WorldWideScience

Sample records for astrocytoma cells contributes

  1. Inhibition of STAT3 reduces astrocytoma cell invasion and constitutive activation of STAT3 predicts poor prognosis in human astrocytoma.

    Directory of Open Access Journals (Sweden)

    Qinchuan Liang

    Full Text Available Astrocytoma cells characteristically possess high invasion potentials. Recent studies have revealed that knockdown of signal transducers and activators of transcription 3 (STAT3 expression by RNAi induces apoptosis in astrocytoma cell. Nevertheless, the distinct roles of STAT3 in astrocytoma's invasion and recurrence have not been elucidated. In this study, we silenced STAT3 using Small interfering RNAs in two human glioblastoma multiforme (GBM cell lines (U251 and U87, and investigated the effect on GBM cell adhesion and invasion. Our results demonstrate that disruption of STAT3 inhibits GBM cell's adhesion and invasion. Knockdown of STAT3 significantly increased E-cadherin but decreased N-cadherin, vascular endothelial growth factor, matrix metalloproteinase 2 and matrix metalloproteinase 9. Additionally, expression of pSTAT3(Tyr705 correlates with astrocytoma WHO classification, Karnofsky performance status scale score, tumor recurrence and survival. Furthermore, pSTAT3(Tyr705 is a significant prognostic factor in astrocytoma. In conclusion, STAT3 may affect astrocytoma invasion, expression of pSTAT3(Tyr705 is a significant prognostic factor in tumor recurrence and overall survival in astrocytoma patients. Therefore, STAT3 may provide a potential target for molecular therapy in human astrocytoma, and pSTAT3(Tyr705could be an important biomarker for astrocytoma prognosis.

  2. Cystic astrocytomas in children. The contribution of MRI

    International Nuclear Information System (INIS)

    Vilgrain, V.; Sellier, N.; Lalande, G.; Demange, P.; Kalifa, G.

    1988-01-01

    Three cases of cystic astrocytomas are reported in children. Two are supratentorial and one is a cerebellar tumor. The authors insist on the difficulties of the diagnosis. They emphasize the role of NMR which enables distinction between cystic astrocytomas and other cysts. In agreement with Kjos, the 3 cystic astrocytomas demonstrate an increased T1 and T2 and belong to the group of cystic tumors (type II) [fr

  3. Identification of astrocytoma associated genes including cell surface markers

    International Nuclear Information System (INIS)

    Boon, Kathy; Edwards, Jennifer B; Eberhart, Charles G; Riggins, Gregory J

    2004-01-01

    Despite intense effort the treatment options for the invasive astrocytic tumors are still limited to surgery and radiation therapy, with chemotherapy showing little or no increase in survival. The generation of Serial Analysis of Gene Expression (SAGE) profiles is expected to aid in the identification of astrocytoma-associated genes and highly expressed cell surface genes as molecular therapeutic targets. SAGE tag counts can be easily added to public expression databases and quickly disseminated to research efforts worldwide. We generated and analyzed the SAGE transcription profiles of 25 primary grade II, III and IV astrocytomas [1]. These profiles were produced as part of the Cancer Genome Anatomy Project's SAGE Genie [2], and were used in an in silico search for candidate therapeutic targets by comparing astrocytoma to normal brain transcription. Real-time PCR and immunohistochemistry were used for the validation of selected candidate target genes in 2 independent sets of primary tumors. A restricted set of tumor-associated genes was identified for each grade that included genes not previously associated with astrocytomas (e.g. VCAM1, SMOC1, and thymidylate synthetase), with a high percentage of cell surface genes. Two genes with available antibodies, Aquaporin 1 and Topoisomerase 2A, showed protein expression consistent with transcript level predictions. This survey of transcription in malignant and normal brain tissues reveals a small subset of human genes that are activated in malignant astrocytomas. In addition to providing insights into pathway biology, we have revealed and quantified expression for a significant portion of cell surface and extra-cellular astrocytoma genes

  4. Ammonium-induced calcium mobilization in 1321N1 astrocytoma cells

    International Nuclear Information System (INIS)

    Hillmann, Petra; Koese, Meryem; Soehl, Kristina; Mueller, Christa E.

    2008-01-01

    High blood levels of ammonium/ammonia (NH 4 + /NH 3 ) are associated with severe neurotoxicity as observed in hepatic encephalopathy (HE). Astrocytes are the main targets of ammonium toxicity, while neuronal cells are less vulnerable. In the present study, an astrocytoma cell line 1321N1 and a neuroblastoma glioma hybrid cell line NG108-15 were used as model systems for astrocytes and neuronal cells, respectively. Ammonium salts evoked a transient increase in intracellular calcium concentrations ([Ca 2+ ] i ) in astrocytoma (EC 50 = 6.38 mM), but not in NG108-15 cells. The ammonium-induced increase in [Ca 2+ ] i was due to an intracellular effect of NH 4 + /NH 3 and was independent of extracellular calcium. Acetate completely inhibited the ammonium effect. Ammonium potently reduced calcium signaling by G q protein-coupled receptors (H 1 and M3) expressed on the cells. Ammonium (5 mM) also significantly inhibited the proliferation of 1321N1 astrocytoma cells. While mRNA for the mammalian ammonium transporters RhBG and RhCG could not be detected in 1321N1 astrocytoma cells, both transporters were expressed in NG108-15 cells. RhBG and RhBC in brain may promote the excretion of NH 3 /NH 4 + from neuronal cells. Cellular uptake of NH 4 + /NH 3 was mainly by passive diffusion of NH 3 . Human 1321N1 astrocytoma cells appear to be an excellent, easily accessible human model for studying HE, which can substitute animal studies, while NG108-15 cells may be useful for investigating the role of the recently discovered Rhesus family type ammonium transporters in neuronal cells. Our findings may contribute to the understanding of pathologic ammonium effects in different brain cells, and to the treatment of hyperammonemia

  5. Everolimus Alleviates Obstructive Hydrocephalus due to Subependymal Giant Cell Astrocytomas.

    Science.gov (United States)

    Moavero, Romina; Carai, Andrea; Mastronuzzi, Angela; Marciano, Sara; Graziola, Federica; Vigevano, Federico; Curatolo, Paolo

    2017-03-01

    Subependymal giant cell astrocytomas (SEGAs) are low-grade tumors affecting up to 20% of patients with tuberous sclerosis complex (TSC). Early neurosurgical resection has been the only standard treatment until few years ago when a better understanding of the molecular pathogenesis of TSC led to the use of mammalian target of rapamycin (mTOR) inhibitors. Surgical resection of SEGAs is still considered as the first line treatment in individuals with symptomatic hydrocephalus and intratumoral hemorrhage. We describe four patients with symptomatic or asymptomatic hydrocephalus who were successfully treated with the mTOR inhibitor everolimus. We collected the clinical data of four consecutive patients presenting with symptomatic or asymptomatic hydrocephalus due to a growth of subependymal giant cell atrocytomas and who could not undergo surgery for different reasons. All patients experienced a clinically significant response to everolimus and an early shrinkage of the SEGA with improvement in ventricular dilatation. Everolimus was well tolerated by all individuals. Our clinical series demonstrate a possible expanding indication for mTOR inhibition in TSC, which can be considered in patients with asymptomatic hydrocephalus or even when the symptoms already appeared. It offers a significant therapeutic alternative to individuals that once would have undergone immediate surgery. Everolimus might also allow postponement of a neurosurgical resection, making it elective with an overall lower risk. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Pilocytic astrocytoma

    Directory of Open Access Journals (Sweden)

    Yu-wei CONG

    2015-03-01

    Full Text Available Background Pilocytic astrocytoma (PA is a low-grade glioma that occurs mainly in children and young adults. The histomorphology of PA located in the cerebellum (WHOⅠ is very typical. This article is to report one case of PA in the cerebellum of an 8-year-old child, and to discuss the clinical, imaging and pathological features of PA and clinicopathological differentiations from relevant tumors.  Methods and Results An 8-year-old girl presented intermittent headache for one month and the headache was aggravated for 7 d. MRI showed circular space-occupying lesion in the left cerebellar hemisphere and cerebellar vermis, and the lesion revealed uneven signals. During the surgery, the tumor was soft and jellylike, with poor blood supply. Histologically, tumor cell nuclei were round or oval; cytoplasmic projections on both ends were slender hair-like, and were arranged around the blood vessels. Part of tumor cells had spindle nuclei, and showed fascicular compact arrangement or loose reticular arrangement. The pathomorphism of this tumro was slightly different from that of typical PA. It had unusually rich blood vessels, and Rosenthal fibers and eosinophilic granules were not obvious. Tumor cells were diffusely positive for glial fibrillary acidic protein (GFAP, synaptophysin (Syn, vimentin (Vim and P53, but negative for cytokeratin (CK, neuronal nuclei (NeuN and neurofilament protein (NF. Ki-67 index was 2%-5%. Vascular endothelial cells were positive for CD34, and scatteredly expressed CD68. Pathological diagosis was pilocytic astrocytoma (WHOⅠ.  Conclusions Pilocytic astrocytoma usually happens in children and adolescents and often occurs in the cerebellum. Rosenthal fibers and eosinophilic granules are helpful to make a clear diagnosis, but they are not necessary conditions of diagnosis. Differential diagnoses should be paid attention, such as pilomyxoid astrocytoma, angiocentric glioma and dysembryoplastic neuroepithelial tumor (DNT

  7. Rab23 is overexpressed in human astrocytoma and promotes cell migration and invasion through regulation of Rac1.

    Science.gov (United States)

    Wang, Minghao; Dong, Qianze; Wang, Yunjie

    2016-08-01

    Rab23 overexpression has been implicated in several human cancers. However, its biological roles and molecular mechanism in astrocytoma have not been elucidated. The aim of this study is to explore clinical significance and biological roles of Rab23 in astrocytoma. We observed negative Rab23 staining in normal astrocytes and positive staining in 39 out of 86 (45 %) astrocytoma specimens using immunohistochemistry. The positive rate of Rab23 was higher in grades III and IV (56.5 %, 26/46) than grades I + II astrocytomas (32.5 %, 13/40, p Rac1 activity. Treatment of transfected cells with a Rac1 inhibitor decreased Rac1 activity and invasion. In conclusion, Rab23 serves as an important oncoprotein in human astrocytoma by regulating cell invasion and migration through Rac1 activity.

  8. A dangerous liaison: Leptin and sPLA2-IIA join forces to induce proliferation and migration of astrocytoma cells.

    Directory of Open Access Journals (Sweden)

    Rubén Martín

    Full Text Available Glioblastoma, the most aggressive type of primary brain tumour, shows worse prognosis linked to diabetes or obesity persistence. These pathologies are chronic inflammatory conditions characterized by altered profiles of inflammatory mediators, including leptin and secreted phospholipase A2-IIA (sPLA2-IIA. Both proteins, in turn, display diverse pro-cancer properties in different cell types, including astrocytes. Herein, to understand the underlying relationship between obesity and brain tumors, we investigated the effect of leptin, alone or in combination with sPLA2-IIA on astrocytoma cell functions. sPLA2-IIA induced up-regulation of leptin receptors in 1321N1 human astrocytoma cells. Leptin, as well as sPLA2-IIA, increased growth and migration in these cells, through activation/phosphorylation of key proteins of survival cascades. Leptin, at concentrations with minimal or no activating effects on astrocytoma cells, enhanced growth and migration promoted by low doses of sPLA2-IIA. sPLA2-IIA alone induced a transient phosphorylation pattern in the Src/ERK/Akt/mTOR/p70S6K/rS6 pathway through EGFR transactivation, and co-addition of leptin resulted in a sustained phosphorylation of these signaling regulators. Mechanistically, EGFR transactivation and tyrosine- and serine/threonine-protein phosphatases revealed a key role in this leptin-sPLA2-IIA cross-talk. This cooperative partnership between both proteins was also found in primary astrocytes. These findings thus indicate that the adipokine leptin, by increasing the susceptibility of cells to inflammatory mediators, could contribute to worsen the prognosis of tumoral and neurodegenerative processes, being a potential mediator of some obesity-related medical complications.

  9. Expression of delta-catenin is associated with progression of human astrocytoma

    International Nuclear Information System (INIS)

    MingHao, Wang; Qianze, Dong; Di, Zhang; YunJie, Wang

    2011-01-01

    δ-Catenin (CTNND2), which encodes a scaffold protein in humans, has been found in a few malignancies. However, the expression pattern and contribution of δ-catenin to astrocytoma progression are unclear. We investigated δ-catenin expression in human astrocytoma samples and its function in astrocytoma cell lines using immunohistochemistry, siRNA knockdown, transfection, MTT, transwell migration and Rac1 pulldown techniques. δ-Catenin protein expression was detected in cytoplasm of astrocytoma cells by immunohistochemistry. Analysis showed that grade I astrocytoma (0%, 0/11) and glial cells from normal brain tissue exhibited negative staining. δ-Catenin expression was significantly higher in grade III-IV (35%, 29/84) compared to grade II astrocytoma cells (18%, 11/61); p < 0.01). In addition, CTNND2 overexpression promoted proliferation, invasion and Rac1 activity of U251 astrocytoma cells. Treatment of δ-catenin-transfected cells with a Rac1 inhibitor decreased Rac1 activity and invasion. δ-Catenin knockdown in U87 glioblastoma cell decreased cell proliferation, invasion and Rac1 activity. The results suggest that δ-catenin expression is associated with the malignant progression of astrocytoma and promotes astrocytoma cell invasion through upregulation of Rac1 activity. δ-Catenin expression levels may serve as a useful marker of the biological behavior of astrocytoma cells

  10. Primary ciliogenesis defects are associated with human astrocytoma/glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Rattner Jerome B

    2009-12-01

    Full Text Available Abstract Background Primary cilia are non-motile sensory cytoplasmic organelles that have been implicated in signal transduction, cell to cell communication, left and right pattern embryonic development, sensation of fluid flow, regulation of calcium levels, mechanosensation, growth factor signaling and cell cycle progression. Defects in the formation and/or function of these structures underlie a variety of human diseases such as Alström, Bardet-Biedl, Joubert, Meckel-Gruber and oral-facial-digital type 1 syndromes. The expression and function of primary cilia in cancer cells has now become a focus of attention but has not been studied in astrocytomas/glioblastomas. To begin to address this issue, we compared the structure and expression of primary cilia in a normal human astrocyte cell line with five human astrocytoma/glioblastoma cell lines. Methods Cultured normal human astrocytes and five human astrocytoma/glioblastoma cell lines were examined for primary cilia expression and structure using indirect immunofluorescence and electron microscopy. Monospecific antibodies were used to detect primary cilia and map the relationship between the primary cilia region and sites of endocytosis. Results We show that expression of primary cilia in normal astrocytes is cell cycle related and the primary cilium extends through the cell within a unique structure which we show to be a site of endocytosis. Importantly, we document that in each of the five astrocytoma/glioblastoma cell lines fully formed primary cilia are either expressed at a very low level, are completely absent or have aberrant forms, due to incomplete ciliogenesis. Conclusions The recent discovery of the importance of primary cilia in a variety of cell functions raises the possibility that this structure may have a role in a variety of cancers. Our finding that the formation of the primary cilium is disrupted in cells derived from astrocytoma/glioblastoma tumors provides the first

  11. Xenograft transplantation of human malignant astrocytoma cells into immunodeficient rats: an experimental model of glioblastoma.

    Science.gov (United States)

    Miura, Flávio Key; Alves, Maria Jose Ferreira; Rocha, Mussya Cisotto; da Silva, Roseli; Oba-Shinjo, Sueli Mieko; Marie, Suely Kazue Nagahashi

    2010-03-01

    Astrocytic gliomas are the most common intracranial central nervous system neoplasias, accounting for about 60% of all primary central nervous system tumors. Despite advances in the treatment of gliomas, no effective therapeutic approach is yet available; hence, the search for a more realistic model to generate more effective therapies is essential. To develop an experimental malignant astrocytoma model with the characteristics of the human tumor. Primary cells from subcutaneous xenograft tumors produced with malignant astrocytoma U87MG cells were inoculated intracerebrally by stereotaxis into immunosuppressed (athymic) Rowett rats. All four injected animals developed non-infiltrative tumors, although other glioblastoma characteristics, such as necrosis, pseudopalisading cells and intense mitotic activity, were observed. A malignant astrocytoma intracerebral xenograft model with poorly invasive behavior was achieved in athymic Rowett rats. Tumor invasiveness in an experimental animal model may depend on a combination of several factors, including the cell line used to induce tumor formation, the rat strains and the status of the animal's immune system.

  12. Exposure to 60-Hz magnetic fields and proliferation of human astrocytoma cells in vitro.

    Science.gov (United States)

    Wei, M; Guizzetti, M; Yost, M; Costa, L G

    2000-02-01

    Epidemiological studies have suggested that exposure to electric and magnetic fields (EMF) may be associated with an increased incidence of brain tumors, most notably astrocytomas. However, potential cellular or molecular mechanisms involved in these effects of EMF are not known. In this study we investigated whether exposure to 60-Hz sinusoidal magnetic fields (0.3-1.2 G for 3-72 h) would cause proliferation of human astrocytoma cells. Sixty-Hertz magnetic fields (MF) caused a time- and dose-dependent increase in proliferation of astrocytoma cells, measured by (3)H-thymidine incorporation and by flow cytometry, and strongly potentiated the effect of two agonists (the muscarinic agonist carbachol and the phorbol ester PMA). However, MF had no effect on DNA synthesis of rat cortical astrocytes, i.e., of similar, nontransformed cells. To determine the amount of heating induced by MF, temperatures were also recorded in the medium. Both 1.2 G MF and a sham exposure caused a 0.7 degrees C temperature increase in the medium; however, (3)H-thymidine incorporation induced by sham exposure was significantly less than that caused by MF. GF 109203X, a rather specific protein kinase C (PKC) inhibitor, and down-regulation of PKC inhibited the effect of MF on basal and on agonist-stimulated (3)H-thymidine incorporation. These data indicate that MF can increase the proliferation of human astrocytoma cells and strongly potentiate the effects of two agonists. These findings may provide a biological basis for the observed epidemiological associations between MF exposure and brain tumors. Copyright 2000 Academic Press.

  13. Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma

    Directory of Open Access Journals (Sweden)

    Wang Yifei

    2004-09-01

    Full Text Available Abstract Background Astrocytoma is a common aggressive intracranial tumor and presents a formidable challenge in the clinic. Association of altered DNA methylation patterns of the promoter CpG islands with the expression profile of cancer-related genes, has been found in many human tumors. Therefore, DNA methylation status as such may serve as an epigenetic biomarker for both diagnosis and prognosis of human tumors, including astrocytoma. Methods We used the methylation specific PCR in conjunction with sequencing verification to establish the methylation profile of the promoter CpG island of thirty four genes in astrocytoma tissues from fifty three patients (The WHO grading:. I: 14, II: 15, III: 12 and IV: 12 cases, respectively. In addition, compatible tissues (normal tissues distant from lesion from three non-astrocytoma patients were included as the control. Results Seventeen genes (ABL, APC, APAF1, BRCA1, CSPG2, DAPK1, hMLH1, LKB1, PTEN, p14ARF, p15INK4b, p27KIP1, p57KIP2, RASSF1C, RB1, SURVIVIN, and VHL displayed a uniformly unmethylated pattern in all the astrocytoma and non-astrocytoma tissues examined. However, the MAGEA1 gene that was inactivated and hypermethylated in non-astrocytoma tissues, was partially demethylated in 24.5% of the astrocytoma tissues (co-existence of the hypermethylated and demethylated alleles. Of the astrocytoma associated hypermethylated genes, the methylation pattern of the CDH13, cyclin a1, DBCCR1, EPO, MYOD1, and p16INK4a genes changed in no more than 5.66% (3/53 of astrocytoma tissues compared to non-astrocytoma controls, while the RASSF1A, p73, AR, MGMT, CDH1, OCT6,, MT1A, WT1, and IRF7 genes were more frequently hypermethylated in 69.8%, 47.2%, 41.5%, 35.8%, 32%, 30.2%, 30.2%, 30.2% and 26.4% of astrocytoma tissues, respectively. Demethylation mediated inducible expression of the CDH13, MAGEA1, MGMT, p73 and RASSF1A genes was established in an astrocytoma cell line (U251, demonstrating that expression of

  14. Expression of aquaporin8 in human astrocytomas: Correlation with pathologic grade

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Shu-juan; Wang, Ke-jian; Gan, Sheng-wei; Xu, Jin; Xu, Shi-ye; Sun, Shan-quan, E-mail: sunsq2151@cqmu.edu.cn

    2013-10-11

    Highlights: •AQP8 is mainly distributed in the cytoplasm of human astrocytoma cells. •AQP8 over-expressed in human astrocytomas, especially glioblastoma. •The up-regulation of AQP8 is related to the pathological grade of human astrocytomas. •AQP8 may contribute to the growth and proliferation of astrocytomas. -- Abstract: Aquaporin8 (AQP8), a member of the aquaporin (AQP) protein family, is weakly distributed in mammalian brains. Previous studies on AQP8 have focused mainly on the digestive and the reproductive systems. AQP8 has a pivotal role in keeping the fluid and electrolyte balance. In this study, we investigated the expression changes of AQP8 in 75 cases of human brain astrocytic tumors using immunohistochemistry, Western blotting, and reverse transcription polymerase chain reaction. The results demonstrated that AQP8 was mainly distributed in the cytoplasm of astrocytoma cells. The expression levels and immunoreactive score of AQP8 protein and mRNA increased in low-grade astrocytomas, and further increased in high-grade astrocytomas, especially in glioblastoma. Therefore, AQP8 may contribute to the proliferation of astrocytomas, and may be a biomarker and candidate therapy target for patients with astrocytomas.

  15. Expression of aquaporin8 in human astrocytomas: Correlation with pathologic grade

    International Nuclear Information System (INIS)

    Zhu, Shu-juan; Wang, Ke-jian; Gan, Sheng-wei; Xu, Jin; Xu, Shi-ye; Sun, Shan-quan

    2013-01-01

    Highlights: •AQP8 is mainly distributed in the cytoplasm of human astrocytoma cells. •AQP8 over-expressed in human astrocytomas, especially glioblastoma. •The up-regulation of AQP8 is related to the pathological grade of human astrocytomas. •AQP8 may contribute to the growth and proliferation of astrocytomas. -- Abstract: Aquaporin8 (AQP8), a member of the aquaporin (AQP) protein family, is weakly distributed in mammalian brains. Previous studies on AQP8 have focused mainly on the digestive and the reproductive systems. AQP8 has a pivotal role in keeping the fluid and electrolyte balance. In this study, we investigated the expression changes of AQP8 in 75 cases of human brain astrocytic tumors using immunohistochemistry, Western blotting, and reverse transcription polymerase chain reaction. The results demonstrated that AQP8 was mainly distributed in the cytoplasm of astrocytoma cells. The expression levels and immunoreactive score of AQP8 protein and mRNA increased in low-grade astrocytomas, and further increased in high-grade astrocytomas, especially in glioblastoma. Therefore, AQP8 may contribute to the proliferation of astrocytomas, and may be a biomarker and candidate therapy target for patients with astrocytomas

  16. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation.

    Directory of Open Access Journals (Sweden)

    Natalia Bailon-Moscoso

    Full Text Available Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL, a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.

  17. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation.

    Science.gov (United States)

    Bailon-Moscoso, Natalia; González-Arévalo, Gabriela; Velásquez-Rojas, Gabriela; Malagon, Omar; Vidari, Giovanni; Zentella-Dehesa, Alejandro; Ratovitski, Edward A; Ostrosky-Wegman, Patricia

    2015-01-01

    Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites) may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL), a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.

  18. Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells

    Science.gov (United States)

    Dong, Lifeng; Witkowski, Colette M.; Craig, Michael M.; Greenwade, Molly M.; Joseph, Katherine L.

    2009-12-01

    Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT) conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL) for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC) and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood-brain barrier to the brain and the central nervous system.

  19. The extrinsic and intrinsic apoptotic pathways are involved in manganese toxicity in rat astrocytoma C6 cells.

    Science.gov (United States)

    Alaimo, Agustina; Gorojod, Roxana M; Kotler, Mónica L

    2011-08-01

    Manganese (Mn) is a trace element known to be essential for maintaining the proper function and regulation of many biochemical and cellular reactions. However, chronic exposure to high levels of Mn in occupational or environmental settings can lead to its accumulation in the brain resulting in a degenerative brain disorder referred to as Manganism. Astrocytes are the main Mn store in the central nervous system and several lines of evidence implicate these cells as major players in the role of Manganism development. In the present study, we employed rat astrocytoma C6 cells as a sensitive experimental model for investigating molecular mechanisms involved in Mn neurotoxicity. Our results show that C6 cells undergo reactive oxygen species-mediated apoptotic cell death involving caspase-8 and mitochondrial-mediated pathways in response to Mn. Exposed cells exhibit typical apoptotic features, such as chromatin condensation, cell shrinkage, membrane blebbing, caspase-3 activation and caspase-specific cleavage of the endogenous substrate poly (ADP-ribose) polymerase. Participation of the caspase-8 dependent pathway was assessed by increased levels of FasL, caspase-8 activation and Bid cleavage. The involvement of the mitochondrial pathway was demonstrated by the disruption of the mitochondrial membrane potential, the opening of the mitochondrial permeability transition pore, cytochrome c release, caspase-9 activation and the increased mitochondrial levels of the pro-apoptotic Bcl-2 family proteins. In addition, our data also shows for the first time that mitochondrial fragmentation plays a relevant role in Mn-induced apoptosis. Taking together, these findings contribute to a deeper elucidation of the molecular signaling mechanisms underlying Mn-induced apoptosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Errantum: Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins

    Directory of Open Access Journals (Sweden)

    Lai JCK

    2010-12-01

    Full Text Available Lai JCK, Ananthakrishnan G, Jandhyam S, et al. Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins. Int J Nanomedicine. 2010;5:715–723.The wrong image was used in Figure 5 on page 719.

  1. Apoptosis and telomeres shortening related to HIV-1 induced oxidative stress in an astrocytoma cell line

    Directory of Open Access Journals (Sweden)

    Mollace Vincenzo

    2009-05-01

    Full Text Available Abstract Background Oxidative stress plays a key role in the neuropathogenesis of Human Immunodeficiency Virus-1 (HIV-1 infection causing apoptosis of astroglia cells and neurons. Recent data have shown that oxidative stress is also responsible for the acceleration of human fibroblast telomere shortening in vitro. In the present study we analyzed the potential relations occurring between free radicals formation and telomere length during HIV-1 mediated astroglial death. Results To this end, U373 human astrocytoma cells have been directly exposed to X4-using HIV-1IIIB strain, for 1, 3 or 5 days and treated (where requested with N-acetylcysteine (NAC, a cysteine donor involved in the synthesis of glutathione (GSH, a cellular antioxidant and apoptosis has been evaluated by FACS analysis. Quantitative-FISH (Q-FISH has been employed for studying the telomere length while intracellular reduced/oxidized glutathione (GSH/GSSG ratio has been determined by High-Performance Liquid Chromatography (HPLC. Incubation of U373 with HIV-1IIIB led to significant induction of cellular apoptosis that was reduced in the presence of 1 mM NAC. Moreover, NAC improved the GSH/GSSG, a sensitive indicator of oxidative stress, that significantly decreased after HIV-1IIIB exposure in U373. Analysis of telomere length in HIV-1 exposed U373 showed a statistically significant telomere shortening, that was completely reverted in NAC-treated U373. Conclusion Our results support the role of HIV-1-mediated oxidative stress in astrocytic death and the importance of antioxidant compounds in preventing these cellular damages. Moreover, these data indicate that the telomere structure, target for oxidative damage, could be the key sensor of cell apoptosis induced by oxidative stress after HIV infection.

  2. Spontaneous anaplasia in pilocytic astrocytoma of cerebellum.

    Science.gov (United States)

    Lach, B; Al Shail, E; Patay, Z

    2003-06-01

    We report a cystic cerebellar astrocytoma with a mural nodule that contained an additional focus of astrocytoma with the histological features of anaplasia, and showed up to 48% of aneuploid and 3% S-phase cells on flow cytometry. This focus was detectable on the enhanced, as well as non-enhanced T1 and T2 images. This appears to be the first case of pilocytic astrocytoma of cerebellum with focal anaplasia detected on histological and radiological studies.

  3. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells.

    Science.gov (United States)

    Moser, Joanna J; Fritzler, Marvin J

    2010-10-18

    GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA)-mediated messenger RNA (mRNA) silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC). To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells. RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1) miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2) astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3) miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4) the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells. The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.

  4. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells.

    Directory of Open Access Journals (Sweden)

    Joanna J Moser

    2010-10-01

    Full Text Available GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA-mediated messenger RNA (mRNA silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC. To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells.RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1 miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2 astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3 miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4 the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells.The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.

  5. Retinal astrocytoma in a dog.

    Science.gov (United States)

    Kuroki, Keiichi; Kice, Nathan; Ota-Kuroki, Juri

    2017-09-01

    A miniature schnauzer dog presenting with hyphema and glaucoma of the right eye had a retinal neoplasm. Neoplastic cells stained positively for glial fibrillary acidic protein, vimentin, and S-100 and largely negatively for oligodendrocyte transcription factor 2 by immunohistochemistry. The clinical and histopathological features of canine retinal astrocytomas are discussed.

  6. miR-106a-5p inhibits the proliferation and migration of astrocytoma cells and promotes apoptosis by targeting FASTK.

    Directory of Open Access Journals (Sweden)

    Feng Zhi

    Full Text Available Astrocytomas are common malignant intracranial tumors that comprise the majority of adult primary central nervous system tumors. MicroRNAs (miRNAs are small, non-coding RNAs (20-24 nucleotides that post-transcriptionally modulate gene expression by negatively regulating the stability or translational efficiency of their target mRNAs. In our previous studies, we found that the downregulation of miR-106a-5p in astrocytomas is associated with poor prognosis. However, its specific gene target(s and underlying functional mechanism(s in astrocytomas remain unclear. In this study, we used mRNA microarray experiments to measure global mRNA expression in the presence of increased or decreased miR-106a-5p levels. We then performed bioinformatics analysis based on multiple target prediction algorithms to obtain candidate target genes that were further validated by computational predictions, western blot analysis, quantitative real-time PCR, and the luciferase reporter assay. Fas-activated serine/threonine kinase (FASTK was identified as a direct target of miR-106a-5p. In human astrocytomas, miR-106a-5p is downregulated and negatively associated with clinical staging, whereas FASTK is upregulated and positively associated with advanced clinical stages, at both the protein and mRNA levels. Furthermore, Kaplan-Meier analysis revealed that the reduced expression of miR-106a-5p or the increased expression of FASTK is significantly associated with poor survival outcome. These results further supported the finding that FASTK is a direct target gene of miR-106a-5p. Next, we explored the function of miR-106a-5p and FASTK during astrocytoma progression. Through gain-of-function and loss-of-function studies, we demonstrated that miR-106a-5p can significantly inhibit cell proliferation and migration and can promote cell apoptosis in vitro. The knockdown of FASTK induced similar effects on astrocytoma cells as those induced by the overexpression of miR-106a-5p. These

  7. From the Cover: Vulnerability of C6 Astrocytoma Cells After Single-Compound and Joint Exposure to Type I and Type II Pyrethroid Insecticides.

    Science.gov (United States)

    Romero, Delfina M; Berardino, Bruno G; Wolansky, Marcelo J; Kotler, Mónica L

    2017-01-01

    A primary mode-of-action of all pyrethroid insecticides (PYRs) is the disruption of the voltage-gated sodium channel electrophysiology in neurons of target pests and nontarget species. The neurological actions of PYRs on non-neuronal cells of the nervous system remain poorly investigated. In the present work, we used C6 astrocytoma cells to study PYR actions (0.1-50 μM) under the hypothesis that glial cells may be targeted by and vulnerable to PYRs. To this end, we characterized the effects of bifenthrin (BF), tefluthrin (TF), α-cypermethrin (α-CYP), and deltamethrin (DM) on the integrity of nuclear, mitochondrial, and lysosomal compartments. In general, 24- to 48-h exposures produced concentration-related impairment of cell viability. In single-compound, 24-h exposure experiments, effective concentration (EC) 15 s 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT assay) were computed as follows (in μM): BF, 16.1; TF, 37.3; α-CYP, 7.8; DM, 5.0. We found concentration-related damage in several C6-cell subcellular compartments (mitochondria, nuclei, and lysosomes) at ≥ 10 -1 μM levels. Last, we examined a mixture of all PYRs (ie, Σ individual EC 15 ) using MTT assays and subcellular analyses. Our findings indicate that C6 cells are responsive to nM levels of PYRs, suggesting that astroglial susceptibility may contribute to the low-dose neurological effects caused by these insecticides. This research further suggests that C6 cells may provide relevant information as a screening platform for pesticide mixtures targeting nervous system cells by expected and unexpected toxicogenic pathways potentially contributing to clinical neurotoxicity. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Effects of γ-radiation on cell growth, cell cycle and promoter methylation of 22 cell cycle genes in the 1321NI astrocytoma cell line.

    Science.gov (United States)

    Alghamian, Yaman; Abou Alchamat, Ghalia; Murad, Hossam; Madania, Ammar

    2017-09-01

    DNA damage caused by radiation initiates biological responses affecting cell fate. DNA methylation regulates gene expression and modulates DNA damage pathways. Alterations in the methylation profiles of cell cycle regulating genes may control cell response to radiation. In this study we investigated the effect of ionizing radiation on the methylation levels of 22 cell cycle regulating genes in correlation with gene expression in 1321NI astrocytoma cell line. 1321NI cells were irradiated with 2, 5 or 10Gy doses then analyzed after 24, 48 and 72h for cell viability using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliu bromide) assay. Flow cytometry were used to study the effect of 10Gy irradiation on cell cycle. EpiTect Methyl II PCR Array was used to identify differentially methylated genes in irradiated cells. Changes in gene expression was determined by qPCR. Azacytidine treatment was used to determine whether DNA methylation affectes gene expression. Our results showed that irradiation decreased cell viability and caused cell cycle arrest at G2/M. Out of 22 genes tested, only CCNF and RAD9A showed some increase in DNA methylation (3.59% and 3.62%, respectively) after 10Gy irradiation, and this increase coincided with downregulation of both genes (by 4 and 2 fold, respectively). with azacytidine confirmed that expression of CCNF and RAD9A genes was regulated by methylation. 1321NI cell line is highly radioresistant and that irradiation of these cells with a 10Gy dose increases DNA methylation of CCNF and RAD9A genes. This dose down-regulates these genes, favoring G2/M arrest. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  9. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    Directory of Open Access Journals (Sweden)

    Maraziotis Theodore

    2007-10-01

    Full Text Available Abstract Background Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC and p75NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75NTR, and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Methods Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75NTR and phosphorylated forms of JNK (pJNK and c-Jun (pc-Jun were used. The labeling index (LI, defined as the percentage of positive (labeled cells out of the total number of tumor cells counted, was determined. Results Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75NTR receptor expression was found in a small percentage of tumor cells (~1% in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK and c-Jun (pc-Jun were

  10. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    International Nuclear Information System (INIS)

    Assimakopoulou, Martha; Kondyli, Maria; Gatzounis, George; Maraziotis, Theodore; Varakis, John

    2007-01-01

    Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC) and p75 NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75 NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75 NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75 NTR , and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV) were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75 NTR and phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were used. The labeling index (LI), defined as the percentage of positive (labeled) cells out of the total number of tumor cells counted, was determined. Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75 NTR receptor expression was found in a small percentage of tumor cells (~1%) in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were significantly co-expressed in a tumor

  11. Comparative non-cholinergic neurotoxic effects of paraoxon and diisopropyl fluorophosphate (DFP) on human neuroblastoma and astrocytoma cell lines

    International Nuclear Information System (INIS)

    Qian Yongchang; Venkatraj, Jijayanagaram; Barhoumi, Rola; Pal, Ranadip; Datta, Aniruddha; Wild, James R.; Tiffany-Castiglioni, Evelyn

    2007-01-01

    The objective of this study was to evaluate the comparative non-cholinergic neurotoxic effects of paraoxon, which is acutely neurotoxic, and diisopropyl fluorophosphate (DFP), which induces OPIDN, in the human neuroblastoma SY5Y and the human astrocytoma cell line CCF-STTG1. SY5Y cells have been studied extensively as a model for OP-induced neurotoxicity, but CCF cells have not previously been studied. We conducted a preliminary human gene array assay of OP-treated SY5Y cells in order to assess at the gene level whether these cells can distinguish between OP compounds that do and do not cause OPIDN. Paraoxon and DFP induced dramatically different profiles of gene expression. Two genes were upregulated and 13 downregulated by at least 2-fold in paraoxon-treated cells. In contrast, one gene was upregulated by DFP and none was downregulated at the 2-fold threshold. This finding is consistent with current and previous observations that SY5Y cells can distinguish between OPs that do or do not induce OPIDN. We also examined gene array results for possible novel target proteins or metabolic pathways for OP neurotoxicity. Protein levels of glucose regulated protein 78 (GRP78) revealed that paraoxon exposure at 3 μM for 24 h significantly reduced GRP78 levels by 30% in neuroblastoma cells, whereas DFP treatment had no effect. In comparison with SY5Y neuroblastoma cells, paraoxon and DFP (3 μM for 24 h) each significantly increased GRP78 levels by 23-24% in CCF astrocytoma cells. As we have previously evaluated intracellular changes in Ca 2+ levels in SY5Y cells, we investigated the effects of paraoxon and DFP on cellular Ca 2+ homeostasis in CCF by studying cytosolic and mitochondrial basal calcium levels. A significant decrease in the ratio of mitochondrial to cytosolic Ca 2+ fluorescence was detected in CCF cultures treated for either 1 or 3 days with 1, 3, 10, or 30 μM paraoxon. In contrast, treatment with DFP for 1 day had no significant effect on the ratio of

  12. The effect of everolimus on renal angiomyolipoma in pediatric patients with tuberous sclerosis being treated for subependymal giant cell astrocytoma.

    Science.gov (United States)

    Bissler, John J; Franz, David N; Frost, Michael D; Belousova, Elena; Bebin, E Martina; Sparagana, Steven; Berkowitz, Noah; Ridolfi, Antonia; Kingswood, J Christopher

    2018-01-01

    Patients with tuberous sclerosis complex (TSC) often have multiple TSC-associated hamartomas, particularly in the brain and kidney. This was a post hoc analysis of pediatric patients being treated for subependymal giant cell astrocytomas (SEGAs) during the phase 3, randomized, double-blind, placebo-controlled EXIST-1 trial. Patients were initially randomly assigned to receive everolimus 4.5 mg/m 2 /day (target blood trough 5-15 mg/dl) or placebo and could continue in an open-label extension phase. Angiomyolipoma response rates were analyzed in patients aged 20% increase in kidney volume from nadir, and angiomyolipoma-related bleeding ≥ grade 2. Tolerability was also assessed. Overall, this analysis included 33 patients. Renal angiomyolipoma response was achieved by 75.8% of patients (95% confidence interval, 57.7-88.9%), with sustained mean reductions in renal angiomyolipoma volume over nearly 4 years of treatment. In addition, most (≥80%) achieved clinically relevant reductions in angiomyolipoma volume (≥50%), beginning at week 24 and continuing for the remainder of the study. Everolimus was generally well tolerated in this subgroup, with most adverse events being grade 1 or 2 in severity. Although everolimus is currently not indicated for this use, this analysis from EXIST-1 demonstrates its long-term efficacy and safety for the treatment of renal angiomyolipoma in pediatric patients undergoing treatment for TSC-associated SEGA.

  13. Prognostic parameters in benign astrocytomas

    DEFF Research Database (Denmark)

    Westergaard, L; Gjerris, F; Klinken, L

    1993-01-01

    astrocytomas treated in the period 1956 to 1991. The pilocytic type of astrocytoma was found to have an outstandingly good prognosis and should be regarded as a distinct nosological entity. For the non-pilocytic supratentorial astrocytomas, a multivariate regression analysis showed that age, tumour site...

  14. Cellular responses of human astrocytoma cells to dust from the Acheson process: An in vitro study.

    Science.gov (United States)

    Arnoldussen, Yke Jildouw; Ervik, Torunn Kringlen; Berlinger, Balazs; Kero, Ida; Shaposhnikov, Sergey; Zienolddiny, Shanbeh

    2018-03-01

    Silicon carbide (SiC) is largely used in various products such as diesel particulate filters and solar panels. It is produced through the Acheson process where aerosolized fractions of SiC and other by-products are generated in the work environment and may potentially affect the workers' health. In this study, dust was collected directly on a filter in a furnace hall over a time period of 24h. The collected dust was characterized by scanning electron microscopy and found to contain a high content of graphite particles, and carbon and silicon containing particles. Only 6% was classified as SiC, whereof only 10% had a fibrous structure. To study effects of exposure beyond the respiratory system, neurotoxic effects on human astrocytic cells, were investigated. Both low, occupationally relevant, and high doses from 9E-6μg/cm 2 up to 4.5μg/cm 2 were used, respectively. Cytotoxicity assay indicated no effects of low doses but an effect of the higher doses after 24h. Furthermore, investigation of intracellular reactive oxygen species (ROS) indicated no effects with low doses, whereas a higher dose of 0.9μg/cm 2 induced a significant increase in ROS and DNA damage. In summary, low doses of dust from the Acheson process may exert no or little toxic effects, at least experimentally in the laboratory on human astrocytes. However, higher doses have implications and are likely a result of the complex composition of the dust. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. Guanine nucleotide-dependent, pertussis toxin-insensitive, stimulation of inositol phosphate formation by carbachol in a membrane preparation from astrocytoma cells

    International Nuclear Information System (INIS)

    Hepler, J.R.; Harden, T.K.

    1986-01-01

    Formation of the inositol phosphates (InsP), InsP 3 , InsP 2 , and InsP 1 was increased in a concentration dependent manner (K/sub 0.5/ ∼ 5 μM) by GTPΣS in washed membranes prepared from 3 H-inositol-prelabelled 1321N1 human astrocytoma cells. Both GTPγS and GppNHp stimulated InsP formation by 2-3 fold over control; GTP and GDP were much less efficacious and GMP had no effect. Although the muscarinic cholinergic receptor agonist carbachol had no effect in the absence of guanine nucleotide, in the presence of 10 μM GTPγS, carbachol stimulated (K/sub 0.5/ ∼ 10 μ M) the formation of InsP above the level achieved with GTPγS alone. The effect of carbachol was completely blocked by atropine. The order of potency for a series of nucleotides for stimulation of InsP formation in the presence of 500 μM carbachol was GTPγS > GppNHp > GTP = GDP. Pertussis toxin, at concentrations that fully ADP-ribosylate and functionally inactivate G/sub i/, had no effect on InsP formation in the presence of GTPγS or GTPγS plus carbachol. Histamine and bradykinin also stimulated InsP formation in the presence of GTPγS in washed membranes from 1321N1 cells. These data are consistent with the idea that a guanine nucleotide regulatory protein that is not G/sub i/ is involved in receptor-mediated stimulation of InsP formation in 1321N1 human astrocytoma cells

  16. Integrated analysis of mismatch repair system in malignant astrocytomas.

    Directory of Open Access Journals (Sweden)

    Irene Rodríguez-Hernández

    Full Text Available Malignant astrocytomas are the most aggressive primary brain tumors with a poor prognosis despite optimal treatment. Dysfunction of mismatch repair (MMR system accelerates the accumulation of mutations throughout the genome causing uncontrolled cell growth. The aim of this study was to characterize the MMR system defects that could be involved in malignant astrocytoma pathogenesis. We analyzed protein expression and promoter methylation of MLH1, MSH2 and MSH6 as well as microsatellite instability (MSI and MMR gene mutations in a set of 96 low- and high-grade astrocytomas. Forty-one astrocytomas failed to express at least one MMR protein. Loss of MSH2 expression was more frequent in low-grade astrocytomas. Loss of MLH1 expression was associated with MLH1 promoter hypermethylation and MLH1-93G>A promoter polymorphism. However, MSI was not related with MMR protein expression and only 5% of tumors were MSI-High. Furthermore, the incidence of tumors carrying germline mutations in MMR genes was low and only one glioblastoma was associated with Lynch syndrome. Interestingly, survival analysis identified that tumors lacking MSH6 expression presented longer overall survival in high-grade astrocytoma patients treated only with radiotherapy while MSH6 expression did not modify the prognosis of those patients treated with both radiotherapy and chemotherapy. Our findings suggest that MMR system alterations are a frequent event in malignant astrocytomas and might help to define a subgroup of patients with different outcome.

  17. DNA methylation analysis of paediatric low-grade astrocytomas identifies a tumour-specific hypomethylation signature in pilocytic astrocytomas.

    Science.gov (United States)

    Jeyapalan, Jennie N; Doctor, Gabriel T; Jones, Tania A; Alberman, Samuel N; Tep, Alexander; Haria, Chirag M; Schwalbe, Edward C; Morley, Isabel C F; Hill, Alfred A; LeCain, Magdalena; Ottaviani, Diego; Clifford, Steven C; Qaddoumi, Ibrahim; Tatevossian, Ruth G; Ellison, David W; Sheer, Denise

    2016-05-27

    Low-grade gliomas (LGGs) account for about a third of all brain tumours in children. We conducted a detailed study of DNA methylation and gene expression to improve our understanding of the biology of pilocytic and diffuse astrocytomas. Pilocytic astrocytomas were found to have a distinctive signature at 315 CpG sites, of which 312 were hypomethylated and 3 were hypermethylated. Genomic analysis revealed that 182 of these sites are within annotated enhancers. The signature was not present in diffuse astrocytomas, or in published profiles of other brain tumours and normal brain tissue. The AP-1 transcription factor was predicted to bind within 200 bp of a subset of the 315 differentially methylated CpG sites; the AP-1 factors, FOS and FOSL1 were found to be up-regulated in pilocytic astrocytomas. We also analysed splice variants of the AP-1 target gene, CCND1, which encodes cell cycle regulator cyclin D1. CCND1a was found to be highly expressed in both pilocytic and diffuse astrocytomas, but diffuse astrocytomas have far higher expression of the oncogenic variant, CCND1b. These findings highlight novel genetic and epigenetic differences between pilocytic and diffuse astrocytoma, in addition to well-described alterations involving BRAF, MYB and FGFR1.

  18. Effects of diphenylhydantoin on murine astrocytoma radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Lordo, C.D.; Stroude, E.C.; Del Maestro, R.F.

    1987-01-01

    Diphenylhydantoin is a well known anticonvulsant used primarily in the treatment of epilepsy. The prophylactic use of diphenylhydantoin has been suggested for certain cerebral metastases, and it is routinely administered to prevent seizures induced by intracranial neoplasms and/or surgery. Patients with malignant gliomas treated with diphenylhydantoin frequently receive radiation therapy. The effects of a clinical concentration of diphenylhydantoin in combination with gamma radiation was investigated using the C6 astrocytoma cell line in both monolayer and three dimensional multicellular spheroid cultures. Diphenylhydantoin at 7.2 X 10(-5) M (20 micrograms/ml) significantly increased the doubling time (23%) of the C6 astrocytoma cells in monolayer, but did not affect their survival as measured by plating efficiency. No changes were seen in spheroid growth or plating efficiency of the cells dissociated from spheroids at this concentration. Diphenylhydantoin at the clinical concentration tested was not associated with an alteration in radiation sensitivity of C6 astrocytoma cells in monolayer or three dimensional multicellular spheroid cultures.

  19. Evaluation of amentoflavone isolated from Cnestis ferruginea Vahl ex DC (Connaraceae) on production of inflammatory mediators in LPS stimulated rat astrocytoma cell line (C6) and THP-1 cells.

    Science.gov (United States)

    Ishola, I O; Chaturvedi, J P; Rai, S; Rajasekar, N; Adeyemi, O O; Shukla, R; Narender, T

    2013-03-27

    Cnestisferruginea (CF) Vahl ex DC (Connaraceae) is a shrub widely used in traditional African medicine for the treatment of various psychiatric illness and inflammatory conditions. This study was carried out to investigate the effect of amentoflavone isolated from methanolic root extract of CF on lipopolysaccharide (LPS)-induced neuroinflammatory cascade of events associated to the oxidative and nitrative stress, and TNF-α production in rat astrocytoma cell line (C6) and human monocytic leukemia cell line (THP-1), respectively. Rat astrocytoma cells (C6) were stimulated with LPS (10μg/ml) alone and in the presence of different concentrations of amentoflavone (0.1-3μg/ml) for 24h incubation period. Nitrite release, reactive oxygen species (ROS), malondialdehyde (MDA) and reduced-glutathione (GSH) in C6 cells were estimated; while the TNF-α level was estimated in THP-1 cell lysate. In vivo analgesic activity was evaluated using mouse writhing and hot plate tests while the anti-inflammatory effect was investigated using carrageenan-induced oedema test. LPS (10μg/ml) significantly (PTHP-1 cells. Amentoflavone (6.25-50mg/kg) significantly (Ptest. It produced time course significant (P<0.05) decrease in oedema formation in rodents. Findings in this study demonstrate the anti-neuroinflammatory and antinoceptive effects of amentoflavone which may suggest its beneficial roles in neuroinflammation associated disorders. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. AUTOCOUNTER, an ImageJ JavaScript to analyze LC3B-GFP expression dynamics in autophagy-induced astrocytoma cells.

    Science.gov (United States)

    Fassina, L; Magenes, G; Inzaghi, A; Palumbo, S; Allavena, G; Miracco, C; Pirtoli, L; Biggiogera, M; Comincini, S

    2012-10-11

    An ImageJ JavaScript, AUTOCOUNTER, was specifically developed to monitor and measure LC3B-GFP expression in living human astrocytoma cells, namely T98G and U373-MG. Discrete intracellular GFP fluorescent spots derived from transduction of a Baculovirus replication-defective vector (BacMam LC3B-GFP), followed by microscope examinations at different times. After viral transgene expression, autophagy was induced by Rapamycin administration and assayed in ph-p70S6K/p70S6K and LC3B immunoblotting expression as well as by electron microscopy examinations. A mutated transgene, defective in LC3B lipidation, was employed as a negative control to further exclude fluorescent dots derived from protein intracellular aggregation. The ImageJ JavaScript was then employed to evaluate and score the dynamics changes of the number and area of LC3B-GFP puncta per cell in time course assays and in complex microscope examinations. In conclusion, AUTOCOUNTER enabled to quantify LC3B-GFP expression and to monitor dynamics changes in number and shapes of autophagosomal-like vesicles: it might therefore represent a suitable algorithmic tool for in vitro autophagy modulation studies.

  1. Nitroproteins in Human Astrocytomas Discovered by Gel Electrophoresis and Tandem Mass Spectrometry

    Science.gov (United States)

    Peng, Fang; Li, Jianglin; Guo, Tianyao; Yang, Haiyan; Li, Maoyu; Sang, Shushan; Li, Xuejun; Desiderio, Dominic M.; Zhan, Xianquan

    2015-12-01

    Protein tyrosine nitration is involved in the pathogenesis of highly fatal astrocytomas, a type of brain cancer. To understand the molecular mechanisms of astrocytomas and to discover new biomarkers/therapeutic targets, we sought to identify nitroproteins in human astrocytoma tissue. Anti-nitrotyrosine immunoreaction-positive proteins from a high-grade astrocytoma tissue were detected with two-dimensional gel electrophoresis (2DGE)-based nitrotyrosine immunoblots, and identified with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fifty-seven nitrotyrosine immunopositive protein spots were detected. A total of 870 proteins (nitrated and non-nitrated) in nitrotyrosine-immunopositive 2D gel spots were identified, and 18 nitroproteins and their 20 nitrotyrosine sites were identified with MS/MS analysis. These nitroproteins participate in multiple processes, including drug-resistance, signal transduction, cytoskeleton, transcription and translation, cell proliferation and apoptosis, immune response, phenotypic dedifferentiation, cell migration, and metastasis. Among those nitroproteins that might play a role in astrocytomas was nitro-sorcin, which is involved in drug resistance and metastasis and might play a role in the spread and treatment of an astrocytoma. Semiquantitative immune-based measurements of different sorcin expressions were found among different grades of astrocytomas relative to controls, and a semiquantitative increased nitration level in high-grade astrocytoma relative to control. Nitro-β-tubulin functions in cytoskeleton and cell migration. Semiquantitative immunoreactivity of β-tubulin showed increased expression among different grades of astrocytomas relative to controls and semiquantitatively increased nitration level in high-grade astrocytoma relative to control. Each nitroprotein was rationalized and related to the corresponding functional system to provide new insights into tyrosine nitration and its potential role in the

  2. (-)[125I]-iodopindolol, a new highly selective radioiodinated beta-adrenergic receptor antagonist: measurement of beta-receptors on intact rat astrocytoma cells

    International Nuclear Information System (INIS)

    Barovsky, K.; Brooker, G.

    1980-01-01

    (-)-Pindolol, one of the most potent beta-adrenergic receptor antagonists, was radioiodinated using chloramine-T oxidation of carrier-free Na 125I and separated from unreacted pindolol to yield 2200 Ci/mmole (-)-[125I]-iodopindolol ((-)-[125I]-IPin). Mass and ultraviolet spectra confirmed that the iodination occurred on the indole ring, presumably at the 3 position. The binding of radiolabeled (-)-[125I]-IPin to beta-adrenergic receptors has been studied using intact C6 rat astrocytoma cells (2B subclone) grown in monolayer cultures. Binding of (-)[125IPin was saturable with time and concentration. Using 13 pM (-)-[125I]IPin, binding equilibrium was reached in 90 min at 21-22 degrees C. The reverse rate constant was 0.026 min-1 at 21 0 C. Specific binding (expressed as 1 microM(-)-propranolol displaceable counts) of (-)-[125I]-IPin was 95% of total binding. Scatchard analysis of (-)-[125I]-I]Pin binding revealed approximately 4300 receptors/cell and a dissociation constant of 30 pM. This was in excellent agreement with the kinetically determined dissociation constant of 35 pM. Displacement by propranolol and isoproterenol showed that (-)-[125I]-IPin binding sites were pharmacologically and stereospecifically selective. These results indicate that (-)-[125I]-IPin, a pure (-)-stereoisomer, high specific activity radioligand, selectively binds to beta-adrenergic receptors in whole cells with a high percentage of specific binding and should therefore be useful in the study and measurement of cellular beta-adrenergic receptors

  3. Use of EF5 to Measure the Oxygen Level in Tumor Cells of Patients Undergoing Surgery or Biopsy for Newly Diagnosed Supratentorial Malignant Glioma

    Science.gov (United States)

    2013-01-15

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymoma

  4. The molecular biology of WHO grade I astrocytomas.

    Science.gov (United States)

    Marko, Nicholas F; Weil, Robert J

    2012-12-01

    World Health Organization (WHO) grade I astrocytomas include pilocytic astrocytoma (PA) and subependymal giant cell astrocytoma (SEGA). As technologies in pharmacologic neo-adjuvant therapy continue to progress and as molecular characteristics are progressively recognized as potential markers of both clinically significant tumor subtypes and response to therapy, interest in the biology of these tumors has surged. An updated review of the current knowledge of the molecular biology of these tumors is needed. We conducted a Medline search to identify published literature discussing the molecular biology of grade I astrocytomas. We then summarized this literature and discuss it in a logical framework through which the complex biology of these tumors can be clearly understood. A comprehensive review of the molecular biology of WHO grade I astrocytomas is presented. The past several years have seen rapid progress in the level of understanding of PA in particular, but the molecular literature regarding both PA and SEGA remains nebulous, ambiguous, and occasionally contradictory. In this review we provide a comprehensive discussion of the current understanding of the chromosomal, genomic, and epigenomic features of both PA and SEGA and provide a logical framework in which these data can be more readily understood.

  5. Anaplasia in pilocytic astrocytoma predicts aggressive behavior.

    Science.gov (United States)

    Rodriguez, Fausto J; Scheithauer, Bernd W; Burger, Peter C; Jenkins, Sarah; Giannini, Caterina

    2010-02-01

    The clinical significance of anaplastic features, a rare event in pilocytic astrocytoma (PA), is not fully established. We reviewed 34 PA with anaplastic features (Male = 21, Female = 13; median age 35 y, 5 to 75) among approximately 2200 PA cases (1.7%). Tumors were included which demonstrated brisk mitotic activity [at least 4 mitoses/10 high power fields (400 x )], in addition to hypercellularity and moderate-to-severe cytologic atypia, with or without necrosis. The tumors either had a PA precursor, coexistent (n = 14) (41%) or documented by previous biopsy (n = 10) (29%), or exhibited typical pilocytic features in an otherwise anaplastic astrocytoma (n = 10) (29%). Clinical features of neurofibromatosis type-1 were present in 24% and a history of radiation for PA precursor in 12%. Histologically, the anaplastic component was classified as pilocytic like (41%), small cell (32%), epithelioid (15%), or fibrillary (12%). Median MIB1 labeling index was 24.7% in the anaplastic component and 2.6% in the precursor, although overlapping values were present. Strong p53 staining (3+) was limited to areas with anaplasia (19%), with overlapping values for 1 and 2+ in areas without anaplasia. Median overall and progression-free survivals after diagnosis for the entire study group were 24 and 14 months, respectively. Overall and progression-free survivals were shorter in the setting of prior radiation for a PA precursor (P = 0.007, 0.028), increasing mitotic activity (P = 0.03, 0.02), and presence of necrosis (P = 0.02, 0.02), after adjusting for age and site. The biologic behavior of PAs with high-mitotic rates and those with necrosis paralleled that of St Anne-Mayo grades 2 and 3 diffuse astrocytomas, respectively. In summary, PA with anaplastic features exhibits a spectrum of morphologies and is associated with decreased survival when compared with typical PA.

  6. The inhibitory effect of CIL-102 on the growth of human astrocytoma cells is mediated by the generation of reactive oxygen species and induction of ERK1/2 MAPK

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Chih-Chuan [Institute of Nursing and Department of Nursing, Chang Gung University of Science and Technology, Chronic Diseases and Health Promotion Research Center, CGUST, Taiwan (China); Institute of Basic Medicine Science, National Cheng Kung University, Tainan, Taiwan (China); Kuo, Hsing-Chun [Institute of Nursing and Department of Nursing, Chang Gung University of Science and Technology, Chronic Diseases and Health Promotion Research Center, CGUST, Taiwan (China); Cheng, Ho-Chen [Department of General Education, Chang Gung University of Science and Technology, CGUST, Taiwan (China); Wang, Ting-Chung [Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Center, Chiayi, Taiwan (China); Graduate Institute of Clinical Medical Sciences, Chang Gung University, Gueishan, Taiwan (China); Sze, Chun-I, E-mail: szec@mail.ncku.edu.tw [Institute of Basic Medicine Science, Department of Cell Biology and Anatomy and Pathology, National Cheng Kung University, Tainan, Taiwan (China)

    2012-08-15

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is the major active agent of the alkaloid derivative of Camptotheca acuminata, with multiple pharmacological activities, including anticancer effects and promotion of apoptosis. The mechanism by which CIL-102 inhibits growth remains poorly understood in human astrocytoma cells. Herein, we investigated the molecular mechanisms by which CIL-102 affects the generation of reactive oxygen species (ROS) and cell cycle G2/M arrest in glioma cells. Treatment of U87 cells with 1.0 μM CIL-102 resulted in phosphorylation of extracellular signal-related kinase (ERK1/2), downregulation of cell cycle-related proteins (cyclin A, cyclin B, cyclin D1, and cdk1), and phosphorylation of cdk1Tyr{sup 15} and Cdc25cSer{sup 216}. Furthermore, treatment with the ERK1/2 inhibitor PD98059 abolished CIL-102-induced Cdc25cSer{sup 216} expression and reversed CIL-102-inhibited cdk1 activation. In addition, N-acetyl cysteine (NAC), an ROS scavenger, blocked cell cycle G2/M arrest and phosphorylation of ERK1/2 and Cdc25cSer{sup 216} in U87 cells. CIL-102-mediated ERK1/2 and ROS production, and cell cycle arrest were blocked by treatment with specific inhibitors. In conclusion, we have identified a novel CIL-102-inhibited proliferation in U87 cells by activating the ERK1/2 and Cdc25cSer{sup 216} cell cycle-related proteins and inducing ROS production; this might be a new mechanism in human astrocytoma cells. -- Highlights: ► We show the effects of CIL-102 on the G2/M arrest of human astrocytoma cells. ► ROS and the Ras/ERK1/2 triggering pathways are involved in the CIL-102 treatment. ► CIL-102 induces sustained activation of ERK1/2 and Cdc25c and ROS are required.

  7. The inhibitory effect of CIL-102 on the growth of human astrocytoma cells is mediated by the generation of reactive oxygen species and induction of ERK1/2 MAPK

    International Nuclear Information System (INIS)

    Teng, Chih-Chuan; Kuo, Hsing-Chun; Cheng, Ho-Chen; Wang, Ting-Chung; Sze, Chun-I

    2012-01-01

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is the major active agent of the alkaloid derivative of Camptotheca acuminata, with multiple pharmacological activities, including anticancer effects and promotion of apoptosis. The mechanism by which CIL-102 inhibits growth remains poorly understood in human astrocytoma cells. Herein, we investigated the molecular mechanisms by which CIL-102 affects the generation of reactive oxygen species (ROS) and cell cycle G2/M arrest in glioma cells. Treatment of U87 cells with 1.0 μM CIL-102 resulted in phosphorylation of extracellular signal-related kinase (ERK1/2), downregulation of cell cycle-related proteins (cyclin A, cyclin B, cyclin D1, and cdk1), and phosphorylation of cdk1Tyr 15 and Cdc25cSer 216 . Furthermore, treatment with the ERK1/2 inhibitor PD98059 abolished CIL-102-induced Cdc25cSer 216 expression and reversed CIL-102-inhibited cdk1 activation. In addition, N-acetyl cysteine (NAC), an ROS scavenger, blocked cell cycle G2/M arrest and phosphorylation of ERK1/2 and Cdc25cSer 216 in U87 cells. CIL-102-mediated ERK1/2 and ROS production, and cell cycle arrest were blocked by treatment with specific inhibitors. In conclusion, we have identified a novel CIL-102-inhibited proliferation in U87 cells by activating the ERK1/2 and Cdc25cSer 216 cell cycle-related proteins and inducing ROS production; this might be a new mechanism in human astrocytoma cells. -- Highlights: ► We show the effects of CIL-102 on the G2/M arrest of human astrocytoma cells. ► ROS and the Ras/ERK1/2 triggering pathways are involved in the CIL-102 treatment. ► CIL-102 induces sustained activation of ERK1/2 and Cdc25c and ROS are required.

  8. RTEL1 and TERT polymorphisms are associated with astrocytoma risk in the Chinese Han population.

    Science.gov (United States)

    Jin, Tian-Bo; Zhang, Jia-Yi; Li, Gang; Du, Shu-Li; Geng, Ting-Ting; Gao, Jing; Liu, Qian-Ping; Gao, Guo-Dong; Kang, Long-Li; Chen, Chao; Li, Shan-Qu

    2013-12-01

    Common variants of multiple genes play a role in glioma onset. However, research related to astrocytoma, the most common primary brain neoplasm, is rare. In this study, we chose 21 tagging SNPs (tSNPs), previously reported to be associated with glioma risk in a Chinese case-control study from Xi'an, China, and identified their contributions to astrocytoma susceptibility. We found an association with astrocytoma susceptibility for two tSNPs (rs6010620 and rs2853676) in two different genes: regulator of telomere elongation helicase 1 (RTEL1) and telomerase reverse transcriptase (TERT), respectively. We confirmed our results using recessive, dominant, and additive models. In the recessive model, we found two tSNPs (rs2297440 and rs6010620) associated with increased astrocytoma risk. In the dominant model, we found that rs2853676 was associated with increased astrocytoma risk. In the additive model, all three tSNPs (rs2297440, rs2853676, and rs6010620) were associated with increased astrocytoma risk. Our results demonstrate, for the first time, the potential roles of RTEL1 and TERT in astrocytoma development.

