTAP, c-Myc, C/EBPβ (CREBP, and other genes. We found that two mediators of metabolic reprogramming, inflammation, and cell proliferation c-Myc and C/EBPβ may serve as regulators of polyamine metabolism genes (SMOX, AZIN1, MTAP, SRM, ODC1, AMD1, and AGMAT as they are overexpressed in tumors, have binding site according to ENCODE ChIP-Seq data, and demonstrate strong coexpression with their targets. Thus, increased polyamine metabolism in CRC could be driven by c-Myc and C/EBPβ rather than ETBF infection.

  10. c-Myc dependent expression of pro-apoptotic Bim renders HER2-overexpressing breast cancer cells dependent on anti-apoptotic Mcl-1

    Directory of Open Access Journals (Sweden)

    Jézéquel Pascal

    2011-09-01

    Full Text Available Abstract Background Anti-apoptotic signals induced downstream of HER2 are known to contribute to the resistance to current treatments of breast cancer cells that overexpress this member of the EGFR family. Whether or not some of these signals are also involved in tumor maintenance by counteracting constitutive death signals is much less understood. To address this, we investigated what role anti- and pro-apoptotic Bcl-2 family members, key regulators of cancer cell survival, might play in the viability of HER2 overexpressing breast cancer cells. Methods We used cell lines as an in vitro model of HER2-overexpressing cells in order to evaluate how anti-apoptotic Bcl-2, Bcl-xL and Mcl-1, and pro-apoptotic Puma and Bim impact on their survival, and to investigate how the constitutive expression of these proteins is regulated. Expression of the proteins of interest was confirmed using lysates from HER2-overexpressing tumors and through analysis of publicly available RNA expression data. Results We show that the depletion of Mcl-1 is sufficient to induce apoptosis in HER2-overexpressing breast cancer cells. This Mcl-1 dependence is due to Bim expression and it directly results from oncogenic signaling, as depletion of the oncoprotein c-Myc, which occupies regions of the Bim promoter as evaluated in ChIP assays, decreases Bim levels and mitigates Mcl-1 dependence. Consistently, a reduction of c-Myc expression by inhibition of mTORC1 activity abrogates occupancy of the Bim promoter by c-Myc, decreases Bim expression and promotes tolerance to Mcl-1 depletion. Western blot analysis confirms that naïve HER2-overexpressing tumors constitutively express detectable levels of Mcl-1 and Bim, while expression data hint on enrichment for Mcl-1 transcripts in these tumors. Conclusions This work establishes that, in HER2-overexpressing tumors, it is necessary, and maybe sufficient, to therapeutically impact on the Mcl-1/Bim balance for efficient induction of

  11. Generation of liver-specific TGF-α/c-Myc-overexpressing porcine induced pluripotent stem-like cells and blastocyst formation using nuclear transfer.

    Science.gov (United States)

    Park, Kyung-Mee; Lee, Joohyeong; Hussein, Kamal Hany; Hong, Seok-Ho; Yang, Se-Ran; Lee, Eunsong; Woo, Heung-Myong

    2016-05-01

    Transgenic porcine induced pluripotent stem (iPS) cells are attractive cell sources for the development of genetically engineered pig models, because they can be expanded without senescence and have the potential for multiple gene manipulation. They are also useful cell sources for disease modeling and treatment. However, the generation of transgenic porcine iPS cells is rare, and their embryonic development after nuclear transfer (NT) has not yet been reported. We report here the generation of liver-specific oncogenes (TGF-α/c-Myc)-overexpressing porcine iPS (T/M iPS)-like cells. They expressed stem cell characteristics and were differentiated into hepatocyte-like cells that express oncogenes. We also confirmed that NT embryos derived from T/M iPS-like cells successfully developed blastocysts in vitro. As an initial approach toward porcine transgenic iPS cell generation and their developmental competence after NT, this study provides foundations for the efficient generation of genetically modified porcine iPS cells and animal models. PMID:26725870

  12. Ezrin mediates c-Myc actions in prostate cancer cell invasion

    DEFF Research Database (Denmark)

    Chuan, Yin Choy; Iglesias Gato, Diego; Fernandez-Perez, L;

    2010-01-01

    The forced overexpression of c-Myc in mouse prostate and in normal human prostate epithelial cells results in tumor transformation with an invasive phenotype. How c-Myc regulates cell invasion is poorly understood. In this study, we have investigated the interplay of c-Myc and androgens in the re...

  13. c-Myc Suppression of DNA Double-strand Break Repair

    Directory of Open Access Journals (Sweden)

    Zhaozhong Li

    2012-12-01

    Full Text Available c-Myc is a transcriptional factor that functions as a central regulator of cell growth, proliferation, and apoptosis. Overexpression of c-Myc also enhances DNA double-strand breaks (DSBs, genetic instability, and tumorigenesis. However, the mechanism(s involved remains elusive. Here, we discovered that γ-ray ionizing radiation-induced DSBs promote c-Myc to form foci and to co-localize with γ-H2AX. Conditional expression of c-Myc in HO15.19 c-Myc null cells using the Tet-Off/Tet-On inducible system results in down-regulation of Ku DNA binding and suppressed activities of DNA-dependent protein kinase catalytic subunit (DNA-PKcs and DNA end-joining, leading to inhibition of DSB repair and enhanced chromosomal and chromatid breaks. Expression of c-Myc reduces both signal and coding joins with decreased fidelity during V(DJ recombination. Mechanistically, c-Myc directly interacts with Ku70 protein through its Myc box II (MBII domain. Removal of the MBII domain from c-Myc abrogates its inhibitory effects on Ku DNA binding, DNA-PKcs, and DNA end-joining activities, which results in loss of c-Myc's ability to block DSB repair and V(DJ recombination. Interestingly, c-Myc directly disrupts the Ku/DNA-PKcs complex in vitro and in vivo. Thus, c-Myc suppression of DSB repair and V(DJ recombination may occur through inhibition of the nonhomologous end-joining pathway, which provides insight into the mechanism of c-Myc in the development of tumors through promotion of genomic instability.

  14. Brief inactivation of c-Myc is not sufficient for sustained regression of c-Myc-induced tumours of pancreatic islets and skin epidermis

    Directory of Open Access Journals (Sweden)

    Zervou Sevasti

    2004-12-01

    Full Text Available Abstract Background Tumour regression observed in many conditional mouse models following oncogene inactivation provides the impetus to develop, and a platform to preclinically evaluate, novel therapeutics to inactivate specific oncogenes. Inactivating single oncogenes, such as c-Myc, can reverse even advanced tumours. Intriguingly, transient c-Myc inactivation proved sufficient for sustained osteosarcoma regression; the resulting osteocyte differentiation potentially explaining loss of c-Myc's oncogenic properties. But would this apply to other tumours? Results We show that brief inactivation of c-Myc does not sustain tumour regression in two distinct tissue types; tumour cells in pancreatic islets and skin epidermis continue to avoid apoptosis after c-Myc reactivation, by virtue of Bcl-xL over-expression or a favourable microenvironment, respectively. Moreover, tumours progress despite reacquiring a differentiated phenotype and partial loss of vasculature during c-Myc inactivation. Interestingly, reactivating c-Myc in β-cell tumours appears to result not only in further growth of the tumour, but also re-expansion of the accompanying angiogenesis and more pronounced β-cell invasion (adenocarcinoma. Conclusions Given that transient c-Myc inactivation could under some circumstances produce sustained tumour regression, the possible application of this potentially less toxic strategy in treating other tumours has been suggested. We show that brief inactivation of c-Myc fails to sustain tumour regression in two distinct models of tumourigenesis: pancreatic islets and skin epidermis. These findings challenge the potential for cancer therapies aimed at transient oncogene inactivation, at least under those circumstances where tumour cell differentiation and alteration of epigenetic context fail to reinstate apoptosis. Together, these results suggest that treatment schedules will need to be informed by knowledge of the molecular basis and

  15. Sulforaphane Inhibits c-Myc-Mediated Prostate Cancer Stem-Like Traits.

    Science.gov (United States)

    Vyas, Avani R; Moura, Michelle B; Hahm, Eun-Ryeong; Singh, Krishna Beer; Singh, Shivendra V

    2016-11-01

    Preventive and therapeutic efficiencies of dietary sulforaphane (SFN) against human prostate cancer have been demonstrated in vivo, but the underlying mechanism(s) by which this occurs is poorly understood. Here, we show that the prostate cancer stem cell (pCSC)-like traits, such as accelerated activity of aldehyde dehydrogenase 1 (ALDH1), enrichment of CD49f+ fraction, and sphere forming efficiency, are attenuated by SFN treatment. Interestingly, the expression of c-Myc, an oncogenic transcription factor that is frequently deregulated in prostate cancer cells, was markedly suppressed by SFN both in vitro and in vivo. This is biologically relevant, because the lessening of pCSC-like phenotypes mediated by SFN was attenuated when c-Myc was overexpressed. Naturally occurring thio, sulfinyl, and sulfonyl analogs of SFN were also effective in causing suppression of c-Myc protein level. However, basal glycolysis, a basic metabolic pathway that can also be promoted by c-Myc overexpression, was not largely suppressed by SFN, implying that, in addition to c-Myc, there might be another SFN-sensitive cellular factor, which is not directly involved in basal glycolysis, but cooperates with c-Myc to sustain pCSC-like phenotypes. Our study suggests that oncogenic c-Myc is a target of SFN to prevent and eliminate the onset of human prostate cancer. J. Cell. Biochem. 117: 2482-2495, 2016. © 2016 Wiley Periodicals, Inc.

  16. Glutathione Depletion Induced by c-Myc Downregulation Triggers Apoptosis on Treatment with Alkylating Agents

    Directory of Open Access Journals (Sweden)

    Annamaria Biroccio

    2004-05-01

    Full Text Available Here we investigate the mechanism(s involved in the c-Myc-dependent drug response of melanoma cells. By using three M14-derived c-Myc low-expressing clones, we demonstrate that alkylating agents, cisplatin and melphalan, trigger apoptosis in the c-Myc antisense transfectants, but not in the parental line. On the contrary, topoisomerase inhibitors, adriamycin and camptothecin, induce apoptosis to the same extent regardless of c-Myc expression. Because we previously demonstrated that c-Myc downregulation decreases glutathione (GSH content, we evaluated the role of GSH in the apoptosis induced by the different drugs. In control cells treated with one of the alkylating agents or the others, GSH depletion achieved by L-buthionine-sulfoximine preincubation opens the apoptotic pathway. The apoptosis proceeded through early Bax relocalization, cytochrome c release, concomitant caspase-9 activation, whereas reactive oxygen species production and alteration of mitochondria membrane potential were late events. That GSH was determining in the c-Myc-dependent druginduced apoptosis was demonstrated by altering the intracellular GSH content of the c-Myc low-expressing cells up to the level of controls. Indeed, GSH ethyl ester-mediated increase of GSH abrogated apoptosis induced by cisplatin and melphalan by inhibition of Baxicytochrome c redistribution. The relationship among c-Myc, GSH content, the response to alkylating agent has been also evaluated in the M14 Myc overexpressing clones as well as in the melanoma JR8 c-Myc antisense transfectants. All together, these results demonstrate that GSH plays a key role in governing c-Myc-dependent drug-induced apoptosis.

  17. c-Myc is a novel target of cell cycle arrest by honokiol in prostate cancer cells.

    Science.gov (United States)

    Hahm, Eun-Ryeong; Singh, Krishna Beer; Singh, Shivendra V

    2016-09-01

    Honokiol (HNK), a highly promising phytochemical derived from Magnolia officinalis plant, exhibits in vitro and in vivo anticancer activity against prostate cancer but the underlying mechanism is not fully clear. This study was undertaken to delineate the role of c-Myc in anticancer effects of HNK. Exposure of prostate cancer cells to plasma achievable doses of HNK resulted in a marked decrease in levels of total and/or phosphorylated c-Myc protein as well as its mRNA expression. We also observed suppression of c-Myc protein in PC-3 xenografts upon oral HNK administration. Stable overexpression of c-Myc in PC-3 and 22Rv1 cells conferred significant protection against HNK-mediated growth inhibition and G0-G1 phase cell cycle arrest. HNK treatment decreased expression of c-Myc downstream targets including Cyclin D1 and Enhancer of Zeste Homolog 2 (EZH2), and these effects were partially restored upon c-Myc overexpression. In addition, PC-3 and DU145 cells with stable knockdown of EZH2 were relatively more sensitive to growth inhibition by HNK compared with control cells. Finally, androgen receptor overexpression abrogated HNK-mediated downregulation of c-Myc and its targets particularly EZH2. The present study indicates that c-Myc, which is often overexpressed in early and late stages of human prostate cancer, is a novel target of prostate cancer growth inhibition by HNK.

  18. TELOMERASE ACTIVITY IN COLORECTAL CARCINOMA AND ITS CORRELATION WITH EXPRESSION OF C-MYC

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Lun; GE Lian-ying; ZHANG Gui-nian

    2005-01-01

    Objective: To study the role of telomerase activity and c-myc in pathogenesis and progression of colorectal carcinoma,and to investigate the possible regulatory mechanism of telomerase activation. Methods: A modified telomeric repeat amplification protocol (TRAP) and immunohistochemical staining was used to detect telomerase activity and the expression of c-myc in tissue samples from colorectal carcinoma, paracarcinomatousl tissues, normal mucosa, and adenomatoid polyp.Results: The positive rates of telomerase activity and c-myc expression were 83.33% and 80.00% in colorectal carcinoma,13.33% and 23.33% in paracarcinomatousl tissues, 13.33% and 20.00% in normal mucosa, and 10.00% and 45.00% in adenomatoid polyp respectively, they were significantly higher in colorectal carcinoma than in paracarcinomatousl tissues,normal mucosa, and adenomatoid polyp (P<0.05). The rates of telomerase activity and c-myc expression were much higher in colorectal carcinoma with lymph nodes metastases than that without lymph nodes metastases. The expression of c-myc was found being significantly higher in the telomerase positive colorectal carcinoma than in the telomerase negative group(P<0.05). Conclusion: The activation of telomerase and abnormal expression of c-myc might play an important role in the process of carcinogenesis and progression of colorectal carcinoma. The over-expression of c-myc may be related to telomerase activation and up-regulation in colorectal carcinoma.

  19. Inhibition of c-Myc overcomes cytotoxic drug resistance in acute myeloid leukemia cells by promoting differentiation.

    Directory of Open Access Journals (Sweden)

    Xiao-Na Pan

    Full Text Available Nowadays, drug resistance still represents a major obstacle to successful acute myeloid leukemia (AML treatment and the underlying mechanism is not fully elucidated. Here, we found that high expression of c-Myc was one of the cytogenetic characteristics in the drug-resistant leukemic cells. c-Myc over-expression in leukemic cells induced resistance to chemotherapeutic drugs, enhanced colony formation capacity and inhibited cell differentiation induced by all-trans retinoic acid (ATRA. Meanwhile, inhibition of c-Myc by shRNA or specific c-Myc inhibitor 10058-F4 rescued the sensitivity to cytotoxic drugs, restrained the colony formation ability and promoted differentiation. RT-PCR and western blotting analysis showed that down-regulation of C/EBPβ contributed to the poor differentiation state of leukemic cells induced by c-Myc over-expression. Importantly, over-expression of C/EBPβ could reverse c-Myc induced drug resistance. In primary AML cells, the c-Myc expression was negatively correlated with C/EBPβ. 10058-F4, displayed anti-proliferative activity and increased cellular differentiation with up-regulation of C/EBPβ in primary AML cells. Thus, our study indicated that c-Myc could be a novel target to overcome drug resistance, providing a new approach in AML therapy.

  20. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo.

    Science.gov (United States)

    Phesse, T J; Myant, K B; Cole, A M; Ridgway, R A; Pearson, H; Muncan, V; van den Brink, G R; Vousden, K H; Sears, R; Vassilev, L T; Clarke, A R; Sansom, O J

    2014-06-01

    Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes to DNA damage. Remarkably, c-Myc deletion completely abrogated the immediate wave of apoptosis following both ionizing irradiation and cisplatin treatment, recapitulating the phenotype of p53 deficiency in the intestine. Consistent with this, c-Myc-deficient intestinal enterocytes did not upregulate p53. Mechanistically, this was linked to an upregulation of the E3 Ubiquitin ligase Mdm2, which targets p53 for degradation in c-Myc-deficient intestinal enterocytes. Further, low level overexpression of c-Myc, which does not impact on basal levels of apoptosis, elicited sustained apoptosis in response to DNA damage, suggesting c-Myc activity acts as a crucial cell survival rheostat following DNA damage. We also identify the importance of MYC during DNA damage-induced apoptosis in several other tissues, including the thymus and spleen, using systemic deletion of c-Myc throughout the adult mouse. Together, we have elucidated for the first time in vivo an essential role for endogenous c-Myc in signalling DNA damage-induced apoptosis through the control of the p53 tumour suppressor protein. PMID:24583641

  1. Differential regulation of the c-Myc/Lin28 axis discriminates subclasses of rearranged MLL leukemia

    Science.gov (United States)

    Chen, Lili; Sun, Yuqing; Wang, Jingya; Jiang, Hui; Muntean, Andrew G.

    2016-01-01

    MLL rearrangements occur in myeloid and lymphoid leukemias and are generally associated with a poor prognosis, however this varies depending on the fusion partner. We modeled acute myeloid leukemia (AML) in mice using various MLL fusion proteins (MLL-FPs) and observed significantly different survival outcomes. To better understand the differences between these leukemias, we examined the genome wide expression profiles of leukemic cells transformed with different MLL-FPs. RNA-sequencing and pathway analysis identified the c-Myc transcriptional program as one of the top distinguishing features. c-Myc protein levels were highly correlative with AML disease latency in mice. Functionally, overexpression of c-Myc resulted in a more aggressive proliferation rate in MLL-FP cell lines. While all MLL-FP transformed cells displayed sensitivity to BET inhibitors, high c-Myc expressing cells showed greater resistance to Brd4 inhibition. The Myc target Lin28B was also differentially expressed in MLL-FP cell lines in agreement with c-Myc expression. Examination of Lin28B miRNAs targets revealed that let-7g was significantly increased in leukemic cells associated with the longest disease latency and forced let-7g expression induced differentiation of leukemic blasts. Thus, differential regulation of the c-Myc/Lin28/let-7g program by different MLL-FPs is functionally related to disease latency and BET inhibitor resistance in MLL leukemias. PMID:27007052

  2. DOWN-REGULATION OF C-MYC ONCOGENE DURING NGF-INDUCED DIFFERENTIATION OF NEUROBLASTOMA CELL LINES

    Institute of Scientific and Technical Information of China (English)

    陈杰; 刘彤华; AlonzoHRoss

    1994-01-01

    There may be a close relationship between myc oncogenes and carcinogenesis of human neuroblastoma.In previous studies.we were able to induce differentiation of certain neuroblastoma cell lines with NGF.In order to study gene regulation during differentiation.N-myc and c-myc cDNA probes were hybridized with RNA extracted from different cell lines before and after NGF treatment.It was found that cell lines which expressed N-myc did not express cmyc while those with c-myc did not express N-myc except for SHEP cell line which had neither c-myc nor N-myc expression.In NGF-induced differentiated neurblastoma cells,c-myc oncogene was down-regulated in comparison with the control samples.The time course of c-myc down-regulation was concomitant with the apperarance of orphological differentiation.In situ hybridization also showed remarkable reduction of c-myc oncogene expression in NGF-induced differentiated cells as compared with the untreated control cells.These results in dicate that down-regulation of c-myc concogene may be a key event during NGF-induced differentiation and overexpression of c-myc oncogene may ,at least partially,be responsible for the genesis of neuroblastoma.

  3. Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases.

    Science.gov (United States)

    Sipos, Ferenc; Firneisz, Gábor; Műzes, Györgyi

    2016-09-21

    Colonic inflammation is required to heal infections, wounds, and maintain tissue homeostasis. As the seventh hallmark of cancer, however, it may affect all phases of tumor development, including tumor initiation, promotion, invasion and metastatic dissemination, and also evasion immune surveillance. Inflammation acts as a cellular stressor and may trigger DNA damage or genetic instability, and, further, chronic inflammation can provoke genetic mutations and epigenetic mechanisms that promote malignant cell transformation. Both sporadical and colitis-associated colorectal carcinogenesis are multi-step, complex processes arising from the uncontrolled proliferation and spreading of malignantly transformed cell clones with the obvious ability to evade the host's protective immunity. In cells upon DNA damage several proto-oncogenes, including c-MYC are activated in parelell with the inactivation of tumor suppressor genes. The target genes of the c-MYC protein participate in different cellular functions, including cell cycle, survival, protein synthesis, cell adhesion, and micro-RNA expression. The transcriptional program regulated by c-MYC is context dependent, therefore the final cellular response to elevated c-MYC levels may range from increased proliferation to augmented apoptosis. Considering physiological intestinal homeostasis, c-MYC displays a fundamental role in the regulation of cell proliferation and crypt cell number. However, c-MYC gene is frequently deregulated in inflammation, and overexpressed in both sporadic and colitis-associated colon adenocarcinomas. Recent results demonstrated that endogenous c-MYC is essential for efficient induction of p53-dependent apoptosis following DNA damage, but c-MYC function is also involved in and regulated by autophagy-related mechanisms, while its expression is affected by DNA-methylation, or histone acetylation. Molecules directly targeting c-MYC, or agents acting on other genes involved in the c-MYC pathway could be

  4. Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases.

    Science.gov (United States)

    Sipos, Ferenc; Firneisz, Gábor; Műzes, Györgyi

    2016-09-21

    Colonic inflammation is required to heal infections, wounds, and maintain tissue homeostasis. As the seventh hallmark of cancer, however, it may affect all phases of tumor development, including tumor initiation, promotion, invasion and metastatic dissemination, and also evasion immune surveillance. Inflammation acts as a cellular stressor and may trigger DNA damage or genetic instability, and, further, chronic inflammation can provoke genetic mutations and epigenetic mechanisms that promote malignant cell transformation. Both sporadical and colitis-associated colorectal carcinogenesis are multi-step, complex processes arising from the uncontrolled proliferation and spreading of malignantly transformed cell clones with the obvious ability to evade the host's protective immunity. In cells upon DNA damage several proto-oncogenes, including c-MYC are activated in parelell with the inactivation of tumor suppressor genes. The target genes of the c-MYC protein participate in different cellular functions, including cell cycle, survival, protein synthesis, cell adhesion, and micro-RNA expression. The transcriptional program regulated by c-MYC is context dependent, therefore the final cellular response to elevated c-MYC levels may range from increased proliferation to augmented apoptosis. Considering physiological intestinal homeostasis, c-MYC displays a fundamental role in the regulation of cell proliferation and crypt cell number. However, c-MYC gene is frequently deregulated in inflammation, and overexpressed in both sporadic and colitis-associated colon adenocarcinomas. Recent results demonstrated that endogenous c-MYC is essential for efficient induction of p53-dependent apoptosis following DNA damage, but c-MYC function is also involved in and regulated by autophagy-related mechanisms, while its expression is affected by DNA-methylation, or histone acetylation. Molecules directly targeting c-MYC, or agents acting on other genes involved in the c-MYC pathway could be

  5. Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases

    Science.gov (United States)

    Sipos, Ferenc; Firneisz, Gábor; Műzes, Györgyi

    2016-01-01

    Colonic inflammation is required to heal infections, wounds, and maintain tissue homeostasis. As the seventh hallmark of cancer, however, it may affect all phases of tumor development, including tumor initiation, promotion, invasion and metastatic dissemination, and also evasion immune surveillance. Inflammation acts as a cellular stressor and may trigger DNA damage or genetic instability, and, further, chronic inflammation can provoke genetic mutations and epigenetic mechanisms that promote malignant cell transformation. Both sporadical and colitis-associated colorectal carcinogenesis are multi-step, complex processes arising from the uncontrolled proliferation and spreading of malignantly transformed cell clones with the obvious ability to evade the host’s protective immunity. In cells upon DNA damage several proto-oncogenes, including c-MYC are activated in parelell with the inactivation of tumor suppressor genes. The target genes of the c-MYC protein participate in different cellular functions, including cell cycle, survival, protein synthesis, cell adhesion, and micro-RNA expression. The transcriptional program regulated by c-MYC is context dependent, therefore the final cellular response to elevated c-MYC levels may range from increased proliferation to augmented apoptosis. Considering physiological intestinal homeostasis, c-MYC displays a fundamental role in the regulation of cell proliferation and crypt cell number. However, c-MYC gene is frequently deregulated in inflammation, and overexpressed in both sporadic and colitis-associated colon adenocarcinomas. Recent results demonstrated that endogenous c-MYC is essential for efficient induction of p53-dependent apoptosis following DNA damage, but c-MYC function is also involved in and regulated by autophagy-related mechanisms, while its expression is affected by DNA-methylation, or histone acetylation. Molecules directly targeting c-MYC, or agents acting on other genes involved in the c-MYC pathway could be

  6. Acidosis Decreases c-Myc Oncogene Expression in Human Lymphoma Cells: A Role for the Proton-Sensing G Protein-Coupled Receptor TDAG8

    OpenAIRE

    Zhigang Li; Lixue Dong; Eric Dean; Yang, Li V.

    2013-01-01

    Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65) is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partia...

  7. Acidosis decreases c-Myc oncogene expression in human lymphoma cells: a role for the proton-sensing G protein-coupled receptor TDAG8.

    Science.gov (United States)

    Li, Zhigang; Dong, Lixue; Dean, Eric; Yang, Li V

    2013-01-01

    Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65) is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partially rescues c-Myc expression, respectively. Acidic pH alone is insufficient to reduce c-Myc expression, as it does not decrease c-Myc in H1299 lung cancer cells expressing very low levels of pH-sensing G protein-coupled receptors (GPCRs). Instead, c-Myc is slightly increased by acidosis in H1299 cells, but this increase is completely inhibited by ectopic overexpression of TDAG8. Interestingly, TDAG8 expression is decreased by more than 50% in human lymphoma samples in comparison to non-tumorous lymph nodes and spleens, suggesting a potential tumor suppressor function of TDAG8 in lymphoma. Collectively, our results identify a novel mechanism of c-Myc regulation by acidosis in the tumor microenvironment and indicate that modulation of TDAG8 and related pH-sensing receptor pathways may be exploited as a new approach to inhibit Myc expression. PMID:24152439

  8. Acidosis Decreases c-Myc Oncogene Expression in Human Lymphoma Cells: A Role for the Proton-Sensing G Protein-Coupled Receptor TDAG8

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2013-10-01

    Full Text Available Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65 is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partially rescues c-Myc expression, respectively. Acidic pH alone is insufficient to reduce c-Myc expression, as it does not decrease c-Myc in H1299 lung cancer cells expressing very low levels of pH-sensing G protein-coupled receptors (GPCRs. Instead, c-Myc is slightly increased by acidosis in H1299 cells, but this increase is completely inhibited by ectopic overexpression of TDAG8. Interestingly, TDAG8 expression is decreased by more than 50% in human lymphoma samples in comparison to non-tumorous lymph nodes and spleens, suggesting a potential tumor suppressor function of TDAG8 in lymphoma. Collectively, our results identify a novel mechanism of c-Myc regulation by acidosis in the tumor microenvironment and indicate that modulation of TDAG8 and related pH-sensing receptor pathways may be exploited as a new approach to inhibit Myc expression.

  9. Effects of an inducible anti-sense c-myc gene transfer in a drug-resistant human small-cell-lung-carcinoma cell line

    NARCIS (Netherlands)

    Van Waardenburg, R C; Meijer, C; Burger, H; Nooter, K; De Vries, E G; Mulder, N H; de Jong, Steven

    1997-01-01

    Small-cell-lung-cancer (SCLC) is characterized by rapid development of resistance to cytotoxic agents, such as cisplatin (cDDP) and anthracyclines. c-myc over-expression is one of the reported genetic alterations in this tumor. Amplification of the c-myc gene in this and other cancers is often corre

  10. Cell growth suppression by thanatos-associated protein 11(THAP11) is mediated by transcriptional downregulation of c-Myc.

    Science.gov (United States)

    Zhu, C-Y; Li, C-Y; Li, Y; Zhan, Y-Q; Li, Y-H; Xu, C-W; Xu, W-X; Sun, H B; Yang, X-M

    2009-03-01

    Thanatos-associated proteins (THAPs) are zinc-dependent, sequence-specific DNA-binding factors involved in cell proliferation, apoptosis, cell cycle, chromatin modification and transcriptional regulation. THAP11 is the most recently described member of this human protein family. In this study, we show that THAP11 is ubiquitously expressed in normal tissues and frequently downregulated in several human tumor tissues. Overexpression of THAP11 markedly inhibits growth of a number of different cells, including cancer cells and non-transformed cells. Silencing of THAP11 by RNA interference in HepG2 cells results in loss of cell growth repression. These results suggest that human THAP11 may be an endogenous physiologic regulator of cell proliferation. We also provide evidence that the function of THAP11 is mediated by its ability to repress transcription of c-Myc. Promoter reporter assays indicate a DNA binding-dependent c-Myc transcriptional repression. Chromatin immunoprecipitations and EMSA assay suggest that THAP11 directly binds to the c-Myc promoter. The findings that expression of c-Myc rescues significantly cells from THAP11-mediated cell growth suppression and that THAP11 expression only slightly inhibits c-Myc null fibroblasts cells growth reveal that THAP11 inhibits cell growth through downregulation of c-Myc expression. Taken together, these suggest that THAP11 functions as a cell growth suppressor by negatively regulating the expression of c-Myc. PMID:19008924

  11. c-myc null cells misregulate cad and gadd45 but not other proposed c-Myc targets

    Science.gov (United States)

    Bush, Andrew; Mateyak, Maria; Dugan, Kerri; Obaya, Alvaro; Adachi, Susumu; Sedivy, John; Cole, Michael

    1998-01-01

    We report here that the expression of virtually all proposed c-Myc target genes is unchanged in cells containing a homozygous null deletion of c-myc. Two noteworthy exceptions are the gene cad, which has reduced log phase expression and serum induction in c-myc null cells, and the growth arrest gene gadd45, which is derepressed by c-myc knockout. Thus, cad and gadd45 are the only proposed targets of c-Myc that may contribute to the dramatic slow growth phenotype of c-myc null cells. Our results demonstrate that a loss-of-function approach is critical for the evaluation of potential c-Myc target genes. PMID:9869632

  12. Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Breast cancer is the leading cause of cancer death in women worldwide. Elevated expression of c-Myc is a frequent genetic abnormality seen in this malignancy. For a better understanding of its role in maintaining the malignant phenotype, we used RNA interference (RNAi) directed against c-Myc in our study. RNAi provides a new, reliable method to investigate gene function and has the potential for gene therapy. The aim of the study was to examine the anti-tumor effects elicited by a decrease in the protein level of c-Myc by RNAi and its possible mechanism of effects in MCF-7 cells. A plasmid-based polymerase III promoter system was used to deliver and express short interfering RNA (siRNA) targeting c-myc to reduce its expression in MCF-7 cells. Western blot analysis was used to measure the protein level of c-Myc. We assessed the effects of c-Myc silencing on tumor growth by a growth curve, by soft agar assay and by nude mice experiments in vivo. Standard fluorescence-activated cell sorter analysis and TdT-mediated dUTP nick end labelling assay were used to determine apoptosis of the cells. Our data showed that plasmids expressing siRNA against c-myc markedly and durably reduced its expression in MCF-7 cells by up to 80%, decreased the growth rate of MCF-7 cells, inhibited colony formation in soft agar and significantly reduced tumor growth in nude mice. We also found that depletion of c-Myc in this manner promoted apoptosis of MCF-7 cells upon serum withdrawal. c-Myc has a pivotal function in the development of breast cancer. Our data show that decreasing the c-Myc protein level in MCF-7 cells by RNAi could significantly inhibit tumor growth both in vitro and in vivo, and imply the therapeutic potential of RNAi on the treatment of breast cancer by targeting overexpression oncogenes such as c-myc, and c-myc might be a potential therapeutic target for human breast cancer

  13. A proteomic study of cMyc improvement of CHO culture

    Directory of Open Access Journals (Sweden)

    Dunn Michael J

    2010-03-01

    Full Text Available Abstract Background The biopharmaceutical industry requires cell lines to have an optimal proliferation rate and a high integral viable cell number resulting in a maximum volumetric recombinant protein product titre. Nutrient feeding has been shown to boost cell number and productivity in fed-batch culture, but cell line engineering is another route one may take to increase these parameters in the bioreactor. The use of CHO-K1 cells with a c-myc plasmid allowing for over-expressing c-Myc (designated cMycCHO gives a higher integral viable cell number. In this study the differential protein expression in cMycCHO is investigated using two-dimensional gel electrophoresis (2-DE followed by image analysis to determine the extent of the effect c-Myc has on the cell and the proteins involved to give the new phenotype. Results Over 100 proteins that were differentially expressed in cMycCHO cells were detected with high statistical confidence, of which 41 were subsequently identified by tandem mass spectrometry (LC-MS/MS. Further analysis revealed proteins involved in a variety of pathways. Some examples of changes in protein expression include: an increase in nucleolin, involved in proliferation and known to aid in stabilising anti-apoptotic protein mRNA levels, the cytoskeleton and mitochondrial morphology (vimentin, protein biosysnthesis (eIF6 and energy metabolism (ATP synthetase, and a decreased regulation of all proteins, indentified, involved in matrix and cell to cell adhesion. Conclusion These results indicate several proteins involved in proliferation and adhesion that could be useful for future approaches to improve proliferation and decrease adhesion of CHO cell lines which are difficult to adapt to suspension culture.

  14. Perturbation of 14q32 miRNAs-cMYC gene network in osteosarcoma.

    Science.gov (United States)

    Thayanithy, Venugopal; Sarver, Aaron L; Kartha, Reena V; Li, Lihua; Angstadt, Andrea Y; Breen, Matthew; Steer, Clifford J; Modiano, Jaime F; Subramanian, Subbaya

    2012-01-01

    Osteosarcoma (OS) is the common histological form of primary bone cancer and one of the leading aggressive cancers in children under age fifteen. Although several genetic predisposing conditions have been associated with OS the understanding of its molecular etiology is limited. Here, we show that microRNAs (miRNAs) at the chr.14q32 locus are significantly downregulated in osteosarcoma compared to normal bone tissues. Bioinformatic predictions identified that a subset of 14q32 miRNAs (miR-382, miR-369-3p, miR-544 and miR-134) could potentially target cMYC transcript. The physical interaction between these 14q32 miRNAs and cMYC was validated using reporter assays. Further, restoring expression of these four 14q32 miRNAs decreased cMYC levels and induced apoptosis in Saos2 cells. We also show that exogenous expression of 14q32 miRNAs in Saos2 cells significantly downregulated miR-17-92, a transcriptional target of cMYC. The pro-apoptotic effect of 14q32 miRNAs in Saos2 cells was rescued either by overexpression of cMYC cDNA without the 3'UTR or with miR-17-92 cluster. Further, array comparative genomic hybridization studies showed no DNA copy number changes at 14q32 locus in OS patient samples suggesting that downregulation of 14q32 miRNAs are not due to deletion at this locus. Together, our data support a model where the deregulation of a network involving 14q32 miRNAs, cMYC and miR-17-92 miRNAs could contribute to osteosarcoma pathogenesis.

  15. C-Myc negatively controls the tumor suppressor PTEN by upregulating miR-26a in glioblastoma multiforme cells

    International Nuclear Information System (INIS)

    Highlights: •The c-Myc oncogene directly upregulates miR-26a expression in GBM cells. •ChIP assays demonstrate that c-Myc interacts with the miR-26a promoter. •Luciferase reporter assays show that PTEN is a specific target of miR-26a. •C-Myc–miR-26a suppression of PTEN may regulate the PTEN/AKT pathway. •Overexpression of c-Myc enhances the proliferative capacity of GBM cells. -- Abstract: The c-Myc oncogene is amplified in many tumor types. It is an important regulator of cell proliferation and has been linked to altered miRNA expression, suggesting that c-Myc-regulated miRNAs might contribute to tumor progression. Although miR-26a has been reported to be upregulated in glioblastoma multiforme (GBM), the mechanism has not been established. We have shown that ectopic expression of miR-26a influenced cell proliferation by targeting PTEN, a tumor suppressor gene that is inactivated in many common malignancies, including GBM. Our findings suggest that c-Myc modulates genes associated with oncogenesis in GBM through deregulation of miRNAs via the c-Myc–miR-26a–PTEN signaling pathway. This may be of clinical relevance

  16. C-Myc negatively controls the tumor suppressor PTEN by upregulating miR-26a in glioblastoma multiforme cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Pin; Nie, Quanmin; Lan, Jin; Ge, Jianwei [Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 (China); Qiu, Yongming, E-mail: qiuzhoub@hotmail.com [Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 (China); Shanghai Institute of Head Trauma, Shanghai 200127 (China); Mao, Qing, E-mail: maoq@netease.com [Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 (China); Shanghai Institute of Head Trauma, Shanghai 200127 (China)

    2013-11-08

    Highlights: •The c-Myc oncogene directly upregulates miR-26a expression in GBM cells. •ChIP assays demonstrate that c-Myc interacts with the miR-26a promoter. •Luciferase reporter assays show that PTEN is a specific target of miR-26a. •C-Myc–miR-26a suppression of PTEN may regulate the PTEN/AKT pathway. •Overexpression of c-Myc enhances the proliferative capacity of GBM cells. -- Abstract: The c-Myc oncogene is amplified in many tumor types. It is an important regulator of cell proliferation and has been linked to altered miRNA expression, suggesting that c-Myc-regulated miRNAs might contribute to tumor progression. Although miR-26a has been reported to be upregulated in glioblastoma multiforme (GBM), the mechanism has not been established. We have shown that ectopic expression of miR-26a influenced cell proliferation by targeting PTEN, a tumor suppressor gene that is inactivated in many common malignancies, including GBM. Our findings suggest that c-Myc modulates genes associated with oncogenesis in GBM through deregulation of miRNAs via the c-Myc–miR-26a–PTEN signaling pathway. This may be of clinical relevance.

  17. Prognostic Value of Beta-Tubulin-3 and c-Myc in Muscle Invasive Urothelial Carcinoma of the Bladder

    Science.gov (United States)

    Massari, Francesco; Bria, Emilio; Ciccarese, Chiara; Munari, Enrico; Modena, Alessandra; Zambonin, Valentina; Sperduti, Isabella; Artibani, Walter; Cheng, Liang; Martignoni, Guido; Tortora, Giampaolo; Brunelli, Matteo

    2015-01-01

    Background To date, putative prognostic biomarkers have shown limited utility from the clinical perspective for bladder urothelial carcinoma. Herein, the expression of beta-tubulin-3 and c-Myc was evaluated to determine their prognostic potential. Methods In formalin fixed-paraffin embedded blocks, immunohistochemical expression of c-Myc and beta-tubulin-3 was evaluated. H score ranging from 0 to 300 was obtained by multiplying the percentage of positive cells by intensity (0–3); c-Myc and beta-tubulin-3 expression was defined: 0: negative, 1: weakly positive, 2: strongly positive. Results beta-tubulin-3 and c-Myc immunoexpression was available for 46 cases. At the univariate analysis, node-involvement, beta-tubulin-3 and c-Myc overexpression discriminate shorter DFS (HR 2.19, p = 0.043; HR 3.10, p = 0.24 and HR 3.05, p = 0.011, respectively); 2-yrs DFS log-rank analysis according to low versus high level of immunoexpression were statistically significant; beta-tubulin-3, 53% low vs 12.7% high (p = value 0.02) and c-Myc 28 low vs 8 high (p-value 0.007). Patients displaying negative beta-tubulin-3/c-Myc had statistically significant better 2-yrs DFS than those with mixed expression or double positivity (54.5% versus 18.7% versus 0%, log-rank p = 0.006). Conclusions c-Myc and beta-tubulin-3 show improvement for prognostic risk stratification in patients with muscle invasive bladder urothelial carcinoma. These molecular pathways may also be candidate to improve predictiveness to targeted therapies. PMID:26046361

  18. Prognostic Value of Beta-Tubulin-3 and c-Myc in Muscle Invasive Urothelial Carcinoma of the Bladder.

    Directory of Open Access Journals (Sweden)

    Francesco Massari

    Full Text Available To date, putative prognostic biomarkers have shown limited utility from the clinical perspective for bladder urothelial carcinoma. Herein, the expression of beta-tubulin-3 and c-Myc was evaluated to determine their prognostic potential.In formalin fixed-paraffin embedded blocks, immunohistochemical expression of c-Myc and beta-tubulin-3 was evaluated. H score ranging from 0 to 300 was obtained by multiplying the percentage of positive cells by intensity (0-3; c-Myc and beta-tubulin-3 expression was defined: 0: negative, 1: weakly positive, 2: strongly positive.beta-tubulin-3 and c-Myc immunoexpression was available for 46 cases. At the univariate analysis, node-involvement, beta-tubulin-3 and c-Myc overexpression discriminate shorter DFS (HR 2.19, p = 0.043; HR 3.10, p = 0.24 and HR 3.05, p = 0.011, respectively; 2-yrs DFS log-rank analysis according to low versus high level of immunoexpression were statistically significant; beta-tubulin-3, 53% low vs 12.7% high (p = value 0.02 and c-Myc 28 low vs 8 high (p-value 0.007. Patients displaying negative beta-tubulin-3/c-Myc had statistically significant better 2-yrs DFS than those with mixed expression or double positivity (54.5% versus 18.7% versus 0%, log-rank p = 0.006.c-Myc and beta-tubulin-3 show improvement for prognostic risk stratification in patients with muscle invasive bladder urothelial carcinoma. These molecular pathways may also be candidate to improve predictiveness to targeted therapies.

  19. c-Myc regulates cell proliferation during lens development.

    Directory of Open Access Journals (Sweden)

    Gabriel R Cavalheiro

    Full Text Available Myc protooncogenes play important roles in the regulation of cell proliferation, growth, differentiation and survival during development. In various developing organs, c-myc has been shown to control the expression of cell cycle regulators and its misregulated expression is detected in many human tumors. Here, we show that c-myc gene (Myc is highly expressed in developing mouse lens. Targeted deletion of c-myc gene from head surface ectoderm dramatically impaired ocular organogenesis, resulting in severe microphtalmia, defective anterior segment development, formation of a lens stalk and/or aphakia. In particular, lenses lacking c-myc presented thinner epithelial cell layer and growth impairment that was detectable soon after its inactivation. Defective development of c-myc-null lens was not caused by increased cell death of lens progenitor cells. Instead, c-myc loss reduced cell proliferation, what was associated with an ectopic expression of Prox1 and p27(Kip1 proteins within epithelial cells. Interestingly, a sharp decrease in the expression of the forkhead box transcription factor Foxe3 was also observed following c-myc inactivation. These data represent the first description of the physiological roles played by a Myc family member in mouse lens development. Our findings support the conclusion that c-myc regulates the proliferation of lens epithelial cells in vivo and may, directly or indirectly, modulate the expression of classical cell cycle regulators in developing mouse lens.

  20. C-Myc regulation by costimulatory signals modulates the generation of CD8+ memory T cells during viral infection.

    Science.gov (United States)

    Haque, Mohammad; Song, Jianyong; Fino, Kristin; Wang, Youfei; Sandhu, Praneet; Song, Xinmeng; Norbury, Christopher; Ni, Bing; Fang, Deyu; Salek-Ardakani, Shahram; Song, Jianxun

    2016-01-01

    The signalling mechanisms of costimulation in the development of memory T cells remain to be clarified. Here, we show that the transcription factor c-Myc in CD8(+) T cells is controlled by costimulatory molecules, which modulates the development of memory CD8(+) T cells. C-Myc expression was dramatically reduced in Cd28(-/-) or Ox40(-/-) memory CD8(+) T cells, and c-Myc over-expression substantially reversed the defects in the development of T-cell memory following viral infection. C-Myc regulated the expression of survivin, an inhibitor of apoptosis, which promoted the generation of virus-specific memory CD8(+) T cells. Moreover, over-expression of survivin with bcl-xL, a downstream molecule of NF-κB and intracellular target of costimulation that controls survival, in Cd28(-/-) or Ox40(-/-) CD8(+) T cells, reversed the defects in the generation of memory T cells in response to viral infection. These results identify c-Myc as a key controller of memory CD8(+) T cells from costimulatory signals.

  1. C-Myc regulation by costimulatory signals modulates the generation of CD8+ memory T cells during viral infection.

    Science.gov (United States)

    Haque, Mohammad; Song, Jianyong; Fino, Kristin; Wang, Youfei; Sandhu, Praneet; Song, Xinmeng; Norbury, Christopher; Ni, Bing; Fang, Deyu; Salek-Ardakani, Shahram; Song, Jianxun

    2016-01-01

    The signalling mechanisms of costimulation in the development of memory T cells remain to be clarified. Here, we show that the transcription factor c-Myc in CD8(+) T cells is controlled by costimulatory molecules, which modulates the development of memory CD8(+) T cells. C-Myc expression was dramatically reduced in Cd28(-/-) or Ox40(-/-) memory CD8(+) T cells, and c-Myc over-expression substantially reversed the defects in the development of T-cell memory following viral infection. C-Myc regulated the expression of survivin, an inhibitor of apoptosis, which promoted the generation of virus-specific memory CD8(+) T cells. Moreover, over-expression of survivin with bcl-xL, a downstream molecule of NF-κB and intracellular target of costimulation that controls survival, in Cd28(-/-) or Ox40(-/-) CD8(+) T cells, reversed the defects in the generation of memory T cells in response to viral infection. These results identify c-Myc as a key controller of memory CD8(+) T cells from costimulatory signals. PMID:26791245

  2. Interaction of c-Myc with the pRb-related protein p107 results in inhibition of c-Myc-mediated transactivation

    NARCIS (Netherlands)

    Beijersbergen, R.L.; Hijmans, E.M.; Zhu, L.; Bernards, R.A.

    1994-01-01

    The product of the c-myc proto-oncogene, c-Myc, is a sequence-specific DNA binding protein with an Nterminal transactivation domain and a C-terminal DNA binding domain. Several lines of evidence indicate that c-Myc activity is essential for normal cell cycle progression. Since the abundance of c-Myc

  3. Global regulation of nucleotide biosynthetic genes by c-Myc.

    Directory of Open Access Journals (Sweden)

    Yen-Chun Liu

    Full Text Available BACKGROUND: The c-Myc transcription factor is a master regulator and integrates cell proliferation, cell growth and metabolism through activating thousands of target genes. Our identification of direct c-Myc target genes by chromatin immunoprecipitation (ChIP coupled with pair-end ditag sequencing analysis (ChIP-PET revealed that nucleotide metabolic genes are enriched among c-Myc targets, but the role of Myc in regulating nucleotide metabolic genes has not been comprehensively delineated. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that the majority of genes in human purine and pyrimidine biosynthesis pathway were induced and directly bound by c-Myc in the P493-6 human Burkitt's lymphoma model cell line. The majority of these genes were also responsive to the ligand-activated Myc-estrogen receptor fusion protein, Myc-ER, in a Myc null rat fibroblast cell line, HO.15 MYC-ER. Furthermore, these targets are also responsive to Myc activation in transgenic mouse livers in vivo. To determine the functional significance of c-Myc regulation of nucleotide metabolism, we sought to determine the effect of loss of function of direct Myc targets inosine monophosphate dehydrogenases (IMPDH1 and IMPDH2 on c-Myc-induced cell growth and proliferation. In this regard, we used a specific IMPDH inhibitor mycophenolic acid (MPA and found that MPA dramatically inhibits c-Myc-induced P493-6 cell proliferation through S-phase arrest and apoptosis. CONCLUSIONS/SIGNIFICANCE: Taken together, these results demonstrate the direct induction of nucleotide metabolic genes by c-Myc in multiple systems. Our finding of an S-phase arrest in cells with diminished IMPDH activity suggests that nucleotide pool balance is essential for c-Myc's orchestration of DNA replication, such that uncoupling of these two processes create DNA replication stress and apoptosis.

  4. Alterations of c-Myc and c-erbB-2 genes in ovarian tumours

    Directory of Open Access Journals (Sweden)

    Pastor Tibor

    2009-01-01

    Full Text Available Introduction. According to clinical and epidemiological studies, ovarian cancer ranks fifth in cancer deaths among women. The causes of ovarian cancer remain largely unknown but various factors may increase the risk of developing it, such as age, family history of cancer, childbearing status etc. This cancer results from a succession of genetic alterations involving oncogenes and tumour suppressor genes, which have a critical role in normal cell growth regulation. Mutations and/or overexpression of three oncogenes, c-erbB-2, c-Myc and K-ras, and of the tumour suppressor gene p53, have been frequently observed in a sporadic ovarian cancer. Objective. The aim of the present study was to analyze c-Myc and c-erbB-2 oncogene alterations, specifically amplification, as one of main mechanisms of their activation in ovarian cancers and to establish a possible association with the pathogenic process. Methods. DNA was isolated from 15 samples of malignant and 5 benign ovarian tumours, using proteinase K digestion, followed by phenol-chloroform isoamyl extraction and ethanol precipitation. C-Myc and c-erbB-2 amplification were detected by differential PCR. The level of gene copy increase was measured using the Scion image software. Results. The amplification of both c-Myc and c-erbB-2 was detected in 26.7% of ovarian epithelial carcinoma specimens. Only one tumour specimen concomitantly showed increased gene copy number for both studied genes. Interestingly, besides amplification, gene deletion was also detected (26.7% for c-erbB-2. Most of the ovarian carcinomas with alterations in c-Myc and c-erbB-2 belonged to advanced FIGO stages. Conclusion. The amplification of c-Myc and c-erbB-2 oncogenes in ovarian epithelial carcinomas is most probably a late event in the pathogenesis conferring these tumours a more aggressive biological behaviour. Similarly, gene deletions point to genomic instability in epithelial carcinomas in higher clinical stages as the

  5. Down-regulation of Thanatos-associated protein 11 by BCR-ABL promotes CML cell proliferation through c-Myc expression.

    Science.gov (United States)

    Nakamura, Satoki; Yokota, Daisuke; Tan, Lin; Nagata, Yasuyuki; Takemura, Tomonari; Hirano, Isao; Shigeno, Kazuyuki; Shibata, Kiyoshi; Fujisawa, Shinya; Ohnishi, Kazunori

    2012-03-01

    Bcr-Abl activates various signaling pathways in chronic myelogenous leukemia (CML) cells. The proliferation of Bcr-Abl transformed cells is promoted by c-Myc through the activation of Akt, JAK2 and NF-κB. However, the mechanism by which c-Myc regulates CML cell proliferation is unclear. In our study, we investigated the role of Thanatos-associated protein 11 (THAP11), which inhibits c-Myc transcription, in CML cell lines and in hematopoietic progenitor cells derived from CML patients. The induction of THAP11 expression by Abl kinase inhibitors in CML cell lines and in CML-derived hematopoietic progenitor cells resulted in the suppression of c-Myc. In addition, over-expression of THAP11 inhibited CML cell proliferation. In colony forming cells derived from CML-aldehyde dehydrogenase (ALDH)(hi) /CD34(+) cells, treatment with Abl kinase inhibitors and siRNA depletion of Bcr-Abl induced THAP11 expression and reduced c-Myc expression, resulting in inhibited colony formation. Moreover, overexpression of THAP11 significantly decreased the colony numbers, and also inhibited the expression of c-myc target genes such as Cyclin D1, ODC and induced the expression of p21(Cip1) . The depletion of THAP11 inhibited JAK2 or STAT5 inactivation-mediated c-Myc reduction in ALDH(hi) /CD34(+) CML cells. Thus, the induced THAP11 might be one of transcriptional regulators of c-Myc expression in CML cell. Therefore, the induction of THAP11 has a potential possibility as a target for the inhibition of CML cell proliferation. PMID:21400515

  6. WT1 Enhances Proliferation and Impedes Apoptosis in KRAS Mutant NSCLC via Targeting cMyc

    OpenAIRE

    Wu, Chen; Wang, Sihan; Xu, Caihua; Tyler, Andreas; Li, Xingru; Andersson, Charlotta; Oji, Yusuke; Sugiyama, Haruo; Chen, Yijiang; Li, Aihong

    2015-01-01

    Background: A novel link between oncogenic KRAS signalling and WT1 was recently identified. We sought to investigate the role of WT1 and KRAS in proliferation and apoptosis. Methods: KRAS mutations and WT1 (cMyc) expression were detected using Sanger sequencing and real-time PCR in 77 patients with non-small cell lung cancer (NSCLC). Overexpression and knockdown of WT1 were generated with plasmid and siRNA via transient transfection technology in H1299 and H1568 cells. MTT assay for detection...

  7. Self-assembly of c-myc DNA promoted by a single enantiomer ruthenium complex as a potential nuclear targeting gene carrier

    Science.gov (United States)

    Wu, Qiong; Mei, Wenjie; Zheng, Kangdi; Ding, Yang

    2016-01-01

    Gene therapy has long been limited in the clinic, due in part to the lack of safety and efficacy of the gene carrier. Herein, a single enantiomer ruthenium(II) complex, Λ-[Ru(bpy)2(p-BEPIP)](ClO4)2 (Λ-RM0627, bpy = 4,4′-bipyridine, p-BEPIP = 2-(4-phenylacetylenephenyl)imidazole [4,5f][1, 10] phenanthroline), has been synthesized and investigated as a potential gene carrier that targets the nucleus. In this report, it is shown that Λ-RM0627 promotes self-assembly of c-myc DNA to form a nanowire structure. Further studies showed that the nano-assembly of c-myc DNA that induced Λ-RM0627 could be efficiently taken up and enriched in the nuclei of HepG2 cells. After treatment of the nano-assembly of c-myc DNA with Λ-RM0627, over-expression of c-myc in HepG2 cells was observed. In summary, Λ-RM0627 played a key role in the transfer and release of c-myc into cells, which strongly indicates Λ-RM0627 as a potent carrier of c-myc DNA that targets the nucleus of tumor cells. PMID:27381008

  8. Decoding c-Myc networks of cell cycle and apoptosis regulated genes in a transgenic mouse model of papillary lung adenocarcinomas.

    Science.gov (United States)

    Ciribilli, Yari; Singh, Prashant; Spanel, Reinhard; Inga, Alberto; Borlak, Jürgen

    2015-10-13

    The c-Myc gene codes for a basic-helix-loop-helix-leucine zipper transcription factor protein and is reported to be frequently over-expressed in human cancers. Given that c-Myc plays an essential role in neoplastic transformation we wished to define its activity in lung cancer and therefore studied its targeted expression to respiratory epithelium in a transgenic mouse disease model. Using histological well-defined tumors, transcriptome analysis identified novel c-Myc responsive cell cycle and apoptosis genes that were validated as direct c-Myc targets using EMSA, Western blotting, gene reporter and ChIP assays.Through computational analyses c-Myc cooperating transcription factors emerged for repressed and up-regulated genes in cancer samples, namely Klf7, Gata3, Sox18, p53 and Elf5 and Cebpα, respectively. Conversely, at promoters of genes regulated in transgenic but non-carcinomatous lung tissue enriched binding sites for c-Myc, Hbp1, Hif1 were observed. Bioinformatic analysis of tumor transcriptomic data revealed regulatory gene networks and highlighted mortalin and moesin as master regulators while gene reporter and ChIP assays in the H1299 lung cancer cell line as well as cross-examination of published ChIP-sequence data of 7 human and 2 mouse cell lines provided strong evidence for the identified genes to be c-Myc targets. The clinical significance of findings was established by evaluating expression of orthologous proteins in human lung cancer. Taken collectively, a molecular circuit for c-Myc-dependent cellular transformation was identified and the network analysis broadened the perspective for molecularly targeted therapies.

  9. XPC Promotes Pluripotency of Human Dental Pulp Cells through Regulation of Oct-4/Sox2/c-Myc.

    Science.gov (United States)

    Liu, Lu; Peng, Zhengjun; Xu, Zhezhen; Wei, Xi

    2016-01-01

    Introduction. Xeroderma pigmentosum group C (XPC), essential component of multisubunit stem cell coactivator complex (SCC), functions as the critical factor modulating pluripotency and genome integrity through interaction with Oct-4/Sox2. However, its specific role in regulating pluripotency and multilineage differentiation of human dental pulp cells (DPCs) remains unknown. Methods. To elucidate the functional role XPC played in pluripotency and multilineage differentiation of DPCs, expressions of XPC in DPCs with long-term culture were examined by real-time PCR and western blot. DPCs were transfected with lentiviral-mediated human XPC gene; then transfection rate was investigated by real-time PCR and western blot. Cell cycle, apoptosis, proliferation, senescence, multilineage differentiation, and expression of Oct-4/Sox2/c-Myc in transfected DPCs were examined. Results. XPC, Oct-4, Sox2, and c-Myc were downregulated at P7 compared with P3 in DPCs with long-term culture. XPC genes were upregulated in DPCs at P2 after transfection and maintained high expression level at P3 and P7. Cell proliferation, PI value, and telomerase activity were enhanced, whereas apoptosis was suppressed in transfected DPCs. Oct-4/Sox2/c-Myc were significantly upregulated, and multilineage differentiation in DPCs with XPC overexpression was enhanced after transfection. Conclusions. XPC plays an essential role in the modulation of pluripotency and multilineage differentiation of DPCs through regulation of Oct-4/Sox2/c-Myc. PMID:27127517

  10. XPC Promotes Pluripotency of Human Dental Pulp Cells through Regulation of Oct-4/Sox2/c-Myc

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2016-01-01

    Full Text Available Introduction. Xeroderma pigmentosum group C (XPC, essential component of multisubunit stem cell coactivator complex (SCC, functions as the critical factor modulating pluripotency and genome integrity through interaction with Oct-4/Sox2. However, its specific role in regulating pluripotency and multilineage differentiation of human dental pulp cells (DPCs remains unknown. Methods. To elucidate the functional role XPC played in pluripotency and multilineage differentiation of DPCs, expressions of XPC in DPCs with long-term culture were examined by real-time PCR and western blot. DPCs were transfected with lentiviral-mediated human XPC gene; then transfection rate was investigated by real-time PCR and western blot. Cell cycle, apoptosis, proliferation, senescence, multilineage differentiation, and expression of Oct-4/Sox2/c-Myc in transfected DPCs were examined. Results. XPC, Oct-4, Sox2, and c-Myc were downregulated at P7 compared with P3 in DPCs with long-term culture. XPC genes were upregulated in DPCs at P2 after transfection and maintained high expression level at P3 and P7. Cell proliferation, PI value, and telomerase activity were enhanced, whereas apoptosis was suppressed in transfected DPCs. Oct-4/Sox2/c-Myc were significantly upregulated, and multilineage differentiation in DPCs with XPC overexpression was enhanced after transfection. Conclusions. XPC plays an essential role in the modulation of pluripotency and multilineage differentiation of DPCs through regulation of Oct-4/Sox2/c-Myc.

  11. c-Myc Enhances Sonic Hedgehog-Induced Medulloblastoma Formation from Nestin-Expressing Neural Progenitors in Mice

    Directory of Open Access Journals (Sweden)

    Ganesh Rao

    2003-05-01

    Full Text Available Medulloblastomas are malignant brain tumors that arise in the cerebella of children. The presumed cellsof-origin are undifferentiated precursors of granule neurons that occupy the external granule layer (EGL of the developing cerebellum. The overexpression of proteins that normally stimulate proliferation of neural progenitor cells may initiate medulloblastoma formation. Two known mitogens for neural progenitors are the c-Myc oncoprotein and Sonic hedgehog (Shh, a crucial determinant of embryonic pattern formation in the central nervous system. We modeled the ability of c-Myc and Shh to induce medulloblastoma in mice using the RCAS/tv-a system, which allows postnatal gene transfer and expression in a cell type-specific manner. We targeted the expression of Shh and c-Myc to nestin-expressing neural progenitor cells by injecting replication-competent ALV splice acceptor (RCAS vectors into the cerebella of newborn mice. Following injection with RCAS-Shh alone, 3/32 (9% mice developed medulloblastomas and 5/32 showed multifocal hyperproliferation of the EGL, possibly a precursor stage of medulloblastoma. Following injection with RCAS-Shh plus RCAS-Myc, 9/39 (23% mice developed medulloblastomas. We conclude that nestin-expressing neural progenitors, present in the cerebellum at birth, can act as the cells-of-origin for medulloblastoma, and that c-Myc cooperates with Shh to enhance tumorigenicity.

  12. Tumor suppressor DYRK1A effects on proliferation and chemoresistance of AML cells by downregulating c-Myc.

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    Full Text Available Acute myeloid leukemia (AML, caused by abnormal proliferation and accumulation of hematopoietic progenitor cells, is one of the most common malignancies in adults. We reported here DYRK1A expression level was reduced in the bone marrow of adult AML patients, comparing to normal controls. Overexpression of DYRK1A inhibited the proliferation of AML cell lines by increasing the proportion of cells undergoing G0/G1 phase. We reasoned that the proliferative inhibition was due to downregulation of c-Myc by DYRK1A, through mediating its degradation. Moreover, overexpression of c-Myc markedly reversed AML cell growth inhibition induced by DYRK1A. DYRK1A also had significantly lower expression in relapsed/refractory AML patients, comparing to newly-diagnosed AML patients, which indicated the role of DYRK1A in chemoresistance of AML. Our study provided functional evidences for DYRK1A as a potential tumor suppressor in AML.

  13. Alteraciones del gen c-Myc en la oncogénesis = c-Myc gene alterations in oncogenesis

    Directory of Open Access Journals (Sweden)

    Ospina Pérez, Mariano

    2011-12-01

    Full Text Available La familia de protooncogenes MYC (c-Myc, N-Myc y L-Myc se relaciona con el origen de diversas neoplasias en seres humanos. Estos genes actúan como factores de transcripción y participan en la regulación del ciclo celular, la proliferación y diferenciación celulares, la apoptosis y la inmortalización. Los genes MYC se expresan en diferentes tejidos y responden a diversas señales internas y externas; codifican para la síntesis de factores de transcripción que se unen al ADN para regular la expresión de múltiples genes. El gen más ampliamente estudiado de esta familia es c-Myc, que se expresa en las células con mayor tasa de proli­feración. C-Myc se encuentra alterado en un gran número de tumores sólidos, leucemias y linfomas. Las alteraciones de c-Myc encontradas con mayor frecuencia en células cancero­sas son las amplificaciones, translocaciones, mutaciones y reordenamientos cromosómicos que involucran el locus de este gen y conducen a que se desregule su expresión en diversas neoplasias humanas. La amplificación de c-Myc es una alteración común en los cánceres de mama, pulmón, ovario y próstata, así como en leucemias y linfomas, mientras que la pérdida de su regulación es común en el cáncer de colon, en tumores ginecológicos y melanoma. En neoplasias con defectos de c-Myc los estudios actuales están dirigidos al desarrollo de nuevas estrategias terapéuticas.

  14. c-Myc Enhances Sonic Hedgehog-Induced Medulloblastoma Formation from Nestin-Expressing Neural Progenitors in Mice1

    OpenAIRE

    Rao, Ganesh; Pedone, Carolyn A; Coffin, Cheryl M.; Holland, Eric C.; Fults, Daniel W.

    2003-01-01

    Medulloblastomas are malignant brain tumors that arise in the cerebella of children. The presumed cells-of-origin are undifferentiated precursors of granule neurons that occupy the external granule layer (EGL) of the developing cerebellum. The overexpression of proteins that normally stimulate proliferation of neural progenitor cells may initiate medulloblastoma formation. Two known mitogens for neural progenitors are the c-Myc oncoprotein and Sonic hedgehog (Shh), a crucial determinant of em...

  15. Functional analysis of Burkitt's lymphoma mutant c-Myc proteins

    NARCIS (Netherlands)

    Smith-Sørensen, B.; Hijmans, E.M.; Bernards, R.A.

    1996-01-01

    The c-myc gene encodes a sequence-specific DNA binding protein that activates transcription of cellular genes. Transcription activation by Myc proteins is regulated by phosphorylation of serine and threonine residues within the transactivation domain and by complex formation with the retinoblastoma-

  16. Postnatal liver growth and regeneration are independent of c-myc in a mouse model of conditional hepatic c-myc deletion

    Directory of Open Access Journals (Sweden)

    Sanders Jennifer A

    2012-03-01

    Full Text Available Abstract Background The transcription factor c-myc regulates genes involved in hepatocyte growth, proliferation, metabolism, and differentiation. It has also been assigned roles in liver development and regeneration. In previous studies, we made the unexpected observation that c-Myc protein levels were similar in proliferating fetal liver and quiescent adult liver with c-Myc displaying nucleolar localization in the latter. In order to investigate the functional role of c-Myc in adult liver, we have developed a hepatocyte-specific c-myc knockout mouse, c-mycfl/fl;Alb-Cre. Results Liver weight to body weight ratios were similar in control and c-myc deficient mice. Liver architecture was unaffected. Conditional c-myc deletion did not result in compensatory induction of other myc family members or in c-Myc's binding partner Max. Floxed c-myc did have a negative effect on Alb-Cre expression at 4 weeks of age. To explore this relationship further, we used the Rosa26 reporter line to assay Cre activity in the c-myc floxed mice. No significant difference in Alb-Cre activity was found between control and c-mycfl/fl mice. c-myc deficient mice were studied in a nonproliferative model of liver growth, fasting for 48 hr followed by a 24 hr refeeding period. Fasting resulted in a decrease in liver mass and liver protein, both of which recovered upon 24 h of refeeding in the c-mycfl/fl;Alb-Cre animals. There was also no effect of reducing c-myc on recovery of liver mass following 2/3 partial hepatectomy. Conclusions c-Myc appears to be dispensable for normal liver growth during the postnatal period, restoration of liver mass following partial hepatectomy and recovery from fasting.

  17. Lack of Cyclin-Dependent Kinase 4 Inhibits c-myc Tumorigenic Activities in Epithelial Tissues

    Science.gov (United States)

    Miliani de Marval, Paula L.; Macias, Everardo; Rounbehler, Robert; Sicinski, Piotr; Kiyokawa, Hiroaki; Johnson, David G.; Conti, Claudio J.; Rodriguez-Puebla, Marcelo L.

    2004-01-01

    The proto-oncogene c-myc encodes a transcription factor that is implicated in the regulation of cellular proliferation, differentiation, and apoptosis and that has also been found to be deregulated in several forms of human and experimental tumors. We have shown that forced expression of c-myc in epithelial tissues of transgenic mice (K5-Myc) resulted in keratinocyte hyperproliferation and the development of spontaneous tumors in the skin and oral cavity. Although a number of genes involved in cancer development are regulated by c-myc, the actual mechanisms leading to Myc-induced neoplasia are not known. Among the genes regulated by Myc is the cyclin-dependent kinase 4 (CDK4) gene. Interestingly, previous studies from our laboratory showed that the overexpression of CDK4 led to keratinocyte hyperproliferation, although no spontaneous tumor development was observed. Thus, we tested the hypothesis that CDK4 may be one of the critical downstream genes involved in Myc carcinogenesis. Our results showed that CDK4 inhibition in K5-Myc transgenic mice resulted in the complete inhibition of tumor development, suggesting that CDK4 is a critical mediator of tumor formation induced by deregulated Myc. Furthermore, a lack of CDK4 expression resulted in marked decreases in epidermal thickness and keratinocyte proliferation compared to the results obtained for K5-Myc littermates. Biochemical analysis of the K5-Myc epidermis showed that CDK4 mediates the proliferative activities of Myc by sequestering p21Cip1 and p27Kip1 and thereby indirectly activating CDK2 kinase activity. These results show that CDK4 mediates the proliferative and oncogenic activities of Myc in vivo through a mechanism that involves the sequestration of specific CDK inhibitors. PMID:15314163

  18. c-Myc inhibits TP53INP1 expression via promoter methylation in esophageal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Wenhao; Yang, Qinyuan [Department of Laboratory Medicine, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Huang, Miaolong [Department of Thoracic Surgery, Yuebei People' s Hospital, Shaoguan, Guangdong 512026 (China); Qiao, Yongxia [Department of Preventive Medicine, Tongji University, Shanghai City 200092 (China); Xie, Yuan; Yu, Yongchun [Department of Laboratory Medicine, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Jing, An, E-mail: Anjing77@gmail.com [Department of Thoracic Surgery, Yuebei People' s Hospital, Shaoguan, Guangdong 512026 (China); Institute of Cancer Research, Southern Medical University, Guangzhou 510515 (China); Li, Zhi, E-mail: lizhiweng2010@163.com [Department of Laboratory Medicine, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China)

    2011-02-11

    Research highlights: {yields} TP53INP1 expression is down-regulated in esophageal carcinoma and is associated with CGI-131 methylation. {yields} Inhibition of CGI-131 methylation upregulates TP53INP1 expression in ESCC cell lines. {yields} Ectopic expression of TP53INP1 inhibits growth of ESCC cells by inducing apoptosis and inhibiting cell cycle progression. {yields} c-Myc binds to the promoter of TP53INP1 in vivo and vitro and recruits DNMT3A to TP53INP1 promoter for CGI-131 methylation. -- Abstract: Tumor protein p53-induced nuclear protein 1 (TP53INP1) is a well known stress-induced protein that plays a role in both cell cycle arrest and p53-mediated apoptosis. Loss of TP53INP1 expression has been reported in human melanoma, breast carcinoma, and gastric cancer. However, TP53INP1 expression and its regulatory mechanism in esophageal squamous cell carcinoma (ESCC) remain unclear. Our findings are in agreement with previous reports in that the expression of TP53INP1 was downregulated in 28% (10/36 cases) of ESCC lesions, and this was accompanied by significant promoter methylation. Overexpression of TP53INP1 induced G1 cell cycle arrest and increased apoptosis in ESCC cell lines (EC-1, EC-109, EC-9706). Furthermore, our study showed that the oncoprotein c-Myc bound to the core promoter of TP53INP1 and recruited DNA methyltransferase 3A to methylate the local promoter region, leading to the inhibition of TP53INP1 expression. Our findings revealed that TP53INP1 is a tumor suppressor in ESCC and that c-Myc-mediated DNA methylation-associated silencing of TP53INP1 contributed to the pathogenesis of human ESCC.

  19. Deubiquitinating c-Myc: USP36 steps up in the nucleolus.

    Science.gov (United States)

    Sun, Xiao-Xin; Sears, Rosalie C; Dai, Mu-Shui

    2015-01-01

    Ubiquitination plays a key and complex role in the regulation of c-Myc stability, transactivation, and oncogenic activity. c-Myc is ubiquitinated by a number of ubiquitin ligases (E3s), such as SCF(Fbw7) and SCF(Skp2). Depending on the E3s, ubiquitination can either positively or negatively regulate c-Myc levels and activity. Meanwhile, c-Myc ubiquitination can be reversed by deubiquitination. An early study showed that USP28 deubiquitinates c-Myc via interacting with Fbw7α whereas a recent study reveals that USP37 deubiquitinates c-Myc independently of Fbw7 and c-Myc phosphorylation. Consequently, both USP28 and USP37 stabilize c-Myc and enhance its activity. We recently found the nucleolar USP36 as a novel c-Myc deubiquitinase that controls the end-point of c-Myc degradation pathway in the nucleolus. Here we briefly review the current understanding of ubiquitination and deubiquitination regulation of c-Myc and further discuss the USP36-c-Myc regulatory pathway.

  20. cMyc/miR-125b-5p signalling determines sensitivity to bortezomib in preclinical model of cutaneous T-cell lymphomas

    DEFF Research Database (Denmark)

    Manfè, Valentina; Biskup, Edyta; Willumsgaard, Ayalah;

    2013-01-01

    improve their clinical efficacy. Using cutaneous T-cell lymphoma (CTCL) as a model of the chemotherapy-resistant peripheral lymphoid malignancy, we demonstrated that resistance to proteasome inhibition involved a signaling between the oncogene cMyc and miR-125b-5p. Bortezomib repressed cMyc...... and simultaneously induced miR-125b-5p that exerted a cytoprotective effect through the downmodulation of MAD4. Overexpression of cMyc repressed miR-125b-5p transcription and sensitized lymphoma cells to bortezomib. The central role of miR-125b-5p was further confirmed in a mouse model of T-cell lymphoma, where...

  1. Expression of telomerase hTERT in human non-small cell lung cancer and its correlation with c-myc gene

    Institute of Scientific and Technical Information of China (English)

    耿志华; 张敦华; 刘银坤

    2003-01-01

    Objective To investigate the expression of human telomerase catalytic subunit, hTERT, in human non-small cell lung cancer (NSCLC) and its correlations to c-myc gene.Methods hTERT and c-myc mRNA expressions were detected by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR). Statistical correlation analysis was made to estimate whether there was interrelation between them.Results Positive rate of hTERT expression in 51 surgically resected lung cancer specimens was 86.3%, significantly higher than that in adjacent non-neoplastic lung tissues and benign lesions, which were 14.3% and 27.3% respectively. No statistical significance was observed between the frequency of hTERT expression and histologic types, degree of differentiation, TNM stages, tumor size or lymph nodes metastases. Correlation analysis revealed that the expression of c-myc gene was significantly related to that of hTERT (correlation coefficient, r=0.633, P<0.001).Conclusions hTERT may be a useful tumor marker in diagnosing lung cancer. Significant correlation between the expression of hTERT and c-myc mRNA indicates that the activation and up-regulation of hTERT might be conferred by over-expression of c-myc gene.

  2. Upregulation of the oncogene c-myc in Barrett’s adenocarcinoma: induction of c-myc by acidified bile acid in vitro

    OpenAIRE

    Tselepis, C; C. D. Morris; Wakelin, D; Hardy, R; Perry, I.; Luong, Q T; Harper, E.; Harrison, R.; Attwood, S E A; Jankowski, J.A.Z.

    2003-01-01

    Background and aims: C-myc over expression is implicated in malignancy although to date this has not been studied in Barrett’s metaplasia. We sought to determine c-myc expression in the malignant progression of Barrett’s metaplasia and whether it may be induced by bile acids seen in gastro-oesophageal refluxate.

  3. Acinar-to-ductal metaplasia accompanies c-myc-induced exocrine pancreatic cancer progression in transgenic rodents.

    Science.gov (United States)

    Grippo, Paul J; Sandgren, Eric P

    2012-09-01

    Several important characteristics of exocrine pancreatic tumor pathogenesis remain incompletely defined, including identification of the cell of origin. Most human pancreatic neoplasms are ductal adenocarcinomas. However, acinar cells have been proposed as the source of some ductal neoplasms through a process of acinar-to-ductal metaplasia. The oncogenic transcription factor c-myc is associated with human pancreatic neoplasms. Transgenic mice overexpressing c-myc under control of acinar cell-specific elastase (Ela) gene regulatory elements not only develop acinar cell carcinomas but also mixed neoplasms that display both acinar-like neoplastic cells and duct-like neoplastic cells. In this report, we demonstrate that, first, c-myc is sufficient to induce acinar hyperplasia, though neoplastic lesions develop focally. Second, cell proliferation remains elevated in the neoplastic duct cell compartment of mixed neoplasms. Third, the proliferation/apoptosis ratio in cells from all lesion types remains constant, suggesting that differential regulation of these processes is not a feature of cancer progression in this model. Fourth, before the development of mixed neoplasms, there is transcriptional activation of the duct cell-specific cytokeratin-19 gene promoter in multicellular foci of amylase-positive acinar neoplasms. This observation provides direct evidence for metaplasia as the mechanism underlying development of ductal neoplastic cells within the context of an acinar neoplasm and suggests that the stimulus for this transformation acts over a multicellular domain or field within a neoplasm. Finally, focal ductal elements develop in some acinar cell carcinomas in Ela-c-myc transgenic rats, indicating that myc-associated acinar-to-ductal metaplasia is not restricted to the mouse.

  4. SALL4 as an Epithelial-Mesenchymal Transition and Drug Resistance Inducer through the Regulation of c-Myc in Endometrial Cancer.

    Directory of Open Access Journals (Sweden)

    Lei Liu

    Full Text Available SALL4 plays important roles in the development and progression of many cancers. However, the role and molecular mechanism of SALL4 in endometrial cancer remain elusive. In the present research, we have demonstrated that the expression of SALL4 was upregulated in endometrial cancer and correlated positively with tumor stage, metastases and poor survival of patients. The overexpression of SALL4 promoted the invasiveness in endometrial cancer cells, as indicated by the upregulation of mesenchymal cell marker N-cadherin and downregulation of the epithelial marker E-cadherin, and invasion assays in vitro. Additionally, there was also an increase in drug resistance in these cell models due to the upregulation of ATP-binding cassette multidrug transporter ABCB1 expression. Moreover, we also found that ABCB1 was critical for SALL4-induced drug resistance. In contrast, SALL4 knockdown restored drug sensitivity, reversed EMT, diminished cell metastasis and suppressed the downregulation of E-cadherin and the upregulation of N-cadherin and ABCB1. Furthermore, we showed that SALL4 upregulated c-Myc expression and c-Myc was a direct target for SALL4 by ChIP assay, depletion of c-Myc with siRNA abolished the SALL4-induced downregulation of E-cadherin, upregulation of N-cadherin and ABCB1, suggesting that c-Myc was a downstream target for SALL4 and required for SALL4-induced EMT, invasion and drugs resistance in endometrial cancer cells. These results indicated that SALL4 could induce EMT and resistance to antineoplastic drugs through the regulation of c-Myc. SALL4 and c-Myc may be novel therapeutic targets for endometrial cancer.

  5. Production of human c-myc protein in insect cells infected with a baculovirus expression vector.

    OpenAIRE

    Miyamoto, C.; Smith, G. E.; Farrell-Towt, J; Chizzonite, R.; Summers, M D; Ju, G.

    1985-01-01

    A cDNA fragment coding for human c-myc was inserted into the genome of the baculovirus Autographa californica nuclear polyhedrosis virus adjacent to the strong polyhedrin promoter. Insect cells infected with the recombinant virus produced significant amounts of c-myc protein, which constituted the major phosphoprotein component in these cells. By immunoprecipitation and immunoblot analysis, two proteins of 61 and 64 kilodaltons were detected with c-myc-specific antisera. The insect-derived pr...

  6. A STUDY OF C-MYC ONCOGENE EXPRESSIONAND AMPLIFICATION IN COLORECTAL CANCER

    Institute of Scientific and Technical Information of China (English)

    王建明; 李凌; 李申德; 崔惠云; 沈桂华

    1994-01-01

    Expression of c-myc oncogene transcripts in colorectal neoplasia was studied in paraffin embedded tissus sec-tions from 25 patients undergoin surgery and from the rectal carcinoma cell line HR-8348 by using in situ hy-bridization,and its amplification was investigated in tumor and normal mucosa tissue from 25 coloproctomy sam-ples by slot blot hybridization.Overexpression of this gene was seen in 78%(7/9)of the benign adenomas and 91%(20/22)of the malignancies sampled.There was no significant correlation between overexpression and the histologic type or grade,and no significant relationship between the level of expression and clinical stage was found,although overexpression was apparently more common in tumors with metastasis.Ampli-fication was also found in 2 adenomas with malignant change.The results suggest that multiple factors are in-volved in the progression of colorectal cancer,and in situ hybridization with nonradiolabeled probe is useful in the detection of gene expression.

  7. The Essential Cofactor TRRAP Recruits the Histone Acetyltransferase hGCN5 to c-Myc

    Science.gov (United States)

    McMahon, Steven B.; Wood, Marcelo A.; Cole, Michael D.

    2000-01-01

    The c-Myc protein functions as a transcription factor to facilitate oncogenic transformation; however, the biochemical and genetic pathways leading to transformation remain undefined. We demonstrate here that the recently described c-Myc cofactor TRRAP recruits histone acetylase activity, which is catalyzed by the human GCN5 protein. Since c-Myc function is inhibited by recruitment of histone deacetylase activity through Mad family proteins, these opposing biochemical activities are likely to be responsible for the antagonistic biological effects of c-Myc and Mad on target genes and ultimately on cellular transformation. PMID:10611234

  8. Detection of circulating antibodies against c-myc protein in cancer patient sera.

    OpenAIRE

    Ben-Mahrez, K.; Thierry, D.; Sorokine, I.; Danna-Muller, A.; Kohiyama, M

    1988-01-01

    We have partially purified an archaebacterial protein of 84 kD which shares common epitopes with the human c-myc protein as shown by its cross-reactivity with a commercialized anti-human c-myc antiserum. An antiserum raised against the 84 kD protein recognizes a 60 kD protein from HL-60 nuclei. This protein is also recognized by the anti-human c-myc antiserum. Using this archaebacterial protein as antigen for Western blot analysis, we found that the human c-myc oncogene product could be immun...

  9. Cooperation of c-raf-1 and c-myc protooncogenes in the neoplastic transformation of simian virus 40 large tumor antigen-immortalized human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Overexpression of c-raf-1 and the myc family of protooncogenes is primarily associated with small cell carcinoma, which accounts for ∼ 25% of human lung cancer. To determine the functional significance of the c-raf-1 and/or c-myc gene expression in lung carcinogenesis and to delineate the relationship between protooncogene expression and tumor phenotype, the authors introduced both protooncogenes, alone or in combination, into human bronchial epithelial cells. Two retroviral recombinants, pZip-raf and pZip-myc, containing the complete coding sequences of the human c-raf-1 and murine c-myc genes, respectively, were constructed and transfected into simian virus 40 large tumor antigen-immortalized bronchial epithelial cells (BEAS-2B); this was followed by selection for G418 resistance. Cell lines established from tumors (designated RMT) revealed the presence of the cotransfected c-raf-1 and c-myc sequences and expressed morphological, chromosomal, and isoenzyme markers, which identified BEAS-2B cells as the progenitor line of the tumors. The data demonstrate that the concomitant expression of the c-raf and c-myc protooncogenes causes neoplastic transformation of human bronchial epithelial cells resulting in large cell carcinomas with certain neuroendocrine markers. The presented model system should be useful in studies of molecular events involved in multistage lung carcinogenesis

  10. Elevated c-myc protooncogene expression in autosomal recessive polycystic kidney disease

    International Nuclear Information System (INIS)

    The polycystic kidney diseases (PKDs) are a group of disorders characterized by the growth of epithelial cysts from the nephrons and collecting ducts of kidney tubules. The diseases can be inherited or can be provoked by environmental factors. To investigate the molecular basis of the abnormal cell growth associated with PKD, c-myc protooncogene expression was studied in a mouse model for autosomal recessive PKD. Homozygous recessive C57BL/6J (cpk/cpk) mice develop massively enlarged cystic kidneys and die from renal failure shortly after 3 weeks of age. Quantitative dot blot and RNA blot hybridization experiments in which whole kidney poly(A)+ RNA was hybridized with a c-myc RNA probe showed a 2- to 6-fold increase in c-myc mRNA at 2 weeks, and a 25- to 30-fold increase in c-myc mRNA at 3 weeks of age in polycystic mice, as compared to normal littermates. c-myc expression was also examined under two conditions in which kidney cell growth was experimentally induced in normal adult mice: compensatory renal hypertrophy and tubule regeneration following folic acid-induced renal cell injury. While compensatory hypertrophy resulted in only a small increase in c-myc, folic acid treatment gave rise after 24 hr to a 12-fold increase in c-myc RNA. The induction of c-myc by folic acid is consistent with increased cellular proliferation regenerating tubules. In contrast, polycystic kidneys show only a minimal increase in cellular proliferation over that seen in normal kidneys, while c-myc levels were found to be markedly elevated. Thus, the level of c-myc expression in cystic kidneys appears to be out of proportion to the rate of cell division, suggesting that elevated and potentially abnormal c-myc expression may be involved in the pathogenesis of PKD

  11. Acetylation of the c-MYC oncoprotein is required for cooperation with the HTLV-1 p30{sup II} accessory protein and the induction of oncogenic cellular transformation by p30{sup II}/c-MYC

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Megan M.; Ko, Bookyung; Kim, Janice; Brady, Rebecca; Heatley, Hayley C.; He, Jeffrey; Harrod, Carolyn K.; Barnett, Braden [Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design, and Delivery, Southern Methodist University, Dallas, TX 75275-0376 (United States); Ratner, Lee [Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Lairmore, Michael D. [University of California-Davis, School of Veterinary Medicine, One Shields Avenue, Davis, CA 95618 (United States); Martinez, Ernest [Department of Biochemistry, University of California, Riverside, CA 92521 (United States); Lüscher, Bernhard [Institute of Biochemistry, Klinikum, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen (Germany); Robson, Craig N. [Northern Institute for Cancer Research, Newcastle University, The Medical School, Newcastle upon Tyne, NE2 4HH (United Kingdom); Henriksson, Marie [Department of Microbiology, Cell and Tumor Biology, Karolinska Institutet, Stockholm (Sweden); Harrod, Robert, E-mail: rharrod@smu.edu [Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design, and Delivery, Southern Methodist University, Dallas, TX 75275-0376 (United States)

    2015-02-15

    The human T-cell leukemia retrovirus type-1 (HTLV-1) p30{sup II} protein is a multifunctional latency-maintenance factor that negatively regulates viral gene expression and deregulates host signaling pathways involved in aberrant T-cell growth and proliferation. We have previously demonstrated that p30{sup II} interacts with the c-MYC oncoprotein and enhances c-MYC-dependent transcriptional and oncogenic functions. However, the molecular and biochemical events that mediate the cooperation between p30{sup II} and c-MYC remain to be completely understood. Herein we demonstrate that p30{sup II} induces lysine-acetylation of the c-MYC oncoprotein. Acetylation-defective c-MYC Lys→Arg substitution mutants are impaired for oncogenic transformation with p30{sup II} in c-myc{sup −/−} HO15.19 fibroblasts. Using dual-chromatin-immunoprecipitations (dual-ChIPs), we further demonstrate that p30{sup II} is present in c-MYC-containing nucleoprotein complexes in HTLV-1-transformed HuT-102 T-lymphocytes. Moreover, p30{sup II} inhibits apoptosis in proliferating cells expressing c-MYC under conditions of genotoxic stress. These findings suggest that c-MYC-acetylation is required for the cooperation between p30{sup II}/c-MYC which could promote proviral replication and contribute to HTLV-1-induced carcinogenesis. - Highlights: • Acetylation of c-MYC is required for oncogenic transformation by HTLV-1 p30{sup II}/c-MYC. • Acetylation-defective c-MYC mutants are impaired for foci-formation by p30{sup II}/c-MYC. • The HTLV-1 p30{sup II} protein induces lysine-acetylation of c-MYC. • p30{sup II} is present in c-MYC nucleoprotein complexes in HTLV-1-transformed T-cells. • HTLV-1 p30{sup II} inhibits apoptosis in c-MYC-expressing proliferating cells.

  12. Effect of C-myc Antisense Oligodeoxynucleotides on Hypoxia-induced Proliferation of Pulmonary Vascular Pericytes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To study the effect of c-myc antisense oligodeoxynucleotides (ODNs) on proliferation of pulmonary vascular pericytes (PC) induced by hypoxia, cell culture, dot hybridization using probe of digoxigenin-11-dUTP-labeled cDNA,3H-thymidine incorporation, immunocytochemical technique and image analysis methods were used to observe the effect of c-myc antisense ODNs on expression of c-myc gene and proliferating cell nuclear antigen (PCNA), and 3H-thymidine incorporation of PC induced by hypoxia. The results showed that hypoxia could significantly enhance the expression of c-myc and PCNA (P<0.01), and elevate 3H-thymidine incorporation of PC (P<0.01), but antisense ODNs could significantly inhibit the expression of c-myc and PCNA (P<0.05), and 3H-thymidine incorporation of PC (P<0.01). It was suggested that hypoxia could promote the proliferation of PC by up-regulating the expression of c-myc gene, but c-myc antisense ODNs could inhibit hypoxia-induced proliferation of PC by downregulating the expression of c-myc gene.

  13. Deregulation of c-myc and SV40Tag causing brain tumor in mice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Deregulated expressions of both c-myc and simian virus 40 large T antigen (SV40Tag) are consistent features of lots of tumors. To investigate whether the expression of c-myc and SV40Tag in mouse might help develop a model of human tumor, we generated c-myc transgenics by inserting human c-myc gene into pTRE2 of Tet-On system. We obtained conditional expression of SV40Tag transgenics by the Tet-On system from Yangzhou University. Crossing the c-myc transgenic mouse with the SV40Tag transgenic mice to generate bitransgenics we got double-transgenic mice expressing c-myc and SV40Tag by the Tet-On system. After being treated with doxycycline continuously, single-transgenic SV40Tag mice developed brain tumor infrequently (3 of 84, 3.6%) with a long onset (185 d on average). In contrast, double-transgenic c-myc/SV40Tag mice developed brain tumor with a short onset (96 days on average) and a 41% brain tumor incidence rate (7 of 17, 41%). This tumor was assumed to be medulloblastoma. Our experiments suggest that deregulated expression of c-myc and SV40Tag in brain might generate a mouse model of human brain tumor that recapitulates some features of human medulloblastoma.

  14. Pathophysiology of astroglial purinergic signalling

    OpenAIRE

    Franke, Heike; Verkhratsky, Alexei; Burnstock, Geoffrey; Illes, Peter

    2012-01-01

    Astrocytes are fundamental for central nervous system (CNS) physiology and are the fulcrum of neurological diseases. Astroglial cells control development of the nervous system, regulate synaptogenesis, maturation, maintenance and plasticity of synapses and are central for nervous system homeostasis. Astroglial reactions determine progression and outcome of many neuropathologies and are critical for regeneration and remodelling of neural circuits following trauma, stroke, ischaemia or neurodeg...

  15. Effect of Qi-protecting powder (Huqi San) on expression of c-jun, c-fos and c-myc in diethylnitrosamine-mediated hepatocarcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Xia Li; Zheng-Ming Shi; Ping Feng; Zhao-Yang Wen; Xue-Jiang Wang

    2007-01-01

    AIM: To study the inhibitory effect of Huqi San (Qiprotecting powder) on rat prehepatocarcinoma induced by diethylinitrosamine (DEN) by analyzing the mutational activation of c-fos proto-oncogene and over-expression of c-jun and c-myc oncogenes.METHODS: A Solt-Farber two-step test model of prehepatocarcinoma was induced in rats by DEN and 2-acetylaminofluorene (AAF) to investigate the modifying effects of Huqi San on the expression of c-jun, c-fos and c-myc in DEN-mediated hepatocarcinogenesis. Huqi San was made of eight medicinal herbs containing glycoprival granules, in which each milliliter contains 0.38 g crude drugs. γ-glutamy-transpeptidase-isoenzyme (γ-GTase)was determined with histochemical methods. Level of 8-hydroxydeoxyguanosine (OHdG) formed in liver and c-jun, c-fos and c-myc proto-oncogenes were detected by immunohistochemical methods.RESULTS: The level of 8-OHdG, a mark of oxidative DNA damage, was significantly decreased in the liver of rats with prehepatocarcinoma induced by DEN who received 8 g/kg body weight or 4 g/kg body weight Huqi San before (1 wk) and after DEN exposure (4 wk). Huqi Santreated rats showed a significant decrease in number of γ-GT positive foci (P < 0.001, prevention group: 4.96 ±0.72 vs 29.46 ± 2.17; large dose therapeutic group: 7.53± 0.88 vs 29.46 ± 2.17). On the other hand, significant changes in expression of c-jun, c-fos and c-myc were found in Huqi San-treated rats.CONCLUSION: Activation of c-jun, c-fos and c-myc plays a crucial role in the pathogenesis of liver cancer.Huqi San can inhibit the over-expression of c-jun, c-fos and c-myc oncogenes and liver preneolastic lesionsinduced by DEN.

  16. c-Myc is essential to prevent endothelial pro-inflammatory senescent phenotype.

    Directory of Open Access Journals (Sweden)

    Victoria Florea

    Full Text Available The proto-oncogene c-Myc is vital for vascular development and promotes tumor angiogenesis, but the mechanisms by which it controls blood vessel growth remain unclear. In the present work we investigated the effects of c-Myc knockdown in endothelial cell functions essential for angiogenesis to define its role in the vasculature. We provide the first evidence that reduction in c-Myc expression in endothelial cells leads to a pro-inflammatory senescent phenotype, features typically observed during vascular aging and pathologies associated with endothelial dysfunction. c-Myc knockdown in human umbilical vein endothelial cells using lentivirus expressing specific anti-c-Myc shRNA reduced proliferation and tube formation. These functional defects were associated with morphological changes, increase in senescence-associated-β-galactosidase activity, upregulation of cell cycle inhibitors and accumulation of c-Myc-deficient cells in G1-phase, indicating that c-Myc knockdown in endothelial cells induces senescence. Gene expression analysis of c-Myc-deficient endothelial cells showed that senescent phenotype was accompanied by significant upregulation of growth factors, adhesion molecules, extracellular-matrix components and remodeling proteins, and a cluster of pro-inflammatory mediators, which include Angptl4, Cxcl12, Mdk, Tgfb2 and Tnfsf15. At the peak of expression of these cytokines, transcription factors known to be involved in growth control (E2f1, Id1 and Myb were downregulated, while those involved in inflammatory responses (RelB, Stat1, Stat2 and Stat4 were upregulated. Our results demonstrate a novel role for c-Myc in the prevention of vascular pro-inflammatory phenotype, supporting an important physiological function as a central regulator of inflammation and endothelial dysfunction.

  17. c-myc, not her-2/neu, can predict the prognosis of breast cancer patients: how novel, how accurate, and how significant?

    International Nuclear Information System (INIS)

    The predictive and prognostic implication of oncogene amplification in breast cancer has received great attention in the past two decades. her-2/neu and c-myc are two oncogenes that are frequently amplified and overexpressed in breast carcinomas. Despite the extensive data on these oncogenes, their prognostic and predictive impact on breast cancer patients remains controversial. Schlotter and colleagues have recently suggested that c-myc, and not her-2/neu, could predict the recurrence and mortality of patients with node-negative breast carcinomas. Regardless of the promising results, caution should be exercised in the interpretation of data from studies assessing gene amplification without in situ analysis. We address the novelty, accuracy and clinical significance of the study by Schlotter and colleagues

  18. Nuclear localization of phosphorylated c-Myc protein in human tumor cells.

    Directory of Open Access Journals (Sweden)

    C. Soldani

    2010-05-01

    Full Text Available Using immunocytochemical techniques at light and electron microscopy, we analysed the distribution of phosphorylated c-Myc in actively proliferating human HeLa cells. The distribution pattern of c-Myc was also compared with those of other ribonucleoprotein (RNP-containing components (PANA, hnRNP-core proteins, fibrillarin or RNP-associated nuclear proteins (SC-35 splicing factor. Our results provide the first evidence that phosphorylated c-Myc accumulates in the nucleus of tumor cells, where it colocalizes with fibrillarin, both in the nucleolus and in extranucleolar structures.

  19. Multiple mechanisms regulate c-myc gene expression during normal T cell activation.

    OpenAIRE

    Lindsten, T; June, C H; Thompson, C. B.

    1988-01-01

    Quiescent normal human T cells express low levels of steady-state c-myc mRNA as a result of low constitutive promoter utilization, a block to transcriptional elongation within the gene, and rapid degradation of c-myc mRNA in the cytoplasm. Following the activation of the T cell receptor (TCR)/CD3 complex, quiescent T cells are induced to express c-myc mRNA. Two intracellular pathways, one involving protein kinase C activation and the other mediated by increased intracellular calcium concentra...

  20. The long non-coding RNA PARROT is an upstream regulator of c-Myc and affects proliferation and translation

    Science.gov (United States)

    Vučićević, Dubravka; Gehre, Maja; Dhamija, Sonam; Friis-Hansen, Lennart; Meierhofer, David; Sauer, Sascha; Ørom, Ulf Andersson

    2016-01-01

    Long non-coding RNAs are important regulators of gene expression and signaling pathways. The expression of long ncRNAs is dysregulated in cancer and other diseases. The identification and characterization of long ncRNAs is often challenging due to their low expression level and localization to chromatin. Here, we identify a functional long ncRNA, PARROT (Proliferation Associated RNA and Regulator Of Translation) transcribed by RNA polymerase II and expressed at a relatively high level in a number of cell lines. The PARROT long ncRNA is associated with proliferation in both transformed and normal cell lines. We characterize the long ncRNA PARROT as an upstream regulator of c-Myc affecting cellular proliferation and translation using RNA sequencing and mass spectrometry following depletion of the long ncRNA. PARROT is repressed during senescence of human mammary epithelial cells and overexpressed in some cancers, suggesting an important association with proliferation through regulation of c-Myc. With this study, we add to the knowledge of cytoplasmic functional long ncRNAs and extent the long ncRNA-Myc regulatory network in transformed and normal cells. PMID:27129154

  1. Gene expression profiles in primary pancreatic tumors and metastatic lesions of Ela-c-myc transgenic mice

    Directory of Open Access Journals (Sweden)

    Liao Dezhong J

    2008-01-01

    Full Text Available Abstract Background Pancreatic carcinoma usually is a fatal disease with no cure, mainly due to its invasion and metastasis prior to diagnosis. We analyzed the gene expression profiles of paired primary pancreatic tumors and metastatic lesions from Ela-c-myc transgenic mice in order to identify genes that may be involved in the pancreatic cancer progression. Differentially expressed selected genes were verified by semi-quantitative and quantitative RT-PCR. To further evaluate the relevance of some of the selected differentially expressed genes, we investigated their expression pattern in human pancreatic cancer cell lines with high and low metastatic potentials. Results Data indicate that genes involved in posttranscriptional regulation were a major functional category of upregulated genes in both primary pancreatic tumors (PT and liver metastatic lesions (LM compared to normal pancreas (NP. In particular, differential expression for splicing factors, RNA binding/pre-mRNA processing factors and spliceosome related genes were observed, indicating that RNA processing and editing related events may play critical roles in pancreatic tumor development and progression. High expression of insulin growth factor binding protein-1 (Igfbp1 and Serine proteinase inhibitor A1 (Serpina1, and low levels or absence of Wt1 gene expression were exclusive to liver metastatic lesion samples. Conclusion We identified Igfbp1, Serpina1 and Wt1 genes that are likely to be clinically useful biomarkers for prognostic or therapeutic purposes in metastatic pancreatic cancer, particularly in pancreatic cancer where c-Myc is overexpressed.

  2. AP-2α Inhibits c-MYC Induced Oxidative Stress and Apoptosis in HaCaT Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Lei Yu

    2009-01-01

    AP-2 may have a direct effect on the c-myc gene. Chromatin immunoprecipitation assays demonstrated that AP-2 proteins bound to a cluster of AP-2 binding sites located within a 2 kb upstream regulatory region of c-myc These results suggest that the negative regulation of AP-2 on c-MYC activity was achieved through binding of AP-2 protein to the c-myc gene. The effects of AP-2 on c-MYC induced ROS accumulation and apoptosis in epidermal keratinocytes are likely to play an important role in cell growth, differentiation and carcinogenesis of the skin.

  3. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo

    OpenAIRE

    Phesse, T J; Myant, K.B.; Cole, A M; Ridgway, R.A.; Pearson, H; Muncan, V.; van den Brink, G R; Vousden, K H; Sears, R.; Vassilev, L T; Clarke, A R; Sansom, O J

    2014-01-01

    Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes ...

  4. Lack of Cyclin-Dependent Kinase 4 Inhibits c-myc Tumorigenic Activities in Epithelial Tissues

    OpenAIRE

    Miliani de Marval, Paula L.; Macias, Everardo; Rounbehler, Robert; Sicinski, Piotr; Kiyokawa, Hiroaki; David G. Johnson; Conti, Claudio J.; Rodriguez-Puebla, Marcelo L

    2004-01-01

    The proto-oncogene c-myc encodes a transcription factor that is implicated in the regulation of cellular proliferation, differentiation, and apoptosis and that has also been found to be deregulated in several forms of human and experimental tumors. We have shown that forced expression of c-myc in epithelial tissues of transgenic mice (K5-Myc) resulted in keratinocyte hyperproliferation and the development of spontaneous tumors in the skin and oral cavity. Although a number of genes involved i...

  5. The c-Myc Transactivation Domain Is a Direct Modulator of Apoptotic versus Proliferative Signals

    Science.gov (United States)

    Chang, David W.; Claassen, Gisela F.; Hann, Stephen R.; Cole, Michael D.

    2000-01-01

    We have assayed the oncogenic, proliferative, and apoptotic activities of the frequent mutations that occur in the c-myc gene in Burkitt's lymphomas. Some alleles have a modest (50 to 60%) increase in transforming activity; however, the most frequent Burkitt's lymphoma allele (T58I) had an unexpected substantial decrease in transforming activity (85%). All alleles restored the proliferation function of c-Myc in cells that grow slowly due to a c-myc knockout. There was discordance for some alleles between apoptotic and oncogenic activities, but only the T58A allele had elevated transforming activity with a concomitant reduced apoptotic potential. We discovered a novel missense mutation, MycS71F, that had a very low apoptotic activity compared to wild-type Myc, yet this mutation has never been found in lymphomas, suggesting that there is no strong selection for antiapoptotic c-Myc alleles. MycS71F also induced very low levels of cytochrome c release from mitochondria, suggesting a mechanism of action for this mutation. Phosphopeptide mapping provided a biochemical basis for the dramatically different biological activities of the transformation-defective T58I and transformation-enhanced T58A c-Myc alleles. Furthermore, the antiapoptotic survival factor insulin-like growth factor 1 was found to suppress phosphorylation of T58, suggesting that the c-Myc transactivation domain is a direct target of survival signals. PMID:10825194

  6. Transcript Regulation of Human Telomerase Reverse Transcriptase by c-myc and mad1

    Institute of Scientific and Technical Information of China (English)

    Lin ZOU; Peng-Hui ZHANG; Chun-Li LUO; Zhi-Guang TU

    2005-01-01

    Telomerase activity is highly positive correlated to most malignant neoplasms. Human telomerase reverse transcriptase (hTERT) is the rate-limiting factor of telomerase activity. Recent studies have shown that the expression of hTERT is mainly determined by its transcript regulation. Among the transcript regulation factors of hTERT, c-myc and mad1 are well known. Here, we constructed c-myc and mad1 eukaryotic expression vectors, then co-transfected them with the wild-type (Tw) or mutant hTERT promoter (Td)luciferase reporter plasmid, which were double-mutated in the E-box sequences from CACGTG to CACCTG of Tw. The change of luciferase activity in different cells was detected. The results showed that Tw was obviously activated in T24 and EJ bladder cancer cells, but not in normal fibrocytes. c-myc and mad1 had positive and negative effects respectively on the Tw transcript in a dose-dependent manner, while the roles of c-myc and mad1 in regulating the Td transcript were reversed. c-myc combined with mad1 can downregulate Tw but not Td. These observations indicate that c-myc and mad1 can regulate the hTERT transcript in a different manner in hTERT positive cells, but not in normal cells. This may provide an insight into some telomerase-related carcinogenesis mechanisms.

  7. Regulation of human ornithine decarboxylase expression by the c-Myc.Max protein complex.

    Science.gov (United States)

    Peña, A; Reddy, C D; Wu, S; Hickok, N J; Reddy, E P; Yumet, G; Soprano, D R; Soprano, K J

    1993-12-25

    The presence of a CACGTG element within a region of the human ornithine decarboxylase (ODC) promoter located at -491 to -474 base pairs 5' to the start site of transcription suggested that the c-Myc.Max protein complex may play a role in the regulation of ODC expression during growth. Electrophoretic mobility shift assays and methylation interference analysis showed that the nuclei of WI-38 cells expressing ODC contained proteins that bound to this region of the ODC gene in a manner that correlated with growth-associated ODC expression. Also, use of antibodies against c-Myc and Max and purified recombinant c-Myc and Max protein in the electrophoretic mobility shift assay confirmed that these proteins can specifically bind this portion of the human ODC promoter. Transient transfection studies showed that increase in the level of c-Myc and/or Max led to a significant enhancement of expression of a human ODC promoter-CAT reporter construct. Moreover, treatment of actively growing WI-38 cells with an antisense oligomer to c-Myc reduced the amount of endogenous protein complex formed and the amount of endogenous ODC mRNA expressed. These studies show that the c-Myc.Max protein complex plays a role in the transcriptional regulation of human ODC in vivo.

  8. Evidence that a triplex-forming oligodeoxyribonucleotide binds to the c-myc promoter in HeLa cells, thereby reducing c-myc mRNA levels

    Energy Technology Data Exchange (ETDEWEB)

    Postel, E.H.; Flint, S.J. (Princeton Univ., NJ (United States)); Kessler, D.J.; Hogan, M.E. (Baylor College of Medicine, The Woodlands, TX (United States))

    1991-09-15

    A synthetic 27-base-long oligodeoxyribonucleotide, termed PU1, has been shown to bind to duplex DNA to form a triplex at a single site within the human c-myc P1 promoter. PU1 has been administered to HeLa cells in culture to examine the feasibility of influencing transcription of the c-myc gene in vivo. It is shown that uptake of PU1 into the nucleus of HeLa cells is efficient and that the compound remains intact for at least 4 hours. In nuclei extracted from PU1-treated cells, inhibition of DNase I cleavage is detected within the c-myc P1 promoter at the target site for triplex formation. The inhibition is shown to be both site and oligodeoxyribonucleotide specific. After cellular uptake of PU1, it is shown that steady-state mRNA arising from the c-myc P2 initiation site, and relative to mRNA derived form the {beta}-actin promoter. Significant mRNA repression is not seen upon treating cells with oligodeoxyuribonucleotides that fail to bind to the P1 promoter target. Taken together, these data suggest that triplex formation can occur between an exogenous oligodeoxy-ribonucleotide and duplex DNA in the nucleus of treated cells.

  9. SirT1 knockdown potentiates radiation-induced bystander effect through promoting c-Myc activity and thus facilitating ROS accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yuexia [Institute of Radiation Medicine, Fudan University, Shanghai (China); Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai (China); Tu, Wenzhi; Zhang, Jianghong; He, Mingyuan; Ye, Shuang; Dong, Chen [Institute of Radiation Medicine, Fudan University, Shanghai (China); Shao, Chunlin, E-mail: clshao@shmu.edu.cn [Institute of Radiation Medicine, Fudan University, Shanghai (China)

    2015-02-15

    Highlights: • γ-Irradiation induced bystander effects between hepatoma cells and hepatocyte cells. • SirT1 played a protective role in regulating this bystander effect. • SirT1 contributed to the protective effects via elimination the accumulation of ROS. • The activity of c-Myc is critical for maintaining the protective role of SirT1. - Abstract: Radiation-induced bystander effect (RIBE) has important implications for secondary cancer risk assessment during cancer radiotherapy, but the bystander signaling processes, especially under hypoxic condition, are still largely unclear. The present study found that micronuclei (MN) formation could be induced in the non-irradiated HL-7702 hepatocyte cells after being treated with the conditioned medium from irradiated hepatoma HepG2 and SK-Hep-1 cells under either normoxia or hypoxia. This bystander response was dramatically diminished or enhanced when the SirT1 gene of irradiated hepatoma cells was overexpressed or knocked down, respectively, especially under hypoxia. Meanwhile, SirT1 knockdown promoted transcriptional activity for c-Myc and facilitated ROS accumulation. But both of the increased bystander responses and ROS generation due to SirT1-knockdown were almost completely suppressed by c-Myc interference. Moreover, ROS scavenger effectively abolished the RIBE triggered by irradiated hepatoma cells even with SirT1 depletion. These findings provide new insights that SirT1 has a profound role in regulating RIBE where a c-Myc-dependent release of ROS may be involved.

  10. c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function.

    Directory of Open Access Journals (Sweden)

    Lia R Edmunds

    Full Text Available The c-Myc (Myc oncoprotein and AMP-activated protein kinase (AMPK regulate glycolysis and oxidative phosphorylation (Oxphos although often for different purposes. Because Myc over-expression depletes ATP with the resultant activation of AMPK, we explored the potential co-dependency of and cross-talk between these proteins by comparing the consequences of acute Myc induction in ampk+/+ (WT and ampk-/- (KO murine embryo fibroblasts (MEFs. KO MEFs showed a higher basal rate of glycolysis than WT MEFs and an appropriate increase in response to activation of a Myc-estrogen receptor (MycER fusion protein. However, KO MEFs had a diminished ability to increase Oxphos, mitochondrial mass and reactive oxygen species in response to MycER activation. Other differences between WT and KO MEFs, either in the basal state or following MycER induction, included abnormalities in electron transport chain function, levels of TCA cycle-related oxidoreductases and cytoplasmic and mitochondrial redox states. Transcriptional profiling of pathways pertinent to glycolysis, Oxphos and mitochondrial structure and function also uncovered significant differences between WT and KO MEFs and their response to MycER activation. Finally, an unbiased mass-spectrometry (MS-based survey capable of quantifying ~40% of all mitochondrial proteins, showed about 15% of them to be AMPK- and/or Myc-dependent in their steady state. Significant differences in the activities of the rate-limiting enzymes pyruvate kinase and pyruvate dehydrogenase, which dictate pyruvate and acetyl coenzyme A abundance, were also differentially responsive to Myc and AMPK and could account for some of the differences in basal metabolite levels that were also detected by MS. Thus, Myc and AMPK are highly co-dependent and appear to engage in significant cross-talk across numerous pathways which support metabolic and ATP-generating functions.

  11. Discovery of a Family of Genomic Sequences Which Interact Specifically with the c-MYC Promoter to Regulate c-MYC Expression

    Science.gov (United States)

    Thomas, Shelia D.; Rouchka, Eric C.; Miller, Donald M.

    2016-01-01

    G-quadruplex forming sequences are particularly enriched in the promoter regions of eukaryotic genes, especially of oncogenes. One of the most well studied G-quadruplex forming sequences is located in the nuclease hypersensitive element (NHE) III1 of the c-MYC promoter region. The oncoprotein c-MYC regulates a large array of genes which play important roles in growth regulation and metabolism. It is dysregulated in >70% of human cancers. The silencer NHEIII1 located upstream of the P1 promoter regulates up-to 80% of c-MYC transcription and includes a G-quadruplex structure (Pu27) that is required for promoter inhibition. We have identified, for the first time, a family of seventeen G-quadruplex-forming motifs with >90% identity with Pu27, located on different chromosomes throughout the human genome, some found near or within genes involved in stem cell maintenance or neural cell development. Notably, all members of the Pu27 family interact specifically with NHEIII1 sequence, in vitro. Crosslinking studies demonstrate that Pu27 oligonucleotide binds specifically to the C-rich strand of the NHEIII1 resulting in the G-quadruplex structure stabilization. Pu27 homologous sequences (Pu27-HS) significantly inhibit leukemic cell lines proliferation in culture. Exposure of U937 cells to the Pu27-HS induces cell growth inhibition associated with cell cycle arrest that is most likely due to downregulation of c-MYC expression at the RNA and/or protein levels. Expression of SOX2, another gene containing a Pu27-HS, was affected by Pu27-HS treatment as well. Our data suggest that the oligonucleotides encoding the Pu27 family target complementary DNA sequences in the genome, including those of the c-MYC and SOX2 promoters. This effect is most likely cell type and cell growth condition dependent. The presence of genomic G-quadruplex-forming sequences homologous to Pu27 of c-MYC silencer and the fact that they interact specifically with the parent sequence suggest a common

  12. VARIATION AND SIGNIFICANCE OF C-MYC PROTEIN IN RAT CARDIAC VOLUME-OVERLOAD HYP ERTROPHY

    Institute of Scientific and Technical Information of China (English)

    刘华胜; 马爱群; 王一理; 刘勇; 李恒力; 田红燕

    2002-01-01

    Objective To investigate the change of c-myc protein, which was chosen as the response indicator to volume-overload. Methods The time and spatial course of c-myc protein expressi on on the model of rat cardiac volume-overload hyper trophy was examined by immunohistochemical study. Results The immunohistochemica l study indicated the expression of c-myc protein was increased obviously at 4 -6 hours (62.73%) than that of control (45.41%, P<0.01) after the volume-o verload, then decreased gradually along with development of volume-overload hyp ertrophy and was decreased extremely at 5 months(r=-0.514,P<0.01).Conclusion There are disorders in the signal transduction pathways governing the hypertrophic respon se of cardiomyocytes in hypertrophic myocardium. C-myc gene and the product of it may be only the promoter gene of myocardial hypertrophy. Once switching on, c-myc gene and the product of it do not act anymore;While it may be that c-my c gene and the product of it increased following with myocardial hypertrophy, an d have not direct relation to the occurrence and development of myocardial hyper trophy.

  13. HBXIP and LSD1 Scaffolded by lncRNA Hotair Mediate Transcriptional Activation by c-Myc.

    Science.gov (United States)

    Li, Yinghui; Wang, Zhen; Shi, Hui; Li, Hang; Li, Leilei; Fang, Runping; Cai, Xiaoli; Liu, Bowen; Zhang, Xiaodong; Ye, Lihong

    2016-01-15

    c-Myc is regarded as a transcription factor, but the basis for its function remains unclear. Here, we define a long noncoding RNA (lncRNA)/protein complex that mediates the transcriptional activation by c-Myc in breast cancer cells. Among 388 c-Myc target genes in human MCF-7 breast cancer cells, we found that their promoters could be occupied by the oncoprotein HBXIP. We confirmed that the HBXIP expression correlated with expression of the c-Myc target genes cyclin A, eIF4E, and LDHA. RNAi-mediated silencing of HBXIP abolished c-Myc-mediated upregulation of these target genes. Mechanistically, HBXIP interacted directly with c-Myc through the leucine zippers and recruited the lncRNA Hotair along with the histone demethylase LSD1, for which Hotair serves as a scaffold. Silencing of HBXIP, Hotair, or LSD1 was sufficient to block c-Myc-enhanced cancer cell growth in vitro and in vivo. Taken together, our results support a model in which the HBXIP/Hotair/LSD1 complex serves as a critical effector of c-Myc in activating transcription of its target genes, illuminating long-standing questions on how c-Myc drives carcinogenesis.

  14. Interrelationship between chromosome 8 aneuploidy, C-MYC amplification and increased expression in individuals from northern Brazil with gastric adenocarcinoma

    Institute of Scientific and Technical Information of China (English)

    Danielle Queiroz Calcagno; Márcia Valéria Pitombeira Ferreira; Marília de Arruda Cardoso Smith; Rommel Rodríguez Burbano; Mariana Ferreira Leal; Aline Damaceno Seabra; André Salim Khayat; Elizabeth Suchi Chen; Samia Demachki; Paulo Pimentel Assump(c)(a)o; Mario Henrique Gir(a)o Faria; Silvia Helena Barem Rabenhorst

    2006-01-01

    AIM: To investigate chromosome 8 numerical aberrations, C-MYC oncogene alterations and its expression in gastric cancer and to correlate these findings with histopathological characteristics of gastric tumors.METHODS: Specimens were collected surgically from seven patients with gastric adenocarcinomas. Immunostaining for C-MYC and dual-color fluorescence in situ hybridization (FISH) for C-MYC gene and chromosome 8centromere were performed.RESULTS: All the cases showed chromosome 8 aneuploidy and C-MYC amplification, in both the diffuse and intestinal histopathological types of Lauren. No significant difference (P < 0.05) was observed between the level of chromosome 8 ploidy and the site, stage or histological type of the adenocarcinomas. C-MYC high amplification,like homogeneously stained regions (HSRs) and double minutes (DMs), was observed only in the intestinal-type.Structural rearrangement of C-MYC, like translocation,was observed only in the diffuse type. Regarding C-MYC gene, a significant difference (P < 0.05) was observed between the two histological types. The C-MYC protein was expressed in all the studied cases. In the intestinaltype the C-MYC immunoreactivity was localized only in the nucleus and in the diffuse type in the nucleus and cytoplasm.CONCLUSION: Distinct patterns of alterations between intestinal and diffuse types of gastric tumors support the hypothesis that these types follow different genetic pathways.

  15. HBXIP and LSD1 Scaffolded by lncRNA Hotair Mediate Transcriptional Activation by c-Myc.

    Science.gov (United States)

    Li, Yinghui; Wang, Zhen; Shi, Hui; Li, Hang; Li, Leilei; Fang, Runping; Cai, Xiaoli; Liu, Bowen; Zhang, Xiaodong; Ye, Lihong

    2016-01-15

    c-Myc is regarded as a transcription factor, but the basis for its function remains unclear. Here, we define a long noncoding RNA (lncRNA)/protein complex that mediates the transcriptional activation by c-Myc in breast cancer cells. Among 388 c-Myc target genes in human MCF-7 breast cancer cells, we found that their promoters could be occupied by the oncoprotein HBXIP. We confirmed that the HBXIP expression correlated with expression of the c-Myc target genes cyclin A, eIF4E, and LDHA. RNAi-mediated silencing of HBXIP abolished c-Myc-mediated upregulation of these target genes. Mechanistically, HBXIP interacted directly with c-Myc through the leucine zippers and recruited the lncRNA Hotair along with the histone demethylase LSD1, for which Hotair serves as a scaffold. Silencing of HBXIP, Hotair, or LSD1 was sufficient to block c-Myc-enhanced cancer cell growth in vitro and in vivo. Taken together, our results support a model in which the HBXIP/Hotair/LSD1 complex serves as a critical effector of c-Myc in activating transcription of its target genes, illuminating long-standing questions on how c-Myc drives carcinogenesis. PMID:26719542

  16. Intragenic pausing and anti-sense transcription within the murine c-myc locus.

    OpenAIRE

    Nepveu, A; Marcu, K B

    1986-01-01

    We present a detailed analysis of strand-specific transcription in different regions of the murine c-myc locus. In normal and transformed cell lines, RNA polymerase II directed transcription occurs in the sense and anti-sense direction. Three noncontiguous regions show a high level of transcription in the anti-sense orientation: upstream of the first exon, within the first intron and in the 3' part of the gene (intron 2 and exon 3). In a cell line carrying a c-myc amplification (54c12), anti-...

  17. Ikaros and Aiolos Inhibit Pre-B-Cell Proliferation by Directly Suppressing c-Myc Expression▿

    OpenAIRE

    Ma, Shibin; Pathak, Simanta; Mandal, Malay; Trinh, Long; Clark, Marcus R.; Lu, Runqing

    2010-01-01

    Pre-B-cell expansion is driven by signals from the interleukin-7 receptor and the pre-B-cell receptor and is dependent on cyclin D3 and c-Myc. We have shown previously that interferon regulatory factors 4 and 8 induce the expression of Ikaros and Aiolos to suppress pre-B-cell proliferation. However, the molecular mechanisms through which Ikaros and Aiolos exert their growth inhibitory effect remain to be determined. Here, we provide evidence that Aiolos and Ikaros bind to the c-Myc promoter i...

  18. Cloning and characterization of a human c-myc promoter-binding protein.

    OpenAIRE

    Ray, R; Miller, D M

    1991-01-01

    A human cDNA clone encoding a c-myc promoter-binding protein was detected by screening a HeLa cell lambda phage expression cDNA library. The library was screened by using an XhoI-NaeI human c-myc P2 promoter fragment as a probe. The recombinant phage encoded a fusion protein, myc-binding protein 1 (MBP-1), which had an apparent molecular size of 40 kDa. A corresponding protein with a molecular size of 35 kDa was present in a HeLa cell extract. Sequence analysis of the cloned gene reveals an o...

  19. The reducing agent Dithiothreitol (DTT) increases expression of c-myc and c- fos protooncogenes in human cells

    DEFF Research Database (Denmark)

    Skouv, J.; Sørensen, Ilona Kryspin; Frandsen, H.;

    1995-01-01

    . The genes were two proto-oncogenes, c-fos and c-myc, and the tumour suppressor gene, p53. We observed that the expression of the c-fos and c-myc genes was induced when human bladder epithelial cells were treated with a standard solution of N-OH-PhIP and dithiothreitol (DTT), previously shown to be genotoxic...

  20. c-MYC responds to glucose deprivation in a cell-type-dependent manner.

    Science.gov (United States)

    Wu, S; Yin, X; Fang, X; Zheng, J; Li, L; Liu, X; Chu, L

    2015-01-01

    Metabolic reprogramming supports cancer cells' demands for rapid proliferation and growth. Previous work shows that oncogenes, such as MYC, hypoxia-inducible factor 1 (HIF1), have a central role in driving metabolic reprogramming. A lot of metabolic enzymes, which are deregulated in most cancer cells, are the targets of these oncogenes. However, whether metabolic change affects these oncogenes is still unclear. Here we show that glucose deprivation (GD) affects c-MYC protein levels in a cell-type-dependent manner regardless of P53 mutation status. GD dephosphorylates and then decreases c-MYC protein stability through PI3K signaling pathway in HeLa cells, but not in MDA-MB-231 cells. Role of c-MYC in sensitivity of GD also varies with cell types. c-MYC-mediated glutamine metabolism partially improves the sensitivity of GD in MDA-MB-231 cells. Our results reveal that the heterogeneity of cancer cells in response to metabolic stress should be considered in metabolic therapy for cancer. PMID:27551483

  1. Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC.

    Science.gov (United States)

    Blandino, Giovanni; Valerio, Mariacristina; Cioce, Mario; Mori, Federica; Casadei, Luca; Pulito, Claudio; Sacconi, Andrea; Biagioni, Francesca; Cortese, Giancarlo; Galanti, Sergio; Manetti, Cesare; Citro, Gennaro; Muti, Paola; Strano, Sabrina

    2012-01-01

    Diabetic patients treated with metformin have a reduced incidence of cancer and cancer-related mortality. Here we show that metformin affects engraftment and growth of breast cancer tumours in mice. This correlates with the induction of metabolic changes compatible with clear anticancer effects. We demonstrate that microRNA modulation underlies the anticancer metabolic actions of metformin. In fact, metformin induces DICER expression and its effects are severely impaired in DICER knocked down cells. Conversely, ectopic expression of DICER recapitulates the effects of metformin in vivo and in vitro. The microRNAs upregulated by metformin belong mainly to energy metabolism pathways. Among the messenger RNAs downregulated by metformin, we found c-MYC, IRS-2 and HIF1alpha. Downregulation of c-MYC requires AMP-activated protein kinase-signalling and mir33a upregulation by metformin. Ectopic expression of c-MYC attenuates the anticancer metabolic effects of metformin. We suggest that DICER modulation, mir33a upregulation and c-MYC targeting have an important role in the anticancer metabolic effects of metformin. PMID:22643892

  2. Selective recognition of c-MYC G-quadruplex DNA using prolinamide derivatives.

    Science.gov (United States)

    Chauhan, Ajay; Paladhi, Sushovan; Debnath, Manish; Dash, Jyotirmayee

    2016-06-28

    Herein we report the design, synthesis, biophysical and biological evaluation of triazole containing prolinamide derivatives as selective c-MYC G-quadruplex binding ligands. A modular synthetic route has been devised for prolinamide derivatives using a copper(i) catalyzed azide-alkyne cycloaddition (CuAAC). The Förster resonance energy transfer (FRET) melting assay indicates that prolinamide trimers can significantly stabilize G-quadruplex structures over duplex DNA compared to prolinamide dimers. The fluorescent intercalator displacement (FID) assay shows that a trimer with prolinamide side chains at the para-position of the benzene ring can discriminate between different quadruplex structures and exhibits the highest binding affinity towards the c-MYC G-quadruplex structure. Molecular modeling studies reveal that the prolinamide trimer stacks upon the terminal G-quartet of the c-MYC G-quadruplex. Atomic force microscopy (AFM) analysis reveals that the tris-prolinamide ligand can be used to regulate the assembly of novel supramolecular nanoarchitectures. Further, in vitro cellular studies with human hepatocellular carcinoma (HepG2) cells indicate that the tris-prolinamide derivatives can inhibit cell proliferation and reduce c-MYC expression in cancer cells. PMID:26963597

  3. Dose-adjusted Chemotherapy for Untreated c-MYC-positive Lymphoma

    Science.gov (United States)

    In this trial, adult patients with newly diagnosed Burkitt lymphoma or c-MYC-positive DLBCL will be separated into low-risk and high-risk groups; those in the low-risk group will be treated with at least three cycles of dose-adjusted EPOCH-R

  4. Cytogenetic characterization and evaluation of c-MYC gene amplification in PG100, a new Brazilian gastric cancer cell line

    Directory of Open Access Journals (Sweden)

    H.F. Ribeiro

    2010-08-01

    Full Text Available Gastric cancer is the fourth most frequent type of cancer and the second cause of cancer mortality worldwide. The genetic alterations described so far for gastric carcinomas include amplifications and mutations of the c-ERBB2, KRAS, MET, TP53, and c-MYC genes. Chromosomal instability described for gastric cancer includes gains and losses of whole chromosomes or parts of them and these events might lead to oncogene overexpression, showing the need for a better understanding of the cytogenetic aspects of this neoplasia. Very few gastric carcinoma cell lines have been isolated. The establishment and characterization of the biological properties of gastric cancer cell lines is a powerful tool to gather information about the evolution of this malignancy, and also to test new therapeutic approaches. The present study characterized cytogenetically PG-100, the first commercially available gastric cancer cell line derived from a Brazilian patient who had a gastric adenocarcinoma, using GTG banding and fluorescent in situ hybridization to determine MYC amplification. Twenty metaphases were karyotyped; 19 (95% of them presented chromosome 8 trisomy, where the MYC gene is located, and 17 (85% presented a deletion in the 17p region, where the TP53 is located. These are common findings for gastric carcinomas, validating PG100 as an experimental model for this neoplasia. Eighty-six percent of 200 cells analyzed by fluorescent in situ hybridization presented MYC overexpression. Less frequent findings, such as 5p deletions and trisomy 16, open new perspectives for the study of this tumor.

  5. Alteration of microRNAs regulated by c-Myc in Burkitt lymphoma.

    Directory of Open Access Journals (Sweden)

    Anna Onnis

    Full Text Available BACKGROUND: Burkitt lymphoma (BL is an aggressive B-cell lymphoma, with a characteristic clinical presentation, morphology and immunophenotype. Over the past years, the typical translocation t(8;14 and its variants have been considered the molecular hallmark of this tumor. However, BL cases with no detectable MYC rearrangement have been identified. Intriguingly, these cases express MYC at levels comparable with cases carrying the translocation. In normal cells c-Myc expression is tightly regulated through a complex feedback loop mechanism. In cancer, MYC is often dysregulated, commonly due to genomic abnormalities. It has recently emerged that this phenomenon may rely on an alteration of post-transcriptional regulation mediated by microRNAs (miRNAs, whose functional alterations are associated with neoplastic transformation. It is also emerging that c-Myc modulates miRNA expression, revealing an intriguing crosstalk between c-Myc and miRNAs. PRINCIPAL FINDINGS: Here, we investigated the expression of miRNAs possibly regulated by c-Myc in BL cases positive or negative for the translocation. A common trend of miRNA expression, with the exception of hsa-miR-9*, was observed in all of the cases. Intriguingly, down-regulation of this miRNA seems to specifically identify a particular subset of BL cases, lacking MYC translocation. Here, we provided evidence that hsa-miR-9-1 gene is heavily methylated in those cases. Finally, we showed that hsa-miR-9* is able to modulate E2F1 and c-Myc expression. CONCLUSIONS: Particularly, this study identifies hsa-miR-9* as potentially relevant for malignant transformation in BL cases with no detectable MYC translocation. Deregulation of hsa-miR-9* may therefore be useful as a diagnostic tool, suggesting it as a promising novel candidate for tumor cell marker.

  6. Oncogene amplification detected by in situ hybridization in radiation induced rat skin tumors. [C-myc:a3

    Energy Technology Data Exchange (ETDEWEB)

    Yi Jin.

    1991-02-01

    Oncogene activation may play an important role in radiation induced carcinogenesis. C-myc oncogene amplification was detected by in situ hybridization in radiation-induced rat skin tumors, including squamous and basal cell carcinomas. In situ hybridization was performed with a biotinylated human c-myc third exon probe, visualized with an avidin-biotinylated alkaline phosphate detection system. No c-myc oncogene amplification was detected in normal rat skin at very early times after exposure to ionizing radiation, which is consistent with the view that c-myc amplification is more likely to be related to carcinogenesis than to normal cell proliferation. The incorporation of tritiated thymidine into the DNA of rat skin cells showed that the proliferation of epidermal cells reached a peak on the seventh day after exposure to ionizing radiation and then decreased. No connection between the proliferation of epidermal cell and c-myc oncogene amplification in normal or irradiated rat skin was found. The results indicated that c-myc amplification as measured by in situ hybridization was correlated with the Southern bolt results, but only some of the cancer cells were amplified. The c-myc positive cells were distributed randomly within regions of the tumor and exhibited a more uniform nuclear structure in comparison to the more vacuolated c-myc negative cells. No c-myc signal was detected in unirradiated normal skin or in irradiated skin cells near the tumors. C-myc amplification appears to be cell or cell cycle specific within radiation-induced carcinomas. 28 refs., 3 figs., 3 tabs.

  7. Repression of c-Myc responsive genes in cycling cells causes G1 arrest through reduction of cyclin E/CDK2 kinase activity

    NARCIS (Netherlands)

    Berns, K.; Hijmans, E.M.; Bernards, R.A.

    1997-01-01

    The c-myc gene encodes a sequence-specific DNA binding protein involved in proliferation and oncogenesis. Activation of c-myc expression in quiescent cells is sufficient to mediate cell cycle entry, whereas inhibition of c-myc expression causes cycling cells to withdraw from the cell cycle. To searc

  8. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaojing [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Xu, Yonghong [Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, 430060 Wuhan (China); Meng, Xiangning [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Watari, Fumio [Department of Biomedical, Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Chen, Xiao, E-mail: mornsmile@yahoo.com [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China)

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  9. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    International Nuclear Information System (INIS)

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance

  10. Aspirin and salicylic acid decrease c-Myc expression in cancer cells: a potential role in chemoprevention.

    Science.gov (United States)

    Ai, Guoqiang; Dachineni, Rakesh; Muley, Pratik; Tummala, Hemachand; Bhat, G Jayarama

    2016-02-01

    Epidemiological studies have demonstrated a significant correlation between regular aspirin use and reduced colon cancer incidence and mortality; however, the pathways by which it exerts its anti-cancer effects are still not fully explored. We hypothesized that aspirin's anti-cancer effect may occur through downregulation of c-Myc gene expression. Here, we demonstrate that aspirin and its primary metabolite, salicylic acid, decrease the c-Myc protein levels in human HCT-116 colon and in few other cancer cell lines. In total cell lysates, both drugs decreased the levels of c-Myc in a concentration-dependent fashion. Greater inhibition was observed in the nucleus than the cytoplasm, and immunofluorescence studies confirmed these observations. Pretreatment of cells with lactacystin, a proteasome inhibitor, partially prevented the downregulatory effect of both aspirin and salicylic acid, suggesting that 26S proteasomal pathway is involved. Both drugs failed to decrease exogenously expressed DDK-tagged c-Myc protein levels; however, under the same conditions, the endogenous c-Myc protein levels were downregulated. Northern blot analysis showed that both drugs caused a decrease in c-Myc mRNA levels in a concentration-dependent fashion. High-performance liquid chromatography (HPLC) analysis showed that aspirin taken up by cells was rapidly metabolized to salicylic acid, suggesting that aspirin's inhibitory effect on c-Myc may occur through formation of salicylic acid. Our result suggests that salicylic acid regulates c-Myc level at both transcriptional and post-transcription levels. Inhibition of c-Myc may represent an important pathway by which aspirin exerts its anti-cancer effect and decrease the occurrence of cancer in epithelial tissues. PMID:26314861

  11. Design of a novel triple helix-forming oligodeoxyribonucleotide directed to the major promoter of the c-myc gene

    OpenAIRE

    McGuffie, E M; Catapano, C. V.

    2002-01-01

    Altered expression of c-myc is implicated in pathogenesis and progression of many human cancers. Triple helix-forming oligonucleotides (TFOs) directed to a polypurine/polypyrimidine sequence in a critical regulatory region near the c-myc P2 promoter have been shown to inhibit c-myc transcription in vitro and in cells. However, these guanine-rich TFOs had moderate binding affinity and required high concentrations for activity. The 23 bp myc P2 sequence is split equally into AT- and GC-rich tra...

  12. Coding elements in exons 2 and 3 target c-myc mRNA downregulation during myogenic differentiation.

    OpenAIRE

    Yeilding, N M; W.M. Lee

    1997-01-01

    Downregulation in expression of the c-myc proto-oncogene is an early molecular event in differentiation of murine C2C12 myoblasts into multinucleated myotubes. During differentiation, levels of c-myc mRNA decrease 3- to 10-fold despite a lack of change in its transcription rate. To identify cis-acting elements that target c-myc mRNA for downregulation during myogenesis, we stably transfected C2C12 cells with mutant myc genes or chimeric genes in which various myc sequences were fused to the h...

  13. Site-Specific Oligonucleotide Binding Represses Transcription of the Human c-myc Gene in vitro

    Science.gov (United States)

    Cooney, Michael; Czernuszewicz, Graznya; Postel, Edith H.; Flint, S. Jane; Hogan, Michael E.

    1988-07-01

    A 27-base-long DNA oligonucleotide was designed that binds to duplex DNA at a single site within the 5' end of the human c-myc gene, 115 base pairs upstream from the transcription origin P1. On the basis of the physical properties of its bound complex, it was concluded that the oligonucleotide forms a colinear triplex with the duplex binding site. By means of an in vitro assay system, it was possible to show a correlation between triplex formation at -115 base pairs and repression of c-myc transcription. The possibility is discussed that triplex formation (site-specific RNA binding to a DNA duplex) could serve as the basis for an alternative program of gene control in vivo.

  14. Transcriptional regulation of Wnt inhibitory factor-1 by Miz-1/c-Myc

    OpenAIRE

    Licchesi, JDF; Van Neste, L; Tiwari, VK; Cope, L; Lin, X.; Baylin, SB; Herman, JG

    2010-01-01

    The Wnt signaling pathway is capable of self-regulation through positive and negative feedback mechanisms. For example, the oncoprotein c-Myc, which is upregulated by Wnt signaling activity, participates in a positive feedback loop of canonical Wnt signaling through repression of Wnt antagonists DKK1 and SFRP1. In this study, we investigated the mechanism of Wnt inhibitory factor-1 (WIF-1) silencing. Mapping of CpG island methylation of the WIF-1 promoter reveals regional methylation (–295 to...

  15. The c-myc coding DNA sequences of cyprinids (Teleostei: Cypriniformes): Implications for phylogeny

    Institute of Scientific and Technical Information of China (English)

    KONG XiangHui; WANG XuZhen; GAN XiaoNi; HE ShunPing

    2007-01-01

    The family Cyprinidae is one of the largest fish families in the world, which is widely distributed in East Asian, with obvious difference in characteristic size among species. The phylogenetic analysis of cyprinid taxa based on the functionally important genes can help to understand the speciation and functional divergence of the Cyprinidae. The c-myc gene is an important gene regulating individual growth.In the present study, the sequence variations of the cyprinid c-myc gene and their phylogenetic significance were analyzed. The 41 complete sequences of the c-myc gene were obtained from cyprinids and outgroups through PCR amplification and clone. The coding DNA sequences of the c-myc gene were used to infer molecular phylogenetic relationships within the Cyprinidae. Myxocyprinus asiaticus (Catostomidae), Misgurnus anguillicaudatus (Cobitidae) and Hemimyzon sinensis (Homalopteridae)were assigned to the outgroup taxa. Phylogenetic analyses using maximum parsimony (MP), maximum likelihood (ML), and Bayesian retrieved similar topology. Within the Cyprinidae, Leuciscini and Barbini formed the monophyletic lineage respectively with high nodal supports. Leuciscini comprises Xenocyprinae, Cultrinae, East Asian species of Leuciscinae and Danioninae, Gobioninae and Acheilognathinae, and Barbini contains Schizothoracinae, Barbinae, Cyprininae and Labeoninae. Danio rerio, D.myersi and Rasbora trilineata were supposed to separate from Leuciscinae and Barbini and to form another lineage. The positions of some Danioninae species were still unresolved. Analyses of both amino acid variation with parsimony information and two high variation regions indicated that there is no correlation between variations of single amino acid or high variation regions and characteristic size of cyprinids. In addition, the species with smaller size were usually found to be basal within clades in the tree, which might be the results of the adaptation to the primitive ecology and survival pressure.

  16. Antitumor activity of the c-Myc inhibitor KSI-3716 in gemcitabine-resistant bladder cancer

    OpenAIRE

    Seo, Ho Kyung; Ahn, Kyung-Ohk; Jung, Nae-Rae; Shin, Ji-Sun; Park, Weon Seo; Lee, Kang Hyun; Lee, Sang-Jin; Jeong, Kyung-Chae

    2014-01-01

    Intravesical instillation of chemotherapeutic agents is a well-established treatment strategy to decrease recurrence following transurethral resection in non-muscle invasive bladder cancer. Gemcitabine is a recently developed treatment option. However, the curative effects of gemcitabine are far from satisfactory due to de novo or acquired drug resistance. In a previous study, we reported that intravesical administration of the c-Myc inhibitor KSI-3716 suppresses tumor growth in an orthotopic...

  17. Mode of c-myc protein expression in Spitz nevi, common melanocytic nevi and malignant melanomas.

    Science.gov (United States)

    Bergman, R; Lurie, M; Kerner, H; Kilim, S; Friedman-Birnbaum, R

    1997-04-01

    The expression of c-myc protein was studied in formalin-fixed, paraffin-embedded sections of 16 compound Spitz nevi (SNs), 20 ordinary compound melanocytic nevi (MNs) and 30 malignant melanomas (MMs), using monoclonal antibody 9E10 and an immunoperoxidase technique. Nine (56%) SNs, 16 (80%) MNs and 23 (77%) MMs showed positive reactions in some of the tumor cells (P = non-significant). The staining reactions were mostly cytoplasmic, and moderate to strong in intensity. The frequencies of positively stained cells were higher in the MN and SN groups. Most of the lesions with a significant dermal component did not show stratification of staining with progressive descent into the dermis. Therefore, the mode of expression of c-myc in routinely processed specimens does not differentiate between SNs, MNs and MMs. One possible reason is that the increased expression of the c-myc protein is not sufficient alone to promote proliferation and malignant transformation in these types of tumors. PMID:9138112

  18. Temporal Requirements of cMyc Protein for Reprogramming Mouse Fibroblasts

    Directory of Open Access Journals (Sweden)

    Corey Heffernan

    2012-01-01

    Full Text Available Exogenous expression of Oct4, Sox2, Klf4, and cMyc forces mammalian somatic cells to adopt molecular and phenotypic characteristics of embryonic stem cells, commencing with the required suppression of lineage-associated genes (e.g., Thy1 in mouse. Although omitting cMyc from the reprogramming cocktail minimizes risks of uncontrolled proliferation, its exclusion results in fold reductions in reprogramming efficiency. Thus, the feasibility of substituting cMyc transgene with (non-integrative recombinant “pTAT-mcMyc” protein delivery was assessed, without compromising reprogramming efficiency or the pluripotent phenotype. Purification and delivery of semisoluble/particulate pTAT-mcMyc maintained Oct4-GFP+ colony formation (i.e., reprogramming efficiency whilst supporting pluripotency by various criteria. Differential repression of Thy1 by pTAT-mcMyc ± Oct4, Sox2, and Klf4 (OSK suggested differential (and non-additive mechanisms of repression. Extending these findings, attempts to enhance reprogramming efficiency through a staggered approach (prerepression of Thy1 failed to improve reprogramming efficiency. We consider protein delivery a useful tool to decipher temporal/molecular events characterizing somatic cell reprogramming.

  19. A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor β-induced cell-cycle arrest

    OpenAIRE

    Claassen, Gisela F.; Hann, Stephen R.

    2000-01-01

    c-Myc plays a vital role in cell-cycle progression. Deregulated expression of c-Myc can overcome cell-cycle arrest in order to promote cellular proliferation. Transforming growth factor β (TGFβ) treatment of immortalized human keratinocyte cells inhibits cell-cycle progression and is characterized by down-regulation of c-Myc followed by up-regulation of p21CIP1. A direct role of c-Myc in this pathway was demonstrated by the observation that ectopic expression of c-Myc overcame the cell-cycle ...

  20. c-MYC expression sensitizes medulloblastoma cells to radio- and chemotherapy and has no impact on response in medulloblastoma patients

    International Nuclear Information System (INIS)

    To study whether and how c-MYC expression determines response to radio- and chemotherapy in childhood medulloblastoma (MB). We used DAOY and UW228 human MB cells engineered to stably express different levels of c-MYC, and tested whether c-MYC expression has an effect on radio- and chemosensitivity using the colorimetric 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium inner salt (MTS) assay, clonogenic survival, apoptosis assays, cell cycle analysis, and western blot assessment. In an effort to validate our results, we analyzed c-MYC mRNA expression in formalin-fixed paraffin-embedded tumor samples from well-documented patients with postoperative residual tumor and compared c-MYC mRNA expression with response to radio- and chemotherapy as examined by neuroradiological imaging. In DAOY - and to a lesser extent in UW228 - cells expressing high levels of c-MYC, the cytotoxicity of cisplatin, and etoposide was significantly higher when compared with DAOY/UW228 cells expressing low levels of c-MYC. Irradiation- and chemotherapy-induced apoptotic cell death was enhanced in DAOY cells expressing high levels of c-MYC. The response of 62 of 66 residual tumors was evaluable and response to postoperative radio- (14 responders (CR, PR) vs. 5 non-responders (SD, PD)) or chemotherapy (23 CR/PR vs. 20 SD/PD) was assessed. c-MYC mRNA expression was similar in primary MB samples of responders and non-responders (Mann-Whitney U test, p = 0.50, ratio 0.49, 95% CI 0.008-30.0 and p = 0.67, ratio 1.8, 95% CI 0.14-23.5, respectively). c-MYC sensitizes MB cells to some anti-cancer treatments in vitro. As we failed to show evidence for such an effect on postoperative residual tumors when analyzed by imaging, additional investigations in xenografts and larger MB cohorts may help to define the exact function of c-MYC in modulating response to treatment

  1. A critical appraisal of the immunohistochemical detection of the c-myc oncogene product in colorectal cancer.

    OpenAIRE

    Jones, D J; Ghosh, A. K.; Moore, M.; Schofield, P. F.

    1987-01-01

    Expression of c-myc was studied immunohistochemically in 100 colorectal carcinomas, using a monoclonal antibody, Myc 1-6E10, which is purported to recognize the oncoprotein (p62c-myc) in paraffin-embedded material. In normal epithelium, maturing crypt cells and terminally differentiated surface cells were positive, and proliferating basal crypt cells negative. All carcinomas stained positively, but intensity was independent of histological differentiation, Dukes' stage, DNA ploidy and surviva...

  2. hTERT protein expression is independent of clinicopathological parameters and c-Myc protein expression in human breast cancer

    Directory of Open Access Journals (Sweden)

    Meligonis G

    2005-01-01

    Full Text Available Abstract Background Telomerase is a ribonucleoprotein enzyme that synthesises telomeres after cell division and maintains chromosomal length and stability thus leading to cellular immortalisation. The hTERT (human telomerase reverse transcriptase subunit seems to be the rate-limiting determinant of telomerase and knowledge of factors controlling hTERT transcription may be useful in therapeutic strategies. The hTERT promoter contains binding sites for c-Myc and there is some experimental and in vitro evidence that c-Myc may increase hTERT expression. We previously reported no correlation between c-Myc mRNA expression and hTERT mRNA or telomerase activity in human breast cancer. This study aims to examine the correlation between hTERT expression as determined by immunohistochemistry and c-Myc expression, lymph node status, and tumour size and grade in human breast cancer. Materials and methods The immunohistochemical expression of hTERT and c-Myc was investigated in 38 malignant breast tumours. The expression of hTERT was then correlated with the lymph node status, c-Myc expression and other clinicopathological parameters of the tumours. Results hTERT expression was positive in 27 (71% of the 38 tumours. 15 (79% of 19 node positive tumours were hTERT positive compared with 11 (63% of 19 node negative tumours. The expression was higher in node positive tumours but this failed to reach statistical significance (p = 0.388. There was no significant association with tumour size, tumour grade or c-Myc expression. However, hTERT expression correlated positively with patients' age (correlation coefficient = 0.415, p = 0.0097. Conclusion hTERT protein expression is independent of lymph node status, tumour size and grade and c-Myc protein expression in human breast cancer

  3. The regulatory role of c-MYC on HDAC2 and PcG expression in human multipotent stem cells

    OpenAIRE

    Bhandari, Dilli Ram; Seo, Kwang-Won; Jung, Ji-Won; Kim, Hyung-Sik; YANG, Se-Ran; Kang, Kyung-Sun

    2011-01-01

    Abstract Myelocytomatosis oncogene (c-MYC) is a well-known nuclear oncoprotein having multiple functions in cell proliferation, apoptosis and cellular transformation. Chromosomal modification is also important to the differentiation and growth of stem cells. Histone deacethylase (HDAC) and polycomb group (PcG) family genes are well-known chromosomal modification genes. The aim of this study was to elucidate the role of c-MYC in the expression of chromosomal modification via the HDAC family ge...

  4. Expression of Wnt-1,beta-catenin and c-myc in Ovarian Epithelial Tumor and Its Implication

    Institute of Scientific and Technical Information of China (English)

    LIN Xiao; HU Zhuo-ying

    2008-01-01

    Objective:To investigate the expression of Wnt-1, beta-catenin and c-myc in normal ovarian epithelial cell and malignant ovarian epithelial tumor. Methods:Immunohistochemical staining with SP method was conducted to identify the expression of Wnt-1,beta-catenin and c-myc in 18 samples of normal epithelial tissue and 34 cases of malignant epithelial tumor of ovary. Results:The expression rate of Wnt-1 and c-myc in malignant epithelial tumors was higher than those in normal epithelial cell(P<0.05).The abnormal expression rate of beta-catenin in malignant ovarian epithelial tumors was higher than that in normal epithelial cell(P<0.05).A significant positive correlation was found between Wnt-1, beta-catenin and c-myc in malignant ovarian epithelial tumor(P<0.05).A significant difierence of expressions of Beta-catenin and C-myc was found between serous and mutinous tumors (P<0.05). Conclusion:The abnormal expression of Wnt-1,beta-catenin and c-myc might indicate the malignant transformation in ovarian epithelial tumors.

  5. BAF53 Forms Distinct Nuclear Complexes and Functions as a Critical c-Myc-Interacting Nuclear Cofactor for Oncogenic Transformation

    Science.gov (United States)

    Park, Jeonghyeon; Wood, Marcelo A.; Cole, Michael D.

    2002-01-01

    The c-Myc oncoprotein functions as a transcription factor that can transform normal cells into tumor cells, as well as playing a direct role in normal cell proliferation. The c-Myc protein transactivates cellular promoters by recruiting nuclear cofactors to chromosomal sites through an N-terminal transactivation domain. We have previously reported the identification and functional characterization of four different c-Myc cofactors: TRRAP, hGCN5, TIP49, and TIP48. Here we present the identification and characterization of the actin-related protein BAF53 as a c-Myc-interacting nuclear cofactor that forms distinct nuclear complexes. In addition to the human SWI/SNF-related BAF complex, BAF53 forms a complex with TIP49 and TIP48 and a separate biochemically distinct complex containing TRRAP and a histone acetyltransferase which does not contain TIP60. Using deletion mutants of BAF53, we show that BAF53 is critical for c-Myc oncogenic activity. Our results indicate that BAF53 plays a functional role in c-Myc-interacting nuclear complexes. PMID:11839798

  6. Coordinate increase of telomerase activity and c-Myc expression in Helicobacter pylori-associated gastric diseases

    Institute of Scientific and Technical Information of China (English)

    Guo-Xin Zhang; Yan-Hong Gu; Zhi-Quan Zhao; Shun-Fu Xu; Hong-Ji Zhang; Hong-Di Wang; Bo Hao

    2004-01-01

    AIM: To detect the telomerase activity and c-Myc expression in gastric diseases and to examine the relation between these values and Helicobacter pylori (H pylori) as a risk factor for gastric cancer.METHODS: One hundred and seventy-one gastric samples were studied to detect telomerase activity using a telomerase polymerase chain reaction enzyme linked immunosorbent assay (PCR-ELTSA), and c-Myc expression using immunohistochemistry.RESULTS: The telomerase activity and c-Myc expression were higher in cancers (87.69% and 61.54%) than in noncancerous tissues. They were higher in chronic atrophic gastritis with severe intestinal metaplasia (52.38% and 47.62%) than in chronic atrophic gastritis with mild intestinal metaplasia (13.33% and 16.67%). Tn chronic atrophic gastritis with severe intestinal metaplasia, the telomerase activity and c-Myc expression were higher in cases with -H pylori infection (67.86% and 67.86%) than in those without infection (21.43%and 7.14%). c-Myc expression was higher in gastric cancer with H pylori infection (77.27%) than in that without infection (28.57%). The telomerase activity and c-Nyc expression were coordinately up-regulated in H pylori infected gastric cancer and chronic atrophic gastritis with severe intestinal metaplasia.CONCLUSION: H pylori infection may influence both telomerase activity and c-Myc expression in gastric diseases,especially in chronic atrophic gastritis.

  7. In vivo inhibition of c-MYC in myeloid cells impairs tumor-associated macrophage maturation and pro-tumoral activities.

    Directory of Open Access Journals (Sweden)

    Oscar M Pello

    Full Text Available Although tumor-associated macrophages (TAMs are involved in tumor growth and metastasis, the mechanisms controlling their pro-tumoral activities remain largely unknown. The transcription factor c-MYC has been recently shown to regulate in vitro human macrophage polarization and be expressed in macrophages infiltrating human tumors. In this study, we exploited the predominant expression of LysM in myeloid cells to generate c-Myc(fl/fl LysM(cre/+ mice, which lack c-Myc in macrophages, to investigate the role of macrophage c-MYC expression in cancer. Under steady-state conditions, immune system parameters in c-Myc(fl/fl LysM(cre/+ mice appeared normal, including the abundance of different subsets of bone marrow hematopoietic stem cells, precursors and circulating cells, macrophage density, and immune organ structure. In a model of melanoma, however, TAMs lacking c-Myc displayed a delay in maturation and showed an attenuation of pro-tumoral functions (e.g., reduced expression of VEGF, MMP9, and HIF1α that was associated with impaired tissue remodeling and angiogenesis and limited tumor growth in c-Myc(fl/fl LysM(cre/+ mice. Macrophage c-Myc deletion also diminished fibrosarcoma growth. These data identify c-Myc as a positive regulator of the pro-tumoral program of TAMs and suggest c-Myc inactivation as an attractive target for anti-cancer therapy.

  8. TCEAL7 Inhibition of c-Myc Activity in Alternative Lengthening of Telomeres Regulates hTERT Expression

    Directory of Open Access Journals (Sweden)

    Kyle Lafferty-Whyte

    2010-05-01

    Full Text Available Replicative senescence forms a major barrier to tumor progression. Cancer cells bypass this by using one of the two known telomere maintenance mechanisms: telomerase or the recombination-based alternative lengthening of telomeres (ALT mechanism. The molecular details of ALT are currently poorly understood. We have previously shown that telomerase is actively repressed through complex networks of kinase, gene expression, and chromatin regulation. In this study, we aimed to gain further understanding of the role of kinases in the regulation of telomerase expression in ALT cells. Using a whole human kinome small interfering RNA (siRNA screen, we highlighted 106 kinases whose expression is linked to human telomerase reverse transcriptase (hTERT promoter activity. Network modeling of transcriptional regulation implicated c-Myc as a key regulator of the 106 kinase hits. Given our previous observations of lower c-Myc activity in ALT cells, we further explored its potential to regulate telomerase expression in ALT. We found increased c-Myc binding at the hTERT promoter in telomerase-positive compared with ALT cells, although no expression differences in c-Myc, Mad, or Max were observed between ALT and telomerase-positive cells that could explain decreased c-Myc activity in ALT. Instead, we found increased expression of the c-Myc competitive inhibitor TCEAL7 in ALT cells and tumors and that alteration of TCEAL7 expression levels in ALT and telomerase-positive cells affects hTERT expression. Lower c-Myc activity in ALT may therefore be obtained through TCEAL7 regulation. Thus, TCEAL7 may present an interesting novel target for cancer therapy, which warrants further investigation.

  9. Erythropoietin activates two distinct signaling pathways required for the initiation and the elongation of c-myc

    Science.gov (United States)

    Chen, C.; Sytkowski, A. J.

    2001-01-01

    Erythropoietin (Epo) stimulation of erythroid cells results in the activation of several kinases and a rapid induction of c-myc expression. Protein kinase C is necessary for Epo up-regulation of c-myc by promoting elongation at the 3'-end of exon 1. PKCepsilon mediates this signal. We now show that Epo triggers two signaling pathways to c-myc. Epo rapidly up-regulated Myc protein in BaF3-EpoR cells. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 blocked Myc up-regulation in a concentration-dependent manner but had no effect on the Epo-induced phosphorylation of ERK1 and ERK2. LY294002 also had no effect on Epo up-regulation of c-fos. MEK1 inhibitor PD98059 blocked both the c-myc and the c-fos responses to Epo. PD98059 and the PKC inhibitor H7 also blocked the phosphorylation of ERK1 and ERK2. PD98059 but not LY294002 inhibited Epo induction of ERK1 and ERK2 phosphorylation in normal erythroid cells. LY294002 blocked transcription of c-myc at exon 1. PD98059 had no effect on transcription from exon 1 but, rather, blocked Epo-induced c-myc elongation at the 3'-end of exon 1. These results identify two Epo signaling pathways to c-myc, one of which is PI3K-dependent operating on transcriptional initiation, whereas the other is mitogen-activated protein kinase-dependent operating on elongation.

  10. Cadmium Activates Multiple Signaling Pathways That Coordinately Stimulate Akt Activity to Enhance c-Myc mRNA Stability.

    Directory of Open Access Journals (Sweden)

    Jia-Shiuan Tsai

    Full Text Available Cadmium is a known environmental carcinogen. Exposure of Cd leads to the activation of several proto-oncogenes in cells. We investigated here the mechanism of c-Myc expression in hepatic cells under Cd treatment. The c-Myc protein and mRNA levels increased in dose- and time-dependent manners in HepG2 cells with Cd treatment. This increase was due to an increase in c-Myc mRNA stability. To explore the mechanism involved in enhancing the mRNA stability, several cellular signaling factors that evoked by Cd treatment were analyzed. PI3K, p38, ERK and JNK were activated by Cd. However, ERK did not participate in the Cd-induced c-Myc expression. Further analysis revealed that mTORC2 was a downstream factor of p38. PI3K, JNK and mTORC2 coordinately activated Akt. Akt was phosphorylated at Thr450 in the untreated cells. Cd treatment led to additional phosphorylation at Thr308 and Ser473. Blocking any of the three signaling factors resulted in the reduction of phosphorylation level at all three Akt sites. The activated Akt phosphorylated Foxo1 and allowed the modified protein to translocate into the cytoplasm. We conclude that Cd-induced accumulation of c-Myc requires the activation of several signaling pathways. The signals act coordinately for Akt activation and drive the Foxo1 from the nucleus to the cytoplasm. Reduction of Foxo1 in the nucleus reduces the transcription of its target genes that may affect c-Myc mRNA stability, resulting in a higher accumulation of the c-Myc proteins.

  11. c-myc gene sequences and the phylogeny of bats and other eutherian mammals.

    Science.gov (United States)

    Miyamoto, M M; Porter, C A; Goodman, M

    2000-09-01

    The complete protein-coding sequences of the c-myc proto-oncogene were determined for five species of four new orders of eutherian (placental) mammals. These newly obtained sequences were aligned to each other and to other available orthologs for the phylogenetic estimation of eutherian interordinal relationships. Several measures of sequence difference and base composition were first calculated to assess the major evolutionary properties of the three codon positions and two protein-coding exons of the gene. On the basis of these calculations, different parsimony, distance, and maximum likelihood approaches were adopted, with the most sophisticated involving the separate, then combined, likelihood analyses of the third codon positions of exon 2 versus all other sites. These phylogenetic approaches provided clear support for the grouping of Chiroptera (bats) with Artiodactyla (ruminants, camels, and pigs) and Carnivora (cats, dogs, and their allies), an interordinal arrangement that receives strong corroboration from other lines of evidence including complete mitochondrial DNA sequences. In contrast, these analyses failed to provide strong to reasonable support for any other interordinal group. This study concludes with specific recommendations about sampling and other strategies for maximizing the phylogenetic contributions of the c-myc gene to the continued resolution of the eutherian ordinal tree. PMID:12116424

  12. Depressive Effect of the Antisense Oligonucleotides of C-myc and PCNA on the Proliferation of VSMC

    Institute of Scientific and Technical Information of China (English)

    Qingxian Li; Yanfu Wang; Yuhua Liao; Huiling Zhang; Yanying Jiang

    2007-01-01

    To study the depressive effect of the antisense oligonuceotides (ASODN) of c-myc and proliferating cell nuclear antigen (PCNA) on the proliferation of VSMC.Methods Taking the VSMC obtained from rat aorta thoracalis cultured 4 ~ 8 generation as research object.The objects were divided into three groups to carry out control study:control group,PCNA ASODN group and c-myc ASODN group.The ASODNs' working concentration all were 1:50.The depressive effect of ASODN on VSMC proliferation was investigated by cell counting,MTT and 3H-TdR incorporation assay;PCNA and c-myc expression were detected by immunohistochemical method after transferring PCNA successfully;the corresponding gene was inhibited obviously;compared with control group ( P < 0.05 ).Conclusions PCNA and c-myc might play a considerable role in the VSMC proliferation process.The corresponding gene could be depressed successfully after transferring PCNA and c-myc ASODN into VSMC,and then the proliferation of VSMC was slowed down.This study presented a beneficial proposal and theoretical fundament for atherosclerotic treatment.

  13. Abnormal expression of c-Myc in human bronchial epithelial cells malignantly transformed by anti-BPDE

    Institute of Scientific and Technical Information of China (English)

    Juan FU; Yiguo JIANG; Xuemin CHEN

    2008-01-01

    Anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (anti-BPDE) is a metabolite of benzo[a]pyrene (B[a] P) and acts as a potent mutagen in mammalian systems. However, molecular mechanisms related to anti-BPDE-induced carcinogenesis are poorly understood. Here, we investigated the expression of proto-oncogene c-myc in human bronchial epithelial cells (16H BE-T) transformed by exposure to anti-BPDE. The levels ofmRNA and pro-tein of c-M yc were examined in the 16HBE-T and vehicle-treated control cells (16HBE-N) by using different meth-ods respectively, including reverse transcriptase-polymer-ase chain reaction (RT-PCR), quantitative real-time PCR (Q-PCR), western blot and immunocytochemical meth-ods. The level of c-myc mRNA appeared to be signifi-cantly increased in 16HBE-T, as compared with those of the 16H BE-N. Likewise, the expression of c-Myc protein was significantly enhanced as compared with those of the control cells. Moreover, the localization of c-Myc protein shows mainly nuclear staining in 16HBE-T. In conclu-sion, the abnormal expression of c-Myc was present in anti-BPDE malignantly transformed 16HBE cells, which may be involved in the carcinogenesis molecular mech-anism of anti-BPDE.