  9. Prevention against diffuse spinal cord astrocytoma: can the Notch pathway be a novel treatment target?

    Directory of Open Access Journals (Sweden)

    Jian-jun Sun

    2015-01-01

    Full Text Available This study was designed to investigate whether the Notch pathway is involved in the development of diffuse spinal cord astrocytomas. BALB/c nude mice received injections of CD133 + and CD133− cell suspensions prepared using human recurrent diffuse spinal cord astrocytoma tissue through administration into the right parietal lobe. After 7-11 weeks, magnetic resonance imaging was performed weekly. Xenografts were observed on the surfaces of the brains of mice receiving the CD133 + cell suspension, and Notch-immunopositive expression was observed in the xenografts. By contrast, no xenografts appeared in the identical position on the surfaces of the brains of mice receiving the CD133− cell suspension, and Notch-immunopositive expression was hardly detected either. Hematoxylin-eosin staining and immunohistochemical staining revealed xenografts on the convex surfaces of the brains of mice that underwent CD133 + astrocytoma transplantation. Some sporadic astroglioma cells showed pseudopodium-like structures, which extended into the cerebral white matter. However, it should be emphasized that the subcortex xenograft with Notch-immunopositive expression was found in the fourth mouse received injection of CD133− astrocytoma cells. However, these findings suggest that the Notch pathway plays an important role in the formation of astrocytomas, and can be considered a novel treatment target for diffuse spinal cord astrocytoma.

  10. Postradiation astrocytoma. Report of two cases

    International Nuclear Information System (INIS)

    Kitanaka, C.; Shitara, N.; Nakagomi, T.; Nakamura, H.; Genka, S.; Nakagawa, K.; Akanuma, A.; Aoyama, H.; Takakura, K.

    1989-01-01

    The authors describe two cases of malignant astrocytomas associated with previous radiation therapy in childhood for intracranial germinoma and craniopharyngioma. In both patients, there was no recurrence at the primary tumor site. Because of a geometric coincidence between the tumor location and the radiation field, radiotherapy was strongly implicated as a cause of these two astrocytomas.33 references

  11. Imaging characteristics of pilomyxoid astrocytomas in comparison with pilocytic astrocytomas

    International Nuclear Information System (INIS)

    Lee, In Ho; Kim, Ji Hye; Suh, Yeon-Lim; Eo, Hong; Shin, Hyung Jin; Yoo, So-Young; Lee, Kyung Soo

    2011-01-01

    Purpose: Pilomyxoid astrocytoma (PMA) is a recently described astrocytic tumor that has been previously diagnosed as pilocytic astrocytoma (PA). The purpose of this study was to describe the imaging features of PMAs in comparison with PAs. Materials and methods: We retrospectively reviewed CT/MR images and medical records of 10 patients with PMA and 38 patients with PA. The mean ages of patients with PMA and PA were 10 and 15 years, respectively. Imaging features including location, composition, enhancement pattern, presence of calcification, hemorrhage, and leptomeningeal dissemination were compared in patients with two tumor types. Results: Six PMAs (60%) occurred at the suprasellar area and the cerebellum was the most common (45%) site of PA. Solid component was dominant in eight PMAs (80%) and in 19 PAs (50%). All of the PMAs containing solid mass (n = 8) included non-enhancing portion while 12/37 (32%) PAs included non-enhancing solid portion (p < 0.05). Leptomeningeal dissemination was noted in five PMAs (50%) and one PA (3%) (p < 0.05). Other imaging findings were not significantly different. Conclusion: A younger age, more frequent occurrence at the suprasellar area, mainly solid mass containing non-enhancing portion, and more frequent leptomeningeal dissemination are helpful differential features of PMAs as compared to PAs.

  12. Peroxynitrite decomposition catalyst prevents apoptotic cell death in a human astrocytoma cell line incubated with supernatants of HIV-infected macrophages

    Directory of Open Access Journals (Sweden)

    Perno Carlo

    2002-09-01

    Full Text Available Abstract Background Oxidative stress has shown to contribute in the mechanisms underlying apoptotic cell death occuring in AIDS-dementia complex. Here we investigated the role of peroxynitrite in apoptosis occurring in astroglial cells incubated with supernatants of HIV-infected human primary macrophages (M/M. Results Flow cytometric analysis (FACS of human cultured astrocytes shortly incubated with HIV-1-infected M/M supernatants showed apoptotic cell death, an effect accompanied by pronounced staining for nitrotyrosine (footprint of peroxynitrite and by abnormal formation of malondialdehyde (MDA. Pretreatment of astrocytes with the peroxynitrite decomposition catalyst FeTMPS antagonized HIV-related astrocytic apoptosis, MDA formation and nitrotyrosine staining. Conclusions Taken together, our results suggest that inibition of peroxynitrite leads to protection against peroxidative stress accompanying HIV-related apoptosis of astrocytes. Overall results support the role of peroxynitrite in HIV-related programmed death of astrocytes and suggest the use of peroxynitrite decomposition catalyst to counteract HIV-1-related neurological disorders.

  13. Cerebral hemisphere astrocytoma: Treatment results

    International Nuclear Information System (INIS)

    Boyages, J.; Tiver, K.W.

    1987-01-01

    Eighty two adult patients with histologically proven cerebral astrocytomas of grades I to IV received post-operative radiotherapy at Westmead Hospital between January 1980 and February 1985. Seventy one patients completed a course of megavoltage irradiation, the majority having received a tumour dose of at least 60 Gy. Patients who underwent surgical resection had a greater median survival than those undergoing biopsy, but the difference was not statistically significant. By grade, the difference reached statistical significance only for grade III tumours. Patients with high grade tumours had a significantly lower survival than those patients with tumours of low grade. After adjustment for grade, various dosage levels did not significantly affect survival, although there was a trend towards improved median survival with higher doses in grade III tumours. When included in a multivariate analysis, the extent of surgery did not significantly influence survival, but increasing tumour grade and increasing age were significant adverse prognostic factors. (Auth.)

  14. Epigenetic Silencing of the Protocadherin Family Member PCDH-γ-All in Astrocytomas

    Directory of Open Access Journals (Sweden)

    Anke Waha

    2005-03-01

    Full Text Available In a microarray-based methylation analysis of astrocytomas [World Health Organization (WHO grade II], we identified a CpG island within the first exon of the protocadherin-γ subfamily A11 (PCDH-γ-A11 gene that showed hypermethylation compared to normal brain tissue. Bisulfite sequencing and combined bisulfite restriction analysis (COBRA was performed to screen low- and high-grade astrocytomas for the methylation status of this CpG island. Hypermethylation was detected in 30 of 34 (88% astrocytomas (WHO grades II and III, 20 of 23 (87% glioblastomas (WHO grade IV, 8 of 8 (100% glioma cell lines. There was a highly significant correlation (P = .00028 between PCDH-γ-A11 hypermethylation and decreased transcription as determined by competitive reverse transcription polymerase chain reaction in WHO grades II and III astrocytomas. After treatment of glioma cell lines with a demethylating agent, transcription of PCDH-γ-A11 was restored. In summary, we have identified PCDH-γ-A11 as a new target silenced epigenetically in astrocytic gliomas. The inactivation of this cell-cell contact molecule might be involved in the invasive growth of astrocytoma cells into normal brain parenchyma.

  15. MR imaging characteristics of protoplasmic astrocytomas

    Energy Technology Data Exchange (ETDEWEB)

    Tay, Kevin L. [Royal Melbourne Hospital, Department of Radiology, Parkville, Victoria (Australia); Royal North Shore Hospital, Department of Radiology, St Leonards, New South Wales (Australia); Tsui, Alpha [Royal Melbourne Hospital, Department of Pathology, Parkville, Victoria (Australia); Phal, Pramit M.; Tress, Brian M. [Royal Melbourne Hospital, Department of Radiology, Parkville, Victoria (Australia); Drummond, Katharine J. [Royal Melbourne Hospital, Department of Neurosurgery, Parkville, Victoria (Australia)

    2011-06-15

    Protoplasmic astrocytomas are a poorly recognized and uncommon subtype of astrocytoma. While usually categorized with other low-grade gliomas, there is literature to suggest that protoplasmic astrocytomas have differences in biology compared to other gliomas in this group. This paper presents the MR imaging characteristics of a series of eight protoplasmic astrocytomas. We retrospectively reviewed MR images and histopathology of eight consecutive cases of histologically proven protoplasmic astrocytomas. Patients ranged from 17 to 51 years of age with a 5:3 male to female ratio. The tumors were located in the frontal or temporal lobes and tended to be large, well defined, and had a very high signal on T2 (close to cerebrospinal fluid). Generally, a large proportion of the tumor showed substantial signal suppression on T2 fluid-attenuated inversion recovery (FLAIR). Six of the eight lesions also demonstrated a partial or complete rim of reduced apparent diffusion coefficient (ADC) around the T2 FLAIR suppressing portion. The possibility that a primary cerebral neoplasm represents a protoplasmic astrocytoma should be considered in a patient with a large frontal or temporal tumor that has a very high signal on T2 with a large proportion of the tumor showing substantial T2 FLAIR suppression. A further clue is a partial or complete rim of reduced ADC. (orig.)

  16. Pilocytic astrocytoma: a retrospective review

    International Nuclear Information System (INIS)

    Wen, B.-C.; Mayr, Nina A.; Hitchon, Patrick W.; Kao, S.; Hussey, David H.

    1996-01-01

    Purpose: The principle objective of this study is to determine the role of radiation therapy in the management of pilocytic astrocytoma. The specific aims are to assess the results of surgical resection +/- radiation therapy, the dose-response relationships for local tumor control, and the prognostic indicators. Materials and methods: Between Jan. 1970 and Dec. 1995, 60 patients with pilocytic astrocytomas (27 cerebellum, 23 hypothalmus/brain stem, 4 temporal, 3 frontal, and 3 occipital) were seen. All pathologic slides were reviewed and confirmed. Of these, 30 patients had surgery only (8 subtotal resections and 22 total resections), 8 had biopsy followed by radiotherapy (6) or chemotherapy (2), 21 had surgery and postoperative radiotherapy (20 subtotal resections and 1 total resection) and 1 was observed only. The radiation dose was 40.6 Gy/31fr/44ds to 60.2 Gy/35fr/49ds (mean = 52.1 Gy). Results: The overall 5- and 10-year actuarial survival rate was 93% and 93%, and the relapse-free survival rate was 86% and 80%, respectively. Eight patients developed local recurrence and one had leptomeningeal spread. Two patients receiving chemotherapy (vincristine + carboplatin) had persistent but stable disease. The one patient who was observed eventually required surgical resection 25 months later. Subtotal resection without RT: The local recurrence rate was 38% ((3(8))) if no RT was given after subtotal resection. Only 2 of the 3 recurrences were salvaged. All 22 patients who had tumor totally resected had local tumor control. Subtotal resection/biopsy only plus RT: Radiation therapy was effective in controlling the gross disease in 75% ((15(20))) of patients with subtotal resection, and 100% ((6(6))) of patients with biopsy only. In 14 patients receiving a tumor dose ≥ 51 Gy, 13 (93%) had local control, in comparison, to (11(15)) (73%) receiving a tumor dose <51 Gy had tumor control. Location of tumor: Sixty-three percent ((17(27))) of patients with tumor in cerebellum

  17. Prognosis and Treatment of Spinal Cord Astrocytoma

    International Nuclear Information System (INIS)

    Minehan, Kiernan J.; Brown, Paul D.; Scheithauer, Bernd W.; Krauss, William E.; Wright, Michael P.

    2009-01-01

    Purpose: To identify the prognostic factors for spinal cord astrocytoma and determine the effects of surgery and radiotherapy on outcome. Methods and Materials: This retrospective study reviewed the cases of consecutive patients with spinal cord astrocytoma treated at Mayo Clinic Rochester between 1962 and 2005. Results: A total of 136 consecutive patients were identified. Of these 136 patients, 69 had pilocytic and 67 had infiltrative astrocytoma. The median follow-up for living patients was 8.2 years (range, 0.08-37.6), and the median survival for deceased patients was 1.15 years (range, 0.01-39.9). The extent of surgery included incisional biopsy only (59%), subtotal resection (25%), and gross total resection (16%). Patients with pilocytic tumors survived significantly longer than those with infiltrative astrocytomas (median overall survival, 39.9 vs. 1.85 years; p < 0.001). Patients who underwent resection had a worse, although nonsignificant, median survival than those who underwent biopsy only (pilocytic, 18.1 vs. 39.9 years, p = 0.07; infiltrative, 19 vs. 30 months, p = 0.14). Postoperative radiotherapy, delivered in 75% of cases, gave no significant survival benefit for those with pilocytic tumors (39.9 vs. 18.1 years, p = 0.33) but did for those with infiltrative astrocytomas (24 vs. 3 months; Wilcoxon p = 0.006). On multivariate analysis, pilocytic histologic type, diagnosis after 1984, longer symptom duration, younger age, minimal surgical extent, and postoperative radiotherapy predicted better outcome. Conclusion: The results of our study have shown that histologic type is the most important prognostic variable affecting the outcome of spinal cord astrocytomas. Surgical resection was associated with shorter survival and thus remains an unproven treatment. Postoperative radiotherapy significantly improved survival for patients with infiltrative astrocytomas but not for those with pilocytic tumors

  18. Complement activation in astrocytomas: deposition of C4d and patient outcome

    International Nuclear Information System (INIS)

    Mäkelä, Katri; Helén, Pauli; Haapasalo, Hannu; Paavonen, Timo

    2012-01-01

    C4d is a cleavage product of complement component C4 and is considered to serve as a marker for the site of complement activation. In this study C4d staining of grade I-IV astrocytic tumors was studied to explore if there is an association between complement activation and the grade of tumor, or patient survival. Tissue micro-array samples of 102 astrocytomas were stained immunohistochemically. The material consisted of 9 pilocytic astrocytomas and 93 grade II-IV astrocytomas, of which 67 were primary resections and 26 recurrent tumors. The intensity of C4d staining as well as extent of C4d and CD34 staining were evaluated. The intensity of C4d staining was scored semiquantitatively. The extent of the staining was counted morphometrically with a point counting grid yielding a percent of C4d and CD34 positive area of the sample. The intensity and extent of C4d staining increased in grade II-IV diffusely infiltrating astrocytoma tumors in line with the malignancy grade (p = 0.034 and p = 0.016, respectively, Kruskal-Wallis test). However, C4d positive tumor area percentages were higher in grade I pilocytic astrocytomas than in grade II-IV diffusely infiltrating astrocytomas (p = 0.041, Mann–Whitney test). There was a significant correlation between CD34 positive and C4d positive endothelial area fraction in diffusely infiltrating astrocytomas (p < 0.001, Pearson correlation). In these tumors, the increasing intensity of C4d staining was also associated with worsened patient outcome (p = 0.014, log-rank test). The worsening of patient outcome and malignant progression of tumor cells seem to be connected to microenvironmental changes evoked by chronically activated complement

  19. Childhood Astrocytoma Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Childhood astrocytomas can be benign (not cancer) or malignant (cancer). Learn more about the types of astrocytoma, signs and symptoms, diagnosis, prognosis, and treatment of astrocytomas that are newly diagnosed or have come back after treatment in this expert-reviewed summary.

  20. Radical proposal for the treatment of malignant astrocytoma

    International Nuclear Information System (INIS)

    Karlsson, U.; Black, P.; Nair, S.; Yablon, J.S.; Brady, L.W.

    1991-01-01

    The traditional treatment for anaplastic astrocytoma (AAF) and glioblastoma multiforme (GBM) leads to local relapse. The recurring element is assumed to be previously radioresistant, reorganizing hypoxic cells that require up to three times the traditional photon irradiation dose for inactivation. We are proposing to coagulate the original lesion with high-dose precision brachytherapy, immediately followed by resection to save the patient from secondary effects of the necrotic region. The treatment then continues with adjuvant external beam radiation therapy to the local surrounding brain and concomitant chemotherapy. The approach inverts the traditional regimen. It has the virtue of being precise, avoiding secondary effects of the necrotic tumor, and satisfying accepted radiobiological principles

  1. Malignant astrocytoma following radiotherapy for craniopharyngioma

    Energy Technology Data Exchange (ETDEWEB)

    Maat-Schieman, M.L.C.; Bots, G.T.A.M.; Thomeer, T.W.M.; Vielvoye, G.J. (Rijksuniversiteit Leiden (Netherlands). Hospital)

    1985-05-01

    The case report describes a boy with a malignant astrocytoma in the mid-line of the cerebellum 14 years after X-ray therapy for craniopharyngioma. In Leiden University Hospital this is the first case of a suspected radiation-induced brain tumour in 66 patients treated for cranial lesions by radiotherapy between 1969 and 1979 who have survived more than 5 years.

  2. EMMPRIN expression positively correlates with WHO grades of astrocytomas and meningiomas.

    Science.gov (United States)

    Tsai, Wen-Chiuan; Chen, Ying; Huang, Li-Chun; Lee, Herng-Sheng; Ma, Hsin-I; Huang, Shih-Ming; Sytwu, Huey-Kang; Hueng, Dueng-Yuan

    2013-09-01

    High-grade primary brain tumors possessed poor outcome due to invasiveness. Extracellular matrix metalloproteinase inducer (EMMPRIN) stimulates peri-tumoral fibroblasts to secrete matrix metalloproteinase and promote invasiveness. This study hypothesized that high-grade brain tumors overexpress EMMPRIN. Analyzing the public delinked database from the Gene Expression Omnibus profile, the results showed that the EMMPRIN mRNA level was higher in WHO grade IV (n = 81) than in grade III (n = 19, p EMMPRIN levels positively correlated with WHO grades for astrocytomas (p = 0.008) and meningiomas (p = 0.048). EMMPRIN mRNA levels in conventional glioma cell lines (n = 36) was not less than those in glioma primary culture cells (n = 27) and glioblastoma stem-like cells (n = 12). The GBM8401, U87MG, and LN229 human glioma cell lines also overexpressed EMMPRIN. Hematoxylin and eosin, IHC, and immunofluorescence staining of xenografts confirmed that high-grade brain tumors overexpressed EMMPRIN. Lastly, Kaplan-Meier analysis revealed poorer survival in WHO grade IV (n = 56) than in grade III astrocytomas (n = 21, by log-rank test; p = 0.0001, 95 % CI: 1.842-3.053). However, in high-grade astrocytomas, there was no difference in survival between high and low EMMPRIN mRNA levels. Thus, this study identified that high-grade brain tumors overexpress EMMPRIN, which positively correlates with WHO grades in human astrocytomas and meningiomas, and suggests that EMMPRIN may be a therapeutic target of brain tumor.

  3. Human U87 astrocytoma cell invasion induced by interaction of βig-h3 with integrin α5β1 involves calpain-2.

    Directory of Open Access Journals (Sweden)

    Jie Ma

    Full Text Available It is known that βig-h3 is involved in the invasive process of many types of tumors, but its mechanism in glioma cells has not been fully clarified. Using immunofluorescent double-staining and confocal imaging analysis, and co-immunoprecipitation assays, we found that βig-h3 co-localized with integrin α5β1 in U87 cells. We sought to elucidate the function of this interaction by performing cell invasion assays and gelatin zymography experiments. We found that siRNA knockdowns of βig-h3 and calpain-2 impaired cell invasion and MMP secretion. Moreover, βig-h3, integrins and calpain-2 are known to be regulated by Ca(2+, and they are also involved in tumor cell invasion. Therefore, we further investigated if calpain-2 was relevant to βig-h3-integrin α5β1 interaction to affect U87 cell invasion. Our data showed that βig-h3 co-localized with integrin α5β1 to enhance the invasion of U87 cells, and that calpain-2, is involved in this process, acting as a downstream molecule.

  4. Malignant astrocytoma following radiotherapy for craniopharyngioma

    International Nuclear Information System (INIS)

    Maat-Schieman, M.L.C.; Bots, G.T.A.M.; Thomeer, T.W.M.; Vielvoye, G.J.

    1985-01-01

    The case report describes a boy with a malignant astrocytoma in the mid-line of the cerebellum 14 years after X-ray therapy for craniopharyngioma. In Leiden University Hospital this is the first case of a suspected radiation-induced brain tumour in 66 patients treated for cranial lesions by radiotherapy between 1969 and 1979 who have survived more than 5 years. (author)

  5. 201Thallium SPECT, accuracy in astrocytoma diagnosis and treatment evaluation

    International Nuclear Information System (INIS)

    Kaellen, K.

    1999-10-01

    The aims of the studies included in this thesis were: - to investigate the reliability of 201 Thallium single photon emission computed tomography. Tl SPECT for preoperative diagnosis and histological staging of malignant astrocytomas in comparison with CT; - to develop a method for quantification of cerebral thallium uptake, and to evaluate the quantitative measurement in comparison with CT, for astrocytoma treatment follow-up purposes; - to compare quantitative Tl SPECT and proton magnetic resonance spectroscopy (H-MRS) with conventional MR imaging for astrocytoma monitoring, and to evaluate associations between change of morphological tumour characteristics during treatment and changes of cerebral thallium uptake and metabolic ratios. Results and conclusions: - High TI-index, calculated as a ratio comparing tumour uptake to uptake in the contralateral hemisphere, is an indicator of highly malignant astrocytoma. Differentiation between the high-grade astrocytomas, the low-grade astrocytomas, and infectious lesions is only partial, with an overlap of Tl-indexes between these groups. High-grade astrocytomas that do not show contrast enhancement on CT, and astrocytomas with central necrosis and moderate ring-enhancement, tend to be underestimated when evaluated by Tl-index calculation. Tl SPECT is not a reliable method for non-invasive tumour staging among the group of highly malignant astrocytomas. - Quantification of cerebral TI-uptake, defining the volume of viable tumour tissue, is a new method for astrocytoma chemotherapy monitoring. Results suggest that the method provides prognostic information, and information of treatment efficacy, at an earlier stage than CT. - We did not find a higher accuracy of quantitative Tl SPECT than of MR for monitoring purposes and our results indicated that treatment induced MR changes were interrelated with TI-uptake variations. - Multi-voxel H-MRS was difficult to apply for astrocytoma treatment monitoring, due to the anatomical

  6. Gemistocytic astrocytoma in the spinal cord in a dog: a case report

    Directory of Open Access Journals (Sweden)

    R.O. Chaves

    2016-08-01

    Full Text Available ABSTRACT This paper reports a case of a rare variant of the cervical spinal cord astrocytoma diagnosed in a dog with progressive neurological signs, initially asymmetrical, not ambulatory tetraparesis, segmental reflexes and normal muscle tone in all four limbs and absence of pain upon palpation of the cervical spine. Myelography revealed attenuation of the ventral and dorsal contrast line in the third region of the fifth cervical vertebra. At necropsy intramedullary cylindrical mass that stretched from the third to the sixth cervical vertebra, which replaced all the gray matter of the spinal cord was observed. In the histological study, there was the replacement of the substance by neoplastic cells mantle arranged loosely. The cells were large and slightly rounded. The eosinophilic cytoplasm was well defined, sometimes forming processes interconnecting cells. The nucleus was eccentric, round, oval or kidney-shaped, and the nucleolus was evident. Thus, the microscopic changes observed in the cervical spinal cord were consistent with gemistocytic astrocytoma.

  7. Current treatment of low grade astrocytoma

    DEFF Research Database (Denmark)

    Pedersen, Christina Louise; Romner, Bertil

    2013-01-01

    Through a comprehensive review of the current literature, the present article investigates several aspects of low grade astrocytomas (LGA), including prognostic factors, treatment strategies and follow-up regimes. LGA are in general relatively slow-growing primary brain tumours, but they have a v...... effective in discriminating between tumour progression and radiation necrosis. The research into biomarkers is currently limited with regards to their applications in LGA diagnostics, and therefore further studies including larger patient populations are needed.......Through a comprehensive review of the current literature, the present article investigates several aspects of low grade astrocytomas (LGA), including prognostic factors, treatment strategies and follow-up regimes. LGA are in general relatively slow-growing primary brain tumours, but they have...... as the course of disease. The current literature seems to support the idea that treatment with radical tumour resection, where possible, yields better long term outcome for patients with LGA. However, adjuvant therapy is often necessary. Administering early postoperative radiotherapy to patients with partially...

  8. An infant with hyperalertness, hyperkinesis, and failure to thrive: a rare diencephalic syndrome due to hypothalamic anaplastic astrocytoma.

    Science.gov (United States)

    Stival, Alessia; Lucchesi, Maurizio; Farina, Silvia; Buccoliero, Anna Maria; Castiglione, Francesca; Genitori, Lorenzo; de Martino, Maurizio; Sardi, Iacopo

    2015-09-04

    Diencephalic Syndrome is a rare clinical condition of failure to thrive despite a normal caloric intake, hyperalertness, hyperkinesis, and euphoria usually associated with low-grade hypothalamic astrocytomas. We reported an unusual case of diencephalic cachexia due to hypothalamic anaplastic astrocytoma (WHO-grade III). Baseline endocrine function evaluation was performed in this patient before surgery. After histological diagnosis, he enrolled to a chemotherapy program with sequential high-dose chemotherapy followed by hematopoietic stem cell rescue. The last MRI evaluation showed a good response. The patient is still alive with good visual function 21 months after starting chemotherapy. Diencephalic cachexia can rarely be due to high-grade hypothalamic astrocytoma. We suggest that a nutritional support with chemotherapy given to high doses without radiotherapy could be an effective strategy for treatment of a poor-prognosis disease.

  9. astrocytoma – diagnostic pitfalls. A review

    Directory of Open Access Journals (Sweden)

    Ewa Matyja

    2016-10-01

    Full Text Available Pilocytic astrocytomas (PAs are the most frequent primary astroglial tumours affecting children and adolescents. They occur sporadically or in association with a genetically determined syndrome – neurofibromatosis type 1. Classic PA usually manifests as a well-circumscribed, often cystic, slowly growing tumour, which corresponds to WHO grade I. The majority of pilocytic tumours arise along the neuraxis, predominantly in the cerebellum. They are associated with favourable long-term outcome or spontaneous regression, even after incomplete resection. However, the behaviour and prognosis might also be related to tumour histology and location. Pilomyxoid astrocytoma (PMA represents a variant of classical PA with more invasive growth and increased risk of recurrences and dissemination. Typically, PAs exhibit distinct histology with biphasic architecture of loose, microcystic and compact, fibrillary areas. However, some tumours arise in an uncommon location and display heterogeneous histopathological appearance. The morphological pattern of PA can mimic some other glial neoplasms, including oligodendroglioma, pleomorphic xanthoastrocytoma, ependymoma or diffuse astrocytoma. Not infrequently, the advanced degenerative changes, including vascular fibrosis, and recent and old haemorrhages, may mimic vascular pathology. Sometimes, the neoplastic piloid tissue can resemble reactive gliosis, related to long-standing non neoplastic lesions. Not infrequently, PA exhibits histological features typical for anaplasia, including necrosis, mitoses and glomeruloid vascular proliferation that can suggest a diffuse high-grade glioma. However, even those PAs that lack distinct histological features of anaplasia can behave unpredictably, in a more aggressive manner, with leptomeningeal spreading. Genetic alterations resulting in aberrant signalling of the mitogen-activated protein kinase (MAPK pathway have been considered to underlie the development of PAs. The most

  10. Pilocytic Astrocytoma Presenting as an Orbital Encephalocele: A Case Report

    Directory of Open Access Journals (Sweden)

    Amy Bruzek

    2015-04-01

    Full Text Available We describe the case of a 29-year-old male who presented with new-onset seizures. He was subsequently found to have an orbital encephalocele containing a focus of pilocytic astrocytoma. We believe that this is the first report of a pilocytic astrocytoma located within the orbit that did not originate from the optic pathway. It is also the first case of a pilocytic astrocytoma completely contained within an encephalocele. This case suggests a close pathological examination of encephaloceles for underlying diseases.

  11. Radiotherapy Results of Brain Astrocytoma and Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Choi, Doo Ho; Kim, Il Han; Ha, Sung Whan; Chi, Je Geun

    1988-01-01

    A retrospective analysis was performed on 49 patients with astrocytoma of glioblastoma multiforme of brain who received postoperative radiotherapy in the period between February 1979 and December 1985. Fourteen patients had grade I astrocytoma, 11 patients grade II, 14 patients grade III, and 10 patients glioblastoma multiforme. Three year actuarial survival rates were 85.7%, 44.6% and 23.1% for grade I, II, and III astrocytomas, respectively. One and 2 year actuarial survival rates for patients with glioblastoma multiforme were 54.5% and 27.3%, respectively. Histologic grade, age, extent of operation and tumor location were revealed to be prognosticators

  12. Computed tomography of benign supratentorial astrocytomas of infancy and childhood

    International Nuclear Information System (INIS)

    Pedersen, H.; Gjerris, F.; Klinken, L.

    1981-01-01

    The CT findings of 15 benign supratentorial astrocytomas in children less than 15 years of age are compared with the CT findings of 19 supratentorial tumors of other histological types in the same age group. Astrocytomas were more often hypodense, lacked calcification and showed greater contrast enhancement than other tumors. Seven of the 15 astrocytomas were hypodense, without calcification and showed contrast enhancement of more than 10 Hounsfield units, whereas this coexistence was not present in any of the 19 tumors of the other histological types. (orig.)

  13. Complejo nódulo subependimario-astrocitoma subependimario gigantocelular en niños con esclerosis tuberosa Subependymal nodules-subependymal giant cell astrocytoma complex in children with tuberous sclerosis

    Directory of Open Access Journals (Sweden)

    Lucas Bongiorni

    2009-01-01

    Full Text Available El objetivo fue describir las características clínico imagenológicas de niños con esclerosis tuberosa que presentaron el complejo Nódulo Subependimario (NS-Astrocitoma Subependimario Gigantocelular(ASGC y analizar el comportamiento evolutivo de dicho "complejo" para detectar precozmente su crecimiento y evitar las complicaciones de la hipertensión endocraneana (HTE. Evaluamos 22 pacientes con diagnóstico anátomo patológico de ASGC. El diagnóstico del tumor se realizó a una media de 10.1 años. Pudimos observar la evolución de NS a ASGC; estos NS se ubicaron adyacentes al agujero de Monro y con el tiempo tuvieron un importante crecimiento con intensa captación de contraste e hidrocefalia. La aceleración en el crecimiento de estos NS y su "transformación" en ASGC se produjo a los 10 años de edad promedio, con un diámetro medio de 9 mm. Ningún NS alejado de los forámenes de Monro evolucionó a ASGC. Quince pacientes (68% fueron operados con síntomas de hipertensión endocraneana. La edad media de la cirugía fue 10.8 años. Seis pacientes presentaron déficit visual. En estos últimos, el diámetro medio mayor del tumor fue 31.5 mm, mayor que los 18.7 mm del grupo de pacientes que no presentó secuela visual. El seguimiento clínico imagenológico periódico de toda lesión subependimaria próxima a los agujeros de Monro, permitiría en etapa presintomática anticipar un tratamiento quirúrgico, que reduciría la incidencia de HTE. Estudios prospectivos podrían determinar si el complejo NS-ASGC corresponde a una misma entidad en distinta etapa evolutiva, o son dos lesiones con diferente potencial de crecimiento.The object of this paper is to describe the imaging and clinical characteristics of subependymal nodule (SN - subependymal giant cell astrocytoma (SGCA complex in tuberous sclerosis and analyze its evolution in order to attempt early detection and the prevention of intracranial hypertension. We evaluated 22 patients with

  14. Impaired RNA splicing of 5'-regulatory sequences of the astroglial glutamate transporter EAAT2 in human astrocytoma

    NARCIS (Netherlands)

    Münch, C.; Penndorf, A.; Schwalenstöcker, B.; Troost, D.; Ludolph, A. C.; Ince, P.; Meyer, T.

    2001-01-01

    A loss of the glutamate transporter EAAT2 has been reported in the neoplastic transformation of astrocytic cells and astrocytoma. The RNA expression of EAAT2 and five 5'-regulatory splice variants was investigated to identify alterations of the post-transcriptional EAAT2 gene regulation in human

  15. Molecular analysis of pediatric brain tumors identifies microRNAs in pilocytic astrocytomas that target the MAPK and NF-κB pathways.

    Science.gov (United States)

    Jones, Tania A; Jeyapalan, Jennie N; Forshew, Tim; Tatevossian, Ruth G; Lawson, Andrew R J; Patel, Sheena N; Doctor, Gabriel T; Mumin, Muhammad A; Picker, Simon R; Phipps, Kim P; Michalski, Antony; Jacques, Thomas S; Sheer, Denise

    2015-12-18

    Pilocytic astrocytomas are slow-growing tumors that usually occur in the cerebellum or in the midline along the hypothalamic/optic pathways. The most common genetic alterations in pilocytic astrocytomas activate the ERK/MAPK signal transduction pathway, which is a major driver of proliferation but is also believed to induce senescence in these tumors. Here, we have conducted a detailed investigation of microRNA and gene expression, together with pathway analysis, to improve our understanding of the regulatory mechanisms in pilocytic astrocytomas. Pilocytic astrocytomas were found to have distinctive microRNA and gene expression profiles compared to normal brain tissue and a selection of other pediatric brain tumors. Several microRNAs found to be up-regulated in pilocytic astrocytomas are predicted to target the ERK/MAPK and NF-κB signaling pathways as well as genes involved in senescence-associated inflammation and cell cycle control. Furthermore, IGFBP7 and CEBPB, which are transcriptional inducers of the senescence-associated secretory phenotype (SASP), were also up-regulated together with the markers of senescence and inflammation, CDKN1A (p21), CDKN2A (p16) and IL1B. These findings provide further evidence of a senescent phenotype in pilocytic astrocytomas. In addition, they suggest that the ERK/MAPK pathway, which is considered the major driver of these tumors, is regulated not only by genetic aberrations but also by microRNAs.

  16. A case of astrocytoma, 19 year history after BNCT

    International Nuclear Information System (INIS)

    Kamano, Shuji

    2006-01-01

    A 39-year-old man had received Boron Neutron Capture Therapy (BNCT) in 1987 for a Grade II Astrocytoma. He gradually exacerbated and received a second operation in 1994. The mass taken in the second operation is almost competent with radiation necrosis. Following that, he shows no signs of recurrence. Currently, he has returned to full time employment in physical labor. This case suggests effectiveness of BNCT for rather low-grade astrocytomas. (author)

  17. The emerging role of m-TOR up-regulation in brain Astrocytoma.

    Science.gov (United States)

    Ryskalin, Larisa; Limanaqi, Fiona; Biagioni, Francesca; Frati, Alessandro; Esposito, Vincenzo; Calierno, Maria Teresa; Lenzi, Paola; Fornai, Francesco

    2017-05-01

    The present manuscript is an overview of various effects of mTOR up-regulation in astrocytoma with an emphasis on its deleterious effects on the proliferation of Glioblastoma Multiforme. The manuscript reports consistent evidence indicating the occurrence of mTOR up-regulation both in experimental and human astrocytoma. The grading of human astrocytoma is discussed in relationship with mTOR up-regulation. In the second part of the manuscript, the biochemical pathways under the influence of mTOR are translated to cell phenotypes which are generated by mTOR up-regulation and reverted by its inhibition. A special section is dedicated to the prominent role of autophagy in mediating the effects of mTOR in glioblastoma. In detail, autophagy inhibition produced by mTOR up-regulation determines the fate of cancer stem cells. On the other hand, biochemical findings disclose the remarkable effects of autophagy activators as powerful inducers of cell differentiation with a strong prevalence towards neuronal phenotypes. Thus, mTOR modulation acts on the neurobiology of glioblastoma just like it operates in vivo at the level of brain stem cell niches by altering autophagy-dependent cell differentiation. In the light of such a critical role of autophagy we analyzed the ubiquitin proteasome system. The merging between autophagy and proteasome generates a novel organelle, named autophagoproteasome which is strongly induced by mTOR inhibitors in glioblastoma cells. Remarkably, when mTOR is maximally inhibited the proteasome component selectively moves within autophagy vacuoles, thus making the proteasome activity dependent on the entry within autophagy compartment.

  18. Anaplastic astrocytoma 14 years after radiotherapy for pituitary adenoma

    International Nuclear Information System (INIS)

    Tamura, Masaru; Misumi, Syuuzou; Kurosaki, Syuuhei; Shibasaki, Takashi; Ohye, Chihiro

    1992-01-01

    A case of anaplastic astrocytoma following radiotherapy for growth hormone secreting pituitary adenoma is presented with a review of the literature. A 43 year old female was admitted with signs of acromegaly and hypertension. An eosinophilic pituitary adenoma was subtotally removed by transsphenoidal approach, followed by 60 Gy irradiation using a 2x2 cm lateral field. Fourteen years later at the age of 57, she suffered from headache, recent-memory disturbance and uncinate fits. CT scan and MRI disclosed ring-like enhanced mass lesion in the left temporal lobe, corresponding to the previous irradiated field. 18 F-FDG PET showed hypermetabolism at the lesion. Left frontotemporal craniotomy was performed, and a reddish gray gelatinous tumor containing necrotic center and cyst was partially removed. Histologically, the tumor consisted of hypercellular astrocytic cells with perivascular pseudorosette. Coagulation necrosis at the center of the tumor, and hyalinosis and fibrosis of the blood vessels in and around the tumor, which might have been caused by the antecedent radiotherapy, were recognized. Postoperative radiotherapy and chemotherapy, were given, however, she expired 13 months after the operation. Seven cases, including ours, of malignant glioma following radiotherapy for pituitary adenoma were reported in the literature. A total dose of irradiation varies from 45 to 95 Gy with a mean of 50 Gy. The period of latency before tumor occurrence ranges from 5 to 22 years with a mean of 10 years. The differentiation of radiation-induced gliomas from radionecrosis of the brain is also discussed. (author)

  19. Anaplastic astrocytoma 14 years after radiotherapy for pituitary adenoma

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Masaru; Misumi, Syuuzou; Kurosaki, Syuuhei; Shibasaki, Takashi; Ohye, Chihiro (Gunma Univ., Maebashi (Japan). School of Medicine)

    1992-04-01

    A case of anaplastic astrocytoma following radiotherapy for growth hormone secreting pituitary adenoma is presented with a review of the literature. A 43 year old female was admitted with signs of acromegaly and hypertension. An eosinophilic pituitary adenoma was subtotally removed by transsphenoidal approach, followed by 60 Gy irradiation using a 2x2 cm lateral field. Fourteen years later at the age of 57, she suffered from headache, recent-memory disturbance and uncinate fits. CT scan and MRI disclosed ring-like enhanced mass lesion in the left temporal lobe, corresponding to the previous irradiated field. {sup 18}F-FDG PET showed hypermetabolism at the lesion. Left frontotemporal craniotomy was performed, and a reddish gray gelatinous tumor containing necrotic center and cyst was partially removed. Histologically, the tumor consisted of hypercellular astrocytic cells with perivascular pseudorosette. Coagulation necrosis at the center of the tumor, and hyalinosis and fibrosis of the blood vessels in and around the tumor, which might have been caused by the antecedent radiotherapy, were recognized. Postoperative radiotherapy and chemotherapy, were given, however, she expired 13 months after the operation. Seven cases, including ours, of malignant glioma following radiotherapy for pituitary adenoma were reported in the literature. A total dose of irradiation varies from 45 to 95 Gy with a mean of 50 Gy. The period of latency before tumor occurrence ranges from 5 to 22 years with a mean of 10 years. The differentiation of radiation-induced gliomas from radionecrosis of the brain is also discussed. (author).

  20. Geometrical study of astrocytomas through fractals and scaling analysis

    International Nuclear Information System (INIS)

    Torres H, F.; Baena N, R.; Vergara V, J.; Guerrero M, M.

    2017-10-01

    The tumor growth is a complex process characterized by the proliferation of uncontrollable cells which invade neighbor tissues. The understanding process of this type of phenomena is very relevant in order to establish diagnosis and proper therapy strategies and to start the valorization of its complexity with proper descriptors produced by the scaling analysis, which define the tumor growth geometry. In this work, obtained results through the scaling analysis for pilocytic astrocytomas, anaplastic and diffuse, are shown, which tumors of primary origin are. On them, it is calculated the fractal dimension and critic exponents of local roughness to characterize in vivo three-dimensional tumor growth. The acquisition of the images for this type of injuries was carried out according to the standard protocol used for brain radiotherapy and radiosurgery, i.e., axial, coronal and sagittal magnetic resonance T1 weighted images and comprising the brain volume for image registration. Image segmentation was performed by the application the K-means procedure upon contrasted images. The results show significant variations of the parameters depending on the tumor stage and its histological origin. (Author)

  1. Multiple solid pilocytic astrocytomas in cerebleiium with neurofibromatosis type: A case report

    International Nuclear Information System (INIS)

    Choi, Seo Young; Kim, Myung Soon; Kim, Young Ju

    2014-01-01

    Pilocytic astrocytoma usually has a classic imaging manifestation of a solitary, cyst-like mass with a strong contrast-enhancing mural nodule. There is only one published report so far of multiple solid and cyst type pilocytic astrocytomas in the cerebellum in neurofibromatosis type 1 (NF1) patient from the United States in 2007. We report a case of pilocytic astrocytoma presenting with only solid, multiple pilocytic astrocytomas in the cerebellum in NF1 patient.

  2. Holocord low grade astrocytoma - Role of radical irradiation and chemotherapy

    International Nuclear Information System (INIS)

    Goyal, S.; Puri, T.; Julka, R.K.

    2015-01-01

    Spinal intradural tumors, especially those extending along the entire length of the spinal cord, termed as ‘holocord’ tumors are uncommon. Most of these are gliomas, with astrocytomas (low grade) predominating in children and ependymomas in adults. Other histologies, though reported, are even rarer. Management is debatable, with both surgery and radiotherapy of such extensive tumors posing challenges. We describe a case of a 14-year-old girl with holocord astrocytoma extending from cervicomedullary junction till lumbar spine, who recovered full neurological function following radical irradiation of entire spine followed by temozolomide-based chemotherapy. No grade 3/4 bone marrow morbidity was seen. Five years following treatment, she maintained normal neurological function and apparently normal pubertal and skeletal growth despite residual disease visible on imaging. Literature review of existing reports of holocord astrocytomas highlighting management and outcome is presented.

  3. 13N-NH3 PET in the diagnosis of astrocytomas: preliminary result

    International Nuclear Information System (INIS)

    Zhang Xiangsong; He Zuoxiang; Tang Anwu

    2004-01-01

    Objective: To evaluate the feasibility of diagnosing the astrocytoma with 13N-NH3 PET imaging. Methods 13N-NH3 and 18F-fluorodeoxyglucose (FDG) PET imaging were performed in seven cases of astrocytomas including 3 anteoperative astrocytomas, 2 recurrent astrocytomas, 2 brain injury or necrosis after the operation and radiotherapy. The radioactivity ratios of the tumor and normal white matter (T/WM) were calculated. Results: The tumor lesions in 3 anteoperative astrocytomas and 2 recurrent astrocytomas all uptake 13N-NH3. The average T/WM on 13N-NH3 images was 1.82±0.21, and T/WM on 13N-NH3 and 18F-FDG images were 1.98 and 0.97 for one case with grade 1 astrocytoma. 13N-NH3 and 18F-FDG PET imaging both showed decreased uptake in 2 brain injury or necrosis after the operation and radiotherapy of astrocytomas. Conclusions: 13N-NH3 was uptaken in astrocytomas. 13N-NH3 can be useful in the diagnosis of astrocytoma, and potentially improve diagnostic accuracy of astrocytoma, especially in low-grade astrocytoma. (authors)

  4. 13N-NH3 PET in the diagnosis of astrocytomas: preliminary result

    International Nuclear Information System (INIS)

    Zhang Xiangsong; He Zuoxiang; Tang Anwu

    2004-01-01

    Objective: To evaluate the feasibility of diagnosing the astrocytoma with 13N-NH3 PET imaging. Methods: 13N-NH3 and 18F-fluorodeoxyglucose (FDG) PET imaging were performed in seven cases of astrocytomas including 3 anteoperative astrocytomas, 2 recurrent astrocytomas, 2 brain injury or necrosis after the operation and radiotherapy. The radioactivity ratios of the tumor and normal white matter (T/WM) were calculated. Results: The tumor lesions in 3 anteoperative astrocytomas and 2 recurrent astrocytomas all uptake 13N-NH3 .The average T/WM on 13N-NH3 images was 1.82±0.21, and T/WM on 13N-NH3 and 18F-FDG images were 1.98 and 0.97 for one case with grade 1 astrocytoma. 13N-NH3 and 18F-FDG PET imaging both showed decreased uptake in 2 brain injury or necrosis after the operation and radiotherapy of astrocytomas. Conclusions: 13N-NH3 was uptaken in astrocytomas. 13N-NH3 can be useful in the diagnosis of astrocytoma, and potentially improve diagnostic accuracy of astrocytoma, especially in low-grade astrocytoma. (authors)

  5. Glioblastomas, astrocytomas and oligodendrogliomas linked to Lynch syndrome

    DEFF Research Database (Denmark)

    Therkildsen, C; Ladelund, S; Rambech, E

    2015-01-01

    .5%) in MSH2 gene mutation carriers compared to patients with mutations in MLH1 or MSH6. Glioblastomas predominated (56%), followed by astrocytomas (22%) and oligodendrogliomas (9%). MMR status was assessed in 10 tumors, eight of which showed MMR defects. None of these tumors showed immunohistochemical...

  6. Childhood Astrocytomas Treatment (PDQ®)—Health Professional Version

    Science.gov (United States)

    Astrocytoma is the most common type of glioma in children. Get detailed information about the clinical features, molecular and diagnostic evaluation, classification, prognosis, and treatment of newly diagnosed and recurrent disease low-grade and high-grade gliomas in this comprehensive summary for clinicians.

  7. Cell Type-Specific Contributions to the TSC Neuropathology

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0415 TITLE: Cell Type-Specific Contributions to the TSC Neuropathology PRINCIPAL INVESTIGATOR: Gabriella D’Arcangelo...AND SUBTITLE Cell Type-Specific Contributions to the TSC Neuropathology 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0415 5c. PROGRAM...how heterozygous and homozygous Tsc2 mutations affect the development of mutant excitatory neurons as well as other surrounding brain cells , in vivo

  8. Anorexia: an early sign of fourth ventricle astrocytoma in children.

    Science.gov (United States)

    Leroy, Henri-Arthur; Baroncini, Marc; Delestret, Isabelle; Florent, Vincent; Vinchon, Matthieu

    2014-12-01

    Paediatric low-grade astrocytomas of the fourth ventricle are rare tumours, generally revealed by hydrocephalus. However, some patients present with a history of severe anorexia. It might be a harbinger, which if recognized, could lead to earlier diagnosis. We decided to examine our database in order to evaluate the incidence and signification of anorexia in this context. Retrospective monocentric study of cases of low-grade astrocytomas of the fourth ventricle operated between 1991 and 2012 in our paediatric neurosurgery department. We particularly observed the clinical presentation and long-term clinical, oncological and radiological evolution. Non-parametrical tests were used (Mann-Whitney, Fisher). We reviewed 34 cases, 31 pilocytic astrocytomas and 3 diffuse astrocytomas, 16 boys and 18 girls, (M/F ratio 0.89). Mean age at diagnosis was 8 years old. Seven presented with notable anorexia, the average BMI in this group was ≤2 standard deviation (SD); with clinical signs evolving for 11.5 months. Twenty-seven children had no anorexia; average BMI in this group was +1 SD, with clinical evolution for 6 months on an average of p anorexia, body mass index improved markedly in the postoperative follow-up, which lasted, on average, for 6 years. Anorexia with stunted body weight curve is a non-exceptional presentation in children with low-grade astrocytomas of the fourth ventricle. Unexplained or atypical anorexia with negative etiologic assessment should prompt cerebral imaging. Clinical improvement after surgical resection, could suggest a possible interaction between tumour tissue and appetite-suppressing peptide secretion.

  9. Pervasive satellite cell contribution to uninjured adult muscle fibers.

    Science.gov (United States)

    Pawlikowski, Bradley; Pulliam, Crystal; Betta, Nicole Dalla; Kardon, Gabrielle; Olwin, Bradley B

    2015-01-01

    Adult skeletal muscle adapts to functional needs, maintaining consistent numbers of myonuclei and stem cells. Although resident muscle stem cells or satellite cells are required for muscle growth and repair, in uninjured muscle, these cells appear quiescent and metabolically inactive. To investigate the satellite cell contribution to myofibers in adult uninjured skeletal muscle, we labeled satellite cells by inducing a recombination of LSL-tdTomato in Pax7(CreER) mice and scoring tdTomato+ myofibers as an indicator of satellite cell fusion. Satellite cell fusion into myofibers plateaus postnatally between 8 and 12 weeks of age, reaching a steady state in hindlimb muscles, but in extra ocular or diaphragm muscles, satellite cell fusion is maintained at postnatal levels irrespective of the age assayed. Upon recombination and following a 2-week chase in 6-month-old mice, tdTomato-labeled satellite cells fused into myofibers as 20, 50, and 80 % of hindlimb, extra ocular, and diaphragm myofibers, respectively, were tdTomato+. Satellite cells contribute to uninjured myofibers either following a cell division or directly without an intervening cell division. The frequency of satellite cell fusion into the skeletal muscle fibers is greater than previously estimated, suggesting an important functional role for satellite cell fusion into adult myofibers and a requirement for active maintenance of satellite cell numbers in uninjured skeletal muscle.

  10. Malignant Trigeminal Nerve Sheath Tumor and Anaplastic Astrocytoma Collision Tumor with High Proliferative Activity and Tumor Suppressor P53 Expression

    Directory of Open Access Journals (Sweden)

    Maher Kurdi

    2014-01-01

    Full Text Available Background. The synchronous development of two primary brain tumors of distinct cell of origin in close proximity or in contact with each other is extremely rare. We present the first case of collision tumor with two histological distinct tumors. Case Presentation. A 54-year-old woman presented with progressive atypical left facial pain and numbness for 8 months. MRI of the brain showed left middle cranial fossa heterogeneous mass extending into the infratemporal fossa. At surgery, a distinct but intermingled intra- and extradural tumor was demonstrated which was completely removed through left orbitozygomatic-temporal craniotomy. Histopathological examination showed that the tumor had two distinct components: malignant nerve sheath tumor of the trigeminal nerve and temporal lobe anaplastic astrocytoma. Proliferative activity and expressed tumor protein 53 (TP53 gene mutations were demonstrated in both tumors. Conclusions. We describe the first case of malignant trigeminal nerve sheath tumor (MTNST and anaplastic astrocytoma in collision and discuss the possible hypothesis of this rare occurrence. We propose that MTNST, with TP53 mutation, have participated in the formation of anaplastic astrocytoma, or vice versa.

  11. Astrocytoma of the pituitary gland (pituicytoma): case report

    International Nuclear Information System (INIS)

    Uesaka, T.; Miyazono, M.; Nishio, S.; Iwaki, T.

    2002-01-01

    A 34-year-old man presented with a 4-month history of visual obscuration. Magnetic resonance imaging showed a solid, discrete, contrast-enhancing pituitary mass with suprasellar extension. Surgery, which was performed via a transsphenoidal approach, disclosed the pituitary tumor to be a fibrillary astrocytoma (pituicytoma). This case report contains the clinical and neuroimaging features of this rare tumor of the neurohypophysis, which masqueraded as a pituitary adenoma. (orig.)

  12. Tuberous schlerosis complex and astrocytoma: a case report, Hiroshima

    Energy Technology Data Exchange (ETDEWEB)

    Rudnick, P A; Hoshino, N; Kitaoka, T; Miura, M

    1961-02-10

    This case report concerned a young woman with cutaneous, osseous, and retinal changes of tuberous sclerosis, referred to ABCC for evaluation of blindness and increased intracranial pressure. A right lateral ventricle astrocytoma was successfully removed, but the patient's sight was not restored. The development of cerebral neoplasms in these patients is discussed. A careful search for resectable brain lesions should be made in all patients with tuberous sclerosis who have signs and symptoms of increased intracranial pressure. 14 references, 6 figures.

  13. {sup 201}Thallium SPECT, accuracy in astrocytoma diagnosis and treatment evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kaellen, K

    1999-10-01

    The aims of the studies included in this thesis were: - to investigate the reliability of {sup 201}Thallium single photon emission computed tomography. Tl SPECT for preoperative diagnosis and histological staging of malignant astrocytomas in comparison with CT; - to develop a method for quantification of cerebral thallium uptake, and to evaluate the quantitative measurement in comparison with CT, for astrocytoma treatment follow-up purposes; - to compare quantitative Tl SPECT and proton magnetic resonance spectroscopy (H-MRS) with conventional MR imagingfor astrocytoma monitoring, and to evaluate associations between change of morphological tumour characteristics during treatment and changes of cerebral thallium uptake and metabolic ratios. Results and conclusions: - High TI-index, calculated as a ratio comparing tumour uptake to uptake in the contralateral hemisphere, is an indicator of highly malignant astrocytoma. Differentiation between the high-grade astrocytomas, the low-grade astrocytomas, and infectious lesions is only partial, with an overlap of Tl-indexes between these groups. High-grade astrocytomas that do not show contrast enhancement on CT, and astrocytomas with central necrosis and moderate ring-enhancement, tend to be underestimated when evaluated by Tl-index calculation. Tl SPECT is not a reliable method for non-invasive tumour staging among the group of highly malignant astrocytomas. - Quantification of cerebral TI-uptake, defining the volume of viable tumour tissue, is a new method for astrocytoma chemotherapy monitoring. Results suggest that the method provides prognostic information, and information of treatment efficacy, at an earlier stage than CT. - We did not find a higher accuracy of quantitative Tl SPECT than of MR for monitoring purposes and our results indicated that treatment induced MR changes were interrelated with TI-uptake variations. - Multi-voxel H-MRS was difficult to apply for astrocytoma treatment monitoring, due to the

  14. Malignant transformation of a chiasmatic pilocytic astrocytoma in a patient with diencephalic syndrome

    International Nuclear Information System (INIS)

    Wal, Ester P.J. van der; Edwards-Brown, Mary; Azzarelli, Biagio

    2003-01-01

    Chiasmatic gliomas with metastatic spread are rare in children and are usually associated with diencephalic syndrome. They are mostly pilocytic astrocytomas and their transformation to high-grade astrocytomas has never previously been reported in the pediatric population. We report leptomeningeal spread of a chiasmatic pilocytic astrocytoma in a child presenting with diencephalic syndrome. He was treated with chemotherapy and radiation. The tumor recurred with transformation into a high-grade astrocytoma. Radiation therapy may have played a role in transformation of the tumor, but more research is needed to further clarify the biological behavior of this tumor. (orig.)

  15. Contributions of 3D Cell Cultures for Cancer Research.

    Science.gov (United States)

    Ravi, Maddaly; Ramesh, Aarthi; Pattabhi, Aishwarya

    2017-10-01

    Cancer cell lines have contributed immensely in understanding the complex physiology of cancers. They are excellent material for studies as they offer homogenous samples without individual variations and can be utilised with ease and flexibility. Also, the number of assays and end-points one can study is almost limitless; with the advantage of improvising, modifying or altering several variables and methods. Literally, a new dimension to cancer research has been achieved by the advent of 3Dimensional (3D) cell culture techniques. This approach increased many folds the ways in which cancer cell lines can be utilised for understanding complex cancer biology. 3D cell culture techniques are now the preferred way of using cancer cell lines to bridge the gap between the 'absolute in vitro' and 'true in vivo'. The aspects of cancer biology that 3D cell culture systems have contributed include morphology, microenvironment, gene and protein expression, invasion/migration/metastasis, angiogenesis, tumour metabolism and drug discovery, testing chemotherapeutic agents, adaptive responses and cancer stem cells. We present here, a comprehensive review on the applications of 3D cell culture systems for these aspects of cancers. J. Cell. Physiol. 232: 2679-2697, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Mast cell-neural interactions contribute to pain and itch.

    Science.gov (United States)

    Gupta, Kalpna; Harvima, Ilkka T

    2018-03-01

    Mast cells are best recognized for their role in allergy and anaphylaxis, but increasing evidence supports their role in neurogenic inflammation leading to pain and itch. Mast cells act as a "power house" by releasing algogenic and pruritogenic mediators, which initiate a reciprocal communication with specific nociceptors on sensory nerve fibers. Consequently, nerve fibers release inflammatory and vasoactive neuropeptides, which in turn activate mast cells in a feedback mechanism, thus promoting a vicious cycle of mast cell and nociceptor activation leading to neurogenic inflammation and pain/pruritus. Mechanisms underlying mast cell differentiation, activation, and intercellular interactions with inflammatory, vascular, and neural systems are deeply influenced by their microenvironment, imparting enormous heterogeneity and complexity in understanding their contribution to pain and pruritus. Neurogenic inflammation is central to both pain and pruritus, but specific mediators released by mast cells to promote this process may vary depending upon their location, stimuli, underlying pathology, gender, and species. Therefore, in this review, we present the contribution of mast cells in pathological conditions, including distressing pruritus exacerbated by psychologic stress and experienced by the majority of patients with psoriasis and atopic dermatitis and in different pain syndromes due to mastocytosis, sickle cell disease, and cancer. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Differential cytokine contributions of perivascular haematopoietic stem cell niches.

    Science.gov (United States)

    Asada, Noboru; Kunisaki, Yuya; Pierce, Halley; Wang, Zichen; Fernandez, Nicolas F; Birbrair, Alexander; Ma'ayan, Avi; Frenette, Paul S

    2017-03-01

    Arterioles and sinusoids of the bone marrow (BM) are accompanied by stromal cells that express nerve/glial antigen 2 (NG2) and leptin receptor (LepR), and constitute specialized niches that regulate quiescence and proliferation of haematopoietic stem cells (HSCs). However, how niche cells differentially regulate HSC functions remains unknown. Here, we show that the effects of cytokines regulating HSC functions are dependent on the producing cell sources. Deletion of chemokine C-X-C motif ligand 12 (Cxcl12) or stem cell factor (Scf) from all perivascular cells marked by nestin-GFP dramatically depleted BM HSCs. Selective Cxcl12 deletion from arteriolar NG2 + cells, but not from sinusoidal LepR + cells, caused HSC reductions and altered HSC localization in BM. By contrast, deletion of Scf in LepR + cells, but not NG2 + cells, led to reductions in BM HSC numbers. These results uncover distinct contributions of cytokines derived from perivascular cells in separate vascular niches to HSC maintenance.

  18. Outcome of Patients With Pilocytic Astrocytoma and Leptomeningeal Dissemination

    Energy Technology Data Exchange (ETDEWEB)

    Mazloom, Ali; Hodges, Joseph C.; Teh, Bin S. [Department of Radiation Oncology, Methodist Hospital, Houston, TX (United States); Chintagumpala, Murali [Department of Pediatrics, Baylor College of Medicine, Houston, TX (United States); Paulino, Arnold C., E-mail: apaulino@tmhs.org [Department of Radiation Oncology, Methodist Hospital, Houston, TX (United States); Department of Pediatrics, Baylor College of Medicine, Houston, TX (United States)

    2012-10-01

    Purpose: To determine the patient, tumor, and treatment characteristics of patients with pilocytic astrocytoma (PA) and leptomeningeal dissemination (LMD). Methods and Materials: A PubMed search of English-language studies pertaining to PA with LMD was performed using a combination of keywords that included juvenile pilocytic astrocytoma, low-grade astrocytoma, low-grade glioma, leptomeningeal dissemination, neuraxis spread, and radiotherapy. We found 26 studies with 58 patients between 1976 and 2005 that met these criteria. Results: The median survival for PA patients with LMD was 65 months. The 1-, 2-, and 5-year overall survival (OS) rate after the diagnosis of LMD was 81.1%, 75.7%, and 55.5%. The 1-, 2-, and 5-year progression-free survival (PFS) rate after the diagnosis of LMD was 69.3%, 66.5%, and 34.6%, respectively. Age, gender, primary site location, timing of LMD presentation (synchronous vs. metachronous), and LMD location did not significantly influence OS or PFS. No statistically significant difference was found in OS or PFS between the chemotherapy and radiotherapy groups. Likewise, no difference was found in OS or PFS according to the use of craniospinal irradiation vs. less extensive RT fields. Conclusions: Approximately one-half of PA patients were alive 5 years after the diagnosis of LMD. Both chemotherapy and radiotherapy have efficacy against LMD. Although the use of craniospinal irradiation did not have an effect on PFS, the patient numbers were small and a larger number treated with craniospinal irradiation is needed to determine its efficacy.

  19. Management of Pediatric Spinal Cord Astrocytomas: Outcomes With Adjuvant Radiation

    International Nuclear Information System (INIS)

    Guss, Zachary D.; Moningi, Shalini; Jallo, George I.; Cohen, Kenneth J.; Wharam, Moody D.; Terezakis, Stephanie A.

    2013-01-01

    Purpose: Pediatric intramedullary spinal cord tumors are exceedingly rare; in the United States, 100 to 200 cases are recognized annually, of these, most are astrocytomas. The purpose of this study is to report the outcomes in pediatric patients with spinal cord astrocytomas treated at a tertiary care center. Methods and Materials: An institutional review board-approved retrospective single-institution study was performed for pediatric patients with spinal cord astrocytomas treated at our hospital from 1990 to 2010. The patients were evaluated on the extent of resection, progression-free survival (PFS), and development of radiation-related toxicities. Kaplan-Meier curves and multivariate regression model methods were used for analysis. Results: Twenty-nine patients were included in the study, 24 with grade 1 or 2 (low-grade) tumors and 5 with grade 3 or 4 (high-grade) tumors. The median follow-up time was 55 months (range, 1-215 months) for patients with low-grade tumors and 17 months (range, 10-52 months) for those with high-grade tumors. Thirteen patients in the cohort received chemotherapy. All patients underwent at least 1 surgical resection. Twelve patients received radiation therapy to a median radiation dose of 47.5 Gy (range, 28.6-54.0 Gy). Fifteen patients with low-grade tumors and 1 patient with a high-grade tumor exhibited stable disease at the last follow-up visit. Acute toxicities of radiation therapy were low grade, whereas long-term sequelae were infrequent and manageable when they arose. All patients with low-grade tumors were alive at the last follow-up visit, compared with 1 patient with a high-grade tumor. Conclusion: Primary pediatric spinal cord astrocytomas vary widely in presentation and clinical course. Histopathologic grade remains a major prognostic factor. Patients with low-grade tumors tend to have excellent disease control and long-term survival compared to those with high-grade tumors. This experience suggests that radiation therapy

  20. Management of Pediatric Spinal Cord Astrocytomas: Outcomes With Adjuvant Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Guss, Zachary D.; Moningi, Shalini [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, Maryland (United States); Jallo, George I. [Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland (United States); Cohen, Kenneth J. [Division of Pediatric Oncology, Johns Hopkins Hospital, Baltimore, Maryland (United States); Wharam, Moody D. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, Maryland (United States); Terezakis, Stephanie A., E-mail: stereza1@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, Maryland (United States)

    2013-04-01

    Purpose: Pediatric intramedullary spinal cord tumors are exceedingly rare; in the United States, 100 to 200 cases are recognized annually, of these, most are astrocytomas. The purpose of this study is to report the outcomes in pediatric patients with spinal cord astrocytomas treated at a tertiary care center. Methods and Materials: An institutional review board-approved retrospective single-institution study was performed for pediatric patients with spinal cord astrocytomas treated at our hospital from 1990 to 2010. The patients were evaluated on the extent of resection, progression-free survival (PFS), and development of radiation-related toxicities. Kaplan-Meier curves and multivariate regression model methods were used for analysis. Results: Twenty-nine patients were included in the study, 24 with grade 1 or 2 (low-grade) tumors and 5 with grade 3 or 4 (high-grade) tumors. The median follow-up time was 55 months (range, 1-215 months) for patients with low-grade tumors and 17 months (range, 10-52 months) for those with high-grade tumors. Thirteen patients in the cohort received chemotherapy. All patients underwent at least 1 surgical resection. Twelve patients received radiation therapy to a median radiation dose of 47.5 Gy (range, 28.6-54.0 Gy). Fifteen patients with low-grade tumors and 1 patient with a high-grade tumor exhibited stable disease at the last follow-up visit. Acute toxicities of radiation therapy were low grade, whereas long-term sequelae were infrequent and manageable when they arose. All patients with low-grade tumors were alive at the last follow-up visit, compared with 1 patient with a high-grade tumor. Conclusion: Primary pediatric spinal cord astrocytomas vary widely in presentation and clinical course. Histopathologic grade remains a major prognostic factor. Patients with low-grade tumors tend to have excellent disease control and long-term survival compared to those with high-grade tumors. This experience suggests that radiation therapy

  1. Tuberous schlerosis complex and astrocytoma: a case report, Hiroshima

    Energy Technology Data Exchange (ETDEWEB)

    Rudnick, P.A.; Hoshino, N.; Kitaoka, T.; Miura, M.