  14. Effect of c-myc on the ultrastructural structure of cochleae in guinea pigs with noise induced hearing loss

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yu; Zhong, Cuiping [Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 Shaanxi Province (China); Hong, Liu [First Division of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 Shaanxi Province (China); Wang, Ye; Qiao, Li [Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 Shaanxi Province (China); Qiu, Jianhua, E-mail: qiujh@fmmu.edu.cn [Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 Shaanxi Province (China)

    2009-12-18

    Noise over-stimulation may induce hair cells loss and hearing deficit. The c-myc oncogene is a major regulator for cell proliferation, growth, and apoptosis. However, the role of this gene in the mammalian cochlea is still unclear. The study was designed to firstly investigate its function under noise condition, from the aspect of cochlear ultrastructural changes. We had established the adenoviral vector of c-myc gene and delivered the adenovirus suspension into the scala tympani of guinea pigs 4 days before noise exposure. The empty adenoviral vectors were injected as control. Then, all subjects were exposed to 4-kHz octave-band noise at 110 dB SPL for 8 h/day, 3 days consecutively. Auditory thresholds were assessed by auditory brainstem response, prior to and 7 days following noise exposure. On the seventh days after noise exposure, the cochlear sensory epithelia surface was observed microscopically and the cochleae were taken to study the ultrastructural changes. The results indicated that auditory threshold shift after noise exposure was higher in the ears treated with Ad.EGFP than that treated with Ad.c-myc-EGFP. Stereocilia loss and the disarrangement of outer hair cells were observed, with greater changes found in the Ad.EGFP group. Also, the ultrastructure changes were severe in the Ad.EGFP group, but not obvious in the Ad.c-myc-EGFP group. Therefore, c-myc gene might play an unexpected role in hearing functional and morphological protection from acoustic trauma.

  15. Transient in utero knockout (TIUKO of C-MYC affects late lung and intestinal development in the mouse

    Directory of Open Access Journals (Sweden)

    Zhou Pengbo

    2004-04-01

    Full Text Available Abstract Background Developmentally important genes often result in early lethality in knockout animals. Thus, the direct role of genes in late gestation organogenesis cannot be assessed directly. In utero delivery of transgenes was shown previously to result in high efficiency transfer to pulmonary and intestinal epithelial stem cells. Thus, this technology can be used to evaluate late gestation development. Results In utero gene transfer was used to transfer adenovirus with either an antisense c-myc or a C-MYC ubiquitin targeting protein to knockout out c-myc expression in late gestation lung and intestines. Using either antisense or ubiquitin mediated knockout of C-MYC levels in late gestation resulted in similar effects. Decreased complexity was observed in both intestines and lungs. Stunted growth of villi was evident in the intestines. In the lung, hypoplastic lungs with disrupted aveolarization were observed. Conclusions These data demonstrated that C-MYC was required for cell expansion and complexity in late gestation lung and intestinal development. In addition they demonstrate that transient in utero knockout of proteins may be used to determine the role of developmentally important genes in the lungs and intestines.

  16. Combined loss of PUMA and p21 accelerates c-MYC-driven lymphoma development considerably less than loss of one allele of p53.

    Science.gov (United States)

    Valente, L J; Grabow, S; Vandenberg, C J; Strasser, A; Janic, A

    2016-07-21

    The tumor suppressor p53 is mutated in ~50% of human cancers. P53 is activated by a range of stimuli and regulates several cellular processes, including apoptotic cell death, cell cycle arrest, senescence and DNA repair. P53 induces apoptosis via transcriptional induction of the BH3-only proteins PUMA (p53-upregulated modulator of apoptosis) and NOXA, and cell cycle arrest via p21. Induction of these processes was proposed to be critical for p53-mediated tumor suppression. It is therefore surprising that mice lacking PUMA, NOXA and p21, as well as mice bearing mutations in p53 that impair the transcriptional activation of these genes, are not tumor prone, unlike mice lacking p53 function, which spontaneously develop tumors with 100% incidence. These p53 target genes and the processes they regulate may, however, impact differently on tumor development depending on the oncogenic drivers. For example, loss of PUMA enhances c-MYC-driven lymphoma development in mice, but, interestingly, the acceleration was less impressive compared with that caused by the loss of even a single p53 allele. Different studies have reported that loss of p21 can accelerate, delay or have no impact on tumorigenesis. In an attempt to resolve this controversy, we examined whether loss of p21-mediated cell cycle arrest cooperates with PUMA deficiency in accelerating lymphoma development in Eμ-Myc mice (overexpressing c-MYC in B-lymphoid cells). We found that Eμ-Myc mice lacking both p21 and PUMA (Eμ-Myc;Puma(-/-);p21(-/-)) developed lymphoma at a rate comparable to Eμ-Myc;Puma(-/-) animals, notably with considerably longer latency than Eμ-Myc;p53(+/-)mice. Loss of p21 had no impact on the numbers, cycling or survival of pre-leukemic Eμ-Myc B-lymphoid cells, even when PUMA was lost concomitantly. These results demonstrate that even in the context of deregulated c-MYC expression, p53 must suppress tumor development by activating processes apart from, or in addition to, PUMA

  17. Specific regulation of mRNA cap methylation by the c-Myc and E2F1 transcription factors

    Science.gov (United States)

    Cole, Michael D.; Cowling, Victoria H.

    2009-01-01

    Methylation of the mRNA 5′ guanosine cap is essential for efficient gene expression. The 5′methyl cap binds to eIF4E, which is the first step in the recruitment of mRNA to the 40S ribosomal subunit. To investigate whether mRNA cap methylation is regulated in a gene-specific manner, we established a method to detect the relative level of cap methylation on specific mRNAs. We found that two transcription factors, c-Myc and E2F1, induce cap methylation of their transcriptional target genes, and therefore, c-Myc and E2F1 upregulate gene expression by simultaneously inducing transcription and promoting translation. c-Myc-induced cap methylation is greater than transcriptional induction for the majority of its target genes, indicating that this is a major mechanism by which Myc regulates gene expression. PMID:19137018

  18. AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-MYC dephosphorylation and degradation

    Science.gov (United States)

    Cianfanelli, Valentina; Fuoco, Claudia; Lorente, Mar; Salazar, Maria; Quondamatteo, Fabio; Gherardini, Pier Federico; De Zio, Daniela; Nazio, Francesca; Antonioli, Manuela; D’Orazio, Melania; Skobo, Tatjana; Bordi, Matteo; Rohde, Mikkel; Dalla Valle, Luisa; Helmer-Citterich, Manuela; Gretzmeier, Christine; Dengjel, Joern; Fimia, Gian Maria; Piacentini, Mauro; Di Bartolomeo, Sabrina; Velasco, Guillermo; Cecconi, Francesco

    2016-01-01

    Inhibition of a main regulator of cell metabolism, the protein kinase mTOR, induces autophagy and inhibits cell proliferation. However, the molecular pathways involved in the cross-talk between these two mTOR-dependent cell processes are largely unknown. Here we show that the scaffold protein AMBRA1, a member of the autophagy signalling network and a downstream target of mTOR, regulates cell proliferation by facilitating the dephosphorylation and degradation of the proto-oncogene C-MYC. We found that AMBRA1 favors the interaction between C-MYC and its phosphatase PP2A and that, when mTOR is inhibited, it enhances PP2A activity on this specific target, thereby reducing the cell division rate. As expected, such a de-regulation of C-MYC correlates with increased tumorigenesis in AMBRA1-defective systems, thus supporting a role for AMBRA1 as a haploinsufficient tumour suppressor gene. PMID:25438055

  19. Bombesin stimulation of c-fos and c-myc gene expression in cultured of Swiss 3T3 cells

    International Nuclear Information System (INIS)

    Bombesin has been show to be a potent mitogen for Swiss 3T3 cells. At nanomolar concentrations it stimulates DNA synthesis in quiescent cultures of 3T3 cells and also induces the expression of c-fos and c-myc mRNA. c-fos mRNA transcripts dramatically increase 15 min after the addition of bombesin, are still abundant after 30-60 min and then decrease. c-myc mRNA induction is detectable later, 1 h after bombesin treatment. Conversely, no changes in c-Ki-ras expression are observed after stimulation with bombesin. These results demonstrate that the increased expression of c-fos and c-myc mRNAs appears to be a common response to diverse agents that induce DNA synthesis and cell proliferation

  20. c-Myc modulates glucose metabolism via regulation of miR-184/PKM2 pathway in clear-cell renal cell carcinoma.

    Science.gov (United States)

    Huang, Jiwei; Kong, Wen; Zhang, Jin; Chen, Yonghui; Xue, Wei; Liu, Dongming; Huang, Yiran

    2016-10-01

    Renal cell carcinoma (RCC) is one of the most malignant tumors worldwide. Among all subtypes of RCC, clear-cell RCC (ccRCC) is the most common and aggressive one. The difficulty in overcoming resistance of traditional treatment is a threat for ccRCC therapies. Therefore, to understand the mechanism that underlies ccRCC progression is critical for new drug development. In the present study, we identified that miR-184 could be downregulated by c-Myc, which is different from the standard opinion that c-Myc is a target of miR-184. Overexpression of pre-miR-184 changed the metabolic and proliferation features of ccRCC cells by reducing cell glucose consumption, lactate production and cell proliferation. Further analysis by computer bioinformatics revealed that PKM2 is a target of miR-184. Both PKM2 mRNA and protein were significantly affected by addition of miR-184. Importantly, the PKM2 expression level was indeed increased in ccRCC samples, which is totally reverse compared to the decreased miR-184 expression level. Interestingly, we found that when PKM2 was knocked down in ccRCC cells, the rapid proliferation, high glucose consumption and high lactate production were all clearly inhibited, which indicates metabolic reprogramming and cancer progression blocking the in ccRCC cells. Our findings shed new light on ccRCC molecular study and provide a new and solid basis for developing ccRCC therapy.

  1. EFFECT OF STENT ABSORBED c-myc ANTISENSE OLIGODEOXYNUCLEOTIDE ON SMOOTH MUSCLE CELLS APOPTOSIS IN RABBIT CAROTID ARTERY

    Institute of Scientific and Technical Information of China (English)

    张新霞; 崔长琮; 李江; 崔翰斌; 徐仓宝; 朱参战

    2002-01-01

    Objective To investigate the effect of gelatin coated Platinium-Iridium stent absorbed c-myc antisense oligodeoxynucleotide (ASODN) on smooth muscle cells apoptosis in a normal rabbit carotid arteries. Methods Gelatin coated Platinium-Iridium stents were implanted in the right carotid arteries of 32 rabbits under vision. Animals were randomly divided into control group and treated group receiving c-myc ASODN (n=16, respectively). On 7, 14, 30 and 90 days following the stenting procedure ,morphometry for caculation of neointimal area and mean neointimal thickness were performed.The expression of c-myc protein was detected by immunohistochemical method. Apoptotic smooth muscle cells was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL). Results At 7 and 14 days after stenting,there were no detectable apoptotic cells in both groups. The apoptotic cells occurred in the neointima 30 and 90 days after stenting, and the number of apoptotic cells at 30 days were less [4.50±1.29 vs 25.75±1.89 (number/0.1mm2)] than that at 90 days [13.50±1.91 vs 41.50±6.46 (number/0.1mm2)]. Meanwhile c-myc ASODN induced more apoptotic cells than the control group(P<0.0001). c-myc protein expression was weak positive or negative in treated group and positive in control group.Conclusion c-myc ASODN can induce smooth muscle cells apoptosis after stenting in normal rabbit carotid arteries,and it can be used to prevent in-stent restenosis.

  2. Thermal injuries induce gene expression of endogenous c-fos, c-myc and bFGF in burned tissues

    Institute of Scientific and Technical Information of China (English)

    付小兵; 顾小曼; 孙同柱; 杨银辉; 孙晓庆; 盛志勇

    2003-01-01

    Objective To investigate the expression sequence and distribution characteristics of the protooncogenes c-fos, c-myc and endogenous basic fibroblast growth factor (bFGF ) genes in burned tissues, and to explore the possible effects of changes in the se genes' functions on wound healing. Methods Partial-thickness burns of 30% TBSA were established on backs of Wistar rats. Insitu hybridization and histological methods were used to detect expression of c-fos, c-myc and bFGF genes in normal and burned tissue at 3 h, 6 h, 1 d, 3 d , 7 d and 14 d postburn. Results Although expression of c-fos and c-myc genes and bFGF gene could be found in normal skin, the expression of all three were markedly induced by burn wounds and the expression models in sequence and distribution were quite different. Expre ssion of c-fos gene increased and peaked at 6 h. Signals were mainly localiz ed in both nuclei of dermal fibroblasts and monocytes. The expression of bFGF gene increased at 6 h and peaked at 1 d postburn, and was distributed in the cyt oplasm of fibroblasts. C-myc gene peaked 3 d postburn and was also distributed in the cytoplasm of fibroblasts. Conclusions These results indicated that thermal injury could induce the expression of c-fos, c-myc and bFGF at gene level, showing phasic control and regional distributi on. The phasic expression of these genes suggests that there is an interaction between protooncogenes and bFGF, which may play an important role in wound heali ng. The different expressions of c-fos and c-myc play an inducing role in reg ulating bFGF, and in turn affect wound healing.

  3. Elevation of c-MYC disrupts HLA class II-mediated immune recognition of human B cell tumors.

    Science.gov (United States)

    God, Jason M; Cameron, Christine; Figueroa, Janette; Amria, Shereen; Hossain, Azim; Kempkes, Bettina; Bornkamm, Georg W; Stuart, Robert K; Blum, Janice S; Haque, Azizul

    2015-02-15

    Elevated levels of the transcription factor c-myc are strongly associated with various cancers, and in particular B cell lymphomas. Although many of c-MYC's functions have been elucidated, its effect on the presentation of Ag through the HLA class II pathway has not been reported previously. This is an issue of considerable importance, given the low immunogenicity of many c-MYC-positive tumors. We report in this paper that increased c-MYC expression has a negative effect on the ability of B cell lymphomas to functionally present Ags/peptides to CD4(+) T cells. This defect was associated with alterations in the expression of distinct cofactors as well as interactions of antigenic peptides with class II molecules required for the presentation of class II-peptide complexes and T cell engagement. Using early passage Burkitt's lymphoma (BL) tumors and transformed cells, we show that compared with B lymphoblasts, BL cells express decreased levels of the class II editor HLA-DM, lysosomal thiol-reductase GILT, and a 47-kDa enolase-like protein. Functional Ag presentation was partially restored in BL cells treated with a c-MYC inhibitor, demonstrating the impact of this oncogene on Ag recognition. This restoration of HLA class II-mediated Ag presentation in early passage BL tumors/cells was linked to enhanced HLA-DM expression and a concurrent decrease in HLA-DO in BL cells. Taken together, these results reveal c-MYC exerts suppressive effects at several critical checkpoints in Ag presentation, which contribute to the immunoevasive properties of BL tumors.

  4. Cancer-associated fibroblasts promote endometrial cancer growth via activation of interleukin-6/STAT-3/c-Myc pathway.

    Science.gov (United States)

    Subramaniam, Kavita S; Omar, Intan Sofia; Kwong, Soke Chee; Mohamed, Zahurin; Woo, Yin Ling; Mat Adenan, Noor Azmi; Chung, Ivy

    2016-01-01

    Cancer-associated fibroblasts (CAFs) secrete various pro-tumorigenic cytokines, yet the role of these cytokines in the progression of endometrial cancer remains unclear. We found that CAFs isolated from human endometrial cancer (EC) tissues secreted high levels of interleukin-6 (IL-6), which promotes EC cell proliferation in vitro. Neutralizing IL-6 in CAF-conditioned media reduced (47% inhibition) while IL-6 recombinant protein increased cell proliferation (~2.4 fold) of both EC cell lines and primary cultures. IL-6 receptors (IL-6R and gp130) were expressed only in EC epithelial cells but not in CAF, indicating a one-way paracrine signaling. In the presence of CAF-conditioned media, Janus kinase/signal transducers and activators of transcription (JAK/STAT3) pathway was activated in EC cells. Treatment with JAK and STAT3 specific inhibitors, AD412 and STATTIC, respectively, significantly abrogated CAF-mediated cell proliferation, indicating the role of IL-6 activation in EC cell proliferation. We further showed that one of STAT-3 target genes, c-Myc, was highly induced in EC cells after exposure to CAF-conditioned medium at both mRNA (>105-fold vs. control) and protein level (>2-fold vs. control). EC cell proliferation was dependent on c-Myc expression, as RNAi-mediated c-Myc down-regulation led to a significant 46% reduction in cell viability when compared with scrambled control. Interestingly, CAF-conditioned media failed to promote proliferation in EC cells with reduced c-Myc expression, suggesting that CAF-mediated cell proliferation was also dependent on c-Myc expression. Subcutaneous tumor xenograft model showed that EC cells grew at least 1.4 times larger when co-injected with CAF, when compared to those injected with EC cells alone. Mice injected with EC cells with down-regulated c-Myc expression, however, showed at least 2.5 times smaller tumor compared to those in control group. Notably, there was no increase of tumor size when co-injected with CAFs

  5. Long-range oncogenic activation of Igh-c-myc translocations by the Igh 3' regulatory region.

    Science.gov (United States)

    Gostissa, Monica; Yan, Catherine T; Bianco, Julia M; Cogné, Michel; Pinaud, Eric; Alt, Frederick W

    2009-12-10

    B-cell malignancies, such as human Burkitt's lymphoma, often contain translocations that link c-myc or other proto-oncogenes to the immunoglobulin heavy chain locus (IgH, encoded by Igh). The nature of elements that activate oncogenes within such translocations has been a long-standing question. Translocations within Igh involve DNA double-strand breaks initiated either by the RAG1/2 endonuclease during variable, diversity and joining gene segment (V(D)J) recombination, or by activation-induced cytidine deaminase (AID, also known as AICDA) during class switch recombination (CSR). V(D)J recombination in progenitor B (pro-B) cells assembles Igh variable region exons upstream of mu constant region (Cmu) exons, which are the first of several sets of C(H) exons ('C(H) genes') within a C(H) locus that span several hundred kilobases (kb). In mature B cells, CSR deletes Cmu and replaces it with a downstream C(H) gene. An intronic enhancer (iEmu) between the variable region exons and Cmu promotes V(D)J recombination in developing B cells. Furthermore, the Igh 3' regulatory region (Igh3'RR) lies downstream of the C(H) locus and modulates CSR by long-range transcriptional enhancement of C(H) genes. Transgenic mice bearing iEmu or Igh3'RR sequences fused to c-myc are predisposed to B lymphomas, demonstrating that such elements can confer oncogenic c-myc expression. However, in many B-cell lymphomas, Igh-c-myc translocations delete iEmu and place c-myc up to 200 kb upstream of the Igh3'RR. Here we address the oncogenic role of the Igh3'RR by inactivating it in two distinct mouse models for B-cell lymphoma with Igh-c-myc translocations. We show that the Igh3'RR is dispensable for pro-B-cell lymphomas with V(D)J recombination-initiated translocations, but is required for peripheral B-cell lymphomas with CSR-associated translocations. As the Igh3'RR is not required for CSR-associated Igh breaks or Igh-c-myc translocations in peripheral B-cell lymphoma progenitors, we conclude that

  6. c-Myc affects mRNA translation, cell proliferation and progenitor cell function in the mammary gland

    Directory of Open Access Journals (Sweden)

    Trumpp Andreas

    2009-09-01

    Full Text Available Abstract Background The oncoprotein c-Myc has been intensely studied in breast cancer and mouse mammary tumor models, but relatively little is known about the normal physiological role of c-Myc in the mammary gland. Here we investigated functions of c-Myc during mouse mammary gland development using a conditional knockout approach. Results Generation of c-mycfl/fl mice carrying the mammary gland-specific WAPiCre transgene resulted in c-Myc loss in alveolar epithelial cells starting in mid-pregnancy. Three major phenotypes were observed in glands of mutant mice. First, c-Myc-deficient alveolar cells had a slower proliferative response at the start of pregnancy, causing a delay but not a block of alveolar development. Second, while milk composition was comparable between wild type and mutant animals, milk production was reduced in mutant glands, leading to slower pup weight-gain. Electron microscopy and polysome fractionation revealed a general decrease in translational efficiency. Furthermore, analysis of mRNA distribution along the polysome gradient demonstrated that this effect was specific for mRNAs whose protein products are involved in milk synthesis. Moreover, quantitative reverse transcription-polymerase chain reaction analysis revealed decreased levels of ribosomal RNAs and ribosomal protein-encoding mRNAs in mutant glands. Third, using the mammary transplantation technique to functionally identify alveolar progenitor cells, we observed that the mutant epithelium has a reduced ability to repopulate the gland when transplanted into NOD/SCID recipients. Conclusion We have demonstrated that c-Myc plays multiple roles in the mouse mammary gland during pregnancy and lactation. c-Myc loss delayed, but did not block proliferation and differentiation in pregnancy. During lactation, lower levels of ribosomal RNAs and proteins were present and translation was generally decreased in mutant glands. Finally, the transplantation studies suggest a role

  7. USP10 Antagonizes c-Myc Transcriptional Activation through SIRT6 Stabilization to Suppress Tumor Formation

    Directory of Open Access Journals (Sweden)

    Zhenghong Lin

    2013-12-01

    Full Text Available The reduced protein expression of SIRT6 tumor suppressor is involved in tumorigenesis. The molecular mechanisms underlying SIRT6 protein downregulation in human cancers remain unknown. Using a proteomic approach, we have identified the ubiquitin-specific peptidase USP10, another tumor suppressor, as one of the SIRT6-interacting proteins. USP10 suppresses SIRT6 ubiquitination to protect SIRT6 from proteasomal degradation. USP10 antagonizes the transcriptional activity of the c-Myc oncogene through SIRT6, as well as p53, to inhibit cell-cycle progression, cancer cell growth, and tumor formation. To support this conclusion, we detected significant reductions in both USP10 and SIRT6 protein expression in human colon cancers. Our study discovered crosstalk between two tumor-suppressive genes in regulating cell-cycle progression and proliferation and showed that dysregulated USP10 function promotes tumorigenesis through SIRT6 degradation.

  8. Construction of human microRNA-21 eukaryotic overexpression vector and its up-regulation of c-myc gene expression in HepG2 .2 .15 cells%人microRNA-21真核过表达载体的构建及其在 HepG2.2.15细胞中上调c-myc基因的表达

    Institute of Scientific and Technical Information of China (English)

    林永敏; 任广立; 张卫云; 蔡启茵; 谢聪; 马恒颢

    2016-01-01

    Objective To construct the miRNA‐21 eukaryotic overexpression vector pmR‐21 and to explore its regulation effect on the expression of c‐myc gene in HepG2 .2 .15 cells .Methods The miRNA‐21 precursor gene fragment pre‐miRNA‐21 was amplified by PCR ,then connected to the pmR‐mCherry plasmid vector after double enzyme digestion ,the accuracy of the recombi‐nant vector was verified by double enzyme digestion and sequencing ;then the recombinant vector was transfected into HepG2 .2 .15 cells ,the fluorescent protein expression was observed under the fluorescence microscopy at 24 h and the transfection efficiency was detected by flow cytometry ;the expression of miRNA‐21 was evaluated by real‐time quantitative PCR;at 72 h after transfection ,the expression levels of c‐myc gene were detected by RT‐PCR and Western blot ;CCK‐8 was used to detect the cell proliferation in each group .Results The double enzyme digestion and Western blot verified that the target gene fragment was inserted into the pmR‐mCherry vector;at 24 h after transfection ,intracellular strong fluorescence was seen ,the transfection efficiency was higher than 50% ;miRNA‐21 expression level of the pmR‐21 recombinant vector group was significantly increased;c‐myc gene expression was increased in the pmR‐21 recombinant vector group at 72 h after transfection ,the cell proliferation in the pmR‐21 recombinant group was faster than that in the control group(P<0 .05) .Conclusion The pmR‐21 eukaryotic overexpression vector is successfully con‐structed ,this recombinant vector can express miRNA‐21 stably ;miRNA‐21 can up‐regulate c‐myc gene expression ,c‐myc gene is one of miR‐21′s targets for playing a cancer‐promoting action .%目的:构建人微小RNA‐21(microRNA‐21,miRNA‐21)真核过表达载体pmR‐21,探讨其在 HepG2.2.15细胞中对c‐myc基因表达的调控作用。方法 PCR扩增miRNA‐21的

  9. Effect of hammerhead ribozyme that specifically cleaves c-myc mRNA on proliferation of vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    栾荣华; 贾国良; 李伟; 贾战生; 连建奇

    2003-01-01

    Ojective: To investigate the effect of hammerhead ribozyme that specifically cleaves c-myc mRNA on the proliferation of vascular smooth muscle cells (VSMCs). Methods: Based on the computer analysis of the secondary structure of c-myc mRNA, nt 2029 in rat c-myc oncogene was selected as a cleaving site for hammerhead ribozyme and the ribozyme was designed. With automatic DNA synthesizer, the two complementary DNA strands of the ribozyme were synthesized. The ribozyme gene was cloned into pGEM3Zf (+) vector and subcloned into eukaryotic expression pcDNA3 vector. The recombinant pcDNA-Rz was transfected into the cultured rat VSMCs by lipofectAMINE mediated DNA transfection protocol and individual cell clones were selected by G418. Results: The sequence of ribozyme gene inserted in pGEM3Zf (+) vector was proved to be perfectly correct. In VSMCs transfected with recombinant pcDNA-Rz, flow cytometry analysis showed that the S phase and G2/M fractions were decreased significantly and cell proliferation stagnated in the G0/G1 phase. Conclusion: The results suggest that hammerhead ribozyme that specifically cleaves c-myc mRNA can significantly inhibit the proliferation of VSMCs.

  10. Alterations of C-MYC, NKX3.1, and E-cadherin expression in canine prostate carcinogenesis

    DEFF Research Database (Denmark)

    Fonseca-Alves, Carlos E; Rodrigues, Marcela M P; de Moura, Veridiana M B D;

    2013-01-01

    therapies. In humans, the PCa frequently exhibits mutations in the C-MYC and a reduced expression of the E-cadherin and NKX3.1 proteins. This study's objective was to evaluate the NKX3.1, C-MYC, and E-cadherin expression in the canine normal prostate, benign prostatic hyperplasia (BPH), proliferative...... inflammatory atrophy (PIA) and PCa and to verify differences in expression and subcellular localization of these proteins in the prostatic carcinogenesis. A tissue microarray (TMA) slide was constructed, and immunohistochemistry with antibodies raised against C-MYC, NKX3.1, E-cadherin and p63 was performed...... using the peroxidase and DAB methods. The C-MYC protein expression was elevated in the cytoplasm and nuclei of the canine PCa and PIA compared with the normal prostate (P = 0.004. The NKX3.1 protein expression was reduced in 94.75% of the PCa and 100% of the PIA compared with the normal prostate (P = 0...

  11. Telomerase in relation to expression of p53, c-Myc and estrogen receptor in ovarian tumours

    NARCIS (Netherlands)

    Wisman, GBA; Hollema, H; Helder, MN; Knol, AJ; Van Der Meer, GT; Krans, M; De Jong, S; De Vries, EGE; Van Der Zee, AGJ

    2003-01-01

    Telomerase activity and its subunits (hTERC, hTERT mRNA) were evaluated in ovarian tumours in relation to the expression of p53, c-Myc and estrogen receptor (ER). Furthermore, relations between telomerase activity, hTERC and hTERT with known clinicopathologic prognostic factors and survival in patie

  12. c-Myc regulates proliferation and Fgf10 expression in airway smooth muscle after airway epithelial injury in mouse.

    Science.gov (United States)

    Volckaert, Thomas; Campbell, Alice; De Langhe, Stijn

    2013-01-01

    During lung development, Fibroblast growth factor 10 (Fgf10), which is expressed in the distal mesenchyme and regulated by Wnt signaling, acts on the distal epithelial progenitors to maintain them and prevent them from differentiating into proximal (airway) epithelial cells. Fgf10-expressing cells in the distal mesenchyme are progenitors for parabronchial smooth muscle cells (PSMCs). After naphthalene, ozone or bleomycin-induced airway epithelial injury, surviving epithelial cells secrete Wnt7b which then activates the PSMC niche to induce Fgf10 expression. This Fgf10 secreted by the niche then acts on a subset of Clara stem cells to break quiescence, induce proliferation and initiate epithelial repair. Here we show that conditional deletion of the Wnt target gene c-Myc from the lung mesenchyme during development does not affect proper epithelial or mesenchymal differentiation. However, in the adult lung we show that after naphthalene-mediated airway epithelial injury c-Myc is important for the activation of the PSMC niche and as such induces proliferation and Fgf10 expression in PSMCs. Our data indicate that conditional deletion of c-Myc from PSMCs inhibits airway epithelial repair, whereas c-Myc ablation from Clara cells has no effect on airway epithelial regeneration. These findings may have important implications for understanding the misregulation of lung repair in asthma and COPD. PMID:23967208

  13. Induction of endogenous telomerase (hTERT) by c-Myc in WI-38 fibroblasts transformed with specific genetic elements.

    Science.gov (United States)

    Casillas, Mark A; Brotherton, Scott L; Andrews, Lucy G; Ruppert, J Michael; Tollefsbol, Trygve O

    2003-10-16

    Elucidation of the mechanisms governing expression of the human telomerase reverse transcriptase (hTERT) is important for understanding cancer pathogenesis. Approximately 90% of tumors express hTERT, the major catalytic component of telomerase. Activation of telomerase is an early event, and high levels of this activity correlate with poor prognosis. Recent studies have shown that the transcription factors c-Myc and Mad1 activate and repress hTERT, respectively. It is not clear how these transcription factors compete for the same recognition sequence in the hTERT core promoter region. Studies have shown that the combined expression of SV40 large T antigen (T-Ag), hTERT, and H-Ras is able to transform human cells. In this study, we used a distinct human cell type, WI-38 fetal lung fibroblasts used extensively for senescence studies. We transduced cells with amphotropic retroviral constructs containing SV40 T antigen, hTERT, and activated H-ras. Transduced cells exhibited anchorage independence in soft agar and expressed increased levels of c-Myc and endogenous hTERT. These effects were observed by 25 population doublings (PDs) following the establishment of the neoplastic cell line. During the process of transformation, we observed a switch from Mad1/Max to c-Myc/Max binding to oligonucleotide sequences containing the hTERT promoter distal and proximal E-boxes. c-Myc can bind specifically to the hTERT promoter in vitro, indicating that c-Myc expression in tumors may account for the increased expression of hTERT observed in vivo. These findings indicate that the widely used model system of WI-38 fibroblasts can be employed for transformation studies using defined genetic elements and that the endogenous hTERT and c-Myc are induced in these cells during early tumorigenesis. Such studies should have important implications in the mechanisms of hTERT and c-Myc induction in the beginning stages of tumorigenesis and facilitate extension of these studies to novel models of

  14. Modification of the Tumor Microenvironment in KRAS or c-MYC-Induced Ovarian Cancer-Associated Peritonitis

    Science.gov (United States)

    Kawana, Kei; Adachi, Katsuyuki; Kawata, Akira; Ogishima, Juri; Nakamura, Hiroe; Fujimoto, Asaha; Sato, Masakazu; Inoue, Tomoko; Nishida, Haruka; Furuya, Hitomi; Tomio, Kensuke; Arimoto, Takahide; Koga, Kaori; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Kiyono, Tohru; Osuga, Yutaka; Fujii, Tomoyuki

    2016-01-01

    The most common properties of oncogenes are cell proliferation and the prevention of apoptosis in malignant cells, which, as a consequence, induce tumor formation and dissemination. However, the effects of oncogenes on the tumor microenvironment (TME) have not yet been examined in detail. The accumulation of ascites accompanied by chronic inflammation and elevated concentrations of VEGF is a hallmark of the progression of ovarian cancer. We herein demonstrated the mechanisms by which oncogenes contribute to modulating the ovarian cancer microenvironment. c-MYC and KRAS were transduced into the mouse ovarian cancer cell line ID8. ID8, ID8-c-MYC, or ID8-KRAS cells were then injected into the peritoneal cavities of C57/BL6 mice and the production of ascites was assessed. ID8-c-MYC and ID8-KRAS both markedly accelerated ovarian cancer progression in vivo, whereas no significant differences were observed in proliferative activity in vitro. ID8-KRAS in particular induced the production of ascites, which accumulated between approximately two to three weeks after the injection, more rapidly than ID8 and ID8-c-MYC (between nine and ten weeks and between six and seven weeks, respectively). VEGF concentrations in ascites significantly increased in c-MYC-induced ovarian cancer, whereas the concentrations of inflammatory cytokines in ascites were significantly high in KRAS-induced ovarian cancer and were accompanied by an increased number of neutrophils in ascites. A cytokine array revealed that KRAS markedly induced the expression of granulocyte macrophage colony-stimulating factor (GM-CSF) in ID8 cells. These results suggest that oncogenes promote cancer progression by modulating the TME in favor of cancer progression. PMID:27483433

  15. K-RAS point mutation, and amplification of C-MYC and C-ERBB2 in colon adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Tadeusz Pawełczyk

    2004-10-01

    Full Text Available The routine multidisciplinary management of colon cancer is based mainly on tumor staging, histology, grading and vascular invasion. In this approach, important individual information derived from molecular characteristics of the tumor may be missed, especially since significant heterogeneity of molecular aberrations in cancer cells has been observed, and recognition of every of relationships between them may be of value. K-RAS, C-MYC and C-ERBB2 are protooncogenes taking part in carcinogenesis and tumor progression in the colon. They influence cell proliferation, differentiation and survival. K-RAS point mutation, as well as amplification of C-MYC and C-ERBB2 were searched in 84 primary colon adenocarcinomas resected with curative intent. Multiplex polymerase-chain reaction and restriction fragment length polymorphism were performed to assess codon 12 K-RAS point mutation. Amplification of C-MYC and C-ERBB2 genes was evaluated by densitometry after agarose gel separation of the respective multiplex PCR products. No relation was found among mutated and/or amplified genes, and between searched molecular aberrations and pathoclinical features. In multivariate analysis, nodal status appeared to be the only independent prognostic indicator. In colon adenocarcinoma, codon 12 K-RAS point mutation and amplification of C-MYC and C-ERBB2 seem to occur independently in the process of tumor progression. Amplification of C-ERBB2 tends to associate with more advanced stage of disease. Concomitant occurrence of codon 12 K-RAS mutation, C-MYC and C-ERBB2 amplification was of no prognostic value in respect to survival.

  16. Clinical significance of high c-MYC and low MYCBP2 expression and their association with Ikaros dysfunction in adult acute lymphoblastic leukemia.

    Science.gov (United States)

    Ge, Zheng; Guo, Xing; Li, Jianyong; Hartman, Melanie; Kawasawa, Yuka Imamura; Dovat, Sinisa; Song, Chunhua

    2015-12-01

    Increased expression of c-MYC is observed in both Acute Myeloid Leukemia (AML) and T-cell Acute Lymphoblastic Leukemia (T-ALL). MYC binding protein 2 (MYCBP2) is a probable E3 ubiquitin ligase and its function in leukemia is unknown. IKZF1 deletion is associated with the development and poor outcome of ALL. Here, we observed significant high c-MYC expression and low MYCBP2 expression in adult ALL patients. Patients with high c-MYC expression and/or low MYCBP2 expression had higher WBC counts and a higher percentage of CD34+ or CD33+ cells, as well as splenomegaly, liver infiltration, higher BM blasts, and lower CR rate. Ikaros bound to the regulatory regions of c-MYC and MYCBP2, suppressed c-MYC and increased MYCBP2 expression in ALL cells. Expression of c-MYC mRNA was significantly higher in patients with IKZF1 deletion; conversely MYCBP2 mRNA expression was significantly lower in those patients. A CK2 inhibitor, which acts as an Ikaros activator, also suppressed c-MYC and increased MYCBP2 expression in an Ikaros (IKZF1) dependent manner in the ALL cells. In summary, our data indicated the correlation of high c-MYC expression, low MYCBP2 expression and high c-MYC plus low MYCBP2 expression with high-risk factors and proliferation markers in adult ALL patients. Our data also revealed an oncogenic role for an Ikaros/MYCBP2/c-MYC axis in adult ALL, providing a mechanism of target therapies that activate Ikaros in adult ALL.

  17. Kaempferol enhances cisplatin's effect on ovarian cancer cells through promoting apoptosis caused by down regulation of cMyc

    Directory of Open Access Journals (Sweden)

    Jiang Bing-Hua

    2010-05-01

    Full Text Available Abstract Background Ovarian cancer is one of the most significant malignancies in the western world. Studies showed that Ovarian cancers tend to grow resistance to cisplatin treatment. Therefore, new approaches are needed in ovarian cancer treatment. Kaempferol is a dietary flavonoid that is widely distributed in fruits and vegetables, and epidemiology studies have revealed a protective effect of kaempferol against ovarian cancer risk. Our early studies also found that kaempferol is effective in reducing vascular endothelial growth factor (VEGF expression in ovarian cancer cells. In this study, we investigated kaempferol's effects on sensitizing ovarian cancer cell growth in response to cisplatin treatment. Results Ten chemicals were screened for sensitizing OVCAR-3 ovarian cancer cell growth in response to cisplatin treatment. For kaempferol, which shows a significant synergistic interaction with cisplatin, expression of ABCC1, ABCC5, ABCC6, NFkB1, cMyc, and CDKN1A genes was further examined. For cisplatin/kaempferol treatments on OVCAR-3 cancer cells, the mRNA levels of ABCC1, ABCC5, and NFkB1 did not change. However, significant inhibition of ABCC6 and cMyc mRNA levels was observed for the cisplatin/kaempferol combined treatment. The CDKN1A mRNA levels were significantly up-regulated by cisplatin/kaempferol treatment. A plot of CDKN1A mRNA levels against that of cMyc gene further revealed a reverse, linear relationship, proving cMyc's regulation on CDKN1A gene expressions. Our work found that kaempferol works synergistically with cisplatin in inhibiting ovarian cancer cell viability, and their inhibition on cell viabilities was induced through inhibiting ABCC6 and cMyc gene transcription. Apoptosis assay showed the addition of 20 μM kaempferol to the cisplatin treatment induces the apoptosis of the cancer cells. Conclusions Kaempferol enhances the effect of cisplatin through down regulation of cMyc in promoting apoptosis of ovarian cancer

  18. Mitochondrial structure, function and dynamics are temporally controlled by c-Myc.

    Directory of Open Access Journals (Sweden)

    J Anthony Graves

    Full Text Available Although the c-Myc (Myc oncoprotein controls mitochondrial biogenesis and multiple enzymes involved in oxidative phosphorylation (OXPHOS, the coordination of these events and the mechanistic underpinnings of their regulation remain largely unexplored. We show here that re-expression of Myc in myc-/- fibroblasts is accompanied by a gradual accumulation of mitochondrial biomass and by increases in membrane polarization and mitochondrial fusion. A correction of OXPHOS deficiency is also seen, although structural abnormalities in electron transport chain complexes (ETC are not entirely normalized. Conversely, the down-regulation of Myc leads to a gradual decrease in mitochondrial mass and a more rapid loss of fusion and membrane potential. Increases in the levels of proteins specifically involved in mitochondrial fission and fusion support the idea that Myc affects mitochondrial mass by influencing both of these processes, albeit favoring the latter. The ETC defects that persist following Myc restoration may represent metabolic adaptations, as mitochondrial function is re-directed away from producing ATP to providing a source of metabolic precursors demanded by the transformed cell.

  19. RNAi delivery by exosome-mimetic nanovesicles - Implications for targeting c-Myc in cancer.

    Science.gov (United States)

    Lunavat, Taral R; Jang, Su Chul; Nilsson, Lisa; Park, Hyun Taek; Repiska, Gabriela; Lässer, Cecilia; Nilsson, Jonas A; Gho, Yong Song; Lötvall, Jan

    2016-09-01

    To develop RNA-based therapeutics, it is crucial to create delivery vectors that transport the RNA molecule into the cell cytoplasm. Naturally released exosomes vesicles (also called "Extracellular Vesicles") have been proposed as possible RNAi carriers, but their yield is relatively small in any cell culture system. We have previously generated exosome-mimetic nanovesicles (NV) by serial extrusions of cells through nano-sized filters, which results in 100-times higher yield of extracellular vesicles. We here test 1) whether NV can be loaded with siRNA exogenously and endogenously, 2) whether the siRNA-loaded NV are taken up by recipient cells, and 3) whether the siRNA can induce functional knock-down responses in recipient cells. A siRNA against GFP was first loaded into NV by electroporation, or a c-Myc shRNA was expressed inside of the cells. The NV were efficiently loaded with siRNA with both techniques, were taken up by recipient cells, which resulted in attenuation of target gene expression. In conclusion, our study suggests that exosome-mimetic nanovesicles can be a platform for RNAi delivery to cell cytoplasm. PMID:27344366

  20. Induction of Pluripotency in Adult Equine Fibroblasts without c-MYC

    Directory of Open Access Journals (Sweden)

    Khodadad Khodadadi

    2012-01-01

    Full Text Available Despite tremendous efforts on isolation of pluripotent equine embryonic stem (ES cells, to date there are few reports about successful isolation of ESCs and no report of in vivo differentiation of this important companion species. We report the induction of pluripotency in adult equine fibroblasts via retroviral transduction with three transcription factors using OCT4, SOX2, and KLF4 in the absence of c-MYC. The cell lines were maintained beyond 27 passages (more than 11 months and characterized. The equine iPS (EiPS cells stained positive for alkaline phosphatase by histochemical staining and expressed OCT4, NANOG, SSEA1, and SSEA4. Gene expression analysis of the cells showed the expression of OCT4, SOX2 NANOG, and STAT3. The cell lines retained a euploid chromosome count of 64 after long-term culture cryopreservation. The EiPS demonstrated differentiation capacity for the three embryonic germ layers both in vitro by embryoid bodies (EBs formation and in vivo by teratoma formation. In conclusion, we report the derivation of iPS cells from equine adult fibroblasts and long-term maintenance using either of the three reprogramming factors.

  1. Transcriptome Analysis of WHV/c-myc Transgenic Mice Implicates Cytochrome P450 Enzyme 17A1 as a Promising Biomarker for Hepatocellular Carcinoma.

    Science.gov (United States)

    Wang, Feng; Huang, Jian; Zhu, Zhu; Ma, Xiao; Cao, Li; Zhang, Yongzhi; Chen, Wei; Dong, Yang

    2016-09-01

    Early detection of hepatocellular carcinoma (HCC) is critical for successful treatment and favorable prognosis. To identify novel HCC biomarkers, we used the WHV/c-myc transgenic (Tg) mice, an animal model of hepatocarcinogenesis. By analyzing their gene expression profiling, we investigated differentially expressed genes in livers of wild-type and Tg mice. The cytochrome P450, family 17, subfamily A, polypeptide 1 (CYP17A1), a hepatic P450 enzyme, was revealed to be overexpressed in the liver tissues of Tg mice at both preneoplastic and neoplastic stages. Mouse-to-human validation demonstrated that CYP17A1 mRNA and protein were also significantly increased in human HCC tissues compared with paired nontumor tissues (P = 0.00041 and 0.00011, respectively). Immunohistochemical studies showed that CYP17A1 was overexpressed in 67% (58 of 87) of HCC, and strong staining of CYP17A1 was observed in well-differentiated HCCs. Consistent with this, the median serum levels of CYP17A1 were also significantly higher in patients with HCC (140.2 ng/mL, n = 776) compared with healthy controls (31.4 ng/mL, n = 366) and to those with hepatitis B virus (57.5 ng/mL, n = 160), cirrhosis (46.1 ng/mL, n = 147), lung cancer (27.4 ng/mL, n = 109), and prostate cancer (42.1 ng/mL, n = 130; all P AFP-negative HCC cases. Altogether, through mouse-to-human search and validation, we found that CYP17A1 is overexpressed in HCCs and it has great potentiality as a noninvasive marker for HCC detection. These results provide a rationale for the future development and clinical application of CYP17A1 measurement to diagnose HCC more precisely. Cancer Prev Res; 9(9); 739-49. ©2016 AACR. PMID:27339169

  2. Inhibition of c-MYC with involvement of ERK/JNK/MAPK and AKT pathways as a novel mechanism for shikonin and its derivatives in killing leukemia cells.

    Science.gov (United States)

    Zhao, Qiaoli; Assimopoulou, Andreana N; Klauck, Sabine M; Damianakos, Harilaos; Chinou, Ioanna; Kretschmer, Nadine; Rios, José-Luis; Papageorgiou, Vassilios P; Bauer, Rudolf; Efferth, Thomas

    2015-11-17

    Leukemia remains life-threatening despite remarkable advances in chemotherapy. The poor prognosis and drug resistance are challenging treatment. Novel drugs are urgently needed. Shikonin, a natural naphthoquinone, has been previously shown by us to be particularly effective towards various leukemia cell lines compared to solid tumors. However, the underlying mechanisms are still poorly understood. Here, we investigated shikonin and 14 derivatives on U937 leukemia cells. Four derivatives (isobutyrylshikonin, 2-methylbutyrylshikonin, isovalerylshikonin and β,β-dimethylacrylshikonin) were more active than shikonin. AnnexinV-PI analysis revealed that shikonins induced apoptosis. Cell cycle G1/S check point regulation and the transcription factor c-MYC, which plays a vital role in cell cycle regulation and proliferation, were identified as the most commonly down-regulated mechanisms upon treatment with shikonins in mRNA microarray hybridizations. Western blotting and DNA-binding assays confirmed the inhibition of c-MYC expression and transcriptional activity by shikonins. Reduction of c-MYC expression was closely associated with deregulated ERK, JNK MAPK and AKT activity, indicating their involvement in shikonin-triggered c-MYC inactivation. Molecular docking studies revealed that shikonin and its derivatives bind to the same DNA-binding domain of c-MYC as the known c-MYC inhibitors 10058-F4 and 10074-G5. This finding indicates that shikonins bind to c-MYC. The effect of shikonin on U937 cells was confirmed in other leukemia cell lines (Jurkat, Molt4, CCRF-CEM, and multidrug-resistant CEM/ADR5000), where shikonin also inhibited c-MYC expression and influenced phosphorylation of AKT, ERK1/2, and SAPK/JNK. In summary, inhibition of c-MYC and related pathways represents a novel mechanism of shikonin and its derivatives to explain their anti-leukemic activity. PMID:26472107

  3. Anchoring of c-myc on nuclear matrix proteins in process of mouse thymic T lymphocyte proliferation induced by ConA

    Institute of Scientific and Technical Information of China (English)

    曾丛梅; 蔡树涛; 周凤兰; 张锦珠; 王平

    1996-01-01

    Isolation and characteriation of functional nudear matrix proteins involved in DNA anchoring and gene expression is one of the major subjects of current nudear matrix research. Southwestern blotting (DNA-protein hybridization) was applied to studying the anchoring of c-myc on the nudear matrix proteins in mouse thymic T lymphocytes. The results showed that c-myc bound to the lamin, p34 and p36 nudear matrix proteins specifically. In the process of mouse thymic PNA T lymphocytes proliferation induced by ConA, the anchoring of c-myc on p34 and p36 nudear matrix proteins changed dynamically.

  4. Ammonia Affects Astroglial Proliferation in Culture.

    Directory of Open Access Journals (Sweden)

    Guillermo Bodega

    Full Text Available Primary cultures of rat astroglial cells were exposed to 1, 3 and 5 mM NH4Cl for up to 10 days. Dose- and time-dependent reductions in cell numbers were seen, plus an increase in the proportion of cells in the S phase. The DNA content was reduced in the treated cells, and BrdU incorporation diminished. However, neither ammonia nor ammonia plus glutamine had any effect on DNA polymerase activity. iTRAQ analysis showed that exposure to ammonia induced a significant reduction in histone and heterochromatin protein 1 expression. A reduction in cell viability was also noted. The ammonia-induced reduction of proliferative activity in these cultured astroglial cells seems to be due to a delay in the completion of the S phase provoked by the inhibition of chromatin protein synthesis.

  5. Polymorphisms cMyc-N11S and p27-V109G and breast cancer risk and prognosis

    International Nuclear Information System (INIS)

    cMyc and p27 are key genes implicated in carcinogenesis. Whether polymorphisms in these genes affect breast cancer risk or prognosis is still unclear. In this study, we focus on a rare non-synonymous polymorphism in cMyc (N11S) and a common polymorphism in p27 (V109G) and determine their role in risk and prognosis using data collected from the Ontario Breast Cancer Family Registry. Risk factor data was collected at baseline on a large group of women (cases = 1,115 and population-based controls = 710) and clinical data (including treatment and follow-up) were collected prospectively by periodic review of medical records for a subset of cases (N = 967) for nearly a decade. A centralized pathology review was conducted. Unconditional logistic regression was used to determine the association of polymorphisms with breast cancer risk and the Cox proportional hazards model was used to determine their association with survival. Our results suggest that while cMyc-N11S can be considered a putatively functional polymorphism located in the N-terminal domain, it is not associated with risk, tumor characteristics or survival. The p27-G109 allele was associated with a modest protective effect in adjusted analyses and higher T stage. We found no evidence to suggest that p27-V109G alone or in combination with cMyc-N11S was associated with survival. Age at onset and first-degree family history of breast or ovarian cancer did not significantly modify the association of these polymorphisms with breast cancer risk. Further work is recommended to understand the potential functional role of these specific non-synonymous amino acid changes and a larger, more comprehensive investigation of genetic variation in these genes (e.g., using a tagSNP approach) in combination with other relevant genes is needed as well as consideration for treatment effects when assessing their potential role in prognosis

  6. Conserved features of cancer cells define their sensitivity to HAMLET-induced death; c-Myc and glycolysis.

    Science.gov (United States)

    Storm, P; Aits, S; Puthia, M K; Urbano, A; Northen, T; Powers, S; Bowen, B; Chao, Y; Reindl, W; Lee, D Y; Sullivan, N L; Zhang, J; Trulsson, M; Yang, H; Watson, J D; Svanborg, C

    2011-12-01

    HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here, we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small-hairpin RNA (shRNA) inhibition, proteomic and metabolomic technology, we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, HAMLET sensitivity was modified by the glycolytic state of tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen, hexokinase 1 (HK1), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 and hypoxia-inducible factor 1α modified HAMLET sensitivity. HK1 was shown to bind HAMLET in a protein array containing ∼8000 targets, and HK activity decreased within 15 min of HAMLET treatment, before morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 min. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene addiction or the Warburg effect.

  7. Focal Adhesion Kinase Is Required for Intestinal Regeneration and Tumorigenesis Downstream of Wnt/c-Myc Signaling

    OpenAIRE

    Ashton, Gabrielle H.; Morton, Jennifer P; Myant, Kevin; Phesse, Toby J.; Ridgway, Rachel A.; Marsh, Victoria; Wilkins, Julie A.; Athineos, Dimitris; Muncan, Vanesa; Kemp, Richard; Neufeld, Kristi; Clevers, Hans; Brunton, Valerie; Winton, Douglas J.; Wang, Xiaoyan

    2010-01-01

    The intestinal epithelium has a remarkable capacity to regenerate after injury and DNA damage. Here, we show that the integrin effector protein Focal Adhesion Kinase (FAK) is dispensable for normal intestinal homeostasis and DNA damage signaling, but is essential for intestinal regeneration following DNA damage. Given Wnt/c-Myc signaling is activated following intestinal regeneration, we investigated the functional importance of FAK following deletion of the Apc tumor suppressor protein withi...

  8. Targeting C-myc G-Quadruplex: Dual Recognition by Aminosugar-Bisbenzimidazoles with Varying Linker Lengths

    Directory of Open Access Journals (Sweden)

    Nihar Ranjan

    2013-11-01

    Full Text Available G-quadruplexes are therapeutically important biological targets. In this report, we present biophysical studies of neomycin-Hoechst 33258 conjugates binding to a G-quadruplex derived from the C-myc promoter sequence. Our studies indicate that conjugation of neomycin to a G-quadruplex binder, Hoechst 33258, enhances its binding. The enhancement in G-quadruplex binding of these conjugates varies with the length and composition of the linkers joining the neomycin and Hoechst 33258 units.

  9. A natural small molecule, catechol, induces c-Myc degradation by directly targeting ERK2 in lung cancer

    Science.gov (United States)

    Lim, Do Young; Shin, Seung Ho; Lee, Mee-Hyun; Malakhova, Margarita; Kurinov, Igor; Wu, Qiong; Xu, Jinglong; Jiang, Yanan; Dong, Ziming; Liu, Kangdong; Lee, Kun Yeong; Bae, Ki Beom; Choi, Bu Young; Deng, Yibin; Bode, Ann; Dong, Zigang

    2016-01-01

    Various carcinogens induce EGFR/RAS/MAPK signaling, which is critical in the development of lung cancer. In particular, constitutive activation of extracellular signal-regulated kinase 2 (ERK2) is observed in many lung cancer patients, and therefore developing compounds capable of targeting ERK2 in lung carcinogenesis could be beneficial. We examined the therapeutic effect of catechol in lung cancer treatment. Catechol suppressed anchorage-independent growth of murine KP2 and human H460 lung cancer cell lines in a dose-dependent manner. Catechol inhibited ERK2 kinase activity in vitro, and its direct binding to the ERK2 active site was confirmed by X-ray crystallography. Phosphorylation of c-Myc, a substrate of ERK2, was decreased in catechol-treated lung cancer cells and resulted in reduced protein stability and subsequent down-regulation of total c-Myc. Treatment with catechol induced G1 phase arrest in lung cancer cells and decreased protein expression related to G1-S progression. In addition, we showed that catechol inhibited the growth of both allograft and xenograft lung cancer tumors in vivo. In summary, catechol exerted inhibitory effects on the ERK2/c-Myc signaling axis to reduce lung cancer tumor growth in vitro and in vivo, including a preclinical patient-derived xenograft (PDX) model. These findings suggest that catechol, a natural small molecule, possesses potential as a novel therapeutic agent against lung carcinogenesis in future clinical approaches. PMID:27167001

  10. The Influence of Nano-apatite on c-myc and p53 Gene in the Hepatocellular Carcinoma

    Institute of Scientific and Technical Information of China (English)

    CHEN Jun; CAO Xianying; LI Shipu; HAN Yingchao; ZHANG Ran

    2005-01-01

    The influence mechanism of the nano-apatite on the human hepatocellular carcinoma in vitro was investigated. Using the homogeneous precipitation method, the nano-apatite was synthesized at room temperature, and it was characterized with transmission electron microscopy (TEM) and the Zataplus. The influence on the expression of the c-myc and p53 gene in the human hepatocellular carcinoma cell lines were tested with the TEM and hybridization in situ. The TEM and the Zataplus analyses show that the nano-apatite is distributed homogenously in size and needle-shaped sizes, which ranges from 67.5 nm to 88.3 nm. It is found that the nano-apatitet increases the volume of the human hepatocellular carcinoma cells, makes extensive cytoplasmic vacuolization, the mitochondria swelling, chromatin in nucleus dispersed partially and condensed around the nuclear membranes.The interspace in nuclear membranes were separated and even the cytoplasm dissolved. It is also found that the expression of the c-myc gene is inhibited, but the p53 is enhanced. The experimental results demonstrate that the nano-apatite enables the oncosis of the human hepatocellular carcinoma cells by down-regulation of the expression of the c-myc and up-regulation of the expression of the p53 in vitro.

  11. Ginger extract inhibits human telomerase reverse transcriptase and c-Myc expression in A549 lung cancer cells.

    Science.gov (United States)

    Tuntiwechapikul, Wirote; Taka, Thanachai; Songsomboon, Chonnipa; Kaewtunjai, Navakoon; Imsumran, Arisa; Makonkawkeyoon, Luksana; Pompimon, Wilart; Lee, T Randall

    2010-12-01

    The rhizome of ginger (Zingiber officinale Roscoe) has been reputed to have many curative properties in traditional medicine, and recent publications have also shown that many agents in ginger possess anticancer properties. Here we show that the ethyl acetate fraction of ginger extract can inhibit the expression of the two prominent molecular targets of cancer, the human telomerase reverse transcriptase (hTERT) and c-Myc, in A549 lung cancer cells in a time- and concentration-dependent manner. The treated cells exhibited diminished telomerase activity because of reduced protein production rather than direct inhibition of telomerase. The reduction of hTERT expression coincided with the reduction of c-Myc expression, which is one of the hTERT transcription factors; thus, the reduction in hTERT expression might be due in part to the decrease of c-Myc. As both telomerase inhibition and Myc inhibition are cancer-specific targets for cancer therapy, ginger extract might prove to be beneficial as a complementary agent in cancer prevention and maintenance therapy. PMID:21091248

  12. Primary structure and functional scFv antibody expression of an antibody against the human protooncogen c-myc.

    Science.gov (United States)

    Fuchs, P; Breitling, F; Little, M; Dübel, S

    1997-06-01

    The immunoglobulin heavy- and light-chain variable region (Vh and Vl) genes were isolated from Myc1-9E10 hybridoma cells, which secreted monoclonal antibody against human oncogen c-myc. The expression vector pOPE52-c-myc was constructed for the recombinant production in E. coli. A 30 kDa single chain fragment (scFv) expression product was found in the periplasmic space by SDS-PAGE and immunoblotting. A significant fraction was processed correctly as demonstrated with an antiserum recognizing the processed aminoterminus only. The specific binding of the scFv fragment to the peptide epitope of the maternal monoclonal antibody was demonstrated and the primary sequence of the variable regions was determined. Sequence comparison with previously published partial Vh and Vl sequences from this hybridoma cell line revealed a genetic heterogeneity for the light chain variable region. The potential use of this scFv as a new tool for detection and purification of tagged proteins, for adding costimulatory signals to the surface of cancer cells as well as for analyzing c-myc function in the living cell by cytoplasmic expression is discussed.

  13. C-Myc regulates substrate oxidation patterns during early pressure-overload hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Ledee, Dolena R. [Seattle Children' s Research Inst., Seattle, WA (United States); Smith, Lincoln [Seattle Children' s Hospital, Seattle, WA (United States); Kajimoto, Masaki [Seattle Children' s Research Inst., Seattle, WA (United States); Bruce, Margaret [Seattle Children' s Research Inst., Seattle, WA (United States); Isern, Nancy G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Xu, Chun [Seattle Children' s Research Inst., Seattle, WA (United States); Portman, Michael A. [Seattle Children' s Research Inst., Seattle, WA (United States); Olson, Aaron [Seattle Children' s Research Inst., Seattle, WA (United States)

    2013-11-26

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of glycolytic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected FVB mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketones and unlabeled glucose and insulin. Western blots were used to evaluate metabolic enzymes. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (presumably glucose) contribution. Myc inactivation (MycKO-TAC) inhibited these metabolic changes. Hypertrophy in general increased protein levels of PKM2; however this change was not linked to Myc status. Protein post-translation modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. In conclusion, Myc regulates substrate utilization during early pressure overload hypertrophy. Our results show that the metabolic switch during hypertrophy is not necessary to maintain cardiac function, but it may be important mechanism to promote cardiomyocyte growth. Myc also regulates protein O-GlcNAcylation during hypertrophy.

  14. Use of a transfected and amplified Drosophila heat shock promoter construction for inducible production of toxic mouse c-myc proteins in CHO cells

    International Nuclear Information System (INIS)

    After transfection and selection with methotrexate, CHO cell lines were established which contained up to 2000 copies of an expression vector for c-myc protein. The vector contained the Drosophila heat shock protein 70 (hsp70) promoter fused with the coding region of the mouse c-myc gene. Incubation of cells for up to 3 hours at 430C resulted in at least a 100-fold induction of recombinant c-myc mRNA. When cells were shifted back to 370C, within 1 to 4 hours, this RNA was translated into protein to yield about 250 μg per 109 cells. Cells died a few hours later, suggesting that high concentrations of intracellular c-myc are cytotoxic. 47 refs., 5 figs

  15. c-Myc Transforms Human Mammary Epithelial Cells through Repression of the Wnt Inhibitors DKK1 and SFRP1▿ †

    Science.gov (United States)

    Cowling, Victoria H.; D'Cruz, Celina M.; Chodosh, Lewis A.; Cole, Michael D.

    2007-01-01

    c-myc is frequently amplified in breast cancer; however, the mechanism of myc-induced mammary epithelial cell transformation has not been defined. We show that c-Myc induces a profound morphological transformation in human mammary epithelial cells and anchorage-independent growth. c-Myc suppresses the Wnt inhibitors DKK1 and SFRP1, and derepression of DKK1 or SFRP1 reduces Myc-dependent transforming activity. Myc-dependent repression of DKK1 and SFRP1 is accompanied by Wnt target gene activation and endogenous T-cell factor activity. Myc-induced mouse mammary tumors have repressed SFRP1 and increased expression of Wnt target genes. DKK1 and SFRP1 inhibit the transformed phenotype of breast cancer cell lines, and DKK1 inhibits tumor formation. We propose a positive feedback loop for activation of the c-myc and Wnt pathways in breast cancer. PMID:17485441

  16. Use of a transfected and amplified Drosophila heat shock promoter construction for inducible production of toxic mouse c-myc proteins in CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, F.M.; Gwinn, K.A.; Papoulas, O.; Pallavicini, M.; Kingston, R.E.

    1987-07-24

    After transfection and selection with methotrexate, CHO cell lines were established which contained up to 2000 copies of an expression vector for c-myc protein. The vector contained the Drosophila heat shock protein 70 (hsp70) promoter fused with the coding region of the mouse c-myc gene. Incubation of cells for up to 3 hours at 43/sup 0/C resulted in at least a 100-fold induction of recombinant c-myc mRNA. When cells were shifted back to 37/sup 0/C, within 1 to 4 hours, this RNA was translated into protein to yield about 250 ..mu..g per 10/sup 9/ cells. Cells died a few hours later, suggesting that high concentrations of intracellular c-myc are cytotoxic. 47 refs., 5 figs.

  17. Three-dimensional imaging of the metabolic state of c-MYC-induced mammary tumor with the cryo-imager

    Science.gov (United States)

    Zhang, Zhihong; Liu, Qian; Luo, Qingming; Zhang, Min Z.; Blessington, Dana M.; Zhou, Lanlan; Chodosh, Lewis A.; Zheng, Gang; Chance, Britton

    2003-07-01

    This study imaged the metabolic state of a growing tumor and the relationship between energy metabolism and the ability of glucose uptake in whole tumor tissue with cryo-imaging at 77° K. A MTB/TOM mouse model, bearing c-MYC-induced mammary tumor, was very rapidly freeze-trapped 2 hrs post Pyro-2DG injection. The fluorescence signals of oxidized flavoprotein (Fp), reduced pyridine nucleotide (PN), pyro-2DG, and the reflection signal of deoxy-hemoglobin were imaged every 100 μm from the top surface to the bottom of the tumor sequentially, 9 sections in total. Each of the four signals was constructed into 3D images with Amira software. Both Fp and PN signals could be detected in the growing tumor regions, and a higher reduction state where was shown in the ratio images. The necrotic tumor regions displayed a very strong Fp signal and weak PN signal. In the bloody extravasation regions, Fp and PN signals were observably diminished. Therefore, the regions of high growth and necrosis in the tumor could be determined according to the Fp and PN signals. The content of deoxy-hemoglobin (Hb) in the tumor was positively correlated with the reduced PN signal. Pyro-2DG signal was only evident in the growing condition region in the tumor. Normalized 3D cross-correlation showed that Pyro-2DG signal was similar to the redox ratio. The results indicated that glucose uptake in the tumor was consistent with the redox state of the tumor. And both Pyro-2DG and mitochondrial NADH fluorescence showed bimodal histograms suggesting that the two population of c-MYC induced mammary tumor, one of which could be controlled by c-MYC transgene.

  18. Regulation of human ornithine decarboxylase expression following prolonged quiescence: role for the c-Myc/Max protein complex.

    Science.gov (United States)

    Peña, A; Wu, S; Hickok, N J; Soprano, D R; Soprano, K J

    1995-02-01

    WI-38 cells can remain quiescent for long periods of time and still be induced to reenter the cell cycle by the addition of fresh serum. However, the longer these cells remain growth arrested, the more time they require to enter S phase. This prolongation of the prereplicative phase has been localized to a point early in G1, after the induction of "immediate early" G1 genes such as c-fos and c-jun but before maximal expression of "early" G1 genes such as ornithine decarboxylase (ODC). Understanding the molecular basis for ODC mRNA induction can therefore provide information about the molecular events which regulate the progression of cells out of long-term quiescence into G1 and subsequently into DNA synthesis. Studies utilizing electrophoretic mobility shift assays (EMSA) of nuclear extracts from short- and long-term quiescent WI-38 cells identified a region of the human ODC promoter at -491 bp to -474 bp which exhibited a protein binding pattern that correlated with the temporal pattern of ODC mRNA expression. The presence of a CACGTG element within this fragment, studies with antibodies against c-Myc and Max, the use of purified recombinant c-Myc protein in the mobility shift assay, and antisense studies suggest that these proteins can specifically bind this portion of the human ODC promoter in a manner consistent with growth-associated modulation of the expression of ODC and other early G1 genes following prolonged quiescence. These studies suggest a role for the c-Myc/Max protein complex in regulating events involved in the progression of cells out of long-term quiescence into G1 and subsequently into S.

  19. Suppression of c-myc expression by lentiviral vector-mediatedsmall interfering RNA in Jiyoye cells%慢病毒载体介导的siRNA抑制Jiyoye细胞c-myc基因表达的实验研究

    Institute of Scientific and Technical Information of China (English)

    宋爱琴; 鞠秀丽; 孙立; 王玲; 李晓玲; 于洪升

    2011-01-01

    Objective To explore the effect of lentiviral vector-mediated siRNA on c-myc gene expression in Jiyoye cells by using the RNAi technique in vitro.Methods Three interference sequences c-myc-1, c-myc-2 and c-myc-3 and the negative control c-myc-neg that targeted human c-myc mRNA were designed and synthesized.After annealing, all the fragments were cloned into the pLVX vector, which were transfected into human leukemia Jiyoye ceils by lentivirus and were cultured for 72 hours.The cells were divided into five groups: the blank control group(untransfected), the cmyc-neg group, the c-myc-1 group, the c-myc-2 group and the c-myc-3 group.After 72 hours, the transfection rate in each group was determined by flow cytometry.Expressions of the c-myc mRNA and c-Myc protein were detected by Real-time PCR and Western blot.Results PLVX-c-myc-neg, PLVX-c-myc-1, PLVX-c-myc-2 and PLVX-c-myc-3were constructed.C-myc mRNA and protein expression levels in the three groups respectively transfected with c-myc-1,c-myc-2 and c-myc-3 were significantly down-regulated compared with the negative control group transfected with c-mycneg(P <0.05).The c-myc-3 group decreased most significantly compared with the c-myc-1 group and the c-myc-2 group ( P < 0.05 ).There was no significant difference between the untransfected group and the negative control group ( P > 0.05 ).Conclusion The successfully constructed shRNA expression vector for the c-myc gene suppresses expression of c-myc in Jiyoye cells, which might provide an experimental basis for further study of the role of c-myc gene silencing in targeting treatment of leukemia and lymphoma.%目的 探讨RNAi技术经慢病毒载体介导的siRNA对Jiyoye细胞c-myc基因表达的抑制作用.方法 设计并合成RNA干扰序列,退火后连接到pLVX干扰载体上,构建PLVX-c-myc表达载体,经慢病毒介导转染人Jiyoye细胞株培养72 h.实验分为空白对照(未转染)、c-myc-neg、c-myc-1、c-myc-2、c-myc-3组.采用流式细

  20. Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma.

    OpenAIRE

    Pelicci, P.G.; Knowles, D M; Magrath, I; Dalla-Favera, R

    1986-01-01

    We have examined the position of the chromosomal breakpoint relative to the human c-myc gene (MYC) and the presence of other structural alterations of the same locus in 19 fresh samples of Burkitt lymphoma (BL) and 13 BL-derived cell lines. This panel includes the two pathogenetic forms of BL: the endemic (African-type) BL (eBL) and sporadic (American-type) BL (sBL). In all cases tested, including fresh samples and cell lines, structural alterations of the 5' portion of the gene were detected...

  1. In vivo distribution of c-myc antisense oligodeoxynucleotides local delivered by gelatin-coated platinmn-iridium stents in rabbits and its effect on apoptosis

    Institute of Scientific and Technical Information of China (English)

    张新霞; 崔长琮; 许香广; 胡雪松; 方卫华; 邝碧娟

    2004-01-01

    Background Post-stenting restenosis is a significant clinical problem, involving vascular smooth muscle cells(VSMCs) proliferation and apoptosis. It is reported that c-myc antisense oligodeoxynucleotides (ASODNs) local delivered by catheter can inhibit VSMCs proliferation. This study was designed to assess tissue distribution of c-myc ASODN local delivered using gelatin-coated platinum-iridium (Pt-Ir) stents, and its effect on apoptosis of VSMCs. Methods Gelatin-coated Pt-Ir stents that had absorbed caroboxyfluorescein-5-succimidyl ester (FAM) labeled c-myc ASODNs (550 μg per stent) were implanted into the right carotid arteries of 6 rabbits. Tissue samples were obtained at 45 minutes, 2 hours, and 6 hours. Tissue distribution of c- myc ASODNs was assessed by fluorescence microscopy. In addition, 32 rabbits were randomly divided into two groups. Rabbits in the control group (n=16) were implanted with gelatin-coated Pt-Ir stents, and those in the treatment group (n=16) were implanted with gelatin-coated stents that had absorbed c-myc ASODNs. 7, 14, 30, or 90 days (n=4, respectively, for each group) after the stenting procedure, the stented segments were harvested, and histopathological examinations were performed to calculate neointimal area and mean neointimal thickness. The expression of c-myc was assessed using in situ hybridization (ISH) and immunohistochemical methods. Apoptotic VSMCs were detected using terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) and transmission electron microscope (TEM). Results According to fluorescence microscopic results, FAM-labeled c-myc ASODNs were concentrated in the target vessel media at the 45 minutes time point, and then dispersed to the adventitia. Morphometric analysis showed that neointimal area and mean neointimal thickness increased continuously up to 90 days after stent implantation, but that total neointimal area and mean neointimal thickness were less in the treatment group than in the

  2. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Kyung-Soo [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Park, Jun-Ik [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Kim, Mi-Ju; Kim, Hak-Bong; Lee, Jae-Won [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Dao, Trong Tuan; Oh, Won Keun [BK21 Project Team, College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Kang, Chi-Dug, E-mail: kcdshbw@pusan.ac.kr [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Kim, Sun-Hee, E-mail: ksh7738@pusan.ac.kr [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan (Korea, Republic of)

    2012-03-01

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-catenin expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in hypoxia

  3. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols

    International Nuclear Information System (INIS)

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-catenin expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in hypoxia

  4. Local Delivery of C-myc Antisense Oligodeoxynucleotide by Gelatin Coated Platinium-Iridium Stent to Prevent Restenosis in a Normal Rabbit Carotid Artery

    Institute of Scientific and Technical Information of China (English)

    Zhang Xinxia; Wei Wenbin; Duan Wen; Xu Xiangguang; Hu Xuesong

    2005-01-01

    Objectives To investigate the feasibility and effect of local deliveryof c-myc antisense oligodeoxynucleotide (ASODN) by gelatin coated Platinium-Iridium stent to prevent restenosis in a normal rabbit carotid artery. Methods Gelatin coated Platinium-Iridium stent were implanted in the right carotid arteries of 32 rabbits under vision. Animals were randomized to the control group and the treated group receiving c-myc ASODN (n=16 respectively).7,14,30,90 days following the stenting procedure,morphometry for caculation of neointimal area and mean neointimal thickness were performed.The expression of c-myc protein was detected by immunohistochemical methods. Results 32 stents were successfully implanted into the right carotid arteries in 32 animals. Morphometric analysis showed that neointimal area and mean neointimal thickness siginificantly increased continuously up to 12 weeks after stent implantation,and at each time point ,neointimal area and mean neointimal thickness were siginificantly smaller in the treated group than control group. (P<0.001 ,respectively).c-myc protein expression was weak positive or negative in treated group and positive in control group. Conclusions Gelatin coated Platinium-Iridium stent mediated local delivery of c-myc ASODN is feasibility , and it can inhibit neointimal hyperplasia to prevent restenosis in a normal rabbit carotid artery.

  5. Farnesiferol c induces apoptosis via regulation of L11 and c-Myc with combinational potential with anticancer drugs in non-small-cell lung cancers.

    Science.gov (United States)

    Jung, Ji Hoon; Kim, Moon Joon; Lee, Hyemin; Lee, Jihyun; Kim, Jaekwang; Lee, Hyun Joo; Shin, Eun Ah; Kim, Yoon Hyeon; Kim, Bonglee; Shim, Bum Sang; Kim, Sung-Hoon

    2016-01-01

    Though Farnesiferol c (FC) has been reported to have anti-angiogenic and antitumor activity, the underlying antitumor mechanism of FC still remains unclear. Thus, in the present study, we investigated the apoptotic mechanism of FC in human H1299 and H596 non-small lung cancer cells (NSCLCs). FC significantly showed cytotoxicity, increased sub-G1 accumulation, and attenuated the expression of Bcl-2, Bcl-xL, Survivin and procaspase 3 in H1299 and H596 cells. Furthermore, FC effectively suppressed the mRNA expression of G1 arrest related genes such as Cyclin D1, E2F1 transcription factor and CDC25A by RT-PCR. Interestingly, FC inhibited the expression of c-Myc, ribosomal protein L11 (L11) and nucleolin (NCL) in H1299 and H596 cells. Of note, silencing of L11 by siRNA transfection enhanced the expression of c-Myc through a negative feedback mechanism, while c-Myc knockdown downregulated L11 in H1299 cells. Additionally, combined treatment of FC and puromycin/doxorubicin promoted the activation of caspase 9/3, and attenuated the expression of c-Myc, Cyclin D1 and CDK4 in H1299 cells compared to single treatment. Taken together, our findings suggest that FC induces apoptosis and G1 arrest via regulation of ribosomal protein L11 and c-Myc and also enhances antitumor effect of puromycin or doxorubicin in NSCLCs. PMID:27231235

  6. Upregulation of c-MYC in cis through a Large Chromatin Loop Linked to a Cancer Risk-Associated Single-Nucleotide Polymorphism in Colorectal Cancer Cells▿

    Science.gov (United States)

    Wright, Jason B.; Brown, Seth J.; Cole, Michael D.

    2010-01-01

    Genome-wide association studies have mapped many single-nucleotide polymorphisms (SNPs) that are linked to cancer risk, but the mechanism by which most SNPs promote cancer remains undefined. The rs6983267 SNP at 8q24 has been associated with many cancers, yet the SNP falls 335 kb from the nearest gene, c-MYC. We show that the beta-catenin-TCF4 transcription factor complex binds preferentially to the cancer risk-associated rs6983267(G) allele in colon cancer cells. We also show that the rs6983267 SNP has enhancer-related histone marks and can form a 335-kb chromatin loop to interact with the c-MYC promoter. Finally, we show that the SNP has no effect on the efficiency of chromatin looping to the c-MYC promoter but that the cancer risk-associated SNP enhances the expression of the linked c-MYC allele. Thus, cancer risk is a direct consequence of elevated c-MYC expression from increased distal enhancer activity and not from reorganization/creation of the large chromatin loop. The findings of these studies support a mechanism for intergenic SNPs that can promote cancer through the regulation of distal genes by utilizing preexisting large chromatin loops. PMID:20065031

  7. Time-dependent c-Myc transactomes mapped by Array-based nuclear run-on reveal transcriptional modules in human B cells.

    Directory of Open Access Journals (Sweden)

    Jinshui Fan

    Full Text Available BACKGROUND: The definition of transcriptional networks through measurements of changes in gene expression profiles and mapping of transcription factor binding sites is limited by the moderate overlap between binding and gene expression changes and the inability to directly measure global nuclear transcription (coined "transactome". METHODOLOGY/PRINCIPAL FINDINGS: We developed a method to measure nascent nuclear gene transcription with an Array-based Nuclear Run-On (ANRO assay using commercial microarray platforms. This strategy provides the missing component, the transactome, to fully map transcriptional networks. ANRO measurements in an inducible c-Myc expressing human P493-6 B cell model reveals time-dependent waves of transcription, with a transactome early after c-Myc induction that does not persist at a late, steady-state phase, when genes that are regulated by c-Myc and E2F predominate. Gene set matrix analysis further uncovers functionally related groups of genes putatively regulated by waves of transcription factor motifs following Myc induction, starting with AP1 and CREB that are followed by EGR1, NFkB and STAT, and ending with E2F, Myc and ARNT/HIF motifs. CONCLUSIONS/SIGNIFICANCE: By coupling ANRO with previous global mapping of c-Myc binding sites by chromatin immunoprecipitation (ChIP in P493-6 cells, we define a set of transcriptionally regulated direct c-Myc target genes and pave the way for the use of ANRO to comprehensively map any transcriptional network.

  8. Expressions of beta-catenin, APC Protein, C-myc and Cyclin D1 in Ovarian Epithelial Tumor and Their Implication

    Institute of Scientific and Technical Information of China (English)

    LIN Xiao; LI Yu; MI Can

    2007-01-01

    Objective: To investigate the expressions of beta-catenin, protein APC (adenomatous polyposis coli protein), c-myc and cyclin D1 and their implication in ovarian epithelial tumor. Methods: Immunohistochemical staining with SP method was conducted to identify the expressions of beta-catenin, APC protein, c-myc and cyclin D1 in ovarian epithelial tumor in 48 cases. Results: The abnormal expression rate of beta-catenin in malignant and borderline ovarian epithelial tumors was higher than that in benign epithelial tumors (P<0.01). The expression rates of c-myc and cyclin-D1 in ovarian malignant and borderline epithelial tumors were higher than those in benign epithelial tumors too(P<0.05). The prevalence of APC protein positive expression in benign epithelial tumors were significantly greater than that in malignant epithelial tumors (P<0.05). A significant negative correlation was found between beta-catenin and APC protein in ovarian epithelial tumors; while a significant positive correlation was found between beta-catenin, c-myc and cyclin-D1 in ovarian epithelial tumor (P<0.05). Conclusion: The abnormal expressions of Beta-catenin, APC protein, c-myc and cyclin-D1 might be used to indicate the malignance transform of ovarian epithelial tumors.

  9. CDC4及c-Myc在胃癌中的表达及临床意义%The expressions of CDC4 and c-Myc in gastric cancer and their clinical signifieance

    Institute of Scientific and Technical Information of China (English)

    黄国全; 黎晖; 张才全; 吴泉峰; 孙建华

    2015-01-01

    targeted therapy for gastric cancer has become a research hotspot. The oncogene overexpression and the anti-oncogene lower expression are closely related with gastric cancer.CDC4/FBXW7 is an anti-oncogene, butc-Myc is an oncogene. The previous research showed that CDC4 affected the expression of many oncogenes, such as Cyclin E. This study aimed to investigate the expression of CDC4 and c-Myc in gastric cancer and to elucidate the potential relationship between their expressions and clinical pathological characteristics.Methods:Semi-quantitative reverse transcription polymerase chain reaction (sRT-PCR), immunohistochemistry and Western blot method were used to determine the mRNA and protein expressions of CDC4 and c-Myc in 40 specimens of gastric carcinoma tissues, corresponding adjacent tissues and normal mucosal tissues. The expressions of CDC4 and c-Myc and the clinical pathological characteristics were analyzed.Results:The protein expressions of CDC4 in gastric cancer tissues were signiifcantly lower than those in adjacent tissues and normal mucosal tissues (P<0.05), whereas the protein expression of c-Myc in gastric cancer tissues was signiifcantly higher than that in adjacent tissues and normal mucosal tissues (P<0.05). The protein and mRNA expression of CDC4 and c-Myc were correlated with differentiation, TNM stage, lymph node metastasis, inifltration, but not with patients’ gender, age and site of cancer (P<0.05). There was a signiifcant negative correlation between CDC4 and c-Myc at the mRNA and protein expression levels (P<0.05).Conclusion:The lower expression of CDC4 is correlated with differentiation, TNM stage, lymph node metastasis and inifltration. c-Myc overexpression is likely to be the CDC4 loss. It suggests that the loss of CDC4 may be a valuable marker for assessing the diagnosis and treatment and the prognosis of gastric cancer.