    1961-02-10

    This case report concerned a young woman with cutaneous, osseous, and retinal changes of tuberous sclerosis, referred to ABCC for evaluation of blindness and increased intracranial pressure. A right lateral ventricle astrocytoma was successfully removed, but the patient's sight was not restored. The development of cerebral neoplasms in these patients is discussed. A careful search for resectable brain lesions should be made in all patients with tuberous sclerosis who have signs and symptoms of increased intracranial pressure. 14 references, 6 figures.

  2. Evaluation of miR-362 Expression in Astrocytoma of Human Brain Tumors

    Directory of Open Access Journals (Sweden)

    Majid Kheirollahi

    2017-01-01

    Full Text Available Background: Patients affected by gliomas have a poor prognosis. Astrocytoma is a subtype of glioma. Identification of biomarkers could be an effective way to an early diagnosis of tumor or to distinguish more aggressive tumors that need more intensive therapy. In this study, we investigated whether the expression of miR-362 was increased or decreased in patients with different grades of astrocytoma. Materials and Methods: miR-362 expression was compared in 25 patients with astrocytoma with that of 4 normal nonneoplastic brain tissues. Results: In all tumor tissues, the expression of miR-362 was significantly decreased relative to its expression in normal brain tissues. However, there was no significant difference between miR-362 expressions in high and low grades of astrocytoma. Conclusions: In conclusion, miR-362 showed a down-regulation pattern in astrocytoma tissues that was different from the pattern obtained from previously published microarray studies.

  3. Optic nerve pilomyxoid astrocytoma in a patient with Noonan syndrome.

    Science.gov (United States)

    Nair, Sushmita; Fort, John A; Yachnis, Anthony T; Williams, Charles A

    2015-06-01

    Noonan syndrome (NS; MIM 163950) is an autosomal dominant syndrome which is clinically diagnosed by the distinct facial features, short stature, cardiac anomalies and developmental delay. About 50% of cases are associated with gain of function mutations in PTPN11 gene which leads to activation of the RAS/mitogen-activated protein kinase signaling pathway. This is known to have a role in tumorigenesis. Despite this, only limited reports of solid tumors (Fryssira H, Leventopoulos G, Psoni S, et al. Tumor development in three patients with Noonan syndrome. Eur J Pediatr 2008;167:1025-1031; Schuettpelz LG, McDonald S, Whitesell K et al. Pilocytic astrocytoma in a child with Noonan syndrome. Pediatr Blood Cancer 2009;53:1147-1149; Sherman CB, Ali-Nazir A, Gonzales-Gomez I, et al. Primary mixed glioneuronal tumor of the central nervous system in a patient with Noonan syndrome. J Pediatr Hematol Oncol 2009;31:61-64; Sanford RA, Bowman R, Tomita T, et al. A 16 year old male with Noonan's syndrome develops progressive scoliosis and deteriorating gait. Pediatr Neurosurg 1999;30:47-52) and no prior reports of optic gliomas have been described in patients with NS. We present here a patient with NS with a PTPN11 mutation and an optic pathway pilomyxoid astrocytoma. © 2015 Wiley Periodicals, Inc.

  4. High dose rate brachytherapy in treatment of high grade astrocytomas

    International Nuclear Information System (INIS)

    Garcia-Alejo, R.; Delgado, J.M.; Cerro, E. del; Torres, J.J.; Martinez, R.

    1996-01-01

    From May 1994 to June 1995, 18 patients with high grade astrocytomas were entered prospectively on a selective protocol combining surgery, external beam radiotherapy, stereotactic interstitial implantation with HDR Iridium 192 and chemotherapy. Only those patients with tumor size 100cc or less average dimension, high grade astrocytoma, Karnofsky 70 or greater, unilateral, circumscribed, unifocal, tumor stable or responding to external radiation and supratentorial were included in the study. Ages ranged from 16 to 69 years. There were 13 males and 5 females. Surgery consisted of biopsy only in 3 patients, subtotal resection in 11, and gross total resection in 4 patients. Focal external beam radiation portals included the contrast enhancing mass on CT scan plus a 3 cm margin. The protocol called for minimum tumor dose of 60 Gy to be given in 2 Gy daily fractions. An interstitial brachytherapy boost was to be performed two weeks after the conclusion of external beam radiation. The dose was 30 Gy in 4 fractions. The authors analyze on basis on their personal experience, the possibilities and the limits offered by this therapeutic procedure in neuro-oncology. Using stereotactic techniques, interstitial brachytherapy of brain tumors was technically possible with negligible acute morbidity and mortality, and appeared to be effective and may provide for an increase in tumor control in selected cases

  5. Leptomeningeal dissemination of an astrocytoma causing hypophyseal insufficiency

    International Nuclear Information System (INIS)

    Suzan, S.; Cigdem, O.; Furkan, U.; Baki, A.

    2012-01-01

    Full text: Introduction: Hypophyseal insufficiency is an unusual clinical presentation of metastatic disease. Objectives: In this report, a case of leptomeningeal metastasis of an astrocytoma to the infundibular recess, causing hypophyseal insufficiency is presented with its magnetic resonance imaging (MRI) findings. Materials and methods: A 27-year-old woman presented with nausea, vomiting and generalized weakness. Her laboratory results were consistent with hypopituitarism. She had an operation history for astrocytoma. She was referred to radiology department for brain MRI study. Contrast-enhanced MRI scan showed extensive wall enhancement of ventricles consistent with leptomeningeal metastases. A nodular mass with pronounced contrast enhancement was also detected at the infundibular stalk. Results: Because suprasellar cistern was normal and extensive leptomeningeal metastases was detected, the nodular mass at the infundibular stalk thought to be secondary to leptomeningeal involvement of the infundibular recess. Conclusion: When a patient with a known malignancy presented with hypophyseal insufficiency, it should be thought that leptomeningeal metastases to the infundibular recess may also be a cause. The neuroimaging, especially contrast-enhanced studies, is necessary for the confirmation

  6. Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation

    Science.gov (United States)

    Johnson, Monica M.; Mendoza, Ryan; Raghavendra, Achyut J.; Podila, Ramakrishna; Brown, Jared M.

    2017-03-01

    The rapid development of engineered nanomaterials (ENMs) has grown dramatically in the last decade, with increased use in consumer products, industrial materials, and nanomedicines. However, due to increased manufacturing, there is concern that human and environmental exposures may lead to adverse immune outcomes. Mast cells, central to the innate immune response, are one of the earliest sensors of environmental insult and have been shown to play a role in ENM-mediated immune responses. Our laboratory previously determined that mast cells are activated via a non-FcɛRI mediated response following silver nanoparticle (Ag NP) exposure, which was dependent upon key physicochemical properties. Using bone marrow-derived mast cells (BMMCs), we tested the hypothesis that ENM physicochemical properties influence mast cell degranulation. Exposure to 13 physicochemically distinct ENMs caused a range of mast degranulation responses, with smaller sized Ag NPs (5 nm and 20 nm) causing the most dramatic response. Mast cell responses were dependent on ENMs physicochemical properties such as size, apparent surface area, and zeta potential. Surprisingly, minimal ENM cellular association by mast cells was not correlated with mast cell degranulation. This study suggests that a subset of ENMs may elicit an allergic response and contribute to the exacerbation of allergic diseases.

  7. Nuclear Reprogramming in Mouse Primordial Germ Cells: Epigenetic Contribution

    Directory of Open Access Journals (Sweden)

    Massimo De Felici

    2011-01-01

    Full Text Available The unique capability of germ cells to give rise to a new organism, allowing the transmission of primary genetic information from generation to generation, depends on their epigenetic reprogramming ability and underlying genomic totipotency. Recent studies have shown that genome-wide epigenetic modifications, referred to as “epigenetic reprogramming”, occur during the development of the gamete precursors termed primordial germ cells (PGCs in the embryo. This reprogramming is likely to be critical for the germ line development itself and necessary to erase the parental imprinting and setting the base for totipotency intrinsic to this cell lineage. The status of genome acquired during reprogramming and the associated expression of key pluripotency genes render PGCs susceptible to transform into pluripotent stem cells. This may occur in vivo under still undefined condition, and it is likely at the origin of the formation of germ cell tumors. The phenomenon appears to be reproduced under partly defined in vitro culture conditions, when PGCs are transformed into embryonic germ (EG cells. In the present paper, I will try to summarize the contribution that epigenetic modifications give to nuclear reprogramming in mouse PGCs.

  8. Defective TFH Cell Function and Increased TFR Cells Contribute to Defective Antibody Production in Aging.

    Science.gov (United States)

    Sage, Peter T; Tan, Catherine L; Freeman, Gordon J; Haigis, Marcia; Sharpe, Arlene H

    2015-07-14

    Defective antibody production in aging is broadly attributed to immunosenescence. However, the precise immunological mechanisms remain unclear. Here, we demonstrate an increase in the ratio of inhibitory T follicular regulatory (TFR) cells to stimulatory T follicular helper (TFH) cells in aged mice. Aged TFH and TFR cells are phenotypically distinct from those in young mice, exhibiting increased programmed cell death protein-1 expression but decreased ICOS expression. Aged TFH cells exhibit defective antigen-specific responses, and programmed cell death protein-ligand 1 blockade can partially rescue TFH cell function. In contrast, young and aged TFR cells have similar suppressive capacity on a per-cell basis in vitro and in vivo. Together, these studies reveal mechanisms contributing to defective humoral immunity in aging: an increase in suppressive TFR cells combined with impaired function of aged TFH cells results in reduced T-cell-dependent antibody responses in aged mice. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Conformal proton radiation therapy for pediatric low-grade astrocytomas

    International Nuclear Information System (INIS)

    Hug, E.B.; Loma Linda Univ. Medical Center, Loma Linda, CA; Darthmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Muenter, M.W.; Archambeau, J.O.; DeVries, A.; Loredo, L.N.; Grove, R.I.; Slater, J.D.; Liwnicz, B.

    2002-01-01

    Background: To evaluate the safety and efficacy of proton radiation therapy (PRT) for intracranial low-grade astrocytomas, the authors analyzed the first 27 pediatric patients treated at Loma Linda University Medical Center (LLUMC). Patients and Method: Between September 1991 and August 1997, 27 patients (13 female, 14 male) underwent fractionated proton radiation therapy for progressive or recurrent low-grade astrocytoma. Age at time of treatment ranged from 2 to 18 years (mean: 8.7 years). Tumors were located centrally (diencephatic) in 15 patients, in the cerebral and cerebellar hemispheres in seven patients, and in the brainstem in five patients. 25/27 patients (92%) were treated for progressive, unresectable, or residual disease following subtotal resection. Tissue diagnosis was available in 23/27 patients (85%). Four patients with optic pathway tumors were treated without histologic confirmation. Target doses between 50.4 and 63.0 CGE (cobalt gray equivalent, mean: 55.2 CGE) were prescribed at 1.8 CGE per fraction, five treatments per week. Results: At a mean follow-up period of 3.3 years (0.6-6.8 years), 6/27 patients experienced local failure (all located within the irradiated field), and 4/27 patients had died. By anatomic site these data translated into rates of local control and survival of 87% (13/15 patients) and 93% (14/15 patients) for central tumors, 71% (5/7 patients) and 86% (6/7 patients) for hemispheric tumors, and 60% (3/5 patients) and 60% (3/5 patients) for tumors located in the brainstem. Proton radiation therapy was generally well tolerated. All children with local control maintained their performance status. One child with associated neurofibromatosis, Type 1, developed Moyamoya disease. All six patients with optic pathway tumors and useful vision maintained or improved their visual status. Conclusions: This report on pediatric low-grade astrocytomas confirms proton radiation therapy as a safe and efficacious 3-D conformal treatment

  10. Expression and prognostic impact of matrix metalloproteinase-2 (MMP-2) in astrocytomas

    DEFF Research Database (Denmark)

    Ramachandran, Rahimsan K.; Sørensen, Mia D.; Aaberg-Jessen, Charlotte

    2017-01-01

    with diffuse astrocytoma, anaplastic astrocytoma and glioblastoma were stained immunohistochemically using a monoclonal MMP-2 antibody. The MMP-2 intensity in cytoplasm/membrane was quantified by a trained software-based classifier using systematic random sampling in 10% of the tumor area. We found MMP-2...... of this tumor. Matrix metalloproteinase-2 (MMP-2) is an extracellular matrix degrading enzyme which has been shown to play important roles in different cancers. The aim of this study was to investigate the expression and prognostic potential of MMP-2 in astrocytomas. Tissue samples from 89 patients diagnosed...

  11. Fast neutron boost for the treatment of grade IV astrocytomas

    International Nuclear Information System (INIS)

    Breteau, N.; Destembert, B.; Favre, A.; Pheline, C.; Schlienger, M.

    1989-01-01

    A previous study, on grade IV astrocytomas, compared a combination of photons and fast neutron boost to photons only, both treatments being delivered following a concentrated irradiation schedule. A slight improvement in survival was observed after neutron boost for non operated patients, but not for operated patients. Since death was always related to local recurrence and since no complication occurred after neutron boost, the neutron dose was increased from 6 to 7 Gy in January 1985. No improvement in survival was observed for patients treated with neutron boost after complete resection. After subtotal resection, the group that was treated with the higher neutron boost (7 Gy) showed a significant benefit in survival at twelve months. When patients had only a biopsy before irradiation, there was a benefit in survival after neutron boost, but no additional benefit was gained when the size of the neutron boost was increased from 6 to 7 Gy. (orig.) [de

  12. Prognostic significance of multiple kallikreins in high-grade astrocytoma

    International Nuclear Information System (INIS)

    Drucker, Kristen L.; Gianinni, Caterina; Decker, Paul A.; Diamandis, Eleftherios P.; Scarisbrick, Isobel A.

    2015-01-01

    Kallikreins have clinical value as prognostic markers in a subset of malignancies examined to date, including kallikrein 3 (prostate specific antigen) in prostate cancer. We previously demonstrated that kallikrein 6 is expressed at higher levels in grade IV compared to grade III astrocytoma and is associated with reduced survival of GBM patients. In this study we determined KLK1, KLK6, KLK7, KLK8, KLK9 and KLK10 protein expression in two independent tissue microarrays containing 60 grade IV and 8 grade III astrocytoma samples. Scores for staining intensity, percent of tumor stained and immunoreactivity scores (IR, product of intensity and percent) were determined and analyzed for correlation with patient survival. Grade IV glioma was associated with higher levels of kallikrein-immunostaining compared to grade III specimens. Univariable Cox proportional hazards regression analysis demonstrated that elevated KLK6- or KLK7-IR was associated with poor patient prognosis. In addition, an increased percent of tumor immunoreactive for KLK6 or KLK9 was associated with decreased survival in grade IV patients. Kaplan-Meier survival analysis indicated that patients with KLK6-IR < 10, KLK6 percent tumor core stained < 3, or KLK7-IR < 9 had a significantly improved survival. Multivariable analysis indicated that the significance of these parameters was maintained even after adjusting for gender and performance score. These data suggest that elevations in glioblastoma KLK6, KLK7 and KLK9 protein have utility as prognostic markers of patient survival. The online version of this article (doi:10.1186/s12885-015-1566-5) contains supplementary material, which is available to authorized users

  13. The Characteristics of Astrocytomas and Oligodendrogliomas Are Caused by Two Distinct and Interchangeable Signaling Formats

    Directory of Open Access Journals (Sweden)

    Chengkai Dai

    2005-04-01

    Full Text Available Chronic platelet-derived growth factor (PDGF signaling in glial progenitors leads to the formation of oligodendrogliomas in mice, whereas chronic combined Ras and Akt signaling leads to astrocytomas. Different histologies of these tumors imply that the pathways activated by these two oncogenic stimulations are different, and that the apparent lineage of the tumor cells may result from specific signaling activity. Therefore, we have investigated the signaling effects of PDGF in culture and in gliomas in vivo. In culture, PDGF transiently activates ERK1/2 and Akt, and subsequently elevates p21 and PCNA expression similar to chronic PDGF autocrine signaling in cultured astrocytes and PDGF-induced oligodendrogliomas in vivo. Culture experiments show that autocrine PDGF stimulation, and combined active Ras and Akt generate signaling patterns that are in some ways mutually exclusive. Furthermore, forced Akt activity in the context of chronic PDGF stimulation results in cells with an astrocytic differentiation pattern both in culture and in vivo. These data imply that these two interconvertible signaling motifs are distinct in mice and lead to gliomas resembling the two major glioma histologies found in humans. The ability of signaling activity to convert tumor cells from one lineage to another presents a mechanism for the development of tumors apparently comprised of cells from multiple lineages.

  14. Regulation of sonic hedgehog-GLI1 downstream target genes PTCH1, Cyclin D2, Plakoglobin, PAX6 and NKX2.2 and their epigenetic status in medulloblastoma and astrocytoma

    Directory of Open Access Journals (Sweden)

    Eberhart Charles G

    2010-11-01

    Full Text Available Abstract Background The Sonic hedgehog (Shh signaling pathway is critical for cell growth and differentiation. Impairment of this pathway can result in both birth defects and cancer. Despite its importance in cancer development, the Shh pathway has not been thoroughly investigated in tumorigenesis of brain tumors. In this study, we sought to understand the regulatory roles of GLI1, the immediate downstream activator of the Shh signaling pathway on its downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6 in medulloblastoma and astrocytic tumors. Methods We silenced GLI1 expression in medulloblastoma and astrocytic cell lines by transfection of siRNA against GLI1. Subsequently, we performed RT-PCR and quantitative real time RT-PCR (qRT-PCR to assay the expression of downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6. We also attempted to correlate the pattern of expression of GLI1 and its regulated genes in 14 cell lines and 41 primary medulloblastoma and astrocytoma tumor samples. We also assessed the methylation status of the Cyclin D2 and PTCH1 promoters in these 14 cell lines and 58 primary tumor samples. Results Silencing expression of GLI1 resulted up-regulation of all target genes in the medulloblastoma cell line, while only PTCH1 was up-regulated in astrocytoma. We also observed methylation of the cyclin D2 promoter in a significant number of astrocytoma cell lines (63% and primary astrocytoma tumor samples (32%, but not at all in any medulloblastoma samples. PTCH1 promoter methylation was less frequently observed than Cyclin D2 promoter methylation in astrocytomas, and not at all in medulloblastomas. Conclusions Our results demonstrate different regulatory mechanisms of Shh-GLI1 signaling. These differences vary according to the downstream target gene affected, the origin of the tissue, as well as epigenetic regulation of some of these genes.

  15. Regulation of sonic hedgehog-GLI1 downstream target genes PTCH1, Cyclin D2, Plakoglobin, PAX6 and NKX2.2 and their epigenetic status in medulloblastoma and astrocytoma

    International Nuclear Information System (INIS)

    Shahi, Mehdi H; Afzal, Mohammad; Sinha, Subrata; Eberhart, Charles G; Rey, Juan A; Fan, Xing; Castresana, Javier S

    2010-01-01

    The Sonic hedgehog (Shh) signaling pathway is critical for cell growth and differentiation. Impairment of this pathway can result in both birth defects and cancer. Despite its importance in cancer development, the Shh pathway has not been thoroughly investigated in tumorigenesis of brain tumors. In this study, we sought to understand the regulatory roles of GLI1, the immediate downstream activator of the Shh signaling pathway on its downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6 in medulloblastoma and astrocytic tumors. We silenced GLI1 expression in medulloblastoma and astrocytic cell lines by transfection of siRNA against GLI1. Subsequently, we performed RT-PCR and quantitative real time RT-PCR (qRT-PCR) to assay the expression of downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6. We also attempted to correlate the pattern of expression of GLI1 and its regulated genes in 14 cell lines and 41 primary medulloblastoma and astrocytoma tumor samples. We also assessed the methylation status of the Cyclin D2 and PTCH1 promoters in these 14 cell lines and 58 primary tumor samples. Silencing expression of GLI1 resulted up-regulation of all target genes in the medulloblastoma cell line, while only PTCH1 was up-regulated in astrocytoma. We also observed methylation of the cyclin D2 promoter in a significant number of astrocytoma cell lines (63%) and primary astrocytoma tumor samples (32%), but not at all in any medulloblastoma samples. PTCH1 promoter methylation was less frequently observed than Cyclin D2 promoter methylation in astrocytomas, and not at all in medulloblastomas. Our results demonstrate different regulatory mechanisms of Shh-GLI1 signaling. These differences vary according to the downstream target gene affected, the origin of the tissue, as well as epigenetic regulation of some of these genes

  16. High concentration of Daunorubicin and Daunorubicinol in human malignant astrocytomas after systemic administration of liposomal Daunorubicin

    NARCIS (Netherlands)

    Albrecht, K. W.; de Witt Hamer, P. C.; Leenstra, S.; Bakker, P. J.; Beijnen, J. H.; Troost, D.; Kaaijk, P.; Bosch, A. D.

    2001-01-01

    The value of chemotherapy in patients with malignant astrocytoma remains controversial. In our laboratories in vitro experiments with organotypic spheroid cultures showed superior effectiveness of anthracyclines. Systemic administration did not provide in therapeutic concentrations so far. Because

  17. Study on the correlation between VEGF and peritumoral edema and tumor border in astrocytoma by CT

    International Nuclear Information System (INIS)

    Ye Yuxiang; Tan Siping; Liu Bo; Liu Guorui; Zhen Zhichao; Fan Miao

    2004-01-01

    Objective: To study the correlation between VEGF and peritumoral edema and tumor border in human astrocytoma, investigate the significance of its CT features in molecular-biology. Methods: The VEGF was examined by means of SP immunohistochemical technique in 52 cases of astrocytoma proved by pathology. The correlation of tumor VEGF with peritumoral edema, and tumor border was analyzed. Results: The peritumoral edema, tumor border and mass effect of astrocytoma was positively correlated with its VEGF. The VEGF increased with peritumoral edema and mass effect (P<0.01). VEGF were significantly higher in uncertain border group than those the clear border group (P<0.05), which VEGF were 69.2 ± 19.0. Conclusion: The over expression of VEGF obviously effect CT features in astrocytoma, such as peritumoral edema and tumor border

  18. ADAR2 editing activity in newly diagnosed versus relapsed pediatric high-grade astrocytomas

    International Nuclear Information System (INIS)

    Tomaselli, Sara; Galeano, Federica; Massimi, Luca; Di Rocco, Concezio; Lauriola, Libero; Mastronuzzi, Angela; Locatelli, Franco; Gallo, Angela

    2013-01-01

    High-grade (WHO grade III and IV) astrocytomas are aggressive malignant brain tumors affecting humans with a high risk of recurrence in both children and adults. To date, limited information is available on the genetic and molecular alterations important in the onset and progression of pediatric high-grade astrocytomas and, even less, on the prognostic factors that influence long-term outcome in children with recurrence. A-to-I RNA editing is an essential post-transcriptional mechanism that can alter the nucleotide sequence of several RNAs and is mediated by the ADAR enzymes. ADAR2 editing activity is particularly important in mammalian brain and is impaired in both adult and pediatric high-grade astrocytomas. Moreover, we have recently shown that the recovered ADAR2 activity in high-grade astrocytomas inhibits in vivo tumor growth. The aim of the present study is to investigate whether changes may occur in ADAR2-mediated RNA editing profiles of relapsed high-grade astrocytomas compared to their respective specimens collected at diagnosis, in four pediatric patients. Total RNAs extracted from all tumor samples and controls were tested for RNA editing levels (by direct sequencing on cDNA pools) and for ADAR2 mRNA expression (by qRT-PCR). A significant loss of ADAR2-editing activity was observed in the newly diagnosed and recurrent astrocytomas in comparison to normal brain. Surprisingly, we found a substantial rescue of ADAR2 editing activity in the relapsed tumor of the only patient showing prolonged survival. High-grade astrocytomas display a generalized loss of ADAR2-mediated RNA editing at both diagnosis and relapse. However, a peculiar Case, in complete remission of disease, displayed a total rescue of RNA editing at relapse, intriguingly suggesting ADAR2 activity/expression as a possible marker for long-term survival of patients with high-grade astrocytomas

  19. Adult Pilomyxoid Astrocytoma Mimicking a Cortical Brain Tumor: MR Imaging Findings

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jong Chang; Weon, Young Cheol; Suh, Jae Hee; Kim, Young; Hwang, Jae Cheol [Ulsan University Hospital, Ulsan (Korea, Republic of)

    2010-08-15

    A pilomyxoid astrocytoma (PMA) is a recently identified low-grade neoplasm that was previously classified as a pilocytic astrocytoma (PA), yet demonstrates unique histological features and more aggressive behavior. Although a PMA is generally a tumor of early childhood and typically occurs in the hypothalamic/chiasmatic region, it can mimic cortical tumors, especially in adults. We report the MR findings of a PMA presenting as a cortical brain tumor in an adult with neurofibromatosis 1 (NF1)

  20. Postoperative irradiation of incompletely excised gemistocytic astrocytomas. Clinical outcome and prognostic factors

    International Nuclear Information System (INIS)

    Nowak-Sadzikowska, J.; Glinski, B.; Szpytma, T.; Pluta, E.

    2005-01-01

    Background and purpose: although gemistocytic astrocytomas are considered slow-growing tumors, they often behave aggressively and carry the least favorable prognosis among low-grade astrocytomas. The aim of this study is to evaluate the outcomes and prognostic factors of patients with incompletely excised gemistocytic astrocytomas irradiated postoperatively. Patients and methods: records of 48 patients with incompletely excised gemistocytic astrocytoma, irradiated between 1976 and 1998 at the department of radiation oncology, Maria Sklodowska-curie Memorial Cancer Center, Cracow, Poland, were reviewed. The total dose ranged from 50 to 60 Gy (mean: 59.35, median: 60 Gy) delivered in daily fractions of 2 Gy, 5 days a week. The treatment volume covered the residual tumor with a margin of 1-2 cm. Results: toxicity was acceptable. The overall actuarial survival rates at 5 and 10 years were 30% and 17%, respectively. Age and gender had an influence on overall survival by univariate and multivariate analysis (p < 0.05). Patients ≤ 35 years of age and female patients carried the best prognosis. Conclusion: in most patients with gemistocytic astrocytoma, combined surgery and postoperative radiotherapy result in only short-term survival. Older age is the most important unfavorable prognostic factor in patients with gemistocytic astrocytoma. (orig.)

  1. [Diagnostic imaging of high-grade astrocytoma: heterogeneity of clinical manifestation, image characteristics, and histopathological findings].

    Science.gov (United States)

    Okajima, Kaoru; Ohta, Yoshio

    2012-10-01

    Recent developments in diagnostic radiology, which have enabled accurate differential diagnoses of brain tumors, have been well described in the last three decades. MR and PET imaging can also provide information to predict histological grades and prognoses that might influence treatment strategies. However, high-grade astrocytomas consist of many different subtypes that are associated with different imaging and histological characteristics. Hemorrhage and necrosis results in a variety of imaging features, and infiltrative tumor growth entrapping normal neurons may cause different clinical manifestations. We reviewed patients with high-grade astrocytomas that showed various imaging characteristics, with special emphasis on initial symptoms and histological features. Clinicopathological characteristics of astrocytomas were also compared with other malignant tumors. Neurological deficits were not notable in patients with grade 3-4 astrocytomas when they showed infiltrative tumor growth, while brain metastases with compact cellular proliferation caused more neurological symptoms. Infiltrative tumors did not show any enhancing masses on MR imaging, but these tumors may show intratumor heterogeneity. Seizures were reported to be more frequent in low-grade glioma and in secondary glioblastoma. Tumor heterogeneity was also reported in molecular genetic profile, and investigators identified some subsets of astrocytomas. They investigated IHD1/2 mutation, EGFR amplification, TP53 mutation, Ki-67 index, etc. In summary, high-grade astrocytomas are not homogenous groups of tumors, and this is associated with the heterogeneity of clinical manifestation, image characteristics, and histopathological findings. Molecular studies may explain the tumor heterogeneity in the near future.

  2. Contribution of a non-β-cell source to β-cell mass during pregnancy.

    Directory of Open Access Journals (Sweden)

    Chiara Toselli

    Full Text Available β-cell mass in the pancreas increases significantly during pregnancy as an adaptation to maternal insulin resistance. Lineage tracing studies in rodents have presented conflicting evidence on the role of cell duplication in the formation of new β-cells during gestation, while recent human data suggest that new islets are a major contributor to increased β-cell mass in pregnancy. Here, we aim to: 1 determine whether a non-β-cell source contributes to the appearance of new β-cells during pregnancy and 2 investigate whether recapitulation of the embryonic developmental pathway involving high expression of neurogenin 3 (Ngn3 plays a role in the up-regulation of β-cell mass during pregnancy. Using a mouse β-cell lineage-tracing model, which labels insulin-producing β-cells with red fluorescent protein (RFP, we found that the percentage of labeled β-cells dropped from 97% prior to pregnancy to 87% at mid-pregnancy. This suggests contribution of a non-β-cell source to the increase in total β-cell numbers during pregnancy. In addition, we observed a population of hormone-negative, Ngn3-positive cells in islets of both non-pregnant and pregnant mice, and this population dropped from 12% of all islets cells in the non-pregnant mice to 5% by day 8 of pregnancy. Concomitantly, a decrease in expression of Ngn3 and changes in its upstream regulatory network (Sox9 and Hes-1 as well as downstream targets (NeuroD, Nkx2.2, Rfx6 and IA1 were also observed during pregnancy. Our results show that duplication of pre-existing β-cells is not the sole source of new β-cells during pregnancy and that Ngn3 may be involved in this process.

  3. Astrocitoma subependimário de células gigantes em pacientes com esclerose tuberosa: achados em ressonância magnética de dez casos Subependymal giant cell astrocytoma in patients with tuberous sclerosis: magnetic resonance imaging findings in ten cases

    Directory of Open Access Journals (Sweden)

    Karina Takata

    2007-06-01

    Full Text Available OBJETIVO: Relatar os achados de ressonância magnética (RM em 10 casos de astrocitoma subependimário de células gigantes (ASCG em pacientes com esclerose tuberosa (ET. MÉTODO: Foram estudados de forma retrospectiva 10 pacientes com ET e diagnóstico histológico comprovado de ASCG. Quatro pacientes eram do sexo masculino e seis do feminino, com idade média de 15,7 anos. Todos os pacientes foram investigados com RM, sendo os exames revisados por dois radiologistas, havendo decisão por consenso sobre os achados de imagem. Foram analisados os seguintes achados: localização, dimensões, intensidade de sinal em T1/T2, realce pós-contraste e outros achados associados. RESULTADOS: Todos os pacientes apresentaram lesão única sugestiva de ASCG, medindo entre 1,5 cm e 8 cm em seu maior diâmetro. Oito lesões foram encontradas junto ao forame de Monro (80% e duas adjacentes ao corpo do ventrículo lateral (20%. Os tumores apresentavam nas imagens pesadas em T1 médio sinal (70% e em T2 alto sinal (100%, com realce intenso após a administração do gadolínio (100%. CONCLUSÃO: Os astrocitomas subependimários de células gigantes em pacientes com ET em geral apresentam-se como lesão única próxima ao forame de Monro, com médio sinal nas imagens ponderadas em T1, alto sinal em T2 e realce intenso após a administração de contraste.OBJECTIVE: To report the magnetic resonance imaging (MRI findings in 10 patients with subependimal giant cell astrocytoma (SGCA and tuberous sclerosis (TS. METHOD: Ten patients were retrospectively studied, presenting TS and histologically proven SGCA. Four patients were male and six female, with mean age 15.7 years. All patients underwent MRI, which was analyzed by two radiologists, final diagnosis was reached by consensus. The following findings were studied: topography, size, signal intensity on T1/T2-weighted images, contrast enhancement and associated findings. RESULTS: All patients presented a single lesion

  4. Evaluation of invasiveness of astrocytoma using 1H-magnetic resonance spectroscopy: correlation with expression of matrix metalloproteinase-2

    International Nuclear Information System (INIS)

    Zhang, Kai; Li, Chuanfu; Ma, Xiangxing; Meng, Xiangshui; Feng, Dechao; Liu, Ying; Li, Li

    2007-01-01

    Even low-grade astrocytomas infiltrate the entire brain, a feature that precludes their successful therapy. So to assess the invasive potential of astrocytoma is very important. The aim of this study was determine whether there is a significant correlation between the results of 1 H-magnetic resonance spectroscopy ( 1 H-MRS) and tumor invasive potential of astrocytoma, which is reflected by expression of matrix metalloproteinase-2 (MMP-2). The 1 H-MRS spectra of 41 histologically verified astrocytomas were obtained on a 3-T MR scanner. According to the World Health Organization classification criteria for central nervous system tumors, there were 16 low-grade astrocytomas (2 pilocytic astrocytomas, 14 grade II astrocytomas) and 25 high-grade astrocytomas (5 anaplastic astrocytomas, 20 glioblastomas).The choline/N-acetylaspartate (Cho/NAA) and choline/creatine (Cho/Cr) ratios were calculated. Of the 41 astrocytomas, 19 (8 low-grade and 11 high-grade) were analyzed immunohistochemically. Expression of MMP-2 was determined using streptavidin-peroxidase complex (SP) staining which was quantified by calculating its calibrated opacity density (COD) using an image analysis system. The correlations between metabolite ratios and the quantitative data from the immunohistochemical tests in the 19 astrocytomas were determined. The Cho/NAA and Cho/Cr ratios of high-grade astrocytoma were both significantly greater than those of low-grade astrocytoma (t = -6.222, P = 0.000; t = -6.533, P = 0.000, respectively). MMP-2 COD values of high-grade astrocytomas were also significantly greater than those of low-grade astrocytomas (t = -5.892, P 0.000). There were strong positive correlations between Cho/NAA ratio and MMP-2 COD (r = 0.669, P = 0.002), and between Cho/Cr ratio and MMP-2 COD (r = 0.689, P = 0.001). 1 H-MRS is helpful in evaluating the invasiveness of astrocytomas and predicting prognosis preoperatively by determining the Cho/NAA and Cho/Cr ratios. (orig.)

  5. Astrocytoma in the medulla oblongata diagnosed by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Suga, Toshihiro; Takahashi, Shin-ichiro; Sonobe, Makoto; Koshu, Keiji; Hirota, Shigeru; Kawakami, Hiroshi; Fujii, Kyoichi; Namiki, Tsuneo.

    1987-01-01

    A 22-year-old male was admitted to Mito National Hospital with complaints of persistent, progressive dysphagia, hoarseness, and numbness over his entire body. Neurological examination showed bilateral 7th, 9th, and 10th nerve paralysis, tetraparesis, sensory disturbance of the whole body, and hyper-reflexia of all extremities. Pale, low-density areas in the medulla oblongata and upper cervical spinal cord were detected by conventional computed tomography. Magnetic resonance imaging (MRI) disclosed low-signal masses involving those areas and in the lower cervical cord. Suboccipital craniotomy exposed a solid, firm, well demarcated intramedullary tumor in the medulla oblongata. The tumor was removed en bloc and was histologically diagnosed as a pilocytic astrocytoma. The postoperative course was uneventful and the patient's symptoms improved dramatically. Postoperative MRI revealed no residual tumor in the medulla oblongata or upper cervical cord. This case illustrates the value of preoperative MRI, which precisely delineates the location and extent of the tumor and greatly facilitates direct surgery of the medulla oblongata. (author)

  6. PHAKOMATOSIS : INTRESTING CASES OF TUBEROUS SCLEROSIS WITH RETINAL ASTROCYTOMA

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao

    2015-05-01

    Full Text Available NTRODUCTION: Tuberous sclerosis complex (TSC or Morbus Bourneville - Pringle disease is an autosomal dominant phakomatosis, first described by Desiree - Magloire Bourneville in 1880. Tuberous sclerosis is a genetic disorder characterized by the growth of numerous benign tumours in many parts of the body caused by mutations on either of two genes, TSC1 and TSC2. This rare genetic disorder is usually associated with a triad of seizures, mental retardation and cutaneous lesions. Approximately one half of all patients affected by TS develop at least one retinal astrocytoma in one eye. PRESENTATION OF CASES: In the department of ophthalmology, G.S.L M edical C ollege, Rajahmundry, we came across 3 cases of tuberous sclerosis involving multi organ systems. Out of 3 cases, 2 cases were reported to be familial and 1case is sporadic, with a history of epilepsy with angiofibromatosis lesions over the face, multiple ash - leaf lesions over the abdomen, renal angiomyolipomas, multiple subependymal nodules in brain and retinal astrocytic hamartomas in the retina. CONCLUSION: It is important to be cognizant of the likely presence of systemic and ocular pathology in a child with mental retardation and skin lesions. Identification of retinal phakomatosis during ocular evaluation in any suspected case of Tuberous sclerosis can aid in the establishment of the diagnosis of the disease

  7. Contribution of Nanostructures in High Performance Solar Cells

    Science.gov (United States)

    Aly, Abouelmaaty M.; Ebrahim, Essamudin A.; Sweelem, Emad

    2017-11-01

    Nanotechnology has great contributions in various fields, especially in solar energy conversion through solar cells (SCs). Nanostructured SCs can provide high performance with lower fabrication costs. The transition from fossil fuel energy to renewable sustainable energy represents a major technological challenge for the world. In the last years, the industry of SCs has grown rapidly due to strong attention in renewable energy in order to handle the problem of global climate change that is now believed to occur due to use of the fossil fuels. Cost is an influential factor in the eventual success of any solar technology, since inexpensive SCs are needed to produce electricity, especially for rural areas and for third world countries. Therefore, new developments in nanotechnology may open the door for the production of inexpensive and more efficient SCs by reducing the manufacturing costs of SCs. Utilizing nanotechnology in cheaper SCs will help maintain the environment. This article covers a review of the progress that has been made to-date to enhance efficiencies of various nanostructures used in SCs, including utilizations of all the wavelengths present in of the solar spectrum.

  8. Contribution of Mouse Embryonic Stem Cells and Induced Pluripotent Stem Cells to Chimeras through Injection and Coculture of Embryos

    OpenAIRE

    Guo, Jitong; Wu, Baojiang; Li, Shuyu; Bao, Siqin; Zhao, Lixia; Hu, Shuxiang; Sun, Wei; Su, Jie; Dai, Yanfeng; Li, Xihe

    2014-01-01

    Blastocyst injection and morula aggregation are commonly used to evaluate stem cell pluripotency based on chimeric contribution of the stem cells. To assess the protocols for generating chimeras from stem cells, 8-cell mouse embryos were either injected or cocultured with mouse embryonic stem cells and induced pluripotent stem cells, respectively. Although a significantly higher chimera rate resulted from blastocyst injection, the highest germline contribution resulted from injection of 8-cel...

  9. Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture.

    Science.gov (United States)

    Kim, Euiseok J; Battiste, James; Nakagawa, Yasushi; Johnson, Jane E

    2008-08-01

    Ascl1 (previously Mash1) is a bHLH transcription factor essential for neuronal differentiation and specification in the nervous system. Although it has been studied for its role in several neural lineages, the full complement of lineages arising from Ascl1 progenitor cells remains unknown. Using an inducible Cre-flox genetic fate-mapping strategy, Ascl1 lineages were determined throughout the brain. Ascl1 is present in proliferating progenitor cells but these cells are actively differentiating as evidenced by rapid migration out of germinal zones. Ascl1 lineage cells contribute to distinct cell types in each major brain division: the forebrain including the cerebral cortex, olfactory bulb, hippocampus, striatum, hypothalamus, and thalamic nuclei, the midbrain including superior and inferior colliculi, and the hindbrain including Purkinje and deep cerebellar nuclei cells and cells in the trigeminal sensory system. Ascl1 progenitor cells at early stages in each CNS region preferentially become neurons, and at late stages they become oligodendrocytes. In conclusion, Ascl1-expressing progenitor cells in the brain give rise to multiple, but not all, neuronal subtypes and oligodendrocytes depending on the temporal and spatial context, consistent with a broad role in neural differentiation with some subtype specification.

  10. Relative Contributions of B Cells and Dendritic Cells from Lupus-Prone Mice to CD4+ T Cell Polarization.

    Science.gov (United States)

    Choi, Seung-Chul; Xu, Zhiwei; Li, Wei; Yang, Hong; Roopenian, Derry C; Morse, Herbert C; Morel, Laurence

    2018-05-01

    Mouse models of lupus have shown that multiple immune cell types contribute to autoimmune disease. This study sought to investigate the involvement of B cells and dendritic cells in supporting the expansion of inflammatory and regulatory CD4 + T cells that are critical for lupus pathogenesis. We used lupus-prone B6.NZM2410.Sle1.Sle2.Sle3 (TC) and congenic C57BL/6J (B6) control mice to investigate how the genetic predisposition of these two cell types controls the activity of normal B6 T cells. Using an allogeneic in vitro assay, we showed that TC B1-a and conventional B cells expanded Th17 cells significantly more than their B6 counterparts. This expansion was dependent on CD86 and IL-6 expression and mapped to the Sle1 lupus-susceptibility locus. In vivo, TC B cells promoted greater differentiation of CD4 + T cells into Th1 and follicular helper T cells than did B6 B cells, but they limited the expansion of Foxp3 regulatory CD4 + T cells to a greater extent than did B6 B cells. Finally, when normal B6 CD4 + T cells were introduced into Rag1 -/- mice, TC myeloid/stromal cells caused their heightened activation, decreased Foxp3 regulatory CD4 + T cell differentiation, and increased renal infiltration of Th1 and Th17 cells in comparison with B6 myeloid/stromal cells. The results show that B cells from lupus mice amplify inflammatory CD4 + T cells in a nonredundant manner with myeloid/stromal cells. Copyright © 2018 by The American Association of Immunologists, Inc.

  11. Epidermal stem cells: location, potential and contribution to cancer.

    Science.gov (United States)

    Ambler, C A; Määttä, A

    2009-01-01

    Epidermal stem cells have been classically characterized as slow-cycling, long-lived cells that reside in discrete niches in the skin. Gene expression studies of niche-resident cells have revealed a number of stem cell markers and regulators, including the Wnt/beta-catenin, Notch, p63, c-Myc and Hedgehog pathways. A new study challenges the traditional developmental paradigm of slow-cycling stem cells and rapid-cycling transit amplifying cells in some epidermal regions, and there is mounting evidence to suggest that multi-lineage epidermal progenitors can be isolated from highly proliferative, non-niche regions. Whether there is a unique microenvironment surrounding these progenitors remains to be determined. Interestingly, cancer stem cells derived from epidermal tumours exist independent of the classic skin stem cell niche, yet also have stem cell properties, including multi-lineage differentiation. This review summarizes recent studies identifying the location and regulators of mouse and human epidermal stem cells and highlights the strategies used to identify cancer stem cells, including expression of normal epidermal stem cell markers, expression of cancer stem cell markers identified in other epidermal tumours and characterization of side-population tumour cells.

  12. Stereotactic Radiosurgery for Recurrent or Unresectable Pilocytic Astrocytoma

    Energy Technology Data Exchange (ETDEWEB)

    Hallemeier, Christopher L. [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Pollock, Bruce E. [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Department of Neurological Surgery, Mayo Clinic, Rochester, MN (United States); Schomberg, Paula J. [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Link, Michael J. [Department of Neurological Surgery, Mayo Clinic, Rochester, MN (United States); Brown, Paul D. [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Stafford, Scott L., E-mail: Stafford.scott@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States)

    2012-05-01

    Purpose: To report the outcomes in patients with recurrent or unresectable pilocytic astrocytoma (PA) treated with Gamma Knife stereotactic radiosurgery (SRS). Methods and Materials: Retrospective review of 18 patients (20 lesions) with biopsy-confirmed PA having SRS at our institution from 1992 through 2005. Results: The median patient age at SRS was 23 years (range, 4-56). Thirteen patients (72%) had undergone one or more previous surgical resections, and 10 (56%) had previously received external-beam radiation therapy (EBRT). The median SRS treatment volume was 9.1 cm{sup 3} (range, 0.7-26.7). The median tumor margin dose was 15 Gy (range, 12-20). The median follow-up was 8.0 years (range, 0.5-15). Overall survival at 1, 5, and 10 years after SRS was 94%, 71%, and 71%, respectively. Tumor progression (local solid progression, n = 4; local solid progression + distant, n = 1; distant, n = 2; cyst development/progression, n = 4) was noted in 11 patients (61%). Progression-free survival at 1, 5, and 10 years was 65%, 41%, and 17%, respectively. Prior EBRT was associated with inferior overall survival (5-year risk, 100% vs. 50%, p = 0.03) and progression-free survival (5-year risk, 71% vs. 20%, p = 0.008). Nine of 11 patients with tumor-related symptoms improved after SRS. Symptomatic edema after SRS occurred in 8 patients (44%), which resolved with short-term corticosteroid therapy in the majority of those without early disease progression. Conclusions: SRS has low permanent radiation-related morbidity and durable local tumor control, making it a meaningful treatment option for patients with recurrent or unresectable PA in whom surgery and/or EBRT has failed.

  13. Stereotactic Radiosurgery for Recurrent or Unresectable Pilocytic Astrocytoma

    International Nuclear Information System (INIS)

    Hallemeier, Christopher L.; Pollock, Bruce E.; Schomberg, Paula J.; Link, Michael J.; Brown, Paul D.; Stafford, Scott L.

    2012-01-01

    Purpose: To report the outcomes in patients with recurrent or unresectable pilocytic astrocytoma (PA) treated with Gamma Knife stereotactic radiosurgery (SRS). Methods and Materials: Retrospective review of 18 patients (20 lesions) with biopsy-confirmed PA having SRS at our institution from 1992 through 2005. Results: The median patient age at SRS was 23 years (range, 4–56). Thirteen patients (72%) had undergone one or more previous surgical resections, and 10 (56%) had previously received external-beam radiation therapy (EBRT). The median SRS treatment volume was 9.1 cm 3 (range, 0.7–26.7). The median tumor margin dose was 15 Gy (range, 12–20). The median follow-up was 8.0 years (range, 0.5–15). Overall survival at 1, 5, and 10 years after SRS was 94%, 71%, and 71%, respectively. Tumor progression (local solid progression, n = 4; local solid progression + distant, n = 1; distant, n = 2; cyst development/progression, n = 4) was noted in 11 patients (61%). Progression-free survival at 1, 5, and 10 years was 65%, 41%, and 17%, respectively. Prior EBRT was associated with inferior overall survival (5-year risk, 100% vs. 50%, p = 0.03) and progression-free survival (5-year risk, 71% vs. 20%, p = 0.008). Nine of 11 patients with tumor-related symptoms improved after SRS. Symptomatic edema after SRS occurred in 8 patients (44%), which resolved with short-term corticosteroid therapy in the majority of those without early disease progression. Conclusions: SRS has low permanent radiation-related morbidity and durable local tumor control, making it a meaningful treatment option for patients with recurrent or unresectable PA in whom surgery and/or EBRT has failed.

  14. Conformal proton radiation therapy for pediatric low-grade astrocytomas

    Energy Technology Data Exchange (ETDEWEB)

    Hug, E.B. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Radiation Medicine; Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Pediatrics and Dept. of Pathology; Darthmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States). Section of Radiation Oncology; Muenter, M.W.; Archambeau, J.O.; DeVries, A.; Loredo, L.N.; Grove, R.I.; Slater, J.D. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Radiation Medicine; Liwnicz, B. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Pathology

    2002-01-01

    Background: To evaluate the safety and efficacy of proton radiation therapy (PRT) for intracranial low-grade astrocytomas, the authors analyzed the first 27 pediatric patients treated at Loma Linda University Medical Center (LLUMC). Patients and Method: Between September 1991 and August 1997, 27 patients (13 female, 14 male) underwent fractionated proton radiation therapy for progressive or recurrent low-grade astrocytoma. Age at time of treatment ranged from 2 to 18 years (mean: 8.7 years). Tumors were located centrally (diencephatic) in 15 patients, in the cerebral and cerebellar hemispheres in seven patients, and in the brainstem in five patients. 25/27 patients (92%) were treated for progressive, unresectable, or residual disease following subtotal resection. Tissue diagnosis was available in 23/27 patients (85%). Four patients with optic pathway tumors were treated without histologic confirmation. Target doses between 50.4 and 63.0 CGE (cobalt gray equivalent, mean: 55.2 CGE) were prescribed at 1.8 CGE per fraction, five treatments per week. Results: At a mean follow-up period of 3.3 years (0.6-6.8 years), 6/27 patients experienced local failure (all located within the irradiated field), and 4/27 patients had died. By anatomic site these data translated into rates of local control and survival of 87% (13/15 patients) and 93% (14/15 patients) for central tumors, 71% (5/7 patients) and 86% (6/7 patients) for hemispheric tumors, and 60% (3/5 patients) and 60% (3/5 patients) for tumors located in the brainstem. Proton radiation therapy was generally well tolerated. All children with local control maintained their performance status. One child with associated neurofibromatosis, Type 1, developed Moyamoya disease. All six patients with optic pathway tumors and useful vision maintained or improved their visual status. Conclusions: This report on pediatric low-grade astrocytomas confirms proton radiation therapy as a safe and efficacious 3-D conformal treatment

  15. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    Directory of Open Access Journals (Sweden)

    Cléciton Braga Tavares

    Full Text Available Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression.

  16. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    Science.gov (United States)

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde, Airton Mendes; da Conceição Barros-Oliveira, Maria; Sousa, Emerson Brandão; da Rocha Barros, Lorena; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-01-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression. PMID:27626480

  17. Association of invasive breast carcinoma and multicentric high grade astrocytoma: a case report with a review.

    Science.gov (United States)

    Pour, P Hossein; Forouzandeh, M; Beni, A Naderi; Beni, Z Naderi; Hoseinpour, P

    2011-03-01

    Breast cancer is the most common cancer in women. Multicentric gliomas are uncommon lesions of the central nervous system (CNS) with an unprecise rate of occurrence that diffusely infiltrate large portions of the brain. High grade astrocytoma is the most agressive form of gliomas and often has a distinct neuroimaging pattern with a poor prognosis. We report a case of a 29-year-old woman patient with primary breast carcinoma and high grade astrocytoma subsequently developed. The woman was treated by mastectomy and 20 months post-diagnosis of the cancer she exhibited a transient facial paralysis. Magnetic resonance imaging (MRI) revealed two cranial masses suspicious of metastasis. A complete tumor removal from the brain was performed. On histological examination, this tumor was a high grade astrocytoma.

  18. Vinculin contributes to Cell Invasion by Regulating Contractile Activation

    Science.gov (United States)

    Mierke, Claudia Tanja

    2008-07-01

    Vinculin is a component of the focal adhesion complex and is described as a mechano-coupling protein connecting the integrin receptor and the actin cytoskeleton. Vinculin knock-out (k.o.) cells (vin-/-) displayed increased migration on a 2-D collagen- or fibronectin-coated substrate compared to wildtype cells, but the role of vinculin in cell migration through a 3-D connective tissue is unknown. We determined the invasiveness of established tumor cell lines using a 3-D collagen invasion assay. Gene expression analysis of 4 invasive and 4 non-invasive tumor cell lines revealed that vinculin expression was significantly increased in invasive tumor cell lines. To analyze the mechanisms by which vinculin increased cell invasion in a 3-D gel, we studied mouse embryonic fibroblasts wildtype and vin-/- cells. Wildtype cells were 3-fold more invasive compared vin-/- cells. We hypothesized that the ability to generate sufficient traction forces is a prerequisite for tumor cell migration in a 3-D connective tissue matrix. Using traction microscopy, we found that wildtype exerted 3-fold higher tractions on fibronectin-coated polyacrylamide gels compared to vin-/- cells. These results show that vinculin controls two fundamental functions that lead to opposite effects on cell migration in a 2-D vs. a 3-D environment: On the one hand, vinculin stabilizes the focal adhesions (mechano-coupling function) and thereby reduces motility in 2-D. On the other hand, vinculin is also a potent activator of traction generation (mechano-regulating function) that is important for cell invasion in a 3-D environment.

  19. Autophagy contributes to resistance of tumor cells to ionizing radiation.

    Science.gov (United States)

    Chaachouay, Hassan; Ohneseit, Petra; Toulany, Mahmoud; Kehlbach, Rainer; Multhoff, Gabriele; Rodemann, H Peter

    2011-06-01

    Autophagy signaling is a novel important target to improve anticancer therapy. To study the role of autophagy on resistance of tumor cells to ionizing radiation (IR), breast cancer cell lines differing in their intrinsic radiosensitivity were used. Breast cancer cell lines MDA-MB-231 and HBL-100 were examined with respect to clonogenic cell survival and induction of autophagy after radiation exposure and pharmacological interference of the autophagic process. As marker for autophagy the appearance of LC3-I and LC3-II proteins was analyzed by SDS-PAGE and Western blotting. Formation of autophagic vacuoles was monitored by immunofluorescence staining of LC3. LC3-I and LC3-II formation differs markedly in radioresistant MDA-MB-231 versus radiosensitive HBL-100 cells. Western blot analyses of LC3-II/LC3-I ratio indicated marked induction of autophagy by IR in radioresistant MDA-MB-231 cells, but not in radiosensitive HBL-100 cells. Indirect immunofluorescence analysis of LC3-II positive vacuoles confirmed this differential effect. Pre-treatment with 3-methyladenine (3-MA) antagonized IR-induced autophagy. Likewise, pretreatment of radioresistant MDA-231 cells with autophagy inhibitors 3-MA or chloroquine (CQ) significantly reduced clonogenic survival of irradiated cells. Our data clearly indicate that radioresistant breast tumor cells show a strong post-irradiation induction of autophagy, which thus serves as a protective and pro-survival mechanism in radioresistance. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Autophagy induction contributes to GDC-0349 resistance in head and neck squamous cell carcinoma (HNSCC) cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yajuan; Peng, Yi [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan (China); Tang, Hao [Department of Pathology, Hubei Cancer Hospital, Wuhan 430071 (China); He, Xiaojun; Wang, Zhaohua [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan (China); Hu, Desheng, E-mail: hudeshengvvip@sina.com [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan (China); Zhou, Xiaoyi, E-mail: zhouxy1218@126.com [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan (China)

    2016-08-19

    Dysregulation of mammalian target of rapamycin (mTOR) signaling contributes to head and neck squamous cell carcinoma (HNSCC) tumorigenesis and progression. In the current study, we tested the anti-HNSCC cell activity by GDC-0349, a selective ATP-competitive inhibitor of mTOR. We showed that GDC-0349 inhibited proliferation of established and primary human HNSCC cells bearing high-level of p-AKT/p-S6K. Further, it induced caspase-dependent apoptosis in the HNSCC cells. GDC-0349 blocked mTORC1 and mTORC2 activation, yet it simultaneously induced autophagy activation in HNSCC cells. The latter was evidenced by induction of LC3B-II, Beclin-1 and Autophagy-related (ATG)-7, as well as downregulation of p62. Autophagy inhibitors (3-methyladenine and bafilomycin A1) or ATG-7 siRNA dramatically potentiated GDC-0349’s cytotoxicity against HNSCC cells. Intriguingly, we showed that ceramide (C14), a pro-apoptotic sphingolipid, also induced ATG-7 degradation, and sensitized HNSCC cells to GDC-0349. Collectively, the preclinical study provided evidences to support GDC-0349 as a promising anti-HNSCC agent. GDC-0349 sensitization may be achieved via autophagy inhibition. - Highlights: • GDC-0349 inhibits proliferation of HNSCC cells bearing high-level of p-AKT/p-S6K. • GDC-0349 activates caspase-dependent apoptosis in HNSCC cells. • Simultaneous blockage of mTORC1/2 by GDC-0349 induces autophagy activation. • Autophagy inhibitor or ATG-7 siRNA potentiates GDC-0349’s cytotoxicity. • C14 ceramide downregulates ATG-7 and sensitizes HNSCC cells to GDC-0349.

  1. A contribution of glutathione to interphase death of dividing cells

    International Nuclear Information System (INIS)

    Rybina, V.V.; Korystov, Yu.N.; Degtyareva, O.V.; Dobrovinskaya, O.R.; Ehjdus, L.Kh.

    1988-01-01

    A study was made of a change in the content of reduced glutathionine (GSH) in Ehrlich ascites tumor (EAT) cells after irradiation with doses evoking their interphase death (ID). GSH content was determined in a suspension of EAT cells fixed by hot ethanol. The postirradiation decrease in the GSH content of the suspension was due to its oxidation by hydrogen peroxide resulting from radiochemical reactions after releasing thereof from cells upon fixation. In the absence of an irradiated medium no changes occurred in the GSH content of EAT cells. It is concluded that ID of EAT cells is not associated with the radiation-induced decrease in the content of GSH, an endogenous antioxidant

  2. Contribution of bacterial cell nitrogen to soil humic fractions

    International Nuclear Information System (INIS)

    Knowles, R.; Barro, L.

    1981-01-01

    Living cells of Serratia marcescens, uniformly labelled with 15 N, were added to samples of maple (Acer saccharum) and black spruce (Picea mariana) forest soils. After different periods of incubation from zero time to 100 days, the soils were subjected to alkali-acid and phenol extraction to provide humic acid, fulvic acid, humin and 'humoprotein' fractions. Significant amounts of the cell nitrogen were recovered in the humic and fulvic acids immediately after addition. After incubation, less cell nitrogen appeared in the humic acid and more in the fulvic acid. The amount of cell nitrogen recovered in the humin fraction increased with incubation. Roughly 5 to 10 per cent of the added cell nitrogen was found as amino acid nitrogen from humoprotein in a phenol extract of the humic acid. The data are consistent with the occurrence of co-precipitation of biologically labile biomass nitrogen compounds with humic polymers during the alkaline extraction procedure involved in the humic-fulvic fractionation. (orig.)

  3. Prognostic relevance of gemistocytic grade II astrocytoma: gemistocytic component and MR imaging features compared to non-gemistocytic grade II astrocytoma

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Young Jin [Inje University, Busan Paik Hospital, Department of Radiology, Busan (Korea, Republic of); Park, Ji Eun; Kim, Ho Sung; Lee, Ji Ye; Jung, Seung Chai; Choi, Choong Gon; Kim, Sang Joon [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Nam, Soo Jeong [University of Ulsan College of Medicine, Asan Medical Center, Department of Pathology, Seoul (Korea, Republic of)

    2017-07-15

    To determine if gemistocytic grade II astrocytoma (GemA) and its MR imaging characteristics are associated with a shorter time-to-progression (TTP) compared with non-gemistocytic grade II astrocytoma (non-GemA). We enrolled 78 patients who were followed up more than 5 years (29 pathologically proven GemA and 49 non-GemA) during a 10-year period. Contrast-enhanced T1-weighted, diffusion-weighted imaging (DWI), dynamic susceptibility contrast (DSC), and MR spectroscopy (MRS) and clinical data were retrospectively reviewed. Clinical and MR imaging features were analyzed as possible prognostic factors of high-grade transformation, and multivariate analysis of TTP was performed using Cox proportional modeling. GemA showed more frequent high-grade features than non-GemA, including diffusion restriction (P <.001), increased choline/creatine (P =.02), and increased choline/NAA ratio (P =.015). Patients with GemA had a significantly shorter median TTP (53.1 vs 68 months; P <.001). A gemistocytic histopathology (hazard ratio = 3.42; P =.015) and low ADC (hazard ratio = 3.61; P =.001) were independently associated with a shorter TTP. GemA can present with MR imaging findings mimicking high-grade glioma at initial diagnosis and transforms to high-grade disease earlier than non-GemA. Low ADC on DWI might be useful in stratifying the risk of progression in patients with grade II astrocytoma. (orig.)

  4. Value of 18F-3,4-dihydroxyphenylalanine PET/MR image fusion in pediatric supratentorial infiltrative astrocytomas: a prospective pilot study.

    Science.gov (United States)

    Morana, Giovanni; Piccardo, Arnoldo; Milanaccio, Claudia; Puntoni, Matteo; Nozza, Paolo; Cama, Armando; Zefiro, Daniele; Cabria, Massimo; Rossi, Andrea; Garrè, Maria Luisa

    2014-05-01

    Infiltrative astrocytomas (IAs) represent a group of astrocytic gliomas ranging from low-grade to highly malignant, characterized by diffuse invasion of the brain parenchyma. When compared with their adult counterpart, pediatric IAs may be considered biologically distinct entities; nevertheless, similarly to those in adults they represent a complex oncologic challenge. The aim of this study was to investigate the diagnostic role, clinical contribution, and prognostic value of fused (18)F-3,4-dihydroxyphenylalanine ((18)F-DOPA) PET/MR images in pediatric supratentorial IAs. Pediatric patients with supratentorial IAs involving at least 2 cerebral lobes, either newly diagnosed or with suspected disease progression, prospectively underwent (18)F-DOPA PET and conventional MR imaging, performed within 10 d of each other. (18)F-DOPA PET data were interpreted qualitatively and semiquantitatively, fusing images with MR images. PET scans were classified as positive if tumors identified on MR imaging exhibited tracer uptake above the level of the corresponding contralateral normal brain. Maximum standardized uptake values, tumor-to-normal contralateral tissue ratios, and tumor-to-normal striatum ratios were calculated for all tumors. Correlations between the degree and extent of (18)F-DOPA uptake, MR imaging tumor characteristics, and histologic results were investigated. The contribution of (18)F-DOPA PET/MR image fusion was considered relevant if it enabled one to select the most appropriate biopsy site, discriminate between disease progression and treatment-related changes, or influence treatment strategy. The patient's outcome was finally correlated with (18)F-DOPA uptake. Thirteen patients (8 boys and 5 girls) were included (5 diffuse astrocytomas, 2 anaplastic astrocytomas, 5 gliomatosis cerebri, and 1 glioblastoma multiforme). The (18)F-DOPA uptake pattern was heterogeneous in all positive scans (9/13), revealing metabolic heterogeneities within each tumor. Significant

  5. First results of the radiological surveillance of RIT trial for high grade astrocytomas in Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Amador Balbona, Z.H.; Pardo Ayra, F.E.; Torres Berdeguez, M.B. [Isotope Centre, Havana (Cuba). Radiation Protection Dept.

    2004-07-01

    The first phase of the clinical trial using the humanized monoclonal antibody h-R3 labeled with {sup 188} Re, for radioimmunotherapy (RIT) of brain tumors began in the Republic of Cuba in 2002. This monoclonal antibody was obtained in the country and it is required to evaluate its toxicity, biodistribution and internal radiation dosimetry. Five groups of three patients of each one with an administered activity from 0.37 GBq to 1.1 GBq, are considered. The aim of this work is to assess workers doses and public doses for this research and to compare projected doses with the first results related to the radiological surveillance. The contribution to the total effective dose and equivalent dose in extremities are calculated with the code Microshield version 4.0 by each activity level, operation and total quantity of patients. We take into account radioactive decay of {sup 188} Re and consider that only a person made all of the operations during this study. It is demonstrated that individual doses are acceptable and lower than world average effective annual dose of natural radiation background (2.4 mSv), because for the operations of more risk are used individual protection means. Nevertheless, it is identified that nurses are the most exposed. The projected maximum equivalent dose to hands is about 4 mSv and it belongs to the neurosurgeon. Radiological surveillance is performed to verify our calculations. Five workers and public (four individuals) are monitoring for each patient with direct reading dosimeters DOSICARD and TLD for extremities. For the first seven patients results are obtained. The conservative assumptions in the dose assessment and the compliance with established safety procedures determine that the registered doses are lower than those were projected. RIT with 188 Re for high-grade astrocytomas is a safety practice from radiation protection point of view. There is not a reference of a similar study in Latin America. (author)

  6. First results of the radiological surveillance of RIT trial for high grade astrocytomas in Cuba

    International Nuclear Information System (INIS)

    Amador Balbona, Z.H.; Pardo Ayra, F.E.; Torres Berdeguez, M.B.

    2004-01-01

    The first phase of the clinical trial using the humanized monoclonal antibody h-R3 labeled with 188 Re, for radioimmunotherapy (RIT) of brain tumors began in the Republic of Cuba in 2002. This monoclonal antibody was obtained in the country and it is required to evaluate its toxicity, biodistribution and internal radiation dosimetry. Five groups of three patients of each one with an administered activity from 0.37 GBq to 1.1 GBq, are considered. The aim of this work is to assess workers doses and public doses for this research and to compare projected doses with the first results related to the radiological surveillance. The contribution to the total effective dose and equivalent dose in extremities are calculated with the code Microshield version 4.0 by each activity level, operation and total quantity of patients. We take into account radioactive decay of 188 Re and consider that only a person made all of the operations during this study. It is demonstrated that individual doses are acceptable and lower than world average effective annual dose of natural radiation background (2.4 mSv), because for the operations of more risk are used individual protection means. Nevertheless, it is identified that nurses are the most exposed. The projected maximum equivalent dose to hands is about 4 mSv and it belongs to the neurosurgeon. Radiological surveillance is performed to verify our calculations. Five workers and public (four individuals) are monitoring for each patient with direct reading dosimeters DOSICARD and TLD for extremities. For the first seven patients results are obtained. The conservative assumptions in the dose assessment and the compliance with established safety procedures determine that the registered doses are lower than those were projected. RIT with 188 Re for high-grade astrocytomas is a safety practice from radiation protection point of view. There is not a reference of a similar study in Latin America. (author)

  7. Autophagic components contribute to hypersensitive cell death in Arabidopsis

    DEFF Research Database (Denmark)

    Hofius, Daniel; Schultz-Larsen, Torsten; Joensen, Jan

    2009-01-01

    Autophagy has been implicated as a prosurvival mechanism to restrict programmed cell death (PCD) associated with the pathogen-triggered hypersensitive response (HR) during plant innate immunity. This model is based on the observation that HR lesions spread in plants with reduced autophagy gene...... expression. Here, we examined receptor-mediated HR PCD responses in autophagy-deficient Arabidopsis knockout mutants (atg), and show that infection-induced lesions are contained in atg mutants. We also provide evidence that HR cell death initiated via Toll/Interleukin-1 (TIR)-type immune receptors through...... the defense regulator EDS1 is suppressed in atg mutants. Furthermore, we demonstrate that PCD triggered by coiled-coil (CC)-type immune receptors via NDR1 is either autophagy-independent or engages autophagic components with cathepsins and other unidentified cell death mediators. Thus, autophagic cell death...

  8. Clinical Implications of the Epidermal Growth Factor Receptor overexpression in the High-grade Astrocytomas

    International Nuclear Information System (INIS)

    Hong, Seong Eon; Kang, Jin Oh; Lee, Hye Kyoung; Yang, Moon Ho; Leem, Won; Cho, Kyung Sam

    1996-01-01

    To determine the incidence and prognostic effects of EGFR overexpression in the high-grade astrocytomas. With 23 paraffin blocks of the high-garde astrocytomas, expression of EGFR were evaluated by immunohistochemical staining employing polyclonal antibody raised to short cytoplasmic domain of the molecule. Two out of 7 anaplastic astrocytomas and 9 out of 16 glioblastoma multiform patients showed overexpression of EGFR(p=0.44). Three out of 11 patients of age below 55 and 8 out of 12 patients of age over 54 showed EGFR overexpression(p=0.141). Median survival of the EGFR negative anaplastic astrocytoma patient was 37 months. Median survival of the glioblastoma multiform patients were 11 months in EGFR negative group and 7 months in EGFR positive group. But survival difference was not significant(p=0.17). There was a marked trend of increasing overexpression of EGFR in older patients. But survival of the glioblastoma multiform decreased by the overexpression of the EGFR without significant

  9. Clinical significance of changes of serum expression of IGF-I in patients with astrocytoma

    International Nuclear Information System (INIS)

    Liu Jianbo; Ding Dongmei; Yang Fubing

    2005-01-01

    Objective: To investigate the serum expression of IGF-I in patients with astrocytoma of different degrees of malignancy as well as the changes of levels after operative removal of the tumor. Methods: Serum IGF-I contents were measured with IRMA in 16 patients with Grade I-II astrocytoma and 14 patients with Grade III-IV astrocytoma both before and after operation as well as in 30 controls. Results: The serum contents of IGF-I in both groups of patients were significantly higher than those in controls (P<0.05). The levels in Grade III-IV patients were significantly higher than those in Grade I-II patients (P < 0.05 ). After operation, the levels dropped significantly (vs before operation, P<0.05). Conclusion: The serum contents of IGF - I in patients with astrocytoma were positively correlated with the degree of malignancy. Post-operative decrease of IGF-I contents was related to the decrease of tumor burden. (authors)

  10. Sustained response to weekly vinblastine in 2 children with pilomyxoid astrocytoma associated with diencephalic syndrome.

    Science.gov (United States)

    Singh, Gurpreet; Wei, Xing Chang; Hader, Walter; Chan, Jennifer A; Bouffet, Eric; Lafay-Cousin, Lucie

    2013-03-01

    Diencephalic syndrome (DS) related to hypothalamic/chiasmatic region tumor has mainly been reported with low-grade glioma. We described 2 young children with DS related to pilomyxoid astrocytoma. Despite the recognized more agressive clinical behavior of this histologic subtype, we report successful resolution of DS and sustained tumor response with prolonged use of single-agent vinblastine.

  11. Tumour vasculature and angiogenic profile of paediatric pilocytic astrocytoma; is it much different from glioblastoma?

    NARCIS (Netherlands)

    Sie, M.; de Bont, E. S. J. M.; Scherpen, F. J. G.; Hoving, E. W.; den Dunnen, W. F. A.

    2010-01-01

    Aims: Pilocytic astrocytomas are the most frequent brain tumours in children. Because of their high vascularity, this study aimed to obtain insights into potential angiogenic related therapeutic targets in these tumours by characterization of the vasculature and the angiogenic profile. In this study

  12. Skeletal stem cells and their contribution to skeletal fragility

    DEFF Research Database (Denmark)

    Aldahmash, A.

    2016-01-01

    Age-related osteoporotic fractures are major health care problem worldwide and are the result of impaired bone formation, decreased bone mass and bone fragility. Bone formation is accomplished by skeletal stem cells (SSC) that are recruited to bone surfaces from bone marrow microenvironment....... This review discusses targeting SSC to enhance bone formation and to abolish age-related bone fragility in the context of using stem cells for treatment of age-related disorders. Recent studies are presented that have demonstrated that SSC exhibit impaired functions during aging due to intrinsic senescence...

  13. The contribution of the programmed cell death machinery in innate immune cells to lupus nephritis.

    Science.gov (United States)

    Tsai, FuNien; Perlman, Harris; Cuda, Carla M

    2017-12-01

    Systemic lupus erythematosus (SLE) is a chronic multi-factorial autoimmune disease initiated by genetic and environmental factors, which in combination trigger disease onset in susceptible individuals. Damage to the kidney as a consequence of lupus nephritis (LN) is one of the most prevalent and severe outcomes, as LN affects up to 60% of SLE patients and accounts for much of SLE-associated morbidity and mortality. As remarkable strides have been made in unlocking new inflammatory mechanisms associated with signaling molecules of programmed cell death pathways, this review explores the available evidence implicating the action of these pathways specifically within dendritic cells and macrophages in the control of kidney disease. Although advancements into the underlying mechanisms responsible for inducing cell death inflammatory pathways have been made, there still exist areas of unmet need. By understanding the molecular mechanisms by which dendritic cells and macrophages contribute to LN pathogenesis, we can improve their viability as potential therapeutic targets to promote remission. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Origin of Matrix-Producing Cells That Contribute to Aortic Fibrosis in Hypertension.

    Science.gov (United States)

    Wu, Jing; Montaniel, Kim Ramil C; Saleh, Mohamed A; Xiao, Liang; Chen, Wei; Owens, Gary K; Humphrey, Jay D; Majesky, Mark W; Paik, David T; Hatzopoulos, Antonis K; Madhur, Meena S; Harrison, David G

    2016-02-01

    Various hypertensive stimuli lead to exuberant adventitial collagen deposition in large arteries, exacerbating blood pressure elevation and end-organ damage. Collagen production is generally attributed to resident fibroblasts; however, other cells, including resident and bone marrow-derived stem cell antigen positive (Sca-1(+)) cells and endothelial and vascular smooth muscle cells, can produce collagen and contribute to vascular stiffening. Using flow cytometry and immunofluorescence, we found that adventitial Sca-1(+) progenitor cells begin to produce collagen and acquire a fibroblast-like phenotype in hypertension. We also found that bone marrow-derived cells represent more than half of the matrix-producing cells in hypertension, and that one-third of these are Sca-1(+). Cell sorting and lineage-tracing studies showed that cells of endothelial origin contribute to no more than one fourth of adventitial collagen I(+) cells, whereas those of vascular smooth muscle lineage do not contribute. Our findings indicate that Sca-1(+) progenitor cells and bone marrow-derived infiltrating fibrocytes are major sources of arterial fibrosis in hypertension. Endothelial to mesenchymal transition likely also contributes, albeit to a lesser extent and pre-existing resident fibroblasts represent a minority of aortic collagen-producing cells in hypertension. This study shows that vascular stiffening represents a complex process involving recruitment and transformation of multiple cells types that ultimately elaborate adventitial extracellular matrix. © 2015 American Heart Association, Inc.

  15. Osteocalcin expressing cells from tendon sheaths in mice contribute to tendon repair by activating Hedgehog signaling

    OpenAIRE

    Wang, Yi; Zhang, Xu; Huang, Huihui; Xia, Yin; Yao, YiFei; Mak, Arthur Fuk-Tat; Yung, Patrick Shu-Hang; Chan, Kai-Ming; Wang, Li; Zhang, Chenglin; Huang, Yu; Mak, Kingston King-Lun

    2017-01-01

    Both extrinsic and intrinsic tissues contribute to tendon repair, but the origin and molecular functions of extrinsic tissues in tendon repair are not fully understood. Here we show that tendon sheath cells harbor stem/progenitor cell properties and contribute to tendon repair by activating Hedgehog signaling. We found that Osteocalcin (Bglap) can be used as an adult tendon-sheath-specific marker in mice. Lineage tracing experiments show that Bglap-expressing cells in adult sheath tissues pos...

  16. Do cells contribute to tendon and ligament biomechanics?

    Directory of Open Access Journals (Sweden)

    Niels Hammer

    Full Text Available Acellular scaffolds are increasingly used for the surgical repair of tendon injury and ligament tears. Despite this increased use, very little data exist directly comparing acellular scaffolds and their native counterparts. Such a comparison would help establish the effectiveness of the acellularization procedure of human tissues. Furthermore, such a comparison would help estimate the influence of cells in ligament and tendon stability and give insight into the effects of acellularization on collagen.Eighteen human iliotibial tract samples were obtained from nine body donors. Nine samples were acellularized with sodium dodecyl sulphate (SDS, while nine counterparts from the same donors remained in the native condition. The ends of all samples were plastinated to minimize material slippage. Their water content was adjusted to 69%, using the osmotic stress technique to exclude water content-related alterations of the mechanical properties. Uniaxial tensile testing was performed to obtain the elastic modulus, ultimate stress and maximum strain. The effectiveness of the acellularization procedure was histologically verified by means of a DNA assay.The histology samples showed a complete removal of the cells, an extensive, yet incomplete removal of the DNA content and alterations to the extracellular collagen. Tensile properties of the tract samples such as elastic modulus and ultimate stress were unaffected by acellularization with the exception of maximum strain.The data indicate that cells influence the mechanical properties of ligaments and tendons in vitro to a negligible extent. Moreover, acellularization with SDS alters material properties to a minor extent, indicating that this method provides a biomechanical match in ligament and tendon reconstruction. However, the given protocol insufficiently removes DNA. This may increase the potential for transplant rejection when acellular tract scaffolds are used in soft tissue repair. Further research

  17. Tumor and Stromal-Based Contributions to Head and Neck Squamous Cell Carcinoma Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Markwell, Steven M.; Weed, Scott A., E-mail: scweed@hsc.wvu.edu [Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506 (United States)

    2015-02-27

    Head and neck squamous cell carcinoma (HNSCC) is typically diagnosed at advanced stages with evident loco-regional and/or distal metastases. The prevalence of metastatic lesions directly correlates with poor patient outcome, resulting in high patient mortality rates following metastatic development. The progression to metastatic disease requires changes not only in the carcinoma cells, but also in the surrounding stromal cells and tumor microenvironment. Within the microenvironment, acellular contributions from the surrounding extracellular matrix, along with contributions from various infiltrating immune cells, tumor associated fibroblasts, and endothelial cells facilitate the spread of tumor cells from the primary site to the rest of the body. Thus far, most attempts to limit metastatic spread through therapeutic intervention have failed to show patient benefit in clinic trails. The goal of this review is highlight the complexity of invasion-promoting interactions in the HNSCC tumor microenvironment, focusing on contributions from tumor and stromal cells in order to assist future therapeutic development and patient treatment.

  18. Drosophila's contribution to stem cell research [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Gyanesh Singh

    2016-08-01

    Full Text Available The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub. Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila.

  19. How do glial cells contribute to motor control?

    DEFF Research Database (Denmark)

    Christensen, Rasmus Kordt; Petersen, Anders Victor; Perrier, Jean-Francois Marie

    2013-01-01

    that glia play an active role in several physiological functions. The discovery that a bidirectional communication takes place between astrocytes (the star shaped glial cell of the brain) and neurons, was a major breakthrough in the field of synaptic physiology. Astrocytes express receptors that get...... activated by neurotransmitters during synaptic transmission. In turn they release other transmitters - called gliotransmitters - that bind to neuronal receptors and modulate synaptic transmission. This feedback, which led to the concept of the tripartite synapse, has been reported with various transmitters...... including glutamate, ATP, GABA or serine. In the present review we will focus on astrocytes and review the evidence suggesting and demonstrating their role in motor control. Rhythmic motor behaviors such as locomotion, swimming or chewing are generated by networks of neurons termed central pattern...

  20. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  1. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    International Nuclear Information System (INIS)

    Chang, Cheng-Yi; Kuan, Yu-Hsiang; Ou, Yen-Chuan; Li, Jian-Ri; Wu, Chih-Cheng; Pan, Pin-Ho; Chen, Wen-Ying; Huang, Hsuan-Yi; Chen, Chun-Jung

    2014-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  2. Treatment results of non-pilocytic cerebral astrocytomas in adults treated by surgery, radiation therapy and chemotherapy

    International Nuclear Information System (INIS)

    Matsutani, Masao; Nishikawa, Ryo; Sugiyama, Satoshi; Fujimaki, Takamitsu; Nakamura, Osamu

    1999-01-01

    Non-pilocytic cerebral astrocytomas in adults are oncopathologically defined as well-differentiated carcinoma of the brain. They grow invasively and can not be cured by extensive surgery followed by radiation therapy. We performed multidisciplinary treatments consisting of surgery, radiation therapy and chemotherapy in 26 adult patients with non-pilocytic cerebral astrocytomas. The 5- and 10-year survival rates of the patients were 90.9% and 75.6%, respectively; these were better than reported survival rates of patients treated by postoperative radiation therapy alone. Precise analysis of clinical findings of astrocytic tumors suggested that glioblastomas growing superficially might be derived from preexisting astrocytomas. This hypothesis proposes that multidisciplinary treatments for astrocytomas in early stages could cure the disease and could ultimately decrease a number of glioblastomas. (author)

  3. Vascular endothelial growth factor and basic fibroblast growth factor expression positively correlates with angiogenesis and peritumoural brain oedema in astrocytoma

    International Nuclear Information System (INIS)

    Jang, F.F.; Wei, W.

    2008-01-01

    Astrocytoma is the most malignant intracranial neoplasm and is characterized by high neovascularization and peritumoural brain oedema. Angiogenesis is a complicated process in oncogenesis regulated by the balance between angiogenic and antiangiogenic factors. The expression of two angiogenic growth factors, vascular endothelial growth factor and basic fibroblast growth factor were investigated using immunohistochemistry for astrocytoma from 82 patients and 11 normal human tissues. The expression of vascular endothelial growth factor and basic fibroblast growth factor positively correlate with the pathological grade of astrocytoma, microvessel density numbers and brain oedema, which may be responsible for the increased tumour neovascularization and peritumoural brain oedema. The results support the idea that inhibiting vascular endothelial growth factor and basic fibroblast growth factor are useful for the treatment of human astrocytoma and to improve patient's clinical outcomes and prognosis. (author)

  4. Transitional-2 B cells acquire regulatory function during tolerance induction and contribute to allograft survival.

    Science.gov (United States)

    Moreau, Aurélie; Blair, Paul A; Chai, Jian-Guo; Ratnasothy, Kulachelvy; Stolarczyk, Emilie; Alhabbab, Rowa; Rackham, Chloe L; Jones, Peter M; Smyth, Lesley; Elgueta, Raul; Howard, Jane K; Lechler, Robert I; Lombardi, Giovanna

    2015-03-01

    In humans, tolerance to renal transplants has been associated with alterations in B-cell gene transcription and maintenance of the numbers of circulating transitional B cells. Here, we use a mouse model of transplantation tolerance to investigate the contribution of B cells to allograft survival. We demonstrate that transfer of B cells from mice rendered tolerant to MHC class I mismatched skin grafts can prolong graft survival in a dose-dependent and antigen-specific manner to a degree similar to that afforded by graft-specific regulatory T (Treg) cells. Tolerance in this model was associated with an increase in transitional-2 (T2) B cells. Only T2 B cells from tolerized mice, not naïve T2 nor alloantigen experienced T2, were capable of prolonging skin allograft survival, and suppressing T-cell activation. Tolerized T2 B cells expressed lower levels of CD86, increased TIM-1, and demonstrated a preferential survival in vivo. Furthermore, we demonstrate a synergistic effect between tolerized B cells and graft-specific Treg cells. IL-10 production by T2 B cells did not contribute to tolerance, as shown by transfer of B cells from IL-10(-/-) mice. These results suggest that T2 B cells in tolerant patients may include a population of regulatory B cells that directly inhibit graft rejection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Low-Grade Astrocytoma Associated with Abscess Formation: Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Tai-Hsin Tsai

    2008-05-01

    Full Text Available A rare case of low-grade astrocytoma associated with abscess formation occurred in a 52-year-old man presenting with Broca's aphasia. He underwent craniotomy and tumor removal under the impression of brain tumor with necrotic cystic change. Abscess accumulation within the intra-axial tumor was found intraoperatively. Literature related to brain abscess with brain tumor is reviewed, with an emphasis on abscesses with astrocytoma. We discuss the common brain tumors that are associated with abscess, pathogens that coexist with brain tumor, and the pathogeneses of coexisting brain abscess and tumor. It is very important to know how to differentiate between and diagnose a brain abscess and tumor, or brain abscess with tumor, preoperatively from clinical presentation and through the use of computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging or magnetic resonance spectroscopy.

  6. FLAIR MR sequence in the diagnosis and follow-up of low-grade astrocytomas

    Directory of Open Access Journals (Sweden)

    Stošić-Opinćal Tatjana

    2005-01-01

    Full Text Available Aim. To evaluate the sensitivity of fluid-attenuated inversion recovery (FLAIR sequence in the diagnosis and follow-up of the patients with low-grade astrocytomas compared with T2-weighted (T2W sequence. Methods. Twenty-four patients with biopsy- confirmed low-grade astrocytoma (age range, 15-66 years underwent T1- weighted (T1W, T2W and FLAIR imaging with a superconducting unit 1.0 T. FLAIR images were qualitatively evaluated by comparison with T2W images by the three experienced neuroradiologists. To evaluate the diagnostic value of FLAIR, the neuroradiologists individually assessed the possibilities of the detection of lesions, as well as the possibilities of the differentiation of tumor from the surrounding edema on FLAIR vs. T2W images. Every examiner ranked FLAIR sequence vs. T2W in three degrees: worse, equal and better. Results. The comparison of FLAIR with T2W spin-echo (SE images with regard to the detection of the lesions showed that 82.8% of FLAIR studies were superior, 17.2% were of similar diagnostic value, and none was inferior to the T2W images. The comparison of images with regard to the differentiation of tumor boundaries vs. surrounding edema showed that 92.5% of FLAIR studies were superior, 7.5% were of similar diagnostic value, and none was inferior to the T2W images. Conclusion. Our results were similar to the previous studies' results concerning the advantages of FLAIR sequence in the diagnosis of low grade astrocytomas over T2W sequence. FLAIR was better at showing different tumor components, and at distinguishing CSF from the cystic component, and the postoperative cavity, compared with T2W images. Our conclusion was that FLAIR could be routinely used in the evaluation and follow-up of low-grade astrocytomas.

  7. MR Findings of Desmoplastic Cerebral Astrocytoma of Infancy. A case report

    International Nuclear Information System (INIS)

    Kim, J.H.; Kim, I.O.; Kim, W.S.; Kim, K.H.; Park, C. M.; Yeon, K.M.

    2003-01-01

    Desmoplastic cerebral astrocytoma of infancy (DCAI) presents as a large supratentorial mass consisting of a central cystic component and an enhancing solid component associated with peripheral dural attachment. We report the unusual MR findings of a DCAI that differed from previously reported cases in terms of the presence of calcification, which is not considered a feature of this tumor, and the absence of an enhancing peripheral dural component

  8. An acid phosphatase in the plasma membranes of human astrocytoma showing marked specificity toward phosphotyrosine protein.

    OpenAIRE

    Leis, J F; Kaplan, N O

    1982-01-01

    The plasma membrane from the human tumor astrocytoma contains an active acid phosphatase activity based on hydrolysis of p-nitrophenyl phosphate. Other acid phosphatase substrates--beta-glycerophosphate, O-phosphorylcholine, and 5'-AMP--are not hydrolyzed significantly. The phosphatase activity is tartrate insensitive and is stimulated by Triton X-100 and EDTA. Of the three known phosphoamino acids, only free O-phosphotyrosine is hydrolyzed by the membrane phosphatase activity. Other acid pho...

  9. Supratentorial juvenile pilocytic astrocytoma in a young adult with Silver-Russell syndrome.

    LENUS (Irish Health Repository)

    Fenton, E

    2008-12-01

    Silver-Russell syndrome is a rare genetically heterogeneous disorder in which patients demonstrate intrauterine and postnatal growth retardation, triangular facies, excessive sweating during early childhood, late closure of the anterior fontanelle and skeletal asymmetry. An association with malignancy exists and only one previous intracranial tumour has been reported, a craniopharyngioma. We report the first case of Silver-Russell syndrome associated with a supratentorial juvenile pilocytic astrocytoma.

  10. MRS of pilocytic astrocytoma: The peak at 2 ppm may not be NAA.

    Science.gov (United States)

    Tamrazi, Benita; Nelson, Marvin D; Blüml, Stefan

    2017-08-01

    To determine whether the chemical shift of residual N-acetylaspartate (NAA) signal in pilocytic astrocytomas (PA) is consistent with the position of the NAA peak in controls. MR spectra from 27 pediatric World Health Organization (WHO) grade I pilocytic astrocytoma patients, fifteen patients with WHO grade II and high-grade (III-IV) astrocytomas, and 36 controls were analyzed. All spectra were acquired with a short echo time (35 ms), single voxel point-resolved spectroscopy sequence on clinical 3 tesla scanners. Fully automated LCModel software was used for processing, which included the fitting of peak positions for NAA and creatine (Cr). The chemical shift difference between the NAA and Cr peaks was significantly smaller (by 0.016 ± 0.005 parts per million, P NAA peak in PAs is not consistent with NAA. The signal likely originates from an N-acetyl group of one or more other chemicals such as N-acetylated sugars. Magn Reson Med 78:452-456, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  11. [Familial astrocytoma associated with von Recklinghausen's disease: report of two cases].

    Science.gov (United States)

    Ito, Y; Oki, S; Mikami, T; Ogasawara, H; Kawamoto, Y; Sato, H; Yamaguchi, S; Hayashi, Y; Shindo, H

    1997-03-01

    Two cases of astrocytoma associated with von Recklinghausen's disease (neurofibromatosis type; NF-1) were reported. The first case wes a 60-year-old man who had been diagnosed as von Recklinghausen's disease on the basis of skin findings. Magnetic resonance imaging (MRI) showed a tumor in the left temporal lobe. Partial removal was performed with neuronavigator, and because of the existence of Rosenthal fiber the histological diagnosis was pilocytic astrocytoma. Radiation therapy was performed. The second case was a 6-year-old boy suffering from headache and left hemiparesis including his face. MRI showed a tumor with a cyst in the right thalamus and obstructive hydrocephalus. Initially CT-guided stereotactic biopsy was performed, and the histological diagnosis, on the basis of increased cellularity, pleomorphism and nuclear atypia without necrosis or vascular proliferation, was anaplastic astrocytoma. Radiation and chemo-immuno therapy were carried out after V-P shunt. It is well known that von Recklinghausen's disease (NF-1) is often associated with optic glioma (5-36%). In the literature, the glioma seldom occurs in other parts of the brain, supratentorial glioma especially is rare. Only two familial cases of supratentorial glioma associated with von Recklinghausen's disease have been reported. The prognosis of supratentorial glioma associated with NF-1 was poor in these reports. In this paper, the diagnostic and therapeutic problems are discussed.

  12. Contributions of cell growth and biochemical reactions to nongenetic variability of cells.

    NARCIS (Netherlands)

    Schwabe, A.; Bruggeman, F.J.

    2014-01-01

    Cell-to-cell variability in the molecular composition of isogenic, steady-state growing cells arises spontaneously from the inherent stochasticity of intracellular biochemical reactions and cell growth. Here, we present a general decomposition of the total variance in the copy number per cell of a

  13. Actin and microtubule networks contribute differently to cell response for small and large strains

    Science.gov (United States)

    Kubitschke, H.; Schnauss, J.; Nnetu, K. D.; Warmt, E.; Stange, R.; Kaes, J.

    2017-09-01

    Cytoskeletal filaments provide cells with mechanical stability and organization. The main key players are actin filaments and microtubules governing a cell’s response to mechanical stimuli. We investigated the specific influences of these crucial components by deforming MCF-7 epithelial cells at small (≤5% deformation) and large strains (>5% deformation). To understand specific contributions of actin filaments and microtubules, we systematically studied cellular responses after treatment with cytoskeleton influencing drugs. Quantification with the microfluidic optical stretcher allowed capturing the relative deformation and relaxation of cells under different conditions. We separated distinctive deformational and relaxational contributions to cell mechanics for actin and microtubule networks for two orders of magnitude of drug dosages. Disrupting actin filaments via latrunculin A, for instance, revealed a strain-independent softening. Stabilizing these filaments by treatment with jasplakinolide yielded cell softening for small strains but showed no significant change at large strains. In contrast, cells treated with nocodazole to disrupt microtubules displayed a softening at large strains but remained unchanged at small strains. Stabilizing microtubules within the cells via paclitaxel revealed no significant changes for deformations at small strains, but concentration-dependent impact at large strains. This suggests that for suspended cells, the actin cortex is probed at small strains, while at larger strains; the whole cell is probed with a significant contribution from the microtubules.

  14. Pluripotent hybrid cells contribute to extraembryonic as well as embryonic tissues.

    Science.gov (United States)

    Do, Jeong Tae; Choi, Hyun Woo; Choi, Youngsok; Schöler, Hans R

    2011-06-01

    The restricted gene expression of a differentiated cell can be reversed by forming hybrid with embryonic stem cells (ESCs). The resulting hybrid cells showed not only an ESC-specific marker expression but also a differentiation potential similar to the pluripotent fusion partner. Here, we evaluated whether the tetraploid fusion hybrid cells have a unique differentiation potential compared with diploid pluripotent cells. The first Oct4-GFP-positive cells were observed at day 2 following fusion between ESCs and neurosphere cells (OG2(+/-)/ROSA26(+/-)). Reprogramming efficiency was as high as 94.5% at passage 5 and 96.4% at passage 13. We have found that the tetraploid hybrid cells could form chimera with contribution to placenta after blastocyst injection. This result indicates that the tetraploid pluripotent fusion hybrid cells have wide range of differentiation potential. Therefore, we suggest that once the somatic cells are reprogrammed by fusion with ESCs, the tetraploid hybrid cells contributed to the extraembryonic as well as embryonic tissues.

  15. Characterization of cells recovered from the xenotransplanted NG97 human-derived glioma cell line subcultured in a long-term in vitro

    International Nuclear Information System (INIS)

    Machado, Camila ML; Boetcher-Luiz, Fátima; Verinaud, Liana; Ikemori, Rafael Y; Zorzeto, Tatiana Q; Nogueira, Ana CMA; Barbosa, Suse DS; Savino, Wilson; Schenka, André A; Vassallo, José; Heinrich, Juliana K

    2008-01-01

    In order to elucidate tumoral progression and drug resistance, cultured cell lines are valuable tools applied on tumor related assays provided they are well established and characterized. Our laboratory settled the NG97 cell line derived from a human astrocytoma grade III, which started to develop and express important phenotypical characteristics of an astrocytoma grade IV after injection in the flank of nude mice. Astrocytomas are extremely aggressive malignancies of the Central Nervous System (CNS) and account for 46% of all primary malignant brain tumors. Progression to worse prognosis occurs in 85% of the cases possibly due to changes in cell tumor microenvironment and through biological pathways that are still unclear. This work focused on characterizing the NG97 cell line specifically after being recovered from the xenotransplant, who maintained their undifferentiated characteristics along the following 60 th passages in vitro. These cells were subcultivated to evaluate the possible contribution of these undifferentiated characteristics to the malignant progression phenotype. These characteristics were the expression of molecules involved in the processes of migration, dedifferentiation and chromosomal instability. Results showed that NG97(ht) had an decrease in doubling time through sub cultivation, which was characterized by a converse modulation between the expression of glial fibrillary acidic protein (GFAP) and vimentin. In addition, β1 integrins were present in intermediate levels while α5 integrins had a high expression profile as well as fibronectin and laminin. Cytogenetic analysis of NG97(ht) revealed several chromosomal abnormalities, 89% of the cells showed to be hyperdiploid and the modal number was assigned to be 63. Several acrocentric chromosomes were visualized and at least 30 figures were attributed to be murine. These findings suggest a possible fusion between the original NG97 cells with stromal murine cells in the xenotransplant. In

  16. Characterization of cells recovered from the xenotransplanted NG97 human-derived glioma cell line subcultured in a long-term in vitro

    Directory of Open Access Journals (Sweden)

    Heinrich Juliana K

    2008-10-01

    Full Text Available Abstract Background In order to elucidate tumoral progression and drug resistance, cultured cell lines are valuable tools applied on tumor related assays provided they are well established and characterized. Our laboratory settled the NG97 cell line derived from a human astrocytoma grade III, which started to develop and express important phenotypical characteristics of an astrocytoma grade IV after injection in the flank of nude mice. Astrocytomas are extremely aggressive malignancies of the Central Nervous System (CNS and account for 46% of all primary malignant brain tumors. Progression to worse prognosis occurs in 85% of the cases possibly due to changes in cell tumor microenvironment and through biological pathways that are still unclear. Methods This work focused on characterizing the NG97 cell line specifically after being recovered from the xenotransplant, who maintained their undifferentiated characteristics along the following 60th passages in vitro. These cells were subcultivated to evaluate the possible contribution of these undifferentiated characteristics to the malignant progression phenotype. These characteristics were the expression of molecules involved in the processes of migration, dedifferentiation and chromosomal instability. Results Results showed that NG97(ht had an decrease in doubling time through sub cultivation, which was characterized by a converse modulation between the expression of glial fibrillary acidic protein (GFAP and vimentin. In addition, β1 integrins were present in intermediate levels while α5 integrins had a high expression profile as well as fibronectin and laminin. Cytogenetic analysis of NG97(ht revealed several chromosomal abnormalities, 89% of the cells showed to be hyperdiploid and the modal number was assigned to be 63. Several acrocentric chromosomes were visualized and at least 30 figures were attributed to be murine. These findings suggest a possible fusion between the original NG97 cells

  17. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Lazarova, Darina L., E-mail: dlazarova@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that

  18. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    International Nuclear Information System (INIS)

    Chiaro, Christopher; Lazarova, Darina L.; Bordonaro, Michael

    2012-01-01

    Highlights: ► We investigate mechanisms responsible for butyrate resistance in colon cancer cells. ► Tcf3 modulates butyrate’s effects on Wnt activity and cell growth in resistant cells. ► Tcf3 modulation of butyrate’s effects differ by cell context. ► Cell cycle factors are overexpressed in the resistant cells. ► Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G 1 to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or reverse butyrate resistance.

  19. Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans.

    Directory of Open Access Journals (Sweden)

    Elena Sandalova

    Full Text Available Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR, proliferation (Ki-67/Bcl-2(low and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV. CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-gamma during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.

  20. Stem cell potency and the ability to contribute to chimeric organisms.

    Science.gov (United States)

    Polejaeva, Irina; Mitalipov, Shoukhrat

    2013-03-01

    Mouse embryonic chimeras are a well-established tool for studying cell lineage commitment and pluripotency. Experimental chimeras were successfully produced by combining two or more preimplantation embryos or by introducing into host embryo cultured pluripotent embryonic stem cells (ESCs). Chimera production using genetically modified ESCs became the method of choice for the generation of knockout or knockin mice. Although the derivation of ESCs or ESC-like cells has been reported for other species, only mouse and rat pluripotent stem cells have been shown to contribute to germline-competent chimeras, which is the defining feature of ESCs. Herein, we describe different approaches employed for the generation of embryonic chimeras, define chimera-competent cell types, and describe cases of spontaneous chimerism in humans. We also review the current state of derivation of pluripotent stem cells in several species and discuss outcomes of various chimera studies when such cells are used.

  1. Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue

    Science.gov (United States)

    Kopp, Hans-Georg; Ramos, Carlos A.; Rafii, Shahin

    2010-01-01

    Purpose of review During the last several years, a substantial amount of evidence from animal as well as human studies has advanced our knowledge of how bone marrow derived cells contribute to neoangiogenesis. In the light of recent findings, we may have to redefine our thinking of endothelial cells as well as of perivascular mural cells. Recent findings Inflammatory hematopoietic cells, such as macrophages, have been shown to promote neoangiogenesis during tumor growth and wound healing. Dendritic cells, B lymphocytes, monocytes, and other immune cells have also been found to be recruited to neoangiogenic niches and to support neovessel formation. These findings have led to the concept that subsets of hematopoietic cells comprise proangiogenic cells that drive adult revascularization processes. While evidence of the importance of endothelial progenitor cells in adult vasculogenesis increased further, the role of these comobilized hematopoietic cells has been intensely studied in the last few years. Summary Angiogenic factors promote mobilization of vascular endothelial growth factor receptor 1-positive hematopoietic cells through matrix metalloproteinase-9 mediated release of soluble kit-ligand and recruit these proangiogenic cells to areas of hypoxia, where perivascular mural cells present stromal-derived factor 1 (CXCL-12) as an important retention signal. The same factors are possibly involved in mobilization of vascular endothelial growth factor receptor 2-positive endothelial precursors that may participate in neovessel formation. The complete characterization of mechanisms, mediators and signaling pathways involved in these processes will provide novel targets for both anti and proangiogenic therapeutic strategies. PMID:16567962

  2. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells

    International Nuclear Information System (INIS)

    Desai, Amar; Webb, Bryan; Gerson, Stanton L.

    2014-01-01

    Background: Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. Materials and methods: A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. Results: A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. Conclusions: CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs

  3. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate

    Science.gov (United States)

    Mederacke, Ingmar; Komatsu, Yoshihiro; Stice, Steve; Schwabe, Robert F.; Mistretta, Charlotte M.; Mishina, Yuji; Liu, Hong-Xiang

    2016-01-01

    Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC). Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT) to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC. PMID:26741369

  4. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate.

    Directory of Open Access Journals (Sweden)

    Kristin Boggs

    Full Text Available Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC. Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5 and young postnatal (P1-10 mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1 P0-Cre/R26-tdTomato (RFP to label NC, NC derived Schwann cells and derivatives; (2 Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3 Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC.

  5. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate.

    Science.gov (United States)

    Boggs, Kristin; Venkatesan, Nandakumar; Mederacke, Ingmar; Komatsu, Yoshihiro; Stice, Steve; Schwabe, Robert F; Mistretta, Charlotte M; Mishina, Yuji; Liu, Hong-Xiang

    2016-01-01

    Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC). Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT) to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC.

  6. Contribution of constitutively proliferating precursor cell subtypes to dentate neurogenesis after cortical infarcts

    Directory of Open Access Journals (Sweden)

    Oberland Julia

    2010-11-01

    Full Text Available Abstract Background It is well known that focal ischemia increases neurogenesis in the adult dentate gyrus of the hippocampal formation but the cellular mechanisms underlying this proliferative response are only poorly understood. We here investigated whether precursor cells which constitutively proliferate before the ischemic infarct contribute to post-ischemic neurogenesis. To this purpose, transgenic mice expressing green fluorescent protein (GFP under the control of the nestin promoter received repetitive injections of the proliferation marker bromodeoxyuridine (BrdU prior to induction of cortical infarcts. We then immunocytochemically analyzed the fate of these BrdU-positive precursor cell subtypes from day 4 to day 28 after the lesion. Results Quantification of BrdU-expressing precursor cell populations revealed no alteration in number of radial glia-like type 1 cells but a sequential increase of later precursor cell subtypes in lesioned animals (type 2a cells at day 7, type 3 cells/immature neurons at day 14. These alterations result in an enhanced survival of mature neurons 4 weeks postinfarct. Conclusions Focal cortical infarcts recruit dentate precursor cells generated already before the infarct and significantly contribute to an enhanced neurogenesis. Our findings thereby increase our understanding of the complex cellular mechanisms of postlesional neurogenesis.

  7. ABCF2, an Nrf2 target gene, contributes to cisplatin resistance in ovarian cancer cells.

    Science.gov (United States)

    Bao, Lingjie; Wu, Jianfa; Dodson, Matthew; Rojo de la Vega, Elisa Montserrat; Ning, Yan; Zhang, Zhenbo; Yao, Ming; Zhang, Donna D; Xu, Congjian; Yi, Xiaofang

    2017-06-01

    Previously, we have demonstrated that NRF2 plays a key role in mediating cisplatin resistance in ovarian cancer. To further explore the mechanism underlying NRF2-dependent cisplatin resistance, we stably overexpressed or knocked down NRF2 in parental and cisplatin-resistant human ovarian cancer cells, respectively. These two pairs of stable cell lines were then subjected to microarray analysis, where we identified 18 putative NRF2 target genes. Among these genes, ABCF2, a cytosolic member of the ABC superfamily of transporters, has previously been reported to contribute to chemoresistance in clear cell ovarian cancer. A detailed analysis on ABCF2 revealed a functional antioxidant response element (ARE) in its promoter region, establishing ABCF2 as an NRF2 target gene. Next, we investigated the contribution of ABCF2 in NRF2-mediated cisplatin resistance using our stable ovarian cancer cell lines. The NRF2-overexpressing cell line, containing high levels of ABCF2, was more resistant to cisplatin-induced apoptosis compared to its control cell line; whereas the NRF2 knockdown cell line with low levels of ABCF2, was more sensitive to cisplatin treatment than its control cell line. Furthermore, transient overexpression of ABCF2 in the parental cells decreased apoptosis and increased cell viability following cisplatin treatment. Conversely, knockdown of ABCF2 using specific siRNA notably increased apoptosis and decreased cell viability in cisplatin-resistant cells treated with cisplatin. This data indicate that the novel NRF2 target gene, ABCF2, plays a critical role in cisplatin resistance in ovarian cancer, and that targeting ABCF2 may be a new strategy to improve chemotherapeutic efficiency. © 2017 Wiley Periodicals, Inc.

  8. Autophagy contributes to apoptosis in A20 and EL4 lymphoma cells treated with fluvastatin.

    Science.gov (United States)

    Qi, Xu-Feng; Kim, Dong-Heui; Lee, Kyu-Jae; Kim, Cheol-Su; Song, Soon-Bong; Cai, Dong-Qing; Kim, Soo-Ki

    2013-11-08

    Convincing evidence indicates that statins stimulate apoptotic cell death in several types of proliferating tumor cells in a cholesterol-lowering-independent manner. However, the relationship between apoptosis and autophagy in lymphoma cells exposed to statins remains unclear. The objective of this study was to elucidate the potential involvement of autophagy in fluvastatin-induced cell death of lymphoma cells. We found that fluvastatin treatment enhanced the activation of pro-apoptotic members such as caspase-3 and Bax, but suppressed the activation of anti-apoptotic molecule Bcl-2 in lymphoma cells including A20 and EL4 cells. The process was accompanied by increases in numbers of annexin V alone or annexin V/PI double positive cells. Furthermore, both autophagosomes and increases in levels of LC3-II were also observed in fluvastatin-treated lymphoma cells. However, apoptosis in fluvastatin-treated lymphoma cells could be blocked by the addition of 3-methyladenine (3-MA), the specific inhibitor of autophagy. Fluvastatin-induced activation of caspase-3, DNA fragmentation, and activation of LC3-II were blocked by metabolic products of the HMG-CoA reductase reaction, such as mevalonate, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). These results suggest that autophagy contributes to fluvastatin-induced apoptosis in lymphoma cells, and that these regulating processes require inhibition of metabolic products of the HMG-CoA reductase reaction including mevalonate, FPP and GGPP.

  9. 5-Lipoxygenase contributes to PPARγ activation in macrophages in response to apoptotic cells.

    Science.gov (United States)

    von Knethen, Andreas; Sha, Lisa K; Kuchler, Laura; Heeg, Annika K; Fuhrmann, Dominik; Heide, Heinrich; Wittig, Ilka; Maier, Thorsten J; Steinhilber, Dieter; Brüne, Bernhard

    2013-12-01

    Macrophage polarization to an anti-inflammatory phenotype upon contact with apoptotic cells is a contributing hallmark to immune suppression during the late phase of sepsis. Although the peroxisome proliferator-activated receptor γ (PPARγ) supports this macrophage phenotype switch, it remains elusive how apoptotic cells activate PPARγ. Assuming that a molecule causing PPARγ activation in macrophages originates in the cell membrane of apoptotic cells we analyzed lipid rafts from apoptotic, necrotic, and living human Jurkat T cells which showed the presence of 5-lipoxygenase (5-LO) in lipid rafts of apoptotic cells only. Incubating macrophages with lipid rafts of apoptotic, but not necrotic or living cells, induced PPAR responsive element (PPRE)-driven mRuby reporter gene expression in RAW 264.7 macrophages stably transduced with a 4xPPRE containing vector. Experiments with lipid rafts of apoptotic murine EL4 T cells revealed similar results. To verify the involvement of 5-LO in activating PPARγ in macrophages, Jurkat T cells were incubated with the 5-LO inhibitor MK-866 prior to induction of apoptosis, which failed to induce mRuby expression. Similar results were obtained with lipid rafts of apoptotic EL4 T cells preexposed to the 5-LO inhibitors zileuton and CJ-13610. Interestingly, Jurkat T cells overexpressing 5-LO failed to activate PPARγ in macrophages, while their 5-LO overexpressing apoptotic counterparts did. Our results suggest that during apoptosis 5-LO gets associated with lipid rafts and synthesizes ligands that in turn stimulate PPARγ in macrophages. © 2013.

  10. [The heterogeneity of blood flow on magnetic resonance imaging: a biomarker for grading cerebral astrocytomas].

    Science.gov (United States)

    Revert Ventura, A J; Sanz Requena, R; Martí-Bonmatí, L; Pallardó, Y; Jornet, J; Gaspar, C

    2014-01-01

    To study whether the histograms of quantitative parameters of perfusion in MRI obtained from tumor volume and peritumor volume make it possible to grade astrocytomas in vivo. We included 61 patients with histological diagnoses of grade II, III, or IV astrocytomas who underwent T2*-weighted perfusion MRI after intravenous contrast agent injection. We manually selected the tumor volume and peritumor volume and quantified the following perfusion parameters on a voxel-by-voxel basis: blood volume (BV), blood flow (BF), mean transit time (TTM), transfer constant (K(trans)), washout coefficient, interstitial volume, and vascular volume. For each volume, we obtained the corresponding histogram with its mean, standard deviation, and kurtosis (using the standard deviation and kurtosis as measures of heterogeneity) and we compared the differences in each parameter between different grades of tumor. We also calculated the mean and standard deviation of the highest 10% of values. Finally, we performed a multiparametric discriminant analysis to improve the classification. For tumor volume, we found statistically significant differences among the three grades of tumor for the means and standard deviations of BV, BF, and K(trans), both for the entire distribution and for the highest 10% of values. For the peritumor volume, we found no significant differences for any parameters. The discriminant analysis improved the classification slightly. The quantification of the volume parameters of the entire region of the tumor with BV, BF, and K(trans) is useful for grading astrocytomas. The heterogeneity represented by the standard deviation of BF is the most reliable diagnostic parameter for distinguishing between low grade and high grade lesions. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  11. Overexpression of c-erbB2 is a negative prognostic factor in anaplastic astrocytomas

    Directory of Open Access Journals (Sweden)

    Gulati Michel

    2010-03-01

    Full Text Available Abstract The epidermal growth factor receptor (EGFR family, consisting of four tyrosine kinase receptors, c-erbB1-4, seems to be influential in gliomagenesis. The aim of this study was to investigate EGFR gene amplification and expression of c-erbB1-4 receptor proteins in human anaplastic astrocytomas. Formalin-fixed and paraffin-embedded sections from 31 cases were investigated by standard immunohistochemical procedures for expression of c-erbB1-4 receptor proteins using commercial antibodies. EGFR gene amplification was studied by fluorescence in situ hybridization using paraffin-embedded tissues. Two monoclonal antibodies, NCL-EGFR-384 and NCL-EGFR, were used for EGFR detection and they displayed positive immunoreactivity in 97% and 71%, respectively. For c-erbB2 detection three monoclonal antibodies, CB11, 3B5, and 5A2, were applied and they displayed positive immunoreactivity in 45%, 100%, and 52%, respectively. Positive immunostaining for c-erbB3 and c-erbB4 was encountered in 97% and 74%, respectively. The EGFR gene was amplified in 9 out of 31 tumors (29%. After adjusting for age, Karnofsky performance status, and extent of surgical resection, Cox multiple regression analysis with overall survival as the dependent variable revealed that c-erbB2 overexpression detected by the monoclonal antibody clone CB11 was a statistically significant poor prognostic factor (P = 0.004. This study shows the convenience and feasibility of immunohistochemistry when determining the expression of receptor proteins in tissue sections of human astrocytomas. The synchronous overexpression of c-erbB1-4 proteins in anaplastic astrocytomas supports their role in the pathogenesis of these tumors. Further, c-erbB2 overexpression seems to predict aggressive behaviour.

  12. Outcome and patterns of failure following limited-volume irradiation for malignant astrocytomas

    Energy Technology Data Exchange (ETDEWEB)

    Garden, A.S.; Maor, M.H.; Yung, W.K.A.; Bruner, J.M.; Woo, Shiao Y.; Moser, R.P.; Lee, Ya-Yen (Anderson (M.D.) Hospital and Tumor Inst., Houston, TX (USA))

    1991-02-01

    Between January 1982 and June 1986, 60 consecutive patients with high-grade astrocytomas (39 glioblastoma multiforme (GBM), 21 anaplastic astrocytoma (AA)) were treated with radiation therapy after biopsy (13 patients) or resection (47 patients). 53 patients were treated with limited-volume irradiation, 7 received whole-brain irradiation. The mean tumor dose was 65.4 Gy. In 35 patients, chemotherapy was given as part of their initial treatment. The 1- and 2-year survivals for GBM patients were 40 and 14 percent, respectively. Survival figures for AA patients were 76 and 52 percent at 1 and 2 years, respectively. The progression-free rate at 1 year was 13 percent in GBM and 29 percent in AA patients. 34 of 48 patients who received limited-volume irradiation had evidence of progression on postirradiation CT scans. 6 patients (3 GBM, 3 AA) had evidence of a new intracranial metastatic site on CT scan. In 3 patients the metastasis was within the previously irradiated volume, and in 3 other patients, it was outside this volume. All 6 had evidence of progression of their primary tumor at the original location on CT scan prior to the discovery of the metastatic site. 21 patients (15 GBM, 6 AA) had at least 1 postirradiation reoperation for a recurrent mass. 19 patients had recurrent tumors in the primary site, and 2 patients had necrosis but no tumor. Patients who received limited-volume irradiation for high-grade astrocytomas achieved the same survival results as patients treated previously with whole brain irradiation. New intra-cranial metastases did not influence the outcome, since these were always antedated by tumor progression at the primary site. (author). 16 refs.; 8 figs.; 2 tabs.

  13. Differential prefrontal-like deficit in children after cerebellar astrocytoma and medulloblastoma tumor

    Directory of Open Access Journals (Sweden)

    Quintero Eliana A

    2008-04-01

    Full Text Available Abstract Background This study was realized thanks to the collaboration of children and adolescents who had been resected from cerebellar tumors. The medulloblastoma group (CE+, n = 7 in addition to surgery received radiation and chemotherapy. The astrocytoma group (CE, n = 13 did not receive additional treatments. Each clinical group was compared in their executive functioning with a paired control group (n = 12. The performances of the clinical groups with respect to controls were compared considering the tumor's localization (vermis or hemisphere and the affectation (or not of the dentate nucleus. Executive variables were correlated with the age at surgery, the time between surgery-evaluation and the resected volume. Methods The executive functioning was assessed by means of WCST, Complex Rey Figure, Controlled Oral Word Association Test (letter and animal categories, Digits span (WISC-R verbal scale and Stroop test. These tests are very sensitive to dorsolateral PFC and/or to medial frontal cortex functions. The scores for the non-verbal Raven IQ were also obtained. Direct scores were corrected by age and transformed in standard scores using normative data. The neuropsychological evaluation was made at 3.25 (SD = 2.74 years from surgery in CE group and at 6.47 (SD = 2.77 in CE+ group. Results The Medulloblastoma group showed severe executive deficit (≤ 1.5 SD below normal mean in all assessed tests, the most severe occurring in vermal patients. The Astrocytoma group also showed executive deficits in digits span, semantic fluency (animal category and moderate to slight deficit in Stroop (word and colour tests. In the astrocytoma group, the tumor's localization and dentate affectation showed different profile and level of impairment: moderate to slight for vermal and hemispheric patients respectively. The resected volume, age at surgery and the time between surgery-evaluation correlated with some neuropsychological executive variables

  14. FGFR1 tyrosine kinase domain duplication in pilocytic astrocytoma with anaplasia.

    Science.gov (United States)

    Ballester, Leomar Y; Penas-Prado, Marta; Leeds, Norman E; Huse, Jason T; Fuller, Gregory N

    2018-04-01

    We report the case of a 27-yr-old male with visual field loss who had a 4.9-cm complex cystic mass in the right occipital lobe. Histologic examination showed pilocytic astrocytoma (PA) with anaplasia, and molecular characterization revealed FGFR1 duplication with additional variants of unknown significance in several genes ( ARID1A, ARID1B, CHEK2, EPHA5, and MLL2 ). This is one of only a very few reported cases of anaplastic PA with characterization of molecular alterations. © 2018 Ballester et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Classification of astrocyto-mas and meningiomas using statistical discriminant analysis on MRI data

    International Nuclear Information System (INIS)

    Siromoney, Anna; Prasad, G.N.S.; Raghuram, Lakshminarayan; Korah, Ipeson; Siromoney, Arul; Chandrasekaran, R.

    2001-01-01

    The objective of this study was to investigate the usefulness of Multivariate Discriminant Analysis for classifying two groups of primary brain tumours, astrocytomas and meningiomas, from Magnetic Resonance Images. Discriminant analysis is a multivariate technique concerned with separating distinct sets of objects and with allocating new objects to previously defined groups. Allocation or classification rules are usually developed from learning examples in a supervised learning environment. Data from signal intensity measurements in the multiple scan performed on each patient in routine clinical scanning was analysed using Fisher's Classification, which is one method of discriminant analysis

  16. Memory-guided sensory comparisons in the prefrontal cortex: contribution of putative pyramidal cells and interneurons.

    Science.gov (United States)

    Hussar, Cory R; Pasternak, Tatiana

    2012-02-22

    Comparing two stimuli that occur at different times demands the coordination of bottom-up and top-down processes. It has been hypothesized that the dorsolateral prefrontal (PFC) cortex, the likely source of top-down cortical influences, plays a key role in such tasks, contributing to both maintenance and sensory comparisons. We examined this hypothesis by recording from the PFC of monkeys comparing directions of two moving stimuli, S1 and S2, separated by a memory delay. We determined the contribution of the two principal cell types to these processes by classifying neurons into broad-spiking (BS) putative pyramidal cells and narrow-spiking (NS) putative local interneurons. During the delay, BS cells were more likely to exhibit anticipatory modulation and represent the remembered direction. While this representation was transient, appearing at different times in different neurons, it weakened when direction was not task relevant, suggesting its utility. During S2, both putative cell types showed comparison-related activity modulations. These modulations were of two types, each carried by different neurons, which either preferred trials with stimuli moving in the same direction or trials with stimuli of different directions. These comparison effects were strongly correlated with choice, suggesting their role in circuitry underlying decision making. These results provide the first demonstration of distinct contributions made by principal cell types to memory-guided perceptual decisions. During sensory stimulation both cell types represent behaviorally relevant stimulus features contributing to comparison and decision-related activity. However in the absence of sensory stimulation, putative pyramidal cells dominated, carrying information about the elapsed time and the preceding direction.

  17. Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture

    OpenAIRE

    Kim, Euiseok J.; Battiste, James; Nakagawa, Yasushi; Johnson, Jane E.

    2008-01-01

    Ascl1 (previously Mash1) is a bHLH transcription factor essential for neuronal differentiation and specification in the nervous system. Although it has been studied for its role in several neural lineages, the full complement of lineages arising from Ascl1 progenitor cells remains unknown. Using an inducible Cre-flox genetic fate mapping strategy, Ascl1 lineages were determined throughout the brain. Ascl1 is present in proliferating progenitor cells but these cells are actively differentiatin...

  18. Goblet cells contribute to ocular surface immune tolerance—implications for dry eye disease

    NARCIS (Netherlands)

    Barbosa, Flavia L.; Xiao, Yangyan; Bian, Fang; Coursey, Terry G.; Ko, Byung Yi; Clevers, Hans; de Paiva, Cintia S.; Pflugfelder, Stephen C.

    2017-01-01

    Conjunctival goblet cell (GC) loss in dry eye is associated with ocular surface inflammation. This study investigated if conjunctival GCs contribute to ocular surface immune tolerance. Antigens applied to the ocular surface, imaged by confocal microscopy, passed into the conjunctival stroma through

  19. Goblet Cells Contribute to Ocular Surface Immune Tolerance-Implications for Dry Eye Disease

    NARCIS (Netherlands)

    Barbosa, Flavia L; Xiao, Yangyan; Bian, Fang; Coursey, Terry G; Ko, Byung Yi; Clevers, Hans; de Paiva, Cintia S; Pflugfelder, Stephen C

    2017-01-01

    Conjunctival goblet cell (GC) loss in dry eye is associated with ocular surface inflammation. This study investigated if conjunctival GCs contribute to ocular surface immune tolerance. Antigens applied to the ocular surface, imaged by confocal microscopy, passed into the conjunctival stroma through

  20. Modulation of TRAIL resistance in colon carcinoma cells : Different contributions of DR4 and DR5

    NARCIS (Netherlands)

    van Geelen, Caroline M. M.; Pennarun, Bodvael; Le, Phuong T. K.; de Vries, Elisabeth G. E.; de Jong, Steven

    2011-01-01

    Background: rhTRAIL is a therapeutic agent, derived from the TRAIL cytokine, which induces apoptosis in cancer cells by activating the membrane death receptors 4 and 5 (DR4 and DR5). Here, we investigated each receptor's contribution to rhTRAIL sensitivity and rhTRAIL resistance. We assessed whether

  1. Contribution of T cell-mediated immunity to the resistance to staphlococcal infection

    International Nuclear Information System (INIS)

    Tsuda, S.; Sasai, Y.; Minami, K.; Nomoto, K.

    1978-01-01

    Abscess formation in nude mice after subcutaneous inoculation of Staphylococcus aureus (S. aureus) was more extensive and prolonged as compared with that in phenotypically normal littermates. Abscess formation in nude mice was augmented markedly by whole-body irradiation. Not only T cell-mediated immunity but also radiosensitive, nonimmune phagocytosis appear to contribute to the resistance against staphylococcal infection

  2. Anode Supported Solid Oxide Fuel Cells - Deconvolution of Degradation into Cathode and Anode Contributions

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus

    2007-01-01

    The degradation of anode supported cells was studied over 1500 h as function of cell polarization either in air or oxygen on the cathode. Based on impedance analysis, contributions of anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rates...... of the cathode were strongly dependent on the pO(2); they were significantly smaller when testing in oxygen compared to air. Microstructural analysis of the cathode/electrolyte interface of a not-tested reference cell carried out after removal of the cathode showed sharp craters on the electrolyte surface where...

  3. Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium.

    Science.gov (United States)

    Losick, Vicki P; Fox, Donald T; Spradling, Allan C

    2013-11-18

    Reestablishing epithelial integrity and biosynthetic capacity is critically important following tissue damage. The adult Drosophila abdominal epithelium provides an attractive new system to address how postmitotic diploid cells contribute to repair. Puncture wounds to the adult Drosophila epidermis close initially by forming a melanized scab. We found that epithelial cells near the wound site fuse to form a giant syncytium, which sends lamellae under the scab to re-epithelialize the damaged site. Other large cells arise more peripherally by initiating endocycles and becoming polyploid, or by cell fusion. Rac GTPase activity is needed for syncytium formation, while the Hippo signaling effector Yorkie modulates both polyploidization and cell fusion. Large cell formation is functionally important because when both polyploidization and fusion are blocked, wounds do not re-epithelialize. Our observations indicate that cell mass lost upon wounding can be replaced by polyploidization instead of mitotic proliferation. We propose that large cells generated by polyploidization or cell fusion are essential because they are better able than diploid cells to mechanically stabilize wounds, especially those containing permanent acellular structures, such as scar tissue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Elevated β-catenin activity contributes to carboplatin resistance in A2780cp ovarian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Barghout, Samir H. [Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB (Canada); Zepeda, Nubia; Xu, Zhihua [Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB (Canada); Steed, Helen [Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB (Canada); Lee, Cheng-Han [Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB (Canada); Fu, YangXin, E-mail: yangxin@ualberta.ca [Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB (Canada); Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB (Canada)

    2015-12-04

    Ovarian cancer is the fifth leading cause of cancer-related mortalities in women. Epithelial ovarian cancer (EOC) represents approximately 90% of all ovarian malignancies. Most EOC patients are diagnosed at advanced stages and current chemotherapy regimens are ineffective against advanced EOC due to the development of chemoresistance. It is important to better understand the molecular mechanisms underlying acquired resistance to effectively manage this disease. In this study, we examined the expression of the Wnt/β-catenin signaling components in the paired cisplatin-sensitive (A2780s) and cisplatin-resistant (A2780cp) EOC cell lines. Our results showed that several negative regulators of Wnt signaling are downregulated, whereas a few Wnt ligands and known Wnt/β-catenin target genes are upregulated in A2780cp cells compared to A2780s cells, suggesting that Wnt/β-catenin signaling is more active in A2780cp cells. Further analysis revealed nuclear localization of β-catenin and higher β-catenin transcriptional activity in A2780cp cells compared to A2780s cells. Finally, we demonstrated that chemical inhibition of β-catenin transcriptional activity by its inhibitor CCT036477 sensitized A2780cp cells to carboplatin, supporting a role for β-catenin in carboplatin resistance in A2780cp cells. In conclusion, our data suggest that increased Wnt/β-catenin signaling activity contributes to carboplatin resistance in A2780cp cells. - Highlights: • Wnt ligands and target genes are upregulated in cisplatin resistant A2780cp cells. • Negative regulators of Wnt signaling are down-regulated in A2780cp cells. • β-catenin transcriptional activity is higher in A2780cp cells compared to A2780s cells. • Inhibition of β-catenin activity increases carboplatin cytotoxicity in A2780cp cells.

  5. Elevated β-catenin activity contributes to carboplatin resistance in A2780cp ovarian cancer cells

    International Nuclear Information System (INIS)

    Barghout, Samir H.; Zepeda, Nubia; Xu, Zhihua; Steed, Helen; Lee, Cheng-Han; Fu, YangXin

    2015-01-01

    Ovarian cancer is the fifth leading cause of cancer-related mortalities in women. Epithelial ovarian cancer (EOC) represents approximately 90% of all ovarian malignancies. Most EOC patients are diagnosed at advanced stages and current chemotherapy regimens are ineffective against advanced EOC due to the development of chemoresistance. It is important to better understand the molecular mechanisms underlying acquired resistance to effectively manage this disease. In this study, we examined the expression of the Wnt/β-catenin signaling components in the paired cisplatin-sensitive (A2780s) and cisplatin-resistant (A2780cp) EOC cell lines. Our results showed that several negative regulators of Wnt signaling are downregulated, whereas a few Wnt ligands and known Wnt/β-catenin target genes are upregulated in A2780cp cells compared to A2780s cells, suggesting that Wnt/β-catenin signaling is more active in A2780cp cells. Further analysis revealed nuclear localization of β-catenin and higher β-catenin transcriptional activity in A2780cp cells compared to A2780s cells. Finally, we demonstrated that chemical inhibition of β-catenin transcriptional activity by its inhibitor CCT036477 sensitized A2780cp cells to carboplatin, supporting a role for β-catenin in carboplatin resistance in A2780cp cells. In conclusion, our data suggest that increased Wnt/β-catenin signaling activity contributes to carboplatin resistance in A2780cp cells. - Highlights: • Wnt ligands and target genes are upregulated in cisplatin resistant A2780cp cells. • Negative regulators of Wnt signaling are down-regulated in A2780cp cells. • β-catenin transcriptional activity is higher in A2780cp cells compared to A2780s cells. • Inhibition of β-catenin activity increases carboplatin cytotoxicity in A2780cp cells.

  6. Cisplatin-induced mesenchymal stromal cells-mediated mechanism contributing to decreased antitumor effect in breast cancer cells.

    Science.gov (United States)

    Skolekova, Svetlana; Matuskova, Miroslava; Bohac, Martin; Toro, Lenka; Durinikova, Erika; Tyciakova, Silvia; Demkova, Lucia; Gursky, Jan; Kucerova, Lucia

    2016-01-12

    Cells of the tumor microenvironment are recognized as important determinants of the tumor biology. The adjacent non-malignant cells can regulate drug responses of the cancer cells by secreted paracrine factors and direct interactions with tumor cells. Human mesenchymal stromal cells (MSC) actively contribute to tumor microenvironment. Here we focused on their response to chemotherapy as during the treatment these cells become affected. We have shown that the secretory phenotype and behavior of mesenchymal stromal cells influenced by cisplatin differs from the naïve MSC. MSC were more resistant to the concentrations of cisplatin, which was cytotoxic for tumor cells. They did not undergo apoptosis, but a part of MSC population underwent senescence. However, MSC pretreatment with cisplatin led to changes in phosphorylation profiles of many kinases and also increased secretion of IL-6 and IL-8 cytokines. These changes in cytokine and phosphorylation profile of MSC led to increased chemoresistance and stemness of breast cancer cells. Taken together here we suggest that the exposure of the chemoresistant cells in the tumor microenvironment leads to substantial alterations and might lead to promotion of acquired microenvironment-mediated chemoresistance and stemness.