  10. Chromosomal localization of the human gene encoding c-myc promoter-binding protein (MPB1) to chromosome 1p35-pter

    Energy Technology Data Exchange (ETDEWEB)

    White, R.A.; Dowler, L.L. [Univ. of Missouri, Kansas City, MO (United States); Adkison, L.R. [Mercer Univ. School of Medicine, Macon, GA (United States); Ray, R.B. [St. Louis Univ. Health Sciences Center, St. Louis, MO (United States)

    1997-02-01

    We report the mapping of the human gene MPB1 (c-myc promoter binding protein), a recently identified gene regulatory protein. MPB1 binds to the c-myc P2 promoter and exerts a negative regulatory role on c-myc transcription. Since exogenous expression from transfection of the MPB1 gene suppresses the tumorigenic property of breast cancer cells, there was interest in determining the chromosomal location of this gene. The human MPB1 gene was assigned to human chromosome 1p35-pter using Southern blot analyses of genomic DNAs from rodent-human somatic hybrid cell lines. A specific human genomic fragment was observed only in the somatic cell lines containing human chromosome 1 or the p35-pter region of the chromosome. 10 refs., 2 figs.

  11. Detection of HER-2/neu, c-myc amplification and p53 inactivation by FISH in Egyptian patients with breast cancer

    Directory of Open Access Journals (Sweden)

    Mohamed, Hanaa M.

    2009-05-01

    Full Text Available Breast cancer is a leading cause of cancer-related deaths in women worldwide. The clinical course of this disease is highly variable and clinicians continuously search for prognostic parameters that can accurately predict prognosis, and indicate a suitable adjuvant therapy for each patient. Amplification of the two oncogenes HER-2/neu and c-myc and inactivation of the tumor suppressor gene p53 are frequently encountered in breast carcinomas. The purpose of this study was to use the fluorescence in situ hybridization (FISH for the assessment of HER-2/neu and c-myc amplification and p53 inactivation and to relate these molecular markers with the commonly used clinical and pathological factors. The study was conducted on 34 tissue samples obtained from 33 females and 1 male with breast carcinomas and 17 samples obtained from 16 females and 1 male with benign breast lesions. Results revealed that the level of HER-2/neu, c-myc and p53 in the malignant group was significantly increased as compared to the benign group. On relating the level of the molecular markers to clinicopathological factors, p53 was significantly associated with increased patient’s age. The sensitivity of the investigated markers significantly increased with larger tumor size. Concerning tumor grade, HER-2/neu and p53 showed a significant increase in low-grade tumors whereas c-myc showed a highly significant increase in high-grade tumors. With regard to disease staging, HER-2/neu and c-myc were the only markers that showed significant increase at late stages of disease. p53 and HER-2/neu were significantly associated with positive lymph nodal status. A significant correlation was obtained between the levels of the three biomarkers to each other. Conclusively, the combination of HER-2/neu, c-myc and p53 can stratify patients into different risk groups.

  12. Detection of HER-2/neu, c-myc amplification and p53 inactivation by FISH in Egyptian patients with breast cancer.

    Science.gov (United States)

    Ismail, Manal F; Aly, Magdy Sayed; Khaled, Hussein M; Mohamed, Hanaa M

    2009-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. The clinical course of this disease is highly variable and clinicians continuously search for prognostic parameters that can accurately predict prognosis, and indicate a suitable adjuvant therapy for each patient. Amplification of the two oncogenes HER-2/neu and c-myc and inactivation of the tumor suppressor gene p53 are frequently encountered in breast carcinomas. The purpose of this study was to use the fluorescence in situ hybridization (FISH) for the assessment of HER-2/neu and c-myc amplification and p53 inactivation and to relate these molecular markers with the commonly used clinical and pathological factors. The study was conducted on 34 tissue samples obtained from 33 females and 1 male with breast carcinomas and 17 samples obtained from 16 females and 1 male with benign breast lesions. Results revealed that the level of HER-2/neu, c-myc and p53 in the malignant group was significantly increased as compared to the benign group. On relating the level of the molecular markers to clinicopathological factors, p53 was significantly associated with increased patient's age. The sensitivity of the investigated markers significantly increased with larger tumor size. Concerning tumor grade, HER-2/neu and p53 showed a significant increase in low-grade tumors whereas c-myc showed a highly significant increase in high-grade tumors. With regard to disease staging, HER-2/neu and c-myc were the only markers that showed significant increase at late stages of disease. p53 and HER-2/neu were significantly associated with positive lymph nodal status. A significant correlation was obtained between the levels of the three biomarkers to each other. Conclusively, the combination of HER-2/neu, c-myc and p53 can stratify patients into different risk groups. PMID:19675743

  13. Investigating actinomycin D binding to G-quadruplex, i-motif and double-stranded DNA in 27-nt segment of c-MYC gene promoter.

    Science.gov (United States)

    Niknezhad, Zhila; Hassani, Leila; Norouzi, Davood

    2016-01-01

    c-MYC DNA is an attractive target for drug design, especially for cancer chemotherapy. Around 90% of c-MYC transcription is controlled by NHE III1, whose 27-nt purine-rich strand has the ability to form G-quadruplex structure. In this investigation, interaction of ActD with 27-nt G-rich strand (G/c-MYC) and its equimolar mixture with the complementary sequence, (GC/c-MYC) as well as related C-rich oligonucleotide (C/c-MYC) was evaluated. Molecular dynamic simulations showed that phenoxazine and lactone rings of ActD come close to the outer G-tetrad nucleotides indicating that ActD binds through end-stacking to the quadruplex DNA. RMSD and RMSF revealed that fluctuation of the quadruplex DNA increases upon interaction with the drug. The results of spectrophotometry and spectrofluorometry indicated that ActD most probably binds to the c-MYC quadruplex and duplex DNA via end-stacking and intercalation, respectively and polarity of ActD environment decreases due to the interaction. It was also found that binding of ActD to the GC-rich DNA is stronger than the two other forms of DNA. Circular dichroism results showed that the type of the three forms of DNA structures doesn't change, but their compactness alters due to their interaction with ActD. Finally, it can be concluded that ActD binds differently to double stranded DNA, quadruplex DNA and i-motif.

  14. Identification of a c-Jun N-terminal kinase-2-dependent signal amplification cascade that regulates c-Myc levels in ras transformation

    DEFF Research Database (Denmark)

    Mathiasen, D.P.; Egebjerg, C.; Andersen, S.H.;

    2012-01-01

    Ras is one of the most frequently activated oncogenes in cancer. Two mitogen-activated protein kinases (MAPKs) are important for ras transformation: extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase 2 (JNK2). Here we present a downstream signal amplification cascade that is...... essential for ras transformation. Previous studies show that ERK-mediated serine 62 phosphorylation protects c-Myc from proteasomal degradation. ERK is, however, not alone sufficient to stabilize c-Myc but requires the cooperation of cancerous inhibitor of protein phosphatase 2A (CIP2A), an oncogene that...

  15. Identification of functional networks of estrogen- and c-Myc-responsive genes and their relationship to response to tamoxifen therapy in breast cancer.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Musgrove

    Full Text Available BACKGROUND: Estrogen is a pivotal regulator of cell proliferation in the normal breast and breast cancer. Endocrine therapies targeting the estrogen receptor are effective in breast cancer, but their success is limited by intrinsic and acquired resistance. METHODOLOGY/PRINCIPAL FINDINGS: With the goal of gaining mechanistic insights into estrogen action and endocrine resistance, we classified estrogen-regulated genes by function, and determined the relationship between functionally-related genesets and the response to tamoxifen in breast cancer patients. Estrogen-responsive genes were identified by transcript profiling of MCF-7 breast cancer cells. Pathway analysis based on functional annotation of these estrogen-regulated genes identified gene signatures with known or predicted roles in cell cycle control, cell growth (i.e. ribosome biogenesis and protein synthesis, cell death/survival signaling and transcriptional regulation. Since inducible expression of c-Myc in antiestrogen-arrested cells can recapitulate many of the effects of estrogen on molecular endpoints related to cell cycle progression, the estrogen-regulated genes that were also targets of c-Myc were identified using cells inducibly expressing c-Myc. Selected genes classified as estrogen and c-Myc targets displayed similar levels of regulation by estrogen and c-Myc and were not estrogen-regulated in the presence of siMyc. Genes regulated by c-Myc accounted for 50% of all acutely estrogen-regulated genes but comprised 85% (110/129 genes in the cell growth signature. siRNA-mediated inhibition of c-Myc induction impaired estrogen regulation of ribosome biogenesis and protein synthesis, consistent with the prediction that estrogen regulates cell growth principally via c-Myc. The 'cell cycle', 'cell growth' and 'cell death' gene signatures each identified patients with an attenuated response in a cohort of 246 tamoxifen-treated patients. In multivariate analysis the cell death signature

  16. Nucleolus disassembly in mitosis and apoptosis: dynamic redistribution of phosphorylated-c-Myc, fibrillarin and Ki-67

    Directory of Open Access Journals (Sweden)

    C Soldani

    2009-06-01

    Full Text Available The nucleolus may undergo disassembly either reversibly during mitosis, or irreversibly in apoptosis, thus allowing the redistribution of the nucleolar proteins.We investigated here by immunocytochemistry the fate of three representative proteins, namely phosphorylated c-Myc, fibrillarin and Ki-67, and found that they behave independently in both processes: they relocate in distinct compartments during mitosis, whereas during apoptosis they may either be cleaved (Ki-67 or be extruded into the cytoplasm with a different kinetics and following an ordered, non chaotic program. The separation of these nucleolar proteins which occurs in early apoptotic nuclei continues also in the cytoplasm, and culminates in the final formation of apoptotic blebs containing different nucleolar proteins: this evidence confirms that the apoptotic bodies may be variable in size, content and surface reactivity, and include heterogeneous aggregates of nuclear proteins and/or nucleic acids.

  17. EFFECT OF HYPOXIA ON DNA SYNTHESIS AND C-MYC GENE EXPRESSION OF PULMONARY ARTERY SMOOTH MUSCLE CELLS

    Institute of Scientific and Technical Information of China (English)

    罗兰; 李世强; 蔡英年

    1996-01-01

    The neonate is particularly susceptible to the development of hypoxie pulmonary hypertension. The present study was undertaken to observe the effect of hypoxia on DNA synthesis and c-mye gene expressionbetween newborn calf and adult bovine PASMC in vitro DNA synthesis measured by 3H-TdR incorporation was increased after hypoxie challenge for 24h. Hypoxia enhanced the increment in 3H-TdR incorporationinduced by EGF. Northern blot analysis revealed that PASMC cultured in both normoxia and hypoxia expressed c-mye gene transcript of 2.2Kb ,but there is a higher 2.2Kb mRNA expression in hypoxie PASMC than that in normoxia. We speculate that newborn calf PASMC exhibited potential response to hypoxia than adult,which was augmented by EGF. Enhanced c-myc gene expression may lead to a great understanding of the mechanism of PASMC growth in the development of pulmonary hypertension.

  18. THE HEPARIN-BINDING DOMAIN AND V REGION OF FIBRONECTIN REGULATE APOPTOSIS BY SUPPRESSION OF P53 AND C-MYC IN HUMAN PRIMARY CELLS

    Science.gov (United States)

    In apoptosis the tumor suppressor p53 and oncogene c-myc, are usually upregulated. However, we report here an alternate pathway of regulation that is triggered by inflammatory-associated matrix fragments of fibronectin (FN) and leads to apoptosis. It is mediated by transcriptio...

  19. Effects of matrine on the growth inhibition, c-myc and hTERT protein expression in human adenocarcinoma lung cancer cell line A549

    Directory of Open Access Journals (Sweden)

    Qiong CHEN

    2008-08-01

    Full Text Available Background and objective It was reported that telomerase was associated with the oncogenesis and progression of cancer, and to be the common targets of cancer therapy. The mechanism of matrine on lung cancer in vitro is not clear. We studied the effect of matrine on growth of human lung adenocarcinoma A549 cells and the mechanism related with telomerase. Methods MTT was used for measuring A549 cells viability, Hoechst 33342-propidium iodide fluorescent staining for observing apoptotic cells, flow cytometry (FCM for analyzing cell cycle and apoptosis, and immunocytochemistry for measuring the protein expressions of c-myc and hTERT in A549 cells. Results Matrine inhibited the proliferation of A549 cells with a time-dose-dependent manner (P<0.05. Hoechst 33342-propidium iodide staining showed apoptotic cells with chromatin condensation and fragmentation of nuclei. FCM analysis indicated elevating rate of cells in G0/G1 phase, lowering rate of that in S phase and the highering apoptotic rate. The levels of c-myc and hTERT protein expression in the matrine group was lower than that in the control group (P<0.05, and AOD of c-myc showed positive correlation with AOD of hTERT (r=0.633, P<0.01 Conclusion The inhibitory effect of matrine on A549 cells may be related to the lower expression of c-myc and hTERT.

  20. The use of FISH-comet to detect c-Myc and TP 53 damage in extended-term lymphocyte cultures treated with terbuthylazine and carbofuran.

    Science.gov (United States)

    Mladinic, Marin; Zeljezic, Davor; Shaposhnikov, Sergey A; Collins, Andrew R

    2012-05-20

    Terbuthylazine and carbofuran are suspected to cause non-Hodgkin's lymphoma and lung cancer. We evaluated the effects of prolonged exposure to low concentrations on primary DNA damage by comet assay, and on the structural integrity of c-Myc and TP 53 genes by FISH-comet. Another novelty in studying these pesticides' genotoxicity is the use of 14-day extended-term human lymphocyte cultures. Concentrations corresponded to values of ADI and OEL: for terbuthylazine 0.58 ng/ml and 8 ng/ml; for carbofuran 8 ng/ml and 21.6 ng/ml, respectively. A possible effect of metabolic activation (S9) was also considered. Carbofuran treatment induced a significant migration of DNA into the tail in a concentration-dependent manner, while for terbuthylazine the effect was significant only at the higher concentration. Terbuthylazine caused migration of both c-Myc signals into the comet tail. A significant occurrence of TP 53 signals in the tail was observed at 8 ng/ml. Prolonged carbofuran treatment significantly elevated the migration of a single c-Myc signal into the tail in a concentration-dependent manner. With S9, distribution of signals shifted toward increased presence of both signals in tail. Our results showed impaired structural integrity of c-Myc and TP 53 due to prolonged exposure to terbuthylazine and carbofuran.

  1. EFFECT OF ACTIVE COMPOUNDS ISOLATED FROM PTERIS SEMIPINNATA L ON DNA TOPOISOMERASES AND TYROSINE PROTEIN KINASE AND EXPRESSION OF C-MYC IN LUNG ADENOCARCINOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    李金华; 梁念慈; 莫丽儿; 张晓; 何承伟

    2001-01-01

    Objective: To study the effect of active compound 6F and A from Pteris semipinnata L.(PsL) on the activities of DNA topoisomerase (TOPO) I and II, activities of cytosolic and membrane TPK, and expression of oncogene c-myc in lung adenocarcinoma cells. Methods: The effect of compound 6F and A on activities of cytosolic and membrane TPK was measured by scintillation counting; the effect of compound A on expression of oncogene c-myc was determined by flow cytometry indirect fluorimetry. Results: compound 6F and A could inhibit the activities of TOPO I, and they strongly inhibited the TOPO II in 0.01 mg/L and 10.0 mg/L respectively. Compound A slightly inhibited the activities of membrane TPK, but not the cytosolic one. Compound A could inhibit the expression of oncogene c-myc. Conclusion: Topoisomerases are target of compound 6F and A. Compound A could slightly inhibit the activities of TPK, and showed an inhibitory effect on the expression of oncogene c-myc.

  2. Function of apoptosis and expression of the proteins Bcl-2, p53 and C-myc in the development of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    An Gao Xu; Shao Guang Li; Ji Hong Liu; Ai Hua Gan

    2001-01-01

    @@INTRODUCTION In China ,the incidence and mortality of gastric cancer rank the second among all cancers. Recent development of cancer [1-20].The aim of this study was investigat the insight of apoptosis and bcl-2, p53 and C-myc protein expression in the development of gastric cancer .

  3. Triplex-forming oligonucleotides targeting c-MYC potentiate the anti-tumor activity of gemcitabine in a mouse model of human cancer.

    Science.gov (United States)

    Boulware, Stephen B; Christensen, Laura A; Thames, Howard; Coghlan, Lezlee; Vasquez, Karen M; Finch, Rick A

    2014-09-01

    Antimetabolite chemotherapy remains an essential cancer treatment modality, but often produces only marginal benefit due to the lack of tumor specificity, the development of drug resistance, and the refractoriness of slowly proliferating cells in solid tumors. Here, we report a novel strategy to circumvent the proliferation-dependence of traditional antimetabolite-based therapies. Triplex-forming oligonucleotides (TFOs) were used to target site-specific DNA damage to the human c-MYC oncogene, thereby inducing replication-independent, unscheduled DNA repair synthesis (UDS) preferentially in the TFO-targeted region. The TFO-directed UDS facilitated incorporation of the antimetabolite, gemcitabine (GEM), into the damaged oncogene, thereby potentiating the anti-tumor activity of GEM. Mice bearing COLO 320DM human colon cancer xenografts (containing amplified c-MYC) were treated with a TFO targeted to c-MYC in combination with GEM. Tumor growth inhibition produced by the combination was significantly greater than with either TFO or GEM alone. Specific TFO binding to the genomic c-MYC gene was demonstrated, and TFO-induced DNA damage was confirmed by NBS1 accumulation, supporting a mechanism of enhanced efficacy of GEM via TFO-targeted DNA damage-induced UDS. Thus, coupling antimetabolite chemotherapeutics with a strategy that facilitates selective targeting of cells containing amplification of cancer-relevant genes can improve their activity against solid tumors, while possibly minimizing host toxicity. PMID:23681918

  4. Effect of Neem Leaf Extract (Azadirachta indica on c-MycOncogene Expression in 4T1 Breast Cancer Cells of BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Chong Pei Pei

    2012-01-01

    Full Text Available Objective: Breast cancer is the most common cause of cancer-related deaths in women both worldwide and in Malaysia. Azadirachta indica (A. Juss, commonly known as neem, is one of the most versatile medicinal plants that has gained worldwide prominence due to its medicinal properties. However, the anticancer effect of ethanolic neem leaf extract against breast cancer has not been documented. The purpose of the present study is to investigate the effect of neem leaf extract on c-Myc oncogene expression in 4T1 breast cancer BALB/c mice.Materials and Methods: In this experimental study, A total of 48 female BALB/c mice were divided randomly into four groups of 12 mice per group: i.cancer control (CC treated with 0.5% Tween 20 in PBS, ii. 0.5 μg/mL tamoxifen citrate (CT, iii. 250 mg/kg neem leaf extract (C250, and iv. 500 mg/kg neem leaf extract (C500. In situ reverse transcription polymerase chain reaction (in situ RT-PCR was applied to evaluate suppression of c-Myc oncogene expression in breast cancer tissue.Results: The C500 group showed significant (p<0.05 suppression of c-Myc oncogene expression compared to the CC group.Conclusion: c-Myc was found to be down regulated under the effect of 500 mg/kg ethanolicneem leaf extract.

  5. Labdane type diterpenes down-regulate the expression of c-Myc protein, but not of Bcl-2, in human leukemia T-cells undergoing apoptosis.

    Science.gov (United States)

    Dimas, K; Demetzos, C; Vaos, V; Ioannidis, P; Trangas, T

    2001-06-01

    Sclareol (1) and ent-3beta-hydroxy-13-epi-manoyl oxide (2) belong to the labdane type diterpenes. They were isolated from the leaves and from the fruits of Cistus creticus subsp. creticus, and were found to be active against human leukemic cell lines. Compound 2 was converted to its thiomidazolide derivative (3). Compounds 1 and 3 were found to induce apoptotic cell death in human T-cell leukemia lines and to interfere with their cell cycle, arresting cells at G(0/1) phase. Apoptosis can involve the activation and/or suppression of critical genes such as c-myc whose reduction or its inappropriate expression can be associated with induction of cell death and bcl-2 whose activation prevents apoptosis in the latter case. In order to detect any concomitant effect (1 and 3) upon c-myc and bcl-2 oncogene expression, we performed Western blot analysis to determine the levels of expression of these two genes upon treatment with the above compounds. Western blot analysis showed that of c-myc proto-oncogene levels were markedly reduced before massive apoptosis ensued in H33AJ-JA1 and MOLT3 cells, while bcl-2 expression remained unaffected. Thus, induction of apoptosis due to compounds 1 and 3 in these T-cell leukemic cell lines is preceded by c-myc down regulation and furthermore sustained bcl-2 expression does not rescue cells from apoptosis under the conditions used. PMID:11337016

  6. Hemichannels: new roles in astroglial function

    Directory of Open Access Journals (Sweden)

    Jimmy eStehberg

    2014-06-01

    Full Text Available The role of astrocytes in brain function has evolved over the last decade, from support cells to active participants in the neuronal synapse through the release of gliotransmitters. Astrocytes express receptors for most neurotransmitters and respond to them through Ca2+ intracellular oscillations and propagation of intercellular Ca2+ waves. While such waves are able to propagate among neighboring astrocytes through gap junctions, thereby activating several astrocytes simultaneously, they can also trigger the release of gliotransmitters, including glutamate, d-serine, glycine, ATP, adenosine or GABA. There are several mechanisms by which gliotransmitter release occurs, including functional hemichannels. These gliotransmitters can activate neighboring astrocytes and participate in the propagation of intercellular Ca2+ waves, or activate pre- and post-synaptic receptors, including NMDA, AMPA and purinergic receptors. In consequence, hemichannels could play a pivotal role in astrocyte-to-astrocyte communication and astrocyte-to-neuron cross-talk. Recent evidence suggests that astroglial hemichannels are involved in higher brain functions including memory and glucose sensing. The present review will focus on the role of hemichannels in astrocyte-to-astrocyte and astrocyte-to neuron communication and in brain physiology.

  7. Resveratrol prevents ammonia toxicity in astroglial cells.

    Directory of Open Access Journals (Sweden)

    Larissa Daniele Bobermin

    Full Text Available Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS. Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS, GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA and extracellular signal-regulated kinase (ERK pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity.

  8. The inhibition effects of the c-myc targeting CRISPR/Cas9 adenovirus system on hepatoma cells%靶向 c-myc 基因的 CRISPR/Cas9腺病毒系统对肝癌的抑制作用

    Institute of Scientific and Technical Information of China (English)

    连竹生; 梁鑫; 金桂花; 吴领知; 韩苏夏

    2016-01-01

    目的:设计、构建并包装靶向 c-myc 基因的 CRISPR/Cas9腺病毒;评估靶向 c-myc 基因的 CRISPR/Cas9腺病毒系统对肝癌的抑制作用。方法:采用生物信息学网站设计靶向 c-myc 基因的 gRNA,以 GFP 作为对照设计GFP gRNA;通过 T7E1筛选出编辑效率高的 gRNA 并将筛选的 gRNA 构建 CRISPR/Cas9腺病毒载体并包装腺病毒,通过分析细胞增殖、周期和凋亡及迁移能力的变化来评估靶向 c-myc 基因的 CRISPR/Cas9腺病毒系统对肝癌的抑制作用。结果:成功设计、构建并包装靶向 c-myc 基因的 CRISPR/Cas9腺病毒;靶向 c-myc 基因的 CRISPR/Cas9腺病毒系统能够显著抑制 Hepa1-6细胞的增殖和迁移、阻滞细胞周期进程,但对细胞凋亡无影响。结论:靶向 c-myc 基因的 CRISPR/Cas9腺病毒系统可在细胞水平明显抑制肝癌细胞的生长。%Aim:To design,construct and package the CRISPR/Cas9 adenovirus system for targeting the mouse c-myc gene;To evaluate the inhibition efficiency of the constructed adenovirus system on c-myc gene in hepatoma cells.Methods:We designed gRNAs for targeting the mouse c-myc gcontrolene and used another gene (gRNAs for GFP)as control based on bioinformatics website.The editing efficiencies of these gRNAs were determined by T7E1 cleavage.The gRNAs with higher editing efficiency were se-lected and packed into adenovirus for the following experiments.Firstly,Hepa 1-6 cells were infected with the constructed adenovirus,then cell proliferation,cell cycle,cell apoptosis and migration assays were detected to de the inhibition efficiency of the adenovirus on hepatoma cells.Statistical analyses were performed with SPSS(version 18.0)and t-test,P <0.05 was considered statistically significant.Re-sults:The CRISPR/Cas9 adenovirus system targeting the mouse c-myc gene was successfully designed constructed and packaged.Compared with the control group,the experiment groups (with CRISPR/Cas9

  9. c-Myc quadruplex-forming sequence Pu-27 induces extensive damage in both telomeric and nontelomeric regions of DNA.

    Science.gov (United States)

    Islam, Md Ashraful; Thomas, Shelia D; Murty, Vundavalli V; Sedoris, Kara J; Miller, Donald M

    2014-03-21

    Quadruplex-forming DNA sequences are present throughout the eukaryotic genome, including in telomeric DNA. We have shown that the c-Myc promoter quadruplex-forming sequence Pu-27 selectively kills transformed cells (Sedoris, K. C., Thomas, S. D., Clarkson, C. R., Muench, D., Islam, A., Singh, R., and Miller, D. M. (2012) Genomic c-Myc quadruplex DNA selectively kills leukemia. Mol. Cancer Ther. 11, 66-76). In this study, we show that Pu-27 induces profound DNA damage, resulting in striking chromosomal abnormalities in the form of chromatid or chromosomal breaks, radial formation, and telomeric DNA loss, which induces γ-H2AX in U937 cells. Pu-27 down-regulates telomeric shelterin proteins, DNA damage response mediators (RAD17 and RAD50), double-stranded break repair molecule 53BP1, G2 checkpoint regulators (CHK1 and CHK2), and anti-apoptosis gene survivin. Interestingly, there are no changes of DNA repair molecules H2AX, BRCA1, and the telomere maintenance gene, hTERT. ΔB-U937, where U937 cells stably transfected with deleted basic domain of TRF2 is partially sensitive to Pu-27 but exhibits no changes in expression of shelterin proteins. However, there is an up-regulation of CHK1, CHK2, H2AX, BRCA1, and survivin. Telomere dysfunction-induced foci assay revealed co-association of TRF1with γ-H2AX in ATM deficient cells, which are differentially sensitive to Pu-27 than ATM proficient cells. Alt (alternating lengthening of telomere) cells are relatively resistant to Pu-27, but there are no significant changes of telomerase activity in both Alt and non-Alt cells. Lastly, we show that this Pu-27-mediated sensitivity is p53-independent. The data therefore support two conclusions. First, Pu-27 induces DNA damage within both telomeric and nontelomeric regions of the genome. Second, Pu-27-mediated telomeric damage is due, at least in part, to compromise of the telomeric shelterin protein complex.

  10. The function of apoptosis and protein expression of bcl-2, p53 and C-myc inthe development of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    An Gao Xu; Shao Guang Li; Ji Hong Liu; Ai Hua Gan

    2000-01-01

    AIM To understand the rule and possible function of apoptosis and protein expression of bcl-2, p53 and C-myc in chronic gastritis, gastric ulcer, non-classic proliferation of gastric mucosa and gastric cancer.METHODS Apoptosis was detected by using in situ terminal labelling (TUNEL). The protein expression ofbcl-2, p53 and C-myc was detected by immunohistochemical method.RESULTS The indexes of apoptosis in chronic active gastritis, gastric ulcer, mild and severe non-classicproliferation of gastric mucosa, early and progressive gastric cancer were 16.8%±12.3%, 24.1%±20.0%,19.3%±16.4%, 15.7%±15.2%, 10.1%±9.1% and 6.3%±6.0%, respectively. The index of progressivegastric cancer was lower than that of early gastric cancer and non-classic proliferation of gastric mucosa(P<0.05). The positive rate of bcl-2 protein was 9.4%, 27.6%, 52.9%, 75.0%, 83.3% and 46.7%,respectively. The positive rate of bcl-2 of early gastric cancer was higher than that of progressive gastriccancer. The positive rates of p53 protein of severe non-classic proliferation, early and progressive gastriccancer were 25.0%, 33.3% and 63.3%, respectively. The positive rate of p53 of progressive gastric cancerwas higher than that of early gastric cancer and non-classic proliferation (P<0.05). In Lauren types, theindex of apoptosis, protein expression rates of bcl-2, p53 and C-myc of intestinal type were 8.3%±7.2%,38.9%, 77.7% and 56.6%, while that of diffuse type were 5.1%±4.9%, 58.3%, 50.0% and 8.3%,respectively. All markers had statistical difference between two types (P<0.05).CONCLUSION Apoptosis was inhibited stepwise in the development of non-classic proliferation of gastricmucosa to early gastric cancer and then to progressive gastric cancer. The high expression of bcl-2, p53 andC-myc was related to the development of gastric cancer, bcl-2 might play an important role in early gastriccancer while p53 and C-myc act mostly in middle and late stage gastric cancer. The Lauren typing of

  11. Pokemon、c-myc在结直肠癌中的表达及意义%EXPRESSION AND CLINICAL SIGNIFICANCE OF POKEMON AND C-MYC IN COLORECTAL CANCER

    Institute of Scientific and Technical Information of China (English)

    刘叔敏; 范玉磊; 梁婷婷; 孙影

    2014-01-01

    目的:探讨结直肠癌组织Pokemon和c-myc蛋白表达的变化和意义。方法:SP免疫组化法检测60例结直肠癌组织和癌旁正常组织Pokemon和c-myc蛋白的表达情况。结果:结直肠癌组织Pokemon和c-myc蛋白的阳性表达率均明显高于正常组织(P<0.01);结直肠癌组织Pokemon和c-myc蛋白的阳性表达与分化程度、Dukes分期和淋巴结转移有关(P<0.01,P<0.05);结直肠癌组织中,Pokemon和c-myc蛋白的表达呈显著正相关(r=0.615,P<0.05)。结论:Pokemon和c-myc对结直肠癌的诊断和预后评判具有一定的价值。%Objective: To investigate the expression and clinical significance of Pokemon and c-myc in human colorectal cancer.Methods: SP immunohistochemical staining was used to detect the expression of Pokemon and c-myc in 60 cases colorectal cancer and matched para-carcinoma tissues.Results:The positive expression rate of Pokemon and c-myc in colorectal cancer were obviously higher than that in normal tissue (P<0.01). In colorectal cancer, the positive expression of Pokemon and c-myc were related with differentiation degree, Dukes stage and lymph node metastasis (P<0.01,P<0.05). The positive expression of Pokemon in colorectal cancer was positively correlated with c-myc expression (r=0.615,P<0.05). Conclusions: Pokemon and c-myc have certain value for diagnosing and prognosis of colorectal cancer.

  12. A Comparative Docking Strategy to Identify Polyphenolic Derivatives as Promising Antineoplastic Binders of G-quadruplex DNA c-myc and bcl-2 Sequences.

    Science.gov (United States)

    Costa, Giosuè; Rocca, Roberta; Moraca, Federica; Talarico, Carmine; Romeo, Isabella; Ortuso, Francesco; Alcaro, Stefano; Artese, Anna

    2016-09-01

    Polyphenols are compounds ubiquitously expressed in plants and used for their multiple healthy effects in humans as anti-inflammatory, antimicrobial, antiviral, anticancer and immunomodulatory agents. Due to their ability to modulate the activity of multiple targets involved in carcinogenesis, polyphenols can be employed to inhibit the growth of cancer cells. Several studies reported their high affinity to different G-quadruplex DNA structures, including the oncogene promoters c-myc and bcl-2. In this work we applied a structure-based virtual screening approach in order to screen a database of polyphenolic derivatives and human metabolites against both c-myc and bcl-2 DNA G-quadruplex structures. A Delphinidine derivative was identified as the best "dual" candidate and, after molecular dynamics simulations, resulted able to well stabilize both receptors. PMID:27546043

  13. Mutations induced at the promoter region of the c-myc gene due to dual exposure to ionizing radiation and methyl nitroso urea

    International Nuclear Information System (INIS)

    Malignant tumors were arising from a sequence of events including mutation in proto-oncogenes and tumor suppressor genes.The accretion of these mutations is apparently facilitated by acquired or inherited defects inguardianmechanisms that maintain the integrity of the cellular genome. The proto-oncogene c-myc, which is frequently over expressed in tumors at the center of a transcription factor network, requlates cellular proliferation replicate potential, growth, differentiation and apoptosis. Expression of c-myc is down reglated during differentiation and is rapidly induced by a diverse catalog of mutagens including ionizing radiation and many alkylating agents. In the present study, the dual exposure to methyl nitroso urea(MNU) and ionizing radiation were assessed. These induced effects were assessed histopathologically and biochemically and were correlated at the molecular level by assessing single strand conformation polymorphism (SSCP)

  14. In vivo MRS assessment of altered fatty acyl unsaturation in liver tumor formation of a TGFα/c-myc transgenic mouse model*

    OpenAIRE

    Griffitts, J.; Tesiram, Y.; Reid, G. E.; Saunders, D; Floyd, R A; Towner, R. A.

    2009-01-01

    Current detection methods (computed tomography, ultrasound, and MRI) for hepatocarcinogenesis in humans rely on visual confirmation of neoplastic formations. A more effective early detection method is needed. Using in vivo magnetic resonance spectroscopy (MRS), we show that alterations in the integral ratios of the bis-allyl to vinyl hydrogen protons in unsaturated lipid fatty acyl groups correlate with the development of neoplastic formations in vivo in a TGFα/c-myc mouse hepatocellular carc...

  15. Assessment of the effect of betaine on p16 and c-myc DNA methylation and mRNA expression in a chemical induced rat liver cancer model

    Directory of Open Access Journals (Sweden)

    Ling Wen-hua

    2009-07-01

    Full Text Available Abstract Background The development and progression of liver cancer may involve abnormal changes in DNA methylation, which lead to the activation of certain proto-oncogenes, such as c-myc, as well as the inactivation of certain tumor suppressors, such as p16. Betaine, as an active methyl-donor, maintains normal DNA methylation patterns. However, there are few investigations on the protective effect of betaine in hepatocarcinogenesis. Methods Four groups of rats were given diethylinitrosamine (DEN and fed with AIN-93G diets supplemented with 0, 10, 20 or 40 g betaine/kg (model, 1%, 2%, and 4% betaine, respectively, while the control group, received no DEN, fed with AIN-93G diet. Eight or 15 weeks later, the expression of p16 and c-myc mRNA was examined by Real-time PCR (Q-PCR. The DNA methylation status within the p16 and c-myc promoter was analyzed using methylation-specific PCR. Results Compared with the model group, numbers and areas of glutathione S-transferase placental form (GST-p-positive foci were decreased in the livers of the rats treated with betaine (P . Although the frequency of p16 promoter methylation in livers of the four DEN-fed groups appeared to increase, there is no difference among these groups after 8 or 15 weeks (P > 0.05. Betaine supplementation attenuated the down-regulation of p16 and inhibited the up-regulation of c-myc induced by DEN in a dose-dependent manner (P P . Finally, enhanced antioxidative capacity (T-AOC was observed in both the 2% and 4% betaine groups. Conclusion Our data suggest that betaine attenuates DEN-induced damage in rat liver and reverses DEN-induced changes in mRNA levels.

  16. Cytotoxic effect of γ-sitosterol from Kejibeling (Strobilanthes crispus and its mechanism of action towards c-myc gene expression and apoptotic pathway

    Directory of Open Access Journals (Sweden)

    Susi Endrini

    2015-01-01

    Full Text Available Background: This study aimed to analyze the cytotoxicity effect of γ-sitosterol isolated from “Kejibeling” (Strobilanthes crispus, a medicinal plant, on several cancer cell lines. The mechanisms of the effects were studied through the expression of cancer-caused gene, c-myc and apoptotic pathways.Methods: This in vitro study was done using human colon cancer cell lines (Caco-2, liver cancer cell lines (HepG2, hormone-dependent breast cancer cell lines (MCF-7 and the normal liver cell lines (Chang Liver. The cytotoxic effect was measured through MTT assay and the potential cytotoxic value was calculated by determining the toxic concentration which may kill up to 50% of the total cell used (IC50. Meanwhile, the cytotoxic mechanism was studied by determining the effect of adding γ-sitosterol to the c-myc gene expression by reverse transciptase-polymerase chain reaction (RT-PCR. The effect of γ-sitosterol through apoptotic pathway was studied by using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay.Results: γ-sitosterol was cytotoxic against Caco-2, HepG2, and MCF-7 with IC50-values of 8.3, 21.8, and 28.8 μg/mL, respectively. There were no IC50-values obtained from this compound against Chang Liver cell line. This compound induced apotosis on Caco-2 and HepG2 cell lines and suppressed the c-myc genes expression in both cells.Conclusion: γ-sitosterol was cytotoxic against colon and liver cancer cell lines and the effect was mediated by down-regulation of c-myc expression and induction of the apoptotic pathways.

  17. Growth inhibition and apoptosis induced by daunomycin-conjugated triplex-forming oligonucleotides targeting the c-myc gene in prostate cancer cells

    OpenAIRE

    Napoli, Sara; Negri, Umberto; Arcamone, Federico; Capobianco, Massimo L.; Giuseppina M. Carbone; Catapano, Carlo V

    2006-01-01

    Covalent attachment of intercalating agents to triplex-forming oligonucleotides (TFOs) is a promising strategy to enhance triplex stability and biological activity. We have explored the possibility to use the anticancer drug daunomycin as triplex stabilizing agent. Daunomycin-conjugated TFOs (dauno-TFOs) bind with high affinity and maintain the sequence-specificity required for targeting individual genes in the human genome. Here, we examined the effects of two dauno-TFOs targeting the c-myc ...

  18. Triplex-forming oligonucleotides targeting c-MYC potentiate the anti-tumor activity of gemcitabine in a mouse model of human cancer

    OpenAIRE

    Boulware, Stephen B.; Christensen, Laura A.; Thames, Howard; Coghlan, Lezlee; Vasquez, Karen M.; Finch, Rick A.

    2013-01-01

    Antimetabolite chemotherapy remains an essential cancer treatment modality, but often produces only marginal benefit due to the lack of tumor specificity, the development of drug resistance, and the refractoriness of slowly-proliferating cells in solid tumors. Here, we report a novel strategy to circumvent the proliferation-dependence of traditional antimetabolite-based therapies. Triplex-forming oligonucleotides (TFOs) were used to target site-specific DNA damage to the human c-MYC oncogene,...

  19. A novel rapid-onset high-penetrance plasmacytoma mouse model driven by deregulation of cMYC cooperating with KRAS12V in BALB/c mice

    International Nuclear Information System (INIS)

    Our goal is to develop a rapid and scalable system for functionally evaluating deregulated genes in multiple myeloma (MM). Here, we forcibly expressed human cMYC and KRAS12V in mouse T2 B cells (IgM+B220+CD38+IgD+) using retroviral transduction and transplanted these cells into lethally irradiated recipient mice. Recipients developed plasmacytomas with short onset (70 days) and high penetrance, whereas neither cMYC nor KRAS12V alone induced disease in recipient mice. Tumor cell morphology and cell surface biomarkers (CD138+B220−IgM−GFP+) indicate a plasma cell neoplasm. Gene set enrichment analysis further confirms that the tumor cells have a plasma cell gene expression signature. Plasmacytoma cells infiltrated multiple loci in the bone marrow, spleen and liver; secreted immunoglobulins; and caused glomerular damage. Our findings therefore demonstrate that deregulated expression of cMYC with KRAS12V in T2 B cells rapidly generates a plasma cell disease in mice, suggesting utility of this model both to elucidate molecular pathogenesis and to validate novel targeted therapies

  20. A Novel PTEN/Mutant p53/c-Myc/Bcl-XL Axis Mediates Context-Dependent Oncogenic Effects of PTEN with Implications for Cancer Prognosis and Therapy

    Directory of Open Access Journals (Sweden)

    Xiaoping Huang

    2013-08-01

    Full Text Available Phosphatase and tensin homolog located on chromosome 10 (PTEN is one of the most frequently mutated tumor suppressors in human cancer including in glioblastoma. Here, we show that PTEN exerts unconventional oncogenic effects in glioblastoma through a novel PTEN/mutant p53/c-Myc/Bcl-XL molecular and functional axis. Using a wide array of molecular, genetic, and functional approaches, we demonstrate that PTEN enhances a transcriptional complex containing gain-of-function mutant p53, CBP, and NFY in human glioblastoma cells and tumor tissues. The mutant p53/CBP/NFY complex transcriptionally activates the oncogenes c-Myc and Bcl-XL, leading to increased cell proliferation, survival, invasion, and clonogenicity. Disruption of the mutant p53/c-Myc/Bcl-XL axis or mutant p53/CBP/NFY complex reverses the transcriptional and oncogenic effects of PTEN and unmasks its tumor-suppressive function. Consistent with these data, we find that PTEN expression is associated with worse patient survival than PTEN loss in tumors harboring mutant p53 and that a small molecule modulator of p53 exerts greater antitumor effects in PTEN-expressing cancer cells. Altogether, our study describes a new signaling pathway that mediates context-dependent oncogenic/tumor-suppressive role of PTEN. The data also indicate that the combined mutational status of PTEN and p53 influences cancer prognosis and anticancer therapies that target PTEN and p53.

  1. Induction of C-FOS, C-MYC and P53 by US -adrenergic receptor (US -AR) stimulation of rat parotid acinar cells (RPAC)

    Energy Technology Data Exchange (ETDEWEB)

    Kousvelari, E.E.; Louis, J.; Curran, T.; Baum, B.J.

    1987-05-01

    Treatment of rats with the US -agonist isoproterenol (ISO) results in dramatically increased parotid gland protein synthesis, processing and cell proliferation. The authors have shown that in RPAC in vitro, US -AR stimulation has similar effect on protein synthesis and processing. Proto-oncogenes have been implicated in growth regulation, differentiation and in mediating some extracellular stimulated events at the level of gene expression. To understand the regulation of cellular events after US -AR stimulation, the expression of c-fos, c-myc and p53 was investigated. RPAC were incubated with or without 10 VM ISO for 15, 30, 60 min. mRNA was isolated from cells and hybridization analysis was performed on nitrocellulose paper-transferred mRNA using TSP-labeled DNA probes. At early time points, the levels of c-fos gene activation in ISO-treated and control cells were comparable. After 60 min of ISO treatment, a sharp 20-30 fold induction of c-fos expression occurred. Similar increases in c-myc and p53 gene expression were observed after 60 min of ISO treatment. The authors data indicate that early effects of US -AR stimulation of RPAC include induction of c-fos, c-myc and p53 gene expression as well as enhanced protein synthesis and processing.

  2. Susceptibility of striatal neurons to excitotoxic injury correlates with basal levels of Bcl-2 and the induction of P53 and c-Myc immunoreactivity.

    Science.gov (United States)

    Liang, Zhong-Qin; Wang, Xiao-Xia; Wang, Yumei; Chuang, De-Maw; DiFiglia, Marian; Chase, Thomas N; Qin, Zheng-Hong

    2005-11-01

    The present studies evaluated the potential contribution of Bcl-2, p53, and c-Myc to the differential vulnerability of striatal neurons to the excitotoxin quinolinic acid (QA). In normal rat striatum, Bcl-2 immunoreactivity (Bcl-2-i) was most intense in large aspiny interneurons including choline acetyltransferase positive (CAT+) and parvalbumin positive (PARV+) neurons, but low in a majority of medium-sized neurons. In human brain, intense Bcl-2-i was seen in large striatal neurons but not in medium-sized spiny projection neurons. QA produced degeneration of numerous medium-sized neurons, but not those enriched in Bcl-2-i. Many Bcl-2-i-enriched interneurons including those with CAT+ and PARV+ survived QA injection, while medium-sized neurons labeled for calbindin D-28K (CAL D-28+) did not. In addition, proapoptotic proteins p53-i and c-Myc-i were robustly induced in medium-sized neurons, but not in most large neurons. The selective vulnerability of striatal medium spiny neurons to degeneration in a rodent model of Huntington's disease appears to correlate with their low levels of Bcl-2-i and high levels of induced p53-i and c-Myc-i. PMID:15922606

  3. Abrupt reduction of c-myc expression by antisense RNA inducing terminal differentiation and apoptosis of a human esophageal cancer cell line

    Institute of Scientific and Technical Information of China (English)

    赵晓航; 王秀琴; 周传农; 彭仁玲; 阎水中; 吴旻

    1995-01-01

    A human esophageal cancer cell line (EC8712) expressing high-level Myc protein was infected with recombmant retroviral particles (pA-BD9) at a multiplicity of infection (MOI) 1:1. This viral particle contains a neomycin-resistant gene and a 1.53-kb antisense RNA spanning the 2nd exon and its flanking sequences of the human c-myc oncogene. The G418-resistant EC8712 clones showed an 86% inhibition of growth rate and morphological changes characteristic of terminal differentiation and apoptosis. A decrease of about 80% of Myc protein was also observed in these infected cells by ABC-ELISA assay. 12-24 h after the infection of ECS712 cells with pA-BD9 at a high viral particle concentration (MOI = 1:10), the integration of the extrinsic 1.53-kb antisense c-myc fragment into the cancer cell genome was evidenced by the Southern blot analysis. Northern blot analyses showed the expression of this antisense fragment and a decrease of the intrinsic c-myc expression by 74% in comparison with that of the parental EC8

  4. INCREASED EXPRESSION OF PDGF AND C-MYC GENES IN LUNGS AND PULMONARY ARTERIES OF PULMONARY HYPERTENSIVE RATS INDUCED BY HYPOXIA

    Institute of Scientific and Technical Information of China (English)

    蔡英年; 韩梅; 罗兰; 宋为; 周晓梅

    1996-01-01

    The role of growth factors and proto-oncogene in pulmonary vascular structural remodelling is not well known.The present study examined gene expression of plateler-derived growth factor(PDGF)-A and -B chain and proto-oncogene,c-myc,in lung tissue and pulmonary artery of rats exposed to hypoxia and compred to those levels of gene expression in normal rats.Normal lungs and pulmonary artery expressed PDGF-A chain transcripr of 1.7kb and PDGF-B chain transcript of 3.5 Kb. The c-myc transcript of 2.2 kb was expressed as well.After hypoxic exposure for 7 and 14 days mRNA levels of PDGF-B chain and c-myc were elevated significantly compared with those of control rats.PDGF-A chain mRNA increased after hypoxia for 7 days,and then declined.These results suggest that activation of sutocrine and /or paracrine is important in proliferation mechanism of pulmonary artery smooth muscle cells in bypoxic pulmonary hypertensive rats.

  5. 艾灸对实验性类风湿关节炎滑膜细胞原癌基因 c-fos和c-myc mRNA表达的影响%Effects of moxibustion on the expression of protooncogene c-fos and c-myc mRNA in experimental arthritis

    Institute of Scientific and Technical Information of China (English)

    余俊辉; 刘旭光; 余曙光; 蔡美英; 周昌华; 赵宗蓉; 张平

    2005-01-01

    目的观察艾灸对实验性类风湿关节炎滑膜细胞原癌基因c-fos、c-myc mRNA表达的影响,初步探讨艾灸对RA滑膜细胞内分子信号传导的调控.方法在日本大耳白兔右后足踝关节部皮内注射福氏完全佐剂造模,经过艾灸治疗,通过半定量RT-PCR测定c-fos和c-myc mRNA的表达量.结果治疗组c-fos和c-myc mRNA表达量显著低于造模组(P<0.01).结论艾灸治疗能够降低c-fos和c-myc mRNA的表达,影响生长因子信号传导系统.

  6. C-MYC and BCL2 translocation frequency in diffuse large B-cell lymphomas: A study of 97 patients

    Directory of Open Access Journals (Sweden)

    Bahar Akkaya

    2016-01-01

    Full Text Available Purpose: Diffuse large B-cell lymphoma (DLBCL is an aggressive non-Hodgkin lymphoma with marked biologic heterogeneity. MYC and BCL2 rearrangements have been reported in a proportion of DLBCLs, where they may be associated with an adverse clinical outcome. The aim of this study was to determine the frequency of MYC and BCL2 translocations in DLBCL and assess the prognostic impact in DLBCL patients. Materials and Methods:   In the present study, we evaluated the expression patterns of CD 10, BCL6, and MUM 1 by immunohistochemistry in 121 cases with DLBCL in tissue microarray (TMA: 62 cases in germinal center B-cells (GCBs; and 59 cases in activated B-cells (ABCs of which 60 were females and 61 were males. MYC and BCL2 rearrangements were investigated by interphase fluorescence in situ hybridization on TMAs in 97 DLBCLs. Result: MYC rearrangements were observed in 11 of 97 cases. There was no association with other clinical features, including age, sex, and nodal/extranodal disease. MYC rearrangement was associated with significantly worse overall survival (P < 0.01. BCL2 rearrangements were observed in 14 of 97 cases. There was no association with other clinical features including age and sex. BCL2 rearrangement had a worse outcome (P < 0.01. MYC and BCL2 rearrangements were observed in 3 of 97 cases with the age of  53 (female, 53, 63 years old, respectively, died in 24, 18, and 35 months after the diagnosis. Two cases had primary nodal and one case primary extranodal presentations. All these patients had stage IV disease. Conclusion: We concluded that C-MYC and BCL2 may contribute to aggressive transformation, and more mechanism-based therapy should be explored. Targeted therapies involving these rearrangements and its associated pathways may change the fate of DLBCLs. Analysis of MYC gene rearrangement along with BCL2 is critical in the identification of high-risk patients with poor prognosis.

  7. Establishment of c-myc-immortalized Kupffer cell line from a C57BL/6 mouse strain

    Directory of Open Access Journals (Sweden)

    Hiroshi Kitani

    2014-01-01

    Full Text Available We recently demonstrated in several mammalian species, a novel procedure to obtain liver-macrophages (Kupffer cells in sufficient numbers and purity using a mixed primary culture of hepatocytes. In this study, we applied this method to the C57BL/6 mouse liver and established an immortalized Kupffer cell line from this mouse strain. The hepatocytes from the C57BL/6 adult mouse liver were isolated by a two-step collagenase perfusion method and cultured in T25 culture flasks. Similar to our previous studies, the mouse hepatocytes progressively changed their morphology into a fibroblastic appearance after a few days of culture. After 7–10 days of culture, Kupffer-like cells, which were contaminants in the hepatocyte fraction at the start of the culture, actively proliferated on the mixed fibroblastic cell sheet. At this stage, a retroviral vector containing the human c-myc oncogene and neomycin resistance gene was introduced into the mixed culture. Gentle shaking of the culture flask, followed by the transfer and brief incubation of the culture supernatant, resulted in a quick and selective adhesion of Kupffer cells to a plastic dish surface. After selection with G418 and cloning by limiting dilutions, a clonal cell line (KUP5 was established. KUP5 cells displayed typical macrophage morphology and were stably passaged at 4–5 days intervals for more than 5 months, with a population doubling time of 19 h. KUP5 cells are immunocytochemically positive for mouse macrophage markers, such as Mac-1, F4/80. KUP5 cells exhibited substantial phagocytosis of polystyrene microbeads and the release of inflammatory cytokines upon lipopolysaccharide stimulation. Taken together, KUP5 cells provide a useful means to study the function of Kupffer cells in vitro.

  8. Chromosomal and Extrachromosomal Instability of the cyclin D2 Gene is Induced by Myc Overexpression

    Directory of Open Access Journals (Sweden)

    Sabine Mai

    1999-08-01

    Full Text Available We examined the expression of cyclins D1, D2, D3, and E in mouse B-lymphocytic tumors. Cyclin D2 mRNA was consistently elevated in plasmacytomas, which characteristically contain Myc-activating chromosome translocations and constitutive c-Myc mRNA and protein expression. We examined the nature of cyclin D2 overexpression in plasmacytomas and other tumors. Human and mouse tumor cell lines that exhibited c-Myc dysregulation displayed instability of the cyclin D2 gene, detected by Southern blot, fluorescent in situ hybridization (FISH, and in extrachromosomal preparations (Hirt extracts. Cyclin D2 instability was not seen in cells with low levels of c-Myc protein. To unequivocally demonstrate a role of c-Myc in the instability of the cyclin D2 gene, a Myc-estrogen receptor chimera was activated in two mouse cell lines. After 3 to 4 days of Myc-ERTm activation, instability at the cyclin D2 locus was seen in the form of extrachromosomal elements, determined by FISH of metaphase and interphase nuclei and of purified extrachromosomal elements. At the same time points, Northern and Western blot analyses detected increased cyclin D2 mRNA and protein levels. These data suggest that Myc-induced genomic instability may contribute to neoplasia by increasing the levels of a cell cycle—regulating protein, cyclin D2, via intrachromosomal amplification of its gene or generation of extrachromosomal copies.

  9. Nodal diffuse large B-cell lymphomas in children and adolescents: immunohistochemical expression patterns and c-MYC translocation in relation to clinical outcome.

    Science.gov (United States)

    Gualco, Gabriela; Weiss, Lawrence M; Harrington, William J; Bacchi, Carlos E

    2009-12-01

    Diffuse large B-cell lymphoma (DLBCL) is a very infrequent neoplasm in the pediatric age group; therefore there are very few studies on the immunophenotype or genetics of these cases. We studied a series of 16 patients with nodal DLBCL occurring in patients between 10 and 18 years of age. The cases were classified according to the 2008 World Health Organization classification criteria, with application of immunohistochemistry for the detection of CD10, BCL-6, and MUM1 proteins to divide the lymphomas into germinal center and nongerminal center types. In addition, TCL1, BCL-2 expression, and the Ki-67 proliferation index were evaluated by immunohistochemistry, and c-MYC and BCL2 translocations were evaluated by fluorescence in situ hybridization. All these parameters were correlated with clinical features and outcome. Our study revealed that centroblastic morphology and the germinal center type of DLBCL are more prevalent in these young patients (63%), with 37% containing a c-MYC translocation. Only 1 case showed a BCL2 translocation, reflecting a double-hit case with features intermediate between DLBCL and Burkitt lymphoma. We found a higher frequency of BCL-2 expression than previously reported, with no direct influence on the outcome of the disease in univariate or multivariate analysis. The expression of TCL1 has not been specifically studied in nodal pediatric DLBCL before; we found a 31% incidence of TCL1 expression. MUM1 expression was observed in 44% of the cases and these positive cases showed a significant negative impact on clinical outcome. TCL1 is directly and significantly associated with the presence of c-MYC and a high proliferative index. The germinal center and nongerminal center subtypes showed significant differences for both overall survival and disease-free interval. c-MYC translocation was found in 37% of patients, and had a favorable impact on clinical outcome. We conclude that nodal pediatric and adolescent DLBCL are mainly of the germinal

  10. Thiopurine methyltransferase predicts the extent of cytotoxicty and DNA damage in astroglial cells after thioguanine exposure.

    Directory of Open Access Journals (Sweden)

    Amira Hosni-Ahmed

    Full Text Available Thiopurine methyltransferase (Tpmt is the primary enzyme responsible for deactivating thiopurine drugs. Thiopurine drugs (i.e., thioguanine [TG], mercaptopurine, azathioprine are commonly used for the treatment of cancer, organ transplant, and autoimmune disorders. Chronic thiopurine therapy has been linked to the development of brain cancer (most commonly astrocytomas, and Tpmt status has been associated with this risk. Therefore, we investigated whether the level of Tpmt protein activity could predict TG-associated cytotoxicity and DNA damage in astrocytic cells. We found that TG induced cytotoxicity in a dose-dependent manner in Tpmt(+/+, Tpmt(+/- and Tpmt(-/- primary mouse astrocytes and that a low Tpmt phenotype predicted significantly higher sensitivity to TG than did a high Tpmt phenotype. We also found that TG exposure induced significantly more DNA damage in the form of single strand breaks (SSBs and double strand breaks (DSBs in primary astrocytes with low Tpmt versus high Tpmt. More interestingly, we found that Tpmt(+/- astrocytes had the highest degree of cytotoxicity and genotoxicity (i.e., IC(50, SSBs and DSBs after TG exposure. We then used human glioma cell lines as model astroglial cells to represent high (T98 and low (A172 Tpmt expressers and found that A172 had the highest degree of cytoxicity and SSBs after TG exposure. When we over-expressed Tpmt in the A172 cell line, we found that TG IC(50 was significantly higher and SSB's were significantly lower as compared to mock transfected cells. This study shows that low Tpmt can lead to greater sensitivity to thiopurine therapy in astroglial cells. When Tpmt deactivation at the germ-line is considered, this study also suggests that heterozygosity may be subject to the greatest genotoxic effects of thiopurine therapy.

  11. 氧化苦参碱对结肠癌LoVo细胞c-myc,PSMD9,CDK4mRNA表达的影响%Effect of Oxymatrine on Expression of c-myc, PSMD9 and CDK4 mRNA in Human Colon Carcinoma LoVo Cells

    Institute of Scientific and Technical Information of China (English)

    彭燕; 韩凌; 孙静; 危建安

    2012-01-01

    目的:探讨氧化苦参碱( oxymatrine,OM)抑制人结肠癌LoVo细胞增殖和诱导凋亡的分子作用机制.方法:采用流式细胞仪检测LoVo细胞凋亡率以及细胞周期分布;采用荧光定量PCR法检测0.25,0.5 g·L-1 OM对LoVo细胞增殖相关基因c -myc,蛋白酶调解因子9(PSMD9),CDK4的基因表达的影响.结果:0.5 g·L-1以下浓度的OM作用结肠癌LoVo细胞48 h,对细胞凋亡无明显影响.0.25 g·L-1 OM作用48 h时可明显抑制人结肠癌LoVo细胞c-myc基因表达(P<0.05).0.5g·L-1 OM作用48 h时可明显抑制LoVo细胞c-myc,CDK4的基因表达(P <0.01,P<0.01,).药物作用时间为96 h时,0.5g·L-1 OM可明显抑制c-myc,PSM D9,CDK4基因表达(P<0.05,或P<0.01).结论:较低剂量OM显著抑制人结肠癌LoVo细胞增殖的作用机制,可能与下调LoVo细胞c-myc,PSM D9,CDK4表达有关.%Objective: To explore the molecular mechanism of inhibiting colon cancer cell strein LoVo proliferation and inducing apoptosis by oxymatrine ( OM ) Method: Flow cytometry was used to detect the LoVo cells apoptosis and cell cycle distribution. Fluorescence quantitative PCR was used to detect cell proliferation-related genes like the c-myc, proteasome modulator 9 (PSMD9) , CDK4 gene expression when LoVo was treated with 0. 25, 0. 5 g · L-1OM. Result: OM had no significant effect on apoptosis in colon cancer LoVo cells when the treatment of OM lasted 48 h and the concentration was lower than 0.5, 0.25 g · L-1 OM can inhibit c-myc gene expression in LoVo when duration of action last 24 h ( P < 0. 05 ). When the dose increated to 0. 5 g · L-1 and duration of action was 48 h, OM could inhibit c-myc, CDK4 gene expression in LoVo cells (P <0. 01 , P < 0. 01). When duration of action was extended to 96 h, 0. 5 g · L-1 OM could inhibit the c-myc, PSMD9, CDK4 gene expression in LoVo cells ( P < 0. 05, P < 0. 01, P < 0. 01 ). Conclusion; OM at Lower dose could significantly inhibit the proliferation of human colon cancer Lo

  12. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O' Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained

  13. C-Myc induced compensated cardiac hypertrophy increases free fatty acid utilization for the citric acid cycle.

    Science.gov (United States)

    Olson, Aaron K; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly Priddy, Colleen; Isern, Nancy; Portman, Michael A

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam) injections. Isolated working hearts and (13)Carbon ((13)C)-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing (13)C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (Cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was assessed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contributions in NTG. Substrate utilization was not significantly altered in 3dMyc versus Cont. The free fatty acid FC was significantly greater in 7dMyc versus Cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to Cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes for the citric acid cycle did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the

  14. Repression of c-Myc and inhibition of G1 exit in cells conditionally overexpressing p300 that is not dependent on its histone acetyltransferase activity

    OpenAIRE

    Baluchamy, Sudhakar; Rajabi, Hasan N.; Thimmapaya, Rama; Navaraj, Arunasalam; Thimmapaya, Bayar

    2003-01-01

    p300 and cAMP response element binding protein (CREB)-binding protein (CBP) are two highly homologous, conserved transcriptional coactivators, and histone acetyltransferases (HATs) that link chromatin remodeling with transcription. Cell transformation by viral oncogene products such as adenovirus E1A and SV40 large T antigen depends on their ability to inactivate p300 and CBP. To investigate the role of p300 in cell-cycle progression, we constructed stable rat cell lin...

  15. Neuronal regulation of astroglial morphology and proliferation in vitro

    OpenAIRE

    1985-01-01

    To analyze the interdependence of neurons and astroglia during central nervous system development, a rapid method for purifying early postnatal cerebellar neurons and astroglia, and recombining them in vitro, has been developed. The influence of neurons on astroglial shape and proliferation has been evaluated with an in vitro model system previously used to describe the role of cerebellar astroglia in neuronal migration and positioning (Hatten, M. E., and R. K. H. Liem, 1981, J. Cell Biol., 9...

  16. Erlotinib-Cisplatin Combination Inhibits Growth and Angiogenesis through c-MYC and HIF-1α in EGFR-Mutated Lung Cancer In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Jasmine G. Lee

    2015-02-01

    Full Text Available Combination treatment for non–small cell lung cancer (NSCLC is becoming more popular due to the anticipation that it may be more effective than single drug treatment. In addition, there are efforts to genetically screen patients for specific mutations in light of attempting to administer specific anticancer agents that are most effective. In this study, we evaluate the anticancer and anti-angiogenic effects of low dose erlotinib-cisplatin combination in NSCLC in vitro and in vivo. In NSCLC cells harboring epidermal growth factor receptor (EGFR mutations, combination erlotinib-cisplatin treatment led to synergistic cell death, but there was minimal efficacy in NSCLC cells with wild-type EGFR. In xenograft models, combination treatment also demonstrated greater inhibition of tumor growth compared to individual treatment. The anti-tumor effect observed was secondary to the targeting of angiogenesis, evidenced by decreased vascular endothelial growth factor (VEGF levels and decreased levels of CD31 and microvessel density. Combination treatment targets angiogenesis through down-regulation of the c-MYC/hypoxia inducible factor 1-alpha (HIF-1α pathway. In fact, cell lines with EGFR exon 19 deletions expressed high basal levels of c-MYC and HIF-1α and correlate with robust responses to combination treatment. These results suggest that low dose erlotinib-cisplatin combination exhibits its anti-tumor activity by targeting angiogenesis through the modulation of the c-MYC/HIF-1α/VEGF pathway in NSCLC with EGFR exon 19 deletions. These findings may have significant clinical implications in patients with tumors harboring EGFR exon 19 deletions as they may be particularly sensitive to this regimen.

  17. Liver tumor formation by a mutant retinoblastoma protein in the transgenic mice is caused by an upregulation of c-Myc target genes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Hikosaka, Keisuke; Sultana, Nishat; Sharkar, Mohammad Tofael Kabir [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Noritake, Hidenao [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Kimura, Wataru; Wu, Yi-Xin [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Kobayashi, Yoshimasa [Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Uezato, Tadayoshi [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Miura, Naoyuki, E-mail: nmiura@hama-med.ac.jp [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fifty percent of the mutant Rb transgenic mice produced liver tumors. Black-Right-Pointing-Pointer In the tumor, Foxm1, Skp2, Bmi1 and AP-1 mRNAs were up-regulated. Black-Right-Pointing-Pointer No increase in expression of the Myc-target genes was observed in the non-tumorous liver. Black-Right-Pointing-Pointer Tumor formation depends on up-regulation of the Myc-target genes. -- Abstract: The retinoblastoma (Rb) tumor suppressor encodes a nuclear phosphoprotein that regulates cellular proliferation, apoptosis and differentiation. In order to adapt itself to these biological functions, Rb is subjected to modification cycle, phosphorylation and dephosphorylation. To directly determine the effect of phosphorylation-resistant Rb on liver development and function, we generated transgenic mice expressing phosphorylation-resistant human mutant Rb (mt-Rb) under the control of the rat hepatocyte nuclear factor-1 gene promoter/enhancer. Expression of mt-Rb in the liver resulted in macroscopic neoplastic nodules (adenomas) with {approx}50% incidence within 15 months old. Interestingly, quantitative reverse transcriptase-PCR analysis showed that c-Myc was up-regulated in the liver of mt-Rb transgenic mice irrespective of having tumor tissues or no tumor. In tumor tissues, several c-Myc target genes, Foxm1, c-Jun, c-Fos, Bmi1 and Skp2, were also up-regulated dramatically. We determined whether mt-Rb activated the Myc promoter in the HTP9 cells and demonstrated that mt-Rb acted as an inhibitor of wild-type Rb-induced repression on the Myc promoter. Our results suggest that continued upregulation of c-Myc target genes promotes the liver tumor formation after about 1 year of age.

  18. AID induces double-strand breaks at immunoglobulin switch regions and c-MYC causing chromosomal translocations in yeast THO mutants.

    Directory of Open Access Journals (Sweden)

    José F Ruiz

    2011-02-01

    Full Text Available Transcription of the switch (S regions of immunoglobulin genes in B cells generates stable R-loops that are targeted by Activation Induced Cytidine Deaminase (AID, triggering class switch recombination (CSR, as well as translocations with c-MYC responsible for Burkitt's lymphomas. In Saccharomyces cerevisiae, stable R-loops are formed co-transcriptionally in mutants of THO, a conserved nuclear complex involved in mRNP biogenesis. Such R-loops trigger genome instability and facilitate deamination by human AID. To understand the mechanisms that generate genome instability mediated by mRNP biogenesis impairment and by AID, we devised a yeast chromosomal system based on different segments of mammalian S regions and c-MYC for the analysis of chromosomal rearrangements in both wild-type and THO mutants. We demonstrate that AID acts in yeast at heterologous S and c-MYC transcribed sequences leading to double-strand breaks (DSBs which in turn cause chromosomal translocations via Non-Homologous End Joining (NHEJ. AID-induced translocations were strongly enhanced in yeast THO null mutants, consistent with the idea that AID-mediated DSBs depend on R-loop formation. Our study not only provides new clues to understand the role of mRNP biogenesis in preventing genome rearrangements and the mechanism of AID-mediated genome instability, but also shows that, once uracil residues are produced by AID-mediated deamination, these are processed into DSBs and chromosomal rearrangements by the general and conserved DNA repair functions present from yeast to human cells.

  19. Angiotensin II reduces cardiac AdipoR1 expression through AT1 receptor/ROS/ERK1/2/c-Myc pathway.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available Adiponectin, an abundant adipose tissue-derived protein, exerts protective effect against cardiovascular disease. Adiponectin receptors (AdipoR1 and AdipoR2 mediate the beneficial effects of adiponectin on the cardiovascular system. However, the alteration of AdipoRs in cardiac remodeling is not fully elucidated. Here, we investigated the effect of angiotensin II (AngII on cardiac AdipoRs expression and explored the possible molecular mechanism. AngII infusion into rats induced cardiac hypertrophy, reduced AdipoR1 but not AdipoR2 expression, and attenuated the phosphorylations of adenosine monophosphate-activated protein kinase and acetyl coenzyme A carboxylase, and those effects were all reversed by losartan, an AngII type 1 (AT1 receptor blocker. AngII reduced expression of AdipoR1 mRNA and protein in cultured neonatal rat cardiomyocytes, which was abolished by losartan, but not by PD123319, an AT2 receptor antagonist. The antioxidants including reactive oxygen species (ROS scavenger NAC, NADPH oxidase inhibitor apocynin, Nox2 inhibitor peptide gp91 ds-tat, and mitochondrial electron transport chain complex I inhibitor rotenone attenuated AngII-induced production of ROS and phosphorylation of extracellular signal-regulated kinase (ERK 1/2. AngII-reduced AdipoR1 expression was reversed by pretreatment with NAC, apocynin, gp91 ds-tat, rotenone, and an ERK1/2 inhibitor PD98059. Chromatin immunoprecipitation assay demonstrated that AngII provoked the recruitment of c-Myc onto the promoter region of AdipoR1, which was attenuated by PD98059. Moreover, AngII-induced DNA binding activity of c-Myc was inhibited by losartan, NAC, apocynin, gp91 ds-tat, rotenone, and PD98059. c-Myc small interfering RNA abolished the inhibitory effect of AngII on AdipoR1 expression. Our results suggest that AngII inhibits cardiac AdipoR1 expression in vivo and in vitro and AT1 receptor/ROS/ERK1/2/c-Myc pathway is required for the downregulation of AdipoR1 induced by AngII.

  20. PET/CT Imaging of c-Myc Transgenic Mice Identifies the Genotoxic N-Nitroso-Diethylamine as Carcinogen in a Short-Term Cancer Bioassay

    OpenAIRE

    Katja Hueper; Mahmoud Elalfy; Florian Laenger; Roman Halter; Thomas Rodt; Michael Galanski; Juergen Borlak

    2012-01-01

    BACKGROUND: More than 100,000 chemicals are in use but have not been tested for their safety. To overcome limitations in the cancer bioassay several alternative testing strategies are explored. The inability to monitor non-invasively onset and progression of disease limits, however, the value of current testing strategies. Here, we report the application of in vivo imaging to a c-Myc transgenic mouse model of liver cancer for the development of a short-term cancer bioassay. METHODOLOGY/PRINCI...

  1. Effect of hydroxyapatite nanoparticles on the growth and p53/c-Myc protein expression of implanted hepatic VX2 tumor in rabbits by intravenous injection

    Institute of Scientific and Technical Information of China (English)

    Jun Hu; Zhi-Su Liu; Sheng-Li Tang; Yue-Ming He

    2007-01-01

    AIM:To evaluate the effect of hydroxyapatite nanoparticles (Nano HAP) by intravenous injection on the inhibition of implanted hepatic VX2 tumor growth in rabbits and cell p53/c-Myc protein expression.METHODS: 60 hepatic VX2 tumor-bearing rabbits was randomly divided into five groups. Nano HAP collosol 20 mg/kg, 40 mg/kg, 5-FU solutions 20 mg/mL, mixed liquor of 5-FU solution 20 mg/mL and Nano HAP collosol 20 mg/kg were infused by vein, normal saline conducted as the control. The general state, weight, liver function and gross tumor volume were detected dynamically.The expression of p53 and c-Myc gene protein in tumor tissue was detected by immunohistochemistry methods.RESULTS: The growth of implanted hepatic VX2 tumors was significantly inhibited in all therapy groups, 3 wk after the injection, the tumor control rates in Nano HAP collosol groups were 25.5% and 32.5% respectively,and the gross tumor volumes were obviously less than that of control group. (24.81 ± 5.17 and 22.73 ± 4.23vs 33.32 ± 5.26, P < 0.05). The tumor control rate of 5-FU group was 43.7% (18.74 ± 4.40 vs 33.32 ± 5.26,P < 0.05), but the general state of the animals after injection aggravated; and the adverse reaction in the drug combination group obviously decreased. Due to the effect of Nano HAP, the positive expression of tumor associated the mutated p53 and c-Myc in tumor tissue was decreased obviously compared with the control group.CONCLUSION: Nano HAP has evident inhibitory action on rabbit implanted hepatic VX2 tumor in vivo, which may be the result of decreasing the expression of the mutated p53 and c-myc, and drug combination can obviously decrease the adverse reaction of 5-FU.

  2. Wogonin has multiple anti-cancer effects by regulating c-Myc/SKP2/Fbw7α and HDAC1/HDAC2 pathways and inducing apoptosis in human lung adenocarcinoma cell line A549.

    Directory of Open Access Journals (Sweden)

    Xin-mei Chen

    Full Text Available Wogonin is a plant monoflavonoid which has been reported to inhibit cell growth and/or induce apoptosis in various tumors. The present study examined the apoptosis-inducing activity and underlying mechanism of action of wogonin in A549 cells. The results showed that wogonin was a potent inhibitor of the viability of A549 cells. Apoptotic protein changes detected after exposure to wogonin included decreased XIAP and Mcl-1 expression, increased cleaved-PARP expression and increased release of AIF and cytochrome C. Western blot analysis showed that the activity of c-Myc/Skp2 and HDAC1/HDAC2 pathways, which play important roles in tumor progress, was decreased. Quantitative PCR identified increased levels of c-Myc mRNA and decreased levels of its protein. Protein levels of Fbw7α, GSK3β and Thr58-Myc, which are involved in c-Myc ubiquitin-dependent degradation, were also analyzed. After exposure to wogonin, Fbw7α and GSK3β expression decreased and Thr58-Myc expression increased. However, MG132 was unable to prevent c-Myc degradation. The present results suggest that wogonin has multiple anti-cancer effects associated with degradation of c-Myc, SKP2, HDAC1 and HDAC2. Its ability to induce apoptosis independently of Fbw7α suggests a possible use in drug-resistance cancer related to Fbw7 deficiency. Further studies are needed to determine which pathways are related to c-Myc and Fbw7α reversal and whether Thr58 phosphorylation of c-Myc is dependent on GSK3β.

  3. 阴道脱落细胞检查联合人类染色体末端酶基因、c-myc 检测在宫颈癌诊断中的价值%The clinical value of Thinprep cytology test combined with h -TERC and c -myc in the diagnosis of cervical ;cancer

    Institute of Scientific and Technical Information of China (English)

    毛海波

    2015-01-01

    Objective To explore the clinical value of Thinprep cytology test (TCT)combined with h -TERC and c -myc in the diagnosis of cervical cancer.Methods hTERC amplification was detected by dual -color interphase fluorescence in situ hybridization (FISH),and the results were compared with TCT and histological examination.Examination the positive which TCT,h -TERC and c -myc by pathological examination.The final diag-nosis was determined by the pathological examination.Results TCT was abnormal in 26.4% of 500 case,18.0%abnormal h -TERC gene,16.0% abnormal c -myc gene.In 270 cases according to the cervical biopsy,the positive rate of chronic inflammation,cervical intraepithelial neoplasia (CIN)Ⅰ,CINⅡ,CINⅢ and cervical cancer:44.4%, 38.2%,36.4%,18.2%,and 7.3% respectively.The positive rates of h -TERC were 18.1%,45.4%,52.5%, 65.9% and 100.0%,respectively.The positive rates of c -myc were 21.4%,48.9%,56.7%,59.9% and 100.0%.With increased pathological grade,the expressions of h -TERC and c -myc were high.Conclusion TCT combined with h -TERC and c -myc can test cervical cancer more effective.%目的:探讨阴道脱落细胞检查(TCT)结合人类染色体末端酶基因(h-TERC)和 c-myc 检测在宫颈癌中的价值。方法运用免疫荧光原位杂交技术检测近三年来该院宫颈癌患者500例的宫颈脱落细胞中h-TERC 和 c-myc 的表达,将其检测结果与 TCT 检测结果比较,将上述三种结果的任一阳性检测再进行病理学诊断标准来确定,且以病理诊断为准进行分析。结果在所检测的500例患者中,TCT 异常者132例(26.4%),h-TECR 异常者90例(18.0%),c-myc 异常者80例(16.0%),将270例患者进行阴道宫颈活检技术,在这些病例中,宫颈慢性炎者120例,宫颈病变者150例,其中宫颈上皮瘤变 CINⅠ52例(38.2%),CINⅡ50例(36.4%),CIN Ⅲ30例(18.2%),宫颈癌18例(7.3%)。在所检测的病例中,

  4. NM23-H2 may play an indirect role in transcriptional activation of c-myc gene expression but does not cleave the nuclease hypersensitive element III[subscript 1

    Energy Technology Data Exchange (ETDEWEB)

    Dexheimer, Thomas S.; Carey, Steven S.; Zuohe, Song; Gokhale, Vijay M.; Hu, Xiaohui; Murata, Lauren B.; Maes, Estelle M.; Weichsel, Andrzej; Sun, Daekyu; Meuillet, Emmanuelle J.; Montfort, William R.; Hurley, Laurence H. (Ariz)

    2009-05-13

    The formation of G-quadruplex structures within the nuclease hypersensitive element (NHE) III{sub 1} region of the c-myc promoter and the ability of these structures to repress c-myc transcription have been well established. However, just how these extremely stable DNA secondary structures are transformed to activate c-myc transcription is still unknown. NM23-H2/nucleoside diphosphate kinase B has been recognized as an activator of c-myc transcription via interactions with the NHE III{sub 1} region of the c-myc gene promoter. Through the use of RNA interference, we confirmed the transcriptional regulatory role of NM23-H2. In addition, we find that further purification of NM23-H2 results in loss of the previously identified DNA strand cleavage activity, but retention of its DNA binding activity. NM23-H2 binds to both single-stranded guanine- and cytosine-rich strands of the c-myc NHE III{sub 1} and, to a lesser extent, to a random single-stranded DNA template. However, it does not bind to or cleave the NHE III{sub 1} in duplex form. Significantly, potassium ions and compounds that stabilize the G-quadruplex and i-motif structures have an inhibitory effect on NM23-H2 DNA-binding activity. Mutation of Arg{sup 88} to Ala{sup 88} (R88A) reduced both DNA and nucleotide binding but had minimal effect on the NM23-H2 crystal structure. On the basis of these data and molecular modeling studies, we have proposed a stepwise trapping-out of the NHE III{sub 1} region in a single-stranded form, thus allowing single-stranded transcription factors to bind and activate c-myc transcription. Furthermore, this model provides a rationale for how the stabilization of the G-quadruplex or i-motif structures formed within the c-myc gene promoter region can inhibit NM23-H2 from activating c-myc gene expression.

  5. Phospholipase D1 Couples CD4+ T Cell Activation to c-Myc-Dependent Deoxyribonucleotide Pool Expansion and HIV-1 Replication.

    Directory of Open Access Journals (Sweden)

    Harry E Taylor

    2015-05-01

    Full Text Available Quiescent CD4+ T cells restrict human immunodeficiency virus type 1 (HIV-1 infection at early steps of virus replication. Low levels of both deoxyribonucleotide triphosphates (dNTPs and the biosynthetic enzymes required for their de novo synthesis provide one barrier to infection. CD4+ T cell activation induces metabolic reprogramming that reverses this block and facilitates HIV-1 replication. Here, we show that phospholipase D1 (PLD1 links T cell activation signals to increased HIV-1 permissivity by triggering a c-Myc-dependent transcriptional program that coordinates glucose uptake and nucleotide biosynthesis. Decreasing PLD1 activity pharmacologically or by RNA interference diminished c-Myc-dependent expression during T cell activation at the RNA and protein levels. PLD1 inhibition of HIV-1 infection was partially rescued by adding exogenous deoxyribonucleosides that bypass the need for de novo dNTP synthesis. Moreover, the data indicate that low dNTP levels that impact HIV-1 restriction involve decreased synthesis, and not only increased catabolism of these nucleotides. These findings uncover a unique mechanism of action for PLD1 inhibitors and support their further development as part of a therapeutic combination for HIV-1 and other viral infections dependent on host nucleotide biosynthesis.

  6. Nuclear localization of vascular endothelial growth factor-D and regulation of c-Myc-dependent transcripts in human lung fibroblasts.

    Science.gov (United States)

    El-Chemaly, Souheil; Pacheco-Rodriguez, Gustavo; Malide, Daniela; Meza-Carmen, Victor; Kato, Jiro; Cui, Ye; Padilla, Philip I; Samidurai, Arun; Gochuico, Bernadette R; Moss, Joel

    2014-07-01

    Lymphangiogenesis and angiogenesis are processes that are, in part, regulated by vascular endothelial growth factor (VEGF)-D. The formation of lymphatic structures has been implicated in multiple lung diseases, including pulmonary fibrosis. VEGF-D is a secreted protein produced by fibroblasts and macrophages, which induces lymphangiogenesis by signaling via VEGF receptor-3, and angiogenesis through VEGF receptor-2. VEGF-D contains a central VEGF homology domain, which is the biologically active domain, with flanking N- and C-terminal propeptides. Full-length VEGF-D (∼ 50 kD) is proteolytically processed in the extracellular space, to generate VEGF homology domain that contains the VEGF-D receptor-binding sites. Here, we report that, independent of its cell surface receptors, full-length VEGF-D accumulated in nuclei of fibroblasts, and that this process appears to increase with cell density. In nuclei, full-length VEGF-D associated with RNA polymerase II and c-Myc. In cells depleted of VEGF-D, the transcriptionally regulated genes appear to be modulated by c-Myc. These findings have potential clinical implications, as VEGF-D was found in fibroblast nuclei in idiopathic pulmonary fibrosis, a disease characterized by fibroblast proliferation. These findings are consistent with actions of full-length VEGF-D in cellular homeostasis in health and disease, independent of its receptors.