  7. Hematopoietic stem cell mobilization therapy accelerates recovery of renal function independent of stem cell contribution

    NARCIS (Netherlands)

    Stokman, Geurt; Leemans, Jaklien C.; Claessen, Nike; Weening, Jan J.; Florquin, Sandrine

    2005-01-01

    Acute renal failure and tubular cell loss as a result of ischemia constitute major challenges in renal pathophysiology. Increasing evidence suggests important roles for bone marrow stem cells in the regeneration of renal tissue after injury. This study investigated whether the enhanced availability

  8. Lymphotoxin organizes contributions to host defense and metabolic illness from innate lymphoid cells.

    Science.gov (United States)

    Upadhyay, Vaibhav; Fu, Yang-Xin

    2014-04-01

    The lymphotoxin (LT)-pathway is a unique constituent branch of the Tumor Necrosis Superfamily (TNFSF). Use of LT is a critical mechanism by which fetal innate lymphoid cells regulate lymphoid organogenesis. Within recent years, adult innate lymphoid cells have been discovered to utilize this same pathway to regulate IL-22 and IL-23 production for host defense. Notably, genetic studies have linked polymorphisms in the genes encoding LTα to several phenotypes contributing to metabolic syndrome. The role of the LT-pathway may lay the foundation for a bridge between host immune response, microbiota, and metabolic syndrome. The contribution of the LT-pathway to innate lymphoid cell function and metabolic syndrome will be visited in this review. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. [Investigation of neural stem cell-derived donor contribution in the inner ear following blastocyst injection].

    Science.gov (United States)

    Volkenstein, S; Brors, D; Hansen, S; Mlynski, R; Dinger, T C; Müller, A M; Dazert, S

    2008-03-01

    Utilising the enormous proliferation and multi-lineage differentiation potentials of somatic stem cells represents a possible therapeutical strategy for diseases of non-regenerative tissues like the inner ear. In the current study, the possibility of murine neural stem cells to contribute to the developing inner ear following blastocyst injection was investigated. Fetal brain-derived neural stem cells from the embryonic day 14 cortex of male mice were isolated and expanded for four weeks in neurobasal media supplemented with bFGF and EGF. Neural stem cells of male animals were harvested, injected into blastocysts and the blastocysts were transferred into pseudo-pregnant foster animals. Each blastocyst was injected with 5-15 microspheres growing from single cell suspension from neurospheres dissociated the day before. The resulting mice were investigated six months POST PARTUM for the presence of donor cells. Brainstem evoked response audiometry (BERA) was performed in six animals. To visualize donor cells Lac-Z staining was performed on sliced cochleas of two animals. In addition, the cochleas of four female animals were isolated and genomic DNA of the entire cochlea was analyzed for donor contribution by Y-chromosome-specific PCR. All animals had normal thresholds in brainstem evoked response audiometry. The male-specific PCR product indicating the presence of male donor cells were detected in the cochleas of three of the four female animals investigated. In two animals, male donor cells were detected unilateral, in one animal bilateral. The results suggest that descendants of neural stem cells are detectable in the inner ear after injection into blastocysts and possess the ability to integrate into the developing inner ear without obvious loss in hearing function.

  10. Pericytes and endothelial precursor cells: cellular interactions and contributions to malignancy.

    Science.gov (United States)

    Bagley, Rebecca G; Weber, William; Rouleau, Cecile; Teicher, Beverly A

    2005-11-01

    Tumor vasculature is irregular, abnormal, and essential for tumor growth. Pericytes and endothelial precursor cells (EPC) contribute to the formation of blood vessels under angiogenic conditions. As primary cells in culture, pericytes and EPC share many properties such as tube/network formation and response to kinase inhibitors selective for angiogenic pathways. Expression of cell surface proteins including platelet-derived growth factor receptor, vascular cell adhesion molecule, intercellular adhesion molecule, CD105, desmin, and neural growth proteoglycan 2 was similar between pericytes and EPC, whereas expression of P1H12 and lymphocyte function-associated antigen-1 clearly differentiates the cell types. Further distinction was observed in the molecular profiles for expression of angiogenic genes. Pericytes or EPC enhanced the invasion of MDA-MB-231 breast cancer cells in a coculture assay system. The s.c. coinjection of live pericytes or EPC along with MDA-MB-231 cells resulted in an increased rate of tumor growth compared with coinjection of irradiated pericytes or EPC. Microvessel density analysis indicated there was no difference in MDA-MB-231 tumors with or without EPC or pericytes. However, immunohistochemical staining of vasculature suggested that EPC and pericytes may stabilize or normalize vasculature rather than initiate vasculogenesis. In addition, tumors arising from the coinjection of EPC and cancer cells were more likely to develop lymphatic vessels. These results support the notion that pericytes and EPC contribute to malignancy and that these cell types can be useful as cell-based models for tumor vascular development and selection of agents that may provide therapeutic benefit.

  11. Integrin and glycocalyx mediated contributions to cell adhesion identified by single cell force spectroscopy

    International Nuclear Information System (INIS)

    Boettiger, D; Wehrle-Haller, B

    2010-01-01

    The measurement of cell adhesion using single cell force spectroscopy methods was compared with earlier methods for measuring cell adhesion. This comparison provided a means and rationale for separating components of the measurement retract curve that were due to interactions between the substrate and the glycocalyx, and interactions that were due to cell surface integrins binding to a substrate-bound ligand. The glycocalyx adhesion was characterized by multiple jumps with dispersed jump sizes that extended from 5 to 30 μm from the origin. The integrin mediated adhesion was represented by the F max (maximum detachment force), was generally within the first 5 μm and commonly detached with a single rupture cascade. The integrin peak (F max ) increases with time and the rate of increase shows large cell to cell variability with a peak ∼ 50 nN s -1 and an average rate of increase of 75 pN s -1 . This is a measure of the rate of increase in the number of adhesive integrin-ligand bonds/cell as a function of contact time.

  12. Doxorubicin-induced mitophagy contributes to drug resistance in cancer stem cells from HCT8 human colorectal cancer cells.

    Science.gov (United States)

    Yan, Chen; Luo, Lan; Guo, Chang-Ying; Goto, Shinji; Urata, Yoshishige; Shao, Jiang-Hua; Li, Tao-Sheng

    2017-03-01

    Cancer stem cells (CSCs) are known to be drug resistant. Mitophagy selectively degrades unnecessary or damaged mitochondria by autophagy during cellular stress. To investigate the potential role of mitophagy in drug resistance in CSCs, we purified CD133 + /CD44 + CSCs from HCT8 human colorectal cancer cells and then exposed to doxorubicin (DXR). Compared with parental cells, CSCs were more resistant to DXR treatment. Although DXR treatment enhanced autophagy levels in both cell types, the inhibition of autophagy by ATG7 silencing significantly increased the toxicity of DXR only in parental cells, not in CSCs. Interestingly, the level of mitochondrial superoxide was detected to be significantly lower in CSCs than in parental cells after DXR treatment. Furthermore, the mitophagy level and expression of BNIP3L, a mitophagy regulator, were significantly higher in CSCs than in parental cells after DXR treatment. Silencing BNIP3L significantly halted mitophagy and enhanced the sensitivity to DXR in CSCs. Our data suggested that mitophagy, but not non-selective autophagy, likely contributes to drug resistance in CSCs isolated from HCT8 cells. Further studies in other cancer cell lines will be needed to confirm our findings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. An acid phosphatase in the plasma membranes of human astrocytoma showing marked specificity toward phosphotyrosine protein.

    Science.gov (United States)

    Leis, J F; Kaplan, N O

    1982-11-01

    The plasma membrane from the human tumor astrocytoma contains an active acid phosphatase activity based on hydrolysis of p-nitrophenyl phosphate. Other acid phosphatase substrates--beta-glycerophosphate, O-phosphorylcholine, and 5'-AMP--are not hydrolyzed significantly. The phosphatase activity is tartrate insensitive and is stimulated by Triton X-100 and EDTA. Of the three known phosphoamino acids, only free O-phosphotyrosine is hydrolyzed by the membrane phosphatase activity. Other acid phosphatases tested from potato, wheat germ, milk, and bovine prostate did not show this degree of specificity. The plasma membrane activity also dephosphorylated phosphotyrosine histone at a much greater rate than did the other acid phosphatases. pH profiles for free O-phosphotyrosine and phosphotyrosine histone showed a shift toward physiological pH, indicating possible physiological significance. Phosphotyrosine histone dephosphorylation activity was nearly 10 times greater than that seen for phosphoserine histone dephosphorylation, and Km values were much lower for phosphotyrosine histone dephosphorylation (0.5 microM vs. 10 microM). Fluoride and zinc significantly inhibited phosphoserine histone dephosphorylation. Vanadate, on the other hand, was a potent inhibitor of phosphotyrosine histone dephosphorylation (50% inhibition at 0.5 microM) but not of phosphoserine histone. ATP stimulated phosphotyrosine histone dephosphorylation (160-250%) but inhibited phosphoserine histone dephosphorylation (95%). These results suggest the existence of a highly specific phosphotyrosine protein phosphatase activity associated with the plasma membrane of human astrocytoma.

  14. Quality of life and neuropsychological evaluation for patients with malignant astrocytomas: RTOG 91-14

    International Nuclear Information System (INIS)

    Choucair, Ali K.; Scott, Charles; Urtasun, Raul; Nelson, Diana; Mousas, Benjamin; Curran, Walter

    1997-01-01

    Abstract: With increasingly aggressive neurosurgical and radiation therapy modalities (gamma knife, external beam stereotactic radiation and interstitial brachytherapy with or without hyperthermia) offered to patients with malignant astrocytomas (MA), increasing national demand for medical outcome studies and rising health care costs amidst public, business, and governmental debate to cut spending, we as physicians are obligated to continue our research to find effective treatments for malignant astrocytoma (MA) and a cost-effective means to study their impact upon the patient's quality of life (QOL). Purpose: We report data that was collected within the Radiation Therapy Oncology Group (RTOG) on 126 patients with MA who were enrolled in RTOG 91-14. This study was undertaken to prospectively test the feasibility of performing quality of life (QOL) and neuropsychological evaluation (NPE) and collecting this data within the RTOG. Results: The NPE and QOL parameters that were used in this study are cost effective. They are not only much cheaper than formal cognitive and memory testing, but also provide additional information regarding the patients' day to day functional abilities that are not provided by the current routinely used means, such as KPS. The Mini-Mental Status Exam (MMSE) provides greater sensitivity to patients' differences in neurological status and may be preferable to NFS as an eligibility criteria

  15. Psoriatic T cells reduce epidermal turnover time and affect cell proliferation contributed from differential gene expression.

    Science.gov (United States)

    Li, Junqin; Li, Xinhua; Hou, Ruixia; Liu, Ruifeng; Zhao, Xincheng; Dong, Feng; Wang, Chunfang; Yin, Guohua; Zhang, Kaiming

    2015-09-01

    Psoriasis is mediated primarily by T cells, which reduce epidermal turnover time and affect keratinocyte proliferation. We aimed to identify differentially expressed genes (DEG) in T cells from normal, five pairs of monozygotic twins concordant or discordant for psoriasis, to determine whether these DEG may account for the influence to epidermal turnover time and keratinocyte proliferation. The impact of T cells on keratinocyte proliferation and epidermal turnover time were investigated separately by immunohistochemistry and cultured with (3) H-TdR. mRNA expression patterns were investigated by RNA sequencing and verified by real-time reverse transcription polymerase chain reaction. After co-culture with psoriatic T cells, the expression of Ki-67, c-Myc and p53 increased, while expression of Bcl-2 and epidermal turnover time decreased. There were 14 DEG which were found to participate in the regulation of cell proliferation or differentiation. Psoriatic T cells exhibited the ability to decrease epidermal turnover time and affect keratinocyte proliferation because of the differential expression of PPIL1, HSPH1, SENP3, NUP54, FABP5, PLEKHG3, SLC9A9 and CHCHD4. © 2015 Japanese Dermatological Association.

  16. Complex T Cell Interactions Contribute to Helicobacter pylori Gastritis in Mice

    Science.gov (United States)

    Gray, Brian M.; Fontaine, Clinton A.; Poe, Sara A.

    2013-01-01

    Disease due to the gastric pathogen Helicobacter pylori varies in severity from asymptomatic to peptic ulcer disease and cancer. Accumulating evidence suggests that one source of this variation is an abnormal host response. The goal of this study was to use a mouse model of H. pylori gastritis to investigate the roles of regulatory T cells (Treg) as well as proinflammatory T cells (Th1 and Th17) in gastritis, gastric T cell engraftment, and gastric cytokine production. Our results support published data indicating that severe gastritis in T cell recipient mice is due to failure of Treg engraftment, that Treg ameliorate gastritis, and that the proinflammatory response is attributable to interactions between several cell subsets and cytokines. We confirmed that gamma interferon (IFN-γ) is essential for induction of gastritis but showed that IFN-γ-producing CD4 T cells are not necessary. Interleukin 17A (IL-17A) also contributed to gastritis, but to a lesser extent than IFN-γ. Tumor necrosis factor alpha (TNF-α) and IL-17F were also elevated in association with disease. These results indicate that while H. pylori-specific CD4+ T cells and IFN-γ are both essential for induction of gastritis due to H. pylori, IFN-γ production by T cells is not essential. It is likely that other proinflammatory cytokines, such as IL-17F and TNF-α, shown to be elevated in this model, also contribute to the induction of disease. We suggest that gastritis due to H. pylori is associated with loss of immunoregulation and alteration of several cytokines and cell subsets and cannot be attributed to a single immune pathway. PMID:23264048

  17. Ezrin dephosphorylation/downregulation contributes to ursolic acid-mediated cell death in human leukemia cells

    International Nuclear Information System (INIS)

    Li, G; Zhou, T; Liu, L; Chen, J; Zhao, Z; Peng, Y; Li, P; Gao, N

    2013-01-01

    Ezrin links the actin filaments with the cell membrane and has a functional role in the apoptotic process. It appears clear that ezrin is directly associated with Fas, leading to activation of caspase cascade and cell death. However, the exact role of ezrin in ursolic acid (UA)-induced apoptosis remains unclear. In this study, we show for the first time that UA induces apoptosis in both transformed and primary leukemia cells through dephosphorylation/downregulation of ezrin, association and polarized colocalization of Fas and ezrin, as well as formation of death-inducing signaling complex. These events are dependent on Rho-ROCK1 signaling pathway. Knockdown of ezrin enhanced cell death mediated by UA, whereas overexpression of ezrin attenuated UA-induced apoptosis. Our in vivo study also showed that UA-mediated inhibition of tumor growth of mouse leukemia xenograft model is in association with the dephosphorylation/downregulation of ezrin. Such findings suggest that the cytoskeletal protein ezrin may represent an attractive target for UA-mediated lethality in human leukemia cells

  18. Stromal cell contributions to the homeostasis and functionality of the immune system.

    Science.gov (United States)

    Mueller, Scott N; Germain, Ronald N

    2009-09-01

    A defining characteristic of the immune system is the constant movement of many of its constituent cells through the secondary lymphoid tissues, mainly the spleen and lymph nodes, where crucial interactions that underlie homeostatic regulation, peripheral tolerance and the effective development of adaptive immune responses take place. What has only recently been recognized is the role that non-haematopoietic stromal elements have in many aspects of immune cell migration, activation and survival. In this Review, we summarize our current understanding of lymphoid compartment stromal cells, examine their possible heterogeneity, discuss how these cells contribute to immune homeostasis and the efficient initiation of adaptive immune responses, and highlight how targeting of these elements by some pathogens can influence the host immune response.

  19. Deformation-driven, lethal damage to cancer cells. Its contribution to metastatic inefficiency.

    Science.gov (United States)

    Weiss, L

    1991-04-01

    Direct and indirect, in vivo and in vitro observations are in accord with the hypothesis that as a consequence of their deformation within capillaries, cancer cells undergo sphere-to-cylinder shape-transformations that create a demand for increased surface area. When this demand cannot be met by apparent increases in surface area accomplished by nonlethal, surface "unfolding," the cell surface membrane is stretched; if expansion results in more than a 4% increase in true surface area, the membrane ruptures, resulting in cancer cell death. It is suggested that this deformation-driven process is an important factor in accounting for the rapid death of circulating cancer cells that have been trapped in the microvasculature. Therefore, this mechanism is thought to make a significant contribution to metastatic inefficiency by acting as a potent rate-regulator for hematogenous metastasis.

  20. Dipeptidyl peptidase-IV inhibits glioma cell growth independent of its enzymatic activity

    Czech Academy of Sciences Publication Activity Database

    Busek, P.; Stremeňová, J.; Sromová, L.; Hilser, M.; Balaziová, E.; Kosek, D.; Trylcová, J.; Strnad, Hynek; Křepela, E.; Šedo, A.

    2012-01-01

    Roč. 44, č. 5 (2012), s. 738-747 ISSN 1357-2725 Institutional support: RVO:68378050 Keywords : protease * tumour suppression * primary cell cultures * astrocytoma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.152, year: 2012

  1. The contribution of cell-cell signaling and motility to bacterial biofilm formation

    DEFF Research Database (Denmark)

    Shrout, Joshua D; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    Many bacteria grow attached to a surface as biofilms. Several factors dictate biofilm formation, including responses by the colonizing bacteria to their environment. Here we review how bacteria use cell-cell signaling (also called quorum sensing) and motility during biofilm formation. Specifically...... gene expression important to the production of polysaccharides, rhamnolipid, and other virulence factors. Surface motility affects the assembly and architecture of biofilms, and some aspects of motility are also influenced by quorum sensing. While some genes and their function are specific to P....... aeruginosa, many aspects of biofilm development can be used as a model system to understand how bacteria differentially colonize surfaces....

  2. Mast cell repopulation of the peritoneal cavity: contribution of mast cell progenitors versus bone marrow derived committed mast cell precursors

    Directory of Open Access Journals (Sweden)

    Pastor Maria

    2010-06-01

    Full Text Available Abstract Background Mast cells have recently gained new importance as immunoregulatory cells that are involved in numerous pathological processes. One result of these processes is an increase in mast cell numbers at peripheral sites. This study was undertaken to determine the mast cell response in the peritoneal cavity and bone marrow during repopulation of the peritoneal cavity in rats. Results Two mast cell specific antibodies, mAb AA4 and mAb BGD6, were used to distinguish the committed mast cell precursor from more mature mast cells. The peritoneal cavity was depleted of mast cells using distilled water. Twelve hours after distilled water injection, very immature mast cells could be isolated from the blood and by 48 hours were present in the peritoneal cavity. At this same time the percentage of mast cells in mitosis increased fourfold. Mast cell depletion of the peritoneal cavity also reduced the total number of mast cells in the bone marrow, but increased the number of mast cell committed precursors. Conclusions In response to mast cell depletion of the peritoneal cavity, a mast cell progenitor is released into the circulation and participates in repopulation of the peritoneal cavity, while the committed mast cell precursor is retained in the bone marrow.

  3. Postnatal Sonic hedgehog (Shh) responsive cells give rise to oligodendrocyte lineage cells during myelination and in adulthood contribute to remyelination.

    Science.gov (United States)

    Sanchez, Maria A; Armstrong, Regina C

    2018-01-01

    Sonic hedgehog (Shh) regulates a wave of oligodendrocyte production for extensive myelination during postnatal development. During this postnatal period of oligodendrogenesis, we fate-labeled cells exhibiting active Shh signaling to examine their contribution to the regenerative response during remyelination. Bitransgenic mouse lines were generated for induced genetic fate-labeling of cells actively transcribing Shh or Gli1. Gli1 transcription is an effective readout for canonical Shh signaling. Shh CreERT2 mice and Gli1 CreERT2 mice were crossed to either R26 tdTomato mice to label cells with red fluorescence, or, R26 IAP mice to label membranes with alkaline phosphatase. When tamoxifen (TMX) was given on postnatal days 6-9 (P6-9), Shh ligand synthesis was prevalent in neurons of Shh CreERT2 ; R26 tdTomato mice and Shh CreERT2 ;R26 IAP mice. In Gli1 CreERT2 crosses, TMX from P6-9 detected Gli1 transcription in cells that populated the corpus callosum (CC) during postnatal myelination. Delaying TMX to P14-17, after the peak of oligodendrogenesis, significantly reduced labeling of Shh synthesizing neurons and Gli1 expressing cells in the CC. Importantly, Gli1 CreERT2 ;R26 tdTomato mice given TMX from P6-9 showed Gli1 fate-labeled cells in the adult (P56) CC, including cycling progenitor cells identified by EdU incorporation and NG2 immunolabeling. Furthermore, after cuprizone demyelination of the adult CC, Gli1 fate-labeled cells incorporated EdU and were immunolabeled by NG2 early during remyelination while forming myelin-like membranes after longer periods for remyelination to progress. These studies reveal a postnatal cell population with transient Shh signaling that contributes to oligodendrogenesis during CC myelination, and gives rise to cells that continue to proliferate in adulthood and contribute to CC remyelination. Published by Elsevier Inc.

  4. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells

    DEFF Research Database (Denmark)

    Zub, Kamila Anna; Sousa, Mirta Mittelstedt Leal de; Sarno, Antonio

    2015-01-01

    of the AKR1C family involved in prostaglandin synthesis contribute to the resistant phenotype. Finally, selected metabolic and oxidative stress response enzymes were targeted by inhibitors, several of which displayed a selective cytotoxicity against the melphalan-resistant cells and should be further...... and pathways not previously associated with melphalan resistance in multiple myeloma cells, including a metabolic switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto reductase levels...

  5. Cloning of a novel transcription factor-like gene amplified in human glioma including astrocytoma grade I

    NARCIS (Netherlands)

    Fischer, U.; Heckel, D.; Michel, A.; Janka, M.; Hulsebos, T.; Meese, E.

    1997-01-01

    Gene amplification, which is generally considered to occur late in tumor development, is a common feature of high grade glioma. Up until now, there have been no reports on amplification in astrocytoma grade I. In this study, we report cloning and sequencing of a cDNA termed glioma-amplified sequence

  6. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Atsushi [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Kurisaki, Tomohiro [Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Sato, Satoshi B. [Research Center for Low Temperature and Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8501 (Japan); Kobayashi, Toshihide [Lipid Biology Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Kondoh, Gen [Laboratory of Animal Experiments for Regeneration, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Hashimoto, Naohiro, E-mail: nao@nils.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)

    2009-10-15

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, {beta}-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  7. EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells

    Directory of Open Access Journals (Sweden)

    Kim Suk

    2009-12-01

    Full Text Available Abstract Background The uptake of abortion-inducing pathogens by trophoblast giant (TG cells is a key event in infectious abortion. However, little is known about phagocytic functions of TG cells against the pathogens. Here we show that heat shock cognate protein 70 (Hsc70 contributes to bacterial uptake by TG cells and the EEVD motif of Hsc70 plays an important role in this. Methods Brucella abortus and Listeria monocytogenes were used as the bacterial antigen in this study. Recombinant proteins containing tetratricopeptide repeat (TPR domains were constructed and confirmation of the binding capacity to Hsc70 was assessed by ELISA. The recombinant TPR proteins were used for investigation of the effect of TPR proteins on bacterial uptake by TG cells and on pregnancy in mice. Results The monoclonal antibody that inhibits bacterial uptake by TG cells reacted with the EEVD motif of Hsc70. Bacterial TPR proteins bound to the C-terminal of Hsc70 through its EEVD motif and this binding inhibited bacterial uptake by TG cells. Infectious abortion was also prevented by blocking the EEVD motif of Hsc70. Conclusions Our results demonstrate that surface located Hsc70 on TG cells mediates the uptake of pathogenic bacteria and proteins containing the TPR domain inhibit the function of Hsc70 by binding to its EEVD motif. These molecules may be useful in the development of methods for preventing infectious abortion.

  8. HIF1 Contributes to Hypoxia-Induced Pancreatic Cancer Cells Invasion via Promoting QSOX1 Expression

    Directory of Open Access Journals (Sweden)

    Chen-Ye Shi

    2013-08-01

    Full Text Available Background: Quiescin sulfhydryl oxidase 1 (QSOX1, which oxidizes sulfhydryl groups to form disulfide bonds in proteins, is found to be over-expressed in various pancreatic cancer cell lines and patients. QSOX1 promotes invasion of pancreatic cancer cells by activating MMP-2 and MMP-9. However, its regulatory mechanism remains largely undefined. Methods: Real-time PCR and Western blot were employed to detect the expression of QSOX1 in human pancreatic cancer cell lines under hypoxic condition. Luciferase reporter and ChIP assays were used to assess the regulation of QSOX1 by hypoxia-inducible factor 1 (HIF-1. Small interfering RNA (siRNA was applied to knock down endogenous expression of QSOX1. Matrigel-coated invasion chamber essays were conducted to detect the invasion capacity of QSOX1-depleted cells. Results: Both hypoxia and hypoxia mimicking reagent up-regulated the expression of QSOX1 in human pancreatic cancer cell lines. Knockdown of HIF-1α eliminated hypoxia induced QSOX1 expression. HIF-1α was found directly bound to two hypoxia-response elements (HRE of QSOX1 gene, both of which were required for HIF-1 induced QSOX1 expression. Moreover, QSOX1 silencing blocked hypoxia-induced pancreatic cancer cells invasion. Conclusion: QSOX1 is a direct target of HIF-1 and may contribute to hypoxia-induced pancreatic cancer cells invasion.

  9. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    International Nuclear Information System (INIS)

    Mukai, Atsushi; Kurisaki, Tomohiro; Sato, Satoshi B.; Kobayashi, Toshihide; Kondoh, Gen; Hashimoto, Naohiro

    2009-01-01

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, β-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  10. Localized decrease of β-catenin contributes to the differentiation of human embryonic stem cells

    International Nuclear Information System (INIS)

    Lam, Hayley; Patel, Shyam; Wong, Janelle; Chu, Julia; Li, Adrian; Li, Song

    2008-01-01

    Human embryonic stem cells (hESC) are pluripotent, and can be directed to differentiate into different cell types for therapeutic applications. To expand hESCs, it is desirable to maintain hESC growth without differentiation. As hESC colonies grow, differentiated cells are often found at the periphery of the colonies, but the underlying mechanism is not well understood. Here, we utilized micropatterning techniques to pattern circular islands or strips of matrix proteins, and examined the spatial pattern of hESC renewal and differentiation. We found that micropatterned matrix restricted hESC differentiation at colony periphery but allowed hESC growth into multiple layers in the central region, which decreased hESC proliferation and induced hESC differentiation. In undifferentiated hESCs, β-catenin primarily localized at cell-cell junctions but not in the nucleus. The amount of β-catenin in differentiating hESCs at the periphery of colonies or in multiple layers decreased significantly at cell-cell junctions. Consistently, knocking down β-catenin decreased Oct-4 expression in hESCs. These results indicate that localized decrease of β-catenin contributes to the spatial pattern of differentiation in hESC colonies

  11. Calvarial Suture-Derived Stem Cells and Their Contribution to Cranial Bone Repair

    Directory of Open Access Journals (Sweden)

    Daniel H. Doro

    2017-11-01

    Full Text Available In addition to the natural turnover during life, the bones in the skeleton possess the ability to self-repair in response to injury or disease-related bone loss. Based on studies of bone defect models, both processes are largely supported by resident stem cells. In the long bones, the source of skeletal stem cells has been widely investigated over the years, where the major stem cell population is thought to reside in the perivascular niche of the bone marrow. In contrast, we have very limited knowledge about the stem cells contributing to the repair of calvarial bones. In fact, until recently, the presence of specific stem cells in adult craniofacial bones was uncertain. These flat bones are mainly formed via intramembranous rather than endochondral ossification and thus contain minimal bone marrow space. It has been previously proposed that the overlying periosteum and underlying dura mater provide osteoprogenitors for calvarial bone repair. Nonetheless, recent studies have identified a major stem cell population within the suture mesenchyme with multiple differentiation abilities and intrinsic reparative potential. Here we provide an updated review of calvarial stem cells and potential mechanisms of regulation in the context of skull injury repair.

  12. A Unique Model System for Tumor Progression in GBM Comprising Two Developed Human Neuro-Epithelial Cell Lines with Differential Transforming Potential and Coexpressing Neuronal and Glial Markers

    Directory of Open Access Journals (Sweden)

    Anjali Shiras

    2003-11-01

    Full Text Available The molecular mechanisms involved in tumor progression from a low-grade astrocytoma to the most malignant glioblastoma multiforme (GBM have been hampered due to lack of suitable experimental models. We have established a model of tumor progression comprising of two cell lines derived from the same astrocytoma tumor with a set of features corresponding to low-grade glioma (as in HNGC-1 and high-grade GBM (as in HNGC-2. The HNGC-1 cell line is slowgrowing, contact-inhibited, nontumorigenic, and noninvasive, whereas HNGC-2 is a rapidly proliferating, anchorage-independent, highly tumorigenic, and invasive cell line. The proliferation of cell lines is independent of the addition of exogenous growth factors. Interestingly, the HNGC-2 cell line displays a near-haploid karyotype except for a disomy of chromosome 2. The two cell lines express the neuronal precursor and progenitor markers vimentin, nestin, MAP-2, and NFP160, as well as glial differentiation protein S100μ. The HNGC-1 cell line also expresses markers of mature neurons like Tuj1 and GFAP, an astrocytic differentiation marker, hence contributing toward a more morphologically differentiated phenotype with a propensity for neural differentiation in vitro. Additionally, overexpression of epidermal growth factor receptor and c-erbB2, and loss of fibronectin were observed only in the HNGC-2 cell line, implicating the significance of these pathways in tumor progression. This in vitro model system assumes importance in unraveling the cellular and molecular mechanisms in differentiation, transformation, and gliomagenesis.

  13. Investigation of Plant Cell Wall Properties: A Study of Contributions from the Nanoscale to the Macroscale Impacting Cell Wall Recalcitrance

    Science.gov (United States)

    Crowe, Jacob Dillon

    Biochemical conversion of lignocellulosic biomass to fuel ethanol is one of a few challenging, yet opportune technologies that can reduce the consumption of petroleum-derived transportation fuels, while providing parallel reductions in greenhouse gas emissions. Biomass recalcitrance, or resistance to deconstruction, is a major technical challenge that limits effective conversion of biomass to fermentable sugars, often requiring a costly thermochemical pretreatment step to improve biomass deconstruction. Biomass recalcitrance is imparted largely by the secondary cell wall, a complex polymeric matrix of cell wall polysaccharides and aromatic heteropolymers, that provides structural stability to cells and enables plant upright growth. Polymers within the cell wall can vary both compositionally and structurally depending upon plant species and anatomical fraction, and have varied responses to thermochemical pretreatments. Cell wall properties impacting recalcitrance are still not well understood, and as a result, the goal of this dissertation is to investigate structural features of the cell wall contributing to recalcitrance (1) in diverse anatomical fractions of a single species, (2) in response to diverse pretreatments, and (3) resulting from genetic modification. In the first study, feedstock cell wall heterogeneity was investigated in anatomical (stem, leaf sheaths, and leaf blades) and internode fractions of switchgrass at varying tissue maturities. Lignin content was observed as the key contributor to recalcitrance in maturing stem tissues only, with non-cellulosic substituted glucuronoarabinoxylans and pectic polysaccharides contributing to cell wall recalcitrance in leaf sheath and leaf blades. Hydroxycinnamate (i.e., saponifiable p-coumarate and ferulate) content along with xylan and pectin extractability decreased with tissue maturity, suggesting lignification is only one component imparting maturity specific cell wall recalcitrance. In the second study

  14. Lack of prognostic significance of C-erbB-2 expression in low- and high- grade astrocytomas.

    Science.gov (United States)

    Muallaoglu, Saik; Besen, Ali Ayberk; Ata, Alper; Mertsoylu, Huseyin; Arican, Ali; Kayaselcuk, Fazilet; Ozyilkan, Ozgur

    2014-01-01

    Astrocytic tumors, the most common primary glial tumors of the central nervous system, are classified from low to high grade according to the degree of anaplasia and presence of necrosis. Despite advances in therapeutic management of high grade astrocytic tumors, prognosis remains poor. In the present study, the frequency and prognostic significance of c-erb-B2 in astrocytic tumors was investigated. Records of 72 patients with low- and high-grade astrocytic tumors were evaluated. The expression of C-erbB-2 was determined immunohistochemically and intensity was recorded as 0 to 3+. Tumors with weak staining (1+) or no staining (0) were considered Her-2 negative, while tumors with moderate (2+) and strong (3+) staining were considered Her-2 positive. Of the 72 patients, 41 (56.9%) had glioblastoma (GBM), 10 (13.9%) had diffuse astrocytoma, 15 (20.8%) had anaplastic astrocytoma, 6 (8.3%) had pilocytic astrocytoma. C-erbB-2 overexpression was detected in the tumor specimens of 17 patients (23.6%). Six (8.3%) tumors, all GBMs, exhibited strong staining, 2 (2.7%) specimens, both GBMs, exhibited moderate staining, and 9 specimens, 5 of them GBMs (12.5%), exhibited weak staining. No staining was observed in diffuse astrocytoma and pilocytic astrocytoma specimens. Median overall survival of patients with C-erbB-2 negative and C-erbB-2 positive tumors were 30 months (95%CI: 22.5-37.4 months) and 16.9 months (95%CI: 4.3-29.5 months), respectively (p=0.244). Although there was no difference in survival, C-erbB-2 overexpression was observed only in the GBM subtype.

  15. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity.

    Science.gov (United States)

    Feyerabend, Thorsten B; Weiser, Anne; Tietz, Annette; Stassen, Michael; Harris, Nicola; Kopf, Manfred; Radermacher, Peter; Möller, Peter; Benoist, Christophe; Mathis, Diane; Fehling, Hans Jörg; Rodewald, Hans-Reimer

    2011-11-23

    Immunological functions of mast cells remain poorly understood. Studies in Kit mutant mice suggest key roles for mast cells in certain antibody- and T cell-mediated autoimmune diseases. However, Kit mutations affect multiple cell types of both immune and nonimmune origin. Here, we show that targeted insertion of Cre-recombinase into the mast cell carboxypeptidase A3 locus deleted mast cells in connective and mucosal tissues by a genotoxic Trp53-dependent mechanism. Cre-mediated mast cell eradication (Cre-Master) mice had, with the exception of a lack of mast cells and reduced basophils, a normal immune system. Cre-Master mice were refractory to IgE-mediated anaphylaxis, and this defect was rescued by mast cell reconstitution. This mast cell-deficient strain was fully susceptible to antibody-induced autoimmune arthritis and to experimental autoimmune encephalomyelitis. Differences comparing Kit mutant mast cell deficiency models to selectively mast cell-deficient mice call for a systematic re-evaluation of immunological functions of mast cells beyond allergy. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Epigenetic silencing of MAL, a putative tumor suppressor gene, can contribute to human epithelium cell carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang Jun

    2010-11-01

    suppressor gene, can contribute to human epithelial cell carcinoma and may be served as a biomarker in HNSCC.

  17. External Beam Radiotherapy in the Management of Low Grade Astrocytoma of the Brain

    International Nuclear Information System (INIS)

    Jeon, Ha Jung

    2009-01-01

    This study was designed to evaluate the effectiveness of postoperative radiotherapy for patients with low-grade astrocytomas and to define an optimal radiotherapeutic regimen and prognostic factors. A total of 69 patients with low-grade astrocytomas underwent surgery and postoperative radiotherapy immediately following surgery at our institution between October 1989 and September 2006. The median patient age was 36 years. Forty-one patients were 40 years or younger and 28 patients were 41 years or older. Fourteen patients underwent a biopsy alone and the remaining 55 patients underwent a subtotal resection. Thirty-nine patients had a Karnofsky performance status of less than 80% and 30 patients had a Karnofsky performance status greater than 80%. Two patients were treated with whole brain irradiation followed by a coned down boost field to the localized area. The remaining 67 patients were treated with a localized field with an appropriate margin. Most of the patients received a dose of 50∼55 Gy and majority of the patients were treated with a dose of 54 Gy. The overall 5-year and 7-year survival rates for all of the 69 patients were 49% and 44%, respectively. Corresponding disease free survival rates were 45% and 40%, respectively. Patients who underwent a subtotal resection showed better survival than patients who underwent a biopsy alone. The overall 5-year survival rates for patients who underwent a subtotal resection and patients who underwent a biopsy alone were 57% and 38%, respectively (p<0.05). Forty-one patients who were 40 years or younger showed a better overall 5-year survival rate as compared with 28 patients who were 41 years or older (56% versus 40%, p<0.05). The overall 5-year survival rates for 30 patients with a Karnofsky performance status greater than 80% and 39 patients with a Karnofsky performance status less than 80% were 51% and 47%, respectively. This finding was not statistically significant. Although one patient was not able to

  18. Pediatric spinal cord astrocytomas: a retrospective study of 348 patients from the SEER database.

    Science.gov (United States)

    Luksik, Andrew S; Garzon-Muvdi, Tomas; Yang, Wuyang; Huang, Judy; Jallo, George I

    2017-06-01

    OBJECTIVE Intramedullary spinal cord tumors comprise 1%-10% of all childhood central nervous system neoplasms, with astrocytomas representing the most common subtype. Due to their rarity and poor prognosis, large population-based studies are needed to assess the epidemiology and survival risk factors associated with these tumors in the hope of improving outcome. The authors undertook this retrospective study to explore factors that may influence survival in pediatric patients with spinal cord astrocytomas. METHODS Utilizing the Surveillance, Epidemiology, and End Results (SEER) database, a prospective cancer registry, the authors retrospectively assessed survival in histologically confirmed, primary spinal cord astrocytomas in patients 21 years of age and younger. Survival was described with Kaplan-Meyer curves, and a multivariate regression analysis was used to assess the association of several variables with survival while controlling for confounding variables. RESULTS This analysis of 348 cases showed that age (hazard ratio [HR] 1.05, 95% CI 1.01-1.09, p = 0.017), nonwhite race (HR 1.74, 95% CI 1.11-2.74, p = 0.014), high-grade tumor status (HR 14.67, 95% CI 6.69-32.14, p < 0.001), distant or invasive extension of the tumor (HR 2.37, 95% CI 1.02-5.49, p = 0.046), and radiation therapy (HR 3.74, 95% CI 2.18-6.41, p < 0.001) were associated with decreased survival. Partial resection (HR 0.37, 95% CI 0.16-0.83, p = 0.017) and gross-total resection (HR 0.39, 95% CI 0.16-0.95, p = 0.039) were associated with improved survival. CONCLUSIONS Younger age appears to be protective, while high-grade tumors have a much worse prognosis. Early diagnosis and access to surgery appears necessary for improving outcomes, while radiation therapy has an unclear role. There is still much to learn about this disease in the hope of curing children with the misfortune of having one of these rare tumors.

  19. Epithelial architectural destruction is necessary for bone marrow derived cell contribution to regenerating prostate epithelium.

    Science.gov (United States)

    Palapattu, Ganesh S; Meeker, Alan; Harris, Timothy; Collector, Michael I; Sharkis, Saul J; DeMarzo, Angelo M; Warlick, Christopher; Drake, Charles G; Nelson, William G

    2006-08-01

    Using various nonphysiological tissue injury/repair models numerous studies have demonstrated the capacity of bone marrow derived cells to contribute to the repopulation of epithelial tissues following damage. To investigate whether this phenomenon might also occur during periods of physiological tissue degeneration/regeneration we compared the ability of bone marrow derived cells to rejuvenate the prostate gland in mice that were castrated and then later treated with dihydrotestosterone vs mice with prostate epithelium that had been damaged by lytic virus infection. Using allogenic bone marrow grafts from female donor transgenic mice expressing green fluorescent protein transplanted into lethally irradiated males we were able to assess the contributions of bone marrow derived cells to recovery of the prostatic epithelium in 2 distinct systems, including 1) surgical castration followed 1 week later by dihydrotestosterone replacement and 2) intraprostatic viral injection. Eight to 10-week-old male C57/Bl6 mice were distributed among bone marrow donor-->recipient/prostate injury groups, including 5 with C57/Bl6-->C57/Bl6/no injury, 3 with green fluorescent protein-->C57/Bl6/no injury, 3 with green fluorescent protein-->C57/Bl6/vehicle injection, 4 with green fluorescent protein-->C57/Bl6/virus injection and 3 each with green fluorescent protein-->C57/Bl6/castration without and with dihydrotestosterone, respectively. Prostate tissues were harvested 3 weeks after dihydrotestosterone replacement or 14 days following intraprostatic viral injection. Prostate tissue immunofluorescence was performed with antibodies against the epithelial marker cytokeratin 5/8, the hematopoietic marker CD45 and green fluorescent protein. Mice that sustained prostate injury from vaccinia virus infection with concomitant severe inflammation and glandular disruption showed evidence of bone marrow derived cell reconstitution of prostate epithelium, that is approximately 4% of all green

  20. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo.

    Directory of Open Access Journals (Sweden)

    Binghua Xue

    Full Text Available Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs.

  1. Assessment of the cathode contribution to the degradation of anode-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus

    2008-01-01

    The degradation of anode-supported cells was studied over 1500 h as a function of cell polarization either in air or oxygen on the cathode side. Based on impedance analysis, contributions of the anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rates...... of the cathode were strongly dependent on the pO(2). Microstructural analysis of the cathode/electrolyte interface carried out after removal of the cathode showed craters on the electrolyte surface where the lanthanum strontium manganite (LSM) particles had been located. The changes of shape and size...... of these craters observed after testing correlated with the cell voltage degradation rates. The results can be interpreted in terms of element redistribution at the cathode/electrolyte interface and formation of foreign phases giving rise to a weakening of local contact points of the LSM cathode and yttria...

  2. Voltage Losses in Organic Solar Cells: Understanding the Contributions of Intramolecular Vibrations to Nonradiative Recombinations

    KAUST Repository

    Chen, Xiankai

    2017-12-18

    The large voltage losses usually encountered in organic solar cells significantly limit the power conversion efficiencies (PCEs) of these devices, with the result that the current highest PCE values in single-junction organic photovoltaic remain smaller than for other solar cell technologies, such as crystalline silicon or perovskite solar cells. In particular, the nonradiative recombinations to the electronic ground state from the lowest-energy charge-transfer (CT) states at the donor-acceptor interfaces in the active layer of organic devices, are responsible for a significant part of the voltage losses. Here, to better comprehend the nonradiative voltage loss mechanisms, a fully quantum-mechanical rate formula is employed within the framework of time-dependent perturbation theory, combined with density functional theory. The objective is to uncover the specific contributions of intramolecular vibrations to the CT-state nonradiative recombinations in several model systems, which include small-molecule and polymer donors as well as fullerene and nonfullerene acceptors.

  3. Lgr5+ve Stem/Progenitor Cells Contribute to Nephron Formation during Kidney Development

    Directory of Open Access Journals (Sweden)

    Nick Barker

    2012-09-01

    Full Text Available Multipotent stem cells and their lineage-restricted progeny drive nephron formation within the developing kidney. Here, we document expression of the adult stem cell marker Lgr5 in the developing kidney and assess the stem/progenitor identity of Lgr5+ve cells via in vivo lineage tracing. The appearance and localization of Lgr5+ve cells coincided with that of the S-shaped body around embryonic day 14. Lgr5 expression remained restricted to cell clusters within developing nephrons in the cortex until postnatal day 7, when expression was permanently silenced. In vivo lineage tracing identified Lgr5 as a marker of a stem/progenitor population within nascent nephrons dedicated to generating the thick ascending limb of Henle’s loop and distal convoluted tubule. The Lgr5 surface marker and experimental models described here will be invaluable for deciphering the contribution of early nephron stem cells to developmental defects and for isolating human nephron progenitors as a prerequisite to evaluating their therapeutic potential.

  4. Sepsis Induces Hematopoietic Stem Cell Exhaustion and Myelosuppression through Distinct Contributions of TRIF and MYD88

    Directory of Open Access Journals (Sweden)

    Huajia Zhang

    2016-06-01

    Full Text Available Toll-like receptor 4 (TLR4 plays a central role in host responses to bacterial infection, but the precise mechanism(s by which its downstream signaling components coordinate the bone marrow response to sepsis is poorly understood. Using mice deficient in TLR4 downstream adapters MYD88 or TRIF, we demonstrate that both cell-autonomous and non-cell-autonomous MYD88 activation are major causes of myelosuppression during sepsis, while having a modest impact on hematopoietic stem cell (HSC functions. In contrast, cell-intrinsic TRIF activation severely compromises HSC self-renewal without directly affecting myeloid cells. Lipopolysaccharide-induced activation of MYD88 or TRIF contributes to cell-cycle activation of HSC and induces rapid and permanent changes in transcriptional programs, as indicated by persistent downregulation of Spi1 and CebpA expression after transplantation. Thus, distinct mechanisms downstream of TLR4 signaling mediate myelosuppression and HSC exhaustion during sepsis through unique effects of MyD88 and TRIF.

  5. miR-1297 mediates PTEN expression and contributes to cell progression in LSCC

    International Nuclear Information System (INIS)

    Li, Xin; Wang, Hong-liang; Peng, Xin; Zhou, Hui-fang; Wang, Xin

    2012-01-01

    Highlights: ► miR-1297 was found to be overexpressed in LSCC and contribute to the cell progression. ► PTEN was confirmed to be a target gene of miR-1297. ► Downregulation of PTEN can rescue the proliferation and invasion ability of miR-1297 downregulated Hep-2 cells. ► Downregulation of miR-1297 inhibits tumor growth in vivo. -- Abstract: MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression after transcription, and are involved in cancer development. Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant neoplasms with increasing incidence in recent years. In this paper, we report the overexpression of miR-1297 in LSCC and Hep-2 cells. In addition, PTEN was identified to be directly regulated by miR-1297 through western blot and luciferase activity assay. Furthermore, downregulation of miR-1297 in Hep-2 cells was shown to inhibit cancer cell proliferation, migration, and tumor genesis. Our results document a new epigenetic mechanism for PTEN regulation in LSCC, which is crucial for the development of these tumors.

  6. Does cell lineage in the developing cerebral cortex contribute to its columnar organization?

    Directory of Open Access Journals (Sweden)

    Marcos R Costa

    2010-06-01

    Full Text Available Since the pioneer work of Lorente de Nó, Ramón y Cajal, Brodmann, Mountcastle, Hubel and Wiesel and others, the cerebral cortex has been seen as a jigsaw of anatomic and functional modules involved in the processing of different sets of information. In fact, a columnar distribution of neurons displaying similar functional properties throughout the cerebral cortex has been observed by many researchers. Although it has been suggested that much of the anatomical substrate for such organization would be already specified at early developmental stages, before activity-dependent mechanisms could take place, it is still unclear whether gene expression in the ventricular zone could play a role in the development of discrete functional units, such as minicolumns or columns. Cell lineage experiments using replication-incompetent retroviral vectors have shown that the progeny of a single neuroepithelial/radial glial cell in the dorsal telencephalon is organized into discrete radial clusters of sibling excitatory neurons, which have a higher propensity for developing chemical synapses with each other rather than with neighbouring non-siblings. Here, we will discuss the possibility that the cell lineage of single neuroepithelial/radial glia cells could contribute for the columnar organization of the neocortex by generating radial columns of sibling, interconnected neurons. Borrowing some concepts from the studies on cell-cell recognition and transcription factor networks, we will also touch upon the potential molecular mechanisms involved in the establishment of sibling-neuron circuits.

  7. Endothelial Progenitor Cell Dysfunction in Myelodysplastic Syndromes: Possible Contribution of a Defective Vascular Niche to Myelodysplasia

    Directory of Open Access Journals (Sweden)

    Luciana Teofili

    2015-05-01

    Full Text Available We set a model to replicate the vascular bone marrow niche by using endothelial colony forming cells (ECFCs, and we used it to explore the vascular niche function in patients with low-risk myelodysplastic syndromes (MDS. Overall, we investigated 56 patients and we observed higher levels of ECFCs in MDS than in healthy controls; moreover, MDS ECFCs were found variably hypermethylated for p15INK4b DAPK1, CDH1, or SOCS1. MDS ECFCs exhibited a marked adhesive capacity to normal mononuclear cells. When normal CD34+ cells were co-cultured with MDS ECFCs, they generated significant lower amounts of CD11b+ and CD41+ cells than in co-culture with normal ECFCs. At gene expression profile, several genes involved in cell adhesion were upregulated in MDS ECFCs, while several members of the Wingless and int (Wnt pathways were underexpressed. Furthermore, at miRNA expression profile, MDS ECFCs hypo-expressed various miRNAs involved in Wnt pathway regulation. The addition of Wnt3A reduced the expression of intercellular cell adhesion molecule-1 on MDS ECFCs and restored the defective expression of markers of differentiation. Overall, our data demonstrate that in low-risk MDS, ECFCs exhibit various primary abnormalities, including putative MDS signatures, and suggest the possible contribution of the vascular niche dysfunction to myelodysplasia.

  8. Deciphering the contribution of human meningothelial cells to the inflammatory and antimicrobial response at the meninges.

    Science.gov (United States)

    Royer, Pierre-Joseph; Rogers, Andrew J; Wooldridge, Karl G; Tighe, Patrick; Mahdavi, Jafar; Rittig, Michael G; Ala'Aldeen, Dlawer

    2013-11-01

    We have investigated the response of primary human meningothelial cells to Neisseria meningitidis. Through a transcriptome analysis, we provide a comprehensive examination of the response of meningothelial cells to bacterial infection. A wide range of chemokines are elicited which act to attract and activate the main players of innate and adaptive immunity. We showed that meningothelial cells expressed a high level of Toll-like receptor 4 (TLR4), and, using a gene silencing strategy, we demonstrated the contribution of this pathogen recognition receptor in meningothelial cell activation. Secretion of interleukin-6 (IL-6), CXCL10, and CCL5 was almost exclusively TLR4 dependent and relied on MyD88 and TRIF adaptor cooperation. In contrast, IL-8 induction was independent of the presence of TLR4, MyD88, and TRIF. Transcription factors NF-κB p65, p38 mitogen-activated protein kinase (MAPK), Jun N-terminal protein kinase (JNK1), IRF3, and IRF7 were activated after contact with bacteria. Interestingly, the protein kinase IRAK4 was found to play a minor role in the meningothelial cell response to Neisseria infection. Our work highlights the role of meningothelial cells in the development of an immune response and inflammation in the central nervous system (CNS) in response to meningococcal infection. It also sheds light on the complexity of intracellular signaling after TLR triggering.

  9. Predicting cell types and genetic variations contributing to disease by combining GWAS and epigenetic data.

    Directory of Open Access Journals (Sweden)

    Anna Gerasimova

    Full Text Available Genome-wide association studies (GWASs identify single nucleotide polymorphisms (SNPs that are enriched in individuals suffering from a given disease. Most disease-associated SNPs fall into non-coding regions, so that it is not straightforward to infer phenotype or function; moreover, many SNPs are in tight genetic linkage, so that a SNP identified as associated with a particular disease may not itself be causal, but rather signify the presence of a linked SNP that is functionally relevant to disease pathogenesis. Here, we present an analysis method that takes advantage of the recent rapid accumulation of epigenomics data to address these problems for some SNPs. Using asthma as a prototypic example; we show that non-coding disease-associated SNPs are enriched in genomic regions that function as regulators of transcription, such as enhancers and promoters. Identifying enhancers based on the presence of the histone modification marks such as H3K4me1 in different cell types, we show that the location of enhancers is highly cell-type specific. We use these findings to predict which SNPs are likely to be directly contributing to disease based on their presence in regulatory regions, and in which cell types their effect is expected to be detectable. Moreover, we can also predict which cell types contribute to a disease based on overlap of the disease-associated SNPs with the locations of enhancers present in a given cell type. Finally, we suggest that it will be possible to re-analyze GWAS studies with much higher power by limiting the SNPs considered to those in coding or regulatory regions of cell types relevant to a given disease.

  10. Contribution of Human Oral Cells to Astringency by Binding Salivary Protein/Tannin Complexes.

    Science.gov (United States)

    Soares, Susana; Ferrer-Galego, Raúl; Brandão, Elsa; Silva, Mafalda; Mateus, Nuno; Freitas, Victor de

    2016-10-10

    The most widely accepted mechanism to explain astringency is the interaction and precipitation of salivary proteins by food tannins, in particular proline-rich proteins. However, other mechanisms have been arising to explain astringency, such as binding of tannins to oral cells. In this work, an experimental method was adapted to study the possible contribution of both salivary proteins and oral cells to astringency induced by grape seed procyanidin fractions. Overall, in the absence of salivary proteins, the extent of procyanidin complexation with oral cells increased with increasing procyanidin degree of polymerization (mDP). Procyanidin fractions rich in monomers were the ones with the lowest ability to bind to oral cells. In the presence of salivary proteins and for procyanidins with mDP 2 the highest concentrations (1.5 and 2.0 mM) resulted in an increased binding of procyanidins to oral cells. This was even more evident for fractions III and IV at 1.0 mM and upper concentrations. Regarding the salivary proteins affected, it was possible to observe a decrease of P-B peptide and aPRP proteins for fractions II and III. This decrease is greater as the procyanidins' mDP increases. In fact, for fraction IV an almost total depletion of all salivary proteins was observed. This decrease is due to the formation of insoluble salivary protein/procyanidin complexes. Altogether, these data suggest that some procyanidins are able to bind to oral cells and that the salivary proteins interact with procyanidins forming salivary protein/procyanidin complexes that are also able to link to oral cells. The procyanidins that remain unbound to oral cells are able to bind to salivary proteins forming a large network of salivary protein/procyanidin complexes. Overall, the results presented herein provide one more step to understand food oral astringency onset.

  11. Approach to the irradiation of extensive cervical and upper thoracic spinal astrocytoma

    International Nuclear Information System (INIS)

    Dvorak, E.

    1981-01-01

    Intramedullary spinal cord tumors are relatively rare, especially to the extent presented in this report. A 31-year-old woman had been diagnosed as having an inoperable astrocytoma, grade I-II, involving the entire cervical spinal cord and two upper thoracic segments. After decompressive laminectomy, she was referred for a radical course of radiation therapy. An irradiation technique was devised which allowed treatment of a single cylindrical volume of tissue encompassing the known tumor. Field fractionation with undesirable gaps and/or excessive dose to overlying normal structures was avoided. To the cervical spinal cord she received 5590 cGy in 29 fractions over 42 days. By this schedule she received at the same time 4820 cGy to the medulla oblongata and 4880 cGy to the upper thoracic cord. Partial neurological improvement occurred at the end of the treatment. The treatment approach is discussed in the background of the literature data. (orig.) [de

  12. Effect of chemoradiotherapy using ACNU, vincristine, and nicardipine with high-dose irradiation on malignant astrocytomas

    Energy Technology Data Exchange (ETDEWEB)

    Genka, Shigeru; Shitara, Nobuyuki; Nakamura, Hirohiko; Takakura, Kintomo [Tokyo Univ. (Japan). Hospital

    1993-05-01

    Fifty-two patients with malignant astrocytoma were treated with cellular synchronization radiation therapy at the University of Tokyo Hospital between 1977 and 1989. Twenty-five patients (Group 1) received 1 - (4-amino-2-methyl-5-pyrimidinyl)methyl - 3 - (2-chloroethyl) - 3 - nitrosourea hydrochloride (ACNU), vincristine, and 60 Gy of irradiation, and 27 patients (Group 2) ACNU, vincristine, the Ca-channel blocker nicardipine, and 72 Gy of irradiation. Median survival times for Groups 1 and 2 were 15 and 30 months, respectively. Although there was no significant difference, Group 2 achieved longer survival with 1-, 2-, and 3-year survival rates of 85.2, 65.8, and 46.9% compared to rates of 66.7, 40.0, and 26.7%, respectively, for Group 1. (author).

  13. A case of paraventricular anaplastic astrocytoma following radiation therapy for craniopharyngioma

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Hiroaki; Fujiwara, Kazunori; Kobayashi, Shin-ichi; Kitahara, Masakazu (Ishinomaki Red Cross Hospital, Miyagi (Japan))

    1994-04-01

    A 20-year-old man received 60 Gy of radiation therapy after partial removal of craniopharyngioma. The patient had been well and follow-up CT scans did not show any aggravation for 16 years. Since his activity gradually diminished, he underwent an MRI at the age of 36 which revealed and abnormal mass on the corpus callosum. The mass lesion progressively enlarged thereafter, and was diagnosed as anaplastic astrocytoma by a stereotactic biopsy. He was treated with interferon, however, died at the age of 37. Review of the literature disclosed 19 other cases of glioma following radiation therapy for sellar/parasellar tumors. Characteristic features of these cases included (1) lowness of age compared to common glioma cases, (2) tendency to be malignant, (3) tendency to occur in areas where significant doses of radiation had been received previously. (author).

  14. Imaging findings of anaplastic astrocytoma in a child with maple syrup urine disease: a case report.

    Science.gov (United States)

    Aw-Zoretic, Jessie; Wadhwani, Nitin R; Lulla, Rishi R; Rishi, Lulla R; Ryan, Maura E

    2015-09-01

    Maple syrup urine disease (MSUD) is an inborn error of branched-chain amino acid metabolism, which usually presents in childhood with encephalopathy due to cerebral edema and dysmyelination. Even with treatment, metabolic stressors may precipitate later episodes of acute decompensation. Changes related to cerebral and white matter edema have been described by magnetic resonance imaging (MRI), and imaging can aid in both initial diagnosis and evaluation of decompensation. To date, there are no published known reports of cancer in patients with MSUD. Here, we present the first case report of an anaplastic astrocytoma in a teenager with MSUD, with a discussion of imaging findings and the use of magnetic resonance spectroscopy (MRS) to help distinguish between tumor and metabolic changes.

  15. Effect of chemoradiotherapy using ACNU, vincristine, and nicardipine with high-dose irradiation on malignant astrocytomas

    International Nuclear Information System (INIS)

    Genka, Shigeru; Shitara, Nobuyuki; Nakamura, Hirohiko; Takakura, Kintomo

    1993-01-01

    Fifty-two patients with malignant astrocytoma were treated with cellular synchronization radiation therapy at the University of Tokyo Hospital between 1977 and 1989. Twenty-five patients (Group 1) received 1 - (4-amino-2-methyl-5-pyrimidinyl)methyl - 3 - (2-chloroethyl) - 3 - nitrosourea hydrochloride (ACNU), vincristine, and 60 Gy of irradiation, and 27 patients (Group 2) ACNU, vincristine, the Ca-channel blocker nicardipine, and 72 Gy of irradiation. Median survival times for Groups 1 and 2 were 15 and 30 months, respectively. Although there was no significant difference, Group 2 achieved longer survival with 1-, 2-, and 3-year survival rates of 85.2, 65.8, and 46.9% compared to rates of 66.7, 40.0, and 26.7%, respectively, for Group 1. (author)

  16. Rad9 contribution to radiosensitivity and the G2 checkpoint in a DT40 cell line

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Tomoyasu [Kanazawa Univ. (Japan). Graduate School of Medical Science

    2002-12-01

    In fission yeast, the rad9 (radiation sensitive) gene was cloned from a mutant that is sensitive to ionizing radiation, ultraviolet and hydroxyurea. This gene has also been shown to be required for a DNA damage checkpoint. Orthologues of the rad9 gene have recently been identified in higher eukaryote cells including human. Here we generated Rad9 knockout (Rad9-/-) cells from the chicken B lymphocyte line DT40 to examine the role of Rad9 in higher eukaryotes. First we isolated a part of the chicken Rad9 gene which was 54% identical with human Rad9 at the amino acid sequence level. Next we isolated genomic clones, determined exons and introns, and constructed targeting vectors designed to disrupt exon 1-3 of the chicken Rad9 gene by replacement with a drug-resistant gene. Successful targeted integration was verified by Southern blot analysis and the disruption of the Rad9 gene was confirmed by reverse transcription polymerase chain reaction (RT-PCR). To analyze the radiosensitivity of these Rad9-/- cells, we monitored the clonogenic survival after various degrees of X-ray irradiation. Rad9-/- cells were more sensitive to X-rays than wild type cells at all dosages. However, these cells were less sensitive than ATM knockout (ATM-/-) cells that are known to be X-ray sensitive and that showed a defective checkpoint control. In contrast, Rad9-/- cells were markedly more sensitive to ultraviolet and hydroxyruea. In addition, we assessed the G2 checkpoint by measurement of the mitotic index that is the fraction of the accumulating number of cells in mitosis at various times after X-ray irradiation. While the number of mitotic wild type cells did not increase until 2 hrs after X-ray irradiation, the number of mitotic Rad9-/- cells showed an increase similar to that of ATM-/- cells. These results suggest that just as in fission yeast, in higher eukaryotes Rad9 also contributes to X-ray, ultraviolet and hydroxyurea sensitivity, and plays an important role in the G2 checkpoint

  17. Rad9 contribution to radiosensitivity and the G2 checkpoint in a DT40 cell line

    International Nuclear Information System (INIS)

    Kumano, Tomoyasu

    2002-01-01

    In fission yeast, the rad9 (radiation sensitive) gene was cloned from a mutant that is sensitive to ionizing radiation, ultraviolet and hydroxyurea. This gene has also been shown to be required for a DNA damage checkpoint. Orthologues of the rad9 gene have recently been identified in higher eukaryote cells including human. Here we generated Rad9 knockout (Rad9-/-) cells from the chicken B lymphocyte line DT40 to examine the role of Rad9 in higher eukaryotes. First we isolated a part of the chicken Rad9 gene which was 54% identical with human Rad9 at the amino acid sequence level. Next we isolated genomic clones, determined exons and introns, and constructed targeting vectors designed to disrupt exon 1-3 of the chicken Rad9 gene by replacement with a drug-resistant gene. Successful targeted integration was verified by Southern blot analysis and the disruption of the Rad9 gene was confirmed by reverse transcription polymerase chain reaction (RT-PCR). To analyze the radiosensitivity of these Rad9-/- cells, we monitored the clonogenic survival after various degrees of X-ray irradiation. Rad9-/- cells were more sensitive to X-rays than wild type cells at all dosages. However, these cells were less sensitive than ATM knockout (ATM-/-) cells that are known to be X-ray sensitive and that showed a defective checkpoint control. In contrast, Rad9-/- cells were markedly more sensitive to ultraviolet and hydroxyruea. In addition, we assessed the G2 checkpoint by measurement of the mitotic index that is the fraction of the accumulating number of cells in mitosis at various times after X-ray irradiation. While the number of mitotic wild type cells did not increase until 2 hrs after X-ray irradiation, the number of mitotic Rad9-/- cells showed an increase similar to that of ATM-/- cells. These results suggest that just as in fission yeast, in higher eukaryotes Rad9 also contributes to X-ray, ultraviolet and hydroxyurea sensitivity, and plays an important role in the G2 checkpoint

  18. High accuracy of arterial spin labeling perfusion imaging in differentiation of pilomyxoid from pilocytic astrocytoma

    Energy Technology Data Exchange (ETDEWEB)

    Nabavizadeh, S.A.; Assadsangabi, R.; Hajmomenian, M.; Vossough, A. [Perelman School of Medicine of the University of Pennsylvania, Department of Radiology, Children' s Hospital of Philadelphia, Philadelphia, PA (United States); Santi, M. [Perelman School of Medicine of the University of Pennsylvania, Department of Pathology, Children' s Hospital of Philadelphia, Philadelphia, PA (United States)

    2015-05-01

    Pilomyxoid astrocytoma (PMA) is a relatively new tumor entity which has been added to the 2007 WHO Classification of tumors of the central nervous system. The goal of this study is to utilize arterial spin labeling (ASL) perfusion imaging to differentiate PMA from pilocytic astrocytoma (PA). Pulsed ASL and conventional MRI sequences of patients with PMA and PA in the past 5 years were retrospectively evaluated. Patients with history of radiation or treatment with anti-angiogenic drugs were excluded. A total of 24 patients (9 PMA, 15 PA) were included. There were statistically significant differences between PMA and PA in mean tumor/gray matter (GM) cerebral blood flow (CBF) ratios (1.3 vs 0.4, p < 0.001) and maximum tumor/GM CBF ratio (2.3 vs 1, p < 0.001). Area under the receiver operating characteristic (ROC) curves for differentiation of PMA from PA was 0.91 using mean tumor CBF, 0.95 using mean tumor/GM CBF ratios, and 0.89 using maximum tumor/GM CBF. Using a threshold value of 0.91, the mean tumor/GM CBF ratio was able to diagnose PMA with 77 % sensitivity, 100 % specificity, and a threshold value of 0.7, provided 88 % sensitivity and 86 % specificity. There was no statistically significant difference between the two tumors in enhancement pattern (p = 0.33), internal architecture (p = 0.15), or apparent diffusion coefficient (ADC) values (p = 0.07). ASL imaging has high accuracy in differentiating PMA from PA. The result of this study may have important applications in prognostication and treatment planning especially in patients with less accessible tumors such as hypothalamic-chiasmatic gliomas. (orig.)

  19. Pion radiation for high grade astrocytoma: results of a randomized study

    International Nuclear Information System (INIS)

    Pickles, Tom; Goodman, George B.; Rheaume, Dorianne E.; Duncan, Graeme G.; Fryer, Chris J.; Bhimji, Shamim; Ludgate, Charles; Syndikus, Isabel; Graham, Peter; Dimitrov, Mario; Bowen, Julie

    1997-01-01

    Purpose: This study attempted to compare within a randomized study the outcome of pion radiation therapy vs. conventional photon irradiation for the treatment of high-grade astrocytomas. Methods and Materials: Eighty-four patients were randomized to pion therapy (33-34.5 Gyπ), or conventional photon irradiation (60 Gy). Entry criteria included astrocytoma (modified Kernohan high Grade 3 or Grade 4), age 18-70, Karnofsky performance status (KPS) ≥50, ability to start irradiation within 30 days of surgery, unifocal tumor, and treatment volume < 850 cc. The high-dose volume in both arms was computed tomography enhancement plus a 2-cm margin. The study was designed with the power to detect a twofold difference between arms. Results: Eighty-one eligible patients were equally balanced for all known prognostic variables. Pion patients started radiation 7 days earlier on average than photon patients, but other treatment-related variables did not differ. There were no significant differences for either early or late radiation toxicity between treatment arms. Actuarial survival analysis shows no differences in terms of time to local recurrence or overall survival where median survival was 10 months in both arms (p = 0.22). The physician-assessed KPS and patient-assessed quality of life (QOL) measurements were generally maintained within 10 percentage points until shortly before tumor recurrence. There was no apparent difference in the serial KPS or QOL scores between treatment arms. Conclusion: In contrast to high linear energy transfer (LET) therapy for central nervous system tumors, such as neutron or neon therapy, the safety of pion therapy, which is of intermediate LET, has been reaffirmed. However, this study has demonstrated no therapeutic gain for pion therapy of glioblastoma

  20. The role of radiotherapy in the management of supratentorial low grade astrocytoma

    International Nuclear Information System (INIS)

    Song, M. H.; Chang, H. S.; Lee, K. J.

    1997-01-01

    To evaluate the role of radiotherapy in the management of incompletely resected supratentorial low grade astrocytoma with the analysis of the survival, the pattern of failure, and the prognostic variables affecting survival. Between January 1990 and December 1995, fifty-one patients with supratentorial low grade astrocytoma received radiotherapy after subtotal resection (16 patients) or stereotactic biopsy(35 patients)at Asan Medical Center. External radiotherapy was done by conventional fractionation with the total dose of 4820cGy to 6000cGy(median 5580cGy) and partial brain volume. The follow-up was done from 6 to 79 months(median 48 months). Overall actuarial survival rate at 2 and 5 years were 83.4% and 54.8T, respectively. Progression free survival at 2 and 5 years were 67.4% and 48.7%, respectively. The significant prognostic factors affecting overall survival rate were the performance status, T stage, histologic subtype, radiation field and radiation response. The major pattern of failure was local failure, such as progressive disease and primary site recurrence in 23 patients (45.1%). Progression free survivors excluding 2 patients were physically and intellectually intact without major neurologic deficit. Although the follow-up period of this study was relatively short, overall actuarial and progression free survival rate were encouraging. Patients with good performance status, lower T stage, pilocytic subtype, patients treated with small radiation field and radiation responder showed better survival. As the local failure was the major pattern of failure, the various efforts to decrease the local failure is necessary. (author)

  1. Acquisition of glial cells missing 2 enhancers contributes to a diversity of ionocytes in zebrafish.

    Directory of Open Access Journals (Sweden)

    Takanori Shono

    Full Text Available Glial cells missing 2 (gcm2 encoding a GCM-motif transcription factor is expressed in the parathyroid in amniotes. In contrast, gcm2 is expressed in pharyngeal pouches (a homologous site of the parathyroid, gills, and H(+-ATPase-rich cells (HRCs, a subset of ionocytes on the skin surface of the teleost fish zebrafish. Ionocytes are specialized cells that are involved in osmotic homeostasis in aquatic vertebrates. Here, we showed that gcm2 is essential for the development of HRCs and Na(+-Cl(- co-transporter-rich cells (NCCCs, another subset of ionocytes in zebrafish. We also identified gcm2 enhancer regions that control gcm2 expression in ionocytes of zebrafish. Comparisons of the gcm2 locus with its neighboring regions revealed no conserved elements between zebrafish and tetrapods. Furthermore, We observed gcm2 expression patterns in embryos of the teleost fishes Medaka (Oryzias latipes and fugu (Fugu niphobles, the extant primitive ray-finned fishes Polypterus (Polypterus senegalus and sturgeon (a hybrid of Huso huso × Acipenser ruhenus, and the amphibian Xenopus (Xenopus laevis. Although gcm2-expressing cells were observed on the skin surface of Medaka and fugu, they were not found in Polypterus, sturgeon, or Xenopus. Our results suggest that an acquisition of enhancers for the expression of gcm2 contributes to a diversity of ionocytes in zebrafish during evolution.

  2. HIF-1 and NDRG2 contribute to hypoxia-induced radioresistance of cervical cancer Hela cells

    International Nuclear Information System (INIS)

    Liu, Junye; Zhang, Jing; Wang, Xiaowu; Li, Yan; Chen, Yongbin; Li, Kangchu; Zhang, Jian; Yao, Libo; Guo, Guozhen

    2010-01-01

    Hypoxia inducible factor 1 (HIF-1), the key mediator of hypoxia signaling pathways, has been shown involved in hypoxia-induced radioresistance. However, the underlying mechanisms are unclear. The present study demonstrated that both hypoxia and hypoxia mimetic cobalt chloride could increase the radioresistance of human cervical cancer Hela cells. Meanwhile, ectopic expression of HIF-1 could enhance the resistance of Hela cells to radiation, whereas knocking-down of HIF-1 could increase the sensitivity of Hela cells to radiation in the presence of hypoxia. N-Myc downstream-regulated gene 2 (NDRG2), a new HIF-1 target gene identified in our lab, was found to be upregulated by hypoxia and radiation in a HIF-1-dependent manner. Overexpression of NDRG2 resulted in decreased sensitivity of Hela cells to radiation while silencing NDRG2 led to radiosensitization. Moreover, NDRG2 was proved to protect Hela cells from radiation-induced apoptosis and abolish radiation-induced upregulation of Bax. Taken together, these data suggest that both HIF-1 and NDRG2 contribute to hypoxia-induced tumor radioresistance and that NDRG2 acts downstream of HIF-1 to promote radioresistance through suppressing radiation-induced Bax expression. It would be meaningful to further explore the clinical application potential of HIF-1 and NDRG2 blockade as radiosensitizer for tumor therapy.

  3. The notch and TGF-β signaling pathways contribute to the aggressiveness of clear cell renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Jonas Sjölund

    Full Text Available BACKGROUND: Despite recent progress, therapy for metastatic clear cell renal cell carcinoma (CCRCC is still inadequate. Dysregulated Notch signaling in CCRCC contributes to tumor growth, but the full spectrum of downstream processes regulated by Notch in this tumor form is unknown. METHODOLOGY/PRINCIPAL FINDINGS: We show that inhibition of endogenous Notch signaling modulates TGF-β dependent gene regulation in CCRCC cells. Analysis of gene expression data representing 176 CCRCCs showed that elevated TGF-β pathway activity correlated significantly with shortened disease specific survival (log-rank test, p = 0.006 and patients with metastatic disease showed a significantly elevated TGF-β signaling activity (two-sided Student's t-test, p = 0.044. Inhibition of Notch signaling led to attenuation of both basal and TGF-β1 induced TGF-β signaling in CCRCC cells, including an extensive set of genes known to be involved in migration and invasion. Functional analyses revealed that Notch inhibition decreased the migratory and invasive capacity of CCRCC cells. CONCLUSION: An extensive cross-talk between the Notch and TGF-β signaling cascades is present in CCRCC and the functional properties of these two pathways are associated with the aggressiveness of this disease.

  4. NKT cells contribute to basal IL-4 production but are not required to induce experimental asthma.

    Science.gov (United States)

    McKnight, Christopher G; Morris, Suzanne C; Perkins, Charles; Zhu, Zhenqi; Hildeman, David A; Bendelac, Albert; Finkelman, Fred D

    2017-01-01

    CD1d-deficiency results in a selective deletion of NKT cells in mice that is reported to prevent murine allergic airway disease (AAD). Because we find 2-3 fold lower basal IL-4 production in CD1d- mice than in wild-type (WT) mice, we hypothesized that the contribution made by NKT cells to AAD would depend on the strength of the stimulus used to induce the disease. Consequently, we compared CD1d-deficient mice to WT mice in the development of AAD, using several models of disease induction that differed in the type and dose of allergen, the site of sensitization and the duration of immunization. Surprisingly we found equivalent allergic inflammation and airway disease in WT and CD1d- mice in all models investigated. Consistent with this, NKT cells constituted only ~2% of CD4+ T cells in the lungs of mice with AAD, and IL-4-transcribing NKT cells did not expand with disease induction. Concerned that the congenital absence of NKT cells might have caused a compensatory shift within the immune response, we administered an anti-CD1d monoclonal Ab (mAb) to block NKT function before airway treatments, before or after systemic sensitization to antigen. Such Ab treatment did not affect disease severity. We suggest that the differences reported in the literature regarding the significance of NKT cells in the induction of allergic airway disease may have less to do with the methods used to study the disease and more to do with the animals themselves and/or the facilities used to house them.

  5. NKT cells contribute to basal IL-4 production but are not required to induce experimental asthma.

    Directory of Open Access Journals (Sweden)

    Christopher G McKnight

    Full Text Available CD1d-deficiency results in a selective deletion of NKT cells in mice that is reported to prevent murine allergic airway disease (AAD. Because we find 2-3 fold lower basal IL-4 production in CD1d- mice than in wild-type (WT mice, we hypothesized that the contribution made by NKT cells to AAD would depend on the strength of the stimulus used to induce the disease. Consequently, we compared CD1d-deficient mice to WT mice in the development of AAD, using several models of disease induction that differed in the type and dose of allergen, the site of sensitization and the duration of immunization. Surprisingly we found equivalent allergic inflammation and airway disease in WT and CD1d- mice in all models investigated. Consistent with this, NKT cells constituted only ~2% of CD4+ T cells in the lungs of mice with AAD, and IL-4-transcribing NKT cells did not expand with disease induction. Concerned that the congenital absence of NKT cells might have caused a compensatory shift within the immune response, we administered an anti-CD1d monoclonal Ab (mAb to block NKT function before airway treatments, before or after systemic sensitization to antigen. Such Ab treatment did not affect disease severity. We suggest that the differences reported in the literature regarding the significance of NKT cells in the induction of allergic airway disease may have less to do with the methods used to study the disease and more to do with the animals themselves and/or the facilities used to house them.

  6. Cystic fibrosis transmembrane conductance regulator contributes to reacidification of alkalinized lysosomes in RPE cells.

    Science.gov (United States)

    Liu, Ji; Lu, Wennan; Guha, Sonia; Baltazar, Gabriel C; Coffey, Erin E; Laties, Alan M; Rubenstein, Ronald C; Reenstra, William W; Mitchell, Claire H

    2012-07-15

    The role of the cystic fibrosis transmembrane conductance regulator (CFTR) in lysosomal acidification has been difficult to determine. We demonstrate here that CFTR contributes more to the reacidification of lysosomes from an elevated pH than to baseline pH maintenance. Lysosomal alkalinization is increasingly recognized as a factor in diseases of accumulation, and we previously showed that cAMP reacidified alkalinized lysosomes in retinal pigmented epithelial (RPE) cells. As the influx of anions to electrically balance proton accumulation may enhance lysosomal acidification, the contribution of the cAMP-activated anion channel CFTR to lysosomal reacidification was probed. The antagonist CFTR(inh)-172 had little effect on baseline levels of lysosomal pH in cultured human RPE cells but substantially reduced the reacidification of compromised lysosomes by cAMP. Likewise, CFTR activators had a bigger impact on cells whose lysosomes had been alkalinized. Knockdown of CFTR with small interfering RNA had a larger effect on alkalinized lysosomes than on baseline levels. Inhibition of CFTR in isolated lysosomes altered pH. While CFTR and Lamp1 were colocalized, treatment with cAMP did not increase targeting of CFTR to the lysosome. The inhibition of CFTR slowed lysosomal degradation of photoreceptor outer segments while activation of CFTR enhanced their clearance from compromised lysosomes. Activation of CFTR acidified RPE lysosomes from the ABCA4(-/-) mouse model of recessive Stargardt's disease, whose lysosomes are considerably alkalinized. In summary, CFTR contributes more to reducing lysosomal pH from alkalinized levels than to maintaining baseline pH. Treatment to activate CFTR may thus be of benefit in disorders of accumulation associated with lysosomal alkalinization.

  7. The water channel aquaporin-1 contributes to renin cell recruitment during chronic stimulation of renin production

    DEFF Research Database (Denmark)

    Tinning, Anne Robdrup; Jensen, Boye L; Schweda, Frank

    2014-01-01

    Processing and release of secretory granules involve water movement across granule membranes. It was hypothesized that the water channel aquaporin-1 (AQP-1) contributes directly to recruitment of renin-positive cells in the afferent arteriole. AQP1(-/-) and (+/+) mice were fed a low NaCl diet (LS...... to baseline with no difference between genotypes. Plasma nitrite/nitrate concentration was unaffected by genotype and LS-ACEI. In AQP1(-/-) mice, the number of afferent arterioles with recruitment was significantly lower compared to (+/+) after LS-ACEI. It is concluded that aquaporin-1 is not necessary...... for acutely stimulated renin secretion in vivo and from isolated perfused kidney, whereas recruitment of renin-positive cells in response to chronic stimulation is attenuated or delayed in AQP1(-/-) mice....

  8. Renal progenitor cells contribute to hyperplastic lesions of podocytopathies and crescentic glomerulonephritis.

    Science.gov (United States)

    Smeets, Bart; Angelotti, Maria Lucia; Rizzo, Paola; Dijkman, Henry; Lazzeri, Elena; Mooren, Fieke; Ballerini, Lara; Parente, Eliana; Sagrinati, Costanza; Mazzinghi, Benedetta; Ronconi, Elisa; Becherucci, Francesca; Benigni, Ariela; Steenbergen, Eric; Lasagni, Laura; Remuzzi, Giuseppe; Wetzels, Jack; Romagnani, Paola

    2009-12-01

    Glomerular injury can involve excessive proliferation of glomerular epithelial cells, resulting in crescent formation and obliteration of Bowman's space. The origin of these hyperplastic epithelial cells in different glomerular disorders is controversial. Renal progenitors localized to the inner surface of Bowman's capsule can regenerate podocytes, but whether dysregulated proliferation of these progenitors contributes to crescent formation is unknown. In this study, we used confocal microscopy, laser capture microdissection, and real-time quantitative reverse transcriptase-PCR to demonstrate that hypercellular lesions of different podocytopathies and crescentic glomerulonephritis consist of three distinct populations: CD133(+)CD24(+)podocalyxin (PDX)(-)nestin(-) renal progenitors, CD133(+)CD24(+)PDX(+)nestin(+) transitional cells, and CD133(-)CD24(-)PDX(+)nestin(+) differentiated podocytes. In addition, TGF-beta induced CD133(+)CD24(+) progenitors to produce extracellular matrix, and these were the only cells to express the proliferation marker Ki67. Taken together, these results suggest that glomerular hyperplastic lesions derive from the proliferation of renal progenitors at different stages of their differentiation toward mature podocytes, providing an explanation for the pathogenesis of hyperplastic lesions in podocytopathies and crescentic glomerulonephritis.

  9. A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically-Modified Neural Stem Cells Expressing E.Coli Cytosine Deaminase for Treatment of Recurrent High Grade Gliomas

    Science.gov (United States)

    2017-11-07

    Adult Anaplastic Astrocytoma; Recurrent Grade III Glioma; Recurrent Grade IV Glioma; Adult Anaplastic Oligodendroglioma; Adult Brain Tumor; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Recurrent Adult Brain Tumor; Adult Anaplastic Oligoastrocytoma; Recurrent High Grade Glioma

  10. Deregulation of epidermal stem cell niche contributes to pathogenesis of non-healing venous ulcers

    Science.gov (United States)

    Nusbaum, Aron G.; Vukelic, Sasa; Krzyzanowska, Agata; Tomic-Canic, Marjana

    2014-01-01

    The epidermis is maintained by epidermal stem cells (ESC) that reside in distinct niches and contribute to homeostasis and wound closure. Keratinocytes at the non-healing edges of venous ulcers (VUs) are healing-incompetent, hyper-proliferative and non-migratory suggesting deregulation of ESCs. To date genes which regulate ESC niches have been studied in mice only. Utilizing microarray analysis of VU non-healing edges, we identified changes in expression of genes harboring regulation of ESCs and their fate. In a prospective clinical study of ten VUs, we confirmed suppression of the bone morphogenetic protein receptor and GATA binding protein3 as well as inhibitors of DNA-binding proteins 2 and 4. We also found decreased levels of phosphorylated glycogen synthase kinase 3, nuclear presence of ß-catenin and overexpression of its transcriptional target, c-myc indicating activation of the Wnt pathway. Additionally, we found down-regulation of leucine-rich repeats and immunoglobulin-like domains protein 1, a gene important for maintaining ESCs in a quiescent state, and absence of keratin 15, a marker of the basal stem cell compartment suggesting local depletion of ESCs. Our study shows that loss of genes important for regulation of ESCs and their fate along with activation of ß-catenin and c-myc in the VU may contribute to ESC deprivation and a hyper-proliferative, non-migratory, healing incapable wound edge. PMID:24635172

  11. Naked Mole Rat Induced Pluripotent Stem Cells and Their Contribution to Interspecific Chimera

    Directory of Open Access Journals (Sweden)

    Sang-Goo Lee

    2017-11-01

    Full Text Available Naked mole rats (NMRs are exceptionally long-lived, cancer-resistant rodents. Identifying the defining characteristics of these traits may shed light on aging and cancer mechanisms. Here, we report the generation of induced pluripotent stem cells (iPSCs from NMR fibroblasts and their contribution to mouse-NMR chimeric embryos. Efficient reprogramming could be observed under N2B27+2i conditions. The iPSCs displayed a characteristic morphology, expressed pluripotent markers, formed embryoid bodies, and showed typical differentiation patterns. Interestingly, NMR embryonic fibroblasts and the derived iPSCs had propensity for a tetraploid karyotype and were resistant to forming teratomas, but within mouse blastocysts they contributed to both interspecific placenta and fetus. Gene expression patterns of NMR iPSCs were more similar to those of human than mouse iPSCs. Overall, we uncovered unique features of NMR iPSCs and report a mouse-NMR chimeric model. The iPSCs and associated cell culture systems can be used for a variety of biological and biomedical applications.

  12. Cardiac Bmi1(+) cells contribute to myocardial renewal in the murine adult heart.

    Science.gov (United States)

    Valiente-Alandi, Iñigo; Albo-Castellanos, Carmen; Herrero, Diego; Arza, Elvira; Garcia-Gomez, Maria; Segovia, José C; Capecchi, Mario; Bernad, Antonio

    2015-10-26

    The mammalian adult heart maintains a continuous, low cardiomyocyte turnover rate throughout life. Although many cardiac stem cell populations have been studied, the natural source for homeostatic repair has not yet been defined. The Polycomb protein BMI1 is the most representative marker of mouse adult stem cell systems. We have evaluated the relevance and role of cardiac Bmi1 (+) cells in cardiac physiological homeostasis. Bmi1 (CreER/+);Rosa26 (YFP/+) (Bmi1-YFP) mice were used for lineage tracing strategy. After tamoxifen (TM) induction, yellow fluorescent protein (YFP) is expressed under the control of Rosa26 regulatory sequences in Bmi1 (+) cells. These cells and their progeny were tracked by FACS, immunofluorescence and RT-qPCR techniques from 5 days to 1 year. FACS analysis of non-cardiomyocyte compartment from TM-induced Bmi1-YFP mice showed a Bmi1 (+)-expressing cardiac progenitor cell (Bmi1-CPC: B-CPC) population, SCA-1 antigen-positive (95.9 ± 0.4 %) that expresses some stemness-associated genes. B-CPC were also able to differentiate in vitro to the three main cardiac lineages. Pulse-chase analysis showed that B-CPC remained quite stable for extended periods (up to 1 year), which suggests that this Bmi1 (+) population contains cardiac progenitors with substantial self-maintenance potential. Specific immunostaining of Bmi1-YFP hearts serial sections 5 days post-TM induction indicated broad distribution of B-CPC, which were detected in variably sized clusters, although no YFP(+) cardiomyocytes (CM) were detected at this time. Between 2 to 12 months after TM induction, YFP(+) CM were clearly identified (3 ± 0.6 % to 6.7 ± 1.3 %) by immunohistochemistry of serial sections and by flow cytometry of total freshly isolated CM. B-CPC also contributed to endothelial and smooth muscle (SM) lineages in vivo. High Bmi1 expression identifies a non-cardiomyocyte resident cardiac population (B-CPC) that contributes to the main lineages of the heart in

  13. Serotonin Activated Hepatic Stellate Cells Contribute to Sex Disparity in Hepatocellular CarcinomaSummary

    Directory of Open Access Journals (Sweden)

    Qiqi Yang

    2017-05-01

    Full Text Available Background & Aims: Hepatocellular carcinoma (HCC occurs more frequently and aggressively in men than in women. Although sex hormones are believed to play a critical role in this disparity, the possible contribution of other factors largely is unknown. We aimed to investigate the role of serotonin on its contribution of sex discrepancy during HCC. Methods: By using an inducible zebrafish HCC model through hepatocyte-specific transgenic krasV12 expression, differential rates of HCC in male and female fish were characterized by both pharmaceutical and genetic interventions. The findings were validated further in human liver disease samples. Results: Accelerated HCC progression was observed in krasV12-expressing male zebrafish and male fish liver tumors were found to have higher hepatic stellate cell (HSC density and activation. Serotonin, which is essential for HSC survival and activation, similarly were found to be synthesized and accumulated more robustly in males than in females. Serotonin-activated HSCs could promote HCC carcinogenesis and concurrently increase serotonin synthesis via transforming growth factor (Tgfb1 expression, hence contributing to sex disparity in HCC. Analysis of liver disease patient samples showed similar male predominant serotonin accumulation and Tgfb1 expression. Conclusions: In both zebrafish HCC models and human liver disease samples, a predominant serotonin synthesis and accumulation in males resulted in higher HSC density and activation as well as Tgfb1 expression, thus accelerating HCC carcinogenesis in males. Keywords: Liver Cancer, TGFB1, Kras, Zebrafish

  14. Phase II trial of carmustine, cisplatin, and oral etoposide chemotherapy before radiotherapy for grade 3 astrocytoma (anaplastic astrocytoma): Results of North Central Cancer Treatment Group trial 98-72-51

    International Nuclear Information System (INIS)

    Rao, Ravi D.; Krishnan, Sunil; Fitch, Tom R.; Schomberg, Paula J.; Dinapoli, Robert P.; Nordstrom, Kathleen; Scheithauer, Bernd; O'Fallon, Judith R.; Maurer, Matthew J. M.S.; Buckner, Jan C.

    2005-01-01

    Purpose: To evaluate the efficacy of preradiotherapy (RT) chemotherapy with carmustine, cisplatin, and oral etoposide combined with RT in the treatment of newly diagnosed anaplastic astrocytoma. Methods and materials: Therapy consisted of carmustine (40 mg/m 2 /d) on Days 1-3, oral etoposide (50 mg/d) on Days 1-21 and 29-49, and cisplatin (20 mg/m 2 /d i.v.) on Days 1-3 and 29-31. The regimen was repeated every 8 weeks for three cycles, with conventionally fractionated RT (5000 cGy with a 1000-cGy boost) delivered concurrently with the third cycle. Results: A total of 29 patients were enrolled between December 1999 and March 2001. For varying reasons (e.g., progression, refusal, death, or toxicity), only 48% completed the chemotherapy regimen and 76% completed RT. Grade 3-4 toxicities were observed in 14 patients (48%). The primary study endpoint was the 23-month (700-day) survival, the median survival of patients with anaplastic astrocytoma in a previous North Central Cancer Treatment Group trial. To be considered an active treatment, a maximum of 9 patient deaths (of the first 25) were allowed before 700 days. However, 14 patients had died by 700 days after therapy. Conclusion: Our results have demonstrated that pre-RT chemotherapy with this regimen is insufficiently active in patients with anaplastic astrocytoma

  15. Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells

    Directory of Open Access Journals (Sweden)

    Shi D

    2016-11-01

    Full Text Available Dan Shi,1,* Yan Liu,1,* Ronggang Xi,1 Wei Zou,2 Lijun Wu,3 Zhiran Zhang,1 Zhongyang Liu,1 Chao Qu,1 Baoli Xu,1 Xiaobo Wang1 1Department of Pharmacy, The 210th Hospital of People’s Liberation Army, 2College of Life Science, Liaoning Normal University, Dalian, Liaoning, 3Department of Pharmaceutics, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China *These authors contributed equally to this work Abstract: Chronic myelogenous leukemia (CML is characterized by the t(9;22 (q34;q11-associated Bcr-Abl fusion gene, which is an essential element of clinical diagnosis. As a traditional Chinese medicine, realgar has been widely used for the treatment of various diseases for >1,500 years. Inspired by nano-drug, realgar nanoparticles (NPs have been prepared with an average particle size of <100 nm in a previous work. Compared with coarse realgar, the realgar NPs have higher bioavailability. As a principal constituent protein of caveolae, caveolin-1 (Cav-1 participates in regulating various cellular physiological and pathological processes including tumorigenesis and tumor development. In previous studies, it was found that realgar NPs can inhibit several types of tumor cell proliferation. However, the therapeutic effect of realgar NPs on CML has not been fully elucidated. In the present paper, it was demonstrated that realgar NPs can inhibit the proliferation of K562 cells and degrade Bcr-Abl fusion protein effectively. Both apoptosis and autophagy were activated in a dose-dependent manner in realgar NPs treated cells, and the induction of autophagy was associated with class I phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway. Morphological analysis indicated that realgar NPs induced differentiation effectively in CML cells. Furthermore, it was identified that Cav-1 might play a crucial role in realgar NP therapy. In order to study the effects of Cav-1 on K562 cells during

  16. Promoter hypermethylation of mismatch repair gene hMLH1 predicts the clinical response of malignant astrocytomas to nitrosourea.

    Science.gov (United States)

    Fukushima, Takao; Katayama, Yoichi; Watanabe, Takao; Yoshino, Atsuo; Ogino, Akiyoshi; Ohta, Takashi; Komine, Chiaki

    2005-02-15

    In certain types of human cancers, transcriptional inactivation of hMLH1 by promoter hypermethylation plays a causal role in the loss of mismatch repair functions that modulate cytotoxic pathways in response to DNA-damaging agents. The aim of the present study was to investigate the role of promoter methylation of the hMLH1 gene in malignant astrocytomas. We examined the hMLH1 promoter methylation in a homogeneous cohort of patients with 41 malignant astrocytomas treated by 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-2(2-chloroethyl)-3-nitrosourea chemotherapy in combination with radiation and interferon therapy, and assessed the correlation of such methylation with clinical outcome. hMLH1 promoter methylation was found in 6 (15%) of the 41 newly diagnosed malignant astrocytomas. Hypermethylation of the hMLH1 promoter corresponded closely with a loss of immunohistochemical staining for hMLH1 protein (P = 0.0013). Patients with hMLH1-methylated tumors displayed a greater chance of responding to adjuvant therapy as compared with those with hMLH1-unmethylated tumors (P = 0.0150). The presence of hMLH1 hypermethylation was significantly associated with a longer progression-free survival on both univariate analysis (P = 0.0340) and multivariate analysis (P = 0.0161). The present study identified hMLH1 methylation status as a predictor of the clinical response of malignant astrocytomas to chloroethylnitrosourea-based adjuvant therapy. The findings obtained suggest that determination of the methylation status of hMLH1 could provide a potential basis for designing rational chemotherapeutic strategies, as well as for predicting prognosis.

  17. Genes Contributing to Porphyromonas gingivalis Fitness in Abscess and Epithelial Cell Colonization Environments.

    Science.gov (United States)

    Miller, Daniel P; Hutcherson, Justin A; Wang, Yan; Nowakowska, Zuzanna M; Potempa, Jan; Yoder-Himes, Deborah R; Scott, David A; Whiteley, Marvin; Lamont, Richard J

    2017-01-01

    Porphyromonas gingivalis is an important cause of serious periodontal diseases, and is emerging as a pathogen in several systemic conditions including some forms of cancer. Initial colonization by P. gingivalis involves interaction with gingival epithelial cells, and the organism can also access host tissues and spread haematogenously. To better understand the mechanisms underlying these properties, we utilized a highly saturated transposon insertion library of P. gingivalis , and assessed the fitness of mutants during epithelial cell colonization and survival in a murine abscess model by high-throughput sequencing (Tn-Seq). Transposon insertions in many genes previously suspected as contributing to virulence showed significant fitness defects in both screening assays. In addition, a number of genes not previously associated with P. gingivalis virulence were identified as important for fitness. We further examined fitness defects of four such genes by generating defined mutations. Genes encoding a carbamoyl phosphate synthetase, a replication-associated recombination protein, a nitrosative stress responsive HcpR transcription regulator, and RNase Z, a zinc phosphodiesterase, showed a fitness phenotype in epithelial cell colonization and in a competitive abscess infection. This study verifies the importance of several well-characterized putative virulence factors of P. gingivalis and identifies novel fitness determinants of the organism.

  18. Helicobacter pylori-induced premature senescence of extragastric cells may contribute to chronic skin diseases.

    Science.gov (United States)

    Lewinska, Anna; Wnuk, Maciej

    2017-04-01

    Helicobacter pylori, one of the most frequently observed bacterium in the human intestinal flora, has been widely studied since Marshall and Warren documented a link between the presence of H. pylori in the gastrointestinal tract and gastritis and gastric ulcers. Interestingly, H. pylori has also been found in several other epithelial tissues, including the eyes, ears, nose and skin that may have direct or indirect effects on host physiology and may contribute to extragastric diseases, e.g. chronic skin diseases. More recently, it has been shown that H. pylori cytotoxin CagA expression induces cellular senescence of human gastric nonpolarized epithelial cells that may lead to gastrointestinal disorders and systemic inflammation. Here, we hypothesize that also chronic skin diseases may be promoted by stress-induced premature senescence (SIPS) of skin cells, namely fibroblasts and keratinocytes, stimulated with H. pylori cytotoxins. Future studies involving cell culture models and clinical specimens are needed to verify the involvement of H. pylori in SIPS-based chronic skin diseases.

  19. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.

    Directory of Open Access Journals (Sweden)

    Manuel Martinez-Garcia

    Full Text Available Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation.

  20. Genes Contributing to Porphyromonas gingivalis Fitness in Abscess and Epithelial Cell Colonization Environments

    Science.gov (United States)

    Miller, Daniel P.; Hutcherson, Justin A.; Wang, Yan; Nowakowska, Zuzanna M.; Potempa, Jan; Yoder-Himes, Deborah R.; Scott, David A.; Whiteley, Marvin; Lamont, Richard J.

    2017-01-01

    Porphyromonas gingivalis is an important cause of serious periodontal diseases, and is emerging as a pathogen in several systemic conditions including some forms of cancer. Initial colonization by P. gingivalis involves interaction with gingival epithelial cells, and the organism can also access host tissues and spread haematogenously. To better understand the mechanisms underlying these properties, we utilized a highly saturated transposon insertion library of P. gingivalis, and assessed the fitness of mutants during epithelial cell colonization and survival in a murine abscess model by high-throughput sequencing (Tn-Seq). Transposon insertions in many genes previously suspected as contributing to virulence showed significant fitness defects in both screening assays. In addition, a number of genes not previously associated with P. gingivalis virulence were identified as important for fitness. We further examined fitness defects of four such genes by generating defined mutations. Genes encoding a carbamoyl phosphate synthetase, a replication-associated recombination protein, a nitrosative stress responsive HcpR transcription regulator, and RNase Z, a zinc phosphodiesterase, showed a fitness phenotype in epithelial cell colonization and in a competitive abscess infection. This study verifies the importance of several well-characterized putative virulence factors of P. gingivalis and identifies novel fitness determinants of the organism. PMID:28900609

  1. Genes Contributing to Porphyromonas gingivalis Fitness in Abscess and Epithelial Cell Colonization Environments

    Directory of Open Access Journals (Sweden)

    Daniel P. Miller

    2017-08-01

    Full Text Available Porphyromonas gingivalis is an important cause of serious periodontal diseases, and is emerging as a pathogen in several systemic conditions including some forms of cancer. Initial colonization by P. gingivalis involves interaction with gingival epithelial cells, and the organism can also access host tissues and spread haematogenously. To better understand the mechanisms underlying these properties, we utilized a highly saturated transposon insertion library of P. gingivalis, and assessed the fitness of mutants during epithelial cell colonization and survival in a murine abscess model by high-throughput sequencing (Tn-Seq. Transposon insertions in many genes previously suspected as contributing to virulence showed significant fitness defects in both screening assays. In addition, a number of genes not previously associated with P. gingivalis virulence were identified as important for fitness. We further examined fitness defects of four such genes by generating defined mutations. Genes encoding a carbamoyl phosphate synthetase, a replication-associated recombination protein, a nitrosative stress responsive HcpR transcription regulator, and RNase Z, a zinc phosphodiesterase, showed a fitness phenotype in epithelial cell colonization and in a competitive abscess infection. This study verifies the importance of several well-characterized putative virulence factors of P. gingivalis and identifies novel fitness determinants of the organism.

  2. BMI1 is expressed in canine osteosarcoma and contributes to cell growth and chemotherapy resistance.

    Directory of Open Access Journals (Sweden)

    Mehdi Hayat Shahi

    Full Text Available BMI1, a stem cell factor and member of the polycomb group of genes, has been shown to contribute to growth and chemoresistance of several human malignancies including primary osteosarcoma (OSA. Naturally occurring OSA in the dog represents a large animal model of human OSA, however the potential role of BMI1 in canine primary and metastatic OSA has not been examined. Immunohistochemical staining of canine primary and metastatic OSA tumors revealed strong nuclear expression of BMI1. An identical staining pattern was found in both primary and metastatic human OSA tissues. Canine OSA cell lines (Abrams, Moresco, and D17 expressed high levels of BMI1 compared with canine osteoblasts and knockdown or inhibition of BMI1 by siRNA or by small molecule BMI1-inhibitor PTC-209 demonstrated a role for BMI1 in canine OSA cell growth and resistance to carboplatin and doxorubicin chemotherapy. These findings suggest that inhibition of BMI1 in primary or metastatic OSA may improve response to chemotherapy and that the dog may serve as a large animal model to evaluate such therapy.

  3. BMI1 is expressed in canine osteosarcoma and contributes to cell growth and chemotherapy resistance.

    Science.gov (United States)

    Shahi, Mehdi Hayat; York, Daniel; Gandour-Edwards, Regina; Withers, Sita S; Holt, Roseline; Rebhun, Robert B

    2015-01-01

    BMI1, a stem cell factor and member of the polycomb group of genes, has been shown to contribute to growth and chemoresistance of several human malignancies including primary osteosarcoma (OSA). Naturally occurring OSA in the dog represents a large animal model of human OSA, however the potential role of BMI1 in canine primary and metastatic OSA has not been examined. Immunohistochemical staining of canine primary and metastatic OSA tumors revealed strong nuclear expression of BMI1. An identical staining pattern was found in both primary and metastatic human OSA tissues. Canine OSA cell lines (Abrams, Moresco, and D17) expressed high levels of BMI1 compared with canine osteoblasts and knockdown or inhibition of BMI1 by siRNA or by small molecule BMI1-inhibitor PTC-209 demonstrated a role for BMI1 in canine OSA cell growth and resistance to carboplatin and doxorubicin chemotherapy. These findings suggest that inhibition of BMI1 in primary or metastatic OSA may improve response to chemotherapy and that the dog may serve as a large animal model to evaluate such therapy.

  4. MicroRNA-122 mimic transfection contributes to apoptosis in HepG2 cells.

    Science.gov (United States)

    Huang, Hongyan; Zhu, Yueyong; Li, Shaoyang

    2015-11-01

    There is currently a requirement for effective treatment strategies for human hepatocellular carcinoma (HCC), a leading cause of cancer‑associated mortality. MicroRNA-122 (miR-122), a repressor of the endogenous apoptosis regulator Bcl‑w, is frequently downregulated in HCC. Thus, it is hypothesized that the activation of miR‑122 may induce selective hepatocellular apoptosis via caspase activation in a model of HCC. In the present study, an miR‑122 mimic transfection was performed in HepG2 cells, and used to investigate the role and therapeutic potential of miR‑122 in the regulation of HCC‑derived cell lines. The apoptotic rates of HepG2 cells were significantly increased following miR‑122 mimic transfection. Reverse transcription‑polymerase chain reaction analysis revealed that Bcl‑w mRNA was significantly reduced, while the mRNA levels of caspase‑9 and caspase‑3 were markedly increased. The immunocytochemistry results supported the mRNA trends. Collectively, the present results suggest that endogenous miR‑122 contributes to HepG2 apoptosis and that transfection of mimic miR‑122 normalizes apoptotic levels in a model of HCC.

  5. Preliminary individualized chemotherapy for malignant astrocytomas based on O6-methylguanine-deoxyribonucleic acid methyltransferase methylation analysis.

    Science.gov (United States)

    Watanabe, Takao; Katayama, Yoichi; Ogino, Akiyoshi; Ohta, Takashi; Yoshino, Atsuo; Fukushima, Takao

    2006-08-01

    O(6)-methylguanine-deoxyribonucleic acid methyltransferase gene (MGMT) methylation is apparently correlated with responsiveness to nitrosourea chemotherapy, suggesting this alkylating agent should be effective against MGMT-methylated tumors. MGMT appears not to be linked to platinum resistance, so platinum chemotherapy should be used for MGMT-unmethylated tumors. This study was a preliminary trial of individualized chemotherapy based on MGMT methylation status in a total of 20 patients with newly diagnosed malignant astrocytomas (9 anaplastic astrocytomas and 11 glioblastomas multiforme). The procarbazine, 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-2(2-chloroethyl)-3-nitrosourea, and vincristine (PAV) regimen was administered to seven patients with MGMT-methylated tumors, and the carboplatin and etoposide (CE) regimen was administered to 13 patients with MGMT-unmethylated tumors. Objective response to the PAV therapy was noted in all three patients with measurable residual tumor (2 complete responses and 1 partial response). Five of the seven patients continued to be disease-free after initiation of the PAV therapy. Objective response to the CE therapy was seen in only one of seven patients with measurable residual tumor (1 partial response). Three of the 13 patients were free from progression, whereas the remaining 10 patients showed early progression. The PAV regimen is effective against MGMT-methylated malignant astrocytomas, but the CE regimen is not useful at the given dose and schedule in MGMT-unmethylated tumors.

  6. First-line nitrosourea-based chemotherapy in symptomatic non-resectable supratentorial pure low-grade astrocytomas.

    Science.gov (United States)

    Frenay, M P; Fontaine, D; Vandenbos, F; Lebrun, C

    2005-09-01

    At the present time, there are no proven beneficial effects of chemotherapy (CT) for the treatment of pure low-grade astrocytomas. Brain radiotherapy (RT) still remains the standard treatment in order to reduce or delay tumor progression or symptoms, despite possible long-term neurologic complications. We report 10 patients, with histologically proven pure low-grade fibrillary astrocytomas, to which we administered a first-line nitrosourea-based CT. All patients were symptomatic with pharmaco-resistant epilepsy or neurologic symptoms, and had been rejected for neurosurgical resection. All patients with epilepsy had a clinical improvement with reduction in seizure frequency and 60% became seizure-free. CT was well tolerated; all patients developed myelosuppression with 40% of grade III/IV hematotoxicity. Seven were alive at the time of writing with a mean follow-up of 6.5 years (3.5-12) from first recorded symptoms. The three deceased patients died 7.5, 7.5, and 8.5 years from first symptoms. These results demonstrate that some patients with symptomatic non-resectable fibrillary low-grade astrocytomas can be treated with up-front CT to improve their neurologic status. This report suggests that benefits of CT on symptoms, survival, and quality of life should be prospectively compared with RT.

  7. Surgical Management of Pilocytic Astrocytoma of the Optic Nerve: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Ifeoluwa Apanisile

    2017-01-01

    Full Text Available Optic nerve astrocytomas (ONAs are frequent types of optic nerve gliomas (ONGs, which can affect the visual pathway. An 18-year-old male patient was admitted to our department with right-sided intraorbital/retrobulbar swelling, which progressively grew over several months. Clinical examination showed right-sided diplopia, mydriasis, low visual acuity (0.4, exophthalmus (3 cm, epiphora, and severe retrobulbar pain. There was a family history of high-grade (IV astrocytomas in which two of the family members died due to the disease. Preoperative MRI scan revealed a soft tissue mass around the retrobulbar area of the right eye with intact orbital bony walls. Surgery was performed whereby it was dissected freely from the muscles and was separated from the optic nerve and the globe. Histopathologic analysis confirmed a benign astrocytoma. The follow-up examination revealed no recurrent or residual tumor. A systemic review of the literature indicates that early diagnosis and experienced multidisciplinary management are required in case of unilateral, resectable forms of ONAs with no distant metastasis, in order to provide a long-time survival of patients. Surgical intervention of unilateral ONAs is a relatively safe procedure, allowing complete or partial tumor removal with minimal morbidity and low recurrence rate.

  8. Combined value of susceptibility weighted imaging and dynamic susceptibility-weighted contrast-enhanced MR perfusion-weighted imaging in brain astrocytoma grading

    International Nuclear Information System (INIS)

    Wang Xiaochun; Zhang Hui; Qin Jiangbo; Wang Le; Wu Xiaofeng

    2012-01-01

    Objective: To assess the value of combination of susceptibility weighted imaging (SWI) and dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion-weighted magnetic resonance imaging in astrocytoma grading. Methods: SWI and DSC scans were performed in 82 patients with pathologically confirmed astrocytoma. The patient group consisted of grade Ⅱ (15), grade Ⅲ (10), and grade Ⅳ (57). The intratumoral susceptibility signal intensity (ITSS) and relative cerebral blood volume (rCBV) max were used to determine the grade of astrocytomas by Kruskal Wallis test, Welch test, Spearman correlation coefficients, Pearson correlation coefficients, and receiver operating characteristic curve (ROC)statistic methods. Results: There were no ITSS in 14 cases of low-grade astrocytomas, the degree of ITSS were grade 1 to 3 in anaplastic astrocytomas, the degree of ITSS were grade 3 in all of the glioblastomas, the degree of ITSS were significant difference in all grades (H=71.96, P<0.01). rCBV max in grade Ⅱ, grade Ⅲ and grade Ⅳ astrocytomas were 1.26 ± 0.42, 3.59 ± 2.09 and 8.34 ± 1.16 respectively, rCBV max were significant difference in all grades (F'=681.72, P<0.01). ITSS showed significant correlation with rCBV max (r=0.72, P<0.01) and tumor grades (r=0.89, P<0.01), and rCBV and tumor grades showed significant correlation (r=0.78, P<0.01). Area under the ROC curve application SWI, DSC, SWI and DSC in differentiation of the grade Ⅱ and grade Ⅲ astrocytomas were 0.99, 0.93, 1.00, differentiate grade Ⅲ from grade Ⅳ were 0.70, 0.94, 0.94, and differentiate high-grade from low-grade astrocytomas were 1.00, 0.99, 1.00. Conclusions: ITSS is helpful to determine the grade of astrocytomas. The use of SWI in combination with DSC may improve the diagnostic accuracy of astrocytoma grading. (authors)

  9. Evidence that CFTR is expressed in rat tracheal smooth muscle cells and contributes to bronchodilation

    Directory of Open Access Journals (Sweden)

    Mettey Yvette

    2006-08-01

    Full Text Available Abstract Background The airway functions are profoundly affected in many diseases including asthma, chronic obstructive pulmonary disease (COPD and cystic fibrosis (CF. CF the most common lethal autosomal recessive genetic disease is caused by mutations of the CFTR gene, which normally encodes a multifunctional and integral membrane protein, the CF transmembrane conductance regulator (CFTR expressed in airway epithelial cells. Methods To demonstrate that CFTR is also expressed in tracheal smooth muscle cells (TSMC, we used iodide efflux assay to analyse the chloride transports in organ culture of rat TSMC, immunofluorescence study to localize CFTR proteins and isometric contraction measurement on isolated tracheal rings to observe the implication of CFTR in the bronchodilation. Results We characterized three different pathways stimulated by the cAMP agonist forskolin and the isoflavone agent genistein, by the calcium ionophore A23187 and by hypo-osmotic challenge. The pharmacology of the cAMP-dependent iodide efflux was investigated in detail. We demonstrated in rat TSMC that it is remarkably similar to that of the epithelial CFTR, both for activation (using three benzo [c]quinolizinium derivatives and for inhibition (glibenclamide, DPC and CFTRinh-172. Using rat tracheal rings, we observed that the activation of CFTR by benzoquinolizinium derivatives in TSMC leads to CFTRinh-172-sensitive bronchodilation after constriction with carbachol. An immunolocalisation study confirmed expression of CFTR in tracheal myocytes. Conclusion Altogether, these observations revealed that CFTR in the airways of rat is expressed not only in the epithelial cells but also in tracheal smooth muscle cells leading to the hypothesis that this ionic channel could contribute to bronchodilation.

  10. Bone Marrow Stromal Cells Contribute to Bone Formation Following Infusion into Femoral Cavities of a Mouse Model of Osteogenesis Imperfecta

    Science.gov (United States)

    Li, Feng; Wang, Xujun; Niyibizi, Christopher

    2010-01-01

    Currently, there are conflicting data in literature regarding contribution of bone marrow stromal cells (BMSCs) to bone formation when the cells are systemically delivered in recipient animals. To understand if BMSCs contribute to bone cell phenotype and bone formation in osteogenesis imperfecta bones (OI), MSCs marked with GFP were directly infused into the femurs of a mouse model of OI (oim). The contribution of the cells to the cell phenotype and bone formation was assessed by histology, immunohistochemistry and biomechanical loading of recipient bones. Two weeks following infusion of BMSCs, histological examination of the recipient femurs demonstrated presence of new bone when compared to femurs injected with saline which showed little or no bone formation. The new bone contained few donor cells as demonstrated by GFP fluorescence. At six weeks following cell injection, new bone was still detectable in the recipient femurs but was enhanced by injection of the cells suspended in pepsin solublized type I collagen. Immunofluorescence and immunohistochemical staining showed that donor GFP positive cells in the new bone were localized with osteocalcin expressing cells suggesting that the cells differentiated into osteoblasts in vivo. Biomechanical loading to failure in thee point bending, revealed that, femurs infused with BMSCs in PBS or in soluble type I collagen were biomechanically stronger than those injected with PBS or type I collagen alone. Taken together, the results indicate that transplanted cells differentiated into osteoblasts in vivo and contributed to bone formation in vivo; we also speculate that donor cells induced differentiation or recruitment of endogenous cells to initiate reparative process at early stages following transplantation. PMID:20570757

  11. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Frost, Jarvist M.; Butler, Keith T.; Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2014-08-01

    We report a model describing the molecular orientation disorder in CH{sub 3}NH{sub 3}PbI{sub 3}, solving a classical Hamiltonian parametrised with electronic structure calculations, with the nature of the motions informed by ab initio molecular dynamics. We investigate the temperature and static electric field dependence of the equilibrium ferroelectric (molecular) domain structure and resulting polarisability. A rich domain structure of twinned molecular dipoles is observed, strongly varying as a function of temperature and applied electric field. We propose that the internal electrical fields associated with microscopic polarisation domains contribute to hysteretic anomalies in the current-voltage response of hybrid organic-inorganic perovskite solar cells due to variations in electron-hole recombination in the bulk.

  12. Modulation of TRAIL resistance in colon carcinoma cells: Different contributions of DR4 and DR5

    International Nuclear Information System (INIS)

    Geelen, Caroline MM van; Pennarun, Bodvael; Le, Phuong TK; Vries, Elisabeth GE de; Jong, Steven de

    2011-01-01

    rhTRAIL is a therapeutic agent, derived from the TRAIL cytokine, which induces apoptosis in cancer cells by activating the membrane death receptors 4 and 5 (DR4 and DR5). Here, we investigated each receptor's contribution to rhTRAIL sensitivity and rhTRAIL resistance. We assessed whether agonistic DR4 or DR5 antibodies could be used to circumvent rhTRAIL resistance, alone or in combination with various chemotherapies. Our study was performed in an isogenic model comprised of the SW948 human colon carcinoma cell line and its rhTRAIL resistant sub-line SW948-TR. Effects of rhTRAIL and agonistic DR4/DR5 antibodies on cell viability were measured using MTT assays and identification of morphological changes characteristic of apoptosis, after acridine orange staining. Sensitivity to the different death receptor ligands was stimulated using pretreatment with the cytokine IFN-gamma and the proteasome inhibitor MG-132. To investigate the mechanisms underlying the changes in rhTRAIL sensitivity, alterations in expression levels of targets of interest were measured by Western blot analysis. Co-immunoprecipitation was used to determine the composition of the death-inducing signalling complex at the cell membrane. SW948 cells were sensitive to all three of the DR-targeting agents tested, although the agonistic DR5 antibody induced only weak caspase 8 cleavage and limited apoptosis. Surprisingly, agonistic DR4 and DR5 antibodies induced equivalent DISC formation and caspase 8 cleavage at the level of their individual receptors, suggesting impairment of further caspase 8 processing upon DR5 stimulation. SW948-TR cells were cross-resistant to all DR-targeting agents as a result of decreased caspase 8 expression levels. Caspase 8 protein expression was restored by MG-132 and IFN-gamma pretreatment, which also re-established sensitivity to rhTRAIL and agonistic DR4 antibody in SW948-TR. Surprisingly, MG-132 but not IFN-gamma could also increase DR5-mediated apoptosis in SW948

  13. Modulation of TRAIL resistance in colon carcinoma cells: Different contributions of DR4 and DR5

    Directory of Open Access Journals (Sweden)

    de Vries Elisabeth GE

    2011-01-01

    Full Text Available Abstract Background rhTRAIL is a therapeutic agent, derived from the TRAIL cytokine, which induces apoptosis in cancer cells by activating the membrane death receptors 4 and 5 (DR4 and DR5. Here, we investigated each receptor's contribution to rhTRAIL sensitivity and rhTRAIL resistance. We assessed whether agonistic DR4 or DR5 antibodies could be used to circumvent rhTRAIL resistance, alone or in combination with various chemotherapies. Methods Our study was performed in an isogenic model comprised of the SW948 human colon carcinoma cell line and its rhTRAIL resistant sub-line SW948-TR. Effects of rhTRAIL and agonistic DR4/DR5 antibodies on cell viability were measured using MTT assays and identification of morphological changes characteristic of apoptosis, after acridine orange staining. Sensitivity to the different death receptor ligands was stimulated using pretreatment with the cytokine IFN-gamma and the proteasome inhibitor MG-132. To investigate the mechanisms underlying the changes in rhTRAIL sensitivity, alterations in expression levels of targets of interest were measured by Western blot analysis. Co-immunoprecipitation was used to determine the composition of the death-inducing signalling complex at the cell membrane. Results SW948 cells were sensitive to all three of the DR-targeting agents tested, although the agonistic DR5 antibody induced only weak caspase 8 cleavage and limited apoptosis. Surprisingly, agonistic DR4 and DR5 antibodies induced equivalent DISC formation and caspase 8 cleavage at the level of their individual receptors, suggesting impairment of further caspase 8 processing upon DR5 stimulation. SW948-TR cells were cross-resistant to all DR-targeting agents as a result of decreased caspase 8 expression levels. Caspase 8 protein expression was restored by MG-132 and IFN-gamma pretreatment, which also re-established sensitivity to rhTRAIL and agonistic DR4 antibody in SW948-TR. Surprisingly, MG-132 but not IFN

  14. Marginal Contribution-Based Distributed Subchannel Allocation in Small Cell Networks.

    Science.gov (United States)

    Shah, Shashi; Kittipiyakul, Somsak; Lim, Yuto; Tan, Yasuo

    2018-05-10

    The paper presents a game theoretic solution for distributed subchannel allocation problem in small cell networks (SCNs) analyzed under the physical interference model. The objective is to find a distributed solution that maximizes the welfare of the SCNs, defined as the total system capacity. Although the problem can be addressed through best-response (BR) dynamics, the existence of a steady-state solution, i.e., a pure strategy Nash equilibrium (NE), cannot be guaranteed. Potential games (PGs) ensure convergence to a pure strategy NE when players rationally play according to some specified learning rules. However, such a performance guarantee comes at the expense of complete knowledge of the SCNs. To overcome such requirements, properties of PGs are exploited for scalable implementations, where we utilize the concept of marginal contribution (MC) as a tool to design learning rules of players’ utility and propose the marginal contribution-based best-response (MCBR) algorithm of low computational complexity for the distributed subchannel allocation problem. Finally, we validate and evaluate the proposed scheme through simulations for various performance metrics.

  15. Marginal Contribution-Based Distributed Subchannel Allocation in Small Cell Networks

    Directory of Open Access Journals (Sweden)

    Shashi Shah

    2018-05-01

    Full Text Available The paper presents a game theoretic solution for distributed subchannel allocation problem in small cell networks (SCNs analyzed under the physical interference model. The objective is to find a distributed solution that maximizes the welfare of the SCNs, defined as the total system capacity. Although the problem can be addressed through best-response (BR dynamics, the existence of a steady-state solution, i.e., a pure strategy Nash equilibrium (NE, cannot be guaranteed. Potential games (PGs ensure convergence to a pure strategy NE when players rationally play according to some specified learning rules. However, such a performance guarantee comes at the expense of complete knowledge of the SCNs. To overcome such requirements, properties of PGs are exploited for scalable implementations, where we utilize the concept of marginal contribution (MC as a tool to design learning rules of players’ utility and propose the marginal contribution-based best-response (MCBR algorithm of low computational complexity for the distributed subchannel allocation problem. Finally, we validate and evaluate the proposed scheme through simulations for various performance metrics.

  16. Prostate Cancer Stem-like Cells Contribute to the Development of Castration-Resistant Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Diane Ojo

    2015-11-01

    Full Text Available Androgen deprivation therapy (ADT has been the standard care for patients with advanced prostate cancer (PC since the 1940s. Although ADT shows clear benefits for many patients, castration-resistant prostate cancer (CRPC inevitably occurs. In fact, with the two recent FDA-approved second-generation anti-androgens abiraterone and enzalutamide, resistance develops rapidly in patients with CRPC, despite their initial effectiveness. The lack of effective therapeutic solutions towards CRPC largely reflects our limited understanding of the underlying mechanisms responsible for CRPC development. While persistent androgen receptor (AR signaling under castration levels of serum testosterone (<50 ng/mL contributes to resistance to ADT, it is also clear that CRPC evolves via complex mechanisms. Nevertheless, the physiological impact of individual mechanisms and whether these mechanisms function in a cohesive manner in promoting CRPC are elusive. In spite of these uncertainties, emerging evidence supports a critical role of prostate cancer stem-like cells (PCSLCs in stimulating CRPC evolution and resistance to abiraterone and enzalutamide. In this review, we will discuss the recent evidence supporting the involvement of PCSLC in CRPC acquisition as well as the pathways and factors contributing to PCSLC expansion in response to ADT.

  17. Contribution of ketone bodies to cholesterogenesis in Morris hepatoma 7777 cells

    International Nuclear Information System (INIS)

    Hilderbrandt, L.; Elson, C.; Shrago, E.

    1990-01-01

    Cholesterol synthesis in neoplastic tissues is typically measured in incubations of minced tissue or tissue slices with 10 mM concentrations of individual substrates. Carbon incorporation into cholesterol from [ 14 C] labelled substrates by freshly isolated hepatoma cells was measured after one hour incubation with 10 mm single substrates. These observations were extended by measuring cholesterol synthesis supported by [ 14 C] substrates in a media containing a mixture of substrates at physiological concentrations: 5.0 mM glucose, 1.3 mM D(-)-3-hydroxybutyrate, 0.5 mM acetoacetate, 0.3 mM acetate, 0.3 mM oleate, 0.3 mM palmitate, 0.65 mM glutamine, 1.4 mM lactate and 0.1 mM pyruvate in Eagle's modified essential medium. Under single substrate conditions, the ketone bodies contribute substantially to cholesterogenesis. Estimates of the quantitative contribution of each substrate to total cholesterol synthesis are reported

  18. The value of diffusion weighted imaging in differentiating intracranial tuberculomas from high-grade astrocytomas and metastases

    International Nuclear Information System (INIS)

    Peng Juan; Luo Tianyou; Lv Fajin; Fang Weidong; Wu Jingquan; Ouyang Yu; Li Yongmei

    2007-01-01

    Objective: To explore the value of diffusion weighted imaging (DWI) in differentiating intracranial tuberculomas from high-grade astrocytomas and metastases. Methods: The conventional MR imaging and DWI were performed in 50 eases (14 cases with intracranial tuberculomas, 15 cases with high- grade astrocytomas, and 21 cases with metastases) before treatment or operation. The mean apparent diffusion coefficient (ADC) values and relative apparent diffusion coefficient (rADC) values were calculated from the mass as well as from the peripheral edema regions of intracranial lesions. Results: The mean ADC values and rADC values were (1.2±0.2) x 10 -3 mm 2 ·s -1 and 1.6±0.3 in the mass of intracranial tuberculomas respectively; (0.8±0.1) x 10 -3 mm 2 ·s -1 and 1.1±0.1 in the parenehyma of high-grade astrocytomas; (0.8±0.1) x 10 -3 mm 2 ·s -1 and 1.0±0.2 in the parenchyma of metastases. There was significant difference of the mean ADC values (F=33.57, P -3 mm 2 ·s -1 and 2.5±0.2 in the peripheral edema regions of intracranial tuberculomas respectively; (1.4±0.2) x 10 -3 mm 2 ·s -1 and 1.8±0.3 in the peripheral edema regions of high-grade astrocytomas; and (1.9±0.2) x 10 -3 mm 2 ·s -1 and 2.3±0.5 in the peripheral edema regions of metastases. There was also significant difference in the mean ADC values (F23.17, P<0.01) or rADC values (F=5.94, P<0.01) among the peripheral edema regions of the three groups. Conclusion: The ADC values and rADC values are quite effective in differentiating intracranial tuberculoma from high-grade astrocytoma and metastasis. (authors)

  19. Constitutional chromosomal events at 22q11 and 15q26 in a child with a pilocytic astrocytoma of the spinal cord.

    Science.gov (United States)

    Mascelli, Samantha; Severino, Mariasavina; Raso, Alessandro; Nozza, Paolo; Tassano, Elisa; Morana, Giovanni; De Marco, Patrizia; Merello, Elisa; Milanaccio, Claudia; Pavanello, Marco; Rossi, Andrea; Cama, Armando; Garrè, Maria Luisa; Capra, Valeria

    2014-01-01

    We report on a 9-years-old patient with mild intellectual disability, facial dimorphisms, bilateral semicircular canal dysplasia, periventricular nodular heterotopias, bilateral hippocampal malrotation and abnormal cerebellar foliation, who developed mild motor impairment and gait disorder due to a pilocytic astrocytoma of the spinal cord. Array-CGH analysis revealed two paternal inherited chromosomal events: a 484.3 Kb duplication on chromosome 15q26.3 and a 247 Kb deletion on 22q11.23. Further, a second de novo 1.5 Mb deletion on 22q11.21 occurred. Chromosome 22 at q11.2 and chromosome 15 at q24q26 are considered unstable regions subjected to copy number variations, i.e. structural alterations of genome, mediated by low copy repeat sequences or segmental duplications. The link between some structural CNVs, which compromise fundamental processes controlling DNA stability, and genomic disorders suggest a plausible scenario for cancer predisposition. Evaluation of the genes at the breakpoints cannot account simultaneously for the phenotype and tumour development in this patient. The two paternal inherited CNVs arguably are not pathogenic and do not contribute to the clinical manifestations. Similarly, although the de novo large deletion at 22q11.21 overlaps with the Di George (DGS) critical region and results in haploinsufficiency of genes compromising critical processes for DNA stability, this case lacks several hallmarks of DGS.

  20. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie

    2010-01-01

    brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development.......Malignant gliomas, the deadliest of brain neoplasms, show rampant genetic instability and resistance to genotoxic therapies, implicating potentially aberrant DNA damage response (DDR) in glioma pathogenesis and treatment failure. Here, we report on gross, aberrant constitutive activation of DNA...

  1. Apoptosis of Endothelial Cells by 13-HPODE Contributes to Impairment of Endothelial Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Valerie E. Ryman

    2016-01-01

    Full Text Available Inflammation is an essential host response during bacterial infections such as bovine mastitis. Endothelial cells are critical for an appropriate inflammatory response and loss of vascular barrier integrity is implicated in the pathogenesis of Streptococcus uberis-induced mastitis. Previous studies suggested that accumulation of linoleic acid (LA oxygenation products derived from 15-lipoxygenase-1 (15-LOX-1 metabolism could regulate vascular functions. The initial LA derivative from the 15-LOX-1 pathway, 13-hydroperoxyoctadecadienoic acid (HPODE, can induce endothelial death, whereas the reduced hydroxyl product, 13-hydroxyoctadecadienoic acid (HODE, is abundantly produced during vascular activation. However, the relative contribution of specific LA-derived metabolites on impairment of mammary endothelial integrity is unknown. Our hypothesis was that S. uberis-induced LA-derived 15-LOX-1 oxygenation products impair mammary endothelial barrier integrity by apoptosis. Exposure of bovine mammary endothelial cells (BMEC to S. uberis did not increase 15-LOX-1 LA metabolism. However, S. uberis challenge of bovine monocytes demonstrated that monocytes may be a significant source of both 13-HPODE and 13-HODE during mastitis. Exposure of BMEC to 13-HPODE, but not 13-HODE, significantly reduced endothelial barrier integrity and increased apoptosis. Changing oxidant status by coexposure to an antioxidant during 13-HPODE treatment prevented adverse effects of 13-HPODE, including amelioration of apoptosis. A better understanding of how the oxidant status of the vascular microenvironment impacts endothelial barrier properties could lead to more efficacious treatments for S. uberis mastitis.