  7. c-myc蛋白在不同毛色羊驼皮肤中的定位及表达%Localization and Expression of c-myc Protein in Different Colors of Alpaca Skin

    Institute of Scientific and Technical Information of China (English)

    张丹丽; 田雪; 董常生

    2013-01-01

    This experiment was conducted to explore the localization and expression of c-myc in different colors of alpaca skin.The tissues were obtained from white and brown adult alpacas' skins.The protein expression and the localization of c-myc were measured by immunohistochemistry.The positive signals of c-myc were found in hair bulb of hair follicle,and the comparative expression level of c-myc in brown alpacas was 5.51 times higher than that in white ones according to the average optical density analysis which indicated that c-myc may involve in the regulation of hair color formation.%为了探索c-myc蛋白在羊驼皮肤中的定位及表达情况,以不同毛色的成年羊驼为研究对象,采用免疫组织化学方法检测c-myc蛋白在羊驼皮肤组织中的表达和定位.结果显示,c-myc在羊驼皮肤毛囊毛球部细胞中呈阳性表达,根据光密度值分析得出c-myc在棕色羊驼毛囊中显著表达,其相对表达量是白色羊驼的5.51倍.研究表明c-myc可能参与羊驼毛色形成.

  8. ALK and c-myc gene of anaplastic large cell lymphoma%间变性大细胞淋巴瘤的ALK和c-myc基因研究

    Institute of Scientific and Technical Information of China (English)

    于冉; 周春菊; 陈刚; 高子芬; 时云飞; 石岩; 谢建兰; 周小鸽; 宫丽平

    2010-01-01

    目的 探讨间变性大细胞淋巴瘤(ALCL)中间变性淋巴瘤激酶(ALK)基因与c-myc基因的分子遗传学改变.方法 收集原发系统性ALCL石蜡包埋组织标本72例,利用间期荧光原位杂交(FISH)技术检测ALCL肿瘤组织中ALK和c-myc基因结构与数目的变化.结果 72例ALCL中,ALK阳性者42例,40例存在涉及ALK基因的染色体易位,其中17例同时伴有ALK基因的多拷贝;ALK阴性的30例均未发现ALK基因的易位,但其中14例存在ALK基因的多拷贝.ALK基因多拷贝的发生率在ALK阳性与阴性组中的差异无统计学意义(P>0.05).72例病例中,均未发现涉及c-myc基因的染色体易位,但其中24例存在c-myc基因的多拷贝.结论 大部分ALCL伴有ALK基因的异常(75.0%).以涉及ALK基因的染色体易位最为多见(55.6%),ALK基因多拷贝也是ALCL较为常见的遗传学改变(43.1%).前者只出现于ALK阳性ALCL中,后者既可出现在ALK阳性也可出现在ALK阴性的ALCL中.ALCL中不见或罕见涉及c-myc基因的染色体易位,但c-myc基因多拷贝的现象较为常见(33.3%).%Objective To investigate the molecular genetic changes of anaplastic lymphoma kinase (ALK) gene and c-myc gene in anaplastic large cell lymphoma (ALCL). Methods The structural aberrations and changes of copy numbers in ALK and c-myc genes in 72 paraffin-embedded ALCL specimens were detected by interphase fluorescence in situ hybridization (FISH). Results Among 72 ALCL specimens, ALK protein was expressed in 42, ALK gene translocation was detected in 40 specimens in which extra copies of ALK gene were detected in 17. ALK gene translocation was not found in all 30 ALK negative specimens, but extra copies of ALK gene were detected in 14 cases. The difference of incidence rates of extra copies in ALK gene between ALK positive and ALK negative specimens was not significant (P>0.05). c-myc gene translocation was not found in any of 72 ALCL specimens, but extra copies were detected in 24

  9. Expressão dos protooncogenes c-fos, c-myc e c-jun em miométrio normal e mioma humanos Expression of the protooncogenes c-fos, c-myc and c-jun in human normal miometrium and leiomyoma

    Directory of Open Access Journals (Sweden)

    Ana Luiza Ferrari

    2006-10-01

    Full Text Available OBJETIVO: Comparar a expressão gênica (mRNA e protéica dos protooncogenes c-fos, c-myc e c-jun em miométrio normal e mioma humanos. MÉTODOS: Foi realizado um estudo do tipo caso-controle. O material foi coletado de 12 pacientes submetidas a histerectomia no Hospital de Clínicas de Porto Alegre. A expressão do mRNA específico para c-myc, c-fos, c-jun e beta-microglobulina foi avaliada pela técnica de RT-PCR, utilizando primers específicos para cada gene. A expressão protéica destes protooncogenes foi avaliada através de Western blot com anticorpos específicos. RESULTADOS: Não houve diferença significativa para expressão gênica desses protooncogenes entre miométrio normal e mioma (c-myc: 0,87 ± 0,08 vs 0,87 ± 0,08, p = 0,952; c-fos: 1,10 ± 0,17 vs 1,01 ± 0,11, p = 0,21; c-jun: 1,03 ± 0,12 vs 0,96 ± 0,09, p = 0,168, respectivamente. Não houve diferença significativa para expressão protéica desses protooncogenes entre miométrio normal e mioma (c-myc: 1,36 ± 0,48 vs 1,53 ± 0,29, p = 0,569; c-fos: 8,85 ± 5,5 vs 6,56 ± 4,22, p = 0,434; e c-jun: 6,47 ± 3,04 vs 5,42 ± 2,03, p = 0,266, respectivamente. CONCLUSÃO: A expressão gênica (transcrição e a expressão protéica (tradução dos protooncogenes c-myc, c-fos e c-jun em mioma e miométrio normal são semelhantes.Uterine myomas are common benign tumors of the female genital tract. The expression of growth factor signal transduction cascade components including the protooncogenes c-myc, c-fos, and c-jun seem to be involved in the development of myomas. PURPOSE: To compare the gene (mRNA and protein expression of the protooncogenes c-fos, c-myc, and c-jun in human normal myometrium and leiomyoma. METHOD: A case-control study was performed. Samples were collected from 12 patients submitted to hysterectomy at the Hospital de Clínicas at Porto Alegre. The expression of the specific mRNA for c-myc, c-fos, c-jun, and beta-microglobulin was assessed through the RT

  10. Tumor Suppressor DYRK1A Effects on Proliferation and Chemoresistance of AML Cells by Downregulating c-Myc

    OpenAIRE

    Qiang Liu; Na Liu; Shaolei Zang; Heng Liu; Pin Wang; Chunyan Ji; Xiulian Sun

    2014-01-01

    Acute myeloid leukemia (AML), caused by abnormal proliferation and accumulation of hematopoietic progenitor cells, is one of the most common malignancies in adults. We reported here DYRK1A expression level was reduced in the bone marrow of adult AML patients, comparing to normal controls. Overexpression of DYRK1A inhibited the proliferation of AML cell lines by increasing the proportion of cells undergoing G0/G1 phase. We reasoned that the proliferative inhibition was due to downregulation of...

  11. Targeting human c-Myc promoter duplex DNA with actinomycin D by use of multi-way analysis of quantum-dot-mediated fluorescence resonance energy transfer

    DEFF Research Database (Denmark)

    Gholami, Somayeh; Kompany Zare, Mohsen

    2013-01-01

    investigated by use of 2D-photoluminescence emission (2D-PLE), and the resulting data were subjected to analysis by use of convenient and powerful multi-way approaches. Fluorescence measurements were performed by use of the quantum dot (QD)-conjugated c-Myc promoter. Intercalation of 7AAD within duplex base...... important advantage over univariate classical methods of enabling us to investigate the source of variance in the fluorescence signal of the DNA-drug complex. It was established that hard trilinear decomposition analysis of FRET-measured data overcomes the problem of rank deficiency, enabling calculation of...... hybridization stability 1.0 x 10(8) mol(-1) L obtained were in good agreement with values reported in the literature. The analytical concentration of the QD-labeled DNA was determined by use of nonlinear fitting, without using external standard calibration samples. This study was a successful application of...

  12. Protein kinase A antagonist inhibits β-catenin nuclear translocation, c-Myc and COX-2 expression and tumor promotion in ApcMin/+ mice

    Directory of Open Access Journals (Sweden)

    Brudvik Kristoffer W

    2011-12-01

    Full Text Available Abstract Background The adenomatous polyposis coli (APC protein is part of the destruction complex controlling proteosomal degradation of β-catenin and limiting its nuclear translocation, which is thought to play a gate-keeping role in colorectal cancer. The destruction complex is inhibited by Wnt-Frz and prostaglandin E2 (PGE2 - PI-3 kinase pathways. Recent reports show that PGE2-induced phosphorylation of β-catenin by protein kinase A (PKA increases nuclear translocation indicating two mechanisms of action of PGE2 on β-catenin homeostasis. Findings Treatment of ApcMin/+ mice that spontaneously develop intestinal adenomas with a PKA antagonist (Rp-8-Br-cAMPS selectively targeting only the latter pathway reduced tumor load, but not the number of adenomas. Immunohistochemical characterization of intestines from treated and control animals revealed that expression of β-catenin, β-catenin nuclear translocation and expression of the β-catenin target genes c-Myc and COX-2 were significantly down-regulated upon Rp-8-Br-cAMPS treatment. Parallel experiments in a human colon cancer cell line (HCT116 revealed that Rp-8-Br-cAMPS blocked PGE2-induced β-catenin phosphorylation and c-Myc upregulation. Conclusion Based on our findings we suggest that PGE2 act through PKA to promote β-catenin nuclear translocation and tumor development in ApcMin/+ mice in vivo, indicating that the direct regulatory effect of PKA on β-catenin nuclear translocation is operative in intestinal cancer.

  13. PET/CT imaging of c-Myc transgenic mice identifies the genotoxic N-nitroso-diethylamine as carcinogen in a short-term cancer bioassay.

    Directory of Open Access Journals (Sweden)

    Katja Hueper

    Full Text Available BACKGROUND: More than 100,000 chemicals are in use but have not been tested for their safety. To overcome limitations in the cancer bioassay several alternative testing strategies are explored. The inability to monitor non-invasively onset and progression of disease limits, however, the value of current testing strategies. Here, we report the application of in vivo imaging to a c-Myc transgenic mouse model of liver cancer for the development of a short-term cancer bioassay. METHODOLOGY/PRINCIPAL FINDINGS: μCT and ¹⁸F-FDG μPET were used to detect and quantify tumor lesions after treatment with the genotoxic carcinogen NDEA, the tumor promoting agent BHT or the hepatotoxin paracetamol. Tumor growth was investigated between the ages of 4 to 8.5 months and contrast-enhanced μCT imaging detected liver lesions as well as metastatic spread with high sensitivity and accuracy as confirmed by histopathology. Significant differences in the onset of tumor growth, tumor load and glucose metabolism were observed when the NDEA treatment group was compared with any of the other treatment groups. NDEA treatment of c-Myc transgenic mice significantly accelerated tumor growth and caused metastatic spread of HCC in to lung but this treatment also induced primary lung cancer growth. In contrast, BHT and paracetamol did not promote hepatocarcinogenesis. CONCLUSIONS/SIGNIFICANCE: The present study evidences the accuracy of in vivo imaging in defining tumor growth, tumor load, lesion number and metastatic spread. Consequently, the application of in vivo imaging techniques to transgenic animal models may possibly enable short-term cancer bioassays to significantly improve hazard identification and follow-up examinations of different organs by non-invasive methods.

  14. c-Myc Alters Substrate Utilization and O-GlcNAc Protein Posttranslational Modifications without Altering Cardiac Function during Early Aortic Constriction.

    Directory of Open Access Journals (Sweden)

    Dolena Ledee

    Full Text Available Hypertrophic stimuli cause transcription of the proto-oncogene c-Myc (Myc. Prior work showed that myocardial knockout of c-Myc (Myc attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we assessed the interplay between Myc, substrate oxidation and cardiac function during early pressure overload hypertrophy. Mice with cardiac specific, inducible Myc knockout (MycKO-TAC and non-transgenic littermates (Cont-TAC were subjected to transverse aortic constriction (TAC; n = 7/group. Additional groups underwent sham surgery (Cont-Sham and MycKO-Sham, n = 5 per group. After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. In sham hearts, Myc knockout did not affect cardiac function or substrate preferences for the citric acid cycle. However, Myc knockout altered fractional contributions during TAC. The unlabeled fractional contribution increased in MycKO-TAC versus Cont-TAC, whereas ketone and free fatty acid fractional contributions decreased. Additionally, protein posttranslational modifications by O-GlcNAc were significantly greater in Cont-TAC versus both Cont-Sham and MycKO-TAC. In conclusion, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy, which may regulate Myc-induced metabolic changes.

  15. Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc

    International Nuclear Information System (INIS)

    Oridonin, a tetracycline diterpenoid compound, has the potential antitumor activities. Here, we evaluate the antitumor activity and action mechanisms of oridonin in colorectal cancer. Effects of oridonin on cell proliferation were determined by using a CCK-8 Kit. Cell cycle distribution was determined by flow cytometry. Apoptosis was examined by analyzing subdiploid population and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Senescent cells were determined by senescence-associated β-galactosidase activity analysis. Semi-quantitative RT-PCR was used to examine the changes of mRNA of p16, p21, p27 and c-myc. The concomitant changes of protein expression were analyzed with Western blot. Expression of AcH3 and AcH4 were examined by immunofluorescence staining and Western blots. Effects of oridonin on colony formation of SW1116 were examined by Soft Agar assay. The in vivo efficacy of oridonin was detected using a xenograft colorectal cancer model in nude mice. Oridonin induced potent growth inhibition, cell cycle arrest, apoptosis, senescence and colony-forming inhibition in three colorectal cancer cell lines in a dose-dependent manner in vitro. Daily i.p. injection of oridonin (6.25, 12.5 or 25 mg/kg) for 28 days significantly inhibited the growth of SW1116 s.c. xenografts in BABL/C nude mice. With western blot and reverse transcription-PCR, we further showed that the antitumor activities of oridonin correlated with induction of histone (H3 and H4) hyperacetylation, activation of p21, p27 and p16, and suppression of c-myc expression. Oridonin possesses potent in vitro and in vivo anti-colorectal cancer activities that correlated with induction of histone hyperacetylation and regulation of pathways critical for maintaining growth inhibition and cell cycle arrest. Therefore, oridonin may represent a novel therapeutic option in colorectal cancer treatment

  16. Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc

    Directory of Open Access Journals (Sweden)

    Zhao Ying-Zheng

    2010-11-01

    Full Text Available Abstract Background Oridonin, a tetracycline diterpenoid compound, has the potential antitumor activities. Here, we evaluate the antitumor activity and action mechanisms of oridonin in colorectal cancer. Methods Effects of oridonin on cell proliferation were determined by using a CCK-8 Kit. Cell cycle distribution was determined by flow cytometry. Apoptosis was examined by analyzing subdiploid population and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Senescent cells were determined by senescence-associated β-galactosidase activity analysis. Semi-quantitative RT-PCR was used to examine the changes of mRNA of p16, p21, p27 and c-myc. The concomitant changes of protein expression were analyzed with Western blot. Expression of AcH3 and AcH4 were examined by immunofluorescence staining and Western blots. Effects of oridonin on colony formation of SW1116 were examined by Soft Agar assay. The in vivo efficacy of oridonin was detected using a xenograft colorectal cancer model in nude mice. Results Oridonin induced potent growth inhibition, cell cycle arrest, apoptosis, senescence and colony-forming inhibition in three colorectal cancer cell lines in a dose-dependent manner in vitro. Daily i.p. injection of oridonin (6.25, 12.5 or 25 mg/kg for 28 days significantly inhibited the growth of SW1116 s.c. xenografts in BABL/C nude mice. With western blot and reverse transcription-PCR, we further showed that the antitumor activities of oridonin correlated with induction of histone (H3 and H4 hyperacetylation, activation of p21, p27 and p16, and suppression of c-myc expression. Conclusion Oridonin possesses potent in vitro and in vivo anti-colorectal cancer activities that correlated with induction of histone hyperacetylation and regulation of pathways critical for maintaining growth inhibition and cell cycle arrest. Therefore, oridonin may represent a novel therapeutic option in colorectal cancer treatment.

  17. Genetic dissimilarity between primary colorectal carcinomas and their lymph node metastases: ploidy, p53, bcl-2, and c-myc expression--a pilot study.

    Science.gov (United States)

    Zalata, Khaled Refaat; Elshal, Mohamed Farouk; Foda, Abd AlRahman Mohammad; Shoma, Ashraf

    2015-08-01

    The current paradigm of metastasis proposes that rare cells within primary tumors acquire metastatic capability via sequential mutations, suggesting that metastases are genetically dissimilar from their primary tumors. This study investigated the changes in the level of expression of a well-defined panel of cell proliferation, differentiation, and apoptosis markers between the primary colorectal cancer (CRC) and the corresponding synchronous lymph node (LN) metastasis from the same patients. DNA flow cytometry and immunostaining of p53, bcl-2, and c-myc were carried out on 36 cases of CRC radical resection specimens with their corresponding LN metastases. There was very low probability that the histological patterns of primary tumors and LN metastases are independent (p < 0.001). Metastatic tumors were significantly more diffusely positive for p53 than the primary tumors (p < 0.001). Conversely, primary tumors were significantly more diffusely positive for c-myc than metastatic tumors (p = 0.011). No significant difference was found between the LNs and the primary tumors in bcl-2 positivity (p = 0.538) and DNA aneuploidy (p = 0.35), with a tendency towards negative bcl-2 and less aneuploidy in LN metastases than primary tumors. In conclusion, LN metastatic colorectal carcinomas have a tendency of being less differentiated, with a higher incidence of diffuse p53 staining, lower incidence of bcl-2 staining, and less aneuploidy in comparison to their primary counterparts suggesting a more aggressive biological behavior, which could indicate the necessity for more aggressive adjuvant therapy. PMID:25840688

  18. Alterations in TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expression associated with progression in B-CLL

    Directory of Open Access Journals (Sweden)

    Antosz Halina

    2010-04-01

    Full Text Available B-cell chronic lymphocytic leukaemia (B-CLL originates from B lymphocytes that may differ in the activationlevel, maturation state or cellular subgroups in peripheral blood. Tumour progression in CLL B cells seems to result in gradualaccumulation of the clone of resting B lymphocytes in the early phases (G0/G1 of the cell cycle. The G1 phase isimpaired in B-CLL. We investigated the gene expression of five key cell cycle regulators: TP 53, c-Myc, cyclin D2,p21WAF1/CIP1 and p27KIP1, which primarily regulate the G1 phase of the cell cycle, or S-phase entry and ultimately controlthe proliferation and cell growth as well as their role in B-CLL progression. The study was conducted in peripheral bloodCLL lymphocytes of 40 previously untreated patients. Statistical analysis of correlations of TP53, cyclin D2, c-Myc,p21WAF1/CIP1 and p27KIP1 expressions in B-CLL patients with different Rai stages demonstrated that the progression of diseasewas accompanied by increases in p53, cyclin D2 and c-Myc mRNA expression. The expression of p27KIP1 was nearlystatistically significant whereas that of p21 WAF1/CIP1 showed no such correlation. Moreover, high expression levels of TP53and c-Myc genes were found to be closely associated with more aggressive forms of the disease requiring earlier therapy.

  19. Identification of cytotoxic drugs that selectively target tumor cells with MYC overexpression.

    Directory of Open Access Journals (Sweden)

    Anna Frenzel

    Full Text Available Expression of MYC is deregulated in a wide range of human cancers, and is often associated with aggressive disease and poorly differentiated tumor cells. Identification of compounds with selectivity for cells overexpressing MYC would hence be beneficial for the treatment of these tumors. For this purpose we used cell lines with conditional MYCN or c-MYC expression, to screen a library of 80 conventional cytotoxic compounds for their ability to reduce tumor cell viability and/or growth in a MYC dependent way. We found that 25% of the studied compounds induced apoptosis and/or inhibited proliferation in a MYC-specific manner. The activities of the majority of these were enhanced both by c-MYC or MYCN over-expression. Interestingly, these compounds were acting on distinct cellular targets, including microtubules (paclitaxel, podophyllotoxin, vinblastine and topoisomerases (10-hydroxycamptothecin, camptothecin, daunorubicin, doxorubicin, etoposide as well as DNA, RNA and protein synthesis and turnover (anisomycin, aphidicholin, gliotoxin, MG132, methotrexate, mitomycin C. Our data indicate that MYC overexpression sensitizes cells to disruption of specific pathways and that in most cases c-MYC and MYCN overexpression have similar effects on the responses to cytotoxic compounds. Treatment of the cells with topoisomerase I inhibitors led to down-regulation of MYC protein levels, while doxorubicin and the small molecule MYRA-A was found to disrupt MYC-Max interaction. We conclude that the MYC pathway is only targeted by a subset of conventional cytotoxic drugs currently used in the clinic. Elucidating the mechanisms underlying their specificity towards MYC may be of importance for optimizing treatment of tumors with MYC deregulation. Our data also underscores that MYC is an attractive target for novel therapies and that cellular screenings of chemical libraries can be a powerful tool for identifying compounds with a desired biological activity.

  20. Pre-synaptic regulation of astroglial excitatory neurotransmitter transporter GLT1

    OpenAIRE

    Yang, Yongjie; GOZEN, OGUZ; Watkins, Andrew; Lorenzini, Ileana; Lepore, Angelo; Gao, Yuanzheng; Vidensky, Svetlana; Brennan, Jean; Poulsen, David; Park, Jeong Won; Jeon, Noo Li; Robinson, Michael B.; Rothstein, Jeffrey D.

    2009-01-01

    The neuron-astrocyte synaptic complex is a fundamental operational unit of the nervous system. Astroglia play a central role in the regulation of synaptic glutamate, via neurotransmitter transport by GLT1/EAAT2. The astroglial mechanisms underlying this essential neuron-glial communication are not known. Here we show that presynaptic terminals are sufficient and necessary for GLT1/EAAT2 transcriptional activation and have identified the molecular pathway that regulates astroglial responses to...

  1. Effect of Dihuang Guanshitong Granules on c-myc, TERT Protein Expression in Esophageal Cancer Rat Model after Radiotherapy%地黄管食通颗粒对放射治疗后食管癌模型大鼠c-myc,TERT表达的影响

    Institute of Scientific and Technical Information of China (English)

    王祥麒; 郑玉玲; 王俊涛; 韩倩倩

    2011-01-01

    观察地黄管食通颗粒对食管癌造模大鼠细胞凋亡及放疗后原癌基因( c-myc),端粒酶逆转录酶(TERT)蛋白表达的影响,从分子生物学角度分析其作用机制.方法 选用清洁级Wistar大鼠,除空白对照组(正常组)外,其余大鼠均以甲基戊基亚硝胺5 mg·kg -1sc,每周1次,连续18周,确定造模成功后,除模型组大鼠外,余造模大鼠均以戊巴比妥钠麻醉,钴60放射治疗机进行食管局部照射.末次照射24 h后,随机分为放疗组、地黄管食通高、中、低剂量组、六味地黄丸(阳性对照4.5g·kg-1)组,分别ig,连续35 d.应用TUNEL法检测对食管癌癌细胞凋亡的促进作用;免疫组化检测大鼠食管细胞中c-myc,TERT蛋白的表达.结果 ①TUNEL法检测各组均见有细胞凋亡,且药物治疗各组细胞凋亡指数明显增高,高剂量组细胞凋亡明显增多.②免疫组化结果显示c-myc蛋白在模型组、放疗组表达率及表达强度均明显增高,药物治疗组均有不同程度的降低,以高剂量组降低最明显(P<0.05),高剂量组与放疗组比较有统计学意义(P<0.05).③与放疗组比较,各药物组TERT蛋白表达均呈递减趋势,高、中、低剂量组有统计学意义(P<0.01,P<0.05).结论 诱导细胞凋亡是地黄管食通颗粒在体内杀伤食管癌细胞的作用机制之一,而这一作用机制与抑制c -myc,TERT蛋白的表达相关;该药物还可有效改善食管癌化疗后副作用,并预防复发.%Objective: To observe the effect of a combination of traditional Chinese herbs Dihuang Cuanshitong Granules on the rat model of esophageal cancer after rradiotherapy for inducing apoptosis and the c-myc, TERT protein expression. Method: Wistar rats were randomly divided into 2 groups. They were treated with MAN A 5 mg·kg-1 by subsutaneous injection except control group (the normal). After the model was successful, the model rats were treated with Intraperitoneal injection of sodium

  2. Genomic amplification patterns of human telomerase RNA gene and C-MYC in liquid-based cytological specimens used for the detection of high-grade cervical intraepithelial neoplasia

    Directory of Open Access Journals (Sweden)

    Chen Shaomin

    2012-04-01

    Full Text Available Abstract Background The amplification of oncogenes initiated by high-risk human papillomavirus (HPV infection is an early event in cervical carcinogenesis and can be used for cervical lesion diagnosis. We measured the genomic amplification rates and the patterns of human telomerase RNA gene (TERC and C-MYC in the liquid-based cytological specimens to evaluate the diagnostic characteristics for the detection of high-grade cervical lesions. Methods Two hundred and forty-three residual cytological specimens were obtained from outpatients aged 25 to 64 years at Qilu Hospital, Shandong University. The specimens were evaluated by fluorescence in situ hybridization (FISH using chromosome probes to TERC (3q26 and C-MYC (8q24. All of the patients underwent colposcopic examination and histological evaluation. A Chi-square test was used for categorical data analysis. Results In the normal, cervical intraepithelial neoplasia grade 1 (CIN1, grade 2 (CIN2, grade 3 (CIN3 and squamous cervical cancer (SCC cases, the TERC positive rates were 9.2%, 17.2%, 76.2%, 100.0% and 100.0%, respectively; the C-MYC positive rates were 20.7%, 31.0%, 71.4%, 81.8% and 100.0%, respectively. The TERC and C-MYC positive rates were higher in the CIN2+ (CIN2, CIN3 and SCC cases than in the normal and CIN1 cases (p p p > 0.05. Conclusions The TERC test is highly sensitive and is therefore suitable for cervical cancer screening. The C-MYC test is not suitable for cancer screening because of its lower sensitivity. The amplification patterns of TERC become more diverse and complex as the severity of cervical diseases increases, whereas for C-MYC, the amplification patterns are similar between the normal/CIN1 and CIN2+ groups. Virtual slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1308004512669913.

  3. c-Myc plays a key role in TADs-induced apoptosis and cell cycle arrest in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Zhang, Dongdong; Qi, Junpeng; Liu, Rui; Dai, Bingling; Ma, Weina; Zhan, Yingzhuan; Zhang, Yanmin

    2015-01-01

    Cancer cell growth is complicated progression which is regulated and controlled by multiple factors including cell cycle, migration and apoptosis. In present study, we report that TADs, a novel derivative of taspine, has an essential role in resisting hepatocellular carcinoma growth (including arrest cell cycle) and migration, and inducing cell apoptosis. Our findings demonstrated that the TADs showed good inhibition on the hepatoma cell growth and migration, and good action on apoptosis induction. Using genome-wide microarray analysis, we found the down-regulated growth and apoptosis factors, and selected down-regulated genes were confirmed by Western blot. Knockdown of a checkpoint c-Myc by siRNA significantly attenuated tumor inhibition and apoptosis effects of TADs. Moreover, our results indicated TADs could simultaneously increase cyclin D1 protein levels and decrease amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins, and also TADs reduced Bcl-2 expression, and upregulated Bad, Bak and Bax activities. In conclusion, these results illustrated that TADs is a key factor in growth and apoptosis signaling inhibitor, has potential in cancer therapy. PMID:26045987

  4. 4EBP1/c-MYC/PUMA and NF-κB/EGR1/BIM pathways underlie cytotoxicity of mTOR dual inhibitors in malignant lymphoid cells.

    Science.gov (United States)

    Yun, Seongseok; Vincelette, Nicole D; Knorr, Katherine L B; Almada, Luciana L; Schneider, Paula A; Peterson, Kevin L; Flatten, Karen S; Dai, Haiming; Pratz, Keith W; Hess, Allan D; Smith, B Douglas; Karp, Judith E; Hendrickson, Andrea E Wahner; Fernandez-Zapico, Martin E; Kaufmann, Scott H

    2016-06-01

    The mammalian target of rapamycin (mTOR), a kinase that regulates proliferation and apoptosis, has been extensively evaluated as a therapeutic target in multiple malignancies. Rapamycin analogs, which partially inhibit mTOR complex 1 (mTORC1), exhibit immunosuppressive and limited antitumor activity, but sometimes activate survival pathways through feedback mechanisms involving mTORC2. Thus, attention has turned to agents targeting both mTOR complexes by binding the mTOR active site. Here we show that disruption of either mTOR-containing complex is toxic to acute lymphocytic leukemia (ALL) cells and identify 2 previously unrecognized pathways leading to this cell death. Inhibition of mTORC1-mediated 4EBP1 phosphorylation leads to decreased expression of c-MYC and subsequent upregulation of the proapoptotic BCL2 family member PUMA, whereas inhibition of mTORC2 results in nuclear factor-κB-mediated expression of the Early Growth Response 1 (EGR1) gene, which encodes a transcription factor that binds and transactivates the proapoptotic BCL2L11 locus encoding BIM. Importantly, 1 or both pathways contribute to death of malignant lymphoid cells after treatment with dual mTORC1/mTORC2 inhibitors. Collectively, these observations not only provide new insight into the survival roles of mTOR in lymphoid malignancies, but also identify alterations that potentially modulate the action of mTOR dual inhibitors in ALL. PMID:26917778

  5. Cloning and characterization of rabbit POU5F1, SOX2, KLF4, C-MYC and NANOG pluripotency-associated genes.

    Science.gov (United States)

    Táncos, Zsuzsanna; Bock, István; Nemes, Csilla; Kobolák, Julianna; Dinnyés, András

    2015-07-25

    While the rabbit (Oryctolagus cuniculus) is an important research model for aspects of human development and disease that cannot be studied in rodents, the lack of data on the genetic regulation of rabbit preimplantation development is a limitation. To assist in the understanding of this process, our aim was to isolate and characterize genes necessary for the induction and maintenance of cellular pluripotency. We are the first to report the isolation of complete coding regions of rabbit SOX2, KLF4, C-MYC and NANOG, which encode transcription factors that play crucial regulatory roles during early mammalian embryonic development. We determined the exon-intron boundaries and chromosomal localization of these genes using computational analysis. The sequences of mRNA and translated protein of the newly identified genes and those of POU5F1 were aligned to their mammalian orthologs to determine the degree of evolutionary conservation. Furthermore, the expression of these genes in embryonic and adult cells was studied at the mRNA and protein levels. We found the sequences and the expression pattern of these pluripotency-associated genes to be highly conserved between human and rabbit, indicating that the rabbit would be a valuable model for human preimplantation development. Implementing the newly identified genes either as biomarkers or as reprogramming factors might also pave the way towards the creation of stable pluripotent rabbit cell lines. PMID:25895477

  6. miR-34a induces cellular senescence via modulation of telomerase activity in human hepatocellular carcinoma by targeting FoxM1/c-Myc pathway.

    Science.gov (United States)

    Xu, Xinsen; Chen, Wei; Miao, Runchen; Zhou, Yanyan; Wang, Zhixin; Zhang, Lingqiang; Wan, Yong; Dong, Yafeng; Qu, Kai; Liu, Chang

    2015-02-28

    Increasing evidence suggests that miRNAs can act as either tumor suppressors or oncogenes in carcinogenesis. In the present study, we identified the role of miR-34a in regulating telomerase activity, with subsequent effect on cellular senescence and viability. We found the higher expression of miR-34a was significantly correlated with the advanced clinicopathologic parameters in hepatocellular carcinoma. Furthermore, tumor tissues of 75 HCC patients demonstrated an inverse correlation between the miR-34a level and telomere indices (telomere length and telomerase activity). Transient introduction of miR-34a into HCC cell lines inhibited the telomerase activity and telomere length, which induced senescence-like phenotypes and affected cellular viability. We discovered that miR-34a potently targeted c-Myc and FoxM1, both of which were involved in the activation of telomerase reverse transcriptase (hTERT) transcription, essential for the sustaining activity of telomerase to avoid senescence. Taken together, our results demonstrate that miR-34a functions as a potent tumor suppressor through the modulation of telomere pathway in cellular senescence. PMID:25686834

  7. mad—overexpression down regulates the malignant growth and p53 mediated apoptosis in human hepatocellular carcinoma BEL—7404 cells

    Institute of Scientific and Technical Information of China (English)

    ZHANHUA; YONGHUAXU

    1999-01-01

    Mad protein has been shown as an antagonist of cMyc protein in some cell lines.The effect of Mad protein to the malignant phenotype of human hepatoma BEL-7404 cell line was investigated experimentally.An eukarryotic vector pCDNA Ⅲ containing full ORF fragment of mad cDNA was transfected into targeted cells.Under G418 selection,stable Mad-overexpressed cells were cloned.Studies on the effect of Mad over-expression in cell proliferation and cell cycle revealed that cell morphology of the Mad-overexpressed BEL-7404-M1 cells was significantly different from the parent and control vector transfected cells.DNA synthesis,cell proliferation and anchorage-independent growth in soft-agar of the madtransfected cells were partially inhibited in comparison to control cells.Flos cytometry analysis indicated that mad over-expression might block more transfectant cells at G0/G1 phase,resulting in the retardation of cell proliferation.RT-PCR detected a marked inhibition of the expression of cdc25A,an important regulator gene of G0/G1 to S phase in cell cycle.It was also found that Mad protein overexpression could greatly suppress p53-mediated apoptosis in BEL-74040M1 cells in the absence of serume.Thus,Mad proteins may function as a negative regulator antagonizing c-Myc activity in the control of cell growth and apoptosis in human hepatocellular carcinoma BEL-7404 cells.

  8. 原癌基因c-myc真核表达载体构建及其生物学作用%Construction and identification of an original oncogene c-myc eukaryotic expression vector

    Institute of Scientific and Technical Information of China (English)

    荆志波; 韦丹丹; 逄越

    2013-01-01

    目的 利用基因工程技术构建携带原癌基因c-myc的真核表达载体pIRES2-AcGFPl-Nuc-c-myc重组质粒并在Hela细胞中表达.方法 以构建好的表达质粒pET28a-c-myc为基础,利用PCR方法扩增c-myc基因,并加入EcoR Ⅰ和SmaⅠ酶切位点,克隆至pMD 19-T Simple载体,双酶切后将其与同样经过双酶切的真核表达载体pIRES2-AcGFP1-Nuc连接,通过PCR、酶切及测序鉴定重组质粒的正确性,再将重组质粒pIRES2-AcGFPl-Nuc-c-myc转染Hela细胞,利用荧光显微镜观察GFP表达,利用MTT和免疫印迹证实c-myc蛋白表达量提高.结果 经PCR和酶切鉴定与预期结果相符,测序结果与GenBank中报道的序列完全一致,成功构建了重组表达质粒.免疫印迹证实c-myc基因在Hela细胞中得到表达.MTT结果显示Hela细胞数量显著增加.结论 真核表达载体pIRES2-AcGFP 1-Nuc-c-myc成功构建,c-myc基因在Hela细胞中成功表达,具有生物学活性.%This study designed to construct and express original oncogene c-myc eukaryotic expression vector pIRES2-AcGFP1-Nuc-c-myc using gene engineering technique.The c-myc gene was obtained by PCR amplification from pET28a-c-myc,to constructed pIRES2-AcGFPl-Nuc eukaryotic expression vector,which was then confirmed by PCR method,restriction analysis and DNA sequencing.In addition,the recombinant plasmid pIRES2-AcGFPl-Nuc-c-myc was transfected to Hela cells,and green fluorescent protein was expressed successfully under fluorescence microscopy.Analysis of Western blotting showed that c-myc protein expression was increased in Hela cell,and MTT assay indicated c-myc protein could promote the proliferation of Hela cells.In conclusion,eukaryotic expression vector of c-myc gene was constructed and transfected,which lay foundation for the lamprey cell line research.

  9. Estrogen Receptor-α and Its Target Gene c-Myc and Pre-implantation Embryos%雌激素受体α及其靶基因c-Myc与植入前胚

    Institute of Scientific and Technical Information of China (English)

    张燕琴

    2012-01-01

    Estrogen receptor-α(Erα), member of the steroid hormone receptor gene superfamily that acts as ligand-inducible transcription factor and plays an important role in regulating the proliferation, differentiation and development of cells and tissues. C-Myc,the Erα target gene,which belongs to Myc gene family, is a kind of nucleoprotein class protooncogene. Erα regulates the expression of c-Myc, at the same time,the expression of c-Myc changing also affects the function of Erα,they are associated with each other. Erα and c-Myc expression are stage-specific in preimplantation embryos, suggesting that their functions might be involved in the development of mammalian preimplantation embryos.%雌激素受体α(ERα)属于类固醇激素受体超家族,是细胞核中需要配体激活的转录因子,对细胞和组织的增殖、分化和发育有重要的调节作用.c-Myc是ERα目的 基因,属于Myc基因家族,是一种核蛋白类的原癌基因.ERα调控着c-Myc的表达,而c-Myc的表达变化也影响着ERα的功能发挥,彼此之间存在关联.它们在哺乳动物植入前胚中呈阶段特异性表达,在植入前胚发育中发挥一定作用.

  10. Altered expression of Bcl-2, c-Myc, H-Ras, K-Ras, and N-Ras does not influence the course of mycosis fungoides

    Science.gov (United States)

    Maj, Joanna; Jankowska-Konsur, Alina; Plomer-Niezgoda, Ewa; Sadakierska-Chudy, Anna

    2013-01-01

    Introduction Data about genetic alterations in mycosis fungoides (MF) are limited and their significance not fully elucidated. The aim of the study was to explore the expression of various oncogenes in MF and to assess their influence on the disease course. Material and methods Skin biopsies from 27 MF patients (14 with early MF and 13 with advanced disease) and 8 healthy volunteers were analyzed by real-time polymerase chain reaction (PCR) to detect Bcl-2, c-Myc, H-Ras, K-Ras and N-Ras expression. All PCR reactions were performed using an Applied Biosystems 7900HT Fast Real-Time PCR System and interpreted using Sequence Detection Systems software which utilizes the comparative delta Ct method. The level of mRNA was normalized to GAPDH expression. All data were analyzed statistically. Results All evaluated oncogenes were found to be expressed in the skin from healthy controls and MF patients. Bcl-2 (–4.2 ±2.2 vs. –2.2 ±1.1; p = 0.01), H-Ras (–3.0 ±3.3 vs. 0.6 ±2.6; p = 0.01) and N-Ras (–3.6 ±2.0 vs. –1.1 ±2.4; p = 0.03) were expressed at significantly lower levels in MF. No relationships between oncogene expression and disease stage, presence of distant metastases and survival were observed (p > 0.05 for all comparisons). Conclusions The pathogenic role and prognostic significance of analyzed oncogenes in MF seem to be limited and further studies are needed to establish better prognostic factors for patients suffering from MF. PMID:24273576

  11. Functional variability in butyrylcholinesterase activity regulates intrathecal cytokine and astroglial biomarker profiles in patients with Alzheimer's disease

    DEFF Research Database (Denmark)

    Darreh-Shori, Taher; Vijayaraghavan, Swetha; Aeinehband, Shahin;

    2013-01-01

    and that this might be of clinical relevance. The dissociation between astroglial markers and inflammatory cytokines indicates that a proper activation and maintenance of astroglial function is a beneficial response, rather than a disease-driving mechanism. Further studies are needed to explore the...

  12. Astroglial glutamate transporters coordinate excitatory signaling and brain energetics.

    Science.gov (United States)

    Robinson, Michael B; Jackson, Joshua G

    2016-09-01

    In the mammalian brain, a family of sodium-dependent transporters maintains low extracellular glutamate and shapes excitatory signaling. The bulk of this activity is mediated by the astroglial glutamate transporters GLT-1 and GLAST (also called EAAT2 and EAAT1). In this review, we will discuss evidence that these transporters co-localize with, form physical (co-immunoprecipitable) interactions with, and functionally couple to various 'energy-generating' systems, including the Na(+)/K(+)-ATPase, the Na(+)/Ca(2+) exchanger, glycogen metabolizing enzymes, glycolytic enzymes, and mitochondria/mitochondrial proteins. This functional coupling is bi-directional with many of these systems both being regulated by glutamate transport and providing the 'fuel' to support glutamate uptake. Given the importance of glutamate uptake to maintaining synaptic signaling and preventing excitotoxicity, it should not be surprising that some of these systems appear to 'redundantly' support the energetic costs of glutamate uptake. Although the glutamate-glutamine cycle contributes to recycling of neurotransmitter pools of glutamate, this is an over-simplification. The ramifications of co-compartmentalization of glutamate transporters with mitochondria for glutamate metabolism are discussed. Energy consumption in the brain accounts for ∼20% of the basal metabolic rate and relies almost exclusively on glucose for the production of ATP. However, the brain does not possess substantial reserves of glucose or other fuels. To ensure adequate energetic supply, increases in neuronal activity are matched by increases in cerebral blood flow via a process known as 'neurovascular coupling'. While the mechanisms for this coupling are not completely resolved, it is generally agreed that astrocytes, with processes that extend to synapses and endfeet that surround blood vessels, mediate at least some of the signal that causes vasodilation. Several studies have shown that either genetic deletion or

  13. Expressions of Pokemon and c-myc in colorectal cancer and their clinical significance%Pokemon和c-myc在结直肠癌中的表达及临床意义

    Institute of Scientific and Technical Information of China (English)

    郭柏华; 杨章林; 董国钢; 王笑凌; 班雨

    2015-01-01

    目的 检测Pokemon和c-myc在结直肠癌、结直肠腺瘤和正常结直肠黏膜组织中的表达情况,研究结直肠癌组织中Pokemon和c-myc的表达与临床病理因素的关系.方法 收集86例结直肠癌患者肿瘤组织标本,60例结直肠腺瘤组织标本和40例正常结直肠黏膜组织标本.采用免疫组织化学法检测组织中Pokemon和c-myc蛋白表达情况,反转录聚合酶链反应检测组织中Pokemon和c-myc基因表达水平,并分析其与结直肠癌临床病理因素的关系.结果 结直肠癌组织中Pokemon和c-myc蛋白阳性表达率均明显高于结直肠腺瘤组织和正常结直肠黏膜组织[69.8%(60/86)比13.3%(8/60)和5.0%(2/40)、73.3%(63/86)比15.0%(9/60)和2.5%(1/40)],结直肠癌组织中Pokemon和c-myc基因表达水平均明显高于结直肠腺瘤组织和正常结直肠黏膜组织(0.915±0.247比0.358±0.102和0.277±0.085、1.272±0.360比0.398±0.153和0.255 ± 0.097),差异有统计学意义(P<0.05).结直肠癌组织中Pokemon和c-myc基因的表达水平与肿瘤浸润程度、肿瘤分化程度、淋巴结转移、远处转移和Dukes分期有关,差异有统计学意义(P<0.05),但与性别、年龄和肿瘤直径无关(P>0.05).结论 Pokemon和c-myc在结直肠癌组织中高表达,且这种表达与结直肠癌临床病理特征有关,提示Pokemon和c-myc可作为结直肠癌患者临床治疗的评估指标.%Objective To investigate the expressions of Pokemon and c-myc in colorectal cancer,colorectal adenomas and normal colorectal mucosa tissues,and demonstrate its relationship with clinicopathological features and prognosis in patients with colorectal cancer.Methods The specimens were taken from colorectal cancer tissue of 86 patients,colorectal adenomas tissue of 60 patients,and 40 normal colorectal mucosa tissue.The expressions of Pokemon and c-myc protein were detected by immunohistochemistry,and the expressions of Pokemon and c-myc gene were detected by reverse

  14. Pokemon mRNA在乳腺癌中的表达及与c- myc相关性分析%Expression of Pokemon mRNA in breast carcinoma and its relationship to c-myc

    Institute of Scientific and Technical Information of China (English)

    付朝江; 崔明; 徐衍; 王应霞

    2011-01-01

    目的:探讨人乳腺癌中原癌基因c-myc和Pokemon mRNA在乳腺癌组织中的表达及其与乳腺癌发生、转移的相关性.方法:收集浸润性导管癌组织、癌旁乳腺组织、正常乳腺组织各45、20和20例,用原位杂交法检测Pokemon mRNA表达,并用免疫组织化学法检测浸润性导管癌c-myc表达,并进行统计分析.结果:乳腺癌细胞质Pokemon mRNA的表达率为71.2%(37/45),显著高于癌旁正常乳腺组织40%(8/20)、乳腺增生组织25%(5/20), 三者有显著性差异 (P<0.05),细胞质c-myc阳性率分别为86.67%、60.0%、50.0%,三者有显著性差异(P<0.05).细胞质Pokemon mRNA表达与乳腺癌淋巴结转移、组织学分级相关(P<0.05).细胞质c-myc表达与乳腺癌腋窝淋巴结转移相关(P<0.05).45例乳腺癌细胞质Pokemon mRNA与c-myc表达呈正相关(γ=0.585 ,P<0.05).结论:Pokemon mRNA的表达可能在乳腺导管癌的组织发生中起关键作用,c-myc的过度表达可能与乳腺癌Pokemon基因转录激活有关.%Objective: To explore the expression and interaction of Pokemon mRNA and proto - oncogene c - myc in the course of carcinogenesis and metastasis of breast cancer.Methods : The expression of Pokemon mRNA was examined by in situhybridization in 45 cases of breast cancer,20 cases of adjacent noncancerous breast tissue and 20 cases of mammary gland hyperplasia,The expression of c - myc was examined by immunohistochemistry in 45 cases of carcinoma.Results:The rate of strong positive plasma Pokemon mRNA and c - myc expression was significandy higher in breast cancer than in adjacent noncancerous breast tissue and mammary gland hyperplasia ( P < 0.05 ) , the rates of strong positive plasma Pokemon expression were 71.2% ( 37/45 ) ,40% ( 8/20) , 25 % ( 5/20) ;86.67% 、60.0% 、50.0% , respectively.The positive expreasion of Pokemon mRNA and c - myc in breast cancer was strongly related to lympb nodemetastasis(P <0.05) .The expre8aion of Pokemon m

  15. 人胎冠状动脉原位杂交c-myc和jun原癌基因表达%Expression of proto - oncogenes c - myc and jun in human coronary artery ruring development

    Institute of Scientific and Technical Information of China (English)

    蔡维君; 陈新平; 伍校琼; 罗学港

    2004-01-01

    目的研究原癌基因c-myc和jun在人胎冠状动脉发育过程中的表达与平滑肌细胞增殖的关系.方法用原位杂交方法检测,胎龄分别为16周、22周(因治疗需要引产)的胎儿和意外死亡的足月胎儿冠状动脉前降支c-myc mRNA和jun mRNA的表达水平.杂交反应产物用图像分析仪(MIAS300)作定量分析.结果C-myc mRNA原位杂交反应产物与被测血管区域面积的百分比在16周、22周和足月胎儿分别是70、56和10;Jun mRNA的杂交信反应产物与被测血管区域面积的百分比在这三个时期分别是68、53和8.两个原癌基因在不同阶段的表达均具有显著性差异.结论本实验首次报道c-myc和jun在人胎冠状动脉发育过程中平滑肌的表达图型,c-myc和jun在胎儿冠状动脉平滑肌细胞增殖和内膜的形成过程中可能具有重要的调控作用.%Objective: To investigate the expression of protooncogenes, c - myc and jun, in human coronary artery during development. Methods: In situ hybridization was employed to detect c - myc mRNA and jun mRNA in human coronary artery from aborted fetus with embryonic ages from week 16 to 22 due to treatment requirements. In addition, 3 cases of full term human fetus died of accident were also studied. Hybridized signals were quantified with a computer - assisted image - analyzing system ( MIAS 300 ). Results: The ratio of hybridized signal of c - myc to the area of vascular wall detected were 0.7, 0.54 and 0.10 respectively corresponding to the embryonic ages, 16 weeks,22 weeks and full term. Similar results with the ratio of 0.68, 0.53 and 0.08 for jun mRNA at above embryonic ages was also found. The levels of c - myc and jun mRNA expressed at different embryonic stage showed a significant difference. Conclusions: We first reported the expression of proto - oncogenes, c - myc and jun, in human coronary artery during embryonic development. These two proto - oncogenes may play an important role in the

  16. Ammonia impairs glutamatergic communication in astroglial cells: protective role of resveratrol.

    Science.gov (United States)

    Bobermin, Larissa Daniele; Hansel, Gisele; Scherer, Emilene B S; Wyse, Angela T S; Souza, Diogo Onofre; Quincozes-Santos, André; Gonçalves, Carlos-Alberto

    2015-12-01

    Ammonia is a key toxin in the precipitation of hepatic encephalopathy (HE), a neuropsychiatric disorder associated with liver failure. In response to ammonia, various toxic events are triggered in astroglial cells, and alterations in brain glutamate communication are common. Resveratrol is a polyphenolic compound that has been extensively studied in pathological events because it presents several beneficial effects, including some in the central nervous system (CNS). We previously described that resveratrol is able to significantly modulate glial functioning and has a protective effect during ammonia challenge in vitro. In this study, we addressed the mechanisms by which resveratrol can protect C6 astroglial cells from glutamatergic alterations induced by ammonia. Resveratrol was able to prevent all the effects triggered by ammonia: (i) decrease in glutamate uptake activity and expression of the EAAC1 glutamate transporter, the main glutamate transporter present in C6 cells; (ii) increase of glutamate release, which was also dependent on the activation of the Na(+)-K(+)-Cl(-) co-transporter NKCC1; (iii) reduction in GS activity and intracellular GSH content; and (iv) impairment of Na(+)K(+)-ATPase activity. Interestingly, resveratrol, per se, also positively modulated the astroglial functions evaluated. Moreover, we demonstrated that heme oxygenase 1 (HO1), an enzyme that is part of the cellular defense system, mediated some of the effects of resveratrol. In conclusion, the mechanisms of the putative protective role of resveratrol against ammonia toxicity involve the modulation of pathways and molecules related to glutamate communication in astroglial cells.

  17. The differential DRP1 phosphorylation and mitochondrial dynamics in the regional specific astroglial death induced by status epilepticus

    Directory of Open Access Journals (Sweden)

    Ah-Reum eKo

    2016-05-01

    Full Text Available The response and susceptibility to astroglial degenerations are relevant to the distinctive properties of astrocytes in a hemodynamic-independent manner following status epilepticus (SE.Since impaired mitochondrial fission plays an important role in mitosis, apoptosis and programmed necrosis, we investigated whether the unique pattern of mitochondrial dynamics is involved in the characteristics of astroglial death induced by SE. In the present study, SE induced astroglial apoptosis in the molecular layer of the dentate gyrus, accompanied by decreased mitochondrial length. In contrast, clasmatodendritic (autophagic astrocytes in the CA1 region showed mitochondrial elongation induced by SE. Mdivi-1 (an inhibitor of mitochondrial fission effectively attenuated astroglial apoptosis, but WY14643 (an enhancer of mitochondrial fissionaggravated it. In addition, Mdivi-1accelerated clasmatodendritic changes in astrocytes. These regional specific mitochondrial dynamics in astrocytes were closely correlated with dynamin-related protein (DRP1, a mitochondrial fission protein phosphorylation, not optic atrophy 1 (a mitochondrial fusion protein expression. To the best of our knowledge, the present data demonstrate for the first time the novel role of DRP1-mediated mitochondrial fission in astroglial loss. Thus, the present findings suggest that the differential astroglial mitochondrial dynamics may participate in the distinct characteristics of astroglial death induced by SE.

  18. 人类p53和c-myc同源基因在玉米颖果发育过程中的表达%Expressions of Human p53 and c-myc Gene Homologues During Caryopsis Development in Maize

    Institute of Scientific and Technical Information of China (English)

    亓翠英; 宁顺斌; 王宁; 李立家; 宋运淳

    2003-01-01

    肿瘤抑制基因p53和原癌基因c-myc已被证明在动物中高度保守并参与许多PCD过程.这两个基因编码的同源蛋白及其RNA在玉米中的存在已有报道,并且其DNA同源序列已利用荧光原位杂交定位在玉米相应的染色体上.利用免疫组织化学方法探测了与人类p53和c-myc基因同源的玉米基因在玉米颖果发育过程中的时空表达模式.结果发现,在授粉后的一定阶段,在反足细胞、珠被、未成熟的胚乳、子房壁、导管组织和糊粉层中,p53同源基因表达强烈,c-myc同源基因的表达相反,在授粉后的这些组织中基本不表达,而在授粉前的中央细胞的极核中表达水平较高.TUNEL检测显示,在p53同源基因呈现高水平表达的地方,DNA断裂信号强烈.在动物细胞中,p53和c-myc起相反的调节作用,这与其同源基因在玉米中的作用模式相似.由此说明p53和c-myc同源基因可能在玉米颖果发育PCD过程中起重要作用,并进一步推论高等植物PCD和动物细胞凋亡存在一定的保守性机制.%Tumor suppressor gene p53 and proto-oncogene c-myc have been proved to be highly conserved and participate in many PCD processes in animals.In maize,proteins and RNAs related to p53 and c-myc have already been reported and the sequences homologous to these two genes have also been localized onto maize chromosomes by FISH.In this study,using immunohistochemistry we investigated the expression patterns of maize genes homologous to human p53 and c-myc during caryopsis development stages in maize.In a giving stage after pollination,p53 homologue showed high levels in the antipodal cells,integument,immature endosperm,ovary wall,tracheary elements,and aleurone layer,while c-myc homologue showed low levels in these tissues,only before pollination showed high expression in polar nucleus.The results of TUNEL assay demonstrated that TUNEL positive signals were detected where p53 homologue showed high expression

  19. S-Adenosylmethionine Inhibits the Growth of Cancer Cells by Reversing the Hypomethylation Status of c-myc and H-ras in Human Gastric Cancer and Colon Cancer

    OpenAIRE

    Luo, Jin; Li, Yan-Ni; Wang, Fei; Zhang, Wei-ming; Geng, Xin

    2010-01-01

    A global DNA hypomethylation might activate oncogene transcription, thus promoting carcinogenesis and tumor development. S-Adenosylmethionine (SAM) serves as a major methyl donor in biological transmethylation events. The object of this study is to explore the influence of SAM on the status of methylation at the promoter of the oncogenes c-myc, H-ras and tumor-suppressor gene p16 (INK4a), as well as its inhibitory effect on cancer cells. The results indicated that SAM treatment inhibited cell...

  20. In vitro effects of zinc and folic acid on the expressions of Neurogenin 3, Kruppel-like factor 4, c-Myc, Nanog, Nestin and POU class 5 homeobox 1 genes

    OpenAIRE

    Zehra Dilsad Coban; Sefik Guran; Atmaca Sahin Sagaltici

    2015-01-01

    Objective: Genes are regulated at multiple levels by using nutritional factors during neurogenesis and gliogenesis in brain development. Folic acid (FA)and zinc regulate the expressions of some genes which participate in brain development as nutritional factors. So, we aimed to find the effect of FA and zinc on the expression levels of neurogenin 3 (NGN3), Kruppel-like factor 4 (Klf4), c-Myc, nanog, POU class 5 homeobox 1-Pou5F1 (Oct4), and Nestin in mouse fetal brain tissue in neural plate p...

  1. Reevesioside A, a cardenolide glycoside, induces anticancer activity against human hormone-refractory prostate cancers through suppression of c-myc expression and induction of G1 arrest of the cell cycle.

    Directory of Open Access Journals (Sweden)

    Wohn-Jenn Leu

    Full Text Available In the past decade, there has been a profound increase in the number of studies revealing that cardenolide glycosides display inhibitory activity on the growth of human cancer cells. The use of potential cardenolide glycosides may be a worthwhile approach in anticancer research. Reevesioside A, a cardenolide glycoside isolated from the root of Reevesia formosana, displayed potent anti-proliferative activity against human hormone-refractory prostate cancers. A good correlation (r² = 0.98 between the expression of Na⁺/K⁺-ATPase α₃ subunit and anti-proliferative activity suggested the critical role of the α₃ subunit. Reevesioside A induced G1 arrest of the cell cycle and subsequent apoptosis in a thymidine block-mediated synchronization model. The data were supported by the down-regulation of several related cell cycle regulators, including cyclin D1, cyclin E and CDC25A. Reevesioside A also caused a profound decrease of RB phosphorylation, leading to an increased association between RB and E2F1 and the subsequent suppression of E2F1 activity. The protein and mRNA levels of c-myc, which can activate expression of many downstream cell cycle regulators, were dramatically inhibited by reevesioside A. Transient transfection of c-myc inhibited the down-regulation of both cyclin D1 and cyclin E protein expression to reevesioside A action, suggesting that c-myc functioned as an upstream regulator. Flow cytometric analysis of JC-1 staining demonstrated that reevesioside A also induced the significant loss of mitochondrial membrane potential. In summary, the data suggest that reevesioside A inhibits c-myc expression and down-regulates the expression of CDC25A, cyclin D1 and cyclin E, leading to a profound decrease of RB phosphorylation. G1 arrest is, therefore, induced through E2F1 suppression. Consequently, reevesioside A causes mitochondrial damage and an ultimate apoptosis in human hormone-refractory prostate cancer cells.

  2. A mouse strain defective in both T cells and NK cells has enhanced sensitivity to tumor induction by plasmid DNA expressing both activated H-Ras and c-Myc.

    Directory of Open Access Journals (Sweden)

    Li Sheng-Fowler

    Full Text Available As part of safety studies to evaluate the risk of residual cellular DNA in vaccines manufactured in tumorigenic cells, we have been developing in vivo assays to detect and quantify the oncogenic activity of DNA. We generated a plasmid expressing both an activated human H-ras gene and murine c-myc gene and showed that 1 µg of this plasmid, pMSV-T24-H-ras/MSV-c-myc, was capable of inducing tumors in newborn NIH Swiss mice. However, to be able to detect the oncogenicity of dominant activated oncogenes in cellular DNA, a more sensitive system was needed. In this paper, we demonstrate that the newborn CD3 epsilon transgenic mouse, which is defective in both T-cell and NK-cell functions, can detect the oncogenic activity of 25 ng of the circular form of pMSV-T24-H-ras/MSV-c-myc. When this plasmid was inoculated as linear DNA, amounts of DNA as low as 800 pg were capable of inducing tumors. Animals were found that had multiple tumors, and these tumors were independent and likely clonal. These results demonstrate that the newborn CD3 epsilon mouse is highly sensitive for the detection of oncogenic activity of DNA. To determine whether it can detect the oncogenic activity of cellular DNA derived from four human tumor-cell lines (HeLa, A549, HT-1080, and CEM, DNA (100 µg was inoculated into newborn CD3 epsilon mice both in the presence of 1 µg of linear pMSV-T24-H-ras/MSV-c-myc as positive control and in its absence. While tumors were induced in 100% of mice with the positive-control plasmid, no tumors were induced in mice receiving any of the tumor DNAs alone. These results demonstrate that detection of oncogenes in cellular DNA derived from four human tumor-derived cell lines in this mouse system was not possible; the results also show the importance of including a positive-control plasmid to detect inhibitory effects of the cellular DNA.

  3. Two-step stimulation of B lymphocytes to enter DNA synthesis: synergy between anti-immunoglobulin antibody and cytochalasin on expression of c-myc and a G1-specific gene.

    OpenAIRE

    Buckler, A J; Rothstein, T. L.; Sonenshein, G E

    1988-01-01

    Previously we demonstrated that stimulation of resting murine splenic B lymphocytes with goat anti-mouse immunoglobulin antibody (GaMIg) plus cytochalasin D (CD) led to DNA synthesis; GaMIg and CD added simultaneously, or GaMIg added before CD, induced this response (T. L. Rothstein, J. Immunol. 136:813-816, 1986). Cells similarly treated with GaMIg or CD alone did not enter S phase. Here we have measured the effects of this two-signal stimulation on the c-myc, 2F1, and gamma-actin genes. The...

  4. c-myc、p53和p16的表达及GNAS1基因突变在骨的纤维结构不良中的意义%Abnormal expression of c-myc,p53,p16 protein and GNAS1 gene mutation in fibrous dysplasia

    Institute of Scientific and Technical Information of China (English)

    唐娟; 赵红叶; 郑莉; 张惠箴; 蒋智铭

    2009-01-01

    Objective To study the significance of c-myc,p53 and p16 protein expression in fibrous dysplasia,to detect the GNAS1 gene mutation in fibrous dysplasia,and to explore the property of fibrous dysplasia.Methods The expression of c-myc,p53 and p16 protein was evaluated by immunohistochemistry SP method in 35 cases of fibrous dysplasia including 1 FD with malignancy,1 Mazabraud syndrome and 20 control cases (10 cases of bony callus,10 cases of osteosarcoma). Genomic DNA extraction,PCR amplification and gene sequencing were used to detect GNAS1 gene mutation in 35 cases of fibrous dysplasia.Results C-myc protein immunoreactivity was detected in 91 percentage of FD(P=0.001).Compared with the negative control group,the difference was significant.P16 positive waa detected in 34 FD cases(P=0.001).The difference was significant as compared with the positive control group.Positive p53 protein expression was detected in the only 1 case of fibrous dysplasia with malignant transformation.PCR amplification was successful in 12 of 35 FD cases.Two of the 12 FD cases were detected to have GNAS1 gene mutation,in which 1 case waa FD of Mazabraud syndrome,1 case was a monostotic lesion.Concimiom C-myc could be another protooncogene in addition to c-fos in the fibrous dysplasia disease.P53 protein overexpression could be useful in the diagnosis of FD malignancy and in the prediction of the prognosis of FD.The abnormal expression of the gene p16 might play an important role in the formation of FD.The GNAS1 mutation exist in FD.All of the results indicate that FD could be a neoplasia disease.caused by multiple factors leading to a dysfunction of bone development.%目的 检测c-myc、p53和p16蛋白在骨的纤维结构不良(FD)中的表达及其意义,检测FD中GNAS1基因第8外显子突变,探讨FD的病变性质.方法 采用免疫组织化学SP法检测35例FD(包括1例FD恶变,1例Mazabraud综合征)及20例对照组(10例骨痂、10例骨肉瘤)中c-myc、p53和p16蛋白表达.

  5. Correlation of expression VEGF to expression of protooncogenes of c-fos and c-myc at protein level among various grades of liver cirrhosis%硬变肝组织VEGF的表达与原癌基因c-fos,c-myc 以及肝功能分级的相关性研究

    Institute of Scientific and Technical Information of China (English)

    施宝民; 杨镇; 张黎; 李大鹏

    2001-01-01

    目的探讨血管内皮生长因子(VEGF)在肝硬化发生发展中的作用以及肝脏原癌基因(c-fos,c-myc)与肝功能Child分级的相关关系。方法通过对54例硬变肝组织中的VEGF、c-fos、c-myc蛋白的免疫组化检测,观察VEGF的蛋白水平表达与肝脏功能Child 分级的相关性,同时分析VEGF阳性病例组与阴性病例组c-fos、c-myc的不同表达,来了解二者的相互作用关系。结果 Child A级与Child B级VEGF的表达显著高于Child C级和对照组(P<0.05),而Child A级与Child B级之间差异无显著性意义(P>0.05)。c-fos 及c-myc的表达在VEGF阳性组和阴性组差异无显著性意义(P>0.05)。结论 VEGF的水平可以反映肝脏功能的代偿状态,可能在肝硬化的进程中起着保肝作用;原癌基因c-fos、c-myc与VEGF作用在不同环节。

  6. S-Adenosylmethionine Inhibits the Growth of Cancer Cells by Reversing the Hypomethylation Status of c-myc and H-ras in Human Gastric Cancer and Colon Cancer

    Directory of Open Access Journals (Sweden)

    Jin Luo, Yan-Ni Li, Fei Wang, Wei-Ming Zhang, Xin Geng

    2010-01-01

    Full Text Available A global DNA hypomethylation might activate oncogene transcription, thus promoting carcinogenesis and tumor development. S-Adenosylmethionine (SAM serves as a major methyl donor in biological transmethylation events. The object of this study is to explore the influence of SAM on the status of methylation at the promoter of the oncogenes c-myc, H-ras and tumor-suppressor gene p16 (INK4a, as well as its inhibitory effect on cancer cells. The results indicated that SAM treatment inhibited cell growth in gastric cancer cells and colon cancer cells, and the inhibition efficiency was significantly higher than that in the normal cells. Under standard growth conditions, C-myc and H-ras promoters were hypomethylated in gastric cancer cells and colon cancer cells. SAM treatment resulted in a heavy methylation of these promoters, which consequently downregulated mRNA and protein levels. In contrast, there was no significant difference in mRNA and protein levels of p16 (INK4a with and without SAM treatment. SAM can effectively inhibit the tumor cells growth by reversing the DNA hypomethylation on promoters of oncogenes, thus down-regulating their expression. With no influence on the expression of the tumor suppressor genes, such as P16, SAM could be used as a potential drug for cancer therapy.

  7. TA1 oncofetal rat liver cDNA and putative amino acid permease: temporal correlation with c-myc during acute CCl4 liver injury and variation of RNA levels in response to amino acids in hepatocyte cultures.

    Science.gov (United States)

    Shultz, V D; Campbell, W; Karr, S; Hixson, D C; Thompson, N L

    1999-01-01

    TA1 is a rat liver oncofetal cDNA and a member of an emerging family of evolutionarily conserved molecules with homology to amino acid transporters and permeases. The aim of these studies was to characterize the regulation and role of TA1 in acute rat liver injury by examining its relation to regeneration and metabolic stress. Following a single dose of CCl4, TA1 message was expressed 3-48 h. The major 3.3-kb TA1 transcript correlated temporally with c-myc expression. A novel 2.9-kb TA1 transcript was expressed more variably 24-48 h. TA1 protein was restricted to hepatocytes in G0 and G1 phases of the cell cycle. Relative to CCl4, a much smaller increase in TA1 was noted after partial hepatectomy and TA1 preceded the peak of c-myc expression. In vitro TA1 was not induced in hepatocytes by EGF or the acute-phase cytokines IL-6 and TNF-alpha, but was found to be modulated in response to amino acid availability. TA1 expression increased in media without arginine and glutamine and was repressed by total amino acid levels 5-fold over basal MEM. Together, these results contrast with the constitutive expression observed in transformed cells and suggest an adaptive role for TA1 during liver injury.

  8. Bromodichloromethane induces cell proliferation in different tissues of male F344 rats by suppression of E-cadherin expression via hypermethylation or transcriptional activation of c-myc and cyclin D1.

    Science.gov (United States)

    Liao, Jing; Li, Xiao-Feng; Zhou, Shun-Chang; Luo, Yan; Liu, Ai-Lin; Lu, Wen-Qing

    2013-11-25

    The aim of this study was to investigate the mechanism of bromodichloromethane (BDCM) - induced cell proliferation in different tissues of male F344 rats. Rats were administered at doses of 0 and 100mg/kg/day BDCM dissolved in corn oil by gavage for 5 days/week for 1, 4, 8 and 12 weeks. Then the colon, kidney and liver were collected. No histologic lesions were observed in the colon of rats exposed to BDCM, while there were mild nephrotoxicity and marginal hepatotoxicity related to BDCM treatment. Moreover, BDCM enhanced cell proliferation in the colon and kidney but not in the liver. In colons, hypermethylation in E-cadherin promoter might be associated with inhibition of mRNA and protein expression after 12 weeks of BDCM exposure. In kidneys, BDCM decreased E-cadherin mRNA expression, accompanying with transcriptional activation of c-myc and cyclin D1. However, suppression of E-cadherin mRNA and protein expression occurred in the absence of significant changes in DNA methylation. Therefore, suppression of E-cadherin expression via hypermethylation or transcriptional activation of c-myc and cyclin D1 may be involved in BDCM-induced cell proliferation in different tissues of male F344 rats.

  9. Differential regulation of LncRNA-SARCC suppresses VHL-mutant RCC cell proliferation yet promotes VHL-normal RCC cell proliferation via modulating androgen receptor/HIF-2α/C-MYC axis under hypoxia.

    Science.gov (United States)

    Zhai, W; Sun, Y; Jiang, M; Wang, M; Gasiewicz, T A; Zheng, J; Chang, C

    2016-09-15

    It is well established that hypoxia contributes to tumor progression in a hypoxia inducible factor-2α (HIF-2α)-dependent manner in renal cell carcinoma (RCC), yet the role of long noncoding RNAs (LncRNAs) involved in hypoxia-mediated RCC progression remains unclear. Here we demonstrate that LncRNA-SARCC (Suppressing Androgen Receptor in Renal Cell Carcinoma) is differentially regulated by hypoxia in a von Hippel-Lindau (VHL)-dependent manner both in RCC cell culture and clinical specimens. LncRNA-SARCC can suppress hypoxic cell cycle progression in the VHL-mutant RCC cells while derepress it in the VHL-restored RCC cells. Mechanism dissection reveals that LncRNA-SARCC can post-transcriptionally regulate androgen receptor (AR) by physically binding and destablizing AR protein to suppress AR/HIF-2α/C-MYC signals. In return, HIF-2α can transcriptionally regulate the LncRNA-SARCC expression via binding to hypoxia-responsive elements on the promoter of LncRNA-SARCC. The negative feedback modulation between LncRNA-SARCC/AR complex and HIF-2α signaling may then lead to differentially modulated RCC progression in a VHL-dependent manner. Together, these results may provide us a new therapeutic approach via targeting this newly identified signal from LncRNA-SARCC to AR-mediated HIF-2α/C-MYC signals against RCC progression.

  10. P2X7 receptor-mediated PARP1 activity regulates astroglial death in the rat hippocampus following status epilepticus

    Directory of Open Access Journals (Sweden)

    Ji Yang eKim

    2015-09-01

    Full Text Available Poly(ADP-ribose polymerase-1 (PARP1 plays a regulatory role in apoptosis, necrosis, and other cellular processes after injury. Recently, we revealed that PARP1 regulates the differential neuronal/astroglial responses to pilocarpine-induced status epilepticus (SE in the distinct brain regions. In addition, P2X7 receptor (P2X7R, an ATP-gated ion channel, activation accelerates astroglial apoptosis, while it attenuates clasmatodendrosis (lysosome-derived autophagic astroglial death. Therefore, we investigated whether P2X7R regulates regional specific astroglial PARP1 expression/activation in response to SE. In the present study, P2X7R activation exacerbates SE-induced astroglial apoptosis, while P2X7R inhibition attenuates it accompanied by increasing PARP1 activity in the molecular layer of the dentate gyrus following SE. In the CA1 region, however, P2X7R inhibition deteriorates SE-induced clasmatodendrosis via PARP1 activation following SE. Taken together, our findings suggest that P2X7R function may affect SE-induced astroglial death by regulating PARP1 activation/expression in regional-specific manner. Therefore, the selective modulation of P2X7R-mediated PARP1 functions may be a considerable strategy for controls in various types of cell deaths.

  11. Neuroprotective effects of prostaglandin A1 and its effect on IKK/IkB/NF-kB/c-myc signaling pathway in rat models of permanent focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Hui-lingZHANG; Zhen-lunGU; Zheng-hongQIN

    2005-01-01

    AIM Prostaglandin A1(PGA1) is a cyclopentenone prostaglandin. Recently, we reported that PGA1 can inhibit excitotoxin-induced apoptosis of striatal neurons in vivo and rotenone-induced apoptosis ofcultured SH-SY5Y cells, suggesting that PGA1 may have neuroprotective efficacy, possibly mediated by inhibition of NF-kB activation. The present study evaluated the neuroprotective potential of PGA1 and its effect on IKK/I( B/NF-kB/c-myc signaling pathway in rat models of permanent focal cerebral ischemia. METHODS Permanent middle cerebral artery occlusion (pMCAO) model was constructed by intraluminal suture cannulation through the internal carotid artery in Wistar rats.

  12. The Phosphoinositide 3-Kinase p110α Isoform Regulates Leukemia Inhibitory Factor Receptor Expression via c-Myc and miR-125b to Promote Cell Proliferation in Medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Fabiana Salm

    Full Text Available Medulloblastoma (MB is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation.

  13. CyclinA、C-myc在皮肤瘢痕及瘢痕癌组织中的表达及意义%Expressions and Significance of CyclinA and C-myc in Skin Scar and Skin Scar Carcinoma

    Institute of Scientific and Technical Information of China (English)

    郭瑞珍; 周开梅; 王燕

    2011-01-01

    目的 探讨CyclinA、C-myc在皮肤病理性瘢痕和瘢痕癌组织中的表达及意义.方法以病理性皮肤瘢痕、皮肤瘢痕癌组织为研究对象,以正常皮肤组织为对照.采用免疫组织化学(SP法)分别检测CyclinA、C-myc蛋白的表达,采用核酸分子原位杂交法检测CyclinA mRNA的表达,所有数据输入计算机后运用SPSS 16.0软件包进行统计学分析.结果 (1)CyclinA、CyclinA mRNA在正常皮肤和皮肤瘢痕上皮中的表达呈阴性或弱阳性,在瘢痕癌组织中呈强阳性.瘢痕癌组的表达(平均吸光度和阳性面积)与正常皮肤组及皮肤瘢痕组比较,差异均有统计学意义(P<0.01);但正常皮肤组与瘢痕组比较,差异无统计学意义(P>0.05).(2)C-myc蛋白在正常皮肤中的表达呈弱阳性,在皮肤瘢痕上皮中呈阳性,在瘢痕癌组织中呈强阳性.且两两比较差异均有统计学意义(P<0.05).(3)相关分析显示,在皮肤瘢痕癌中,CyclinA与CyclinA mRNA(r=0.766,P<0.01)、CyclinA与C-myc蛋白(r=0.804,P<0.01)的表达均呈正相关.结论(1)CyclinA及其mRNA、C-myc的高表达,可能与皮肤瘢痕癌的发生有关;(2)C-myc蛋白的高表达与皮肤瘢痕上皮癌变有相关性.(3)在瘢痕癌中CyclinA同时存在蛋白水平和基因水平的异常表达.%Objective To study the expressions and significance of CyclinA and C-myc in skin Scar and skin Scar Carcinoma. Methods We compared pathological skin scar tissues and skin scar carcinoma tissues with normal skin tissues. The expression of CyclinA and C-myc proteins were detected by the immu-nohistochemical method of SP. And the expression of CyclinA mRNA was detected by in situ hybridization. All data were input into the computer and statistically analyzed with SPSS (16. 0) software. Results (1) CyclinA and its mRNA showed strong positive expression in scar carcinoma tissues, negative or weakly positive expression in normal skin epidermis and pathological skin scar epithelium

  14. Induction of interleukin-8 by Naegleria fowleri lysates requires activation of extracellular signal-regulated kinase in human astroglial cells.

    Science.gov (United States)

    Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Sang-Hee; Kwon, Daeho; Shin, Ho-Joon

    2012-08-01

    Naegleria fowleri is a pathogenic free-living amoeba which causes primary amoebic meningoencephalitis in humans and experimental animals. To investigate the mechanisms of such inflammatory diseases, potential chemokine gene activation in human astroglial cells was investigated following treatment with N. fowleri lysates. We demonstrated that N. fowleri are potent inducers for the expression of interleukin-8 (IL-8) genes in human astroglial cells which was preceded by activation of extracellular signal-regulated kinase (ERK). In addition, N. fowleri lysates induces the DNA binding activity of activator protein-1 (AP-1), an important transcription factor for IL-8 induction. The specific mitogen-activated protein kinase kinase/ERK inhibitor, U0126, blocks N. fowleri-mediated AP-1 activation and subsequent IL-8 induction. N. fowleri-induced IL-8 expression requires activation of ERK in human astroglial cells. These findings indicate that treatment of N. fowleri on human astroglial cells leads to the activation of AP-1 and subsequent expression of IL-8 which are dependent on ERK activation. These results may help understand the N. fowleri-mediated upregulation of chemokine and cytokine expression in the astroglial cells.

  15. Effect of Cell Cycle Inhibitor Olomoucine on Astroglial Proliferation and Scar Formation after Focal Cerebral Infarction in Rats

    Institute of Scientific and Technical Information of China (English)

    MANG Gui-bin; TIAN Dai-shi; XU Yun-lan; XIE Min-jie; WANG Ping; DU Yi-xing; WANG Wei

    2011-01-01

    Background: Astrocytes become reactive following many types of CNS injuries.Excessive astrogliosis is detrimental and contributes to neuronal damage. We sought to determine whether inhibition of cell cycle could decrease the proliferation of astroglial cells and therefore reduce excessive gliosis and glial scar formation after focal ischemia. Methods: Cerebral infarctionmodel was induced by photothrombosis method. Rats were examined using MRI, and lesion volumes were estimated on day 3 post-infarction. The expression of glial fibrillary acidic protein(GFAP) and proliferating cell nuclear antigen(PCNA) was observed by immunofluorescence staining. Protein levels for GFAP, PCNA, Cyclin A and Cyclin B1 were determined by Western blot analysis from the ischemic and sham animals sacrificed at 3,7,30 days after operation. Results:Cell cycle inhibitor olomoucine significantly suppressed GFAP and PCNA expression and reduced lesion volume after cerebral ischemia. In parallel studies, we found dense astroglial scar in boundary zone of vehicle-treated rats at 7 and 30 days. Olomoucine can markedly attenuate astroglial scar formation. Western blot analysis showed increased protein levels of GFAP, PCNA,Cyclin A and Cyclin B1 after ischemia, which was reduced by olomoucine treatment. Conclusion:Our results suggested that astroglial activation, proliferation and subsequently astroglial scar formation could be partially inhibited by regulation of cell cycle. Cell cycle modulation thereby pro-vides a potential promising strategy to treat cerebral ischemia.

  16. Isoflurane does not cause neuroapoptosis but reduces astroglial processes in young adult mice

    Directory of Open Access Journals (Sweden)

    Dallasen Renee M

    2011-11-01

    Full Text Available Abstract Background Isoflurane, a volatile anesthetic widely used clinically, has been implicated to be both neuroprotective and neurotoxic. The claim about isoflurane causing neural apoptosis remains controversial. In this study, we investigated the effects of isoflurane exposures on apoptotic and anti-apoptotic signals, cell proliferation and neurogenesis, and astroglial processes in young adult mouse brains. Methods Sixty 6-week-old mice were randomly assigned to four anesthetic concentration groups (0 as control and 0.6%, 1.3%, and 2% with four recovery times (2 h and 1, 6, and 14 d after 2-h isoflurane exposure. Immunohistochemistry measurements of activated caspase-3 and Bcl-xl for apoptotic and anti-apoptotic signals, respectively, glial fibrillary acidic protein (GFAP and vimentin for reactive astrocytosis, doublecortin (Dcx for neurogenesis, and BrdU for cell proliferation were performed. Results Contrary to the previous conclusion derived from studies with neonatal rodents, we found no evidence of isoflurane-induced apoptosis in the adult mouse brain. Neurogenesis in the subgranule zone of the dentate gyrus was not affected by isoflurane. However, there is a tendency of reduced cell proliferation after 2% isoflurane exposure. VIM and GFAP staining showed that isoflurane exposure caused a delayed reduction of astroglial processes in the hippocampus and dentate gyrus. Conclusion Two-hour exposure to isoflurane did not cause neuroapoptosis in adult brains. The delayed reduction in astroglial processes after isoflurane exposure may explain why some volatile anesthetics can confer neuroprotection after experimental stroke because reduced glial scarring facilitates better long-term neuronal recoveries.