  2. Malignant astrocytoma: hyperfractionated and standard radiotherapy with chemotherapy in a randomized prospective clinical trial

    International Nuclear Information System (INIS)

    Payne, D.G.; Simpson, W.J.; Keen, C.; Platts, M.E.

    1982-01-01

    A prospective randomized trial of 157 patients with malignant astrocytomas (Grade III or IV) was carried out at a single institution. The minimization technique ensured balanced distribution of prognostic factors between the treatment groups. All received oral lomustine (CCNU, 80 mg/m 2 ) six weekly and hydroxyurea (HU, 3.5 gm/m 2 over 5 days) three weekly, for one year or until recurrence, with doses adjusted for myelosuppression. Patients were randomized to daily (5000 rad in 25 fractions (fr) in 5 weeks) or Q3h (every 3 hours) Cobalt 60 irradiation (3600-4000 rad in 36-40 fr of 100 rad each, given 4 fr per day at 3-hour intervals over two weeks). Steroid therapy (up to 16 mg day dexamethasone) was permitted. Complications were moderate and equivalent in the two groups. No significant survival or toxicity differences were seen between the two groups. Age, initial performance status, and extent of surgical resection were found to be significant (P<0.01) prognostic factors for survival. Median survival of the whole group was 48 weeks with a minimum follow-up of one year. There was no advantage to large radiation fields. The hyperfractionation and daily regimes had similar efficacy and toxicity. Hyperfractionation with chemotherapy offers a useful alternative approach in the management of this disease

  3. Low-grade astrocytoma: surgical outcomes in eloquent versus non-eloquent brain areas

    Directory of Open Access Journals (Sweden)

    André de Macedo Bianco

    2013-01-01

    Full Text Available A retrospective study of 81 patients with low-grade astrocytoma (LGA comparing the efficacy of aggressive versus less aggressive surgery in eloquent and non-eloquent brain areas was conducted. Extent of surgical resection was analyzed to assess overall survival (OS and progression- free survival (PFS. Degree of tumor resection was classified as gross total resection (GTR, subtotal resection (STR or biopsy. GTR, STR and biopsy in patients with tumors in non-eloquent areas were performed in 31, 48 and 21% subjects, whereas in patients with tumors in eloquent areas resections were 22.5, 35 and 42.5%. Overall survival was 4.7 and 1.9 years in patients with tumors in non-eloquent brain areas submitted to GTR/STR and biopsy (p=0.013, whereas overall survival among patients with tumors in eloquent area was 4.5 and 2.1 years (p=0.33. Improved outcome for adult patients with LGA is predicted by more aggressive surgery in both eloquent and non-eloquent brain areas.

  4. A case of late presentation of precocious puberty due to pituitary astrocytoma

    Directory of Open Access Journals (Sweden)

    Fahimeh Soheilipour

    2015-08-01

    Full Text Available The importance of assessing precocious puberty, especially in boys, is not only due to the great complications it has for the affected patients, but also to the fatal underlying diseases. Therefore, children with central precocious puberty should first undergo neuroimaging. In this case study, we present a 9.5-year-old boy who was referred to Rasoul-e-Akram Medical Center with increased intracranial pressure, nausea/vomiting, and severe headache having begun three months earlier. The development of secondary sexual changes had started two years earlier, and had been neglected. His testes, penis, and pubic hair were at the fourth Tanner stage. He had elevated luteinizing and follicle stimulating hormones. Microscopic evaluation confirmed low-grade pilocytic astrocytoma WHO grade 1. Emergency brain surgery was conducted in which the brain was decompressed, and chemotherapy was started postoperatively. Two years after the surgery, he remains under chemotherapy, with obvious sexual maturation and a height of 154 cm. Training families and medical staff efficiently can help prevent the late diagnosis and treatment of precocious puberty and, as a result, help patients in their social life.

  5. Rapid increase in cystic volume of an anaplastic astrocytoma misdiagnosed as neurocysticercosis: A case report

    Science.gov (United States)

    Li, Hong-Jiang; Han, Hong-Xiu; Feng, Dong-Fu

    2016-01-01

    Reports describing a rapid increase in the cystic volume of anaplastic astrocytoma (AA) in a short time frame are rare. The present study reports the case of a 68-year-old male who was admitted to the No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine (Shanghai, China), with a small cystic brain lesion and positive immunological testing for cysticercosis. Head magnetic resonance imaging (MRI) showed a cystic lesion, 6 mm in diameter, in the left frontal lobe. Neurocysticercosis was suspected and the patient was treated with a clinical trial of albendazole and steroids. A period of 25 days later, the patient's condition had deteriorated, and MRI revealed a cystic lesion in the left frontal lobe; thereafter, the cystic lesion was removed and a diagnosis of AA was established. The tumor was soft, ivory white and gelatinous due to myxoid degeneration. In this case, tumor-related angiogenesis and microvascular extravasation (blood-brain barrier disruption) may have been the main cause of the rapid increase in the cystic volume in such a short time frame. The similarity of the glioma and cysticercus antigens may have been the cause of the positive reactions in the cystic fluid. The present study reports the rare occurrence of a rapid increase of cystic volume and potential diagnostic difficulties. PMID:27698865

  6. Effectiveness of interferon-beta and temozolomide combination therapy against temozolomide-refractory recurrent anaplastic astrocytoma

    Directory of Open Access Journals (Sweden)

    Arai Hajime

    2007-08-01

    Full Text Available Abstract Background Malignant gliomas recur even after extensive surgery and chemo-radiotherapy. Although a relatively novel chemotherapeutic agent, temozolomide (TMZ, has demonstrated promising activity against recurrent glioma, the effects last only a few months and drug resistance develops thereafter in most cases. Induction of O6-methylguanine-DNA methyltransferase (MGMT in tumors is considered to be responsible for resistance to TMZ. Interferon-beta has been reported to suppress MGMT in an experimental glioma model. Here we report a patient with TMZ-refractory anaplastic astrocytoma (AA who was treated successfully with a combination of interferon-beta and TMZ. Case presentation A patient with recurrent AA after radiation-chemotherapy and stereotactic radiotherapy was treated with TMZ. After 6 cycles, the tumor became refractory to TMZ, and the patient was treated with interferon-beta at 3 × 106 international units/body, followed by 5 consecutive days of 200 mg/m2 TMZ in cycles of 28 days. After the second cycle the tumor decreased in size by 50% (PR. The tumor showed further shrinkage after 8 months and the patient's KPS improved from 70% to 100%. The immunohistochemical study of the initial tumor specimen confirmed positive MGMT protein expression. Conclusion It is considered that interferon-beta pre-administration increased the TMZ sensitivity of the glioma, which had been refractory to TMZ monotherapy.

  7. ROS accumulation and IGF-IR inhibition contribute to fenofibrate/PPARα -mediated inhibition of Glioma cell motility in vitro

    Directory of Open Access Journals (Sweden)

    Del Valle Luis

    2010-06-01

    Full Text Available Abstract Background Glioblastomas are characterized by rapid cell growth, aggressive CNS infiltration, and are resistant to all known anticancer regimens. Recent studies indicate that fibrates and statins possess anticancer potential. Fenofibrate is a potent agonist of peroxisome proliferator activated receptor alpha (PPARα that can switch energy metabolism from glycolysis to fatty acid β-oxidation, and has low systemic toxicity. Fenofibrate also attenuates IGF-I-mediated cellular responses, which could be relevant in the process of glioblastoma cell dispersal. Methods The effects of fenofibrate on Glioma cell motility, IGF-I receptor (IGF-IR signaling, PPARα activity, reactive oxygen species (ROS metabolism, mitochondrial potential, and ATP production were analyzed in human glioma cell lines. Results Fenofibrate treatment attenuated IGF-I signaling responses and repressed cell motility of LN-229 and T98G Glioma cell lines. In the absence of fenofibrate, specific inhibition of the IGF-IR had only modest effects on Glioma cell motility. Further experiments revealed that PPARα-dependent accumulation of ROS is a strong contributing factor in Glioma cell lines responses to fenofibrate. The ROS scavenger, N-acetyl-cysteine (NAC, restored cell motility, improved mitochondrial potential, and increased ATP levels in fenofibrate treated Glioma cell lines. Conclusions Our results indicate that although fenofibrate-mediated inhibition of the IGF-IR may not be sufficient in counteracting Glioma cell dispersal, PPARα-dependent metabolic switch and the resulting ROS accumulation strongly contribute to the inhibition of these devastating brain tumor cells.

  8. Depletion of NAD pool contributes to impairment of endothelial progenitor cell mobilization in diabetes.

    Science.gov (United States)

    Wang, Pei; Yang, Xi; Zhang, Zheng; Song, Jie; Guan, Yun-Feng; Zou, Da-Jin; Miao, Chao-Yu

    2016-06-01

    The impaired mobilization of endothelial progenitor cells (EPCs) from bone marrow (BM) critically contributes to the diabetes-associated vascular complications. Here, we investigated the relationship between the nicotinamide phosphoribosyltransferase (NAMPT)-controlled nicotinamide adenine dinucleotide (NAD) metabolism and the impaired mobilization of BM-derived EPCs in diabetic condition. The NAMPT-NAD pool in BM and BM-derived EPCs in wild-type (WT) and diabetic db/db mice was determined. Nicotinamide, a natural substrate for NAD biosynthesis, was administrated for 2weeks in db/db mice to examine the influence of enhancing NAD pool on BM and blood EPCs number. The modulations of stromal cell-derived factor-1α (SDF-1α) and endothelial nitric oxide synthase (eNOS) protein in BM were measured using immunoblotting. The EPCs intracellular NAMPT level and NAD concentration, as well as the blood EPCs number, were compared between 9 healthy people and 16 patients with type 2 diabetes mellitus (T2DM). The T2DM patients were treated with nicotinamide for two weeks and then the blood EPCs number was determined. Moreover, the association between blood EPCs numbers and EPCs intracellular NAD(+)/NAMPT protein levels in 21 healthy individuals was determined. We found that NAD concentration and NAMPT expression in BM and BM-derived EPCs of db/db mice were significantly lower than those in WT mice BM. Enhancing NAD pool not only increased the EPCs intracellular NAD concentration and blood EPCs number, but also improved post-ischemic wound healing and blood reperfusion in db/db mice with hind-limb ischemia model. Enhancing NAD pool rescued the impaired modulations of stromal cell-derived factor-1α (SDF-1α) and endothelial nitric oxide synthase (eNOS) protein levels in db/db mice BM upon hind-limb ischemia. In addition, enhancing NAD pool significantly inhibited PARP and caspase-3 activates in db/db mice BM. The intracellular NAMPT-NAD pool was positively associated with blood

  9. Postotic and preotic cranial neural crest cells differently contribute to thyroid development.

    Science.gov (United States)

    Maeda, Kazuhiro; Asai, Rieko; Maruyama, Kazuaki; Kurihara, Yukiko; Nakanishi, Toshio; Kurihara, Hiroki; Miyagawa-Tomita, Sachiko

    2016-01-01

    Thyroid development and formation vary among species, but in most species the thyroid morphogenesis consists of five stages: specification, budding, descent, bilobation and folliculogenesis. The detailed mechanisms of these stages have not been fully clarified. During early development, the cranial neural crest (CNC) contributes to the thyroid gland. The removal of the postotic CNC (corresponding to rhombomeres 6, 7 and 8, also known as the cardiac neural crest) results in abnormalities of the cardiovascular system, thymus, parathyroid glands, and thyroid gland. To investigate the influence of the CNC on thyroid bilobation process, we divided the CNC into two regions, the postotic CNC and the preotic CNC (from the mesencephalon to rhombomere 5) regions and examined. We found that preotic CNC-ablated embryos had a unilateral thyroid lobe, and confirmed the presence of a single lobe or the absence of lobes in postotic CNC-ablated chick embryos. The thyroid anlage in each region-ablated embryos was of a normal size at the descent stage, but at a later stage, the thyroid in preotic CNC-ablated embryos was of a normal size, conflicting with a previous report in which the thyroid was reduced in size in the postotic CNC-ablated embryos. The postotic CNC cells differentiated into connective tissues of the thyroid in quail-to-chick chimeras. In contrast, the preotic CNC cells did not differentiate into connective tissues of the thyroid. We found that preotic CNC cells encompassed the thyroid anlage from the specification stage to the descent stage. Finally, we found that endothelin-1 and endothelin type A receptor-knockout mice and bosentan (endothelin receptor antagonist)-treated chick embryos showed bilobation anomalies that included single-lobe formation. Therefore, not only the postotic CNC, but also the preotic CNC plays an important role in thyroid morphogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Reactive oxygen species contribute to arsenic-induced EZH2 phosphorylation in human bronchial epithelial cells and lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lingzhi; Qiu, Ping; Chen, Bailing; Lu, Yongju; Wu, Kai; Thakur, Chitra; Chang, Qingshan; Sun, Jiaying; Chen, Fei, E-mail: fchen@wayne.edu

    2014-05-01

    Our previous studies suggested that arsenic is able to induce serine 21 phosphorylation of the EZH2 protein through activation of JNK, STAT3, and Akt signaling pathways in the bronchial epithelial cell line, BEAS-2B. In the present report, we further demonstrated that reactive oxygen species (ROS) were involved in the arsenic-induced protein kinase activation that leads to EZH2 phosphorylation. Several lines of evidence supported this notion. First, the pretreatment of the cells with N-acetyl-L-cysteine (NAC), a potent antioxidant, abolishes arsenic-induced EZH2 phosphorylation along with the inhibition of JNK, STAT3, and Akt. Second, H{sub 2}O{sub 2}, the most important form of ROS in the cells in response to extracellular stress signals, can induce phosphorylation of the EZH2 protein and the activation of JNK, STAT3, and Akt. By ectopic expression of the myc-tagged EZH2, we additionally identified direct interaction and phosphorylation of the EZH2 protein by Akt in response to arsenic and H{sub 2}O{sub 2}. Furthermore, both arsenic and H{sub 2}O{sub 2} were able to induce the translocation of ectopically expressed or endogenous EZH2 from nucleus to cytoplasm. In summary, the data presented in this report indicate that oxidative stress due to ROS generation plays an important role in the arsenic-induced EZH2 phosphorylation. - Highlights:: • Arsenic (As{sup 3+}) induces EZH phosphorylation. • JNK, STAT3, and Akt contribute to EZH2 phosphorylation. • Oxidative stress is involved in As{sup 3+}-induced EZH2 phosphorylation. • As{sup 3+} induces direct interaction of Akt and EZH2. • Phosphorylated EZH2 localized in cytoplasm.

  11. Circulating CD4+CXCR5+ T cells contribute to proinflammatory responses in multiple ways in coronary artery disease.

    Science.gov (United States)

    Ding, Ru; Gao, Wenwu; He, Zhiqing; Wu, Feng; Chu, Yang; Wu, Jie; Ma, Lan; Liang, Chun

    2017-11-01

    Coronary artery disease (CAD) is a common subtype of cardiovascular disease. The major contributing event is atherosclerosis, which is a progressive inflammatory condition resulting in the thickening of the arterial wall and the formation of atheromatous plaques. Recent evidence suggests that circulating CD4 + CXCR5 + T cells can contribute to inflammatory reactions. In this study, the frequency, phenotype, and function of circulating CD4 + CXCR5 + T cells in CAD patients were examined. Data showed that circulating CD4 + CXCR5 + T cells in CAD patients were enriched with a PD-1 + CCR7 - subset, which was previously identified as the most potent in B cell help. The CD4 + CXCR5 + T cells in CAD patients also secreted significantly higher levels of IFN-γ, IL-17A, and IL-21 than those from healthy controls. Depleting the PD-1 + population significantly reduced the cytokine secretion. Interestingly, the CD4 + CXCR5 + PD-1 - T cells significantly upregulated PD-1 following anti-CD3/CD28 or SEB stimulation. CD4 + CXCR5 + T cells from CAD patients also demonstrated more potent capacity to stimulate B cell inflammation than those from healthy individuals. The phosphorylation of STAT1 and STAT3 were significantly higher in B cells incubated with CD4 + CXCR5 + T cells from CAD than controls. The IL-6 and IFN-γ expression were also significantly higher in B cells incubated with CD4 + CXCR5 + T cells from CAD. Together, this study demonstrated that CAD patients presented a highly activated CD4 + CXCR5 + T cell subset that could contribute to proinflammatory responses in multiple ways. The possibility of using CD4 + CXCR5 + T cells as a therapeutic target should therefore be examined in CAD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The influence of aquaporin-4 isoform interaction on supramolecular water channel assembly in astrocytoma cells

    OpenAIRE

    Deville, Sarah

    2012-01-01

    Traumatic brain injury (TBI) is often complicated by the development of brain edema. Despite its clinical importance, the underlying pathological mechanisms are poorly understood. Nevertheless, a central role for aquaporin-4 (AQP4) has been suggested. AQP4 is the predominant water channel of the central nervous system, where it forms supramolecular structures named orthogonal arrays of particles (OAP). This organization is essential for channel opening. OAP formation is regulated by the diffe...

  13. Krox20 defines a subpopulation of cardiac neural crest cells contributing to arterial valves and bicuspid aortic valve.

    Science.gov (United States)

    Odelin, Gaëlle; Faure, Emilie; Coulpier, Fanny; Di Bonito, Maria; Bajolle, Fanny; Studer, Michèle; Avierinos, Jean-François; Charnay, Patrick; Topilko, Piotr; Zaffran, Stéphane

    2018-01-03

    Although cardiac neural crest cells are required at early stages of arterial valve development, their contribution during valvular leaflet maturation remains poorly understood. Here, we show in mouse that neural crest cells from pre-otic and post-otic regions make distinct contributions to the arterial valve leaflets. Genetic fate-mapping analysis of Krox20-expressing neural crest cells shows a large contribution to the borders and the interleaflet triangles of the arterial valves. Loss of Krox20 function results in hyperplastic aortic valve and partially penetrant bicuspid aortic valve formation. Similar defects are observed in neural crest Krox20 -deficient embryos. Genetic lineage tracing in Krox20 -/- mutant mice shows that endothelial-derived cells are normal, whereas neural crest-derived cells are abnormally increased in number and misplaced in the valve leaflets. In contrast, genetic ablation of Krox20 -expressing cells is not sufficient to cause an aortic valve defect, suggesting that adjacent cells can compensate this depletion. Our findings demonstrate a crucial role for Krox20 in arterial valve development and reveal that an excess of neural crest cells may be associated with bicuspid aortic valve. © 2018. Published by The Company of Biologists Ltd.

  14. Live fate-mapping of joint-associated fibroblasts visualizes expansion of cell contributions during zebrafish fin regeneration.

    Science.gov (United States)

    Tornini, Valerie A; Thompson, John D; Allen, Raymond L; Poss, Kenneth D

    2017-08-15

    The blastema is a mass of progenitor cells responsible for regeneration of amputated salamander limbs and fish fins. Previous studies have indicated that resident cell sources producing the blastema contribute lineage-restricted progeny to regenerating tissue. However, these studies have labeled general cell types rather than granular cell subpopulations, and they do not explain the developmental transitions that must occur for distal structures to arise from cells with proximal identities in the appendage stump. Here, we find that regulatory sequences of tph1b , which encodes an enzyme that synthesizes serotonin, mark a subpopulation of fibroblast-like cells restricted to the joints of uninjured adult zebrafish fins. Amputation stimulates serotonin production in regenerating fin fibroblasts, yet targeted tph1b mutations abrogating this response do not disrupt fin regeneration. In uninjured animals, tph1b -expressing cells contribute fibroblast progeny that remain restricted to joints throughout life. By contrast, upon amputation, tph1b + joint cells give rise to fibroblasts that distribute across the entire lengths of regenerating fin rays. Our experiments visualize and quantify how incorporation into an appendage blastema broadens the progeny contributions of a cellular subpopulation that normally has proximodistal restrictions. © 2017. Published by The Company of Biologists Ltd.

  15. Endothelin B receptors contribute to retinal ganglion cell loss in a rat model of glaucoma.

    Directory of Open Access Journals (Sweden)

    Alena Z Minton

    Full Text Available Glaucoma is an optic neuropathy, commonly associated with elevated intraocular pressure (IOP characterized by optic nerve degeneration, cupping of the optic disc, and loss of retinal ganglion cells which could lead to loss of vision. Endothelin-1 (ET-1 is a 21-amino acid vasoactive peptide that plays a key role in the pathogenesis of glaucoma; however, the receptors mediating these effects have not been defined. In the current study, endothelin B (ET(B receptor expression was assessed in vivo, in the Morrison's ocular hypertension model of glaucoma in rats. Elevation of IOP in Brown Norway rats produced increased expression of ET(B receptors in the retina, mainly in retinal ganglion cells (RGCs, nerve fiber layer (NFL, and also in the inner plexiform layer (IPL and inner nuclear layer (INL. To determine the role of ET(B receptors in neurodegeneration, Wistar-Kyoto wild type (WT and ET(B receptor-deficient (KO rats were subjected to retrograde labeling with Fluoro-Gold (FG, following which IOP was elevated in one eye while the contralateral eye served as control. IOP elevation for 4 weeks in WT rats caused an appreciable loss of RGCs, which was significantly attenuated in KO rats. In addition, degenerative changes in the optic nerve were greatly reduced in KO rats compared to those in WT rats. Taken together, elevated intraocular pressure mediated increase in ET(B receptor expression and its activation may contribute to a decrease in RGC survival as seen in glaucoma. These findings raise the possibility of using endothelin receptor antagonists as neuroprotective agents for the treatment of glaucoma.

  16. Interallelic class switch recombination contributes significantly to class switching in mouse B cells.

    Science.gov (United States)

    Reynaud, Stéphane; Delpy, Laurent; Fleury, Laurence; Dougier, Hei-Lanne; Sirac, Christophe; Cogné, Michel

    2005-05-15

    Except for the expression of IgM and IgD, DNA recombination is constantly needed for the expression of other Ig classes and subclasses. The predominant path of class switch recombination (CSR) is intrachromosomal, and the looping-out and deletion model has been abundantly documented. However, switch regions also occasionally constitute convenient substrates for interchromosomal recombination, since it is noticeably the case in a number of chromosomal translocations causing oncogene deregulation in the course of lymphoma and myeloma. Although asymmetric accessibility of Ig alleles should theoretically limit its occurrence, interallelic CSR was shown to occur at low levels during IgA switching in rabbit, where the definition of allotypes within both V and C regions helped identify interchromosomally derived Ig. Thus, we wished to evaluate precisely interallelic CSR frequency in mouse B cells, by using a system in which only one allele (of b allotype) could express a functional VDJ region, whereas only interallelic CSR could restore expression of an excluded (a allotype) allele. In our study, we show that interchromosomal recombination of V(H) and Cgamma or Calpha occurs in vivo in B cells at a frequency that makes a significant contribution to physiological class switching: trans-association of V(H) and C(H) genes accounted for 7% of all alpha mRNA, and this frequency was about twice higher for the gamma3 transcripts, despite the much shorter distance between the J(H) region and the Cgamma3 gene, thus confirming that this phenomenon corresponded to site-specific switching and not to random recombination between long homologous loci.

  17. TREATMENT OF PROGRESSION OF DIFFUSE ASTROCYTOMA BY HERBAL MEDICINE: CASE REPORT.

    Science.gov (United States)

    Trogrlić, Ivo; Trogrlić, Dragan; Trogrlić, Zoran

    2016-01-01

    The paper presents the results of the use of phytotherapy in a 33-year-old woman who, after finishing the oncological treatment of diffuse astrocytoma, had tumour progression. Phytotherapy was introduced after the tumour had progressed. It consisted of 4 types of herbal medicine which the subject was taking in form of tea once a day at regular intervals. The patient started phytotherapy along with temozolomide, which was the only oncological treatment she was under after the tumour had progressed. Following the finished chemotherapy, the patient continued the treatment with herbal medicine only. She regularly took phytotherapy without interruption and to the fullest extent for 30 months, and the results of treatment were monitored by periodic scanning using nuclear magnetic resonance technique. The control scanning that was conducted after the end of combined treatment with temozolomide and phytotherapy showed tumour regression. The patient continued with phytotherapy after finishing chemotherapy and, during the following 24 months, it was the sole treatment option. In that period, the regression of the tumour continued, until a control examination 30 months after the introduction of phytotherapy showed no clinical and radiological signs of tumour. The results presented in this research paper clearly indicate the potential of phytotherapy in the treatment of some types of brain tumours. A complete regression of tumour following the treatment with nothing but herbal medicine offers support for such claim. Future research should demonstrate the effectiveness of phytotherapy, as a supplementary form of brain tumour treatment, and the results of this research should be compared with the existing information on the effectiveness of the protocols currently used in the treatment of these types of tumour.

  18. Spontaneous regression of residual low-grade cerebellar pilocytic astrocytomas in children

    International Nuclear Information System (INIS)

    Gunny, Roxana S.; Saunders, Dawn E.; Hayward, Richard D.; Phipps, Kim P.; Harding, Brian N.

    2005-01-01

    Cerebellar low-grade astrocytomas (CLGAs) of childhood are benign tumours and are usually curable by surgical resection alone or combined with adjuvant radiotherapy. To undertake a retrospective study of our children with CLGA to determine the optimum schedule for surveillance imaging following initial surgery. In this report we describe the phenomenon of spontaneous regression of residual tumour and discuss its prognostic significance regarding future imaging. A retrospective review was conducted of children treated for histologically proven CLGA at Great Ormond Street Hospital from 1988 to 1998. Of 83 children with CLGA identified, 13 (15.7%) had incomplete resections. Two children with large residual tumours associated with persistent symptoms underwent additional treatment. Eleven children were followed by surveillance imaging alone for a mean of 6.83 years (range 2-13.25 years). Spontaneous tumour regression was seen in 5 (45.5%) of the 11 children. There were no differences in age, gender, symptomatology, histological grade or Ki-67 fractions between those with spontaneous tumour regression and those with progression. There was a non-significant trend that larger volume residual tumours progressed. Residual tumour followed by surveillance imaging may either regress or progress. For children with residual disease we recommend surveillance imaging every 6 months for the first 2 years, every year for years 3, 4 and 5, then every second year if residual tumour is still present 5 years after initial surgery. This would detect not only progressive or recurrent disease, but also spontaneous regression which can occur later than disease progression. (orig.)

  19. Genomic Deletions Correlate with Underexpression of Novel Candidate Genes at Six Loci in Pediatric Pilocytic Astrocytoma

    Directory of Open Access Journals (Sweden)

    Nicola Potter

    2008-08-01

    Full Text Available The molecular pathogenesis of pediatric pilocytic astrocytoma (PA is not well defined. Previous cytogenetic and molecular studies have not identified nonrandom genetic aberrations. To correlate differential gene expression and genomic copy number aberrations (CNAs in PA, we have used Affymetrix GeneChip HG_U133A to generate gene expression profiles of 19 pediatric patients and the SpectralChip 2600 to investigate CNAs in 11 of these tumors. Hierarchical clustering according to expression profile similarity grouped tumors and controls separately. We identified 1844 genes that showed significant differential expression between tumor and normal controls, with a large number clearly influencing phosphatidylinositol and mitogen-activated protein kinase signaling in PA. Most CNAs identified in this study were single-clone alterations. However, a small region of loss involving up to seven adjacent clones at 7q11.23 was observed in seven tumors and correlated with the underexpression of BCL7B. Loss of four individual clones was also associated with reduced gene expression including SH3GL2 at 9p21.2-p23, BCL7A (which shares 90% sequence homology with BCL7B at 12q24.33, DRD1IP at 10q26.3, and TUBG2 and CNTNAP1 at 17q21.31. Moreover, the down-regulation of FOXG1B at 14q12 correlated with loss within the gene promoter region in most tumors. This is the first study to correlate differential gene expression with CNAs in PA.

  20. Surgical resection of grade II astrocytomas in the superior frontal gyrus.

    Science.gov (United States)

    Peraud, Aurelia; Meschede, Magnus; Eisner, Wilhelm; Ilmberger, Josef; Reulen, Hans-Jürgen

    2002-05-01

    Surgery in the superior frontal gyrus partially involving the supplementary motor area (SMA) may be followed by contralateral transient weakness and aphasia initially indistinguishable from damage to the primary motor cortex. However, recovery is different, and SMA deficits may resolve completely within days to weeks. No study has assessed the distinct postoperative deficits after tumor resection in the SMA on a homogeneous patient group. Twenty-four patients with World Health Organization Grade II astrocytomas in the superior frontal gyrus consecutively treated by surgery were studied. Degree and duration of postoperative deficits were evaluated according to tumor location and boundaries via magnetic resonance imaging scans, intraoperative neuromonitoring results, and extent of tumor resection. Postoperatively, motor deficits were evident in 21 of 24 and speech deficits in 9 of 12 patients. Motor function quickly recovered in 11 and speech function in 3 patients. None of the 12 patients in whom the posterior tumor resection line was at a distance of more than 0.5 cm from the precentral sulcus experienced persistent motor deficits. Eight of these patients developed typical SMA syndrome with transient initiation difficulties. Seven of 12 patients in whom the tumor extended to the precentral sulcus still had motor deficits at the 12-month follow-up assessment. Surgery for Grade II gliomas in the superior frontal gyrus is more likely to result in permanent morbidity when the resection is performed at a distance of less than 0.5 cm from the precentral gyrus or positive stimulation points. Therefore, cortical mapping of motor and speech function, in critical cases under local anesthesia with the patient as his or her own monitor, is recommended; resection should be tailored to obtain good functional outcome and maintain quality of life.

  1. Characterization of Cancer Stem Cells in Patients with Brain ...

    African Journals Online (AJOL)

    Background: Gliomas, in general, and astrocytomas, in particular, represent the most frequent primary brain tumors. Nowadays, it is increasingly believed that gliomas may arise from cancer stem cells, which share several characteristics with normal neural stem cells. Brain tumor stem cells have been found to express a ...

  2. Transcriptional profiles of pilocytic astrocytoma are related to their three different locations, but not to radiological tumor features

    International Nuclear Information System (INIS)

    Zakrzewski, Krzysztof; Jarząb, Michał; Pfeifer, Aleksandra; Oczko-Wojciechowska, Małgorzata; Jarząb, Barbara; Liberski, Paweł P.; Zakrzewska, Magdalena

    2015-01-01

    Pilocytic astrocytoma is the most common type of brain tumor in the pediatric population, with a generally favorable prognosis, although recurrences or leptomeningeal dissemination are sometimes also observed. For tumors originating in the supra-or infratentorial location, a different molecular background was suggested, but plausible correlations between the transcriptional profile and radiological features and/or clinical course are still undefined. The purpose of this study was to identify gene expression profiles related to the most frequent locations of this tumor, subtypes based on various radiological features, and the clinical pattern of the disease. Eighty six children (55 males and 31 females) with histologically verified pilocytic astrocytoma were included in this study. Their age at the time of diagnosis ranged from fourteen months to seventeen years, with a mean age of seven years. There were 40 cerebellar, 23 optic tract/hypothalamic, 21 cerebral hemispheric, and two brainstem tumors. According to the radiological features presented on MRI, all cases were divided into four subtypes: cystic tumor with a non-enhancing cyst wall; cystic tumor with an enhancing cyst wall; solid tumor with central necrosis; and solid or mainly solid tumor. In 81 cases primary surgical resection was the only and curative treatment, and in five cases progression of the disease was observed. In 47 cases the analysis was done by using high density oligonucleotide microarrays (Affymetrix HG-U133 Plus 2.0) with subsequent bioinformatic analyses and confirmation of the results by independent RT-qPCR (on 39 samples). Bioinformatic analyses showed that the gene expression profile of pilocytic astrocytoma is highly dependent on the tumor location. The most prominent differences were noted for IRX2, PAX3, CXCL14, LHX2, SIX6, CNTN1 and SIX1 genes expression even within different compartments of the supratentorial region. Analysis of the genes potentially associated with radiological

  3. Slow-cycling stem cells in hydra contribute to head regeneration

    Directory of Open Access Journals (Sweden)

    Niraimathi Govindasamy

    2014-11-01

    Full Text Available Adult stem cells face the challenge of maintaining tissue homeostasis by self-renewal while maintaining their proliferation potential over the lifetime of an organism. Continuous proliferation can cause genotoxic/metabolic stress that can compromise the genomic integrity of stem cells. To prevent stem cell exhaustion, highly proliferative adult tissues maintain a pool of quiescent stem cells that divide only in response to injury and thus remain protected from genotoxic stress. Hydra is a remarkable organism with highly proliferative stem cells and ability to regenerate at whole animal level. Intriguingly, hydra does not display consequences of high proliferation, such as senescence or tumour formation. In this study, we investigate if hydra harbours a pool of slow-cycling stem cells that could help prevent undesirable consequences of continuous proliferation. Hydra were pulsed with the thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU and then chased in the absence of EdU to monitor the presence of EdU-retaining cells. A significant number of undifferentiated cells of all three lineages in hydra retained EdU for about 8–10 cell cycles, indicating that these cells did not enter cell cycle. These label-retaining cells were resistant to hydroxyurea treatment and were predominantly in the G2 phase of cell cycle. Most significantly, similar to mammalian quiescent stem cells, these cells rapidly entered cell division during head regeneration. This study shows for the first time that, contrary to current beliefs, cells in hydra display heterogeneity in their cell cycle potential and the slow-cycling cells in this population enter cell cycle during head regeneration. These results suggest an early evolution of slow-cycling stem cells in multicellular animals.

  4. BCORL1 is an independent prognostic marker and contributes to cell migration and invasion in human hepatocellular carcinoma

    OpenAIRE

    Yin, Guozhi; Liu, Zhikui; Wang, Yufeng; Dou, Changwei; Li, Chao; Yang, Wei; Yao, Yingmin; Liu, Qingguang; Tu, Kangsheng

    2016-01-01

    Background The deregulation of E-cadherin has been considered as a leading cause of hepatocellular carcinoma (HCC) metastasis. BCL6 corepressor-like 1 (BCORL1) is a transcriptional corepressor and contributes to the repression of E-cadherin. However, the clinical significance of BCORL1 and its role in the metastasis of HCC remain unknown. Methods Differentially expressed BCORL1 between HCC and matched tumor-adjacent tissues, HCC cell lines and normal hepatic cell line were detected by Western...

  5. CD8+ T Cells Contribute to the Development of Coronary Arteritis in the Lactobacillus casei Cell Wall Extract-Induced Murine Model of Kawasaki Disease.

    Science.gov (United States)

    Noval Rivas, Magali; Lee, Youngho; Wakita, Daiko; Chiba, Norika; Dagvadorj, Jargalsaikhan; Shimada, Kenichi; Chen, Shuang; Fishbein, Michael C; Lehman, Thomas J A; Crother, Timothy R; Arditi, Moshe

    2017-02-01

    Kawasaki disease (KD) is the leading cause of acquired heart disease among children in developed countries. Coronary lesions in KD in humans are characterized by an increased presence of infiltrating CD3+ T cells; however, the specific contributions of the different T cell subpopulations in coronary arteritis development remain unknown. Therefore, we sought to investigate the function of CD4+ and CD8+ T cells, Treg cells, and natural killer (NK) T cells in the pathogenesis of KD. We addressed the function of T cell subsets in KD development by using a well-established murine model of Lactobacillus casei cell wall extract (LCWE)-induced KD vasculitis. We determined which T cell subsets were required for development of KD vasculitis by using several knockout murine strains and depleting monoclonal antibodies. LCWE-injected mice developed coronary lesions characterized by the presence of inflammatory cell infiltrates. Frequently, this chronic inflammation resulted in complete occlusion of the coronary arteries due to luminal myofibroblast proliferation (LMP) as well as the development of coronary arteritis and aortitis. We found that CD8+ T cells, but not CD4+ T cells, NK T cells, or Treg cells, were required for development of KD vasculitis. The LCWE-induced murine model of KD vasculitis mimics many histologic features of the disease in humans, such as the presence of CD8+ T cells and LMP in coronary artery lesions as well as epicardial coronary arteritis. Moreover, CD8+ T cells functionally contribute to the development of KD vasculitis in this murine model. Therapeutic strategies targeting infiltrating CD8+ T cells might be useful in the management of KD in humans. © 2016, American College of Rheumatology.

  6. MR signal of the solid portion of pilocytic astrocytoma on T2-weighted images: is it useful for differentiation from medulloblastoma?

    International Nuclear Information System (INIS)

    Arai, Kiyokazu; Yagi, Akiko; Taketomi-Takahashi, Ayako; Morita, Hideo; Koyama, Yoshinori; Endo, Keigo; Sato, Noriko; Aoki, Jun; Oba, Hiroshi; Ishiuchi, Shogo; Saito, Nobuhito

    2006-01-01

    Background and purpose: Although imaging features of cerebellar pilocytic astrocytoma and medulloblastoma have been described in many texts, original comparisons of magnetic resonance intensity between these two tumours are limited. In the present study the results of magnetic resonance imaging (MRI) were reviewed, focusing especially on the signal intensity of the solid portion of these neoplasms. Methods: MR images of ten cerebellar pilocytic astrocytomas and ten medulloblastomas were reviewed. The signal intensities of the solid components were graded on a scale of 1 to 5, with higher scores indicating a signal intensity closer to that of water. The degree of enhancement, tumour cysts and peripheral oedema were evaluated on MR images. When the solid portion was heterogeneous (i.e. mixed signal intensity or degree of enhancement), the dominant area was selected for evaluation. On T2-weighted images, the signal intensity of the solid portion was equal to that of cerebrospinal fluid (CSF) in 50% of pilocytic astrocytomas. No medulloblastomas showed such hyperintensity. Most medulloblastomas (80%) were isointense to grey matter. On T1-weighted images, the signal intensity varied widely in pilocytic astrocytomas; however, all medulloblastomas were iso- or hypointense to grey matter. The MR enhancement pattern, cystic component and peripheral oedema all varied in both tumour types and no specific features were identified. A signal intensity of the solid portion isointense to CSF on T2-weighted images was characteristic of cerebellar pilocytic astrocytomas; this was not observed in medulloblastomas. Attention to T2-weighted imaging of the solid portions of a tumour is easy and helpful in differentiating between cerebellar pilocytic astrocytoma and medulloblastoma. (orig.)

  7. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration

    OpenAIRE

    Yun Qian; Yun Qian; Qixin Han; Wei Chen; Wei Chen; Jialin Song; Jialin Song; Xiaotian Zhao; Yuanming Ouyang; Yuanming Ouyang; Weien Yuan; Cunyi Fan

    2017-01-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of differen...

  8. Interleukin-6 from subchondral bone mesenchymal stem cells contributes to the pathological phenotypes of experimental osteoarthritis

    Science.gov (United States)

    Wu, Xiaofeng; Cao, Lei; Li, Fan; Ma, Chao; Liu, Guangwang; Wang, Qiugen

    2018-01-01

    As a main cause of morbidity in the aged population, osteoarthritis (OA) is characterized by cartilage destruction, synovium inflammation, osteophytes, and subchondral bone sclerosis. To date its etiology remains elusive. Recent data highlight an important role of subchondral bone in the onset and progression of OA. Therefore, elucidating the mechanisms underlying abnormal subchondral bone could be of importance in the treatment of OA. Interleukin-6 is a proinflammatory cytokine involved in many physiological and pathological processes. Although in vitro and in vivo studies have indicated that IL-6 is an important cytokine in the physiopathogenesis of OA, its effects on subchondral bone have not been studied in OA animal models. In this study, we aimed to i) investigate the role of IL-6 in the pathological phenotypes of OA subchondral bone MSCs including increase in cell numbers, mineralization disorder and abnormal type I collagen production; ii) explore whether the systemic blockade of IL-6 signaling could alleviate the pathological phenotypes of experimental OA. We found that IL-6 was over-secreted by OA subchondral bone MSCs compared with normal MSCs and IL-6/STAT3 signaling was over-activated in subchondral bone MSCs, which contributed to the pathological phenotypes of OA subchondral bone MSCs. More importantly, systemic inhibition of IL-6/STAT3 signaling with IL-6 antibody or STAT3 inhibitor AG490 decreased the severity of pathological phenotypes of OA subchondral bone MSCs and cartilage lesions in OA. Our findings provide strong evidence for a pivotal role for IL-6 signaling in OA and open up new therapeutic perspectives. PMID:29736207

  9. Patient Choice of Nonsurgical Treatment Contributes to Disparities in Head and Neck Squamous Cell Carcinoma.

    Science.gov (United States)

    Parhar, Harman S; Anderson, Donald W; Janjua, Arif S; Durham, J Scott; Prisman, Eitan

    2018-06-01

    Objectives There are well-established outcome disparities among different demographic groups with head and neck squamous cell carcinoma (HNSCC). We aimed to investigate the potential contribution of patient choice of nonsurgical treatment to these disparities by estimating the rate of this phenomenon, identifying its predictors, and estimating the effect on cancer-specific survival. Study Design Retrospective nationwide analysis. Settings Surveillance, Epidemiology, and End Results Database (2004-2014). Subjects and Methods Patients with HNSCC, who were recommended for primary surgery, were included. Multivariable logistic regression was used to identify demographic and clinical factors associated with patient choice of nonsurgical treatment, and Kaplan Meier/Cox regression was used to analyze survival. Results Of 114,506 patients with HNSCC, 58,816 (51.4%) were recommended for primary surgery, and of those, 1550 (2.7%) chose nonsurgical treatment. Those who chose nonsurgical treatment were more likely to be older (67.1 ± 12.6 vs 63.6 ± 13.1, P unmarried (OR married, 0.50; 95% CI, 0.44-0.58), had an advanced tumor, and had a hypopharyngeal or laryngeal primary. Choice of nonsurgical treatment imparted a 2.16-fold (95% CI, 2.02-2.30) increased risk of cancer-specific death. Conclusion Of the patients, 2.7% chose nonsurgical treatment despite a provider recommendation that impairs survival. Choice of nonsurgical treatment is associated with older age, having Black or Asian ethnicity, being unmarried, having an advanced stage tumor, and having a primary site in the hypopharynx or larynx. Knowledge of these disparities may help providers counsel patients and help patients make informed decisions.

  10. Genotoxic damage in non-irradiated cells: contribution from the bystander effect

    International Nuclear Information System (INIS)

    Zhou, H.; Randers-Pherson, G.; Suzuki, M.; Waldren, C.A.; Hei, T.K.

    2002-01-01

    It has always been accepted dogma that the deleterious effects of ionising radiation such as mutagenesis and carcinogenesis are due mainly to direct damage to DNA. Using the Columbia University charged-particle microbeam and the highly sensitive A L cell mutagenic assay, it is shown here that non-irradiated cells acquire the mutagenic phenotype through direct contact with cells whose nuclei are traversed with 2 alpha particles each. Pre-treatment of cells with lindane, a gap junction inhibitor, significantly decreased the mutant yield. Furthermore, when irradiated cells were mixed with control cells in a similar ration as the in situ studies, no enhancement in bystander mutagenesis was detected. Our studies provide clear evidence that genotoxic damage can be induced in non-irradiated cells, and that gap junction mediated cell-cell communication plays a critical role in the bystander phenomenon. (author)

  11. The contribution of apoptosis and necrosis in freezing injury of sea urchin embryonic cells.

    Science.gov (United States)

    Boroda, Andrey V; Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2016-08-01

    Sea urchins have recently been reported to be a promising tool for investigations of oxidative stress, UV light perturbations and senescence. However, few available data describe the pathway of cell death that occurs in sea urchin embryonic cells after cryopreservation. Our study is focused on the morphological and functional alterations that occur in cells of these animals during the induction of different cell death pathways in response to cold injury. To estimate the effect of cryopreservation on sea urchin cell cultures and identify the involved cell death pathways, we analyzed cell viability (via trypan blue exclusion test, MTT assay and DAPI staining), caspase activity (via flow cytometry and spectrophotometry), the level of apoptosis (via annexin V-FITC staining), and cell ultrastructure alterations (via transmission electron microscopy). Using general caspase detection, we found that the level of caspase activity was low in unfrozen control cells, whereas the number of apoptotic cells with activated caspases rose after freezing-thawing depending on cryoprotectants used, also as the number of dead cells and cells in a late apoptosis. The data using annexin V-binding assay revealed a very high apoptosis level in all tested samples, even in unfrozen cells (about 66%). Thus, annexin V assay appears to be unsuitable for sea urchin embryonic cells. Typical necrotic cells with damaged mitochondria were not detected after freezing in sea urchin cell cultures. Our results assume that physical cell disruption but not freezing-induced apoptosis or necrosis is the predominant reason of cell death in sea urchin cultures after freezing-thawing with any cryoprotectant combination. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A myogenic precursor cell that could contribute to regeneration in zebrafish and its similarity to the satellite cell.

    Science.gov (United States)

    Siegel, Ashley L; Gurevich, David B; Currie, Peter D

    2013-09-01

    The cellular basis for mammalian muscle regeneration has been an area of intense investigation over recent decades. The consensus is that a specialized self-renewing stem cell, termed the satellite cell, plays a major role during the process of regeneration in amniotes. How broadly this mechanism is deployed within the vertebrate phylogeny remains an open question. A lack of information on the role of cells analogous to the satellite cell in other vertebrate systems is even more unexpected given the fact that satellite cells were first designated in frogs. An intriguing aspect of this debate is that a number of amphibia and many fish species exhibit epimorphic regenerative processes in specific tissues, whereby regeneration occurs by the dedifferentiation of the damaged tissue, without deploying specialized stem cell populations analogous to satellite cells. Hence, it is feasible that a cellular process completely distinct from that deployed during mammalian muscle regeneration could operate in species capable of epimorphic regeneration. In this minireview, we examine the evidence for the broad phylogenetic distribution of satellite cells. We conclude that, in the vertebrates examined so far, epimorphosis does not appear to be deployed during muscle regeneration, and that analogous cells expressing similar marker genes to satellite cells appear to be deployed during the regenerative process. However, the functional definition of these cells as self-renewing muscle stem cells remains a final hurdle to the definition of the satellite cell as a generic vertebrate cell type. © 2013 FEBS.

  13. Identification of islet-enriched long non-coding RNAs contributing to β-cell failure in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Anna Motterle

    2017-11-01

    Conclusions: Taken together, the data show that lncRNAs are modulated in a model of obesity-associated type 2 diabetes and that variations in the expression of some of them may contribute to β-cell failure during the development of the disease.

  14. R&D on fuel cells in Japan and possible contributions of fuel cells to the Global Reduction of CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Hiroyasu [Government Industrial Research Inst., Osaka (Japan)

    1993-12-31

    Fuel cells can generate electricity equivalent to 40-60% of the energy contained In the fuel consumed, and an overall efficiency as high as 80% is not impossible to achieve through utilization of the exhaust heat. In addition, emissions of pollutants such as NOx and SOx from fuel cells are low. Since various reformed gases derived from natural gas, methanol and coal can be used as fuel for fuel cells, the wide range of applications for fuel cells is expected to contribute to the reduction of petroleum dependence in Japan.

  15. Putative contribution of CD56 positive cells in cetuximab treatment efficacy in first-line metastatic colorectal cancer patients

    International Nuclear Information System (INIS)

    Maréchal, Raphaël; De Schutter, Jef; Nagy, Nathalie; Demetter, Pieter; Lemmers, Arnaud; Devière, Jacques; Salmon, Isabelle; Tejpar, Sabine; Van Laethem, Jean-Luc

    2010-01-01

    Activity of cetuximab, a chimeric monoclonal antibody targeting the epidermal growth factor receptor, is largely attributed to its direct antiproliferative and proapoptotic effects. Antibody-dependent cell-mediated cytotoxicity (ADCC) could be another possible mechanism of cetuximab antitumor effects and its specific contribution on the clinical activity of cetuximab is unknown. We assessed immune cells infiltrate (CD56, CD68, CD3, CD4, CD8, Foxp3) in the primary tumor of metastatic colorectal cancer (mCRC) patients treated with a first-line cetuximab-based chemotherapy in the framework of prospective trials (treatment group) and in a matched group of mCRC patients who received the same chemotherapy regimen without cetuximab (control group). The relationship between intra-tumoral immune effector cells, the K-ras status and the efficacy of the treatment were investigated. We also evaluated in vitro, the ADCC activity in healthy donors and chemonaive mCRC patients and the specific contribution of CD56 + cells. ADCC activity against DLD1 CRC cell line is maintained in cancer patients and significantly declined after CD56 + cells depletion. In multivariate analysis, K-ras wild-type (HR: 4.7 (95% CI 1.8-12.3), p = 0.001) and tumor infiltrating CD56 + cells (HR: 2.6, (95%CI:1.14-6.0), p = 0.019) were independent favourable prognostic factors for PFS and response only in the cetuximab treatment group. By contrast CD56 + cells failed to predict PFS and response in the control group. CD56 + cells, mainly NK cells, may be the major effector of ADCC related-cetuximab activity. Assessment of CD56 + cells infiltrate in primary colorectal adenocarcinoma may provide additional information to K-ras status in predicting response and PFS in mCRC patients treated with first-line cetuximab-based chemotherapy

  16. Mib1 contributes to persistent directional cell migration by regulating the Ctnnd1-Rac1 pathway.

    Science.gov (United States)

    Mizoguchi, Takamasa; Ikeda, Shoko; Watanabe, Saori; Sugawara, Michiko; Itoh, Motoyuki

    2017-10-31

    Persistent directional cell migration is involved in animal development and diseases. The small GTPase Rac1 is involved in F-actin and focal adhesion dynamics. Local Rac1 activity is required for persistent directional migration, whereas global, hyperactivated Rac1 enhances random cell migration. Therefore, precise control of Rac1 activity is important for proper directional cell migration. However, the molecular mechanism underlying the regulation of Rac1 activity in persistent directional cell migration is not fully understood. Here, we show that the ubiquitin ligase mind bomb 1 (Mib1) is involved in persistent directional cell migration. We found that knockdown of MIB1 led to an increase in random cell migration in HeLa cells in a wound-closure assay. Furthermore, we explored novel Mib1 substrates for cell migration and found that Mib1 ubiquitinates Ctnnd1. Mib1-mediated ubiquitination of Ctnnd1 K547 attenuated Rac1 activation in cultured cells. In addition, we found that posterior lateral line primordium cells in the zebrafish mib1 ta52b mutant showed increased random migration and loss of directional F-actin-based protrusion formation. Knockdown of Ctnnd1 partially rescued posterior lateral line primordium cell migration defects in the mib1 ta52b mutant. Taken together, our data suggest that Mib1 plays an important role in cell migration and that persistent directional cell migration is regulated, at least in part, by the Mib1-Ctnnd1-Rac1 pathway. Published under the PNAS license.

  17. Increased diacylglycerol kinase ζ expression in human metastatic colon cancer cells augments Rho GTPase activity and contributes to enhanced invasion

    International Nuclear Information System (INIS)

    Cai, Kun; Mulatz, Kirk; Ard, Ryan; Nguyen, Thanh; Gee, Stephen H

    2014-01-01

    Unraveling the signaling pathways responsible for the establishment of a metastatic phenotype in carcinoma cells is critically important for understanding the pathology of cancer. The acquisition of cell motility is a key property of metastatic tumor cells and is a prerequisite for invasion. Rho GTPases regulate actin cytoskeleton reorganization and the cellular responses required for cell motility and invasion. Diacylglycerol kinase ζ (DGKζ), an enzyme that phosphorylates diacylglycerol to yield phosphatidic acid, regulates the activity of the Rho GTPases Rac1 and RhoA. DGKζ mRNA is highly expressed in several different colon cancer cell lines, as well as in colon cancer tissue relative to normal colonic epithelium, and thus may contribute to the metastatic process. To investigate potential roles of DGKζ in cancer metastasis, a cellular, isogenic model of human colorectal cancer metastatic transition was used. DGKζ protein levels, Rac1 and RhoA activity, and PAK phosphorylation were measured in the non-metastatic SW480 adenocarcinoma cell line and its highly metastatic variant, the SW620 line. The effect of DGKζ silencing on Rho GTPase activity and invasion through Matrigel-coated Transwell inserts was studied in SW620 cells. Invasiveness was also measured in PC-3 prostate cancer and MDA-MB-231 breast cancer cells depleted of DGKζ. DGKζ protein levels were elevated approximately 3-fold in SW620 cells compared to SW480 cells. There was a concomitant increase in active Rac1 in SW620 cells, as well as substantial increases in the expression and phosphorylation of the Rac1 effector PAK1. Similarly, RhoA activity and expression were increased in SW620 cells. Knockdown of DGKζ expression in SW620 cells by shRNA-mediated silencing significantly reduced Rac1 and RhoA activity and attenuated the invasiveness of SW620 cells in vitro. DGKζ silencing in highly metastatic MDA-MB-231 breast cancer cells and PC-3 prostate cancer cells also significantly attenuated

  18. Tension and Elasticity Contribute to Fibroblast Cell Shape in Three Dimensions.

    Science.gov (United States)

    Brand, Christoph A; Linke, Marco; Weißenbruch, Kai; Richter, Benjamin; Bastmeyer, Martin; Schwarz, Ulrich S

    2017-08-22

    The shape of animal cells is an important regulator for many essential processes such as cell migration or division. It is strongly determined by the organization of the actin cytoskeleton, which is also the main regulator of cell forces. Quantitative analysis of cell shape helps to reveal the physical processes underlying cell shape and forces, but it is notoriously difficult to conduct it in three dimensions. Here we use direct laser writing to create 3D open scaffolds for adhesion of connective tissue cells through well-defined adhesion platforms. Due to actomyosin contractility in the cell contour, characteristic invaginations lined by actin bundles form between adjacent adhesion sites. Using quantitative image processing and mathematical modeling, we demonstrate that the resulting shapes are determined not only by contractility, but also by elastic stress in the peripheral actin bundles. In this way, cells can generate higher forces than through contractility alone. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration

    Directory of Open Access Journals (Sweden)

    Yun Qian

    2017-10-01

    Full Text Available Stem cell treatment and platelet-rich plasma (PRP therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of PRP derived GFs with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  20. Renal progenitor cells contribute to hyperplastic lesions of podocytopathies and crescentic glomerulonephritis.

    NARCIS (Netherlands)

    Smeets, B.; Angelotti, M.L.; Rizzo, P.; Dijkman, H.; Lazzeri, E.; Mooren, F.; Ballerini, L.; Parente, E.; Sagrinati, C.; Mazzinghi, B.; Ronconi, E.; Becherucci, F.; Benigni, A.; Steenbergen, E.; Lasagni, L.; Remuzzi, G.; Wetzels, J.F.M.; Romagnani, P.

    2009-01-01

    Glomerular injury can involve excessive proliferation of glomerular epithelial cells, resulting in crescent formation and obliteration of Bowman's space. The origin of these hyperplastic epithelial cells in different glomerular disorders is controversial. Renal progenitors localized to the inner

  1. Platelet-rich plasma derived growth factors contribute to stem cell differentiation in musculoskeletal regeneration

    Science.gov (United States)

    Qian, Yun; Han, Qixin; Chen, Wei; Song, Jialin; Zhao, Xiaotian; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi

    2017-10-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of platelet-rich plasma derived growth factors with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  2. Macrophages contribute to the cyclic activation of adult hair follicle stem cells

    DEFF Research Database (Denmark)

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-01-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in...

  3. Quantitative determination of the contribution of indirect and direct radiation action to the production of lethal lesions in mammalian cells

    International Nuclear Information System (INIS)

    Pohlit, W.; Drenkard, S.

    1985-01-01

    For quantitative models of radiation action in living cells it is necessary to know what fraction of the absorbed dose affects the target molecule by direct radiation action and what fraction by indirect radiation action. Mammalian cells were irradiated in suspension, saturated with N 2 O or CO 2 . With these gases the production of OH-radicals is changed by a factor of two in aqueous solutions and a corresponding change in cell survival would be expected, if only indirect radiation action is involved in the production of lethal lesions in the living cell. No difference could be detected, however, and it is concluded that indirect radiation action does not contribute to radiation lethality in mammalian cells. (author)

  4. Estimation of radiotherapy and MCNU versus radiotherapy and MCNU plus interferon-[beta] for the treatment of anaplastic astrocytoma

    Energy Technology Data Exchange (ETDEWEB)

    Kiya, Katsuzo; Uozumi, Tohru; Kurisu, Kaoru; Ogasawara, Hidenori; Sugiyama, Kazuhiko; Maeda, Hitoshi; Harada, Kunyu (Hiroshima Univ. (Japan). School of Medicine)

    1993-02-01

    The efficacy of radiotherapy and MCNU (MR) was estimated in comparison with radiotherapy and MCNU plus interferon-[beta] (IMR) in 25 patients with anaplastic astrocytoma. The MR group received irradiation with 50[approx]60 Gy and intravenous administration of 2 mg/kg of MCNU on the initial day of irradiation and following every 6[approx]8 weeks interval. The IMR group also received the same regimen in addition to intravenous infusion of 2 x 10[sup 6] IU/m[sup 2] of interferon-[beta] for 5 serial days every eight weeks and following once every two weeks. There were no significant differences between the two groups in terms of background. The response rates of MR and IMR group were 38.5% and 66.7%, respectively. The times to tumor progression (TTP) in the two groups were 11.9[+-]5.8 months and 13.6[+-]7.7 months, respectively. Thus, IMR therapy seems to be more efficacious for patients with anaplastic astrocytoma than MR therapy, but further trials are necessary. (author).

  5. Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Kristel Kegler

    Full Text Available Gliogenesis under pathophysiological conditions is of particular clinical relevance since it may provide evidence for regeneration promoting cells recruitable for therapeutic purposes. There is evidence that neurotrophin receptor p75 (p75NTR-expressing cells emerge in the lesioned CNS. However, the phenotype and identity of these cells, and signals triggering their in situ generation under normal conditions and certain pathological situations has remained enigmatic. In the present study, we used a spontaneous, idiopathic and inflammatory CNS condition in dogs with prominent lympho-histiocytic infiltration as a model to study the phenotype of Schwann cells and their relation to Schwann cell remyelination within the CNS. Furthermore, the phenotype of p75NTR-expressing cells within the injured CNS was compared to their counter-part in control sciatic nerve and after peripheral nerve injury. In addition, organotypic slice cultures were used to further elucidate the origin of p75NTR-positive cells. In cerebral and cerebellar white and grey matter lesions as well as in the brain stem, p75NTR-positive cells co-expressed the transcription factor Sox2, but not GAP-43, GFAP, Egr2/Krox20, periaxin and PDGFR-α. Interestingly, and contrary to the findings in control sciatic nerves, p75NTR-expressing cells only co-localized with Sox2 in degenerative neuropathy, thus suggesting that such cells might represent dedifferentiated Schwann cells both in the injured CNS and PNS. Moreover, effective Schwann cell remyelination represented by periaxin- and P0-positive mature myelinating Schwann cells, was strikingly associated with the presence of p75NTR/Sox2-expressing Schwann cells. Intriguingly, the emergence of dedifferentiated Schwann cells was not affected by astrocytes, and a macrophage-dominated inflammatory response provided an adequate environment for Schwann cells plasticity within the injured CNS. Furthermore, axonal damage was reduced in brain stem areas

  6. The contribution of Chlamydia-specific CD8⁺ T cells to upper genital tract pathology.

    Science.gov (United States)

    Vlcek, Kelly R; Li, Weidang; Manam, Srikanth; Zanotti, Brian; Nicholson, Bruce J; Ramsey, Kyle H; Murthy, Ashlesh K

    2016-02-01

    Genital chlamydial infections lead to severe upper reproductive tract pathology in a subset of untreated women. We demonstrated previously that tumor necrosis factor (TNF)-α-producing CD8(+) T cells contribute significantly to chlamydial upper genital tract pathology in female mice. In addition, we observed that minimal chlamydial oviduct pathology develops in OT-1 transgenic (OT-1) mice, wherein the CD8(+) T-cell repertoire is restricted to recognition of the ovalbumin peptide Ova(257-264), suggesting that non-Chlamydia-specific CD8(+) T cells may not be responsible for chlamydial pathogenesis. In the current study, we evaluated whether antigen-specific CD8(+) T cells mediate chlamydial pathology. Groups of wild-type (WT) C57BL/6J, OT-1 mice, and OT-1 mice replete with WT CD8(+) T cells (1 × 10(6) cells per mouse intravenously) were infected intravaginally with C. muridarum (5 × 10(4) IFU/mouse). Serum total anti-Chlamydia antibody and total splenic anti-Chlamydia interferon (IFN)-γ and TNF-α responses were comparable among the three groups of animals. However, Chlamydia-specific IFN-γ and TNF-α production from purified splenic CD8(+) T cells of OT-1 mice was minimal, whereas responses in OT-1 mice replete with WT CD8(+) T cells were comparable to those in WT animals. Vaginal chlamydial clearance was comparable between the three groups of mice. Importantly, the incidence and severity of oviduct and uterine horn pathology was significantly reduced in OT-1 mice but reverted to WT levels in OT-1 mice replete with WT CD8(+) T cells. Collectively, these results demonstrate that Chlamydia-specific CD8(+) T cells contribute significantly to upper genital tract pathology.

  7. Hepatic stellate cells secreted hepatocyte growth factor contributes to the chemoresistance of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Guofeng Yu

    Full Text Available As the main source of extracellular matrix proteins in tumor stroma, hepatic stellate cells (HSCs have a great impact on biological behaviors of hepatocellular carcinoma (HCC. In the present study, we have investigated a mechanism whereby HSCs modulate the chemoresistance of hepatoma cells. We used human HSC line lx-2 and chemotherapeutic agent cisplatin to investigate their effects on human HCC cell line Hep3B. The results showed that cisplatin resistance in Hep3B cells was enhanced with LX-2 CM (cultured medium exposure in vitro as well as co-injection with LX-2 cells in null mice. Meanwhile, in presence of LX-2 CM, Hep3B cells underwent epithelial to mesenchymal transition (EMT and upregulation of cancer stem cell (CSC -like properties. Besides, LX-2 cells synthesized and secreted hepatic growth factor (HGF into the CM. HGF receptor tyrosine kinase mesenchymal-epithelial transition factor (Met was activated in Hep3B cells after LX-2 CM exposure. The HGF level of LX-2 CM could be effectively reduced by using HGF neutralizing antibody. Furthermore, depletion of HGF in LX-2 CM abolished its effects on activation of Met as well as promotion of the EMT, CSC-like features and cisplatin resistance in Hep3B cells. Collectively, secreting HGF into tumor milieu, HSCs may decrease hepatoma cells sensitization to chemotherapeutic agents by promoting EMT and CSC-like features via HGF/Met signaling.

  8. Haemophilus ducreyi Hfq contributes to virulence gene regulation as cells enter stationary phase.

    Science.gov (United States)

    Gangaiah, Dharanesh; Labandeira-Rey, Maria; Zhang, Xinjun; Fortney, Kate R; Ellinger, Sheila; Zwickl, Beth; Baker, Beth; Liu, Yunlong; Janowicz, Diane M; Katz, Barry P; Brautigam, Chad A; Munson, Robert S; Hansen, Eric J; Spinola, Stanley M

    2014-02-11

    To adapt to stresses encountered in stationary phase, Gram-negative bacteria utilize the alternative sigma factor RpoS. However, some species lack RpoS; thus, it is unclear how stationary-phase adaptation is regulated in these organisms. Here we defined the growth-phase-dependent transcriptomes of Haemophilus ducreyi, which lacks an RpoS homolog. Compared to mid-log-phase organisms, cells harvested from the stationary phase upregulated genes encoding several virulence determinants and a homolog of hfq. Insertional inactivation of hfq altered the expression of ~16% of the H. ducreyi genes. Importantly, there were a significant overlap and an inverse correlation in the transcript levels of genes differentially expressed in the hfq inactivation mutant relative to its parent and the genes differentially expressed in stationary phase relative to mid-log phase in the parent. Inactivation of hfq downregulated genes in the flp-tad and lspB-lspA2 operons, which encode several virulence determinants. To comply with FDA guidelines for human inoculation experiments, an unmarked hfq deletion mutant was constructed and was fully attenuated for virulence in humans. Inactivation or deletion of hfq downregulated Flp1 and impaired the ability of H. ducreyi to form microcolonies, downregulated DsrA and rendered H. ducreyi serum susceptible, and downregulated LspB and LspA2, which allow H. ducreyi to resist phagocytosis. We propose that, in the absence of an RpoS homolog, Hfq serves as a major contributor of H. ducreyi stationary-phase and virulence gene regulation. The contribution of Hfq to stationary-phase gene regulation may have broad implications for other organisms that lack an RpoS homolog. Pathogenic bacteria encounter a wide range of stresses in their hosts, including nutrient limitation; the ability to sense and respond to such stresses is crucial for bacterial pathogens to successfully establish an infection. Gram-negative bacteria frequently utilize the alternative sigma

  9. Transplantation of dedifferentiated fat cell-derived micromass pellets contributed to cartilage repair in the rat osteochondral defect model.