  17. Decreased astroglial cell adhesion and proliferation on zinc oxide nanoparticle polyurethane composites

    Directory of Open Access Journals (Sweden)

    Justin T Seil

    2008-11-01

    Full Text Available Justin T Seil, Thomas J WebsterLaboratory for Nanomedicine Research, Division of Engineering, Brown University, Providence, RI, USAAbstract: Nanomaterials offer a number of properties that are of interest to the field of neural tissue engineering. Specifically, materials that exhibit nanoscale surface dimensions have been shown to promote neuron function while simultaneously minimizing the activity of cells such as astrocytes that inhibit central nervous system regeneration. Studies demonstrating enhanced neural tissue regeneration in electrical fields through the use of conductive materials have led to interest in piezoelectric materials (or those materials which generate a transient electrical potential when mechanically deformed such as zinc oxide (ZnO. It has been speculated that ZnO nanoparticles possess increased piezoelectric properties over ZnO micron particles. Due to this promise in neural applications, the objective of the present in vitro study was, for the first time, to assess the activity of astroglial cells on ZnO nanoparticle polymer composites. ZnO nanoparticles embedded in polyurethane were analyzed via scanning electron microscopy to evaluate nanoscale surface features of the composites. The surface chemistry was characterized via X-ray photoelectron spectroscopy. Astroglial cell response was evaluated based on cell adhesion and proliferation. Astrocyte adhesion was significantly reduced on ZnO nanoparticle/polyurethane (PU composites with a weight ratio of 50:50 (PU:ZnO wt.%, 75:25 (PU:ZnO wt.%, and 90:10 (PU:ZnO wt.% in comparison to pure PU. The successful production of ZnO nanoparticle composite scaffolds suitable for decreasing astroglial cell density demonstrates their potential as a nerve guidance channel material with greater efficiency than what may be available today.Keywords: zinc oxide, nanoparticles, astrocytes, neural tissue, nervous system, biomaterials

  18. 多态性上皮黏蛋白1和原癌基因C-myc在老年甲状腺乳头状癌患者中的表达%Expression changes of mucin1 and c-myc gene in elderly papillary thyroid carcinoma patient

    Institute of Scientific and Technical Information of China (English)

    胡耀杰; 罗晓燕; 杨岳; 陈春悠; 张志勇; 郭欣

    2014-01-01

    Objective To study the changes of expression of mucin1 (MUC1) and protooncogene proteins C-myc (C-myc) gene in elderly papillary thyroid carcinoma.Methods The expression levels of MUC1 and C-myc were examined by immunohistochemical methods in 58 sample of thyroid carcinoma,35 nodular goiter and in 30 normal thyroid tissue.Results The detective rate of MUC1 in 58 specimens of thyroid carcinoma was 77.6% (45/58),while 90.0% (9/10) in those with infiltration and 88.2 % (15/17) in those with metastasis.The detective rate of C-myc in 58 specimens of thyroid carcinoma was 81.0 % (47/58),and 100.0 % (17/17) in those with metastasis.Conclusions The differences in MUC1 or C myc expression and in thyroid carcinoma infiltration and lymph node metastasia between benign versus malignant thyroid tumor are statistically significant.%目的 探讨多态性上皮黏蛋白1 (mucin 1,MUC1)和原癌基因蛋白质(proto-oncogene proteins C-myc,C-Myc)基因在老年甲状腺乳头状癌(PTC)患者中的表达和临床意义. 方法 应用免疫组化法检测30例腺瘤旁正常甲状腺组织、35例结节性甲状腺肿和58例PTC标本中MUC1和C-myc的表达水平. 结果 MUC1基因在甲状腺癌中表达率为77.6%(45/58),MUC1在有局部浸润和淋巴结转移患者中的检出率分别为90.0%(9/10)和88.2%(15/17).C-myc基因在甲状腺癌中阳性率为81.0% (47/58);C-myc在淋巴结转移组中的检出率为100.0% (17/17). 结论 MUC1和C myc的阳性表达在甲状腺良恶性病变间有差异,并与甲状腺癌的转移有关.

  19. Astroglial glutamate-glutamine cycle is involved in the modulation of inflammatory nociception in rats

    Institute of Scientific and Technical Information of China (English)

    Tiancheng Wang; Jing Wang; Bin Geng; Hongyu Guo; Haili Shen; Yayi Xia

    2011-01-01

    Our previous behavioral studies have indicated that the astroglial glutamate-glutamine cycle is involved in the process of formalin-induced spinal cord central sensitization, but there was little morphological evidence. In this study, double-labeling immunofluorescence techniques showed that after rats were intrathecally injected with PBS and plantarly injected with formalin, glial fibrillary acidic protein (GFAP) and glutamine synthesase (GS) expression were increased and GFAP/GS coexpression was changed to include layers III and IV. After intrathecal injection of methionine sulfoximine, a GS specific inhibitor, the formalin-induced change in expression and coexpression of GFAP and GS in spinal cord dorsal horns was inhibited. The morphology, distribution and quantity of astrocytes recovered to normal levels. An intrathecal glutamine injection reversed the inhibitory effect of methionine sulfoximine. Astrocytes showed significant activation and distribution extended to layers V and VI. The present study provides morphological evidence that the astroglial glutamate-glutamine cycle is involved in the process of formalin-induced spinal cord central sensitization.

  20. Effect of TGF-β1 on cell proliferation and c-myc expression in Burkitt lymphoma cell line%TGF-β1对Burkitt淋巴瘤细胞增殖及c-myc表达的影响

    Institute of Scientific and Technical Information of China (English)

    李柱虎; Lee Mija

    2006-01-01

    目的:探讨TGF-β1对Burkitt淋巴瘤细胞生长的抑制作用和对c-myc基因及蛋白表达的影响.方法:于Burkitt淋巴瘤细胞株Jiyoye中加入5ng/mL TGF-β1做为实验组,不加TGF-β1做为对照组,分别培养24、48和72 h,用MTT、RT-PCR及Westem blot方法检测细胞生存率、c-myc mRNA及蛋白的表达水平.结果:经TGF-β1处理24、48和72 h的Jiyoye细胞生存率分别为(80.5±3.14)%、(70.5±3.77)%和(56.4±3.36)%,与对照组相比均显著降低(t=8.788 0,P=0.012 7;t=13.570 9,P=0.005 4;t=22.500 6,P=0.019 7).经TGF-β1处理的Jiyoye细胞随时间的延长生存率降低,72 h时的生存率与24h相比差异有统计学意义,t=8.186 2,P=0.001 2;c-myc mRNA及蛋白的表达水平也明显变化,24 h开始下降,48和72 h时明显受抑制,与对照组相比差异有统计学意义,P=0.000 0.结论:TGF-β1可呈时间依赖性抑制Jiyoye细胞的生长,其机制可能与抑制c-myc基因及蛋白的表达有关.

  1. Antileukemia Effect of Ciclopirox Olamine Is Mediated by Downregulation of Intracellular Ferritin and Inhibition β-Catenin-c-Myc Signaling Pathway in Glucocorticoid Resistant T-ALL Cell Lines.

    Science.gov (United States)

    Wu, Jianrong; Liu, Huajun; Zhang, Ge; Gu, Ling; Zhang, Yanle; Gao, Ju; Wei, Yuquan; Ma, Zhigui

    2016-01-01

    Ciclopirox olamine (CPX) is an antifungal drug that has been reported to have antitumor effects. In this study we investigated the antileukemia effects and the possible mechanisms of CPX on glucocorticoid (GC)-resistant T-cell acute lymphoblastic leukemia (T-ALL) cell lines. The results indicated that CPX inhibited the growth of GC-resistant T-ALL cells in a time- and dose-dependent manner, and this effect was closely correlated with the downregulation of intracellular ferritin. CPX induced cell cycle arrest at G1 phase by upregulation of cyclin-dependent kinase (CDK) inhibitor of p21 and downregulation of the expressions of cyclin D, retinoblastoma protein (Rb), and phosphorylated Rb (pRb). CPX also enhanced apoptotic cell death by downregulation of anti-apoptotic proteins such as Bcl-2, Bcl-xL, and Mcl-1. More importantly, CPX demonstrated a strong synergistic antileukemia effect with GC and this effect was mediated, at least in part, by inhibition of the β-catenin-c-Myc signaling pathway. These findings suggest that CPX could be a promising antileukemia drug, and modulation of the intracellular ferritin expression might be an effective method in the treatment of ALL. Therefore, integrating CPX into the current GC-containing ALL protocols could lead to the improvement of the outcome of ALL, especially GC-resistant ALL. PMID:27551974

  2. Complex Biological Systems Analysis of Cell Cycling Models in Carcinogenesis: I. The essential roles of modifications in the c-Myc, TP53/p53, p27 and hTERT modules in Cancer Initiation and Progression

    CERN Document Server

    Prisecaru, V I

    2004-01-01

    A new approach to the integration of results from a modular, complex biological systems analysis of nonlinear dynamics in cell cycling network transformations that are leading to carcinogenesis is proposed. Carcinogenesis is a complex process that involves dynamically inter-connected biomolecules in the intercellular, membrane, cytosolic, nuclear and nucleolar compartments that form numerous inter-related pathways referred to as networks. One such network module contains the cell cyclins whose functions are essential to cell cycling and division. Cyclins are proteins that also link to several critical pro-apoptotic and other cell cycling/division components, such as: c-Myc, p27, the tumor suppressor gene TP53 and its product-- the p53 protein with key roles in controlling DNA repair, inducing apoptosis and activating p21 (which can depress cell cyclins if activated), mdm2(with its biosynthesis activated by p53 and also, in its turn, inhibiting p53), p21, the Thomsen-Friedenreich antigen(T- antigen),Rb,Bax, Ba...

  3. Triphala Extract Suppresses Proliferation and Induces Apoptosis in Human Colon Cancer Stem Cells via Suppressing c-Myc/Cyclin D1 and Elevation of Bax/Bcl-2 Ratio

    Directory of Open Access Journals (Sweden)

    Ramakrishna Vadde

    2015-01-01

    Full Text Available Colon cancer is the second leading cause of cancer related deaths in the USA. Cancer stem cells (CSCs have the ability to drive continued expansion of the population of malignant cells. Therefore, strategies that target CSCs could be effective against colon cancer and in reducing the risk of relapse and metastasis. In this study, we evaluated the antiproliferative and proapoptotic effects of triphala, a widely used formulation in Indian traditional medicine, on HCT116 colon cancer cells and human colon cancer stem cells (HCCSCs. The total phenolic content, antioxidant activity, and phytochemical composition (LC-MS-MS of methanol extract of triphala (MET were also measured. We observed that MET contains a variety of phenolics including naringin, quercetin, homoorientin, and isorhamnetin. MET suppressed proliferation independent of p53 status in HCT116 and in HCCSCs. MET also induced p53-independent apoptosis in HCCSCs as indicated by elevated levels of cleaved PARP. Western blotting data suggested that MET suppressed protein levels of c-Myc and cyclin D1, key proteins involved in proliferation, and induced apoptosis through elevation of Bax/Bcl-2 ratio. Furthermore, MET inhibited HCCSCs colony formation, a measure of CSCs self-renewal ability. Anticancer effects of triphala observed in our study warrant future studies to determine its efficacy in vivo.

  4. Radiosensitivity of small-cell lung cancer xenografts compared with activity of c-myc, N-myc, L-myc, c-raf-1 and K-ras proto-oncogenes

    DEFF Research Database (Denmark)

    Rygaard, K; Slebos, R J; Spang-Thomsen, M

    1991-01-01

    Oncogenes of the myc family c-raf-1 and K-ras have been reported to modulate radiosensitivity. We examined the possible relationship between in vivo radiosensitivity to single-dose irradiation with 3-10 Gy, and activity of these proto-oncogenes in 2 sets of small-cell lung cancer (SCLC) xenografts...... expressed identical amounts of c-raf-1 and high levels of c-myc mRNA, but neither expressed N-myc or L-myc. None of the tumours was mutated at codon 12 or K-ras. Our results show that SCLC xenografts with different radiosensitivity may express identical amounts of some of the proto-oncogenes reported...... to modulate radiosensitivity. Thus, factors other than activation of the examined proto-oncogenes must be involved in causing the differences in radiosensitivity found in the SCLC xenografts. Possible long-term effects of irradiation on proto-oncogene expression was examined in xenografts of GLC-16, following...

  5. Detection of gene amplification in MYCN, C-MYC, MYCL1, ERBB2, EGFR, AKT2, and human papilloma virus in samples from cervical smear normal cytology, intraepithelial cervical neoplasia (CIN I, II, III, and cervical cancer

    Directory of Open Access Journals (Sweden)

    Dabeiba Adriana García

    2011-06-01

    Full Text Available Introducción: El cáncer cervical es el segundo cáncer más importante en mujeres a nivel mundial y es la segunda causa de muerte por cáncer en mujeres. Se ha demostrado que el proceso de carcinogénesis cervical presenta componentes tanto genéticos como epigenéticos y medio ambientales. En la actualidad, hay gran interés en la búsqueda de marcadores moleculares asociados con la progresión de esta enfermedad, uno de los posibles mecanismos y que además está poco estudiado en cáncer cervical es la amplificación génica de algunos oncogenes como la familia MYC, EGFR y AKT entre otros. Objetivos: Detectar la amplificación génica de MYCN, C-MYC, MYCL1, ERBB2, EGFR y AKT2 además de la presencia del virus de papiloma humano en cepillados cervicales en mujeres con citología normal o con neoplasia intraepitelial cervical (NIC I, II y III o con cáncer cervical. Métodos: Se genotipificó mediante reverse line blot (RLB el virus de papiloma humano (VPH y se determinó el estado de amplificación génica de los genes mencionados mediante PCR en tiempo real utilizando sondas taqman. Resultados: El VPH se encontró presente en 4% de las pacientes con citología normal, en 48% en NIC I, 63.6% en NIC II, 64% en NIC III y 70.8% en cáncer cervical. Los genes MYCN, MYCL1 y ERBB2 mostraron mayor amplificación en lesiones de alto grado y cáncer con diferencias estadísticamente significativas  a las lesiones de bajo grado y citología normal, en 39.1%, 34.7% y 30.4% respectivamente. Además, se encontraron amplificados los genes C-MYC, EGFR y AKT2, en muestras de pacientes con cáncer cervical, en 12%, 18% y 13% respectivamente. Sin embargo, no se observaron diferencias estadísticamente significativas con respecto a las lesiones de alto y bajo grado y citología normal. Conclusión: En las lesiones de alto grado como en cáncer cervical, se encuentra mayor prevalencia del virus al igual que se detectan mayor cantidad de alteraciones gen

  6. In vitro effects of zinc and folic acid on the expressions of Neurogenin 3, Kruppel-like factor 4, c-Myc, Nanog, Nestin and POU class 5 homeobox 1 genes

    Directory of Open Access Journals (Sweden)

    Zehra Dilsad Coban

    2015-06-01

    Full Text Available Objective: Genes are regulated at multiple levels by using nutritional factors during neurogenesis and gliogenesis in brain development. Folic acid (FAand zinc regulate the expressions of some genes which participate in brain development as nutritional factors. So, we aimed to find the effect of FA and zinc on the expression levels of neurogenin 3 (NGN3, Kruppel-like factor 4 (Klf4, c-Myc, nanog, POU class 5 homeobox 1-Pou5F1 (Oct4, and Nestin in mouse fetal brain tissue in neural plate phase at gestational day 7 (GD7and in fetal brain tissue at GD20. Methods: All the tissues were cultured primarily. FA and zinc solutions were added. Real time-polymerase chain reaction was performed in RNA obtained from in each sample. Results: FA has no effect on GD7 mouse neural plate tissue and GD20 mouse fetal brain tissue. Zinc has no effect on GD7 mouse neural plate tissue. Zinc increased the expressions of NGN3, Klf4, nanog, Nestin, and Oct4 genes on GD20 mouse fetal brain tissue. Conclusion: This in vitro study represents that zinc is important in the expressions of NGN3, Klf4, Nanog, Nestin, and Oct4 genes in the late phase of pregnancy. The stimulator effect of Zinc on the expression levels of these genes may show us the possible role of zinc in fetal brain development in the late phase of pregnancy. [J Exp Integr Med 2015; 5(2.000: 75-80

  7. Inhibition of astroglial cell proliferation by alcohols: interference with the protein kinase C-phospholipase D signaling pathway.

    Science.gov (United States)

    Kötter, K; Jin, S; Klein, J

    2000-12-01

    Ethanol inhibits astroglial cell proliferation, an effect that may contribute to the development of alcoholic embryopathy in humans. In the present study, we investigated inhibitory effects of ethanol and butanol isomers (1-, 2- and t-butanol) on astroglial cell proliferation induced by the strongly mitogenic phorbol ester, 4beta-phorbol-12alpha,13beta-dibutyrate (PDB). 4beta-Phorbol-12alpha,13beta-dibutyrate (PDB) induced a 10-fold increase of [3H] thymidine incorporation in cortical astrocytes prepared from newborn rats (EC50: 70 nM) which was blocked by Ro 31-8220, a cell-permeable protein kinase C (PKC) inhibitor. Ethanol blocked PDB-induced astroglial proliferation in a concentration-dependent manner; significant effects were already seen at 0.1% (v/v). Concomitantly, ethanol caused the formation of phosphatidylethanol (PEth) by phospholipase D (PLD) and reduced PLD-mediated formation of phosphatidic acid (PA). The butanols also inhibited the mitogenic action of phorbol ester; the inhibitory potency of the butanols was 1-butanol > 2-butanol > t-butanol. The same range of potencies was observed for the inhibitory activity of the butanols towards protein kinase C activity measured in vitro. At 0.3% concentration, 1-butanol potently suppressed the PDB-induced formation of phosphatidic acid while 2- and t-butanol were less active. Taken together, our results suggest that ethanol and 1-butanol exert a specific inhibitory effect on PKC-dependent astroglial cell proliferation by synergistically inhibiting PKC activity and the PLD signaling pathway.

  8. Changes in Astroglial Markers in a Maternal Immune Activation Model of Schizophrenia in Wistar Rats are Dependent on Sex

    OpenAIRE

    Daniela Fraga de Souza; Krista Mineia Wartchow; Paula Santana Lunardi; Giovana eBrolese; Lucas eTortorelli; Cristiane eBatassini; Regina eBiasibetti; Carlos-Alberto eGonçalves

    2015-01-01

    Data from epidemiological studies suggest that prenatal exposure to bacterial and viral infection is an important environmental risk factor for schizophrenia. The maternal immune activation (MIA) animal model is used to study how an insult directed at the maternal host can have adverse effects on the fetus, leading to behavioral and neurochemical changes later in life. We evaluated whether the administration of LPS to rat dams during late pregnancy affects astroglial markers (S100B and GFAP) ...

  9. Hans, Choi immunophenotyping and C-MYC genetic features between pediatric and adult diffuse large B-cell lymphoma%儿童与成人弥漫大B细胞淋巴瘤的Hans、Choi免疫分型和C-MYC基因特征

    Institute of Scientific and Technical Information of China (English)

    徐红艳; 黄慧; 杨文萍; 黄传生; 钟梅慧

    2013-01-01

    Objective To explore the difference of Hans,Choi immunophenotyping and C-MYC gene characteristics between pediatric and adult diffuse large B-cell lymphoma.Methods To collect 60 cases of DLBCL clinicopathological data and follow-up,which contained 17 cases of children group,adult group of 43 patients.To observe CD10,BCL-6,MUM1,FOXP1,GCET1 and CD5 protein expression by immunohistochemical SP method and evaluated by Hans and Choi immunophenotyping standard genotyping.To detect C-MYC gene circumstances by interphase fluorescence insituhybridization (FISH).Results 1) Hans typing:the Children DLBCL group of GCB were 11 cases,non-GCB type were 6 cases; the GCB type in the adult DLBCL group were nine cases,non-GCB type were 34 cases.2)Choi typing:the Children DLBCL group of GCB type were 13 cases,ABC type were 4 cases; the adult DLBCL group of GCB type were 13 cases,ABC type were 30 cases (P < 0.01).3) C-MYC gene:The C-MYC gene disruption of children DLBCL were 5 cases; C-MYC gene in 43 adult cases were normal(P <0.01).Conclusions Child DLBCL of GCB-type with better prognosis while but non-GCB-type predict worse prognosis.The C-MYC gene disruption in Children DLBCL was significantly higher than that of adult ones.%目的 探讨弥漫大B细胞淋巴瘤(DLBCL)各年龄组的Hans、Choi免疫分型及C-MYC基因特征.方法 收集60例DLBCL临床病理资料并进行随访,其中儿童组17例、成人组43例.用免疫组化SP法观察CD10、BCL-6、MUM1、FOXP1、GCET1及CD5蛋白表达,根据Hans及Choi免疫分型标准分型;用间期荧光原位杂交法检测C-MYC 基因.结果 1)Hans分型:儿童DLBCL组GCB型11例,non-GCB型6例;成人组DLBCL中GCB型9例,non-GCB型34例(P<0.05).2) Choi分型:儿童DLBCL组GCB型13例,ABC型4例;成人DLBCL组GCB型13例,ABC型30例(P<0.01).3) C-MYC基因:儿童组DLBCL中C-MYC基因断裂6例;成人组DLBCL中C-MYC基因正常43例(P<0.01).结论 儿童DLBCL以GCB型为主,预后较好;成人DLBCL以non-GCB

  10. OVEREXPRESSION OF DOMINANT-NEGATIVE IRE1 ENZYME IN H1299-shE6AP CELLS INCREASES HEAT SHOCK ELEMENT-DEPENDENT TRANSCRIPTION

    Directory of Open Access Journals (Sweden)

    D. O.

    2015-12-01

    Full Text Available To investigate IRE1-dependent branch of endoplasmic reticulum stress pathway in various cancer cells we created cDNA-constructs for expression of dominant-negative inositol-requiring enzyme – 1 IRE1 and cytosolic domain of IRE1 fused on a C-terminus with c-Myc and 6xHis tags. The non-small-cell lung carcinoma cells H1299-shE6AP were transfected with these constructs. Using anti-c-Myc antibodies we demonstrated effective, dose-dependent expression of dominant-negative and cytosolic IRE1 proteins. In order to investigate IRE1-mediated, heat shock element-dependent transcription, the cells were further transfected with a reporter construct containing heat shock element. We observed that overexpression of dnIRE1 in H1299-shE6AP cells led to significant induction of heat shock element-dependent transcription. This observation may reflect the induction of heat shock genes, which contribute to cellular adaptation to inhibition of native IRE1, a key sensory-signaling enzyme of endoplasmic reticulum stress pathway, which suppresses cancer cell proliferative capacities and alternates the expression of numerous genes, including many transcription factors.

  11. Age-dependent astroglial vulnerability to hypoxia and glutamate: the role for erythropoietin.

    Directory of Open Access Journals (Sweden)

    Ali Lourhmati

    Full Text Available Extracellular accumulation of toxic concentrations of glutamate (Glu is a hallmark of many neurodegenerative diseases, often accompanied by hypoxia and impaired metabolism of this neuromediator. To address the question whether the multifunctional neuroprotective action of erythropoietin (EPO extends to the regulation of extracellular Glu-level and is age-related, young and culture-aged rat astroglial primary cells (APC were simultaneously treated with 1mM Glu and/or human recombinant EPO under normoxic and hypoxic conditions (NC and HC. EPO increased the Glu uptake by astrocytes under both NC and especially upon HC in culture-aged APC (by 60%. Moreover, treatment with EPO up-regulated the activity of glutamine synthetase (GS, the expression of glutamate-aspartate transporter (GLAST and the level of EPO mRNA. EPO alleviated the Glu- and hypoxia-induced LDH release from astrocytes. These protective EPO effects were concentration-dependent and they were strongly intensified with age in culture. More than a 4-fold increase in apoptosis and a 2-fold decrease in GS enzyme activity was observed in APC transfected with EPO receptor (EPOR-siRNA. Our in vivo data show decreased expression of EPO and a strong increase of EPOR in brain homogenates of APP/PS1 mice and their wild type controls during aging. Comparison of APP/PS1 and age-matched WT control mice revealed a stronger expression of EPOR but a weaker one of EPO in the Alzheimer's disease (AD model mice. Here we show for the first time the direct correlation between the extent of differentiation (age of astrocytes and the efficacy of EPO in balancing extracellular glutamate clearance and metabolism in an in-vitro model of hypoxia and Glu-induced astroglial injury. The clinical relevance of EPO and EPOR as markers of brain cells vulnerability during aging and neurodegeneration is evidenced by remarkable changes in their expression levels in a transgenic model of AD and their WT controls.

  12. Astroglial CB1 cannabinoid receptors regulate leptin signaling in mouse brain astrocytes.

    Science.gov (United States)

    Bosier, Barbara; Bellocchio, Luigi; Metna-Laurent, Mathilde; Soria-Gomez, Edgar; Matias, Isabelle; Hebert-Chatelain, Etienne; Cannich, Astrid; Maitre, Marlène; Leste-Lasserre, Thierry; Cardinal, Pierre; Mendizabal-Zubiaga, Juan; Canduela, Miren Josune; Reguero, Leire; Hermans, Emmanuel; Grandes, Pedro; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Type-1 cannabinoid (CB1) and leptin (ObR) receptors regulate metabolic and astroglial functions, but the potential links between the two systems in astrocytes were not investigated so far. Genetic and pharmacological manipulations of CB1 receptor expression and activity in cultured cortical and hypothalamic astrocytes demonstrated that cannabinoid signaling controls the levels of ObR expression. Lack of CB1 receptors also markedly impaired leptin-mediated activation of signal transducers and activators of transcription 3 and 5 (STAT3 and STAT5) in astrocytes. In particular, CB1 deletion determined a basal overactivation of STAT5, thereby leading to the downregulation of ObR expression, and leptin failed to regulate STAT5-dependent glycogen storage in the absence of CB1 receptors. These results show that CB1 receptors directly interfere with leptin signaling and its ability to regulate glycogen storage, thereby representing a novel mechanism linking endocannabinoid and leptin signaling in the regulation of brain energy storage and neuronal functions.

  13. Astroglial calcium signaling displays short-term plasticity and adjusts synaptic efficacy

    Directory of Open Access Journals (Sweden)

    Jeremie eSibille

    2015-05-01

    Full Text Available Astrocytes are dynamic signaling brain elements able to sense neuronal inputs and to respond by complex calcium signals, which are thought to represent their excitability. Such signaling has been proposed to modulate, or not, neuronal activities ranging from basal synaptic transmission to epileptiform discharges. However, whether calcium signaling in astrocytes exhibits activity-dependent changes and acutely modulates short-term synaptic plasticity is currently unclear. We here show, using dual recordings of astroglial calcium signals and synaptic transmission, that calcium signaling in astrocytes displays, concomitantly to excitatory synapses, short-term plasticity in response to prolonged repetitive and tetanic stimulations of Schaffer collaterals. We also found that acute inhibition of calcium signaling in astrocytes by intracellular calcium chelation rapidly potentiates excitatory synaptic transmission and short-term plasticity of Shaffer collateral CA1 synapses, i.e. paired-pulse facilitation and responses to tetanic and prolonged repetitive stimulation. These data reveal that calcium signaling of astrocytes is plastic and down-regulates basal transmission and short-term plasticity of hippocampal CA1 glutamatergic synapses.

  14. Cyclin D1,Cyclin E,c- Myc在涎腺良恶性多形性腺瘤中的表达研究%Expression of Cyclin D1, Cyclin E, C-myc in Benign and Malignant Pleomorphic Adenoma of Salivary Gland

    Institute of Scientific and Technical Information of China (English)

    冯晓洁; 罗欣; 陈洪伟; 温黎明; 程勇

    2011-01-01

    Objective: To study the expressions of cyclin Dl, cyclin E and c-myc in benign and malignant PA, and to learn their association with clinical features and cell proliferation. Methods: SP immunohistochemical staining was applied to detect the expression levels of cyclin Dl,cyclin E and c - myc in 30 benign pleomorphic adenomas ,30 cellular-type pleomorphic adenomas, 30 malignant pleomorphic adenomas, and compared their expression with 30 normal gland tissues of adjacent carcinoma. Results: Cyclin Dl, cyclin E and c-myc expression were significantly higher in PA than in the normal gland tissues of adjacent carcinoma(P<0. 05). And there was no statistic difference for the expression levels of cyclin Dl, cyclin E, c -myc between benign pleomorphic adenoma and cellular-type pleomorphic adenoma. The expression levels of cyclin Dl, cyclin E and c-myc were uncorrelated with sex, recurrence, location, and tumor size. But in malignant pleomorphic adenoma, the expression level of cyclin Dl was correlated with TNM stage and the expression level of cyclin E was correlated with invasion. Conclusion: Together or alone of cyclin Dl, cyclin E and c-myc might be useful molecular biological markers in predicting the formation, development and carcinogenesis of PA. They might be thought as prognostic markers and chemotherapy targets. They might also contribute to classification of pathology diagnosis.%目的:研究cyclin D1,cyclin E,c- myc在涎腺多形性腺瘤中的表达,与临床生物学特性和细胞增殖的关系以及对于涎腺多形性腺瘤病理学诊断的意义.方法:采用免疫组化方法检测30例良性多形性腺瘤,30例细胞丰富型多形性腺瘤和30例恶性多形性腺瘤中cyclin D1、cyclin E、c- myc蛋白的表达水平,并与30例癌旁正常涎腺组织中的表达对比.结果:cyclin D1、cyclin E和c- myc在恶性多形性腺瘤中的阳性表达率明显高于良性和细胞丰富型多形性腺瘤(P<0.05),而三者在良性多形性腺瘤

  15. The research of the influence of Pingyangmycin on c-myc and Ras-P21 protein expression in penile cancer%平阳霉素对阴茎癌组织c-myc及Ras-P21蛋白表达影响的研究

    Institute of Scientific and Technical Information of China (English)

    王志超; 戴洪双; 刘文龙; 李效忠; 乔忠杰

    2014-01-01

    目的:探讨应用平阳霉素化疗对阴茎癌组织蛋白c-myc、Ras-P21表达的影响及意义。方法收集1995—2005年间阴茎鳞状细胞癌患者100例,按照术前是否进行化疗分为两组,其中化疗组50例,术前应用平阳霉素化疗7天,并在化疗后行阴茎部分切除术+改良方法的腹股沟淋巴结清扫术;对照组50例,未进行化疗而直接行阴茎部分切除术改良方法的腹股沟淋巴结清扫术。应用免疫组化法( SP)对两组的100例阴茎癌组织标本进行c-myc、Ras-P21蛋白产物检测。应用χ2检验对数据进行统计分析。结果化疗组50例阴茎癌标本中c-myc、Ras-P21表达阳性率分别为30%、27%。对照组50例阴茎癌标本中,c-myc、Ras-P21表达阳性率分别为52%、48%。经χ2检验,化疗组与对照组的c-myc、Ras-P21表达阳性率的差异具有统计学意义(P<0.05)。结论应用平阳霉素化疗后阴茎癌组织中c-myc、Ras-P21蛋白的表达明显下降。%Objective To evaluate the influence and significance of Pingyangmycin chemotherapy on the c-myc and Ras-P21 protein expression in penile cancer .Methods A total of 100 penile squamous cell carci-noma cases was retrospectively studied and divided into two groups .Data were obtained from 1995 to 2005 .In the chemotherapy group ,50 cases of patients were selected to perform preoperative chemotherapy before surgery .The patients were treated by Pingyangmycin .After 7 times of medication ,partial excision of penis plus improved ingui-nal lymph node dissection was performed .In the control group ,50 cases of patients were selected for partial exci-sion of penis plus improved inguinal lymph node dissection directly without any pre -operative chemotherapy .All pathology specimens were detected of c -myc and Ras-P21 protein expression by immunohistochemical staining assay.Theχ2 test was used for the statistical analysis .Results In

  16. Acute and chronic effects of exposure to a 1-mT magnetic field on the cytoskeleton, stress proteins, and proliferation of astroglial cells in culture

    International Nuclear Information System (INIS)

    This paper reports the effects of exposure to static, sinusoidal (50 Hz), and combined static/sinusoidal magnetic fields on cultured astroglial cells. Confluent primary cultures of astroglial cells were exposed to a 1-mT sinusoidal, static, or combined magnetic field for 1 h. In another experiment, cells were exposed to the combined magnetic field for 1, 2, and 4 h. The hsp25, hsp60, hsp70, actin, and glial fibrillary acidic protein contents of the astroglial cells were determined by immunoblotting 24 h after exposure. No significant differences were seen between control and exposed cells with respect to their contents of these proteins, neither were any changes in cell morphology observed. In a third experiment to determine the effect of a chronic (11-day) exposure to a combined 1-mT static/sinusoidal magnetic field on the proliferation of cultured astroglial cells, no significant differences were seen between control, sham-exposed, or exposed cells. These results suggest that exposure to 1-mT sinusoidal, static, or combined magnetic fields has no significant effects on the stress, cytoskeletal protein levels in, or proliferation of cultured astroglial cells

  17. 流体切应力对脑动静脉畸形内皮细胞增殖与c-myc表达的影响%Effect of flow shear stress on endothelial cell proliferation and c-myc expression in cerebral arteriovenous malformation

    Institute of Scientific and Technical Information of China (English)

    赵明光; 李彦兵; 吕博川; 梁勇; 薛洪利; 赵丽萍; 王丹玲

    2007-01-01

    BACKGROUND:Shear stress can directly mediate the expression of endothelial cells, especially some cytokine genes whose codes are related to angiogenesis. Otherwise, flow shear stress of blood plays an importantly biological role in regulating vascular structure and function.OBJECTIVE: To observe the effects of laminar flow shear stress on the proliferation of vascular endothelial cells and the expression of protooncogene c-myc in human cerebral arteriovenous malformation.DESIGN: Randomized controlled study.SETTING: Department of Neurosurgery, Shenyang General Hospital of Military Area Command of Chinese PLA.MATERIALS: The experiment was carried out in the Neuromedical Institute, General Hospital of Shenyang Military Area Command of Chinese PLA from November 2006 to February 2007. Fresh samples of human cerebral arteriovenous malformation were derived from 20 patients who were of grade Spetzler Ⅱ -Ⅲ and received resection of human cerebral arteriovenous malformation in the Department of Neurosurgery, General Hospital of Shenyang Military Area Command of Chinese PLA in 2006. All cases were diagnosed with whole-brain angiography before operation. The main reagents and equipments were detailed as follows: M199 culture media (Gilbco BRL), quality fetal bovine serum (HyClone), endothelial cell growth supplement (ECGS; Sigma, USA), CO2 incubator (Forma Scientific, USA), flow cytometry analysis of cell cycle kit (BD Company), flow cytometer (FACS Calibur, BD Company), rat-anti-human c-myc monoclonal antibody (Santa Cruz Company, USA), and reverse transcription polymerase chain reaction (RT-PCR) kit (Promega).METHODS: Tissue explants adherent method was used to culture vascular endothelial cells of human cerebral arteriovenous malformation, and then the cells were classified into 4 groups based on degree of shear stress, including control group, low shear stress group, moderate shear stress group and high shear stress group. Cultured endothelial cells of human cerebral

  18. Epstein–Barr virus growth-transformed cells are converted to malignancy following transfection of a 1.3-kb CATR1 antisense construct independent of a change in the level of c-myc expression followed by a 8;14 chromosomal translocation

    OpenAIRE

    Li, Dawei; Sun, Xiao Li; Casto, Bruce; Fang, Jin; Theil, Karl; Glaser, Ronald; Milo, George

    1998-01-01

    The AGLCL Epstein–Barr virus (EBV) growth-transformed cell line is incapable of inducing tumors in nude mice. When the cells were transfected with a 1.3-kb CATR1 antisense cDNA construct, progressively growing lymphomas could be induced in nude mice. Chromosome analysis of the parental, transfected, and tumor cells revealed that a chromosomal translocation t(8;14)(q24.1;q32) had occurred in the transfected cells and was retained in cells derived from tumors. Moreover, enhanced c-myc expressio...

  19. Astroglial pentose phosphate pathway rates in response to high-glucose environments

    Directory of Open Access Journals (Sweden)

    Norihiro Suzuki

    2012-03-01

    Full Text Available ROS (reactive oxygen species play an essential role in the pathophysiology of diabetes, stroke and neurodegenerative disorders. Hyperglycaemia associated with diabetes enhances ROS production and causes oxidative stress in vascular endothelial cells, but adverse effects of either acute or chronic high-glucose environments on brain parenchymal cells remain unclear. The PPP (pentose phosphate pathway and GSH participate in a major defence mechanism against ROS in brain, and we explored the role and regulation of the astroglial PPP in response to acute and chronic high-glucose environments. PPP activity was measured in cultured neurons and astroglia by determining the difference in rate of 14CO2 production from [1-14C]glucose and [6-14C]glucose. ROS production, mainly H2O2, and GSH were also assessed. Acutely elevated glucose concentrations in the culture media increased PPP activity and GSH level in astroglia, decreasing ROS production. Chronically elevated glucose environments also induced PPP activation. Immunohistochemical analyses revealed that chronic high-glucose environments induced ER (endoplasmic reticulum stress (presumably through increased hexosamine biosynthetic pathway flux. Nuclear translocation of Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2, which regulates G6PDH (glyceraldehyde-6-phosphate dehydrogenase by enhancing transcription, was also observed in association with BiP (immunoglobulin heavy-chain-binding protein expression. Acute and chronic high-glucose environments activated the PPP in astroglia, preventing ROS elevation. Therefore a rapid decrease in glucose level seems to enhance ROS toxicity, perhaps contributing to neural damage when insulin levels given to diabetic patients are not properly calibrated and plasma glucose levels are not adequately maintained. These findings may also explain the lack of evidence for clinical benefits from strict glycaemic control during the acute phase of stroke.

  20. Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route

    Directory of Open Access Journals (Sweden)

    Philip G Haydon

    2012-03-01

    Full Text Available Astroglial cells, due to their passive electrical properties, were long considered subservient to neurons and to merely provide the framework and metabolic support of the brain. Although astrocytes do play such structural and housekeeping roles in the brain, these glial cells also contribute to the brain's computational power and behavioural output. These more active functions are endowed by the Ca2+-based excitability displayed by astrocytes. An increase in cytosolic Ca2+ levels in astrocytes can lead to the release of signalling molecules, a process termed gliotransmission, via the process of regulated exocytosis. Dynamic components of astrocytic exocytosis include the vesicular-plasma membrane secretory machinery, as well as the vesicular traffic, which is governed not only by general cytoskeletal elements but also by astrocyte-specific IFs (intermediate filaments. Gliotransmitters released into the ECS (extracellular space can exert their actions on neighbouring neurons, to modulate synaptic transmission and plasticity, and to affect behaviour by modulating the sleep homoeostat. Besides these novel physiological roles, astrocytic Ca2+ dynamics, Ca2+-dependent gliotransmission and astrocyte–neuron signalling have been also implicated in brain disorders, such as epilepsy. The aim of this review is to highlight the newer findings concerning Ca2+ signalling in astrocytes and exocytotic gliotransmission. For this we report on Ca2+ sources and sinks that are necessary and sufficient for regulating the exocytotic release of gliotransmitters and discuss secretory machinery, secretory vesicles and vesicle mobility regulation. Finally, we consider the exocytotic gliotransmission in the modulation of synaptic transmission and plasticity, as well as the astrocytic contribution to sleep behaviour and epilepsy.

  1. Changes in Astroglial Markers in a Maternal Immune Activation Model of Schizophrenia in Wistar Rats are Dependent on Sex.

    Science.gov (United States)

    de Souza, Daniela F; Wartchow, Krista M; Lunardi, Paula S; Brolese, Giovana; Tortorelli, Lucas S; Batassini, Cristiane; Biasibetti, Regina; Gonçalves, Carlos-Alberto

    2015-01-01

    Data from epidemiological studies suggest that prenatal exposure to bacterial and viral infection is an important environmental risk factor for schizophrenia. The maternal immune activation (MIA) animal model is used to study how an insult directed at the maternal host can have adverse effects on the fetus, leading to behavioral and neurochemical changes later in life. We evaluated whether the administration of LPS to rat dams during late pregnancy affects astroglial markers (S100B and GFAP) of the offspring in later life. The frontal cortex and hippocampus were compared in male and female offspring on postnatal days (PND) 30 and 60. The S100B protein exhibited an age-dependent pattern of expression, being increased in the frontal cortex and hippocampus of the MIA group at PND 60, while at PND 30, male rats presented increased S100B levels only in the frontal cortex. Considering that S100B secretion is reduced by elevation of glutamate levels, we may hypothesize that this early increment in frontal cortex tissue of males is associated with elevated extracellular levels of glutamate and glutamatergic hypofunction, an alteration commonly associated with SCZ pathology. Moreover, we also found augmented GFAP in the frontal cortex of the LPS group at PND 30, but not in the hippocampus. Taken together data indicate that astroglial changes induced by MIA are dependent on sex and brain region and that these changes could reflect astroglial dysfunction. Such alterations may contribute to our understanding of the abnormal neuronal connectivity and developmental aspects of SCZ and other psychiatric disorders. PMID:26733814

  2. Changes in astroglial markers in a maternal immune activation model of schizophrenia in Wistar rats are dependent on sex

    Directory of Open Access Journals (Sweden)

    Daniela Fraga de Souza

    2015-12-01

    Full Text Available Data from epidemiological studies suggest that prenatal exposure to bacterial and viral infection is an important environmental risk factor for schizophrenia. The maternal immune activation (MIA animal model is used to study how an insult directed at the maternal host can have adverse effects on the fetus, leading to behavioral and neurochemical changes later in life. We evaluated whether the administration of LPS to rat dams during late pregnancy affects astroglial markers (S100B and GFAP of the offspring in later life. The frontal cortex and hippocampus were compared in male and female offspring on postnatal days (PND 30 and 60. The S100B protein exhibited an age-dependent pattern of expression, being increased in the frontal cortex and hippocampus of the MIA group at PND 60, while at PND 30, male rats presented increased S100B levels only in the frontal cortex. Considering that S100B secretion is reduced by elevation of glutamate levels, we may hypothesize that this early increment in frontal cortex tissue of males is associated with elevated extracellular levels of glutamate and glutamatergic hypofunction, an alteration commonly associated with SCZ pathology. Moreover, we also found augmented GFAP in the frontal cortex of the LPS group at PND 30, but not in the hippocampus. Taken together data indicate that astroglial changes induced by MIA are dependent on sex and brain region and that these changes could reflect astroglial dysfunction. Such alterations may contribute to our understanding of the abnormal neuronal connectivity and developmental aspects of SCZ and other psychiatric disorders.

  3. Aquaporin-4 in Astroglial Cells in the CNS and Supporting Cells of Sensory Organs—A Comparative Perspective

    Directory of Open Access Journals (Sweden)

    Corinna Gleiser

    2016-08-01

    Full Text Available The main water channel of the brain, aquaporin-4 (AQP4, is one of the classical water-specific aquaporins. It is expressed in many epithelial tissues in the basolateral membrane domain. It is present in the membranes of supporting cells in most sensory organs in a specifically adapted pattern: in the supporting cells of the olfactory mucosa, AQP4 occurs along the basolateral aspects, in mammalian retinal Müller cells it is highly polarized. In the cochlear epithelium of the inner ear, it is expressed basolaterally in some cells but strictly basally in others. Within the central nervous system, aquaporin-4 (AQP4 is expressed by cells of the astroglial family, more specifically, by astrocytes and ependymal cells. In the mammalian brain, AQP4 is located in high density in the membranes of astrocytic endfeet facing the pial surface and surrounding blood vessels. At these locations, AQP4 plays a role in the maintenance of ionic homeostasis and volume regulation. This highly polarized expression has not been observed in the brain of fish where astroglial cells have long processes and occur mostly as radial glial cells. In the brain of the zebrafish, AQP4 immunoreactivity is found along the radial extent of astroglial cells. This suggests that the polarized expression of AQP4 was not present at all stages of evolution. Thus, a polarized expression of AQP4 as part of a control mechanism for a stable ionic environment and water balanced occurred at several locations in supporting and glial cells during evolution. This initially basolateral membrane localization of AQP4 is shifted to highly polarized expression in astrocytic endfeet in the mammalian brain and serves as a part of the neurovascular unit to efficiently maintain homeostasis.

  4. Exercise Preconditioning Protects against Spinal Cord Injury in Rats by Upregulating Neuronal and Astroglial Heat Shock Protein 72

    OpenAIRE

    Cheng-Kuei Chang; Willy Chou; Hung-Jung Lin; Yi-Ching Huang; Ling-Yu Tang; Mao-Tsun Lin; Ching-Ping Chang

    2014-01-01

    The heat shock protein 72 (HSP 72) is a universal marker of stress protein whose expression can be induced by physical exercise. Here we report that, in a localized model of spinal cord injury (SCI), exercised rats (given pre-SCI exercise) had significantly higher levels of neuronal and astroglial HSP 72, a lower functional deficit, fewer spinal cord contusions, and fewer apoptotic cells than did non-exercised rats. pSUPER plasmid expressing HSP 72 small interfering RNA (SiRNA-HSP 72) was inj...

  5. Brain Barriers and a Subpopulation of Astroglial Progenitors of Developing Human Forebrain Are Immunostained for the Glycoprotein YKL-40

    DEFF Research Database (Denmark)

    Bjørnbak, Camilla; Brøchner, Christian B; Larsen, Lars A;

    2014-01-01

    . Immunoreactivity was detected in neuroepithelial cells, radial glial end feet, leptomeningeal cells and choroid plexus epithelial cells. The subpial marginal zone was YKL-40-positive, particularly in the hippocampus, from an early beginning stage in its development. Blood vessels in the intermediate...... in controlling local angiogenesis and access of peripheral cells to the forebrain via secretion from leptomeningeal cells, choroid plexus epithelium and pericytes. Furthermore, we suggest that the small, rounded, YKL-40-positive cells represent a subpopulation of astroglial progenitors, and that YKL-40 could...

  6. In vivo study on the effects of microcystin extracts on the expression profiles of proto-oncogenes (c-fos, c-jun and c-myc) in liver, kidney and testis of male Wistar rats injected i.v. with toxins.

    Science.gov (United States)

    Li, Huiying; Xie, Ping; Li, Guangyu; Hao, Le; Xiong, Qian

    2009-01-01

    Microcystins (MCs) are a potent liver tumor promoter, possessing potent tumor-promoting activity and weak initiating activity. Proto-oncogenes are known to be involved in the tumor-promoting mechanisms of microcystin-LR. However, few data are available on the effects of MCs on proto-oncogenes in the whole animal. To investigate the effects of MCs on the expression profile of the proto-oncogenes in different organs, male Wistar rats were injected intravenously with microcystin extracts at a dose of 86.7 mug MC-LR eq/kg bw (MC-LR eq, MC-LR equivalents). mRNA levels of three proto-oncogenes c-fos, c-jun and c-myc in liver, kidney and testis were analyzed using quantitative real-time PCR at several time points post-injection. Significant induction of these genes at transcriptional level was observed in the three organs. In addition, the increase of mRNA expression of all three genes was much higher in liver than in kidney and testis. Meanwhile, the protein levels of c-Fos and c-Jun were investigated by western blotting. Both proteins were induced in the three organs. However, elevations of protein levels were much lower than those of mRNA levels. These findings suggest that the expression of c-fos, c-jun and c-myc might be one possible mechanism for the tumor-promoting activity and initiating activity of microcystins.

  7. Antioxidant Properties of Berberis aetnensis C. Presl (Berberidaceae Roots Extract and Protective Effects on Astroglial Cell Cultures

    Directory of Open Access Journals (Sweden)

    Agata Campisi

    2014-01-01

    Full Text Available Berberis aetnensis C. Presl (Berberidaceae is a bushy-spiny shrub common on Mount Etna (Sicily. We demonstrated that the alkaloid extract of roots of B. aetnensis C. Presl contains prevalently berberine and berbamine, possesses antimicrobial properties, and was able to counteract the upregulation evoked by glutamate of tissue transglutaminase in primary rat astroglial cell cultures. Until now, there are no reports regarding antioxidant properties of B. aetnensis C. Presl collected in Sicily. Air-dried, powdered roots of B. aetnensis C. Presl were extracted, identified, and quantified by HPLC. We assessed in cellular free system its effect on superoxide anion, radicals scavenging activity of antioxidants against free radicals like the 1,1-diphenyl-2-picrylhydrazyl radical, and the inhibition of xanthine oxidase activity. In primary rat astroglial cell cultures, exposed to glutamate, we evaluated the effect of the extract on glutathione levels and on intracellular production of reactive oxygen species generated by glutamate. The alkaloid extract of B. aetnensis C. Presl inhibited superoxide anion, restored to control values, the decrease of GSH levels, and the production of reactive oxygen species. Potent antioxidant activities of the alkaloid extract of roots of B. aetnensis C. Presl may be one of the mechanisms by which the extract is effective against health disorders associated to oxidative stress.

  8. Examining the Neural and Astroglial Protective Effects of Cellular Prion Protein Expression and Cell Death Protease Inhibition in Mouse Cerebrocortical Mixed Cultures.

    Science.gov (United States)

    Wang, Kevin K W; Yang, Zhihui; Chiu, Allen; Lin, Fan; Rubenstein, Richard

    2016-09-01

    Overexpression of cellular prion protein, PrP(C), has cytoprotective effects against neuronal injuries. Inhibition of cell death-associated proteases such as necrosis-linked calpain and apoptosis-linked caspase are also neuroprotective. Here, we systematically studied how PrP(C) expression levels and cell death protease inhibition affect cytotoxic challenges to both neuronal and glial cells in mouse cerebrocortical mixed cultures (CCM). Primary CCM derived from three mouse lines expressing no (PrP(C) knockout mice (PrPKO)), normal (wild-type (wt)), or high (tga20) levels of PrP(C) were subjected to necrotic challenge (calcium ionophore A23187) and apoptotic challenge (staurosporine (STS)). CCM which originated from tga20 mice provided the most robust neuron-astroglia protective effects against necrotic and early apoptotic cell death (lactate dehydrogenase (LDH) release) at 6 h but subsequently lost its cytoprotective effects. In contrast, PrPKO-derived cultures displayed elevated A23187- and STS-induced cell death at 24 h. Calpain inhibitor SNJ-1945 protected against A23187 challenge at 6 h in CCM from all three mouse lines but protected only against A23187 and STS treatments by 24 h in the PrPKO line. In parallel, caspase inhibitor Z-D-DCB protected against pro-apoptotic STS challenge at 6 and 24 h. Furthermore, we also examined αII-spectrin breakdown products (primarily from neurons) and glial fibrillary acidic protein (GFAP) breakdown products (from astroglia) as cytoskeletal proteolytic biomarkers. Overall, it appeared that both neurons and astroglial cells were less vulnerable to proteolytic attack during A23187 and STS challenges in tga20-derived cultures but more vulnerable in PrPKO-derived cultures. In addition, calpain and caspase inhibitors provide further protection against respective protease attacks on these neuronal and glial cytoskeletal proteins in CCM regardless of mouse-line origin. Lastly, some synergistic cytoprotective effects between Pr

  9. Phosphoinositide-3-kinases p110alpha and p110beta mediate S phase entry in astroglial cells in the marginal zone of rat neocortex

    Directory of Open Access Journals (Sweden)

    Rabea eMüller

    2013-03-01

    Full Text Available In cells cultured from neocortex of newborn rats, phosphoinositide-3-kinases of class I regulate the DNA synthesis in a subgroup of astroglial cells. We have studied the location of these cells as well as the kinase isoforms which facilitate the S phase entry. Using dominant negative isoforms as well as selective pharmacological inhibitors we quantified S phase entry by nuclear labeling with bromodeoxyuridine. Only in astroglial cells harvested from the marginal zone of the neocortex inhibition of phosphoinositide-3-kinases reduced the nuclear labeling with bromodeoxyuridine, indicating that neocortical astroglial cells differ in the regulation of proliferation. The two kinase isoforms p110 and p110were essential for S phase entry. p110 diminished the level of the p27Kip1 which inactivates the complex of cyclin E and CDK2 necessary for entry into the S phase. p110phosphorylated and inhibited glycogen synthase kinase-3which can prevent S-phase entry. Taken together, both isoforms mediated S phase in a subgroup of neocortical astroglial cells and acted via distinct pathways.

  10. Suppression of Astroglial Scar Formation and Enhanced Axonal Regeneration Associated with Functional Recovery in a Spinal Cord Injury Rat Model by the Cell Cycle Inhibitor Olomoucine

    Institute of Scientific and Technical Information of China (English)

    TIAN Dai-shi; YU Zhi-yuan; XIE Min-jie; BU Bi-tao; WITTE OW; WANG Wei

    2006-01-01

    Objective:To determine if a cell cycle inhibitior, olomoucine, would decrease neuronal cell death, limit astroglial proliferation and production of inhibitory CSPGs, and eventually enhance the functional compensation after SCI in rats. Methods: Three were used as un-operated controls and twelve as sham operated controls. Following spinal cord injury, 48 rats were randomly and blindly assigned to either olomoucine (n=24) or vehicle treatment (n=24) groups. Results: Up-regulations of cell cycle components were closely associated with neuronal cell death and astroglial proliferation as well as the production of CSPGs after SCI. Meanwhile, administration of olomoucine, a selective cell cycle kinase (CDK) inhibitor, has remarkably reduced the up-regulated cell cycle proteins and then decreased neuronal cell death, astroglial proliferation as well as accumulation of CSPGs. More importantly, the treatment with olomoucine has also increased expression of growth-associated proteins-43 (GAP-43), reduced the cavity formation, and improved functional deficits. Conclusion: Suppressing astroglial cell cycle in acute spinal cord injuries is beneficial to axonal growth. in turn, the future therapeutic strategies can be designed to achieve efficient axonal regeneration and functional compensation after traumatic CNS injury.

  11. Overexpression of β-Catenin Induces Cisplatin Resistance in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Li, Long; Liu, Hai-Chao; Wang, Cheng; Liu, Xiqiang; Hu, Feng-Chun; Xie, Nan; Lü, Lanhai; Chen, Xiaohua; Huang, Hong-Zhang

    2016-01-01

    Abnormal expression of β-catenin contributes to tumor development, progression, and metastasis in various cancers. However, little is known about the relationship between abnormal expression of β-catenin and cisplatin chemotherapy in oral squamous cell carcinoma (OSCC). The present study aimed to investigate the effect of β-catenin on OSCC cisplatin resistance and evaluated the drug susceptibility of stable cell lines with β-catenin knockin and knockdown. In this study, we found that higher expression level of β-catenin can be observed in CDDP-treated cell lines as compared with the control group. Furthermore, the expression levels of β-catenin increased in both a concentration- and time-dependent manner with the cisplatin treatment. More importantly, the nuclear translocation of β-catenin could also be observed by confocal microscope analysis. Stable cell lines with CTNNB1 knockin and knockdown were established to further investigate the potential role and mechanism of β-catenin in the chemoresistance of OSCC in vitro and in vivo. Our findings indicated that overexpression of β-catenin promoted cisplatin resistance in OSCC in vitro and in vivo. We confirmed that GSK-3β, C-myc, Bcl-2, P-gp, and MRP-1 were involved in β-catenin-mediated drug resistance. Our findings indicate that the Wnt/β-catenin signaling pathway may play important roles in cisplatin resistance in OSCC. PMID:27529071

  12. 伽玛射线诱导脑膜瘤细胞凋亡和影响原癌基因c-myc的表达%Effects of gamma-ray on apoptosis and expression of c-myc protooncogene of meningioma cells

    Institute of Scientific and Technical Information of China (English)

    陈春美; 陈建乐; 韦浩; 张伟强; 蔡刚峰; 王春华; 王锐; 石松生; 杨卫忠

    2013-01-01

    目的 观察不同剂量伽玛(γ)射线诱导脑膜瘤细胞凋亡和原癌基因c-myc表达变化.方法 采用机械分离法获得稳定生长脑膜瘤细胞的离体培养细胞株,根据不同照射剂量分为4组,照射组分别接受中心剂量为2.00、5.00、8.22、13.33 Gy,设立对照组,剂量为0,照射后荧光显微镜观察细胞形态变化,流式细胞术检测细胞周期和凋亡率,Westem blot法检测c-myc蛋白的表达变化.结果 对照组、照射1组、2组、3组及4组细胞凋亡率分别为:(3.73±0.25)%、(4.07±0.29)%、(9.81±1.66)%、(21.63±3.08)%、(8.27±1.61)%;c-myc蛋白表达分别为:0、11±0.01、0.12±0.01、0.19 ±0.02、0.31±0.08、0.09±0.01;对照组和中心剂量2 Gy组照射后细胞形态、细胞周期、凋亡率和c-myc蛋白表达差异无统计学意义(P>0.05);中心剂量分别为5.00 Gy和8.22 Gy组细胞出现凋亡特征,细胞周期G0/G1和G2/M期细胞数量逐渐增多,细胞凋亡率升高,c-myc蛋白表达增多,与对照组比较差异均有统计学意义(P<0.05);剂量为13.33 Gy组,细胞以坏死为主,S期细胞增多,c-myc蛋白表达减少.结论 一定剂量的伽玛刀射线能够诱导脑膜瘤细胞进入凋亡,原癌基因c-myc在此过程中可能发挥促进脑膜瘤细胞进入凋亡过程.%Objective To investigate the apoptosis of meningioma cell and changes of the expression of c-myc protooncogene after gama ray radiation.Methods The isolated and cultured meningioma cells with stable growth were obtained from a patient with meningiomas by mechanical separation,and those cells were divided into 4 groups with the radiation center doses of 2.00,5.00,8.22,and 13.33 Gy respectively.There was a control group without radiation.Meningioma cell morphology was observed under fluorescent microscope.Flow cytometry was used to examine the cell cycle and apoptosis.The expression of c-myc protein was detected by using Western blotting.Results The cell apoptosis rate in

  13. Activation of astroglial calcium signaling by endogenous metabolites succinate and gamma-hydroxybutyrate in the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Tünde eMolnár

    2011-12-01

    Full Text Available Accumulating evidence suggests that different energy metabolites play a role not only in neuronal but also in glial signalling. Recently, astroglial Ca2+ transients evoked by the major citric acid cycle metabolite succinate (SUC and gamma-hydroxybutyrate (GHB that enters the citric acid cycle via SUC have been described in the brain reward area, the nucleus accumbens (NAc. Cells responding to SUC by Ca2+ transient constitute a subset of ATP-responsive astrocytes that are activated in a neuron-independent way. In this study we show that GHB-evoked Ca2+ transients were also found to constitute a subset of ATP-responsive astrocytes in the NAc. Repetitive Ca2+ dynamics evoked by GHB suggested that Ca2+ was released from internal stores. Similarly to SUC, the GHB-response was also characterized by an effective concentration of 50 µM. We observed that the number of ATP-responsive cells decreased with increasing concentration of either SUC or GHB. Moreover, the concentration dependence of the number of ATP-responsive cells were highly identical as a function of both [SUC] and [GHB], suggesting a mutual receptor for SUC and GHB, therefore implying the existence of a distinct GHB-recognizing astroglial SUC receptor in the brain. The SUC-evoked Ca2+ signal remained in mice lacking GABAB receptor type 1 subunit in the presence and absence of the N-Methyl-D-Aspartate (NMDA receptor antagonist (2R-amino-5-phosphonovaleric acid (APV, indicating action mechanisms independent of the GABAB or NMDA receptor subtypes. By molecular docking calculations we found that residues R99, H103, R252 and R281 of the binding crevice of the kidney SUC-responsive membrane receptor SUCNR1 (GPCR91 also predict interaction with GHB, further implying similar GHB and SUC action mechanisms. We conclude that the astroglial action of SUC and GHB may represent a link between brain energy states and Ca2+ signalling in astrocytic networks.

  14. Expression of c-Myc in Pulmonary Vascular Smooth Muscle Cells in the Development of Pulmonary Vascular Remodeling in Broilers Induced by Low Ambient Temperature%低温诱发肉鸡肺血管重塑过程中肺动脉平滑肌细胞c-Myc蛋白表达的变化

    Institute of Scientific and Technical Information of China (English)

    王建琳; 尹燕博

    2011-01-01

    The study was conducted to assess the expression of c-Myc in pulmonary vascular smooth muscle cells in the development of pulmonary vascular remodeling in broilers induced by low ambient temperature. 120 male broiler chicks (Arbor Acre) of commercial strain were randomly allocated to control group (raised at the temperature of (22 + 1. 5) °C ) and low temperature group (raised at the temperature of (11 + 2) °C) at 15 days old. Six broilers in each group were sampled every week from 15 to 50 days of age and lungs were paraffin-embedded, sectioned. The percentage of relative medial thickness (MT%) and the percentage of relative lumen area (RLA%) ,the indexes of pulmonary vascular remodeling,were examined by computer-image analyzing system. Positive indexes (PI) of c-Myc in pulmonary vascular smooth muscle cells were assessed. The result indicated that pulmonary vascular remodeling were significantly elevated in low temperature group from 36 days of age (P<0. 01 or P<0. 05). PI of c-Myc in pulmonary vascular smooth muscle cells were significantly higher than those in the control group from 29 days of age (P<0. 01). The study demonstrated that c-Myc in pulmonary vascular smooth muscle cells were expressed significantly induced by low ambient temperature and have a pivotal role in the development of pulmonary vascular remodeling.%试验旨在研究环境低温诱发肉鸡肺血管重塑过程中肺小动脉血管平滑肌细胞c-Myc蛋白的表达变化,初步探讨肉鸡肺血管重塑的发生机制.120只雄性AA商品代肉鸡15日龄时随机分为对照组((22±1.5)℃)条件下饲养)和低温组((11±2)℃条件下饲养).15~50日龄,每周每组随机取6只,取肺组织做石蜡切片,Weigert-间苯二酚复红染色,观察并测定m管重塑情况;采用免疫组织化学方法榆测肺动脉血管平滑肌细胞c-Myc蛋白表达,并对其进行半定量化.结果显示:(1)低温组肉鸡肺小动脉结构从36日龄开始较对照

  15. Quercetin通过TGF-β1/smad3/c-myc信号通路对LOVO细胞增殖的抑制作用%Quercetin inhibits proliferation of LOVO cells through TGF-β1/smad3 / c-myc signaling pathway

    Institute of Scientific and Technical Information of China (English)

    安昌勇; 寇耀; 赵林; 邵新宏; 张刘平; 张才全

    2013-01-01

    Objective To investigate the effect of Quercetin on TlGF-βl/smad3/c-myc signating pamway of LO V O cell strain as well as the possible mechanisms of inhibitory effect of Quercetin on the proliferation of LOVO cells.Methods Lovo ceils were treated with Quercetin at dosages of 5,10,20,40,80 and 160 μmol / L for 48 h respectively,using those untreated as control,and determined for proliferation activity.LOVO cells were divided into C,T,TQ and Q groups.The cells in C group were untreated,while those in T group were treated with 5 ng/ml TGF-β1 for one week,those in TQ group with 5 ng/ml TGF-β1 for one week then with 20 μmol/L Quercetin for 72 h,and those in Q group with 20 μmol/L Quercetin for 72 h.The effects of Quercetin and TGF-β1 on the clone formation ability as well as expressions of smad3 and c-myc were analyzed by plate clone formation test,immunohistochemical assay with SP staining,RT-PCR and Western blot.Results Quercetin showed significantly dosage-dependent inhibitory effect on proliferation of LOVO cells,with an IC50 of about 40 μmol/L.The proliferation of LOVO cells as well as expressions of smad3 and c-myc were promoted by TGF-β1 significantly (P < O.05),while were inhibited by Quercetin significantly (P < 0.05).As compared with those in TQ group,both the proliferation ability and the expression level of c-myc in TQ group decreased significantly(P < 0.05).Conclusion Quercetin down-regulated the expression of target gene c-myc by inhibiting the TGF-β1/smad3/c-myc signaling pathway,and inhibited the proliferation of LOVO cells.%目的 研究Quercetin对结肠癌LOVO细胞株TGF-β1/smad3/c-myc信号通路的影响,并探讨其抑制LOVO细胞增殖的可能机制.方法 采用5、10、20、40、80、160 μmol/L的Quercetin处理结肠癌LOVO细胞48 h,以未经Quercetin处理的LOVO细胞作为对照组,采用MTT法检测Quercetin对细胞增殖活力的影响.以5 ng/ml的TGF-Bl刺激l周的LOVO细胞为细胞模型,设对照

  16. Clinical significance of bcl-6, p53, c-myc aberrations in diffuse large B-cell lymphoma%bcl-6、p53、c-myc基因异常在弥漫大B细胞淋巴瘤中的临床意义

    Institute of Scientific and Technical Information of China (English)

    何兰兰; 严峰; 刘德亮; 曹祥山; 谢晓宝; 王志林

    2013-01-01

    Objective To investigate aberrations of bcl-6,p53,c-myc genes in diffuse large B-cell lymphoma (DLBCL) and its clinical significance.Methods Interphase fluorescence in situ hybridization (I-FISH) was detected in 59 DLBCL patients in vivo tissue bcl-6,p53 protein,c-myc gene status.The patients were treated with CHOP or R-CHOP chemotheralpy,and the survival rates and treatment efficiency were compared.Results The p53 deletion was detected in 18 of the 59 cases (30.5 %),bcl-6 rearrangement in 11 cases (18.6 %),5 cases with c-myc rearrangement (8.5 %).In the aspects of remission rate,p53 deletion positive group contained less advantage than negative ones (33.3 % vs 75.6 %,x2 =9.560,P =0.002).The prognosis of bcl-6 gene rearrangement positive group different from negative group,but the difference was not statistically significant (OS,P =0.107; PFS,P =0.094),p53 deletion positive patients was in significantly worse prognosis than the negative group (OS,P =0.031; PFS,P =0.028),c-myc rearrangement positive group difference in gene rearrangement negative group,but the difference was not statistically significant (OS,P =0.163; PFS,P =0.167).In the CHOP group,prognosis of p53 deletion,c-myc rearrangement positive group were significantly worse than the negative group,the difference was statistically significant (P < 0.05).In R-CHOP group,the prognostic significance of bcl-6 gene rearrangement positive group were worse (OS,P =0.003; PFS,P =0.007).Conclusion DLBCL patients with bcl-6,p53,c-myc genes aberrations are related with poor prognosis,and they can be used as prognostic factors for predicting DLBCL and guiding therapy.%目的 探讨bcl-6 、p53、c-myc基因异常的检测在弥漫大B细胞淋巴瘤(DLBCL)中的临床意义.方法 间期荧光原位杂交(I-FISH)方法检测59例DLBCL患者活体石蜡组织bcl-6、p53蛋白、c-myc基因异常的情况,同时以CHOP及R-CHOP方案化疗,评价疗效.观察bcl-6、p53蛋白、c-myc基因与化疗疗

  17. Physiological properties of astroglial cell lines derived from mice with high (SAMP8 and low (SAMR1, ICR levels of endogenous retrovirus

    Directory of Open Access Journals (Sweden)

    Choi Eun-Kyoung

    2008-11-01

    Full Text Available Abstract Previous studies have reported that various inbred SAM mouse strains differ markedly with regard to a variety of parameters, such as capacity for learning and memory, life spans and brain histopathology. A potential cause of differences seen in these strains may be based on the fact that some strains have a high concentration of infectious murine leukemia virus (MuLV in the brain, whereas other strains have little or no virus. To elucidate the effect of a higher titer of endogenous retrovirus in astroglial cells of the brain, we established astroglial cell lines from SAMR1 and SAMP8 mice, which are, respectively, resistant and prone to deficit in learning and memory and shortened life span. MuLV-negative astroglial cell lines established from ICR mice served as controls. Comparison of these cell lines showed differences in: 1 levels of the capsid antigen CAgag in both cell lysates and culture media, 2 expression of genomic retroelements, 3 the number of virus particles, 4 titer of infectious virus, 5 morphology, 6 replication rate of cells in culture and final cell concentrations, 7 expression pattern of proinflammatory cytokine genes. The results show that the expression of MuLV is much higher in SAMP8 than SAMR1 astrocyte cultures and that there are physiological differences in astroglia from the 2 strains. These results raise the possibility that the distinct physiological differences between SAMP8 and SAMR1 are a function of activation of endogenous retrovirus.

  18. Research of influence of Pingyangmycin neoajuvant chemotherapy on c-myc, Ras-P21, and P53 protein expression in penile cancer%平阳霉素新辅助化疗对阴茎癌组织c-myc、Ras-P21、P53蛋白表达影响的研究

    Institute of Scientific and Technical Information of China (English)

    徐磊; 刘文龙; 王志超; 乔忠杰

    2014-01-01

    Objective To evaluate the influence and significance of Pingyangmycin neoajuvant chemotherapy on the c-myc, Ras-P21 and P53 protein expression in penile cancer on. Methods The Data of 100 patiens with penile squamous cell carcinoma were obtained in the Department of Urology, the Tumor Hospital of Harbin Medical University, from 1995 to 2005, and they were divided into two groups according to whether given the neoajuvant chemotherapy before the surgery or not. 50 patients in the neoajuvant group were given Pingyangmycin preoperative chemotherapy for 7 days before surgery, after the chemotherapy, partial excision of penis plus improved inguinal lymph node dissection was per-formed. 50 patients in the control group were given partial excision of penis plus improved inguinal lymph node dissec-tion directly without any pre-operative chemotherapy. All pathology specimens were detected of c-myc, Ras-P21, P53 protein product expression by immunohistochemical staining assay. Results In neoajuvant chemotherapy group, the pos-itive expression rates of c-myc, Ras-P21, P53 were 30%, 27%, 23%,respectively. While in control group, the positive expression rates of c-myc, Ras-P21, P53 were 52%, 48%, 50%, the differences were statistically significant (P<0.05). Conclusion The c-myc, Ras-P21, P53 protein expressions are significantly decreased in the tissue of Pingyangmycin neoajuvant chemotherapy of penile cancer, Pingyangmycin neoajuvant chemotherapy may decrease the degree of malig-nancy of penile cancer.%目的:探讨应用平阳霉素新辅助化疗对阴茎癌组织基因蛋白c-myc、Ras-P21、P53表达的影响及意义。方法收集哈尔滨医科大学附属肿瘤医院泌尿外科1995~2005年罹患阴茎鳞状细胞癌的住院患者100例,按照术前是否进行辅助化疗分为两组,其中新辅助化疗组50例,术前应用平阳霉素化疗7 d,化疗后行阴茎部分切除术,并行双侧腹股沟淋巴结改良清扫术;对照组50例,直接行

  19. 通脉汤方对实验性动脉粥样硬化家兔胸主动脉表皮生长因子受体和c-myc基因表达的影响%Effect of Tongmai Recipe on Epidermal Growth Factor Receptor and Protooncogene c-myc mRNA Expression in Aorta of Atherosclerotic Rabbit

    Institute of Scientific and Technical Information of China (English)

    张娟; 孙明; 周宏研

    2007-01-01

    目的 探讨通脉方对实验性动脉粥样硬化家兔胸主动脉表皮生长因子受体和c-myc基因表达的影响.方法 日本大耳白兔40只,随机分为4组:①对照组10只,以普通饲料喂养,每日两次;②模型组10只,以高胆固醇饲料[胆固醇0.5 g/(kg·d)、蛋黄2 g/(kg·d)和猪油2 g/(kg·d)]喂养,每日两次;③通脉汤方低剂量组(简称低剂量组)10只,高胆固醇饲料喂养(剂量同模型组),同时予通脉汤方灌胃,每只剂量相当于生药7.3 g/(kg*d),分上下午两次给药;④通脉汤方高剂量组(简称高剂量组)10只,高胆固醇饲料喂养(剂量同模型组),同时予通脉汤方灌胃,每只剂量相当于生药21.9 g/(kg·d),分上下午两次给药;共喂养16周.运用免疫组织化学染色法检测主动脉表皮生长因子受体的表达,同时用内参比逆转录聚合酶链反应定量分析c-myc mRNA在主动脉的表达.结果 模型组主动脉表皮生长因子受体及c-myc mRNA表达显著高于对照组(分别为0.327±0.030比0.209±0.006,P0.05;0.44±0.09比0.52±0.11 P>0.05).结论 ①动脉粥样硬化时促进血管平滑肌细胞增殖的表皮生长因子受体及原癌基因c-myc mRNA表达增强.②通脉汤方通过抑制血管壁表皮生长因子受体及c-myc基因的表达,从而抑制血管平滑肌细胞增殖.

  20. Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia.

    Science.gov (United States)

    Saggu, Raman; Schumacher, Toni; Gerich, Florian; Rakers, Cordula; Tai, Khalid; Delekate, Andrea; Petzold, Gabor C

    2016-08-04

    Vascular cognitive impairment is the second most common form of dementia. The pathogenic pathways leading to vascular cognitive impairment remain unclear but clinical and experimental data have shown that chronic reactive astrogliosis occurs within white matter lesions, indicating that a sustained pro-inflammatory environment affecting the white matter may contribute towards disease progression. To model vascular cognitive impairment, we induced prolonged mild cerebral hypoperfusion in mice by bilateral common carotid artery stenosis. This chronic hypoperfusion resulted in reactive gliosis of astrocytes and microglia within white matter tracts, demyelination and axonal degeneration, consecutive spatial memory deficits, and loss of white matter integrity, as measured by ultra high-field magnetic resonance diffusion tensor imaging. White matter astrogliosis was accompanied by activation of the pro-inflammatory transcription factor nuclear factor (NF)-kB in reactive astrocytes. Using mice expressing a dominant negative inhibitor of NF-kB under the control of the astrocyte-specific glial fibrillary acid protein (GFAP) promoter (GFAP-IkBα-dn), we found that transgenic inhibition of astroglial NF-kB signaling ameliorated gliosis and axonal loss, maintained white matter structural integrity, and preserved memory function. Collectively, our results imply that pro-inflammatory changes in white matter astrocytes may represent an important detrimental component in the pathogenesis of vascular cognitive impairment, and that targeting these pathways may lead to novel therapeutic strategies.

  1. Transgenic inhibition of astroglial NF-κB leads to increased axonal sparing and sprouting following spinal cord injury

    Science.gov (United States)

    Brambilla, Roberta; Hurtado, Andres; Persaud, Trikaldarshi; Esham, Kim; Pearse, Damien D.; Oudega, Martin; Bethea, John R.

    2014-01-01

    We previously showed that NF-κB inactivation in astrocytes leads to improved functional recovery following spinal cord injury (SCI). This correlated with reduced expression of pro-inflammatory mediators and chondroitin sulphate proteoglycans, and increased white matter preservation. Hence we hypothesized that inactivation of astrocytic NF-κB would create a more permissive environment for axonal sprouting and regeneration. We induced both contusive and complete transection SCI in GFAP-IκBα-dn and WT mice and performed retrograde (fluorogold) and anterograde (biotinylated dextran amine) tracing eight weeks after injury. Following contusive SCI, more fluorogold-labeled cells were found in motor cortex, reticular formation, and raphe nuclei of transgenic mice. Spared and sprouting biotinylated dextran amine-positive corticospinal axons were found caudal to the lesion in GFAP-IκBα-dn mice. Higher numbers of fluorogold-labeled neurons were detected immediately rostral to the lesion in GFAP-IκBα-dn mice, accompanied by increased expression of synaptic and axonal growth-associated molecules. After transection, however, no fluorogold-labeled neurons or biotinylated dextran amine-filled axons were found rostral and caudal to the lesion, respectively, in either genotype. These data demonstrated that inhibiting astroglial NF-κB resulted in a growth-supporting terrain promoting sparing and sprouting, rather than regeneration, of supraspinal and propriospinal circuitries essential for locomotion, hence contributing to the improved functional recovery observed after SCI in GFAP-IκBα-dn mice. PMID:19522780

  2. Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia.

    Science.gov (United States)

    Saggu, Raman; Schumacher, Toni; Gerich, Florian; Rakers, Cordula; Tai, Khalid; Delekate, Andrea; Petzold, Gabor C

    2016-01-01

    Vascular cognitive impairment is the second most common form of dementia. The pathogenic pathways leading to vascular cognitive impairment remain unclear but clinical and experimental data have shown that chronic reactive astrogliosis occurs within white matter lesions, indicating that a sustained pro-inflammatory environment affecting the white matter may contribute towards disease progression. To model vascular cognitive impairment, we induced prolonged mild cerebral hypoperfusion in mice by bilateral common carotid artery stenosis. This chronic hypoperfusion resulted in reactive gliosis of astrocytes and microglia within white matter tracts, demyelination and axonal degeneration, consecutive spatial memory deficits, and loss of white matter integrity, as measured by ultra high-field magnetic resonance diffusion tensor imaging. White matter astrogliosis was accompanied by activation of the pro-inflammatory transcription factor nuclear factor (NF)-kB in reactive astrocytes. Using mice expressing a dominant negative inhibitor of NF-kB under the control of the astrocyte-specific glial fibrillary acid protein (GFAP) promoter (GFAP-IkBα-dn), we found that transgenic inhibition of astroglial NF-kB signaling ameliorated gliosis and axonal loss, maintained white matter structural integrity, and preserved memory function. Collectively, our results imply that pro-inflammatory changes in white matter astrocytes may represent an important detrimental component in the pathogenesis of vascular cognitive impairment, and that targeting these pathways may lead to novel therapeutic strategies. PMID:27487766

  3. Effect of Nrf2 activators on release of glutathione, cysteinylglycine and homocysteine by human U373 astroglial cells

    Directory of Open Access Journals (Sweden)

    Megan L. Steele

    2013-01-01

    This study compares four known Nrf2 activators, R-α-Lipoic acid (LA, tert-butylhydroquinone (TBHQ, sulforaphane (SFN and Polygonum cuspidatum extract containing 50% resveratrol (PC-Res for their effects on astroglial release of GSH and CysGly. GSH levels increased dose-dependently in response to all four drugs. Sulforaphane produced the most potent effect, increasing GSH by up to 2.4-fold. PC-Res increased GSH up to 1.6-fold, followed by TBHQ (1.5-fold and LA (1.4-fold. GSH is processed by the ectoenzyme, γ-glutamyl transpeptidase, to form CysGly. Once again, SFN produced the most potent effect, increasing CysGly by up to 1.7-fold, compared to control cells. TBHQ and PC-Res both induced fold increases of 1.3, followed by LA with a fold increase of 1.2. The results from the present study showed that sulforaphane, followed by lipoic acid, resveratrol and Polygonum multiflorum were all identified as potent “GSH and Cys-Gly boosters”.

  4. Different temporal patterns in the expressions of bone morphogenetic proteins and noggin during astroglial scar formation after ischemic stroke.

    Science.gov (United States)

    Shin, Jin A; Kang, Jihee Lee; Lee, Kyung-Eun; Park, Eun-Mi

    2012-05-01

    Bone morphogenetic proteins (BMPs) and their antagonists have roles in scar formation and regeneration after central nervous system injuries. However, temporal changes in their expression during astroglial scar formation in the ischemic brain are unknown. Here, we examined protein levels of BMP2, BMP7, and their antagonist noggin in the ischemic brain up to 4 weeks after experimental stroke in mice. BMP2 and BMP7 levels were increased from 1 to 4 weeks in the ischemic brain, and their expression was associated with astrogliosis. BMP7 expression was more intense and co-localized in reactive astrocytes in the ischemic subcortex at 1 week. Noggin expression began to increase after 2 weeks and was further increased at 4 weeks only in the ischemic subcortex, but the intensity was weak compared to the intensity of BMPs. Noggin was co-localized mainly in activated microglia. These findings show that expression of BMPs and noggin differed over time, in intensity and in types of cell, and suggest that BMPs and noggin have different roles in the processes of glial scar formation and neurorestoration in the ischemic brain.

  5. 跑台运动训练对脑缺血损伤大鼠热休克蛋白70及C-MYC表达的影响%Effects of treadmill training on the expression of HSP70 and C-MYC in the brains of rats with focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    刘德山; 刘楠; 张逸仙; 杜厚伟; 陈荣华

    2010-01-01

    目的 探讨跑台运动训练对局灶性脑缺血大鼠神经功能恢复和脑缺血组织中热休克蛋白70(HSP70)及C-MYC表达的影响.方法 将42只清洁级成年雄性SD大鼠分为假手术组6只、模型组18只、运动组18只.模型组、运动组大鼠采用改良的Longs线栓法制备大脑中动脉闭塞(MCAO)脑缺血模型,运动组于造模成功后24 h采用跑台训练器进行运动训练,每周6 d,共2周,其余2组则置于普通笼内饲养,期间可自由活动、进食.采用修正的神经行为学评分方法评价模型组和运动组大鼠MCAO脑缺血后第3,7,14天的神经功能,并断头取脑,采用逆转录-多聚酶链反应(RT-PCR)法、免疫组织化学和Western blot法检测脑缺血组织中HSP70、C-MYC的表达.结果 运动组大鼠脑缺血第7,14天神经功能评分均明显优于模型组(P<0.05或0.01);运动组大鼠脑缺血第7,14天HSF70和C-MYC表达较模型组增强(P<0.05或0.01).结论 运动训练可促进脑缺血大鼠神经功能恢复,其机制可能与上调脑缺血组织中HSP70及C-MYC表达有关.%Objective To observe the effects of treadmill training on the recovery of neurological function and the expression of HSP70 and C-MYC in the brains of rats with focal cerebral ischemia. Methods Forty-two male adult Sprague-Dawley rats were randomly divided into a sham group ( n =6), a model group (n =18) and a treadmill exercise group (n=18). Focal cerebral ischemia was induced by right middle cerebral artery occlusion (MCAO) in the model group and exercise group using a modified version of Longa's method. The rats in the treadmill exercise group were given treadmill training 6 d per week for 2 weeks after 24 h of MCAO. By contrast, the rats in the sham group and the model group were reared in standard cages. Before the rats were sacrificed at the 3rd, 7th and 14th d after MCAO, their neurological functions were tested using modified neurological severity scores ( mNSS) , and the mRNA and

  6. Role of arsenic trioxide induced apoptosis in Burkitt lymphoma cell line Raji and influence on C-myc expression%三氧化二砷对Burkitt淋巴瘤细胞株Raji凋亡的诱导作用及C-myc表达的影响

    Institute of Scientific and Technical Information of China (English)

    张继青; 钟雷; 李进娥

    2015-01-01

    目的 探讨三氧化二砷(As2O3)对Burkitt淋巴瘤细胞袜Raji凋亡的诱导作用及C-myc表这的影响.方法 通过噻唑蓝比色法检测观察As2 O3对Raji细胞增殖的影响,流式细胞仪观察As2O3对Raji细胞凋亡的诱导作用,逆转录聚合酶链式反应(RT-PCR)法检测As2O3对C-myc mRNA表达的影响.结果 As2O3对Raji细胞生长有抑制作用,呈剂量和时间依赖关系(P<0.01);As2O3对Raji细胞有诱导凋亡作用,呈剂量和时间依赖关系(P<0.01);随着As2O3浓度升高,C-myc的表达水平明显下降(P<0.01).结论 As2O3对Burkitt淋巴瘤细胞株Raji具有增殖抑制和诱导凋亡作用,其作用机制可能与C-myc表达水平明显下降有关.

  7. Transgenic inhibition of astroglial NF-kappa B leads to increased axonal sparing and sprouting following spinal cord injury.

    Science.gov (United States)

    Brambilla, Roberta; Hurtado, Andres; Persaud, Trikaldarshi; Esham, Kim; Pearse, Damien D; Oudega, Martin; Bethea, John R

    2009-07-01

    We previously showed that Nuclear Factor kappaB (NF-kappaB) inactivation in astrocytes leads to improved functional recovery following spinal cord injury (SCI). This correlated with reduced expression of pro-inflammatory mediators and chondroitin sulfate proteoglycans, and increased white matter preservation. Hence we hypothesized that inactivation of astrocytic NF-kappaB would create a more permissive environment for axonal sprouting and regeneration. We induced both contusive and complete transection SCI in GFAP-Inhibitor of kappaB-dominant negative (GFAP-IkappaBalpha-dn) and wild-type (WT) mice and performed retrograde [fluorogold (FG)] and anterograde [biotinylated dextran amine (BDA)] tracing 8 weeks after injury. Following contusive SCI, more FG-labeled cells were found in motor cortex, reticular formation, and raphe nuclei of transgenic mice. Spared and sprouting BDA-positive corticospinal axons were found caudal to the lesion in GFAP-IkappaBalpha-dn mice. Higher numbers of FG-labeled neurons were detected immediately rostral to the lesion in GFAP-IkappaBalpha-dn mice, accompanied by increased expression of synaptic and axonal growth-associated molecules. After transection, however, no FG-labeled neurons or BDA-filled axons were found rostral and caudal to the lesion, respectively, in either genotype. These data demonstrated that inhibiting astroglial NF-kappaB resulted in a growth-supporting terrain promoting sparing and sprouting, rather than regeneration, of supraspinal and propriospinal circuitries essential for locomotion, hence contributing to the improved functional recovery observed after SCI in GFAP-IkappaBalpha-dn mice.

  8. The Sarcoglycan complex is expressed in the cerebrovascular system and is specifically regulated by astroglial Cx30 channels

    Directory of Open Access Journals (Sweden)

    Anne-Cécile eBoulay

    2015-02-01

    Full Text Available Astrocytes, the most prominent glial cell type in the brain, send specialized processes called endfeet, around blood vessels and express a large molecular repertoire regulating the cerebrovascular system physiology. One of the most striking properties of astrocyte endfeet is their enrichment in gap junction protein Connexin 43 and 30 (Cx43 and Cx30 allowing in particular for direct intercellular trafficking of ions and small signaling molecules through perivascular astroglial networks. In this study, we addressed the specific role of Cx30 at the gliovascular interface. Using an inactivation mouse model for Cx30 (Cx30Δ/Δ, we showed that absence of Cx30 does not affect blood-brain barrier (BBB organization and permeability. However, it results in the cerebrovascular fraction, in a strong upregulation of Sgcg encoding γ-Sarcoglycan (SG, a member of the Dystrophin-associated protein complex (DAPC connecting cytoskeleton and the extracellular matrix. The same molecular event occurs in Cx30T5M/T5M mutated mice, where Cx30 channels are closed, demonstrating that Sgcg regulation relied on Cx30 channel functions. We further characterized the expression of other Sarcoglycan complex (SGC molecules in the cerebrovascular system and showed the presence of α-, β-, δ-, γ-, ε- and ζ- SG, as well as Sarcospan. Their expression was however not modified in Cx30Δ/Δ. These results suggest that a full SGC might be present in the cerebrovascular system, and that expression of one of its member, γ-Sarcoglycan, depends on Cx30 channels. As described in skeletal muscles, the SGC may contribute to membrane stabilization and signal transduction in the cerebrovascular system, which may therefore be regulated by Cx30 channel-mediated functions.

  9. Wnt signaling and c-Myc in intestinal epithelium

    OpenAIRE

    Muncan, V.

    2007-01-01

    constantly produce cells from a stem cell reservoir that give rise to proliferating transit amplifying cells, which subsequently differentiate and are positioned in their proper compartments. This process has to be under stringent control to ensure life-long tissue homeostasis. It has now become clear that the same signaling pathways that are important during embryonic development control selfreneving tissues. Canonical Wnt signaling plays a key role in regulating intestinal tissue homeostasi...

  10. Consequences of over-expression of rat Scavenger Receptor, SR-BI, in an adrenal cell model

    Directory of Open Access Journals (Sweden)

    Azhar Salman

    2006-12-01

    Full Text Available Abstract Background The plasma membrane scavenger receptor, SR-BI, mediates the 'selective uptake' process by which cholesteryl esters (CE from exogenously supplied HDL are taken up by target cells. Recent work suggests that dimer and higher order oligomeric forms of the SR-BI protein are important to this process. SR-BI has been shown to be particularly associated with microvilli and microvillar channels found at the cell surface of steroidogenic cells, and a study with the hormone stimulated adrenal gland has shown impressive changes in the size and complexity of the microvillar compartment as the mass of CE uptake (and accompanying steroidogenesis fluctuates. In the present study, we examine a cell line in which we overexpress the SR-BI protein to determine if morphological, biochemical and functional events associated with SR-BI in a controlled cell system are similar to those observed in the intact mammalian adrenal which is responsive to systemic factors. Methods Y1-BS1 mouse adrenocortical cells were transiently transfected using rat SR-BI-pcDNA6-V5-His, rat SR-BI-pcDNA6-cMyc-His or control pcDNA6-V5-His vector construct using a CaPO4 precipitation technique. Twenty four hours after transfection, cells were treated with, or without, Bt2cAMP, and SR-BI expression, CE uptake, and steroidogenesis was measured. SR-BI dimerization and cell surface architectural changes were assessed using immunoelectron microscopic techniques. Results Overexpression of the scavenger receptor protein, SR-BI, in Y1-BS1 cells results in major alterations in cell surface architecture designed to increase uptake of HDL supplied-CEs. Changes include 1 the formation of crater-like erosions of the surface with multiple double membraned channel structures lining the craters, and 2 dimerized formations of SR-BI lining the newly formed craters and associated double membraned channels. Conclusion These data show that overexpression of the scavenger receptor protein, SR

  11. Autoradiographic quantitation of. beta. -adrenergic receptors on neural cells in primary cultures. 1. Pharmacological studies of (/sup 125/I)pindolol binding of individual astroglial cells

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, S.K.; McCarthy, K.D. (North Carolina Univ., Chapel Hill (USA). School of Medicine)

    1985-05-27

    The current investigation was undertaken to determine whether the binding of (/sup 125/I)pindolol (*IPIN) to immunocytochemically stained cultured cells, as measured by quantitative autoradiography, would fulfill the usual pharmacological criteria for specific ..beta..-adrenergic receptor binding. *IPIN binding experiments were carried out on individual astroglia obtained from neonatal rat cerebral cortex and grown as primary cultures on polylysine-coated glass slides. Autoradiographic silver grains on cells which stained for the intracellular astroglial marker, glial fibrillary acidic protein (GFAP), were quantified by a microcomputer-based video digitizing system. This study is a demonstration of receptor binding parameters derived from single cells in a known population, and represents a novel approach to the problem of assessing cell-type specific receptors on neural cells in mixed primary cultures.

  12. Tricyclic Antidepressant Amitriptyline-induced Glial Cell Line-derived Neurotrophic Factor Production Involves Pertussis Toxin-sensitive Gαi/o Activation in Astroglial Cells.

    Science.gov (United States)

    Hisaoka-Nakashima, Kazue; Miyano, Kanako; Matsumoto, Chie; Kajitani, Naoto; Abe, Hiromi; Okada-Tsuchioka, Mami; Yokoyama, Akinobu; Uezono, Yasuhito; Morioka, Norimitsu; Nakata, Yoshihiro; Takebayashi, Minoru

    2015-05-29

    Further elaborating the mechanism of antidepressants, beyond modulation of monoaminergic neurotransmission, this study sought to elucidate the mechanism of amitriptyline-induced production of glial cell line-derived neurotrophic factor (GDNF) in astroglial cells. Previous studies demonstrated that an amitriptyline-evoked matrix metalloproteinase (MMP)/FGF receptor (FGFR)/FGFR substrate 2α (FRS2α)/ERK cascade is crucial for GDNF production, but how amitriptyline triggers this cascade remains unknown. MMP is activated by intracellular mediators such as G proteins, and this study sought to clarify the involvement of G protein signaling in amitriptyline-evoked GDNF production in rat C6 astroglial cells (C6 cells), primary cultured rat astrocytes, and normal human astrocytes. Amitriptyline-evoked GDNF mRNA expression and release were inhibited by pertussis toxin (PTX), a Gα(i/o) inhibitor, but not by NF449, a Gα(s) inhibitor, or YM-254890, a Gαq inhibitor. The activation of the GDNF production cascade (FGFR/FRS2α/ERK) was also inhibited by PTX. Deletion of Gα(ο1) and Gα(i3) by RNAi demonstrated that these G proteins play important roles in amitriptyline signaling. G protein activation was directly analyzed by electrical impedance-based biosensors (CellKey(TM) assay), using a label-free (without use of fluorescent proteins/probes or radioisotopes) and real time approach. Amitriptyline increased impedance, indicating Gα(i/o) activation that was suppressed by PTX treatment. The impedance evoked by amitriptyline was not affected by inhibitors of the GDNF production cascade. Furthermore, FGF2 treatment did not elicit any effect on impedance, indicating that amitriptyline targets PTX-sensitive Gα(i/o) upstream of the MMP/FGFR/FRS2α/ERK cascade. These results suggest novel targeting for the development of antidepressants.

  13. Loss of MYC confers resistance to doxorubicin-induced apoptosis by preventing the activation of multiple serine protease- and caspase-mediated pathways

    DEFF Research Database (Denmark)

    Grassilli, Emanuela; Ballabeni, Andrea; Maellaro, Emilia;

    2004-01-01

    c-Myc plays an essential role in proliferation, differentiation, and apoptosis. Because of its relevance to cancer, most studies have focused on the cellular consequences of c-Myc overexpression. Here, we address the role of physiological levels of c-Myc in drug-induced apoptosis. By using c...

  14. NUCKS overexpression in breast cancer

    Directory of Open Access Journals (Sweden)

    Kittas Christos

    2009-08-01

    Full Text Available Abstract Background NUCKS (Nuclear, Casein Kinase and Cyclin-dependent Kinase Substrate is a nuclear, DNA-binding and highly phosphorylated protein. A number of reports show that NUCKS is highly expressed on the level of mRNA in several human cancers, including breast cancer. In this work, NUCKS expression on both RNA and protein levels was studied in breast tissue biopsies consisted of invasive carcinomas, intraductal proliferative lesions, benign epithelial proliferations and fibroadenomas, as well as in primary cultures derived from the above biopsies. Specifically, in order to evaluate the level of NUCKS protein in correlation with the histopathological features of breast disease, immunohistochemistry was employed on paraffin sections of breast biopsies of the above types. In addition, NUCKS expression was studied by means of Reverse Transcription PCR (RT-PCR, real-time PCR (qRT-PCR and Western immunoblot analyses in the primary cell cultures developed from the same biopsies. Results The immunohistochemical Results showed intense NUCKS staining mostly in grade I and II breast carcinomas compared to normal tissues. Furthermore, NUCKS was moderate expressed in benign epithelial proliferations, such as adenosis and sclerosing adenosis, and highly expressed in intraductal lesions, specifically in ductal carcinomas in situ (DCIS. It is worth noting that all the fibroadenoma tissues examined were negative for NUCKS staining. RT-PCR and qRT-PCR showed an increase of NUCKS expression in cells derived from primary cultures of proliferative lesions and cancerous tissues compared to the ones derived from normal breast tissues and fibroadenomas. This increase was also confirmed by Western immunoblot analysis. Although NUCKS is a cell cycle related protein, its expression does not correlate with Ki67 expression, neither in tissue sections nor in primary cell cultures. Conclusion The results show overexpression of the NUCKS protein in a number of non

  15. The value of infection of HR-HPV and the expression of C-MYC in the diagnosis of cervical lesions%高危型HPV感染与C-MYC基因检测在宫颈病变诊断中的价值

    Institute of Scientific and Technical Information of China (English)

    郭宏亮; 黄荣芳; 方丽萍

    2016-01-01

    目的 检测人髓细胞增生原癌基因(myelocytomatosis oncogene,C-MYC)表达及高危型人乳头瘤病毒(High-Riskhuman papilloma virus,HR-HPV)的感染情况,探讨它们在宫颈病变筛查和诊断中的应用价值.方法 选取2010年10月-2011年12月在昆明市妇幼保健院门诊就诊或入院自愿做宫颈癌筛查的患者1 200例,每位患者均行LCT和HC2-HPV检测.LCT剩余标本用荧光原位杂交(FISH)方法检测宫颈脱落细胞中C-MYC基因表达.任一结果阳性者取宫颈活检,最终取宫颈活检患者150例.以病理组织学结果为诊断金标准,将患者分为正常组32例、低度宫颈上皮内瘤变(CIN Ⅰ)组38例、高度宫颈上皮内瘤变(CINⅡ/CINⅢ)组66例、宫颈浸润癌(ICC)组14例.结果 ①在正常组,CIN Ⅰ,CINⅡ/CINⅢ,ICC组,C-MYC基因的表达率分别为3.12%、47.37%、56.06%、92.86%,各组间比较差异有统计学意义(P<0.05).②在正常组,CIN Ⅰ,CINⅡ/CINⅢ,ICC组,HR-HPV的检出率分别为31.25%、65.79%、90.90%、92.86%,正常组与宫颈病变各组间比较差异有统计学意义(P<0.05).CINⅡ/CINⅢ,ICC组HR-HPV的检出率明显高于CIN Ⅰ组(P<0.05).③C-MYC基因检测特异度高,但灵敏度低;而HR-HPV感染检测灵敏度高,但特异度低.④随着病理组织学病变程度加重,C-MYC基因阳性扩增和HC2-HPV阳性率均有不同程度的上升,且二者呈正相关(r=0.456,P=0.000).结论 ①C-MYC基因在CIN Ⅰ,CINⅡ/CINⅢ,ICC组异常表达,且随着病变程度的增加阳性率也增加,特异度高,可能成为宫颈癌癌前病变的生物遗传学检测指标,并有望成为宫颈癌早期筛查方法;②HC2检测HR-HPV是一种有效的宫颈病变的管理手段,可以提高宫颈病变筛查的灵敏度,但是特异度有所降低;③C-MYC基因异常扩增和HPV感染在宫颈癌的发生发展过程中有着密切的关系.

  16. Revolutionizing membrane protein overexpression in bacteria

    NARCIS (Netherlands)

    Schlegel, Susan; Klepsch, Mirjam; Gialama, Dimitra; Wickstrom, David; Slotboom, Dirk Jan; de Gier, Jan-Willem; Wickström, David

    2010-01-01

    The bacterium Escherichia coli is the most widely used expression host for overexpression trials of membrane proteins. Usually, different strains, culture conditions and expression regimes are screened for to identify the optimal overexpression strategy. However, yields are often not satisfactory, e

  17. Overexpression of Activation-Induced Cytidine Deaminase in MTX- and Age-Related Epstein-Barr Virus-Associated B-Cell Lymphoproliferative Disorders of the Head and Neck

    Directory of Open Access Journals (Sweden)

    Kentaro Kikuchi

    2015-01-01

    Full Text Available Recent research has shown that activation-induced cytidine deaminase (AID triggers somatic hypermutation and recombination, in turn contributing to lymphomagenesis. Such aberrant AID expression is seen in B-cell leukemia/lymphomas, including Burkitt lymphoma which is associated with c-myc translocation. Moreover, Epstein-Barr virus (EBV latent membrane protein-1 (LMP-1 increases genomic instability through early growth transcription response-1 (Egr-1 mediated upregulation of AID in B-cell lymphoma. However, few clinicopathological studies have focused on AID expression in lymphoproliferative disorders (LPDs. Therefore, we conducted an immunohistochemical study to investigate the relationship between AID and LMP-1 expression in LPDs (MTX-/Age-related EBV-associated, including diffuse large B-cell lymphomas (DLBCLs. More intense AID expression was detected in LPDs (89.5% than in DLBCLs (20.0%, and the expression of LMP-1 and EBER was more intense in LPDs (68.4% and 94.7% than in DLBCLs (10.0% and 20.0%. Furthermore, stronger Egr-1 expression was found in MTX/Age-EBV-LPDs (83.3% than in DLBCLs (30.0%. AID expression was significantly constitutively overexpressed in LPDs as compared with DLBCLs. These results suggest that increased AID expression in LPDs may be one of the processes involved in lymphomagenesis, thereby further increasing the survival of genetically destabilized B-cells. AID expression may be a useful indicator for differentiation between LPDs and DLBCLs.

  18. Frequent inactivation of MCC/CTNNBIP1 and overexpression of phospho-beta-catenin(Y654) are associated with breast carcinoma: Clinical and prognostic significance.

    Science.gov (United States)

    Mukherjee, Nupur; Dasgupta, Hemantika; Bhattacharya, Rittwika; Pal, Debolina; Roy, Rituparna; Islam, Saimul; Alam, Neyaz; Biswas, Jaydip; Roy, Anup; Roychoudhury, Susanta; Panda, Chinmay Kumar

    2016-09-01

    Transcriptional activation of β-catenin is a hallmark of Wnt/β-catenin pathway activation. The MCC (Mutated in colorectal cancers) and CTNNBIP1 (catenin, beta interacting protein 1) are two candidate genes which inhibit the transcriptional activity of nuclear β-catenin. The importance of MCC and CTNNBIP1 in breast cancer (BC) development has not yet been studied in detail. For this reason, in present study, the alterations (deletion/methylation/mutation/expression) of MCC and CTNNBIP1 were analyzed in BC of Indian patients (N=120) followed by expression/mutation analysis of β-catenin. Then transcriptional activity of β-catenin was checked by expression analysis of its target genes (EGFR, C-MYC and CCND1) in the same set of samples. Frequent methylation (44-45%) than deletion (20-32%) with overall alterations of 52-55% was observed in MCC/CTNNBIP1 in the BC samples. The alterations of MCC/CTNNBIP1 showed significant correlation with increased nuclear β-catenin/p-β-catenin(Y654) expression. Also, a significant correlation was seen between nuclear β-catenin expression and overexpression of its target genes like EGFR, MYC and CCND1 in the BC samples (Pdownregulation of β-catenin and its target genes. The expression of nuclear p-β-catenin(Y654), EGFR, MYC and CCND1 were significantly high in TNBC (Triple negative BC) and Her2+ compared to Luminal A/B+ subtypes. The TNBC patients in stage III/IV having reduced expression of MCC in the tumors showed poor prognosis. Thus, our data suggests that inactivation of MCC/CTNNBIP1 could be an important event in activation of β-catenin mediated transcription of target genes in BC. PMID:27208794

  19. Significance of Aurora B overexpression in hepatocellular carcinoma. Aurora B Overexpression in HCC

    Directory of Open Access Journals (Sweden)

    Lin Zhong-Zhe

    2010-08-01

    Full Text Available Abstract Background To investigate the significance of Aurora B expression in hepatocellular carcinoma (HCC. Methods The Aurora B and Aurora A mRNA level was measured in 160 HCCs and the paired nontumorous liver tissues by reverse transcription-polymerase chain reaction. Mutations of the p53 and β-catenin genes were analyzed in 134 and 150 tumors, respectively, by direct sequencing of exon 2 to exon 11 of p53 and exon 3 of β-catenin. Anticancer effects of AZD1152-HQPA, an Aurora B kinase selective inhibitor, were examined in Huh-7 and Hep3B cell lines. Results Aurora B was overexpressed in 98 (61% of 160 HCCs and in all 7 HCC cell lines examined. The overexpression of Aurora B was associated with Aurora A overexpression (P = 0.0003 and p53 mutation (P = 0.002 and was inversely associated with β-catenin mutation (P = 0.002. Aurora B overexpression correlated with worse clinicopathologic characteristics. Multivariate analysis confirmed that Aurora B overexpression was an independent poor prognostic factor, despite its interaction with Aurora A overexpression and mutations of p53 and β-catenin. In Huh-7 and Hep3B cells, AZD1152-HQPA induced proliferation blockade, histone H3 (Ser10 dephosphorylation, cell cycle disturbance, and apoptosis. Conclusion Aurora B overexpression is an independent molecular marker predicting tumor invasiveness and poor prognosis of HCC. Aurora B kinase selective inhibitors are potential therapeutic agents for HCC treatment.

  20. Kif14 overexpression accelerates murine retinoblastoma development.

    Science.gov (United States)

    O'Hare, Michael; Shadmand, Mehdi; Sulaiman, Rania S; Sishtla, Kamakshi; Sakisaka, Toshiaki; Corson, Timothy W

    2016-10-15

    The mitotic kinesin KIF14 has an essential role in the recruitment of proteins required for the final stages of cytokinesis. Genomic gain and/or overexpression of KIF14 has been documented in retinoblastoma and a number of other cancers, such as breast, lung and ovarian carcinomas, strongly suggesting its role as an oncogene. Despite evidence of oncogenic properties in vitro and in xenografts, Kif14's role in tumor progression has not previously been studied in a transgenic cancer model. Using a novel Kif14 overexpressing, simian virus 40 large T-antigen retinoblastoma (TAg-RB) double transgenic mouse model, we aimed to determine Kif14's role in promoting retinal tumor formation. Tumor initiation and development in double transgenics and control TAg-RB littermates were documented in vivo over a time course by optical coherence tomography, with subsequent ex vivo quantification of tumor burden. Kif14 overexpression led to an accelerated initiation of tumor formation in the TAg-RB model and a significantly decreased tumor doubling time (1.8 vs. 2.9 weeks). Moreover, overall percentage tumor burden was also increased by Kif14 overexpression. These data provide the first evidence that Kif14 can promote tumor formation in susceptible cells in vivo. PMID:27270502

  1. Overexpressed TP73 induces apoptosis in medulloblastoma

    OpenAIRE

    Perlaky Laszlo; Adesina Adekunle M; Rajan Jessen A; Skapura Darlene G; Lin Linda L; De Bortoli Massimiliano; Castellino Robert C; Irwin Meredith S; Kim John YH

    2007-01-01

    Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Children who relapse usually die of their disease, which reflects resistance to radiation and/or chemotherapy. Improvements in outcome require a better understanding of the molecular basis of medulloblastoma growth and treatment response. TP73 is a member of the TP53 tumor suppressor gene family that has been found to be overexpressed in a variety of tumors and mediates apoptotic responses to genotoxic ...

  2. Hand1 overexpression inhibits medulloblastoma metastasis.

    Science.gov (United States)

    Asuthkar, Swapna; Guda, Maheedhara R; Martin, Sarah E; Antony, Reuben; Fernandez, Karen; Lin, Julian; Tsung, Andrew J; Velpula, Kiran K

    2016-08-19

    Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor. Current treatment includes surgery, radiation and chemotherapy. However, ongoing treatment in patients is further classified according to the presence or absence of metastasis. Since metastatic medulloblastoma are refractory to current treatments, there is need to identify novel biomarkers that could be used to reduce metastatic potential, and more importantly be targeted therapeutically. Previously, we showed that ionizing radiation-induced uPAR overexpression is associated with increased accumulation of β-catenin in the nucleus. We further demonstrated that uPAR protein act as cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand1. Among the histological subtypes classical and desmoplastic subtypes account for the majority while large cell/anaplastic variant is most commonly associated with metastatic disease. In this present study using immunohistochemical approach and patient data mining for the first time, we demonstrated that Hand1 expression is observed to be downregulated in all the subtypes of medulloblastoma. Previously we showed that Hand1 overexpression regulated medulloblastoma angiogenesis and here we investigated the role of Hand1 in the context of Epithelial-Mesenchymal Transition (EMT). Moreover, UW228 and D283 cells overexpressing Hand1 demonstrated decreased-expression of mesenchymal markers (N-cadherin, β-catenin and SOX2); metastatic marker (SMA); and increased expression of epithelial marker (E-cadherin). Strikingly, human pluripotent stem cell antibody array showed that Hand1 overexpression resulted in substantial decrease in pluripotency markers (Nanog, Oct3/4, Otx2, Flk1) suggesting that Hand1 expression may be essential to attenuate the EMT and our findings underscore a novel role for Hand1 in medulloblastoma metastasis. PMID:27297109

  3. Overexpressed TP73 induces apoptosis in medulloblastoma

    Directory of Open Access Journals (Sweden)

    Perlaky Laszlo

    2007-07-01

    Full Text Available Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Children who relapse usually die of their disease, which reflects resistance to radiation and/or chemotherapy. Improvements in outcome require a better understanding of the molecular basis of medulloblastoma growth and treatment response. TP73 is a member of the TP53 tumor suppressor gene family that has been found to be overexpressed in a variety of tumors and mediates apoptotic responses to genotoxic stress. In this study, we assessed expression of TP73 RNA species in patient tumor specimens and in medulloblastoma cell lines, and manipulated expression of full-length TAp73 and amino-terminal truncated ΔNp73 to assess their effects on growth. Methods We analyzed medulloblastoma samples from thirty-four pediatric patients and the established medulloblastoma cell lines, Daoy and D283MED, for expression of TP73 RNA including the full-length transcript and the 5'-terminal variants that encode the ΔNp73 isoform, as well as TP53 RNA using quantitative real time-RTPCR. Protein expression of TAp73 and ΔNp73 was quantitated with immunoblotting methods. Clinical outcome was analyzed based on TP73 RNA and p53 protein expression. To determine effects of overexpression or knock-down of TAp73 and ΔNp73 on cell cycle and apoptosis, we analyzed transiently transfected medulloblastoma cell lines with flow cytometric and TUNEL methods. Results Patient medulloblastoma samples and cell lines expressed full-length and 5'-terminal variant TP73 RNA species in 100-fold excess compared to non-neoplastic brain controls. Western immunoblot analysis confirmed their elevated levels of TAp73 and amino-terminal truncated ΔNp73 proteins. Kaplan-Meier analysis revealed trends toward favorable overall and progression-free survival of patients whose tumors display TAp73 RNA overexpression. Overexpression of TAp73 or ΔNp73 induced apoptosis under basal growth conditions in vitro and

  4. Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway

    Science.gov (United States)

    Corominas-Faja, Bruna; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; López-Bonet, Eugeni; Lupu, Ruth; Alarcón, Tomás; Vellon, Luciano; Iglesias, Juan Manuel; Leis, Olatz; Martín, Ángel G; Vazquez-Martin, Alejandro; Menendez, Javier A

    2013-01-01

    Energy metabolism plasticity enables stemness programs during the reprogramming of somatic cells to an induced pluripotent stem cell (iPSC) state. This relationship may introduce a new era in the understanding of Warburg’s theory on the metabolic origin of cancer at the level of cancer stem cells (CSCs). Here, we used Yamanaka’s stem cell technology in an attempt to create stable CSC research lines in which to dissect the transcriptional control of mTOR—the master switch of cellular catabolism and anabolism—in CSC-like states. The rare colonies with iPSC-like morphology, obtained following the viral transduction of the Oct4, Sox2, Klf4, and c-Myc (OSKM) stemness factors into MCF-7 luminal-like breast cancer cells (MCF-7/Rep), demonstrated an intermediate state between cancer cells and bona fide iPSCs. MCF-7/Rep cells notably overexpressed SOX2 and stage-specific embryonic antigen (SSEA)-4 proteins; however, other stemness-related markers (OCT4, NANOG, SSEA-1, TRA-1–60, and TRA-1–81) were found at low to moderate levels. The transcriptional analyses of OSKM factors confirmed the strong but unique reactivation of the endogenous Sox2 stemness gene accompanied by the silencing of the exogenous Sox2 transgene in MCF-7/Rep cells. Some but not all MCF-7/Rep cells acquired strong alkaline phosphatase (AP) activity compared with MCF-7 parental cells. SOX2-overexpressing MCF-7/Rep cells contained drastically higher percentages of CD44+ and ALDEFLUOR-stained ALDHbright cells than MCF-7 parental cells. The overlap between differentially expressed mTOR signaling-related genes in 3 different SOX2-overexpressing CSC-like cell lines revealed a notable downregulation of 3 genes, PRKAA1 (which codes for the catalytic α 1 subunit of AMPK), DDIT4/REDD1 (a stress response gene that operates as a negative regulator of mTOR), and DEPTOR (a naturally occurring endogenous inhibitor of mTOR activity). The insulin-receptor gene (INSR) was differentially upregulated in MCF-7/Rep

  5. Targeted deletion of multiple CTCF-binding elements in the human C-MYC gene reveals a requirement for CTCF in C-MYC expression.

    Directory of Open Access Journals (Sweden)

    Wendy M Gombert

    Full Text Available BACKGROUND: Insulators and domain boundaries both shield genes from adjacent enhancers and inhibit intrusion of heterochromatin into transgenes. Previous studies examined the functional mechanism of the MYC insulator element MINE and its CTCF binding sites in the context of transgenes that were randomly inserted into the genome by transfection. However, the contribution of CTCF binding sites to both gene regulation and maintenance of chromatin has not been tested at the endogenous MYC gene. METHODOLOGY/PRINCIPAL FINDINGS: To determine the impact of CTCF binding on MYC expression, a series of mutant human chromosomal alleles was prepared in homologous recombination-efficient DT40 cells and individually transferred by microcell fusion into murine cells. Functional tests reported here reveal that deletion of CTCF binding elements within the MINE does not impact the capacity of this locus to correctly organize an 'accessible' open chromatin domain, suggesting that these sites are not essential for the formation of a competent, transcriptionally active locus. Moreover, deletion of the CTCF site at the MYC P2 promoter reduces transcription but does not affect promoter acetylation or serum-inducible transcription. Importantly, removal of either CTCF site leads to DNA methylation of flanking sequences, thereby contributing to progressive loss of transcriptional activity. CONCLUSIONS: These findings collectively demonstrate that CTCF-binding at the human MYC locus does not repress transcriptional activity but is required for protection from DNA methylation.

  6. Nucleophosmin is overexpressed in thyroid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Pianta, Annalisa; Puppin, Cinzia [Dipartimento di Scienze e Tecnologie Biomediche, Universita di Udine, Udine (Italy); Franzoni, Alessandra; Fabbro, Dora [Azienda Ospedaliero-Universitaria ' S. Maria della Misericordia' Udine, Udine (Italy); Di Loreto, Carla [Dipartimento di Ricerche Mediche e Morfologiche, Universita di Udine, Udine (Italy); Bulotta, Stefania [Department of Pharmacobiological Sciences, Universita di Catanzaro ' Magna Graecia' , Catanzaro (Italy); Deganuto, Marta; Paron, Igor; Tell, Gianluca [Dipartimento di Scienze e Tecnologie Biomediche, Universita di Udine, Udine (Italy); Puxeddu, Efisio [Department of Internal Medicine, Universita di Perugia, Perugia (Italy); Filetti, Sebastiano [Department of Clinical Sciences, Universita di Roma ' La Sapienza' , Roma (Italy); Russo, Diego [Department of Pharmacobiological Sciences, Universita di Catanzaro ' Magna Graecia' , Catanzaro (Italy); Damante, Giuseppe, E-mail: giuseppe.damante@uniud.it [Dipartimento di Scienze e Tecnologie Biomediche, Universita di Udine, Udine (Italy); Azienda Ospedaliero-Universitaria ' S. Maria della Misericordia' Udine, Udine (Italy)

    2010-07-02

    Nucleophosmin (NPM) is a protein that contributes to several cell functions. Depending on the context, it can act as an oncogene or tumor suppressor. No data are available on NPM expression in thyroid cells. In this work, we analyzed both NPM mRNA and protein levels in a series of human thyroid tumor tissues and cell lines. By using immunohistochemistry, NPM overexpression was detected in papillary, follicular, undifferentiated thyroid cancer, and also in follicular benign adenomas, indicating it as an early event during thyroid tumorigenesis. In contrast, various levels of NPM mRNA levels as detected by quantitative RT-PCR were observed in tumor tissues, suggesting a dissociation between protein and transcript expression. The same behavior was observed in the normal thyroid FRTL5 cell lines. In these cells, a positive correlation between NPM protein levels, but not mRNA, and proliferation state was detected. By using thyroid tumor cell lines, we demonstrated that such a post-mRNA regulation may depend on NPM binding to p-Akt, whose levels were found to be increased in the tumor cells, in parallel with reduction of PTEN. In conclusion, our present data demonstrate for the first time that nucleophosmin is overexpressed in thyroid tumors, as an early event of thyroid tumorigenesis. It seems as a result of a dysregulation occurring at protein and not transcriptional level related to an increase of p-Akt levels of transformed thyrocytes.

  7. miR-17-92 cluster components analysis in Burkitt lymphoma: overexpression of miR-17 is associated with poor prognosis.

    Science.gov (United States)

    Robaina, Marcela Cristina; Faccion, Roberta Soares; Mazzoccoli, Luciano; Rezende, Lidia Maria M; Queiroga, Eduardo; Bacchi, Carlos E; Thomas-Tikhonenko, Andrei; Klumb, Claudete Esteves

    2016-05-01

    Burkitt lymphoma (BL) is an aggressive B cell lymphoma characterized by the reciprocal translocation of the c-Myc gene with immunoglobulin genes. Recently, MYC has been shown to maintain the neoplastic state via the miR-17-92 microRNA cluster that suppresses chromatin regulatory genes and the apoptosis regulator Bim. However, the expression and prognostic impact of miR-17-92 members in pediatric BL (pBL) are unknown. Therefore, we investigated miR-17, miR-19a, miR-19b, miR-20, and miR-92a expression and prognostic impact in a series of 41 pBL samples. In addition, Bim protein expression was evaluated and compared to miR-17, miR-19a, miR-19b, miR-20, and miR-92a levels and patient outcomes. The expression of miR-17-92 members was evaluated by qPCR and Bim protein by immunohistochemistry. Log-rank test was employed to assess prognostic impact. We found that upregulated expression of miR-17 and miR-20a correlates with lack of pro-apoptotic Bim expression. Patients bearing tumors with upregulated miR-17 displayed decreased overall survival (OS), and multivariate analysis revealed that miR-17 was a significant predictor of shortened OS. Using hairpin inhibitors, we showed that inhibition of miR-17 resulted in enhanced Bim expression in a BL cell line overexpressing the miR-17-92 cluster. Our results describe for the first time miR-17, miR-19a, miR-19b, miR-20a, and miR-92a expression profiles in pBL. The prognostic impact of miR-17 should be validated in a larger series, and may provide new therapeutic avenues in the era of anti-miRNA therapy research. Additional functional studies are further required to understand the specific role of miR-17-92 cluster members in BL. PMID:27044389

  8. Targeted anticancer therapy: overexpressed receptors and nanotechnology.

    Science.gov (United States)

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alrokayan, Salman A; Kumar, Sudhir

    2014-09-25

    Targeted delivery of anticancer drugs to cancer cells and tissues is a promising field due to its potential to spare unaffected cells and tissues, but it has been a major challenge to achieve success in these therapeutic approaches. Several innovative approaches to targeted drug delivery have been devised based on available knowledge in cancer biology and on technological advancements. To achieve the desired selectivity of drug delivery, nanotechnology has enabled researchers to design nanoparticles (NPs) to incorporate anticancer drugs and act as nanocarriers. Recently, many receptor molecules known to be overexpressed in cancer have been explored as docking sites for the targeting of anticancer drugs. In principle, anticancer drugs can be concentrated specifically in cancer cells and tissues by conjugating drug-containing nanocarriers with ligands against these receptors. Several mechanisms can be employed to induce triggered drug release in response to either endogenous trigger or exogenous trigger so that the anticancer drug is only released upon reaching and preferentially accumulating in the tumor tissue. This review focuses on overexpressed receptors exploited in targeting drugs to cancerous tissues and the tumor microenvironment. We briefly evaluate the structure and function of these receptor molecules, emphasizing the elegant mechanisms by which certain characteristics of cancer can be exploited in cancer treatment. After this discussion of receptors, we review their respective ligands and then the anticancer drugs delivered by nanotechnology in preclinical models of cancer. Ligand-functionalized nanocarriers have delivered significantly higher amounts of anticancer drugs in many in vitro and in vivo models of cancer compared to cancer models lacking such receptors or drug carrying nanocarriers devoid of ligand. This increased concentration of anticancer drug in the tumor site enabled by nanotechnology could have a major impact on the efficiency of cancer

  9. MYC activates stem-like cell potential in hepatocarcinoma by a p53-dependent mechanism

    DEFF Research Database (Denmark)

    Akita, Hirofumi; Marquardt, Jens U; Durkin, Marian E;

    2014-01-01

    Activation of c-MYC is an oncogenic hallmark of many cancers including liver cancer, and is associated with a variety of adverse prognostic characteristics. Despite a causative role during malignant transformation and progression in hepatocarcinogenesis, consequences of c-MYC activation......-MYC induced a pro-apoptotic program and loss of CSC potential both in vitro and in vivo. Mechanistically, c-MYC induced self-renewal capacity of liver cancer cells was exerted in a p53 dependent manner. Low c-MYC activation increased spheroid formation in p53-deficient tumor cells, whereas p53-dependent...... effects were blunted in the absence of MYC overexpression. Together, our results confirm the role of c-MYC as a master regulator during hepatocarcinogenesis and establish a new gatekeeper role for p53 in repressing c-MYC induced CSC phenotype in liver cancer cells....

  10. Frequent Nek1 overexpression in human gliomas.

    Science.gov (United States)

    Zhu, Jun; Cai, Yu; Liu, Pin; Zhao, Weiguo

    2016-08-01

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients' poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. PMID:27251576

  11. Pokemon,c-myc and breast tumor%Pokemon、c-myc与乳腺肿瘤

    Institute of Scientific and Technical Information of China (English)

    付朝江; 崔明

    2009-01-01

    Pokemon(POK erythroid ontogenic factor)蛋白,即POK红系髓性致癌因子,是POK转录抑制物家族的一个成员,为ZBTB7基因所编码的产物.Pokemon蛋白作为转录因子参与一些细胞基因转录的调节,并在细胞分化过程中发挥着关键、多效性的功能.近来发现,Pokemon和c-myc在乳腺肿瘤致癌转化过程中发挥着至关重要的作用,并与乳腺肿瘤的发生密切相关.c-myc原癌基因编码核内DNA结合蛋白,调节其它基因的转录.其基因、mRNA及编码蛋白在多种肿瘤组织中均有异常.c-myc蛋白主要是通过促进cychnE/CDK2复合物的活性来调控G1期细胞进程的.

  12. [Overexpression of FKS1 to improve yeast autolysis-stress].

    Science.gov (United States)

    Li, Jia; Wang, Jinjing; Li, Qi

    2015-09-01

    With the development of high gravity brewing, yeast cells are exposed to multiple brewing-associated stresses, such as increased osmotic pressure, enhanced alcohol concentration and nutritional imbalance. These will speed up yeast autolysis, which seriously influence beer flavor and quality. To increase yeast anti-autolytic ability, FKS1 overexpression strain was constructed by 18S rDNA. The concentration of β-1,3-glucan of overexpression strain was 62% higher than that of wild type strain. Meantime, FKS1 overexpression strain increased anti-stress ability at 8% ethanol, 0.4 mol/L NaCl and starvation stress. Under simulated autolysis, FKS1 showed good anti-autolytic ability by slower autolysis. These results confirms the potential of FKS1 overexpression to tackle yeast autolysis in high-gravity brewing. PMID:26955712

  13. Evidence that SOX2 overexpression is oncogenic in the lung.

    Directory of Open Access Journals (Sweden)

    Yun Lu

    Full Text Available BACKGROUND: SOX2 (Sry-box 2 is required to maintain a variety of stem cells, is overexpressed in some solid tumors, and is expressed in epithelial cells of the lung. METHODOLOGY/PRINCIPAL FINDINGS: We show that SOX2 is overexpressed in human squamous cell lung tumors and some adenocarcinomas. We have generated mouse models in which Sox2 is upregulated in epithelial cells of the lung during development and in the adult. In both cases, overexpression leads to extensive hyperplasia. In the terminal bronchioles, a trachea-like pseudostratified epithelium develops with p63-positive cells underlying columnar cells. Over 12-34 weeks, about half of the mice expressing the highest levels of Sox2 develop carcinoma. These tumors resemble adenocarcinoma but express the squamous marker, Trp63 (p63. CONCLUSIONS: These findings demonstrate that Sox2 overexpression both induces a proximal phenotype in the distal airways/alveoli and leads to cancer.

  14. Astroglial U87 Cells Protect Neuronal SH-SY5Y Cells from Indirect Effect of Radiation by Reducing DNA Damage and Inhibiting Fas Mediated Apoptotic Pathway in Coculture System.

    Science.gov (United States)

    Saeed, Yasmeen; Rehman, Abdul; Xie, Bingjie; Xu, Jin; Hong, Ma; Hong, Qing; Deng, Yulin

    2015-08-01

    Recent studies provide the evidence that indirect effects of radiation could lead to neuronal cells death but underlying mechanism is not completely understood. On the other hand astroglial cells are known to protect neuronal cells against stress conditions in vivo and invitro. Yet, the fate of neuronal cells and the neuroprotective effect of coculture system (with glial cells) in response to indirect radiation exposure remain rarely discussed. Here, we purpose that the indirect effect of radiation may induce DNA damage by cell cycle arrest and receptor mediated apoptotic cascade which lead to apoptotic death of neuronal SH-SY5Y cells. We also hypothesized that coculture (with glial U87) may relieved the neuronal SH-SY5Y cells from toxicity of indirect effects radiation by reducing DNA damage and expression of apoptotic proteins in vitro. In the present study irradiated cell conditioned medium (ICCM) was used as source of indirect effect of radiation. Neuronal SH-SY5Y cells were exposed to ICCM with and without coculture with (glial U87) in transwell coculture system respectively. Various endpoints such as, cell survival number assay, Annexin V/PI assay, cell cycle analysis by flow cytometer, mRNA level of Fas receptor by q RT-PCR, expression of key apoptotic proteins by western blot and estimation of neurotrophic factors by ELISA method were analyzed into neuronal SH-SY5Y cells with and without co culture after ICCM exposure respectively. We found that ICCM induced DNA damage in neuronal SH-SY5Y cells by significant increase in cell cycle arrest at S-phase (***P cultures system (with glial U87) neuronal SH-SY5Y depicts remarkable resistance against ICCM induced neurotoxicity. PMID:26142731

  15. SND1 overexpression deregulates cholesterol homeostasis in hepatocellular carcinoma.

    Science.gov (United States)

    Navarro-Imaz, Hiart; Rueda, Yuri; Fresnedo, Olatz

    2016-09-01

    SND1 is a multifunctional protein participating, among others, in gene transcription and mRNA metabolism. SND1 is overexpressed in cancer cells and promotes viability and tumourigenicity of hepatocellular carcinoma cells. This study shows that cholesterol synthesis is increased in SND1-overexpressing hepatoma cells. Neither newly synthesised nor extracellularly supplied cholesterol are able to suppress this increase; however, inhibition of cholesterol esterification reverted the activated state of sterol-regulatory element-binding protein 2 (SREBP2) and cholesterogenesis. These results highlight SND1 as a potential regulator of cellular cholesterol distribution and homeostasis in hepatoma cells, and support the rationale for the therapeutic use of molecules that influence cholesterol management when SND1 is overexpressed. PMID:27238764

  16. Matrix metalloproteinase-8 overexpression prevents proper tissue repair

    DEFF Research Database (Denmark)

    Danielsen, Patricia L; Holst, Anders V; Maltesen, Henrik R;

    2011-01-01

    The collagenolytic matrix metalloproteinase-8 (MMP-8) is essential for normal tissue repair but is often overexpressed in wounds with disrupted healing. Our aim was to study the impact of a local excess of this neutrophil-derived proteinase on wound healing using recombinant adenovirus-driven tra......The collagenolytic matrix metalloproteinase-8 (MMP-8) is essential for normal tissue repair but is often overexpressed in wounds with disrupted healing. Our aim was to study the impact of a local excess of this neutrophil-derived proteinase on wound healing using recombinant adenovirus...

  17. Optimization of membrane protein overexpression and purification using GFP fusions

    NARCIS (Netherlands)

    Drew, David; Lerch, Mirjam; Kunji, Edmund; Slotboom, Dirk-Jan; de Gier, Jan-Willem

    2006-01-01

    Optimizing conditions for the overexpression and purification of membrane proteins for functional and structural studies is usually a Laborious and time-consuming process. This process can be accelerated using membrane protein-GFP fusions(1-3), which allows direct monitoring and visualization of mem

  18. Brain phenotype of transgenic mice overexpressing cystathionine β-synthase.

    Directory of Open Access Journals (Sweden)

    Vinciane Régnier

    Full Text Available BACKGROUND: The cystathionine β-synthase (CBS gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA metabolism, a pathway important for several brain physiological processes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1 expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line. CONCLUSION/SIGNIFICANCE: We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.

  19. DEK over-expression promotes mitotic defects and micronucleus formation.

    Science.gov (United States)

    Matrka, Marie C; Hennigan, Robert F; Kappes, Ferdinand; DeLay, Monica L; Lambert, Paul F; Aronow, Bruce J; Wells, Susanne I

    2015-01-01

    The DEK gene encodes a nuclear protein that binds chromatin and is involved in various fundamental nuclear processes including transcription, RNA splicing, DNA replication and DNA repair. Several cancer types characteristically over-express DEK at the earliest stages of transformation. In order to explore relevant mechanisms whereby DEK supports oncogenicity, we utilized cancer databases to identify gene transcripts whose expression patterns are tightly correlated with that of DEK. We identified an enrichment of genes involved in mitosis and thus investigated the regulation and possible function of DEK in cell division. Immunofluorescence analyses revealed that DEK dissociates from DNA in early prophase and re-associates with DNA during telophase in human keratinocytes. Mitotic cell populations displayed a sharp reduction in DEK protein levels compared to the corresponding interphase population, suggesting DEK may be degraded or otherwise removed from the cell prior to mitosis. Interestingly, DEK overexpression stimulated its own aberrant association with chromatin throughout mitosis. Furthermore, DEK co-localized with anaphase bridges, chromosome fragments, and micronuclei, suggesting a specific association with mitotically defective chromosomes. We found that DEK over-expression in both non-transformed and transformed cells is sufficient to stimulate micronucleus formation. These data support a model wherein normal chromosomal clearance of DEK is required for maintenance of high fidelity cell division and chromosomal integrity. Therefore, the overexpression of DEK and its incomplete removal from mitotic chromosomes promotes genomic instability through the generation of genetically abnormal daughter cells. Consequently, DEK over-expression may be involved in the initial steps of developing oncogenic mutations in cells leading to cancer initiation.

  20. Overexpression of esterase D in kidney from trisomy 13 fetuses

    Energy Technology Data Exchange (ETDEWEB)

    Loughna, S.; Moore, G. (Institute of Obstetrics and Gynaecology, London (United Kingdom)); Gau, G.; Blunt, S. (Cytogenetics Lab., London (United Kingdom)); Nicolaides, K. (King' s College School of Medicine and Dentistry, London (United Kingdom))

    1993-10-01

    Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses and has been compared with normal age- and sex-matched fetal tissues, by using northern analysis. More than a twofold increase in expression of esterase D was found in the kidney of two trisomy 13 fetuses, with normal levels in a third. Overexpression was not seen in the muscle tissues from these fetuses. 34 refs., 3 figs., 2 tabs.

  1. Perilipin overexpression in mice protects against diet-induced obesity

    OpenAIRE

    Miyoshi, Hideaki; Souza, Sandra C.; Endo, Mikiko; Sawada, Takashi; Perfield, James W.; Shimizu, Chikara; Stancheva, Zlatina; Nagai, So; Strissel, Katherine J.; Yoshioka, Narihito; Obin, Martin S.; Koike, Takao; Greenberg, Andrew S.

    2010-01-01

    Perilipin A is the most abundant phosphoprotein on adipocyte lipid droplets and is essential for lipid storage and lipolysis. Perilipin null mice exhibit diminished adipose tissue, elevated basal lipolysis, reduced catecholamine-stimulated lipolysis, and increased insulin resistance. To understand the physiological consequences of increased perilipin expression in vivo, we generated transgenic mice that overexpressed either human or mouse perilipin using the adipocyte-specific aP2 promoter/en...

  2. Overexpression of Protochlorophyllide Oxidoreductase C Regulates Oxidative Stress in Arabidopsis

    OpenAIRE

    Pattanayak, Gopal K.; Tripathy, Baishnab C

    2011-01-01

    Light absorbed by colored intermediates of chlorophyll biosynthesis is not utilized in photosynthesis; instead, it is transferred to molecular oxygen, generating singlet oxygen ((1)O(2)). As there is no enzymatic detoxification mechanism available in plants to destroy (1)O(2), its generation should be minimized. We manipulated the concentration of a major chlorophyll biosynthetic intermediate i.e., protochlorophyllide in Arabidopsis by overexpressing the light-inducible protochlorophyllide ox...

  3. Overexpression of esterase D in kidney from trisomy 13 fetuses.

    OpenAIRE

    Loughna, S; P. Bennett; Gau, G; K. Nicolaides; Blunt, S; Moore, G

    1993-01-01

    Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses a...

  4. DKC1 overexpression associated with prostate cancer progression

    OpenAIRE

    Sieron, P; Hader, C; Hatina, J; Engers, R; Wlazlinski, A; Müller, M.; Schulz, W A

    2009-01-01

    Background: Dyskerin encoded by the DKC1 gene is a predominantly nucleolar protein essential for the formation of pseudouridine in RNA and the telomerase RNA subunit hTR. Inherited mutations inactivating dyskerin cause dyskeratosis congenita, a syndrome with progeroid features characterised by skin defects and haematopoiesis failure, as well as cancer susceptibility. In this study, we report DKC1 overexpression in prostate cancers. Methods: Expression of DKC1 was measured by quantitative RT–P...

  5. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mattanovich Diethard

    2008-07-01

    Full Text Available Abstract Background High cell density cultures of Pichia pastoris grown on methanol tend to develop yellow colored supernatants, attributed to the release of free flavins. The potential of P. pastoris for flavin overproduction is therefore given, but not pronounced when the yeast is grown on glucose. The aim of this study is to characterize the relative regulatory impact of each riboflavin synthesis gene. Deeper insight into pathway control and the potential of deregulation is established by overexpression of the single genes as well as a combined deregulation of up to all six riboflavin synthesis genes. Results Overexpression of the first gene of the riboflavin biosynthetic pathway (RIB1 is already sufficient to obtain yellow colonies and the accumulation of riboflavin in the supernatant of shake flask cultures growing on glucose. Sequential deregulation of all the genes, by exchange of their native promoter with the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP increases the riboflavin accumulation significantly. Conclusion The regulation of the pathway is distributed over more than one gene. High cell density cultivations of a P. pastoris strain overexpressing all six RIB genes allow the accumulation of 175 mg/L riboflavin in the supernatant. The basis for rational engineering of riboflavin production in P. pastoris has thus been established.

  6. Role of overexpressed CFA/I fimbriae in bacterial swimming

    International Nuclear Information System (INIS)

    Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 < H683-pC < H683-pY. In the liquid culture media, H683-pC2 cells precipitated to the bottom of the tube, while those of H683-pY did not. In situ imaging revealed that H683-pC2 bacilli tended to auto-agglutinate within the semisolid agar, while H683-pY bacilli did not. When the cfaBE fimbrial fiber encoding genes were deleted from pC2, the new plasmid, pC2(-), significantly recovered bacterial swimming capability. Our study highlights the negative impact of overexpressed CFA/I fimbriae on bacterial swimming motility. (paper)

  7. Overexpression of Mafb in podocytes protects against diabetic nephropathy.

    Science.gov (United States)

    Morito, Naoki; Yoh, Keigyou; Ojima, Masami; Okamura, Midori; Nakamura, Megumi; Hamada, Michito; Shimohata, Homare; Moriguchi, Takashi; Yamagata, Kunihiro; Takahashi, Satoru

    2014-11-01

    We previously showed that the transcription factor Mafb is essential for podocyte differentiation and foot process formation. Podocytes are susceptible to injury in diabetes, and this injury leads to progression of diabetic nephropathy. In this study, we generated transgenic mice that overexpress Mafb in podocytes using the nephrin promoter/enhancer. To examine a potential pathogenetic role for Mafb in diabetic nephropathy, Mafb transgenic mice were treated with either streptozotocin or saline solution. Diabetic nephropathy was assessed by renal histology and biochemical analyses of urine and serum. Podocyte-specific overexpression of Mafb had no effect on body weight or blood glucose levels in either diabetic or control mice. Notably, albuminuria and changes in BUN levels and renal histology observed in diabetic wild-type animals were ameliorated in diabetic Mafb transgenic mice. Moreover, hyperglycemia-induced downregulation of Nephrin was mitigated in diabetic Mafb transgenic mice, and reporter assay results suggested that Mafb regulates Nephrin directly. Mafb transgenic glomeruli also overexpressed glutathione peroxidase, an antioxidative stress enzyme, and levels of the oxidative stress marker 8-hydroxydeoxyguanosine decreased in the urine of diabetic Mafb transgenic mice. Finally, Notch2 expression increased in diabetic glomeruli, and this effect was enhanced in diabetic Mafb transgenic glomeruli. These data indicate Mafb has a protective role in diabetic nephropathy through regulation of slit diaphragm proteins, antioxidative enzymes, and Notch pathways in podocytes and suggest that Mafb could be a therapeutic target.

  8. Identification of developmental regulatory genes in Aspergillus nidulans by overexpression.

    Science.gov (United States)

    Marhoul, J F; Adams, T H

    1995-02-01

    Overexpression of several Aspergillus nidulans developmental regulatory genes has been shown to cause growth inhibition and development at inappropriate times. We set out to identify previously unknown developmental regulators by constructing a nutritionally inducible A. nidulans expression library containing small, random genomic DNA fragments inserted next to the alcA promoter [alcA(p)] in an A. nidulans transformation vector. Among 20,000 transformants containing random alcA(p) genomic DNA fusion constructs, we identified 66 distinct mutant strains in which alcA(p) induction resulted in growth inhibition as well as causing other detectable phenotypic changes. These growth inhibited mutants were divided into 52 FIG (Forced expression Inhibition of Growth) and 14 FAB (Forced expression Activation of brlA) mutants based on whether or not alcA(p) induction resulted in accumulation of mRNA for the developmental regulatory gene brlA. In four FAB mutants, alcA(p) induction not only activated brlA expression but also caused hyphae to differentiate into reduced conidiophores that produced viable spores from the tips as is observed after alcA(p)::brlA induction. Sequence analyses of the DNA fragments under alcA(p) control in three of these four sporulating strains showed that in two cases developmental activation resulted from overexpression of previously uncharacterized genes, whereas in the third strain, the alcA(p) was fused to brlA. The potential uses for this strategy in identifying genes whose overexpression results in specific phenotypic changes like developmental induction are discussed.

  9. SERCA overexpression reduces hydroxyl radical injury in murine myocardium.

    Science.gov (United States)

    Hiranandani, Nitisha; Bupha-Intr, Tepmanas; Janssen, Paul M L

    2006-12-01

    Hydroxyl radicals (*OH) are involved in the pathogenesis of ischemia-reperfusion injury and are observed in clinical situations, including acute heart failure, stroke, and myocardial infarction. Acute transient exposure to *OH causes an intracellular Ca(2+) overload and leads to impaired contractility. We investigated whether upregulation of sarcoplasmic reticulum Ca(2+)-ATPase function (SERCA) can attenuate *OH-induced dysfunction. Small, contracting right ventricular papillary muscles from wild-type (WT) SERCA1a-overexpressing (transgenic, TG) and SERCA2a heterogeneous knockout (HET) mice were directly exposed to *OH. This brief 2-min exposure led to a transient elevation of diastolic force (F(dia)) and depression of developed force (F(dev)). In WT mice, F(dia) increased to 485 +/- 49% and F(dev) decreased to 11 +/- 3%. In sharp contrast, in TG mice F(dia) increased only to 241 +/- 17%, whereas F(dev) decreased only to 51 +/- 5% (P group. The results indicate that SERCA overexpression can reduce the *OH-induced contractile dysfunction in murine myocardium, whereas a reduced SR Ca(2+)-ATPase activity aggravates this injury. Loss of pPLB levels at Ser16 likely amplifies the differences observed in injury response.

  10. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.

    Directory of Open Access Journals (Sweden)

    Chunxiang Yao

    Full Text Available Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2, react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat, an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a 'Tandem Mass Tag' (TMT labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation.

  11. Over-expression of EGFR in Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    BO Ai-hua; HOU Jin-chao; LAN Yong-hao; TIAN Ya-ting; ZHANG Jun-yan

    2008-01-01

    Objective:To explore the relationship of overexpression of epidermal growth factor receptor(EGFR)in occurrence,development and treatment of breast cancer. Methods:Samples of 46 breast adenoma tissues and 86 breast cancer tissues were regularly dehydrate-fixed,embedded in paraffin,sliced in to 5 μm thick,stained with SABC immunohistochemistry and coloured with DAB. Results:The positive staining of EGFR was shown as brown- yellow and distributed in cytoplasm.The positive rates in the tissues of breast adenosis and breast cancer were 17.04%(6/46)and 56.98%(49/86)respectively.The positive rates of EGFR in the tissue of invasive ductal carcinoma was 64.49%(41/59),which was significantly higher than that in in situ carcinoma(P<0.05).The positive rate of lymph metastasis group was higher than that in non-lymph metastasis group (P<0.05). Conclusion:The overexpression of EGFR was related with occurrence,lymph metastasis and pathologic types of breast cancer.The examination of EGFR in the breast cancer can serve as a guidance for target chemotherapy.

  12. Overexpression of glutamine synthetases confers transgenic rice herbicide resistance

    Institute of Scientific and Technical Information of China (English)

    Sun Hui; Huang Qiman; Su Jin

    2005-01-01

    Glutamine synthetase (GS, E.C.6.3.1.2) is a key enzyme involved in the assimilation of inorganic nitrogen in higher plants and gram-negative microorganisms. GS is the targeting enzyme of a herbicide phosphinothricin (PPT) or Basta. In order to generate PPT-resistant transgenic rice via overexpression of GS, we constructed a plant expression vector p2GS harboring two different isoenzymes GS1 and GS2 cDNAs under the control of constitutive promoters of rice Act1 and maize Ubiquitin(Ubi) genes. The p2GS was introduced into rice genome by Agrobacterium-mediated transformation and confirmed by PCR and Southern blot hybridization. GS-transgene expression was first detected by Northern blot analyses. Results from Basta test indicated that GS-transgenic plants can tolerate as high as 0.3% Basta solution. In addition, our results also demonstrated that GS overexpression conferred transformed rice calli PPT resistance. Thus, GS cassette can serve as a selective marker gene instead of bar cassette for selection of PPT transformants.

  13. Azotobacter vinelandii NADPH:ferredoxin reductase cloning, sequencing, and overexpression.

    Science.gov (United States)

    Isas, J M; Yannone, S M; Burgess, B K

    1995-09-01

    Azotobacter vinelandii ferredoxin I (AvFdI) controls the expression of another protein that was originally designated Protein X. Recently we reported that Protein X is a NADPH-specific flavoprotein that binds specifically to FdI (Isas, J.M., and Burgess, B.K. (1994) J. Biol. Chem. 269, 19404-19409). The gene encoding this protein has now been cloned and sequenced. Protein X is 33% identical and has an overall 53% similarity with the fpr gene product from Escherichia coli that encodes NADPH:ferredoxin reductase. On the basis of this similarity and the similarity of the physical properties of the two proteins, we now designate Protein X as A. vinelandii NADPH:ferredoxin reductase and its gene as the fpr gene. The protein has been overexpressed in its native background in A. vinelandii by using the broad host range multicopy plasmid, pKT230. In addition to being regulated by FdI, the fpr gene product is overexpressed when A. vinelandii is grown under N2-fixing conditions even though the fpr gene is not preceded by a nif specific promoter. By analogy to what is known about fpr expression in E. coli, we propose that FdI may exert its regulatory effect on fpr by interacting with the SoxRS regulon. PMID:7673160

  14. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase.

    Science.gov (United States)

    Davenport, Susie; Le Lay, Pascaline; Sanchez-Tamburrrino, Juan Pablo

    2015-12-01

    Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants. PMID:26447683

  15. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism

    DEFF Research Database (Denmark)

    Chen, Xiao; Nielsen, Kristian Fog; Borodina, Irina;

    2011-01-01

    overexpression of biosynthetic genes ILV2, ILV3, and ILV5 in valine metabolism in anaerobic fermentation of glucose in mineral medium in S. cerevisiae. Isobutanol yield was further improved by twofold by the additional overexpression of BAT2, encoding the cytoplasmic branched-chain amino-acid aminotransferase...... were 3.86 and 0.28 mg per g glucose, respectively. They increased to 4.12 and 2.4 mg per g glucose in yeast extract/peptone/dextrose (YPD) complex medium under aerobic conditions, respectively. CONCLUSIONS: Overexpression of genes ILV2, ILV3, ILV5, and BAT2 in valine metabolism led to an increase...... in isobutanol production in S. cerevisiae. Additional overexpression of ILV6 in the ILV2 ILV3 ILV5 overexpression strain had a negative effect, presumably by increasing the sensitivity of Ilv2 to valine inhibition, thus weakening the positive impact of overexpression of ILV2, ILV3, and ILV5 on isobutanol...

  16. Adipose Overexpression of Desnutrin Promotes Fatty Acid Use and Attenuates Diet-Induced Obesity

    OpenAIRE

    Ahmadian, Maryam; Duncan, Robin E.; Varady, Krista A.; Frasson, Danubia; Hellerstein, Marc K.; Birkenfeld, Andreas L.; Samuel, Varman T.; Shulman, Gerald I.; Wang, Yuhui; Kang, Chulho; Sul, Hei Sook

    2009-01-01

    OBJECTIVE To investigate the role of desnutrin in adipose tissue triacylglycerol (TAG) and fatty acid metabolism. RESEARCH DESIGN AND METHODS We generated transgenic mice overexpressing desnutrin (also called adipose triglyceride lipase [ATGL]) in adipocytes (aP2-desnutrin) and also performed adenoviral-mediated overexpression of desnutrin in 3T3-L1CARΔ1 adipocytes. RESULTS aP2-desnutrin mice were leaner with decreased adipose tissue TAG content and smaller adipocyte size. Overexpression of d...

  17. T Cell Integrin Overexpression as a Model of Murine Autoimmunity

    Directory of Open Access Journals (Sweden)

    Yung Raymond L.

    2003-01-01

    Full Text Available Integrin adhesion molecules have important adhesion and signaling functions. They also play a central role in the pathogenesis of many autoimmune diseases. Over the past few years we have described a T cell adoptive transfer model to investigate the role of T cell integrin adhesion molecules in the development of autoimmunity. This report summarizes the methods we used in establishing this murine model. By treating murine CD4+ T cells with DNA hypomethylating agents and by transfection we were able to test the in vitro effects of integrin overexpression on T cell autoreactive proliferation, cytotoxicity, adhesion and trafficking. Furthermore, we showed that the ability to induce in vivo autoimmunity may be unique to the integrin lymphocyte function associated antigen-1 (LFA-1.

  18. Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1

    Energy Technology Data Exchange (ETDEWEB)

    Sympson, Carolyn J; Bissell, Mina J; Werb, Zena

    1995-06-01

    An intact basement membrane (BM) is essential for the proper function, differentiation and morphology of many epithelial cells. The disruption or loss of this BM occurs during normal development as well as in the disease state. To examine the importance of BM during mammary gland development in vivo, we generated transgenic mice that inappropriately express autoactivating isoforms of the matrix metalloproteinase stromelysin-1. The mammary glands from these mice are both functionally and morphologically altered throughout development. We have now documented a dramatic incidence of breast tumors in several independent lines of these mice. These data suggest that overexpression of stromelysin-1 and disruption of the BM may be a key step in the multi-step process of breast cancer.

  19. Focal adhesion kinase overexpression and its impact on human osteosarcoma

    Science.gov (United States)

    Chen, Yong; Yang, Aizhen; Chen, Hui; Zhang, Jian; Wu, Sujia; Shi, Xin; Wang, Chen; Sun, Xiaoliang

    2015-01-01

    Focal adhesion kinase (FAK) has been implicated in tumorigenesis in various malignancies. We sought to examine the expression patterns of FAK and the activated form, phosphorylated FAK (pFAK), in human osteosarcoma and to investigate the correlation of FAK expression with clinicopathologic parameters and prognosis. In addition, the functional consequence of manipulating the FAK protein level was investigated in human osteosarcoma cell lines. Immunohistochemical staining was used to detect FAK and pFAK in pathologic archived materials from 113 patients with primary osteosarcoma. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognoses. The role of FAK in the cytological behavior of MG63 and 143B human osteosarcoma cell lines was studied via FAK protein knock down with siRNA. Cell proliferation, migration, invasiveness and apoptosis were assessed using the CCK8, Transwell and Annexin V/PI staining methods. Both FAK and pFAK were overexpressed in osteosarcoma. There were significant differences in overall survival between the FAK-/pFAK- and FAK+/pFAK- groups (P = 0.016), the FAK+/pFAK- and FAK+/pFAK+ groups (P = 0.012) and the FAK-/pFAK- and FAK+/pFAK+ groups (P < 0.001). There were similar differences in metastasis-free survival between groups. The Cox proportional hazards analysis showed that the FAK expression profile was an independent indicator of both overall and metastasis-free survival. siRNA-based knockdown of FAK not only dramatically reduced the migration and invasion of MG63 and 143B cells, but also had a distinct effect on osteosarcoma cell proliferation and apoptosis. These results collectively suggest that FAK overexpression and phosphorylation might predict more aggressive biologic behavior in osteosarcoma and may be an independent predictor of poor prognosis. PMID:26393679

  20. Overexpression of Androgen Receptors in Target Musculature Confers Androgen Sensitivity to Motoneuron Dendrites

    OpenAIRE

    Huguenard, Anna L.; Fernando, Shannon M.; Monks, D. Ashley; Sengelaub, Dale R.

    2010-01-01

    Androgen sensitivity of motoneuron dendrites is conferred indirectly via the enrichment of androgen receptors in the musculature in transgenic rats overexpressing androgen receptors in skeletal muscle.

  1. Differential astroglial responses in the spinal cord of rats submitted to a sciatic nerve double crush treated with local injection of cultured Schwann cell suspension or lesioned spinal cord extract: implications on cell therapy for nerve repair Respostas astrocitárias na medula espinal do rato submetido ao esmagamento duplo do nervo ciático e tratado com injeção local de suspensão de células de Schwann cultivadas ou de extrato de medula espinal lesada: implicações na terapia celular para o reparo do nervo

    OpenAIRE

    João Gabriel Martins Dallo; Bernardo Vergara Reichert; José Benedito Ramos Valladão Júnior; Camila Silva; Bianca Aparecida de Luca; Beatriz de Freitas Azevedo Levy; Gerson Chadi

    2007-01-01

    PURPOSE: Reactive astrocytes are implicated in several mechanisms after central or peripheral nervous system lesion, including neuroprotection, neuronal sprouting, neurotransmission and neuropathic pain. Schwann cells (SC), a peripheral glia, also react after nerve lesion favoring wound/repair, fiber outgrowth and neuronal regeneration. We investigated herein whether cell therapy for repair of lesioned sciatic nerve may change the pattern of astroglial activation in the spinal cord ventral or...

  2. Conserved features of cancer cells define their sensitivity of HAMLET-induced death; c-Myc and glycolysis

    OpenAIRE

    Storm, Petter; Puthia, Manoj Kumar; Aits, Sonja; Urbano, Alexander; Northen, Trent; Powers, Scott; Bowen, Ben; Chao, Yinxia; Reindl, Wolfgang; Lee, Do Yup; Sullivan, Nancy Liu; Zhang, Jianping; Trulsson, Maria; Yang, Henry; Watson, James

    2011-01-01

    HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small hairpin RNA inhibition, proteomic ...

  3. C-MYC amplification and expression in stomach cancer samples in Iranian population using two techniques of CISH and IHC

    Directory of Open Access Journals (Sweden)

    Malihea Khaleghian

    2015-07-01

    Results: Our data revealed that both diffuse and intestinal types of gastric cancer occurred significantly in men more than women. Our results showed an indication of some correlation between grades and CISH results, although the difference was not significant. Our data also showed that CISH+ patients (43.1% were more frequent in comparison with IHC+ patients (14.7%. There was a correlation between CISH and IHC. This result revealed that there was a significant difference between grades and IHC. There was also no statistically significant difference between CISH amplification in diffuse and intestinal types. Conclusion: Our conclusion is that for the treatment, management of stomach cancer, and monitoring of progress and prognosis of the tumor that is almost important for patients and clinicians, CISH test is a better and feasible to IHC test, with regards to sensitivity and specificity.

  4. Mutations in NEK8 link multiple organ dysplasia with altered Hippo signalling and increased c-MYC expression

    NARCIS (Netherlands)

    Frank, Valeska; Habbig, Sandra; Bartram, Malte P.; Eisenberger, Tobias; Veenstra-Knol, Hermine E.; Decker, Christian; Boorsma, Reinder A. C.; Goebel, Heike; Nuernberg, Gudrun; Griessmann, Anabel; Franke, Mareike; Borgal, Lori; Kohli, Priyanka; Voelker, Linus A.; Doetsch, Joerg; Nuernberg, Peter; Benzing, Thomas; Bolz, Hanno J.; Johnson, Colin; Gerkes, Erica H.; Schermer, Bernhard; Bergmann, Carsten

    2013-01-01

    Mutations affecting the integrity and function of cilia have been identified in various genes over the last decade accounting for a group of diseases called ciliopathies. Ciliopathies display a broad spectrum of phenotypes ranging from mild manifestations to lethal combinations of multiple severe sy

  5. Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product

    NARCIS (Netherlands)

    Rustgi, A.K.; Dyson, N.; Bernards, R.A.

    1991-01-01

    The proteins encoded by the myc gene family are involved is the control of cell proliferation and differentiation, and aberrant expression of myc proteins has been implicated in the genesis of a variety of neoplasms. In the carboxyl terminus, myc proteins have two domains that encode a basic domain/

  6. Combined gene overexpression of neuropeptide Y and its receptor Y5 in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Gøtzsche, Casper René; Nikitidou, Litsa; Sørensen, Andreas;

    2012-01-01

    We recently demonstrated that recombinant adeno-associated viral vector-induced hippocampal overexpression of neuropeptide Y receptor, Y2, exerts a seizure-suppressant effect in kindling and kainate-induced models of epilepsy in rats. Interestingly, additional overexpression of neuropeptide Y...

  7. Overexpression of SOS (Salt Overly Sensitive)Genes Increases Salt Tolerance in Transgenic Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Qing Yang; Zhi-Zhong Chen; Xiao-Feng Zhoua; Hai-Bo Yin; Xia Li; Xiu-Fang Xin; Xu-Hui Hong; Jian-Kang Zhu; Zhizhong Gong

    2009-01-01

    Soil salinity is a major abiotic stress that decreases plant growth and productivity. Recently, it was reported that plants overexpressing AtNHX1 or SOS1 have significantly increased salt tolerance. To test whether overexpression of multiple genes can improve plant salt tolerance even more, we produced six different transgenic Arabidopsis plants that overexpress AtNHX1, SOS3, AtNHXl + SOS3, SOS1, SOS2 + SOS3, or SOS1 + SOS2 + SOS3. Northern blot analyses confirmed the presence of high levels of the relevant gene transcripts in transgenic plants. Transgenic Arabidopsis plants overexpressing AtNHX1 alone did not present any significant increase in salt tolerance, contrary to earlier reports. We found that transgenic plants overexpressing SOS3 exhibit increased salt tolerance similar to plants overexpressing SOS1. Moreover, salt tolerance of transgenic plants overexpressing AtNHXl + SOS3, 50S2 + SOS3, or SOS1 + SOS2 +SOS3, respectively, appeared similar to the tolerance of transgenic plants overexpressing either SOS1 or SOS3 alone.

  8. Regulation of [Ca2+](i) homeostasis in MRP1 overexpressing cells

    NARCIS (Netherlands)

    Filipeanu, C.M; Nelemans, Adriaan; Veldman, Robert Jan; de Zeeuw, Dick; Kok, Jan Willem

    2000-01-01

    Regulation of capacitative Ca2+ entry,vas studied in two different multidrug resistance (MDR) protein (MRP1) overexpressing cell lines, HT29(col) and GLC4/ADR. MRP1 overexpression was accompanied by a decreased response to thapsigargin, Moreover, inhibition of capacitative Ca2+ entry by D,L-threo-1-

  9. Adult T-cell leukemia cells overexpress Wnt5a and promote osteoclast differentiation

    OpenAIRE

    Bellon, Marcia; Ko, Nga Ling; Lee, Min-Jung; Yao, Yuan; Waldmann, Thomas A; Trepel, Jane B; Nicot, Christophe

    2013-01-01

    Profiling of the Wnt/β-catenin pathway reveals overexpression of Wnt5a, LEF-1 and TCF-1 in ATL patient cells.ATL cells overexpress Wnt5a, which enhances osteoclastogenesis and may contribute to the osteolytic bone lesions and hypercalcemia.

  10. ADAM12 overexpression does not improve outcome in mice with laminin alpha2-deficient muscular dystrophy

    DEFF Research Database (Denmark)

    Guo, Ling T; Shelton, G Diane; Wewer, Ulla M;

    2005-01-01

    We have recently shown that overexpression of ADAM12 results in increased muscle regeneration and significantly reduced pathology in mdx, dystrophin deficient mice. In the present study, we tested the effect of overexpressing ADAM12 in dy(W) laminin-deficient mice. dy mice have a very severe clin...

  11. Clinical significance of Phosphatidyl Inositol Synthase overexpression in oral cancer

    International Nuclear Information System (INIS)

    We reported increased levels of Phosphatidyl Inositol synthase (PI synthase), (enzyme that catalyses phosphatidyl inositol (PI) synthesis-implicated in intracellular signaling and regulation of cell growth) in smokeless tobacco (ST) exposed oral cell cultures by differential display. This study determined the clinical significance of PI synthase overexpression in oral squamous cell carcinoma (OSCC) and premalignant lesions (leukoplakia), and identified the downstream signaling proteins in PI synthase pathway that are perturbed by smokeless tobacco (ST) exposure. Tissue microarray (TMA) Immunohistochemistry, Western blotting, Confocal laser scan microscopy, RT-PCR were performed to define the expression of PI synthase in clinical samples and in oral cell culture systems. Significant increase in PI synthase immunoreactivity was observed in premalignant lesions and OSCCs as compared to oral normal tissues (p = 0.000). Further, PI synthase expression was significantly associated with de-differentiation of OSCCs, (p = 0.005) and tobacco consumption (p = 0.03, OR = 9.0). Exposure of oral cell systems to smokeless tobacco (ST) in vitro confirmed increase in PI synthase, Phosphatidylinositol 3-kinase (PI3K) and cyclin D1 levels. Collectively, increased PI synthase expression was found to be an early event in oral cancer and a target for smokeless tobacco

  12. Overexpression and topology of bacterial oligosaccharyltransferase PglB

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lei [National Glycoengineering Research Center and The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Shandong 250100 (China); Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210 (United States); Woodward, Robert [Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210 (United States); Ding, Yan; Liu, Xian-wei [National Glycoengineering Research Center and The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Shandong 250100 (China); Yi, Wen; Bhatt, Veer S. [Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210 (United States); Chen, Min [National Glycoengineering Research Center and The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Shandong 250100 (China); Zhang, Lian-wen [College of Pharmacy, Nankai University, Tianjin 300071 (China); Wang, Peng George, E-mail: wang.892@osu.edu [National Glycoengineering Research Center and The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Shandong 250100 (China); Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210 (United States)

    2010-04-16

    Campylobacter jejuni contains a post-translational N-glycosylation system in which a STT3 homologue, PglB, functions as the oligosaccharyltransferase. Herein, we established a method for obtaining relatively large quantities of homogenous PglB proteins. PglB was overexpressed in Escherichia coli C43(DE3) at a level of 1 mg/L cell cultures. The activity of purified PglB was verified using a chemically synthesized sugar donor: N-acetylgalactosamine-diphospho-undecaprenyl (GalNAc-PP-Und) and a synthesized peptide acceptor. The result confirms that PglB is solely responsible for the oligosaccharyltransferase activity and complements the finding that PglB exhibits relaxed sugar substrate specificity. In addition, we performed the topology mapping of PglB using the PhoA/LacZ fusion method. The topological model shows that PglB possesses 11 transmembrane segments and two relatively large periplasmic regions other than the C-terminal domain, which is consistent with the proposal of the common N{sub cyt}-C{sub peri} topology with 11 transmembrane segments for the STT3 family proteins.

  13. Overexpression and export of Vibrio anguillarum metalloprotease in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Zhang Fengli; Chi Zhenming; Chen Jixiang; Wu Longfei; Liang Likun

    2007-01-01

    Vibrio anguillarum metalloprotease, an extracellular zinc metalloprotease involved in the virulence mechanism of Vibrio anguillarum, is synthesized from the empA gene as a 611-residue precursor and naturally secreted via Sec secretion pathway in Vibrio anguillarum. In this study, heterologous expression of the empA gene encoding metallopmtease and export of the recombinant metalloprotease in Escherichia coliwere examined. The empA gene was subcloned into pBAD24 with arabinose promoter and sequenced. The sequence encoded a polypeptide(611 amino acids)consisting of four domains: a signal peptide, an Nterminal propeptide, a mature region and a C-terminal propeptide. The empA gene inserted in plasmid pBAD24 was overexpressed in TOP10 strain of E. Coli after arabinose induction. The 36kDa polypeptide of the recombinant metalloprotease as the mature protease was further confirmed by SDS-PAGE and immunoblotting. It was found that recombinant metalloprotease with the EmpA activity and antigenicity wasexported into the periplasm of Escherichia coli cells via Sec translocation pathway, whereas it was secreted into extracellular environments in V. Anguillarum. The results imply that the expression, export and processing mechanism of the protein in E. Coli are similar to those in V. Anguillarum.

  14. Changes in gene expression associated with FTO overexpression in mice.

    Directory of Open Access Journals (Sweden)

    Myrte Merkestein

    Full Text Available Single nucleotide polymorphisms in the first intron of the fat-mass-and-obesity-related gene FTO are associated with increased body weight and adiposity. Increased expression of FTO is likely underlying this obesity phenotype, as mice with two additional copies of Fto (FTO-4 mice exhibit increased adiposity and are hyperphagic. FTO is a demethylase of single stranded DNA and RNA, and one of its targets is the m6A modification in RNA, which might play a role in the regulation of gene expression. In this study, we aimed to examine the changes in gene expression that occur in FTO-4 mice in order to gain more insight into the underlying mechanisms by which FTO influences body weight and adiposity. Our results indicate an upregulation of anabolic pathways and a downregulation of catabolic pathways in FTO-4 mice. Interestingly, although genes involved in methylation were differentially regulated in skeletal muscle of FTO-4 mice, no effect of FTO overexpression on m6A methylation of total mRNA was detected.

  15. Changes in gene expression associated with FTO overexpression in mice.

    Science.gov (United States)

    Merkestein, Myrte; McTaggart, James S; Lee, Sheena; Kramer, Holger B; McMurray, Fiona; Lafond, Mathilde; Boutens, Lily; Cox, Roger; Ashcroft, Frances M

    2014-01-01

    Single nucleotide polymorphisms in the first intron of the fat-mass-and-obesity-related gene FTO are associated with increased body weight and adiposity. Increased expression of FTO is likely underlying this obesity phenotype, as mice with two additional copies of Fto (FTO-4 mice) exhibit increased adiposity and are hyperphagic. FTO is a demethylase of single stranded DNA and RNA, and one of its targets is the m6A modification in RNA, which might play a role in the regulation of gene expression. In this study, we aimed to examine the changes in gene expression that occur in FTO-4 mice in order to gain more insight into the underlying mechanisms by which FTO influences body weight and adiposity. Our results indicate an upregulation of anabolic pathways and a downregulation of catabolic pathways in FTO-4 mice. Interestingly, although genes involved in methylation were differentially regulated in skeletal muscle of FTO-4 mice, no effect of FTO overexpression on m6A methylation of total mRNA was detected. PMID:24842286

  16. Identification of stromal proteins overexpressed in nodular sclerosis Hodgkin lymphoma

    Directory of Open Access Journals (Sweden)

    de Leval Laurence

    2011-10-01

    Full Text Available Abstract Hodgkin lymphoma (HL represents a category of lymphoid neoplasms with unique features, notably the usual scarcity of tumour cells in involved tissues. The most common subtype of classical HL, nodular sclerosis HL, characteristically comprises abundant fibrous tissue stroma. Little information is available about the protein composition of the stromal environment from HL. Moreover, the identification of valid protein targets, specifically and abundantly expressed in HL, would be of utmost importance for targeted therapies and imaging, yet the biomarkers must necessarily be accessible from the bloodstream. To characterize HL stroma and to identify potentially accessible proteins, we used a chemical proteomic approach, consisting in the labelling of accessible proteins and their subsequent purification and identification by mass spectrometry. We performed an analysis of potentially accessible proteins in lymph node biopsies from HL and reactive lymphoid tissues, and in total, more than 1400 proteins were identified in 7 samples. We have identified several extracellular matrix proteins overexpressed in HL, such as versican, fibulin-1, periostin, and other proteins such as S100-A8. These proteins were validated by immunohistochemistry on a larger series of biopsy samples, and bear the potential to become targets for antibody-based anti-cancer therapies.

  17. Ornithine decarboxylase gene is overexpressed in colorectal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Hai-Yan Hu; Bing Zhang; Xian-Xi Liu; Chun-Ying Jiang; Yi Lu; Shi-Lian Liu; Ji-Feng Bian; Xiao-Ming Wang; Zhao Geng; Yan Zhang

    2005-01-01

    AIM: To investigate the ornithine decarboxylase (ODC)gene expression in colorectal carcinoma, ODC mRNA was assayed by RT-PCR and ODC protein was detected by a monoclonal antibody against fusion of human colon ODC prepared by hybridoma technology.METHODS: Total RNA was extracted from human colorectal cancer tissues and their normal counterpart tissues. ODC mRNA levels were examined by RT-PCR.ODC genes amplified from RT-PCR were cloned into a prokaryotic vector pQE-30. The expressed proteins were purified by chromatography. Anti-ODC mAb was prepared with classical hybridoma techniques and used to determine the ODC expression in colon cancer tissues by immunohistochemical and Western blotting assay.RESULTS: A cell line, which could steadily secrete antiODC mAb, was selected through subcloning four times.Western blotting reconfirmed the mAb and ELISA showed that its subtype was IgG2a. RT-PCR showed that the ODC mRNA level increased greatly in colon cancer tissues (P<0.01). Immunohistochemical staining showed that colorectal carcinoma cells expressed a significantly higher level of ODC than normal colorectal mucosa (98.6±1.03%vs 5.26±5%, P<0.01).CONCLUSION: ODC gene overexpression is significantly related to human colorectal carcinoma. ODC gene expression may be a marker for the gene diagnosis and therapy of colorectal carcinoma.

  18. Caveolin-1 overexpression in benign and malignant salivary gland tumors.

    Science.gov (United States)

    Jaafari-Ashkavandi, Zohreh; Ashraf, Mohammad Javad; Nazhvani, Ali Dehghani; Azizi, Zahra

    2016-02-01

    Caveolin-1, a tyrosine-phosphorylated protein, is supposed to have different regulatory roles as promoter or suppressor in many human cancers. However, no published study concerned its expression in benign and malignant salivary gland tumors. The aim of this study was to evaluate and compare the expression of Cav-1 in the most common benign and malignant salivary gland tumors and evaluate its correlation with proliferation activity. In this cross-sectional retrospective study, immunohistochemical expression of caveolin-1 and Ki67 were evaluated in 49 samples, including 11 normal salivary glands, 15 cases of pleomorphic adenoma (PA), 13 adenoid cystic carcinomas (AdCC), and 10 mucoepidermoid carcinomas (MEC). The expression of Cav-1 was seen in 18 % of normal salivary glands and 85 % of tumors. The immunoreaction in the tumors was significantly higher than normal tissues (P = 0.001), but the difference between benign and malignant tumors was not significant (P = 0.07). Expression of Cav-1 was correlated with Ki67 labeling index in PAs, but not in malignant tumors. Cav-1 expression was not in association with tumor size and stage. Overexpression of Cav-1 was found in salivary gland tumors in comparison with normal tissues, but no significant difference was observed between benign and malignant tumors. Cav-1 was inversely correlated with proliferation in PA. Therefore, this marker may participate in tumorigenesis of salivary gland tumors and may be a potential biomarker for cancer treatments.

  19. Overexpression of Wnt5a Promotes Angiogenesis in NSCLC

    Directory of Open Access Journals (Sweden)

    Lingli Yao

    2014-01-01

    Full Text Available To evaluate Wnt5a expression and its role in angiogenesis of non-small-cell lung cancer (NSCLC, immunohistochemistry and CD31/PAS double staining were performed to examine the Wnt5a expression and we analyze the relationships between Wnt5a and microvessel density (MVD, vasculogenic mimicry (VM, and some related proteins. About 61.95% of cases of 205 NSCLC specimens exhibited high expression of Wnt5a. Wnt5a expression level was upregulated in the majority of NSCLC tissues, especially in squamous cell carcinoma, while its expression level in adenocarcinoma was the lowest. Wnt5a was also found more frequently expressed in male patients than in female patients. Except for histological classification and gender, little association was found between Wnt5a and clinicopathological features. Moreover, Wnt5a was significantly correlated with prognosis. Overall, Wnt5a-positive expression in patients with NSCLC indicated shorter survival time. As for vascularization in NSCLC, Wnt5a showed close association with VM and MVD. In addition, Wnt5a was positively related with β-catenin-nu, VE-cadherin, MMP2, and MMP9. The results demonstrated that overexpression of Wnt5a may play an important role in NSCLC angiogenesis and it may function via canonical Wnt signal pathway. This study will provide evidence for further research on NSCLC and also will provide new possible target for NSCLC diagnosis and therapeutic strategies.

  20. Impaired baroreflex function in mice overexpressing alpha-synuclein

    Directory of Open Access Journals (Sweden)

    Sheila eFleming

    2013-07-01

    Full Text Available Cardiovascular autonomic dysfunction, such as orthostatic hypotension consequent to baroreflex failure and cardiac sympathetic denervation, is frequently observed in the synucleinopathy Parkinson’s disease (PD. In the present study, the baroreceptor reflex was assessed in mice overexpressing human wildtype alpha-synuclein (Thy1-aSyn, a genetic mouse model of synucleinopathy. The beat-to-beat change in heart rate, computed from R-R interval, in relation to blood pressure was measured in anesthetized and conscious mice equipped with arterial blood pressure telemetry transducers during transient bouts of hypertension and hypotension. Compared to wildtype, tachycardia following nitroprusside-induced hypotension was significantly reduced in Thy1-aSyn mice. Thy1-aSyn mice also showed an abnormal cardiovascular response (i.e., diminished tachycardia to muscarinic blockade with atropine. We conclude that Thy1-aSyn mice have impaired basal and dynamic range of sympathetic and parasympathetic-mediated changes in heart rate and will be a useful model for long-term study of cardiovascular autonomic dysfunction associated with PD.

  1. Effects of p53 overexpression on neoplastic cell pro-liferation and apoptosis in thymic carcinoma

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate p53 overexpression and its correlation with neoplastic cell proliferation and apoptosis in 20 thymic carcinomas. Methods: 20 surgical samples of thymic carcinoma were collected randomly during the past 15 years in the Guangzhou area. Immunohistochemical staining was performed using LSAB method with anti-p53 monoclonal antibody (DO-7) and proliferating cell nuclear antigen (clone PC 10) as primary antibodies. The p53 index was indicated by the number of p53 positive cells among 100 carcinoma cells. More than 25 percentage of p53 positive cells found in tissue sections was recognized as p53 overexpression. Carcinoma cell proliferation activity was assayed by PCNA index (PI), and apoptosis degree was evaluated by TUNEL (TdT-mediated dUTP-X nick end labeling) index (TI) using Boehringer Mannheim In Situ Death Detection Kit. Results: P53 positive cells could be found in vast majority of thymic carcinomas (19/20) and the overexpression rate reached 35% (7/20). The median PI (40%) of 7 cases with p53 overexpression was higher than that (31%) of 13 cases without p53 overexpression, but there was no statistical significance that existed between these two data (P>0.05). The median TI (0.5/HPF) of 7 p53 overexpression cases was much lower than that (4.5/HPF) of 13 non-overexpression cases, and there was a significant difference statistically (P<0.05). Conclusion: p53 expression was a frequent finding in thymic carcinoma cells, and the p53 overexpression which might represent p53 inactivation or gene mutation was often involved in thymic carcino-genesis. The median PCNA index of p53 overexpression group was higher than that of non-overexpression group though there existed no statistical difference. This indicates that the inhibiting function of p53 on cell proliferation seemed lost in p53 overexpressed thymic carcinomas. It is worthy to be specially mentioned that the inducing function of p53 on cell apoptosis was markedly lost in p53 overexpressed thymic

  2. CIP2A expression and prognostic role in patients with esophageal adenocarcinoma.

    Science.gov (United States)

    Rantanen, Tuomo; Kauttu, Tuuli; Åkerla, Jonne; Honkanen, Teemu; Krogerus, Leena; Salo, Jarmo; Paavonen, Timo; Oksala, Niku

    2013-01-01

    CIP2A is overexpressed in many cancers, including esophageal squamous cell carcinoma. The regulation of c-MYC and CIP2A expression is characterized by a positive feedback mechanism facilitating the expression of both of them and accelerating cancer cell proliferation in gastric cancer. Increased CIP2A expression is a predictor of poor survival in some cancers. The incidence of positive CIP2A immunostaining and its association with c-MYC and its predictive value in esophageal adenocarcinoma are unknown. All esophageal adenocarcinoma patients from 1990 to 2007 with sufficient material for analysis of CIP2A and c-MYC in two university hospitals were included in the study. In addition, biopsies from Barrett's epithelium from the cancer patients and control tissue from normal esophageal mucosa adjacent to the tumor were included. CIP2A was moderately or strongly positive in 77.9 %, and c-MYC in 93.8 % of the cancer specimens. These frequencies were statistically different from the expression in normal esophageal epithelium. In addition, there was a positive correlation between CIP2A and c-MYC expression (p = 0.018). According to adjusted Cox regression survival analysis, CIP2A and c-MYC had no effect on survival. However, among patients with stage IVA-IVB cancer, there was a trend toward poor prognosis in CIP2A-positive patients. The expression of CIP2A and c-MYC was associated with each other, and their overexpression was found in most cases of esophageal adenocarcinoma. However, CIP2A and c-MYC had no effect on survival. PMID:23925667

  3. Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin.

    Science.gov (United States)

    Pascual, María Belén; Jing, Zhong Ping; Kirby, Edward G; Cánovas, Francisco M; Gallardo, Fernando

    2008-01-01

    Glutamine synthetase (GS) is the main enzyme involved in ammonia assimilation in plants and is the target of phosphinothricin (PPT), an herbicide commonly used for weed control in agriculture. As a result of the inhibition of GS, PPT also blocks photorespiration, resulting in the depletion of leaf amino acid pools leading to the plant death. Hybrid transgenic poplar (Populus tremula x P. alba INRA clone 7171-B4) overexpressing cytosolic GS is characterized by enhanced vegetative growth [Gallardo, F., Fu, J., Cantón, F.R., García-Gutiérrez, A., Cánovas, F.M., Kirby, E.G., 1999. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210, 19-26; Fu, J., Sampalo, R., Gallardo, F., Cánovas, F.M., Kirby, E.G., 2003. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26, 411-418; Jing, Z.P., Gallardo, F., Pascual, M.B., Sampalo, R., Romero, J., Torres de Navarra, A., Cánovas, F.M., 2004. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 164, 137-145], increased photosynthetic and photorespiratory capacities [El-Khatib, R.T., Hamerlynck, E.P., Gallardo, F., Kirby, E.G., 2004. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 24, 729-736], enhanced tolerance to water stress (El-Khatib et al., 2004), and enhanced nitrogen use efficiency [Man, H.-M., Boriel, R., El-Khatib, R.T., Kirby, E.G., 2005. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 167, 31-39]. In vitro plantlets of GS transgenic poplar exhibited enhanced resistance to PPT when compared with non-transgenic controls. After 30 days exposure to PPT at an equivalent dose of 275 g ha(-1), growth

  4. [Overexpression of Penicillium expansum lipase gene in Pichia pastoris].

    Science.gov (United States)

    Yuan, Cai; Lin, Lin; Shi, Qiao-Qin; Wu, Song-Gang

    2003-03-01

    The alkaline lipase gene of Penicillium expansum (PEL) was coloned into the yeast integrative plasmid pPIC3.5K, which was then transformed into His4 mutant yeast GS115. Recombinant Pichia strains were obtained by minimal olive oil-methanol plates screening and confirmed by PCR. The expression producus of PEL gene was analysis by SDS-PAGE and olive oil plate, the result indicated that PEL gene was functionally overexpressed in Pichia pastoris and up to 95% of the secreted protein. Recombinant lipase had a molecular mass of 28kD, showing a range similar to that of PEL, could hydrolyze olive oil and formed clear halos in the olive oil plates. Four different strategies (different media, pH, glycerol and methanol concentration) were applied to optimize the cultivation conditions, the activity of lipase was up to 260 u/mL under the optimal cultivation conditions. It is pointed out that the absence of the expensive biotin and yeast nitrogen base in the medium increased the lipase production. The possible reason of this result is absence of yeast nitrogen base increased the medium pH during cultivation, and PEL shows a higher stability at this condition. The lipase activity of the supernatant from the culture grown at pH 7 was higher than the one from the culture in the same medium at pH 6.0 is due to the pH stability of PEL too. The results also showed that the methanol and glycerol concentration had a marked effect on the production of lipase. PMID:15966328

  5. [Overexpression of Penicillium expansum lipase gene in Pichia pastoris].

    Science.gov (United States)

    Yuan, Cai; Lin, Lin; Shi, Qiao-Qin; Wu, Song-Gang

    2003-03-01

    The alkaline lipase gene of Penicillium expansum (PEL) was coloned into the yeast integrative plasmid pPIC3.5K, which was then transformed into His4 mutant yeast GS115. Recombinant Pichia strains were obtained by minimal olive oil-methanol plates screening and confirmed by PCR. The expression producus of PEL gene was analysis by SDS-PAGE and olive oil plate, the result indicated that PEL gene was functionally overexpressed in Pichia pastoris and up to 95% of the secreted protein. Recombinant lipase had a molecular mass of 28kD, showing a range similar to that of PEL, could hydrolyze olive oil and formed clear halos in the olive oil plates. Four different strategies (different media, pH, glycerol and methanol concentration) were applied to optimize the cultivation conditions, the activity of lipase was up to 260 u/mL under the optimal cultivation conditions. It is pointed out that the absence of the expensive biotin and yeast nitrogen base in the medium increased the lipase production. The possible reason of this result is absence of yeast nitrogen base increased the medium pH during cultivation, and PEL shows a higher stability at this condition. The lipase activity of the supernatant from the culture grown at pH 7 was higher than the one from the culture in the same medium at pH 6.0 is due to the pH stability of PEL too. The results also showed that the methanol and glycerol concentration had a marked effect on the production of lipase.

  6. Cholesteatoma fibroblasts promote epithelial cell proliferation through overexpression of epiregulin.

    Directory of Open Access Journals (Sweden)

    Mamoru Yoshikawa

    Full Text Available To investigate whether keratinocytes proliferate in response to epiregulin produced by subepithelial fibroblasts derived from middle ear cholesteatoma. Tissue samples were obtained from patients undergoing tympanoplasty. The quantitative polymerase chain reaction and immunohistochemistry were performed to examine epiregulin expression and localization in cholesteatoma tissues and retroauricular skin tissues. Fibroblasts were cultured from cholesteatoma tissues and from normal retroauricular skin. These fibroblasts were used as feeder cells for culture with a human keratinocyte cell line (PHK16-0b. To investigate the role of epiregulin in colony formation by PHK16-0b cells, epiregulin mRNA expression was knocked down in fibroblasts by using short interfering RNA and epiregulin protein was blocked with a neutralizing antibody. Epiregulin mRNA expression was significantly elevated in cholesteatoma tissues compared with that in normal retroauricular skin. Staining for epiregulin was more intense in the epithelial cells and subepithelial fibroblasts of cholesteatoma tissues than in retroauricular skin. When PHK16-0b cells were cultured with cholesteatoma fibroblasts, their colony-forming efficiency was 50% higher than when these cells were cultured with normal skin fibroblasts. Also, knockdown of epiregulin mRNA in cholesteatoma fibroblasts led to greater suppression of colony formation than knockdown in skin fibroblasts. Furthermore, the colony-forming efficiency of PHK16-0b cells was significantly reduced after treatment with an epiregulin neutralizing antibody in co-culture with cholesteatoma fibroblasts, but not in co-culture with skin fibroblasts. These results suggest that keratinocyte hyperproliferation in cholesteatoma is promoted through overexpression of epiregulin by subepithelial fibroblasts via epithelial-mesenchymal interactions, which may play a crucial role in the pathogenesis of middle ear cholesteatoma.

  7. EFFECTS OF p53 OVEREXPRESSION ON NEOPLASTIC CELL MITOSIS AND APOPTOSIS IN NASOPHARYNGEAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To investigate the p53 overexpression and its correlation withneoplastic cell mitosis and apoptosis in 43 nasopharyngeal carcinomas (NPCs). Methods: Forty-three pretreated NPC biopsy samples were randomly collected in the year 1997 for this study. p53 overexpression was detected by LSAB immunohistochemistry using DO-7 primary antibody. Mitotic figures were counted on H&E stained slides, and apoptotic cells on TUNEL-stained slides by use of in-situ cell death detection kit. Both of mitotic and apoptotic cells were quantitated by cell numbers per one high power field (5′ 40) averagely in terms of mitotic index (MI) and TUNEL index (TI), respectively. To compare the mean MIs of two groups categorized by different percentages of positive p53 positive cells found in NPC specimens was taken for the purpose of designating the criterion of p53 overexpression. And then, the correlation of p53 overexpression with MI and TI was made by statistical analysis. Results: Because statistically significant difference appeared at the criterion of 20%, the p53 overexpression of NPC was defined as≥20% of positive cells found. The p53 overexpression thus could be detected in 37 out of 43 NPCs, reaching 86.05% (37/43). The mean MI (1.87± 1.78/HPF) of 37 NPCs with p53 overexpression was significantly higher than that (0.76± 0.63/HPF) of 6 NPCs without p53 overexpression, the P value being <0.05. However, there was no statistical difference between the mean TI (24.50± 26.66HPF) of 37 NPCs with p53 overexpression and TI (23.17± 25.30/HPF) of 6 NPCs without p53 overexpression. Conclusions: p53 overexpression of NPC could be designated by ≥20% of positive neoplastic cells found in pretreated NPC specimens, and the rate of which reached 86.05% (37/43). The overexpressed p53 could enhance cell proliferative activity in pretreated NPCs represented by increasing of MI, but showed no effect on neoplastic cell apoptosis.

  8. relA over-expression reduces tumorigenicity and activates apoptosis in human cancer cells

    OpenAIRE

    Ricca, A; Biroccio, A; Trisciuoglio, D; M. Cippitelli; Zupi, G.; Bufalo, D Del

    2001-01-01

    We previously demonstrated that bcl-2 over-expression increases the malignant behaviour of the MCF7 ADR human breast cancer cell line and enhances nuclear factor-kappa B (NF-k B) transcriptional activity. Here, we investigated the direct effect of increased NF-k B activity on the tumorigenicity of MCF7 ADR cells by over-expressing the NF-k B subunit relA/p65. Surprisingly, our results demonstrated that over-expression of relA determines a considerable reduction of the tumorigenic ability in n...

  9. Overexpression of Peanut Diacylglycerol Acyltransferase 2 in Escherichia coli

    Science.gov (United States)

    Yang, Lianqun; Zhang, Bin; Chen, Gao; Bi, Yuping

    2013-01-01

    Diacylglycerol acyltransferase (DGAT) is the rate-limiting enzyme in triacylglycerol biosynthesis in eukaryotic organisms. Triacylglycerols are important energy-storage oils in plants such as peanuts, soybeans and rape. In this study, Arachis hypogaea type 2 DGAT (AhDGAT2) genes were cloned from the peanut cultivar ‘Luhua 14’ using a homologous gene sequence method and rapid amplification of cDNA ends. To understand the role of AhDGAT2 in triacylglycerol biosynthesis, two AhDGAT2 nucleotide sequences that differed by three amino acids were expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli Rosetta (DE3). Following IPTG induction, the isozymes (AhDGAT2a and AhDGAT2b) were expressed as 64.5 kDa GST fusion proteins. Both AhDGAT2a and AhDGAT2b occurred in the host cell cytoplasm and inclusion bodies, with larger amounts in the inclusion bodies. Overexpression of AhDGATs depressed the host cell growth rates relative to non-transformed cells, but cells harboring empty-vector, AhDGAT2a–GST, or AhDGAT2b–GST exhibited no obvious growth rate differences. Interestingly, induction of AhDGAT2a–GST and AhDGAT2b–GST proteins increased the sizes of the host cells by 2.4–2.5 times that of the controls (post-IPTG induction). The total fatty acid (FA) levels of the AhDGAT2a–GST and AhDGAT2a–GST transformants, as well as levels of C12:0, C14:0, C16:0, C16:1, C18:1n9c and C18:3n3 FAs, increased markedly, whereas C15:0 and C21:0 levels were lower than in non-transformed cells or those containing empty-vectors. In addition, the levels of some FAs differed between the two transformant strains, indicating that the two isozymes might have different functions in peanuts. This is the first time that a full-length recombinant peanut DGAT2 has been produced in a bacterial expression system and the first analysis of its effects on the content and composition of fatty acids in E. coli. Our results indicate that AhDGAT2 is a strong candidate gene for

  10. Overexpression of peanut diacylglycerol acyltransferase 2 in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Zhenying Peng

    Full Text Available Diacylglycerol acyltransferase (DGAT is the rate-limiting enzyme in triacylglycerol biosynthesis in eukaryotic organisms. Triacylglycerols are important energy-storage oils in plants such as peanuts, soybeans and rape. In this study, Arachis hypogaea type 2 DGAT (AhDGAT2 genes were cloned from the peanut cultivar 'Luhua 14' using a homologous gene sequence method and rapid amplification of cDNA ends. To understand the role of AhDGAT2 in triacylglycerol biosynthesis, two AhDGAT2 nucleotide sequences that differed by three amino acids were expressed as glutathione S-transferase (GST fusion proteins in Escherichia coli Rosetta (DE3. Following IPTG induction, the isozymes (AhDGAT2a and AhDGAT2b were expressed as 64.5 kDa GST fusion proteins. Both AhDGAT2a and AhDGAT2b occurred in the host cell cytoplasm and inclusion bodies, with larger amounts in the inclusion bodies. Overexpression of AhDGATs depressed the host cell growth rates relative to non-transformed cells, but cells harboring empty-vector, AhDGAT2a-GST, or AhDGAT2b-GST exhibited no obvious growth rate differences. Interestingly, induction of AhDGAT2a-GST and AhDGAT2b-GST proteins increased the sizes of the host cells by 2.4-2.5 times that of the controls (post-IPTG induction. The total fatty acid (FA levels of the AhDGAT2a-GST and AhDGAT2a-GST transformants, as well as levels of C12:0, C14:0, C16:0, C16:1, C18:1n9c and C18:3n3 FAs, increased markedly, whereas C15:0 and C21:0 levels were lower than in non-transformed cells or those containing empty-vectors. In addition, the levels of some FAs differed between the two transformant strains, indicating that the two isozymes might have different functions in peanuts. This is the first time that a full-length recombinant peanut DGAT2 has been produced in a bacterial expression system and the first analysis of its effects on the content and composition of fatty acids in E. coli. Our results indicate that AhDGAT2 is a strong candidate gene for

  11. Effects of Mineralocorticoid Receptor Overexpression on Anxiety and Memory after Early Life Stress in Female Mice

    Science.gov (United States)

    Kanatsou, Sofia; Ter Horst, Judith P.; Harris, Anjanette P.; Seckl, Jonathan R.; Krugers, Harmen J.; Joëls, Marian

    2016-01-01

    Early-life stress (ELS) is a risk factor for the development of psychopathology, particularly in women. Human studies have shown that certain haplotypes of NR3C2, encoding the mineralocorticoid receptor (MR), that result in gain of function, may protect against the consequences of stress exposure, including childhood trauma. Here, we tested the hypothesis that forebrain-specific overexpression of MR in female mice would ameliorate the effects of ELS on anxiety and memory in adulthood. We found that ELS increased anxiety, did not alter spatial discrimination and reduced contextual fear memory in adult female mice. Transgenic overexpression of MR did not alter anxiety but affected spatial memory performance and enhanced contextual fear memory formation. The effects of ELS on anxiety and contextual fear were not affected by transgenic overexpression of MR. Thus, MR overexpression in the forebrain does not represent a major resilience factor to early life adversity in female mice. PMID:26858618

  12. Overexpression of Ref-1 Inhibits Lead-induced Endothelial Cell Death via the Upregulation of Catalase.

    Science.gov (United States)

    Lee, Kwon Ho; Lee, Sang Ki; Kim, Hyo Shin; Cho, Eun Jung; Joo, Hee Kyoung; Lee, Eun Ji; Lee, Ji Young; Park, Myoung Soo; Chang, Seok Jong; Cho, Chung-Hyun; Park, Jin Bong; Jeon, Byeong Hwa

    2009-12-01

    The role of apurinic/apyrimidinic endonuclease1/redox factor-1 (Ref-1) on the lead (Pb)-induced cellular response was investigated in the cultured endothelial cells. Pb caused progressive cellular death in endothelial cells, which occurred in a concentration- and time-dependent manner. However, Ref-1 overexpression with AdRef-1 significantly inhibited Pb-induced cell death in the endothelial cells. Also the overexpression of Ref-1 significantly suppressed Pb-induced superoxide and hydrogen peroxide elevation in the endothelial cells. Pb exposure induced the downregulation of catalase, it was inhibited by the Ref-1 overexpression in the endothelial cells. Taken together, our data suggests that the overexpression of Ref-1 inhibited Pb-induced cell death via the upregulation of catalase in the cultured endothelial cells.

  13. Large-Scale Overexpression and Purification of ADARs from Saccharomyces cerevisiae for Biophysical and Biochemical Studies

    OpenAIRE

    Macbeth, Mark R.; Bass, Brenda L.

    2007-01-01

    Many biochemical and biophysical analyses of enzymes require quantities of protein that are difficult to obtain from expression in an endogenous system. To further complicate matters, native adenosine deaminases that act on RNA (ADARs) are expressed at very low levels, and overexpression of active protein has been unsuccessful in common bacterial systems. Here we describe the plasmid construction, expression, and purification procedures for ADARs overexpressed in the yeast Saccharomyces cerev...

  14. Mechanism of action and therapeutic efficacy of Aurora kinase B inhibition in MYC overexpressing medulloblastoma

    OpenAIRE

    Diaz, Roberto Jose; Golbourn, Brian; Faria, Claudia; Picard, Daniel; Shih, David; Raynaud, Denis; Leadly, Michael; MacKenzie, Danielle; Bryant, Melissa; Bebenek, Matthew; Smith, Christian A.; Taylor, Michael D.; Huang, Annie; Rutka, James T.

    2014-01-01

    Medulloblastoma comprises four molecular subgroups of which Group 3 medulloblastoma is characterized by MYC amplification and MYC overexpression. Lymphoma cells expressing high levels of MYC are susceptible to apoptosis following treatment with inhibitors of mitosis. One of the key regulatory kinases involved in multiple stages of mitosis is Aurora kinase B. We hypothesized that medulloblastoma cells that overexpress MYC would be uniquely sensitized to the apoptotic effects of Aurora B inhibi...

  15. Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain.

    Science.gov (United States)

    Palmieri, Diane; Bronder, Julie L; Herring, Jeanne M; Yoneda, Toshiyuki; Weil, Robert J; Stark, Andreas M; Kurek, Raffael; Vega-Valle, Eleazar; Feigenbaum, Lionel; Halverson, Douglas; Vortmeyer, Alexander O; Steinberg, Seth M; Aldape, Kenneth; Steeg, Patricia S

    2007-05-01

    Retrospective studies of breast cancer patients suggest that primary tumor Her-2 overexpression or trastuzumab therapy is associated with a devastating complication: the development of central nervous system (brain) metastases. Herein, we present Her-2 expression trends from resected human brain metastases and data from an experimental brain metastasis assay, both indicative of a functional contribution of Her-2 to brain metastatic colonization. Of 124 archival resected brain metastases from breast cancer patients, 36.2% overexpressed Her-2, indicating an enrichment in the frequency of tumor Her-2 overexpression at this metastatic site. Using quantitative real-time PCR of laser capture microdissected epithelial cells, Her-2 and epidermal growth factor receptor (EGFR) mRNA levels in a cohort of 12 frozen brain metastases were increased up to 5- and 9-fold, respectively, over those of Her-2-amplified primary tumors. Co-overexpression of Her-2 and EGFR was also observed in a subset of brain metastases. We then tested the hypothesis that overexpression of Her-2 increases the colonization of breast cancer cells in the brain in vivo. A subclone of MDA-MB-231 human breast carcinoma cells that selectively metastasizes to brain (231-BR) overexpressed EGFR; 231-BR cells were transfected with low (4- to 8-fold) or high (22- to 28-fold) levels of Her-2. In vivo, in a model of brain metastasis, low or high Her-2-overexpressing 231-BR clones produced comparable numbers of micrometastases in the brain as control transfectants; however, the Her-2 transfectants yielded 3-fold greater large metastases (>50 microm(2); P < 0.001). Our data indicate that Her-2 overexpression increases the outgrowth of metastatic tumor cells in the brain in this model system. PMID:17483330

  16. FAK overexpression and p53 mutations are highly correlated in human breast cancer

    OpenAIRE

    Golubovskaya, Vita M; Conway, Kathleen; Edmiston, Sharon N; Tse, Chiu-Kit; Lark, Amy L.; Livasy, Chad A.; Moore, Dominic; Millikan, Robert C.; Cance, William G

    2009-01-01

    Focal Adhesion Kinase (FAK) is overexpressed in a number of tumors, including breast cancer. Another marker of breast cancer tumorigenesis is the tumor suppressor gene p53 that is frequently mutated in breast cancer. In the present study, our aim was to find a correlation between FAK overexpression, p53 expression and mutation status in a population-based series of invasive breast cancer tumors from the Carolina Breast Cancer Study. Immunohistochemical analyses of 622 breast cancer tumors rev...

  17. Overexpression of NADH oxidase gene from Deinococcus geothermalis in Escherichia coli.

    Science.gov (United States)

    Kazuya, Sase; Tomomi, Iwasaki; Hatsune, Karasaki; Masahide, Ishikawa

    2013-12-01

    When using stable enzyme genes from a thermophile to create a biosensor in Escherichia coli, it is vital that these genes be overexpressed in order to provide a sufficient supply of enzymes. In this study, overexpression of the NADH oxidase (Nox) gene from the thermophile Deinococcus geothermalis was successfully achieved with the aim of creating a stable biosensor active at room temperatures. To do so, modification of 10 nucleotides, GAAATTAACT, upstream of the start codon of the Nox gene was necessary.

  18. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer.

    Science.gov (United States)

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B; Kim, Jung-Hyun; Ang, J Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P; Andrews, Brenda; Boerkoel, Cornelius F; Hieter, Philip

    2016-09-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1 Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  19. Conditional overexpression of connective tissue growth factor disrupts postnatal lung development.

    Science.gov (United States)

    Wu, Shu; Platteau, Astrid; Chen, Shaoyi; McNamara, George; Whitsett, Jeffrey; Bancalari, Eduardo

    2010-05-01

    Connective tissue growth factor (CTGF) is a member of an emerging family of immediate-early gene products that coordinates complex biological processes during development, differentiation, and tissue repair. Overexpression of CTGF is associated with mechanical ventilation with high tidal volume and oxygen exposure in newborn lungs. However, the role of CTGF in postnatal lung development and remodeling is not well understood. In the present study, a double-transgenic mouse model was generated with doxycycline-inducible overexpression of CTGF in respiratory epithelial cells. Overexpression of CTGF from Postnatal Days 1-14 resulted in thicker alveolar septa and decreased secondary septal formation. This is correlated with increased myofibroblast differentiation and disorganized elastic fiber deposition in alveolar septa. Overexpression of CTGF also decreased alveolar capillary network formation. There were increased alpha-smooth muscle actin expression and collagen deposition, and dramatic thickening in the peribronchial/peribronchiolar and perivascular regions in the double-transgenic lungs. Furthermore, overexpression of CTGF increased integrin-linked kinase expression, activated its downstream signaling target, Akt, as well as increased mRNA expression of fibronectin. These data demonstrate that overexpression of CTGF disrupts alveologenesis and capillary formation, and induces fibrosis during the critical period of alveolar development. These histologic changes are similar to those observed in lungs of infants with bronchopulmonary dysplasia.

  20. Overexpression of Fatty-Acid-β-Oxidation-Related Genes Extends the Lifespan of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Shin-Hae Lee

    2012-01-01

    Full Text Available A better understanding of the aging process is necessary to ensure that the healthcare needs of an aging population are met. With the trend toward increased human life expectancies, identification of candidate genes affecting the regulation of lifespan and its relationship to environmental factors is essential. Through misexpression screening of EP mutant lines, we previously isolated several genes extending lifespan when ubiquitously overexpressed, including the two genes encoding the fatty-acid-binding protein and dodecenoyl-CoA delta-isomerase involved in fatty-acid β-oxidation, which is the main energy resource pathway in eukaryotic cells. In this study, we analyzed flies overexpressing the two main components of fatty-acid β-oxidation, and found that overexpression of fatty-acid-β-oxidation-related genes extended the Drosophila lifespan. Furthermore, we found that the ability of dietary restriction to extend lifespan was reduced by the overexpression of fatty-acid-β-oxidation-related genes. Moreover, the overexpression of fatty-acid-β-oxidation-related genes enhanced stress tolerance to oxidative and starvation stresses and activated the dFOXO signal, indicating translocation to the nucleus and transcriptional activation of the dFOXO target genes. Overall, the results of this study suggest that overexpression of fatty-acid-β-oxidation-related genes extends lifespan in a dietary-restriction-related manner, and that the mechanism of this process may be related to FOXO activation.

  1. Regulation of polyphenols accumulation by combined overexpression/silencing key enzymes of phyenylpropanoid pathway

    Institute of Scientific and Technical Information of China (English)

    Junli Chang; Jie Luo; Guangyuan He

    2009-01-01

    There is a growing interest in the metabolic engineering of plant with increased desirable polyphenols such as chlorogenic acid (CGA) and rutin. In this study, the effects of overexpression of both phenylalanine ammonia lyase (AtPAL2), the first enzyme of the phe-nylpropanoid pathway, and hydroxycinnamoyl-CoA quinate:hydroxycinnamoyl transferase (NtHQT), the last enzyme of CGA biosynthesis, and the overexpres-sion of AtPAL2 together with silencing of NtHQT were investigated in tobacco. Transgenic tobacco plants over-expressing AtPAL2 showed two and five times increases of CGA and rutin levels than the wild-type (WT) plants, respectively. Overexpression of NtHQT further increases the accumulation of CGA in the AtPAL2 plants to about three times than that of the WT level, while silencing of NtHQT in AtPAL2 plants results in ~12 times increase in rutin level than that of the WT plants. Simultaneous overexpression of phenylalanine ammonia lyase (PAL) and overexpression/silencing HQT could be used for the production of functional food with increased polyphenols.

  2. Inhibition of laminin-5 production in breast epithelial cells by overexpression of p300.

    Science.gov (United States)

    Miller, K A; Chung, J; Lo, D; Jones, J C; Thimmapaya, B; Weitzman, S A

    2000-03-17

    The transcriptional coactivator p300 is essential for normal embryonic development and cellular differentiation. We have been studying the role of p300 in the transcription of a variety of genes, and we became interested in the role of this coactivator in the transcription of genes important in breast epithelial cell biology. From MCF-10A cells (spontaneously immortalized, nontransformed human breast epithelial cells), we developed cell lines that stably overexpress p300. These p300-overexpressing cells displayed reduced adhesion to culture dishes and were found to secrete an extracellular matrix deficient in laminin-5. Laminin-5 is the major extracellular matrix component produced by breast epithelium. Immunofluorescence studies, as well as experiments using normal matrix, confirmed that the decreased adhesion of p300-overexpressing cells is due to laminin-5-deficient extracellular matrix and not due to loss of laminin-5 receptors. Northern blots revealed markedly decreased levels of expression of two of the genes (designated LAMA3 and LAMC2) encoding the alpha3 and gamma2 chains of the laminin-5 heterotrimer in the cells that overexpress p300, whereas LAMB3 mRNA, encoding the third or beta3 chain of laminin-5, was not markedly reduced. Transient transfection experiments with a vector containing a murine LAMA3 promoter demonstrate that overexpressing p300 down-regulates the LAMA3 promoter. In summary, overexpression of p300 leads to down-regulation of laminin-5 production in breast epithelial cells, resulting in decreased adhesion. PMID:10713141

  3. Overexpression of allene oxide cyclase improves the biosynthesis of artemisinin in Artemisia annua L.

    Directory of Open Access Journals (Sweden)

    Xu Lu

    Full Text Available Jasmonates (JAs are important signaling molecules in plants and play crucial roles in stress responses, secondary metabolites' regulation, plant growth and development. In this study, the promoter of AaAOC, which was the key gene of jasmonate biosynthetic pathway, had been cloned. GUS staining showed that AaAOC was expressed ubiquitiously in A. annua. AaAOC gene was overexpressed under control of 35S promoter. RT-Q-PCR showed that the expression levels of AaAOC were increased from 1.6- to 5.2-fold in AaAOC-overexpression transgenic A. annua. The results of GC-MS showed that the content of endogenous jasmonic acid (JA was 2- to 4.7-fold of the control level in AaAOC-overexpression plants. HPLC showed that the contents of artemisinin, dihydroartemisinic acid and artemisinic acid were increased significantly in AaAOC-overexpression plants. RT-Q-PCR showed that the expression levels of FPS (farnesyl diphosphate synthase, CYP71AV1 (cytochrome P450 dependent hydroxylase and DBR2 (double bond reductase 2 were increased significantly in AaAOC-overexpression plants. All data demonstrated that increased endogenous JA could significantly promote the biosynthesis of artemisinin in AaAOC-overexpression transgenic A. annua.

  4. Extending the Impact of RAC1b Overexpression to Follicular Thyroid Carcinomas

    Science.gov (United States)

    Faria, Márcia; Capinha, Liliana; Simões-Pereira, Joana; Bugalho, Maria João; Silva, Ana Luísa

    2016-01-01

    RAC1b is a hyperactive variant of the small GTPase RAC1 known to be a relevant molecular player in different cancers. Previous studies from our group lead to the evidence that its overexpression in papillary thyroid carcinoma (PTC) is associated with an unfavorable prognosis. In the present study, we intended to extend the analysis of RAC1b expression to thyroid follicular neoplasms and to seek for clinical correlations. RAC1b expression levels were determined by RT-qPCR in thyroid follicular tumor samples comprising 23 follicular thyroid carcinomas (FTCs) and 33 follicular thyroid adenomas (FTAs). RAC1b was found to be overexpressed in 33% of carcinomas while no RAC1b overexpression was documented among follicular adenomas. Patients with a diagnosis of FTC were divided into two groups based on longitudinal evolution and final outcome. RAC1b overexpression was significantly associated with both the presence of distant metastases (P = 0.01) and poorer clinical outcome (P = 0.01) suggesting that, similarly to that previously found in PTCs, RAC1b overexpression in FTCs is also associated with worse outcomes. Furthermore, the absence of RAC1b overexpression in follicular adenomas hints its potential as a molecular marker likely to contribute, in conjunction with other putative markers, to the preoperative differential diagnosis of thyroid follicular lesions. PMID:27127508

  5. Extending the Impact of RAC1b Overexpression to Follicular Thyroid Carcinomas

    Directory of Open Access Journals (Sweden)

    Márcia Faria

    2016-01-01

    Full Text Available RAC1b is a hyperactive variant of the small GTPase RAC1 known to be a relevant molecular player in different cancers. Previous studies from our group lead to the evidence that its overexpression in papillary thyroid carcinoma (PTC is associated with an unfavorable prognosis. In the present study, we intended to extend the analysis of RAC1b expression to thyroid follicular neoplasms and to seek for clinical correlations. RAC1b expression levels were determined by RT-qPCR in thyroid follicular tumor samples comprising 23 follicular thyroid carcinomas (FTCs and 33 follicular thyroid adenomas (FTAs. RAC1b was found to be overexpressed in 33% of carcinomas while no RAC1b overexpression was documented among follicular adenomas. Patients with a diagnosis of FTC were divided into two groups based on longitudinal evolution and final outcome. RAC1b overexpression was significantly associated with both the presence of distant metastases (P = 0.01 and poorer clinical outcome (P = 0.01 suggesting that, similarly to that previously found in PTCs, RAC1b overexpression in FTCs is also associated with worse outcomes. Furthermore, the absence of RAC1b overexpression in follicular adenomas hints its potential as a molecular marker likely to contribute, in conjunction with other putative markers, to the preoperative differential diagnosis of thyroid follicular lesions.

  6. Overexpression of Bmi1 in Lymphocytes Stimulates Skeletogenesis by Improving the Osteogenic Microenvironment

    Science.gov (United States)

    Zhou, Xichao; Dai, Xiuliang; Wu, Xuan; Ji, Ji; Karaplis, Andrew; Goltzman, David; Yang, Xiangjiao; Miao, Dengshun

    2016-01-01

    To investigate whether overexpression of Bmi1 in lymphocytes can stimulate skeletogenesis by improving the osteogenic microenvironment, we examined the skeletal phenotype of EμBmi1 transgenic mice with overexpression of Bmi1 in lymphocytes. The size of the skeleton, trabecular bone volume and osteoblast number, indices of proliferation and differentiation of bone marrow mesenchymal stem cells (BM-MSCs) were increased significantly, ROS levels were reduced and antioxidative capacity was enhanced in EμBmi1 mice compared to WT mice. In PTHrP1–84 knockin (PthrpKI/KI) mice, the expression levels of Bmi1 are reduced and potentially can mediate the premature osteoporosis observed. We therefore generated a PthrpKI/KI mice overexpressing Bmi1 in lymphocytes and compared them with PthrpKI/KI and WT littermates. Overexpression of Bmi1 in PthrpKI/KI mice resulted in a longer lifespan, increased body weight and improvement in skeletal growth and parameters of osteoblastic bone formation with reduced ROS levels and DNA damage response parameters. Our results demonstrate that overexpression of Bmi1 in lymphocytes can stimulate osteogenesis in vivo and partially rescue defects in skeletal growth and osteogenesis in PthrpKI/KI mice. These studies therefore indicate that overexpression of Bmi1 in lymphocytes can stimulate skeletogenesis by inhibiting oxidative stress and improving the osteogenic microenvironment. PMID:27373231

  7. miR-17-92 fine-tunes MYC expression and function to ensure optimal B cell lymphoma growth.

    Science.gov (United States)

    Mihailovich, Marija; Bremang, Michael; Spadotto, Valeria; Musiani, Daniele; Vitale, Elena; Varano, Gabriele; Zambelli, Federico; Mancuso, Francesco M; Cairns, David A; Pavesi, Giulio; Casola, Stefano; Bonaldi, Tiziana

    2015-01-01

    The synergism between c-MYC and miR-17-19b, a truncated version of the miR-17-92 cluster, is well-documented during tumor initiation. However, little is known about miR-17-19b function in established cancers. Here we investigate the role of miR-17-19b in c-MYC-driven lymphomas by integrating SILAC-based quantitative proteomics, transcriptomics and 3' untranslated region (UTR) analysis upon miR-17-19b overexpression. We identify over one hundred miR-17-19b targets, of which 40% are co-regulated by c-MYC. Downregulation of a new miR-17/20 target, checkpoint kinase 2 (Chek2), increases the recruitment of HuR to c-MYC transcripts, resulting in the inhibition of c-MYC translation and thus interfering with in vivo tumor growth. Hence, in established lymphomas, miR-17-19b fine-tunes c-MYC activity through a tight control of its function and expression, ultimately ensuring cancer cell homeostasis. Our data highlight the plasticity of miRNA function, reflecting changes in the mRNA landscape and 3' UTR shortening at different stages of tumorigenesis. PMID:26555894

  8. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Li, E-mail: luli7300@126.com [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Song, Hui-Fang; Wei, Jiao-Long; Liu, Xue-Qin [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Song, Wen-Hui [Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001 (China); Yan, Ba-Yi; Yang, Gui-Jiao [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Li, Ang [Department of Medicine, University of Hong Kong Faculty of Medicine, Hong Kong (Hong Kong); Department of Anatomy, University of Hong Kong Faculty of Medicine, Hong Kong (Hong Kong); Yang, Wu-Lin, E-mail: wulinyoung@163.com [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research - A*STAR (Singapore)

    2014-01-24

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.

  9. CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes.

    Science.gov (United States)

    Li, Chun Yao; Leopold, Alex L; Sander, Guy W; Shanks, Jacqueline V; Zhao, Le; Gibson, Susan I

    2015-01-01

    Terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus is a complex and highly regulated process. Understanding the biochemistry and regulation of the TIA pathway is of particular interest as it may allow the engineering of plants to accumulate higher levels of pharmaceutically important alkaloids. Toward this end, we generated a transgenic C. roseus hairy root line that overexpresses the CrBPF1 transcriptional activator under the control of a β-estradiol inducible promoter. CrBPF1 is a MYB-like protein that was previously postulated to help regulate the expression of the TIA biosynthetic gene STR. However, the role of CrBPF1 in regulation of the TIA and related pathways had not been previously characterized. In this study, transcriptional profiling revealed that overexpression of CrBPF1 results in increased transcript levels for genes from both the indole and terpenoid biosynthetic pathways that provide precursors for TIA biosynthesis, as well as for genes in the TIA biosynthetic pathway. In addition, overexpression of CrBPF1 causes increases in the transcript levels for 11 out of 13 genes postulated to act as transcriptional regulators of genes from the TIA and TIA feeder pathways. Interestingly, overexpression of CrBPF1 causes increased transcript levels for both TIA transcriptional activators and repressors. Despite the fact that CrBPF1 overexpression affects transcript levels of a large percentage of TIA biosynthetic and regulatory genes, CrBPF1 overexpression has only very modest effects on the levels of the TIA metabolites analyzed. This finding may be due, at least in part, to the up-regulation of both transcriptional activators and repressors in response to CrBPF1 overexpression, suggesting that CrBPF1 may serve as a "fine-tune" regulator for TIA biosynthesis, acting to help regulate the timing and amplitude of TIA gene expression. PMID:26483828

  10. CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes

    Directory of Open Access Journals (Sweden)

    Chun Yao eLi

    2015-10-01

    Full Text Available Terpenoid indole alkaloid (TIA biosynthesis in Catharanthus roseus is a complex and highly regulated process. Understanding the biochemistry and regulation of the TIA pathway is of particular interest as it may allow the engineering of plants to accumulate higher levels of pharmaceutically important alkaloids. Towards this end, we generated a transgenic C. roseus hairy root line that overexpresses the CrBPF1 transcriptional activator under the control of a β-estradiol inducible promoter. CrBPF1 is a MYB-like protein that was previously postulated to help regulate the expression of the TIA biosynthetic gene STR. However, the role of CrBPF1 in regulation of the TIA and related pathways had not been previously characterized. In this study, transcriptional profiling revealed that overexpression of CrBPF1 results in increased transcript levels for genes from both the indole and terpenoid biosynthetic pathways that provide precursors for TIA biosynthesis, as well as for genes in the TIA biosynthetic pathway. In addition, overexpression of CrBPF1 causes increases in the transcript levels for 11 out of 13 genes postulated to act as transcriptional regulators of genes from the TIA and TIA feeder pathways. Interestingly, overexpression of CrBPF1 causes increased transcript levels for both TIA transcriptional activators and repressors. Despite the fact that CrBPF1 overexpression affects transcript levels of a large percentage of TIA biosynthetic and regulatory genes, CrBPF1 overexpression has only very modest effects on the levels of the TIA metabolites analyzed. This finding may be due, at least in part, to the up-regulation of both transcriptional activators and repressors in response to CrBPF1 overexpression, suggesting that CrBPF1 may serve as a fine-tune regulator for TIA biosynthesis, acting to help regulate the timing and amplitude of TIA gene expression.

  11. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    International Nuclear Information System (INIS)

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5

  12. A novel vector-based method for exclusive overexpression of star-form microRNAs.

    Directory of Open Access Journals (Sweden)

    Bo Qu

    Full Text Available The roles of microRNAs (miRNAs as important regulators of gene expression have been studied intensively. Although most of these investigations have involved the highly expressed form of the two mature miRNA species, increasing evidence points to essential roles for star-form microRNAs (miRNA*, which are usually expressed at much lower levels. Owing to the nature of miRNA biogenesis, it is challenging to use plasmids containing miRNA coding sequences for gain-of-function experiments concerning the roles of microRNA* species. Synthetic microRNA mimics could introduce specific miRNA* species into cells, but this transient overexpression system has many shortcomings. Here, we report that specific miRNA* species can be overexpressed by introducing artificially designed stem-loop sequences into short hairpin RNA (shRNA overexpression vectors. By our prototypic plasmid, designed to overexpress hsa-miR-146b-3p, we successfully expressed high levels of hsa-miR-146b-3p without detectable change of hsa-miR-146b-5p. Functional analysis involving luciferase reporter assays showed that, like natural miRNAs, the overexpressed hsa-miR-146b-3p inhibited target gene expression by 3'UTR seed pairing. Our demonstration that this method could overexpress two other miRNAs suggests that the approach should be broadly applicable. Our novel strategy opens the way for exclusively stable overexpression of miRNA* species and analyzing their unique functions both in vitro and in vivo.

  13. Immunohistochemical determination of HER-2/neu overexpression in malignant melanoma reveals no prognostic value, while c-Kit (CD117 overexpression exhibits potential therapeutic implications

    Directory of Open Access Journals (Sweden)

    Potti Anil

    2003-01-01

    Full Text Available Abstract Background HER-2/neu and c-kit (CD117 onco-protein are increasingly being recognized as targets for therapy in solid tumors, but data on their role in malignant melanoma is currently limited. We studied the prevalence of overexpression of HER-2/neu and c-Kit in 202 patients with malignant melanoma to evaluate a possible prognostic value of these molecular targets in malignant melanoma. Methods Overexpression of HER-2/neu and c-Kit was evaluated using immunohistochemical assays in 202 archival tissue specimens. Results Between 1991 and 2001, 202 subjects (109 males; 54% and 93 females; 46% with malignant melanoma were studied with a mean age of 57 years (age range: 15–101 years. The most common histologic type was amelanotic melanoma (n = 62; 30.7% followed by superficial spreading melanoma (n = 54; 26.7%. The depth of penetration of melanoma (Breslow thickness, pT Stage ranged from 0.4 mm (stage pT1 to 8.0 mm (stage pT4A. Mean thickness was 2.6 mm (stage pT3A. The ECOG performance scores ranged from 0 to 3. Only 2 patients (0.9% revealed HER-2/neu overexpression, whereas 46 (22.8% revealed c-Kit overexpression. Multivariate analysis performed did not show a significant difference in survival between c-Kit positive and negative groups (p = 0.36. Interestingly, not only was c-Kit more likely to be overexpressed in the superficial spreading type, a preliminary association between the presence or absence of c-Kit overexpression and the existence of another second primary tumor was also observed. Conclusions The results of our large study indicate that the HER-2/neu onco-protein neither has a role in melanogenesis nor is a potential target for clinical trials with monoclonal antibody therapy. This indicates there is no role for its testing in patients with malignant melanoma. Although c-Kit, expressed preferentially in the superficial spreading type, may not have prognostic value, it does have significant therapeutic implications as a

  14. Functional and gene expression analysis of hTERT overexpressed endothelial cells

    Directory of Open Access Journals (Sweden)

    Haruna Takano

    2008-09-01

    Full Text Available Haruna Takano1, Satoshi Murasawa1,2, Takayuki Asahara1,2,31Institute of Biomedical Research and Innovation, Kobe, Japan; 2RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; 3Tokai University of School of Medicine, Tokai, JapanAbstract: Telomerase dysfunction contributes to cellular senescence. Recent advances indicate the importance of senescence in maintaining vascular cell function in vitro. Human telomerase reverse transcriptase (hTERT overexpression is thought to lead to resistance to apoptosis and oxidative stress. However, the mechanism in endothelial lineage cells is unclear. We tried to generate an immortal endothelial cell line from human umbilical vein endothelial cells using a no-virus system and examine the functional mechanisms of hTERT overexpressed endothelial cell senescence in vitro. High levels of hTERT genes and endothelial cell-specific markers were expressed during long-term culture. Also, angiogenic responses were observed in hTERT overexpressed endothelial cell. These cells showed a delay in senescence and appeared more resistant to stressed conditions. PI3K/Akt-related gene levels were enhanced in hTERT overexpressed endothelial cells. An up-regulated PI3K/Akt pathway caused by hTERT overexpression might contribute to anti-apoptosis and survival effects in endothelial lineage cells.Keywords: endothelial, telomerase, senescence, oxidative stress, anti-apoptosis, PI3K/Akt pathway

  15. Overexpressed Genes/ESTs and Characterization of Distinct Amplicons on 17823 in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ayse E. Erson

    2001-01-01

    Full Text Available 17823 is a frequent site of gene amplification in breast cancer. Several lines of evidence suggest the presence of multiple amplicons on 17823. To characterize distinct amplicons on 17823 and localize putative oncogenes, we screened genes and expressed sequence tags (ESTs in existing physical and radiation hybrid maps for amplification and overexpression in breast cancer cell lines by semiquantitative duplex PCR, semiquantitative duplex RT-PCR, Southern blot, Northern blot analyses. We identified two distinct amplicons on 17823, one including TBX2 and another proximal region including RPS6KB1 (PS6K and MUL. In addition to these previously reported overexpressed genes, we also identified amplification and overexpression of additional uncharacterized genes and ESTs, some of which suggest potential oncogenic activity. In conclusion, we have further defined two distinct regions of gene amplification and overexpression on 17823 with identification of new potential oncogene candidates. Based on the amplification and overexpression patterns of known and as of yet unrecognized genes on 17823, it is likely that some of these genes mapping to the discrete amplicons function as oncogenes and contribute to tumor progression in breast cancer cells.

  16. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    International Nuclear Information System (INIS)

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma

  17. Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway.

    Science.gov (United States)

    Ma, Lijie; Dong, Pingping; Liu, Longzi; Gao, Qiang; Duan, Meng; Zhang, Si; Chen, She; Xue, Ruyi; Wang, Xiaoying

    2016-04-29

    Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We reported that Pofut1 was overexpressed in HCC cell lines and clinical HCC tissues, and Pofut1 overexpression clinically correlated with the unfavorable survival and high disease recurrence in HCC. The in vitro assay demonstrated that Pofut1 overexpression accelerated the cell proliferation and migration in HCC cells. Furthermore, Pofut1 overexpression promoted the binding of Notch ligand Dll1 to Notch receptor, and hence activated Notch signaling pathway in HCC cells, indicating that Pofut1 overexpression could be a reason for the aberrant activation of Notch signaling in HCC. Taken together, our findings indicated that an aberrant activated Pofut1-Notch pathway was involved in HCC progression, and blockage of this pathway could be a promising strategy for the therapy of HCC. PMID:27003260

  18. Plumbagin induces apoptosis in Her2-overexpressing breast cancer cells through the mitochondrial-mediated pathway.

    Science.gov (United States)

    Kawiak, Anna; Zawacka-Pankau, Joanna; Lojkowska, Ewa

    2012-04-27

    Breast cancer is the leading cause of death-related cancers in women. Approximately 30% of breast cancers overexpress the Her2 oncogene, which is associated with a poor prognosis and increased resistance to chemotherapy. Plumbagin (1), a constituent of species in the plant genera Drosera and Plumbago, displays antineoplastic activity toward various cancers. The present study was aimed at determining the anticancer potential of 1 toward Her2-overexpressing breast cancer cells and defining the mode of cell death induced in these cells. The results showed that 1 exhibited high antiproliferative activity toward the Her2-overexpressing cell lines SKBR3 and BT474. The antiproliferative activity of 1 was associated with apoptosis-mediated cell death, as revealed by caspase activation and an increase in the sub-G1 fraction of the cell cycle. Compound 1 increased the levels of the proapoptotic Bcl-2 family of proteins and decreased the level of the antiapoptotic Bcl-2 protein in SKBR3 and BT474 cells. Thus, these findings indicate that 1 induces apoptosis in Her2-overexpressing breast cancers through the mitochondrial-mediated pathway and suggest its potential for further investigation for the treatment of Her2-overexpressing breast cancer. PMID:22512718

  19. Cetuximab enhanced the efficacy of chemotherapeutic agent in ABCB1/P-glycoprotein-overexpressing cancer cells.

    Science.gov (United States)

    Wang, Fang; Chen, Yifan; Huang, Lihua; Liu, Tao; Huang, Yue; Zhao, Jianming; Wang, Xiaokun; Yang, Ke; Ma, Shaolin; Huang, Liyan; To, Kenneth Kin Wah; Gu, Yong; Fu, Liwu

    2015-12-01

    The overexpression of ATP-binding cassette (ABC) transporters is closely associated with the development of multidrug resistance (MDR) in certain types of cancer, which represents a formidable obstacle to the successful cancer chemotherapy. Here, we investigated that cetuximab, an EGFR monoclonal antibody, reversed the chemoresistance mediated by ABCB1, ABCG2 or ABCC1. Our results showed that cetuximab significantly enhanced the cytotoxicity of ABCB1 substrate agent in ABCB1-overexpressing MDR cells but had no effect in their parental drug sensitive cells and ABCC1, ABCG2 overexpressing cells. Furthermore, cetuximab markedly increased intracellular accumulation of doxorubicin (DOX) and rhodamine 123 (Rho 123) in ABCB1-overexpressing MDR cancer cells in a concentration-dependent manner. Cetuximab stimulated the ATPase activity but did not alter the expression level of ABCB1 or block phosphorylation of AKT and ERK. Interestingly, cetuximab decreased the cell membrane fluidity which was known to decrease the function of ABCB1. Our findings advocate further clinical investigation of combination chemotherapy of cetuximab and conventional chemotherapeutic drugs in ABCB1 overexpressing cancer patients.

  20. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Piia, E-mail: piia.takabe@uef.fi [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Bart, Geneviève [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Ropponen, Antti [University of Eastern Finland, Institute of Clinical Medicine, 70211 Kuopio (Finland); Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland)

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  1. ten-a overexpression causes abnormal pattern in the Drosophila compound eye

    Institute of Scientific and Technical Information of China (English)

    LERTLUK NGERNSIRI; NORA FASCETTI; SUPPALUK ROMRATANAPAN; STEFAN BAUMGARTNER

    2006-01-01

    Ten-a is one of the two Drosophila proteins that belong to the Ten M protein family. This protein is a type Ⅱ transmembrane protein and is expressed mainly in the embryonic CNS, in the larval eye imaginal disc and in the compound eye of the pupa. Here,we investigate the role of ten-a during development of the compound eye by using the Gal4/UAS system to induce ten-a overexpression in the developing eye. We found that overexpression of ten-a can perturb eye development during all stages examined. In an early stage, overexpression of ten-a in eye primordial cells caused small and rough eyes and interfered with photoreceptor cell recruitment, resulting in some ommatidia having fewer or extra photoreceptor cells. Conversely, ten-a overexpression during ommatidial formation caused severe eye defects due to absence of many cellular components. Interestingly,overexpression of ten-a in the late stage developing ommatidial cluster affected the number of pigment cells, caused cone cells proliferation in many ommatidia, and caused some photoreceptor cell defects. These results suggest that ten-a may be a novel gene required for normal eye morphogenesis.

  2. Overexpression of the cholesterol-binding protein MLN64 induces liver damage in the mouse

    Institute of Scientific and Technical Information of China (English)

    Juan Enrique Tichauer; Juan Francisco Miquel; Attilio Rigotti; Silvana Zanlungo; Mar(i)a Gabriela Morales; Ludwig Amigo; Leopoldo Galdames; Andrés Kléin; Verónica Quifio(n)es; Carla Ferrada; Alejandra Alvarez R; Marie-Christine Rio

    2007-01-01

    AIM: To examine the in vivo phenotype associated with hepatic metastatic lymph node 64 (MLN64) over-expression.METHODS: Recombinant-adenovirus-mediated MLN64 gene transfer was used to overexpress MLN64 in the livers of C57BL/6 mice. We measured the effects of MLN64 overexpression on hepatic cholesterol content, bile flow, biliary lipid secretion and apoptosis markers. For in vitro studies cultured CHO cells with transient MLN64 overexpression were utilized and apoptosis by TUNEL assay was measured.RESULTS: Livers from Ad.MLN64-infected mice exhibited early onset of liver damage and apoptosis. This response correlated with increases in liver cholesterol content and biliary bile acid concentration, and impaired bile flow. We investigated whether liver MLN64 expression could be modulated in a murine model of hepatic injury. We found increased hepatic MLN64 mRNA and protein levels in mice with chenodeoxycholic acid-induced liver damage. In addition, cultured CHO cells with transient MLN64 overexpression showed increased apoptosis.CONCLUSION: In summary, hepatic MLN64 over-expression induced damage and apoptosis in murine livers and altered cholesterol metabolism. Further studies are required to elucidate the relevance of these findings under physiologic and disease conditions.

  3. Assessing behavioural effects of chronic HPA axis activation using conditional CRH-overexpressing mice.

    Science.gov (United States)

    Dedic, Nina; Touma, Chadi; Romanowski, Cristoph P; Schieven, Marcel; Kühne, Claudia; Ableitner, Martin; Lu, Ailing; Holsboer, Florian; Wurst, Wolfgang; Kimura, Mayumi; Deussing, Jan M

    2012-07-01

    The corticotropin-releasing hormone (CRH) and its cognate receptors have been implicated in the pathophysiology of stress-related disorders. Hypersecretion of central CRH and elevated glucocorticoid levels, as a consequence of impaired feedback control, have been shown to accompany mood and anxiety disorders. However, a clear discrimination of direct effects of centrally hypersecreted CRH from those resulting from HPA axis activation has been difficult. Applying a conditional strategy, we have generated two conditional CRH-overexpressing mouse lines: CRH-COE ( Del ) mice overexpress CRH throughout the body, while CRH-COE ( APit ) mice selectively overexpress CRH in the anterior and intermediate lobe of the pituitary. Both mouse lines show increased basal plasma corticosterone levels and consequently develop signs of Cushing's syndrome. However, while mice ubiquitously overexpressing CRH exhibited increased anxiety-related behaviour, overexpression of CRH in the pituitary did not produce alterations in emotional behaviour. These results suggest that chronic hypercorticosteroidism alone is not sufficient to alter anxiety-related behaviour but rather that central CRH hyperdrive on its own or in combination with elevated glucocorticoids is responsible for the increase in anxiety-related behaviour. In conclusion, the generated mouse lines represent valuable animal models to study the consequences of chronic CRH overproduction and HPA axis activation.

  4. Polyphosphates and Polyphosphatase Activity in the Yeast Saccharomyces cerevisiae during Overexpression of the DDP1 Gene.

    Science.gov (United States)

    Trilisenko, L V; Andreeva, N A; Eldarov, M A; Dumina, M V; Kulakovskaya, T V

    2015-10-01

    The effects of overexpression of yeast diphosphoinositol polyphosphate phosphohydrolase (DDP1) having endopolyphosphatase activity on inorganic polyphosphate metabolism in Saccharomyces cerevisiae were studied. The endopolyphosphatase activity in the transformed strain significantly increased compared to the parent strain. This activity was observed with polyphosphates of different chain length, being suppressed by 2 mM tripolyphosphate or ATP. The content of acid-soluble and acid-insoluble polyphosphates under DDP1 overexpression decreased by 9 and 28%, respectively. The average chain length of salt-soluble and alkali-soluble fractions did not change in the overexpressing strain, and that of acid-soluble polyphosphate increased under phosphate excess. At the initial stage of polyphosphate recovery after phosphorus starvation, the chain length of the acid-soluble fraction in transformed cells was lower compared to the recipient strain. This observation suggests the complex nature of DDP1 involvement in the regulation of polyphosphate content and chain length in yeasts.

  5. Effect of secretory pathway gene overexpression on secretion of a fluorescent reporter protein in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Schalén, Martin; Anyaogu, Diana Chinyere; Hoof, Jakob Blæsbjerg;

    2016-01-01

    . The background strain was a fluorescent reporter secreting mRFP. The overall effect of the overexpressions could thus be easily monitored through fluorescence measurements, while the effects on physiology were determined in batch cultivations and surface growth studies. Results: Fourteen protein secretion...... pathway related genes were overexpressed with a tet-ON promoter in the RFP-secreting reporter strain and macromorphology, physiology and protein secretion were monitored when the secretory genes were induced. Overexpression of several of the chosen genes was shown to cause anomalies on growth, micro...... results indicate that increased expression may be a way for the cell to slow down secretion in order to cope with the increased protein load. By constructing a secretion reporter strain, the study demonstrates a robust way to study the secretion pathway in filamentous fungi....

  6. Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato.

    Science.gov (United States)

    Shen, Hui; Zhong, Xiangbin; Zhao, Fangfang; Wang, Yanmei; Yan, Bingxiao; Li, Qun; Chen, Genyun; Mao, Bizeng; Wang, Jianjun; Li, Yangsheng; Xiao, Guoying; He, Yuke; Xiao, Han; Li, Jianming; He, Zuhua

    2015-09-01

    The detrimental effects of global warming on crop productivity threaten to reduce the world's food supply. Although plant responses to changes in temperature have been studied, genetic modification of crops to improve thermotolerance has had little success to date. Here we demonstrate that overexpression of the Arabidopsis thaliana receptor-like kinase ERECTA (ER) in Arabidopsis, rice and tomato confers thermotolerance independent of water loss and that Arabidopsis er mutants are hypersensitive to heat. A loss-of-function mutation of a rice ER homolog and reduced expression of a tomato ER allele decreased thermotolerance of both species. Transgenic tomato and rice lines overexpressing Arabidopsis ER showed improved heat tolerance in the greenhouse and in field tests at multiple locations in China during several seasons. Moreover, ER-overexpressing transgenic Arabidopsis, tomato and rice plants had increased biomass. Our findings could contribute to engineering or breeding thermotolerant crops with no growth penalty. PMID:26280413

  7. Overexpression of p53 Gene in Esophageal and Cervical Cancer and the Relationship with Radiotherapy Effects

    Institute of Scientific and Technical Information of China (English)

    张晓智; 王晓丽; 李旭

    2003-01-01

    Objective:To investigate the relationship between p53 protein overexpression in esophageal and cervical squamous cell cancer and their clinical radiosensitivity. Methods: The immuno-histochemical assays were done for 52 cases with esophageal and cervical squamous cell cancer. The relationship between the assay results and short-term radiotherapy was investigated. Results: p53 overer-pression was 52.38% and 35. 48% respectively, in esophageal cancer and cervical cancer;p53 over-expression in high differentiated squamous cell cancer was knver than these in moderate and poor differentiated cases(P0. 05). In the cases of cervical cancer, p53 overexpression had the less short-term effect(P0. 05).Conclusion:This study suggests that p53 gene has the certain relationship with tumor radiosensitivity.

  8. Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells.

    Science.gov (United States)

    Do, Minh Truong; Kim, Hyung Gyun; Choi, Jae Ho; Khanal, Tilak; Park, Bong Hwan; Tran, Thu Phuong; Jeong, Tae Cheon; Jeong, Hye Gwang

    2013-12-01

    Piperine is a bioactive component of black pepper, Piper nigrum Linn, commonly used for daily consumption and in traditional medicine. Here, the molecular mechanisms by which piperine exerts antitumor effects in HER2-overexpressing breast cancer cells was investigated. The results showed that piperine strongly inhibited proliferation and induced apoptosis through caspase-3 activation and PARP cleavage. Furthermore, piperine inhibited HER2 gene expression at the transcriptional level. Blockade of ERK1/2 signaling by piperine significantly reduced SREBP-1 and FAS expression. Piperine strongly suppressed EGF-induced MMP-9 expression through inhibition of AP-1 and NF-κB activation by interfering with ERK1/2, p38 MAPK, and Akt signaling pathways resulting in a reduction in migration. Finally, piperine pretreatment enhanced sensitization to paclitaxel killing in HER2-overexpressing breast cancer cells. Our findings suggest that piperine may be a potential agent for the prevention and treatment of human breast cancer with HER2 overexpression.

  9. Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker's yeast in frozen dough.

    Science.gov (United States)

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-01-01

    We constructed a self-cloning diploid baker's yeast strain that overexpressed the transcription activator Msn2. It showed higher tolerance to freeze-thaw stress and higher intracellular trehalose level than observed in the wild-type strain. Overexpression of Msn2 also enhanced the fermentation ability of baker's yeast cells in frozen dough. Hence, Msn2-overexpressing baker's yeast should be useful in frozen-dough baking. PMID:22451415

  10. Striatal dopamine transmission is subtly modified in human A53Tα-synuclein overexpressing mice.

    Directory of Open Access Journals (Sweden)

    Nicola J Platt

    Full Text Available Mutations in, or elevated dosage of, SNCA, the gene for α-synuclein (α-syn, cause familial Parkinson's disease (PD. Mouse lines overexpressing the mutant human A53Tα-syn may represent a model of early PD. They display progressive motor deficits, abnormal cellular accumulation of α-syn, and deficits in dopamine-dependent corticostriatal plasticity, which, in the absence of overt nigrostriatal degeneration, suggest there are age-related deficits in striatal dopamine (DA signalling. In addition A53Tα-syn overexpression in cultured rodent neurons has been reported to inhibit transmitter release. Therefore here we have characterized for the first time DA release in the striatum of mice overexpressing human A53Tα-syn, and explored whether A53Tα-syn overexpression causes deficits in the release of DA. We used fast-scan cyclic voltammetry to detect DA release at carbon-fibre microelectrodes in acute striatal slices from two different lines of A53Tα-syn-overexpressing mice, at up to 24 months. In A53Tα-syn overexpressors, mean DA release evoked by a single stimulus pulse was not different from wild-types, in either dorsal striatum or nucleus accumbens. However the frequency responsiveness of DA release was slightly modified in A53Tα-syn overexpressors, and in particular showed slight deficiency when the confounding effects of striatal ACh acting at presynaptic nicotinic receptors (nAChRs were antagonized. The re-release of DA was unmodified after single-pulse stimuli, but after prolonged stimulation trains, A53Tα-syn overexpressors showed enhanced recovery of DA release at old age, in keeping with elevated striatal DA content. In summary, A53Tα-syn overexpression in mice causes subtle changes in the regulation of DA release in the striatum. While modest, these modifications may indicate or contribute to striatal dysfunction.

  11. Enhancing Indigo Production by Over-Expression of the Styrene Monooxygenase in Pseudomonas putida.

    Science.gov (United States)

    Cheng, Lei; Yin, Sheng; Chen, Min; Sun, Baoguo; Hao, Shuai; Wang, Chengtao

    2016-08-01

    As an important traditional blue dye, indigo has been used in food and textile industry for centuries, which can be produced via the styrene oxygenation pathway in Pseudomonas putida. Hence, the styrene monooxygenase gene styAB and oxide isomerase gene styC are over-expressed in P. putida to investigate their roles in indigo biosynthesis. RT-qPCR analysis indicated that transcriptions of styA and styB were increased by 2500- and 750-folds in the styAB over-expressed strain B4-01, compared with the wild-type strain B4, consequently significantly enhancing the indole monooxygenase activity. Transcription of styC was also increased by 100-folds in the styC over-expressed strain B4-02. Besides, styAB over-expression slightly up-regulated the transcription of styC in B4-01, while styC over-expression hardly exerted an effect on the transcriptional levels of styA and styB and indole monooxygenase activity in B4-02. Furthermore, shaking flask experiments showed that indigo production in B4-01 reached 52.13 mg L(-1) after 24 h, which was sevenfold higher than that in B4. But no obvious increase in indigo yield was observed in B4-02. Over-expression of styAB significantly enhanced the indigo production, revealing that the monooxygenase STYAB rather than oxide isomerase STYC probably acted as the key rate-limiting enzyme in the indigo biosynthesis pathway in P. putida. This work provided a new strategy for enhancing indigo production in Pseudomonas. PMID:27154464

  12. HER2 over-expression and response to different chemotherapy regimens in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Jin ZHANG; Yan LIU

    2008-01-01

    Purpose: To exam the relationship between HER2 over-expression and different adjuvant chemotherapies in breast cancer. Patients and Methods: A total of 1625 primary breast cancer patients who received post-surgery adjuvant chemotherapy in Tianjin Cancer Hospital, China, from July 2002 to November 2005 were included in the study. Among them, 600 patients were given CMF (CTX+MTX+5-Fu) regimen, 600 given CEF (CTX+E-ADM+5-Fu) regimen, and 425 given anthracyclines plus taxanes regimen, with mean follow-up time of 42 months. Results: In CMF treatment group, the 3-year disease free survival (DFS)in HER2 over-expressed patients was lower than that of the HER2-negative ones (89.80% vs 91.24%, P=0.0348); in node-positive subgroup, the 3-year DFS was 84.72% in HER2 over-expressed patients, and 90.18% in the HER-2-negative ones (P=0.0271).Compared to CMF regimen, anthracyclines and anthracyclines plus taxanes regimens are more effective (P<0.05) in node-positive HER2 over-expression than those in the node-negative. Conclusion: HER2 over-expression is an independent index for predicting poor prognosis and short DFS for breast cancer patients. HER2 over-expressed patients are resistant to CMF regimen chemotherapy, but sensitive to anthracyclines-based or anthracyclines plus taxanes regimen. HER2 expression can be taken as a marker for therapies in breast cancer.

  13. Overexpression of NRPS4 leads to increased surface hydrophobicity in Fusarium graminearum

    DEFF Research Database (Denmark)

    Hansen, Frederik Teilfeldt; Droce, Aida; Sørensen, Jens Laurids;

    2012-01-01

    brassicicola and Cochloibolus heterostrophus has been shown to result in mutants unable to repel water. In a time study of surface hydrophobicity we observed that water droplets could penetrate seven day old colonies of the NRPS4 deletion mutants. Loss in ability to repel water was first observed on 13 days...... old cultures of the wild type strain, whereas the overexpression strain remained water repellant throughout the 38 day time study. The conidia of both mutants were examined and those of the overexpression mutant showed distinct morphological differences in form of collapsed cells. These observations...

  14. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    Science.gov (United States)

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification.

  15. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases

    Directory of Open Access Journals (Sweden)

    Yu-Hung eYeh

    2015-05-01

    Full Text Available Upon recognition of microbe-associated molecular patterns (MAMPs such as the bacterial flagellin (or the derived peptide flg22 by pattern-recognition receptors (PRRs such as the FLAGELLIN SENSING2 (FLS2, plants activate the pattern-triggered immunity (PTI response. The L-type lectin receptor kinase-VI.2 (LecRK-VI.2 is a positive regulator of Arabidopsis thaliana PTI. Cysteine-rich receptor-like kinases (CRKs possess two copies of the C-X8-C-X2-C (DUF26 motif in their extracellular domains and are thought to be involved in plant stress resistance, but data about CRK functions are scarce. Here we show that Arabidopsis overexpressing the LecRK-VI.2-responsive CRK4, CRK6 and CRK36 demonstrated an enhanced PTI response and were resistant to virulent bacteria Pseudomonas syringae pv. tomato DC3000. Notably, the flg22-triggered oxidative burst was primed in CRK4, CRK6, and CRK36 transgenics and up-regulation of the PTI-responsive gene FLG22-INDUCED RECEPTOR-LIKE 1 (FRK1 was potentiated upon flg22 treatment in CRK4 and CRK6 overexpression lines or constitutively increased by CRK36 overexpression. PTI-mediated callose deposition was not affected by overexpression of CRK4 and CRK6, while CRK36 overexpression lines demonstrated constitutive accumulation of callose. In addition, Pst DC3000-mediated stomatal reopening was blocked in CRK4 and CRK36 overexpression lines, while overexpression of CRK6 induced constitutive stomatal closure suggesting a strengthening of stomatal immunity. Finally, bimolecular fluorescence complementation and co-immunoprecipitation analyses in Arabidopsis protoplasts suggested that the plasma membrane localized CRK4, CRK6 and CRK36 associate with the PRR FLS2. Association with FLS2 and the observation that overexpression of CRK4, CRK6, and CRK36 boosts specific PTI outputs and resistance to bacteria suggest a role for these CRKs in Arabidopsis innate immunity.

  16. Mouse ES cells overexpressing DNMT1 produce abnormal neurons with upregulated NR1