    Science.gov (United States)

    Shimizu, Manabu; Matsumoto, Taro; Kikuta, Shinsuke; Ohtaki, Munenori; Kano, Koichiro; Taniguchi, Hiroaki; Saito, Shu; Nagaoka, Masahiro; Tokuhashi, Yasuaki

    2018-03-20

    Mature adipocyte-derived dedifferentiated fat (DFAT) cells possesses the ability to proliferate effectively and the potential to differentiate into multiple linages of mesenchymal tissue; similar to adipose-derived stem cells (ASCs). The purpose of this study is to examine the effects of DFAT cell transplantation on cartilage repair in a rat model of osteochondral defects. Full-thickness osteochondral defects were created in the knees of Sprague-Dawley rats bilaterally. Cartilage-like micromass pellets were prepared from green fluorescent protein (GFP)-labeled rat DFAT cells and subsequently transplanted into the affected right knee of these rats. Defects in the left knee were used as a control. Macroscopic and microscopic changes of treated and control defects were evaluated up to 12 weeks post-treatment with DFAT cells. To observe the transplanted cells, sectioned femurs were immunostained for GFP and type II collagen. DFAT cells formed micromass pellets expressing characteristics of immature cartilage in vitro. In the DFAT cell-transplanted limbs, the defects were completely filled with white micromass pellets as early as 2 weeks post-treatment. These limbs became smooth at 4 weeks. Conversely, the defects in the control limbs were still not repaired by 4 weeks. Macroscopic ICRS scores at 2 and 4 weeks were significantly higher in the DFAT cells-transplanted limbs compared to those of the control limbs. The modified O'Driscol histological scores for the DFAT cell-transplanted limbs were significantly higher than those of the control limbs at corresponding time points. GFP-positive DAFT cells were detected in the transplanted area at 2 weeks but hardly visible at 12 weeks post-operation. Transplantation of DFAT cell-derived micromass pellets contribute to cartilage repair in a rat osteochondral defect model. DFAT cell transplantation may be a viable therapeutic strategy for the repair of osteochondral injuries. Copyright © 2018 The Authors. Published by

  10. Decreased Intracellular pH Induced by Cariporide Differentially Contributes to Human Umbilical Cord-Derived Mesenchymal Stem Cells Differentiation

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2014-01-01

    Full Text Available Background/Aims: Na+/H+ exchanger 1 (NHE1 is an important regulator of intracellular pH (pHi. High pHi is required for cell proliferation and differentiation. Our previous study has proven that the pHi of mesenchymal stem cells is higher than that of normal differentiated cells and similar to tumor cells. NHE1 is highly expressed in both mesenchymal stem cells and tumor cells. Targeted inhibition of NHE1 could induce differentiation of K562 leukemia cells. In the present paper we explored whether inhibition of NHE1 could induce differentiation of mesenchymal stem cells. Methods: MSCs were obtained from human umbilical cord and both the surface phenotype and functional characteristics were analyzed. Selective NHE1 inhibitor cariporide was used to treat human umbilical cord-derived mesenchymal stem cells (hUC-MSCs. The pHi and the differentiation of hUC-MSCs were compared upon cariporide treatment. The putative signaling pathway involved was also explored. Results: The pHi of hUC-MSCs was decreased upon cariporide treatment. Cariporide up-regulated the osteogenic differentiation of hUC-MSCs while the adipogenic differentiation was not affected. For osteogenic differentiation, β-catenin expression was up-regulated upon cariporide treatment. Conclusion: Decreased pHi induced by cariporide differentially contributes to hUC-MSCs differentiation.

  11. Chronic Myelogenous Leukemia Cells Contribute to the Stromal Myofibroblasts in Leukemic NOD/SCID Mouse In Vivo

    Directory of Open Access Journals (Sweden)

    Ryosuke Shirasaki

    2012-01-01

    Full Text Available We recently reported that chronic myelogenous leukemia (CML cells converted into myofibroblasts to create a microenvironment for proliferation of CML cells in vitro. To analyze a biological contribution of CML-derived myofibroblasts in vivo, we observed the characters of leukemic nonobese diabetes/severe combined immunodeficiency (NOD/SCID mouse. Bone marrow nonadherent mononuclear cells as well as human CD45-positive cells obtained from CML patients were injected to the irradiated NOD/SCID mice. When the chimeric BCR-ABL transcript was demonstrated in blood, human CML cells were detected in NOD/SCID murine bone marrow. And CML-derived myofibroblasts composed with the bone marrow-stroma, which produced significant amounts of human vascular endothelial growth factor A. When the parental CML cells were cultured with myofibroblasts separated from CML cell-engrafted NOD/SCID murine bone marrow, CML cells proliferated significantly. These observations indicate that CML cells make an adequate microenvironment for their own proliferation in vivo.

  12. F4/80+ Macrophages Contribute to Clearance of Senescent Cells in the Mouse Postpartum Uterus.

    Science.gov (United States)

    Egashira, Mahiro; Hirota, Yasushi; Shimizu-Hirota, Ryoko; Saito-Fujita, Tomoko; Haraguchi, Hirofumi; Matsumoto, Leona; Matsuo, Mitsunori; Hiraoka, Takehiro; Tanaka, Tomoki; Akaeda, Shun; Takehisa, Chiaki; Saito-Kanatani, Mayuko; Maeda, Kei-Ichiro; Fujii, Tomoyuki; Osuga, Yutaka

    2017-07-01

    Cellular senescence, defined as an irreversible cell cycle arrest, exacerbates the tissue microenvironment. Our previous study demonstrated that mouse uterine senescent cells were physiologically increased according to gestational days and that their abnormal accumulation was linked to the onset of preterm delivery. We hypothesized that there is a mechanism for removal of senescent cells after parturition to maintain uterine function. In the current study, we noted abundant uterine senescent cells and their gradual disappearance in wild-type postpartum mice. F4/80+ macrophages were present specifically around the area rich in senescent cells. Depletion of macrophages in the postpartum mice using anti-F4/80 antibody enlarged the area of senescent cells in the uterus. We also found excessive uterine senescent cells and decreased second pregnancy success rate in a preterm birth model using uterine p53-deleted mice. Furthermore, a decrease in F4/80+ cells and an increase in CD11b+ cells with a senescence-associated inflammatory microenvironment were observed in the p53-deleted uterus, suggesting that uterine p53 deficiency affects distribution of the macrophage subpopulation, interferes with senescence clearance, and promotes senescence-induced inflammation. These findings indicate that the macrophage is a key player in the clearance of uterine senescent cells to maintain postpartum uterine function. Copyright © 2017 Endocrine Society.

  13. Intrinsic Contribution of Perforin to NK-Cell Homeostasis during Mouse Cytomegalovirus Infection

    Directory of Open Access Journals (Sweden)

    Maja eArapovic

    2016-04-01

    Full Text Available In addition to their role as effector cells in virus control, natural killer (NK cells have an immunoregulatory function in shaping the antiviral T-cell response. This function is further pronounced in perforin-deficient mice that show the enhanced NK-cell proliferation and cytokine secretion upon mouse cytomegalovirus (MCMV infection. Here we confirmed that stronger activation and maturation of NK cells in perforin-deficient mice correlates with higher MCMV load. To further characterize the immunoregulatory potential of perforin, we compared the response of NK cells that express or do not express perforin using bone-marrow chimeras. Our results demonstrated that the enhanced proliferation and maturation of NK cells in MCMV-infected bone-marrow chimeras is an intrinsic property of perforin-deficient NK cells. Thus, in addition to confirming that NK-cell proliferation is virus load dependent, our data extend this notion demonstrating that perforin plays an intrinsic role as a feedback mechanism in regulation of NK-cell proliferation during viral infections.

  14. Targeting poly (ADP-ribose polymerase partially contributes to bufalin-induced cell death in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    He Huang

    Full Text Available Despite recent pharmaceutical advancements in therapeutic drugs, multiple myeloma (MM remains an incurable disease. Recently, ploy(ADP-ribose polymerase 1 (PARP1 has been shown as a potentially promising target for MM therapy. A previous report suggested bufalin, a component of traditional Chinese medicine ("Chan Su", might target PARP1. However, this hypothesis has not been verified. We here showed that bufalin could inhibit PARP1 activity in vitro and reduce DNA-damage-induced poly(ADP-ribosylation in MM cells. Molecular docking analysis revealed that the active site of bufalin interaction is within the catalytic domain of PAPR1. Thus, PARP1 is a putative target of bufalin. Furthermore, we showed, for the first time that the proliferation of MM cell lines (NCI-H929, U266, RPMI8226 and MM.1S and primary CD138(+ MM cells could be inhibited by bufalin, mainly via apoptosis and G2-M phase cell cycle arrest. MM cell apoptosis was confirmed by apoptotic cell morphology, Annexin-V positive cells, and the caspase3 activation. We further evaluated the role of PARP1 in bufalin-induced apoptosis, discovering that PARP1 overexpression partially suppressed bufalin-induced cell death. Moreover, bufalin can act as chemosensitizer to enhance the cell growth-inhibitory effects of topotecan, camptothecin, etoposide and vorinostat in MM cells. Collectively, our data suggest that bufalin is a novel PARP1 inhibitor and a potentially promising therapeutic agent against MM alone or in combination with other drugs.

  15. Daple Coordinates Planar Polarized Microtubule Dynamics in Ependymal Cells and Contributes to Hydrocephalus

    Directory of Open Access Journals (Sweden)

    Maki Takagishi

    2017-07-01

    Full Text Available Motile cilia in ependymal cells, which line the cerebral ventricles, exhibit a coordinated beating motion that drives directional cerebrospinal fluid (CSF flow and guides neuroblast migration. At the apical cortex of these multi-ciliated cells, asymmetric localization of planar cell polarity (PCP proteins is required for the planar polarization of microtubule dynamics, which coordinates cilia orientation. Daple is a disheveled-associating protein that controls the non-canonical Wnt signaling pathway and cell motility. Here, we show that Daple-deficient mice present hydrocephalus and their ependymal cilia lack coordinated orientation. Daple regulates microtubule dynamics at the anterior side of ependymal cells, which in turn orients the cilial basal bodies required for the directional cerebrospinal fluid flow. These results demonstrate an important role for Daple in planar polarity in motile cilia and provide a framework for understanding the mechanisms and functions of planar polarization in the ependymal cells.

  16. The contribution of cell blocks in the diagnosis of mediastinal masses and hilar adenopathy samples from echobronchoscopy.

    Science.gov (United States)

    Lourido-Cebreiro, Tamara; Leiro-Fernández, Virginia; Tardio-Baiges, Antoni; Botana-Rial, Maribel; Núñez-Delgado, Manuel; Álvarez-Martín, M Jesús; Fernández-Villar, Alberto

    2014-07-01

    Cell block material from puncture can be obtained with endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in many cases. The aim of this study was to analyse the value of additional information from cell blocks obtained with EBUS-TBNA samples from mediastinal and hilar lymph nodes and masses. Review of pathology reports with a specific diagnosis obtained from EBUS-TBNA samples of mediastinal or hilar lesions, prospectively obtained over a two-year period. The generation of cell blocks from cytology needle samples, the contribution to morphological diagnosis, and the possible use of samples for immunohistochemistry were analysed. One hundred and twenty-nine samples corresponding to 110 patients were reviewed. The diagnosis was lung cancer in 81% of cases, extrapulmonary carcinoma in 10%, sarcoidosis in 4%, lymphoma in 2.7%, and tuberculosis in 0.9%. Cell blocks could be obtained in 72% of cases. Immunohistochemistry studies on the cell blocks were significantly easier to perform than on conventional smears (52.6% vs. 14%, P<.0001). In 4cases, the cell block provided an exclusive morphological diagnosis (3sarcoidosis and one metastasis from prostatic carcinoma) and in 3carcinomas, subtype and origin could be identified. Exclusive diagnoses from the cell block were significantly more frequent in benign disease than in malignant disease (25% vs 0.9%, P=.002). Cell blocks were obtained from 72% of EBUS-TBNA diagnostic procedures. The main contributions of cell blocks to pathology examinations were the possibility of carrying out immunohistochemical staining for the better classification of neoplasms, especially extrapulmonary metastatic tumours, and the improved diagnosis of benign lesions. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  17. Less contribution of mast cells to the progression of renal fibrosis in Rat kidneys with chronic renal failure.

    Science.gov (United States)

    Baba, Asuka; Tachi, Masahiro; Ejima, Yutaka; Endo, Yasuhiro; Toyama, Hiroaki; Saito, Kazutomo; Abe, Nozomu; Yamauchi, Masanori; Miura, Chieko; Kazama, Itsuro

    2017-02-01

    Chronic renal failure (CRF) is histopathologically characterized by tubulointerstitial fibrosis in addition to glomerulosclerosis. Although mast cells are known to infiltrate into the kidneys with chronic inflammation, we know little about their contribution to the pathogenesis of renal fibrosis associated with CRF. The aim of this study was to reveal the involvement of mast cells in the progression of renal fibrosis in CRF. Using a rat model with CRF resulting from 5/6 nephrectomy, we examined the histopathological features of the kidneys and the infiltration of mast cells into the renal interstitium. By treating the rats with a potent mast cell stabilizer, tranilast, we also examined the involvement of mast cells in the progression of renal fibrosis associated with CRF. The CRF rat kidneys were characterized by the wide staining of collagen III and increased number of myofibroblasts, indicating the progression of renal fibrosis. Compared to T-lymphocytes or macrophages, the number of tryptase-positive mast cells was much smaller within the fibrotic kidneys and they did not proliferate in situ. The mRNA expression of mast cell-derived fibroblast-activating factors was not increased in the renal cortex isolated from CRF rat kidneys. Treatment with tranilast did not suppress the progression of renal fibrosis, nor did it ameliorate the progression of glomerulosclerosis and the interstitial proliferation of inflammatory leukocytes. This study demonstrated for the first time that mast cells are neither increased nor activated in the fibrotic kidneys of CRF rats. Compared to T-lymphocytes or macrophages that proliferate in situ within the fibrotic kidneys, mast cells were less likely to contribute to the progression of renal fibrosis associated with CRF. © 2016 Asian Pacific Society of Nephrology.

  18. Regulation of the Contribution of Integrin to Cell Attachment on Poly(2-Methoxyethyl Acrylate (PMEA Analogous Polymers for Attachment-Based Cell Enrichment.

    Directory of Open Access Journals (Sweden)

    Takashi Hoshiba

    Full Text Available Cell enrichment is currently in high demand in medical engineering. We have reported that non-blood cells can attach to a blood-compatible poly(2-methoxyethyl acrylate (PMEA substrate through integrin-dependent and integrin-independent mechanisms because the PMEA substrate suppresses protein adsorption. Therefore, we assumed that PMEA analogous polymers can change the contribution of integrin to cell attachment through the regulation of protein adsorption. In the present study, we investigated protein adsorption, cell attachment profiles, and attachment mechanisms on PMEA analogous polymer substrates. Additionally, we demonstrated the possibility of attachment-based cell enrichment on PMEA analogous polymer substrates. HT-1080 and MDA-MB-231 cells started to attach to poly(butyl acrylate (PBA and poly(tetrahydrofurfuryl acrylate (PTHFA, on which proteins could adsorb well, within 1 h. HepG2 cells started to attach after 1 h. HT-1080, MDA-MB-231, and HepG2 cells started to attach within 30 min to PMEA, poly(2-(2-methoxyethoxy ethyl acrylate-co-butyl acrylate (30:70 mol%, PMe2A and poly(2-(2-methoxyethoxy ethoxy ethyl acrylate-co-butyl acrylate (30:70 mol%, PMe3A, which suppress protein adsorption. Moreover, the ratio of attached cells from a cell mixture can be changed on PMEA analogous polymers. These findings suggested that PMEA analogous polymers can be used for attachment-based cell enrichment.

  19. The nanostructure of myoendothelial junctions contributes to signal rectification between endothelial and vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Jacobsen, Jens Christian Brings; von Holstein-Rathlou, Niels-Henrik

    2012-01-01

    Micro-anatomical structures in tissues have potential physiological effects. In arteries and arterioles smooth muscle cells and endothelial cells are separated by the internal elastic lamina, but the two cell layers often make contact through micro protrusions called myoendothelial junctions. Cross...... types and the myoendothelial junction. The model is implemented as a 2D axi-symmetrical model and solved using the finite element method. We have simulated diffusion of Ca(2+) and IP(3) between the two cell types and we show that the micro-anatomical structure of the myoendothelial junction in itself...

  20. Transcriptional Repressor HIC1 Contributes to Suppressive Function of Human Induced Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Ubaid Ullah

    2018-02-01

    Full Text Available Regulatory T (Treg cells are critical in regulating the immune response. In vitro induced Treg (iTreg cells have significant potential in clinical medicine. However, applying iTreg cells as therapeutics is complicated by the poor stability of human iTreg cells and their variable suppressive activity. Therefore, it is important to understand the molecular mechanisms of human iTreg cell specification. We identified hypermethylated in cancer 1 (HIC1 as a transcription factor upregulated early during the differentiation of human iTreg cells. Although FOXP3 expression was unaffected, HIC1 deficiency led to a considerable loss of suppression by iTreg cells with a concomitant increase in the expression of effector T cell associated genes. SNPs linked to several immune-mediated disorders were enriched around HIC1 binding sites, and in vitro binding assays indicated that these SNPs may alter the binding of HIC1. Our results suggest that HIC1 is an important contributor to iTreg cell development and function.

  1. CD147-mediated chemotaxis of CD4+CD161+ T cells may contribute to local inflammation in rheumatoid arthritis.

    Science.gov (United States)

    Lv, Minghua; Miao, Jinlin; Zhao, Peng; Luo, Xing; Han, Qing; Wu, Zhenbiao; Zhang, Kui; Zhu, Ping

    2018-01-01

    CD161 is used as a surrogate marker for Th17 cells, which are implicated in the pathogenesis of rheumatoid arthritis (RA). In this study, we evaluated the percentage, clinical significance, and CD98 and CD147 expression of CD4 + CD161 + T cells. The potential role of CD147 and CD98 in cyclophilin A-induced chemotaxis of CD4 + CD161 + T cells was analyzed. Thirty-seven RA patients, 15 paired synovial fluid (SF) of RA, and 22 healthy controls were recruited. The cell populations and surface expression of CD98 and CD147 were analyzed by flow cytometry. Spearman's rank correlation coefficient and multiple linear regression were applied to calculate the correlations. Chemotaxis assay was used to investigate CD4 + CD161 + T cell migration. We found that the percentage of CD4 + CD161 + T cells and their expression of CD147 and CD98 in SF were higher than in the peripheral blood of RA patients. Percentage of SF CD4 + CD161 + T cells was positively correlated with 28-Joint Disease Activity Score (DAS28). CD147 monoclonal antibody (HAb18) attenuated the chemotactic ability of CD4 + CD161 + T cells. An increased CD4 + CD161 + T cell percentage and expression of CD147 and CD98 were shown in RA SF. Percentage of SF CD4 + CD161 + T cells can be used as a predictive marker of disease activity in RA. CD147 block significantly decreased the chemotactic index of CD4 + CD161 + cells induced by cyclophilin A (CypA). These results imply that the accumulation of CD4 + CD161 + T cells in SF and their high expression of CD147 may be associated with CypA-mediated chemotaxis and contribute to local inflammation in RA.

  2. Single-Cell RNA Sequencing Reveals T Helper Cells Synthesizing Steroids De Novo to Contribute to Immune Homeostasis

    Directory of Open Access Journals (Sweden)

    Bidesh Mahata

    2014-05-01

    Full Text Available T helper 2 (Th2 cells regulate helminth infections, allergic disorders, tumor immunity, and pregnancy by secreting various cytokines. It is likely that there are undiscovered Th2 signaling molecules. Although steroids are known to be immunoregulators, de novo steroid production from immune cells has not been previously characterized. Here, we demonstrate production of the steroid pregnenolone by Th2 cells in vitro and in vivo in a helminth infection model. Single-cell RNA sequencing and quantitative PCR analysis suggest that pregnenolone synthesis in Th2 cells is related to immunosuppression. In support of this, we show that pregnenolone inhibits Th cell proliferation and B cell immunoglobulin class switching. We also show that steroidogenic Th2 cells inhibit Th cell proliferation in a Cyp11a1 enzyme-dependent manner. We propose pregnenolone as a “lymphosteroid,” a steroid produced by lymphocytes. We speculate that this de novo steroid production may be an intrinsic phenomenon of Th2-mediated immune responses to actively restore immune homeostasis.

  3. Giardia lamblia: identification of molecules that contribute to direct mast cell activation.

    Science.gov (United States)

    Muñoz-Cruz, Samira; Gomez-García, Argelia; Matadamas-Martínez, Félix; Alvarado-Torres, Juan A; Meza-Cervantez, Patricia; Arriaga-Pizano, Lourdes; Yépez-Mulia, Lilián

    2018-06-02

    Mast cells play a central role in the early clearance of the intestinal parasite Giardia lamblia. In a previous study, we reported that G. lamblia live trophozoites or trophozoite-derived total soluble extract induced direct activation (IgE-independent) of mast cells and release of IL-6 and TNF-α. To identify the Giardia molecules and the mast cell receptors involved in this activation, trophozoite-derived total soluble proteins separated into three fractions (F1-F3) were evaluated for its ability to activate mast cells in vitro. F2 activated mast cells in a greater extent than F1 and F3. Furthermore, F2 induced the release of IL-6 and TNF-α by mast cells. TLR2 and TLR4 expression increased slightly after mast cell stimulation with either F2 or total soluble extract; however, these receptors were not involved in F2 or total soluble extract-induced proinflammatory cytokine production. Proteins present in F2 as unique and high-intensity bands identified by liquid chromatography coupled with tandem mass spectrometry, include molecules with important biological activities such as enolase and arginine deiminase (ADI). Recombinant ADI and enolase were tested for their ability to activate mast cells, but only ADI induced a significant release of IL-6 and TNF-α. ADI product, citrulline but not ammonium, also induced mast cell release of TNF-α. Interestingly, recombinant ADI still stimulated the secretion of TNF-α by mast cells in a arginine-free medium, although in a lower extend that in the presence of arginine, indicating that either ADI itself can stimulate mast cells or through its metabolic product, citrulline.

  4. Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine: possible contribution to therapeutic effects of RPE cell transplantation in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Gu Qing

    2009-06-01

    Full Text Available Abstract Background New strategies for the treatment of Parkinson's disease (PD are shifted from dopamine (DA replacement to regeneration or restoration of the nigro-striatal system. A cell therapy using human retinal pigment epithelial (RPE cells as substitution for degenerated dopaminergic (DAergic neurons has been developed and showed promising prospect in clinical treatment of PD, but the exact mechanism underlying this therapy is not fully elucidated. In the present study, we investigated whether the beneficial effects of this therapy are related to the trophic properties of RPE cells and their ability to synthesize DA. Methods We evaluated the protective effects of conditioned medium (CM from cultured RPE cells on the DAergic cells against 6-hydroxydopamine (6-OHDA- and rotenone-induced neurotoxicity and determined the levels of glial cell derived neurotrophic factor (GDNF and brain derived neurotrophic factor (BDNF released by RPE cells. We also measured the DA synthesis and release. Finally we transplanted microcarriers-RPE cells into 6-OHDA lesioned rats and observed the improvement in apomorphine-induced rotations (AIR. Results We report here: (1 CM from RPE cells can secret trophic factors GDNF and BDNF, and protect DAergic neurons against the 6-OHDA- and rotenone-induced cell injury; (2 cultured RPE cells express L-dopa decarboxylase (DDC and synthesize DA; (3 RPE cells attached to microcarriers can survive in the host striatum and improve the AIR in 6-OHDA-lesioned animal model of PD; (4 GDNF and BDNF levels are found significantly higher in the RPE cell-grafted tissues. Conclusion These findings indicate the RPE cells have the ability to secret GDNF and BDNF, and synthesize DA, which probably contribute to the therapeutic effects of RPE cell transplantation in PD.

  5. A Sensitive and Specific Diagnostic Panel to Distinguish Diffuse Astrocytoma from Astrocytosis: Chromosome 7 Gain with Mutant Isocitrate Dehydrogenase 1 and p53

    Science.gov (United States)

    Camelo-Piragua, Sandra; Jansen, Michael; Ganguly, Aniruddha; Kim, J. ChulMin; Cosper, Arjola K.; Dias-Santagata, Dora; Nutt, Catherine L.; Iafrate, A. John; Louis, David N.

    2011-01-01

    One of the major challenges of surgical neuropathology is the distinction of diffuse astrocytoma (World Health Organization [WHO] grade II) from astrocytosis. The most commonly used ancillary tool to solve this problem is p53 immunohistochemistry (IHC), but this is neither sensitive nor specific. Isocitrate dehydrogenase 1 (IDH1) mutations are common in lower grade gliomas, with most causing a specific amino acid change (R132H) that can be detected with a monoclonal antibody. IDH2 mutations are rare, but also occur in gliomas. In addition, gains of chromosome 7 are common in gliomas. In this study we assessed the status of p53, IDH1/2 and chromosome 7 to determine the most useful panel to distinguish astrocytoma from astrocytosis. We studied biopsy specimens from 21 WHO grade II diffuse astrocytomas and 20 reactive conditions. The single most sensitive test to identify astrocytoma is fluorescence in situ hybridization (FISH) for chromosome 7 gain (76.2%). The combination of p53 and mutant IDH1 IHC provides a higher sensitivity (71.4%) than either test alone (47.8%); this combination offers a practical initial approach for the surgical pathologist. The best overall sensitivity (95%) is achieved when FISH for chromosome 7 gain is added to the p53-mutant IDH1 IHC panel. PMID:21343879

  6. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    International Nuclear Information System (INIS)

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho; Kim, Hyung Jung; Yoo, Young Do

    2013-01-01

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H 2 O 2 ) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H 2 O 2 treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells

  7. Contribution to Tumor Angiogenesis From Innate Immune Cells Within the Tumor Microenvironment: Implications for Immunotherapy

    Directory of Open Access Journals (Sweden)

    Adriana Albini

    2018-04-01

    Full Text Available The critical role of angiogenesis in promoting tumor growth and metastasis is strongly established. However, tumors show considerable variation in angiogenic characteristics and in their sensitivity to antiangiogenic therapy. Tumor angiogenesis involves not only cancer cells but also various tumor-associated leukocytes (TALs and stromal cells. TALs produce chemokines, cytokines, proteases, structural proteins, and microvescicles. Vascular endothelial growth factor (VEGF and inflammatory chemokines are not only major proangiogenic factors but are also immune modulators, which increase angiogenesis and lead to immune suppression. In our review, we discuss the regulation of angiogenesis by innate immune cells in the tumor microenvironment, specific features, and roles of major players: macrophages, neutrophils, myeloid-derived suppressor and dendritic cells, mast cells, γδT cells, innate lymphoid cells, and natural killer cells. Anti-VEGF or anti-inflammatory drugs could balance an immunosuppressive microenvironment to an immune permissive one. Anti-VEGF as well as anti-inflammatory drugs could therefore represent partners for combinations with immune checkpoint inhibitors, enhancing the effects of immune therapy.

  8. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss

    DEFF Research Database (Denmark)

    Bellantuono, Ilaria; Aldahmash, Abdullah; Kassem, Moustapha

    2009-01-01

    Marrow stromal cells (MSC) are thought to be stem cells with osteogenic potential and therefore responsible for the repair and maintenance of the skeleton. Age related bone loss is one of the most prevalent diseases in the elder population. It is controversial whether MSC undergo a process of agi...

  9. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  10. Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis

    NARCIS (Netherlands)

    Noordenbos, Troy; Yeremenko, Nataliya; Gofita, Ioana; van de Sande, Marleen; Tak, Paul P.; Caňete, Juan D.; Baeten, Dominique

    2012-01-01

    Objective Studies comparing spondylarthritis (SpA) to rheumatoid arthritis (RA) synovitis suggest that innate immune cells may play a predominant role in the pathogenesis of SpA. Recent observations have indicated a marked synovial mast cell infiltration in psoriatic SpA. We therefore undertook the

  11. Contribution of autophagy inhibitor to radiation sensitization in nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Zhou Zhirui; Zhu Xiaodong; Zhao Wei; Qu song; Pan Wenyan; Guo Ya; Su Fang; Li Xiaoyu

    2012-01-01

    Objective: To investigate the role of autophagy in radiation-induced death response of human nasopharyngeal carcinoma cells. Methods: MTT method was used to detect cell viability of CNE-2 cells in different time after irradiation. Clonogenic survival assay was used to evaluate the effect of autophagy inhibitor (chloroquine phosphate) and autophagy inductor (rapamycin) on radiosensitivity of nasopharyngeal carcinoma cells.Cell apoptosis was assessed by flow cytometry. The expressions of LC3 and P62 were measured with Western blot. Cell ultrastructural analysis was performed under an electron microscope.Results Irradiation with 10 Gy induced a massive accumulation of autophagosomes accompanied with up-regulation of LC3-Ⅱ expression in CNE-2 cells. Compared with radiation alone, chloroquine phosphate (CDP) enhanced radiosensitivity significantly by decreasing cell viability (F=25.88, P<0.05), autophagic ratio (F=105.15, P<0.05), and LC3-Ⅱ protein level (F=231.68, P<0.05), while up-regulating the expression of P62 (F=117.52, P<0.05). Inhibition of autophagy increased radiation-induced apoptosis (F=143.72, P<0.05). Rapamycin (RAPA) also significantly decreased cell viability, but increased autophagic ratio and LC3-Ⅱ protein level while down-regulated the expression of P62. Induction of autophagy increased radiation-induced apoptosis (F=167.32, P<0.05). Conclusions: Blockage of autophagy with CDP could enhance radiosensitivity in human nasopharyngeal carcinoma cells, suggesting that inhibition of autophagy could be used as an adjuvant treatment to nasopharyngeal carcinoma. (authors)

  12. Resident Arterial Cells and Circulating Bone Marrow-Derived Cells both Contribute to Intimal Hyperplasia in a Rat Allograft Carotid Transplantation Model

    Directory of Open Access Journals (Sweden)

    Yi He

    2017-07-01

    Full Text Available Background/Aims: Neointimal formation following vascular injury remains a major mechanism of restenosis, whereas the precise sources of neointimal cells are still uncertain. We tested the hypothesis that both injured arterial cells and non-arterial cells contribute to intimal hyperplasia. Methods: Following allograft transplantation of the balloon-injured carotid common artery (n = 3-6, the cellular composition of the transplant grafts and the origins of neointimal cells were measured by immunohistochemistry and immunofluorescence staining. Results: Smooth muscle actin (SMA-positive and CD68-positive cells were clearly observed 14 days later in the neointima after allograft transplantation of the balloon-injured carotid common artery, where re-endothelialization was not yet complete. Green fluorescent protein (GFP and wild-type (WT allograft transplantation revealed that the majority of the neointima cells were apparently from the recipient (≈85% versus the donor (≈15%. Both monocyte chemotactic protein-1 (MCP-1/CCR2 and stromal cell-derived factor-1 (SDF-1/CXCR4 signaling were involved in intimal hyperplasia, with bone marrow-derived cells also playing a role. Conclusion: These data support the hypothesis that intimal hyperplasia could develop in our novel rat allograft transplantation model of arterial injury, where neointima is attributable not only to local arterial cells but also non-arterial cells including the bone marrow.

  13. Parvalbumin-expressing ependymal cells in rostral lateral ventricle wall adhesions contribute to aging-related ventricle stenosis in mice.

    Science.gov (United States)

    Filice, Federica; Celio, Marco R; Babalian, Alexandre; Blum, Walter; Szabolcsi, Viktoria

    2017-10-15

    Aging-associated ependymal-cell pathologies can manifest as ventricular gliosis, ventricle enlargement, or ventricle stenosis. Ventricle stenosis and fusion of the lateral ventricle (LV) walls is associated with a massive decline of the proliferative capacities of the stem cell niche in the affected subventricular zone (SVZ) in aging mice. We examined the brains of adult C57BL/6 mice and found that ependymal cells located in the adhesions of the medial and lateral walls of the rostral LVs upregulated parvalbumin (PV) and displayed reactive phenotype, similarly to injury-reactive ependymal cells. However, PV+ ependymal cells in the LV-wall adhesions, unlike injury-reactive ones, did not express glial fibrillary acidic protein. S100B+/PV+ ependymal cells found in younger mice diminished in the LV-wall adhesions throughout aging. We found that periventricular PV-immunofluorescence showed positive correlation to the grade of LV stenosis in nonaged mice (wall adhesions and LV stenosis was significantly lower in mid-aged (>10-month-old) PV-knock out (PV-KO) mice. This suggests an involvement of PV+ ependymal cells in aging-associated ventricle stenosis. Additionally, we observed a time-shift in microglial activation in the LV-wall adhesions between age-grouped PV-KO and wild-type mice, suggesting a delay in microglial activation when PV is absent from ependymal cells. Our findings implicate that compromised ependymal cells of the adhering ependymal layers upregulate PV and display phenotype shift to "reactive" ependymal cells in aging-related ventricle stenosis; moreover, they also contribute to the progression of LV-wall fusion associated with a decline of the affected SVZ-stem cell niche in aged mice. © 2017 Wiley Periodicals, Inc.

  14. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang-Yuan; Wang, Zhen [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Li, Bei [Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zhang, Ying-Jian, E-mail: yjzhang111@aliyun.com [Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Li, Ying-Yi, E-mail: liyingyi@fudan.edu.cn [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China)

    2016-04-22

    Resistance of cancer cells to chemoradiotherapy is a major clinical problem in pancreatic cancer treatment. Therefore, understanding the molecular basis of cellular resistance and identifying novel targets are essential for improving treatment efficacy for pancreatic cancer patients. Previous studies have demonstrated a significant role for Pim-3 in pancreatic cancer survival against gemcitabine-induced genotoxic stress. Here, we observed that radiation treatment enhanced Pim-3 expression in human pancreatic cancer cells in vitro. Stable overexpression of Pim-3 in pancreatic cancer cells significantly protected cells against radiation treatment by attenuating G2/M phase cell cycle arrest and DNA damage response. Silencing of Pim-3 expression significantly elevated the phosphorylation of histone variant H2AX, a marker of DNA double strand breaks, and decreased the activation of ataxia-telangiectasia-mutated (ATM) kinase, along with its downstream targets, eventually enhancing the radiosensitivity of human pancreatic cancer cells in vitro and in vivo. Hence, we demonstrated a novel function for Pim-3 in human pancreatic cancer cell survival against radiation. Targeting Pim-3 may be a promising way to improve treatment efficacy in combination with radiotherapy in human pancreatic cancer. - Highlights: • This is first study to demonstrate that Pim-3 is endogenously induced by ionizing radiation in pancreatic cancer cells, and Pim-3 overexpression enhanced radioresistance of pancreatic cancer cells both in vitro and in vivo. • This is first study to provide evidence that radioresistance induced by Pim-3 is mainly attributed to Pim-3 induces activation of ATM, which subsequently activates checkpoint 1, leading to amplification of DNA repair through cell cycle arrest and DNA repair pathways. • This is first study to indicate that targeting Pim-3 may be a promising strategy to provide better treatment efficacy in combination with radiotherapy in human pancreatic

  15. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Chen, Xiang-Yuan; Wang, Zhen; Li, Bei; Zhang, Ying-Jian; Li, Ying-Yi

    2016-01-01

    Resistance of cancer cells to chemoradiotherapy is a major clinical problem in pancreatic cancer treatment. Therefore, understanding the molecular basis of cellular resistance and identifying novel targets are essential for improving treatment efficacy for pancreatic cancer patients. Previous studies have demonstrated a significant role for Pim-3 in pancreatic cancer survival against gemcitabine-induced genotoxic stress. Here, we observed that radiation treatment enhanced Pim-3 expression in human pancreatic cancer cells in vitro. Stable overexpression of Pim-3 in pancreatic cancer cells significantly protected cells against radiation treatment by attenuating G2/M phase cell cycle arrest and DNA damage response. Silencing of Pim-3 expression significantly elevated the phosphorylation of histone variant H2AX, a marker of DNA double strand breaks, and decreased the activation of ataxia-telangiectasia-mutated (ATM) kinase, along with its downstream targets, eventually enhancing the radiosensitivity of human pancreatic cancer cells in vitro and in vivo. Hence, we demonstrated a novel function for Pim-3 in human pancreatic cancer cell survival against radiation. Targeting Pim-3 may be a promising way to improve treatment efficacy in combination with radiotherapy in human pancreatic cancer. - Highlights: • This is first study to demonstrate that Pim-3 is endogenously induced by ionizing radiation in pancreatic cancer cells, and Pim-3 overexpression enhanced radioresistance of pancreatic cancer cells both in vitro and in vivo. • This is first study to provide evidence that radioresistance induced by Pim-3 is mainly attributed to Pim-3 induces activation of ATM, which subsequently activates checkpoint 1, leading to amplification of DNA repair through cell cycle arrest and DNA repair pathways. • This is first study to indicate that targeting Pim-3 may be a promising strategy to provide better treatment efficacy in combination with radiotherapy in human pancreatic

  16. stg fimbrial operon from S. Typhi STH2370 contributes to association and cell disruption of epithelial and macrophage-like cells.

    Science.gov (United States)

    Berrocal, Liliana; Fuentes, Juan A; Trombert, A Nicole; Jofré, Matías R; Villagra, Nicolás A; Valenzuela, Luis M; Mora, Guido C

    2015-07-07

    Salmonella enterica serovar Typhi (S. Typhi) stg operon, encoding a chaperone/usher fimbria (CU), contributes to an increased adherence to human epithelial cells. However, one report suggests that the presence of the Stg fimbria impairs the monocyte--bacteria association, as deduced by the lower level of invasion to macrophage-like cells observed when the stg fimbrial cluster was overexpressed. Nevertheless, since other CU fimbrial structures increase the entry of S. Typhi into macrophages, and considering that transcriptomic analyses revealed that stg operon is indeed expressed in macrophages, we reassessed the role of the stg operon in the interaction between S. Typhi strain STH2370 and human cells, including macrophage-like cells and mononuclear cells directly taken from human peripheral blood. We compared S. Typhi STH2370 WT, a Chilean clinical strain, and the S. Typhi STH2370 Δstg mutant with respect to association and invasion using epithelial and macrophage-like cells. We observed that deletion of stg operon reduced the association and invasion of S. Typhi, in both cellular types. The presence of the cloned stg operon restored the WT phenotype in all the cases. Moreover, we compared Salmonella enterica sv. Typhimurium 14028s (S. Typhimurium, a serovar lacking stg operon) and S. Typhimurium heterologously expressing S. Typhi stg. We found that the latter presents an increased cell disruption of polarized epithelial cells and an increased association in both epithelial and macrophage-like cells. S. Typhi stg operon encodes a functional adhesin that participates in the interaction bacteria-eukaryotic cells, including epithelial cells and macrophages-like cells. The phenotypes associated to stg operon include increased association and consequent invasion in bacteria-eukaryotic cells, and cell disruption.

  17. Contributions of Cell Metabolism and H+ Diffusion to the Acidic pH of Tumors

    Directory of Open Access Journals (Sweden)

    Paul A. Schornack

    2003-03-01

    Full Text Available The tumor microenvironment is hypoxic and acidic. These conditions have a significant impact on tumor progression and response to therapies. There is strong evidence that tumor hypoxia results from inefficient perfusion due to a chaotic vasculature. Consequently, some tumor regions are well oxygenated and others are hypoxic. It is commonly believed that hypoxic regions are acidic due to a stimulation of glycolysis through hypoxia, yet this is not yet demonstrated. The current study investigates the causes of tumor acidity by determining acid production rates and the mechanism of diffusion for H+ equivalents through model systems. Two breast cancer cell lines were investigated with divergent metabolic profiles: nonmetastatic MCF-7/s and highly metastatic MDA-mb-435 cells. Glycolysis and acid production are inhibited by oxygen in MCF-7/s cells, but not in MDA-mb-435 cells. Tumors of MDAmb-435 cells are significantly more acidic than are tumors of MCF-7/s cells, suggesting that tumor acidity is primarily caused by endogenous metabolism, not the lack of oxygen. Metabolically produced protons are shown to diffuse in association with mobile buffers, in concordance with previous studies. The metabolic and diffusion data were analyzed using a reaction-diffusion model to demonstrate that the consequent pH profiles conform well to measured pH values for tumors of these two cell lines.

  18. Connexin43 hemichannels contributes to the disassembly of cell junctions through modulation of intracellular oxidative status

    Directory of Open Access Journals (Sweden)

    Yuan Chi

    2016-10-01

    Full Text Available Connexin (Cx hemichannels regulate many cellular processes with little information available regarding their mechanisms. Given that many pathological factors that activate hemichannels also disrupts the integrity of cellular junctions, we speculated a potential participation of hemichannels in the regulation of cell junctions. Here we tested this hypothesis. Exposure of renal tubular epithelial cells to Ca2+-free medium led to disassembly of tight and adherens junctions, as indicated by the reduced level of ZO-1 and cadherin, disorganization of F-actin, and severe drop in transepithelial electric resistance. These changes were preceded by an activation of Cx43 hemichannels, as revealed by extracellular efflux of ATP and intracellular influx of Lucifer Yellow. Inhibition of hemichannels with chemical inhibitors or Cx43 siRNA greatly attenuated the disassembly of cell junctions. Further analysis using fetal fibroblasts derived from Cx43 wide-type (Cx43+/+, heterozygous (Cx43+/- and knockout (Cx43-/- littermates showed that Cx43-positive cells (Cx43+/+ exhibited more dramatic changes in cell shape, F-actin, and cadherin in response to Ca2+ depletion, as compared to Cx43-null cells (Cx43-/-. Consistently, these cells had higher level of protein carbonyl modification and phosphorylation, and much stronger activation of P38 and JNK. Hemichannel opening led to extracellular loss of the major antioxidant glutathione (GSH. Supplement of cells with exogenous GSH or inhibition of oxidative sensitive kinases largely prevented the above-mentioned changes. Taken together, our study indicates that Cx43 hemichannels promote the disassembly of cell junctions through regulation of intracellular oxidative status.

  19. Tumor Cells Express FcγRl Which Contributes to Tumor Cell Growth and a Metastatic Phenotype

    Directory of Open Access Journals (Sweden)

    M. Bud Nelson

    2001-01-01

    Full Text Available High levels of circulating immune complexes containing tumor-associated antigens are associated with a poor prognosis for individuals with cancer. The ability of B cells, previously exposed to tumor-associated antigens, to promote both in vitro and in vivo tumor growth formed the rationale to evaluate the mechanism by which immune complexes may promote tumor growth. In elucidating this mechanism, FcγRl expression by tumor cells was characterized by flow cytometry, polymerase chain reaction, and sequence analysis. Immune complexes containing shed tumor antigen and anti-shed tumor antigen Ab cross-linked FcγRl-expressing tumor cells, which resulted in an induction of tumor cell proliferation and of shed tumor antigen production. Use of selective tyrosine kinase inhibitors demonstrated that tumor cell proliferation induced by immune complex cross-linking of FcγRl is dependent on the tyrosine kinase signal transduction pathway. A selective inhibitor of phosphatidylinositol-3 kinase also inhibited this induction of tumor cell proliferation. These findings support a role for immune complexes and FcγRl expression by tumor cells in augmentation of tumor growth and a metastatic phenotype.

  20. The value of multi ultra high-b-value DWI in grading cerebral astrocytomas and its association with aquaporin-4.

    Science.gov (United States)

    Tan, Yan; Zhang, Hui; Wang, Xiao-Chun; Qin, Jiang-Bo; Wang, Le

    2018-06-01

    To investigate the value of multi-ultrahigh-b-value diffusion-weighted imaging (UHBV-DWI) in differentiating high-grade astrocytomas (HGAs) from low-grade astrocytomas (LGAs), analyze its association with aquaporin (AQP) expression. 40 astrocytomas divided into LGAs (N = 15) and HGAs (N = 25) were studied. Apparent diffusion coefficient (ADC) and UHBV-ADC values in solid parts and peritumoral edema were compared between LGAs and HGAs groups by the t-test. Using receiver operating characteristic curves to identify the better parameter. Using real time polymerase chain reaction to assess AQP messenger ribonucleic acid (mRNA). Using spearman correlation analysis to assess the correlation of AQP mRNA with each parameter. ADC values in solid parts of HGAs were significantly lower than LGAs (p = 0.02), while UHBV-ADC values of HGAs were significantly higher than LGAs (p  0.05); ADC value showed a negative correlation with AQP4 mRNA (r = -0.357; p = 0.024). UHBV-ADC value positively correlated with the AQP4 mRNA (r = 0.646; p value may be related with the AQP4 mRNA levels. UHBV-DWI could be of value in the assessment of astrocytoma. Advances in knowledge: UHBV-DWI generated by multi UHBV could have particular value for astrocytoma grading, and the level of AQP4 mRNA might be potentially linked to the change of UHBV-DWI parameter, and we might find the exact reason for the difference of UHBV-ADC between the LGAs and HGAs.

  1. The apoptosis linked gene ALG-2 is dysregulated in tumors of various origin and contributes to cancer cell viability

    DEFF Research Database (Denmark)

    la Cour, Jonas; Høj, Berit Rahbek; Mollerup, Jens

    2008-01-01

    microarrays we analysed the expression of ALG-2 in 7371 tumor tissue samples of various origin as well as in 749 normal tissue samples. Most notably, ALG-2 was upregulated in mesenchymal tumors. No correlation was found between ALG-2 staining intensity and survival of patients with lung, breast or colon...... cancer. siRNA mediated ALG-2 downregulation led to a significant reduction in viability of HeLa cells indicating that ALG-2 may contribute to tumor development and expansion....

  2. Subventricular zone predicts high velocity of tumor expansion and poor clinical outcome in patients with low grade astrocytoma.

    Science.gov (United States)

    Wen, Bing; Fu, Feixian; Hu, Liangbo; Cai, Qiuyi; Xie, Junshi

    2018-05-01

    The aim of this study is to clarify the association between subventricular zone (SVZ) involvement and velocity of diametric expansion(VDE) in patients with low-grade astrocytoma and also assessed the clinical outcome of those patients. A total of 168 adult patients with newly diagnosed supratentorial low-grade astrocytoma were studied retrospectively. There were 73 patients had SVZ involvement. Patients with SVZ involvement(7.16 ± 6.53 mm/y) had a higher VDE than patients without SVZ involvement(4.38 ± 5.35 mm/y). VDE was modeled as a categorical variable(<4, ≥4 and, <8, ≥8 and, <12, ≥12 mm/y). Logistic regression showed that SVZ involvement was associated with high VDE after adjusting by confounding variables. On the univariate analysis, the results showed that tumor involved with SVZ, VDE ≥ 4 mm/y, VDE ≥ 8 mm/y, and VDE ≥ 8 mm/y were significant predictors of a shorter OS, progression-free survival (PFS) and malignant progression-free survival (MFS)(all p <0.05). The categorical variables of VDE (<4 mm/y, ≥4 mm/y and, <8 mm/y, ≥8 mm/y and, <12 mm/y, ≥12 mm/y) were adjusted by confounding variables in multivariate analysis, respectively. The results indicated that VDE ≥ 8 mm/y, VDE ≥ 12 mm/y were worse prognostic factors for OS, while VDE ≥ 4 mm/y, VDE ≥ 8 mm/y and VDE ≥ 12 mm/y were related to shorter PFS and MFS. In addition, SVZ involvement was prognostic factors in predicting OS and PFS except MFS. Our results demonstrated that SVZ involvement predicted high VDE and worse clinical outcome, and high VDE was associated with poor prognosis in patients with low-grade astrocytoma. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Bone marrow-derived osteoblast progenitor cells in circulating blood contribute to ectopic bone formation in mice

    International Nuclear Information System (INIS)

    Otsuru, Satoru; Tamai, Katsuto; Yamazaki, Takehiko; Yoshikawa, Hideki; Kaneda, Yasufumi

    2007-01-01

    Recent studies have suggested the existence of osteoblastic cells in the circulation, but the origin and role of these cells in vivo are not clear. Here, we examined how these cells contribute to osteogenesis in a bone morphogenetic protein (BMP)-induced model of ectopic bone formation. Following lethal dose-irradiation and subsequent green fluorescent protein-transgenic bone marrow cell-transplantation (GFP-BMT) in mice, a BMP-2-containing collagen pellet was implanted into muscle. Three weeks later, a significant number of GFP-positive osteoblastic cells were present in the newly generated ectopic bone. Moreover, peripheral blood mononuclear cells (PBMNCs) from the BMP-2-implanted mouse were then shown to include osteoblast progenitor cells (OPCs) in culture. Passive transfer of the PBMNCs isolated from the BMP-2-implanted GFP-mouse to the BMP-2-implanted nude mouse led to GFP-positive osteoblast accumulation in the ectopic bone. These data provide new insight into the mechanism of ectopic bone formation involving bone marrow-derived OPCs in circulating blood

  4. Changes in human dendritic cell number and function in severe obesity may contribute to increased susceptibility to viral infection.

    LENUS (Irish Health Repository)

    O'Shea, D

    2013-02-26

    Dendritic cells (DCs) are key immune sentinels linking the innate and adaptive immune systems. DCs recognise danger signals and initiate T-cell tolerance, memory and polarisation. They are critical cells in responding to a viral illness. Obese individuals have been shown to have an impaired response to vaccinations against virally mediated conditions and to have an increased susceptibility to multi-organ failure in response to viral illness. We investigated if DCs are altered in an obese cohort (mean body mass index 51.7±7.3 kg m(-2)), ultimately resulting in differential T-cell responses. Circulating DCs were found to be significantly decreased in the obese compared with the lean cohort (0.82% vs 2.53%). Following Toll-like receptor stimulation, compared with lean controls, DCs generated from the obese cohort upregulated significantly less CD83 (40% vs 17% mean fluorescence intensity), a molecule implicated in the elicitation of T-cell responses, particularly viral responses. Obese DCs produced twofold more of the immunosuppressive cytokine interleukin (IL)-10 than lean controls, and in turn stimulated fourfold more IL-4-production from allogenic naive T cells. We conclude that obesity negatively impacts the ability of DCs to mature and elicit appropriate T-cell responses to a general stimulus. This may contribute to the increased susceptibility to viral infection observed in severe obesity.International Journal of Obesity advance online publication, 26 February 2013; doi:10.1038\\/ijo.2013.16.

  5. The contribution of human/non-human animal chimeras to stem cell research

    Directory of Open Access Journals (Sweden)

    Sonya Levine

    2017-10-01

    Full Text Available Chimeric animals are made up of cells from two separate zygotes. Human/non-human animal chimeras have been used for a number of research purposes, including human disease modeling. Pluripotent stem cell (PSC research has relied upon the chimera approach to examine the developmental potential of stem cells, to determine the efficacy of cell replacement therapies, and to establish a means of producing human organs. Based on ethical issues, this work has faced pushback from various sources including funding agencies. We discuss here the essential role these studies have played, from gaining a better understanding of human biology to providing a stepping stone to human disease treatments. We also consider the major ethical issues, as well as the current status of support for this work in the United States.

  6. The contribution of human/non-human animal chimeras to stem cell research.

    Science.gov (United States)

    Levine, Sonya; Grabel, Laura

    2017-10-01

    Chimeric animals are made up of cells from two separate zygotes. Human/non-human animal chimeras have been used for a number of research purposes, including human disease modeling. Pluripotent stem cell (PSC) research has relied upon the chimera approach to examine the developmental potential of stem cells, to determine the efficacy of cell replacement therapies, and to establish a means of producing human organs. Based on ethical issues, this work has faced pushback from various sources including funding agencies. We discuss here the essential role these studies have played, from gaining a better understanding of human biology to providing a stepping stone to human disease treatments. We also consider the major ethical issues, as well as the current status of support for this work in the United States. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. EMMPRIN contributes to the in vitro invasion of human salivary adenoid cystic carcinoma cells

    Science.gov (United States)

    YANG, XINJIE; ZHANG, PU; MA, QIN; KONG, LIANG; LI, YUAN; LIU, BAOLIN; LEI, DELIN

    2012-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is a transmembrane glycoprotein that is involved in tumor invasion by stimulating matrix metalloproteinase (MMP) expression. Our previous immunohistochemical study found that the expression of EMMPRIN in salivary adenoid cystic carcinoma (SACC) was positively correlated with tumor perineural and perivascular invasion. The present study was designed to further investigate the role of EMMPRIN in the invasion of SACC. Western blot results showed that EMMPRIN was upregulated in the highly metastatic SACC cell line SACC-LM, compared to SACC-83, a SACC cell line with low metastatic ability. Blocking of EMMPRIN by its antibody significantly decreased the adhesion, secretion of MMP-2 and MMP-9, and invasion activity of SACC-LM cells in vitro (PEMMPRIN may play an important role in the invasion of SACC by stimulating the expression of MMP-2 and MMP-9 in tumor and stromal cells. PMID:22200897

  8. Voltage Losses in Organic Solar Cells: Understanding the Contributions of Intramolecular Vibrations to Nonradiative Recombinations

    KAUST Repository

    Chen, Xiankai; Bredas, Jean-Luc

    2017-01-01

    The large voltage losses usually encountered in organic solar cells significantly limit the power conversion efficiencies (PCEs) of these devices, with the result that the current highest PCE values in single-junction organic photovoltaic remain

  9. CD4+ Foxp3+ T-cells contribute to myocardial ischemia-reperfusion injury.

    Science.gov (United States)

    Mathes, Denise; Weirather, Johannes; Nordbeck, Peter; Arias-Loza, Anahi-Paula; Burkard, Matthias; Pachel, Christina; Kerkau, Thomas; Beyersdorf, Niklas; Frantz, Stefan; Hofmann, Ulrich

    2016-12-01

    The present study analyzed the effect of CD4 + Forkhead box protein 3 negative (Foxp3 - ) T-cells and Foxp3 + CD4 + T-cells on infarct size in a mouse myocardial ischemia-reperfusion model. We examined the infarct size as a fraction of the area-at-risk as primary study endpoint in mice after 30minutes of coronary ligation followed by 24hours of reperfusion. CD4 + T-cell deficient MHC-II KO mice showed smaller histologically determined infarct size (34.5±4.7% in MHCII KO versus 59.4±4.9% in wildtype (WT)) and better preserved ejection fraction determined by magnetic resonance tomography (56.9±2.8% in MHC II KO versus 39.0±4.2% in WT). MHC-II KO mice also displayed better microvascular perfusion than WT mice after 24hours of reperfusion. Also CD4 + T-cell sufficient OT-II mice, which express an in this context irrelevant T-cell receptor, revealed smaller infarct sizes compared to WT mice. However, MHC-II blocking anti-I-A/I-E antibody treatment was not able to reduce infarct size indicating that autoantigen recognition is not required for the activation of CD4 + T-cells during reperfusion. Flow-cytometric analysis also did not detect CD4 + T-cell activation in heart draining lymph nodes in response to 24hours of ischemia-reperfusion. Adoptive transfer of CD4 + T-cells in CD4 KO mice increased the infarct size only when including the Foxp3 + CD25 + subset. Depletion of CD4 + Foxp3 + T-cells in DEREG mice enabling specific conditional ablation of this subset by treatment with diphtheria toxin attenuated infarct size as compared to diphtheria toxin treated WT mice. CD4 + Foxp3 + T-cells enhance myocardial ischemia-reperfusion injury. CD4 + T-cells exert injurious effects without the need for prior activation by MHC-II restricted autoantigen recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. STAT3/5-dependent IL9 overexpression contributes to neoplastic cell survival in mycosis fungoides

    DEFF Research Database (Denmark)

    Vieyra-Garcia, Pablo A.; Wei, Tianling; Naym, David Gram

    2016-01-01

    preparations. To explore the mechanism of IL9 secretion, we knocked down STAT3/5 and IRF4 by siRNA transfection in CTCL cell lines receiving psoralen+UVA (PUVA) ± anti-IL9 antibody. To further examine the role of IL9 in tumor development, the EL-4 T-cell lymphoma model was used in C57BL/6 mice.  Results...

  11. The relative contribution of mannose salvage pathways to glycosylation in PMI-deficient mouse embryonic fibroblast cells.

    Science.gov (United States)

    Fujita, Naonobu; Tamura, Ayako; Higashidani, Aya; Tonozuka, Takashi; Freeze, Hudson H; Nishikawa, Atsushi

    2008-02-01

    Mannose for mammalian glycan biosynthesis can be imported directly from the medium, derived from glucose or salvaged from endogenous or external glycans. All pathways must generate mannose 6-phosphate, the activated form of mannose. Imported or salvaged mannose is directly phosphorylated by hexokinase, whereas fructose 6-phosphate from glucose is converted to mannose 6-phosphate by phosphomannose isomerase (PMI). Normally, PMI provides the majority of mannose for glycan synthesis. To assess the contribution of PMI-independent pathways, we used PMI-null fibroblasts to study N-glycosylation of DNase I, a highly sensitive indicator protein. In PMI-null cells, imported mannose and salvaged mannose make a significant contribution to N-glycosylation. When these cells were grown in mannose-free medium along with the mannosidase inhibitor, swainsonine, to block the salvage pathways, N-glycosylation of DNase I was almost completely eliminated. Adding approximately 13 microm mannose to the medium completely restored normal glycosylation. Treatment with bafilomycin A(1), an inhibitor of lysosomal acidification, also markedly reduced N-glycosylation of DNase I, but in this case only 8 microm mannose was required to restore full glycosylation, indicating that a nonlysosomal source of mannose made a significant contribution. Glycosylation levels were greatly also reduced in glycoconjugate-free medium, when endosomal membrane trafficking was blocked by expression of a mutant SKD1. From these data, we conclude that PMI-null cells can salvage mannose from both endogenous and external glycoconjugates via lysosomal and nonlysosomal degradation pathways.

  12. The contribution of spinal glial cells to chronic pain behaviour in the monosodium iodoacetate model of osteoarthritic pain

    Directory of Open Access Journals (Sweden)

    Sagar Devi

    2011-11-01

    Full Text Available Abstract Background Clinical studies of osteoarthritis (OA suggest central sensitization may contribute to the chronic pain experienced. This preclinical study used the monosodium iodoacetate (MIA model of OA joint pain to investigate the potential contribution of spinal sensitization, in particular spinal glial cell activation, to pain behaviour in this model. Experimental OA was induced in the rat by the intra-articular injection of MIA and pain behaviour (change in weight bearing and distal allodynia was assessed. Spinal cord microglia (Iba1 staining and astrocyte (GFAP immunofluorescence activation were measured at 7, 14 and 28 days post MIA-treatment. The effects of two known inhibitors of glial activation, nimesulide and minocycline, on pain behaviour and activation of microglia and astrocytes were assessed. Results Seven days following intra-articular injection of MIA, microglia in the ipsilateral spinal cord were activated (p Conclusions Here we provide evidence for a contribution of spinal glial cells to pain behaviour, in particular distal allodynia, in this model of osteoarthritic pain. Our data suggest there is a potential role of glial cells in the central sensitization associated with OA, which may provide a novel analgesic target for the treatment of OA pain.

  13. Hydrogen sulfide (H2S)/cystathionine γ-lyase (CSE) pathway contributes to the proliferation of hepatoma cells

    International Nuclear Information System (INIS)

    Pan, Yan; Ye, Shuang; Yuan, Dexiao; Zhang, Jianghong; Bai, Yang; Shao, Chunlin

    2014-01-01

    Highlights: • Inhibition of H 2 S/CSE pathway strongly stimulates cellular apoptosis. • Inhibition of H 2 S/CSE pathway suppresses cell growth by blocking EGFR pathway. • H 2 S/CSE pathway is critical for maintaining the proliferation of hepatoma cells. - Abstract: Hydrogen sulfide (H 2 S)/cystathionine γ-lyase (CSE) pathway has been demonstrated to play vital roles in physiology and pathophysiology. However, its role in tumor cell proliferation remains largely unclear. Here we found that CSE over-expressed in hepatoma HepG2 and PLC/PRF/5 cells. Inhibition of endogenous H 2 S/CSE pathway drastically decreased the proliferation of HepG2 and PLC/PRF/5 cells, and it also enhanced ROS production and mitochondrial disruption, pronounced DNA damage and increased apoptosis. Moreover, this increase of apoptosis was associated with the activation of p53 and p21 accompanied by a decreased ratio of Bcl-2/Bax and up-regulation of phosphorylated c-Jun N-terminal kinase (JNK) and caspase-3 activity. In addition, the negative regulation of cell proliferation by inhibition of H 2 S/CSE system correlated with the blockage of cell mitogenic and survival signal transduction of epidermal growth factor receptor (EGFR) via down-regulating the extracellular-signal-regulated kinase 1/2 (ERK1/2) activation. These results demonstrate that H 2 S/CSE and its downstream pathway contribute to the proliferation of hepatoma cells, and inhibition of this pathway strongly suppress the excessive growth of hepatoma cells by stimulating mitochondrial apoptosis and suppressing cell growth signal transduction

  14. EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance.

    Science.gov (United States)

    Sevelda, Florian; Mayr, Lisa; Kubista, Bernd; Lötsch, Daniela; van Schoonhoven, Sushilla; Windhager, Reinhard; Pirker, Christine; Micksche, Michael; Berger, Walter

    2015-11-02

    Enhanced signalling via the epidermal growth factor receptor (EGFR) is a hallmark of multiple human carcinomas. However, in recent years data have accumulated that EGFR might also be hyperactivated in human sarcomas. Aim of this study was to investigate the influence of EGFR inhibition on cell viability and its interaction with chemotherapy response in osteosarcoma cell lines. We have investigated a panel of human osteosarcoma cell lines regarding EGFR expression and downstream signalling. To test its potential applicability as therapeutic target, inhibition of EGFR by gefitinib was combined with osteosarcoma chemotherapeutics and cell viability, migration, and cell death assays were performed. Osteosarcoma cells expressed distinctly differing levels of functional EGFR reaching in some cases high amounts. Functionality of EGFR in osteosarcoma cells was proven by EGF-mediated activation of both MAPK and PI3K/AKT pathway (determined by phosphorylation of ERK1/2, AKT, S6, and GSK3β). The EGFR-specific inhibitor gefitinib blocked EGF-mediated downstream signal activation. At standard in vitro culture conditions, clinically achievable gefitinib doses demonstrated only limited cytotoxic activity, however, significantly reduced long-term colony formation and cell migration. In contrast, under serum-starvation conditions active gefitinib doses were distinctly reduced while EGF promoted starvation survival. Importantly, gefitinib significantly supported the anti-osteosarcoma activities of doxorubicin and methotrexate regarding cell survival and migratory potential. Our data suggest that EGFR is not a major driver for osteosarcoma cell growth but contributes to starvation- and chemotherapy-induced stress survival. Consequently, combination approaches including EGFR inhibitors should be evaluated for treatment of high-grade osteosarcoma patients.

  15. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes.

    Science.gov (United States)

    Li, Xingfu; Duan, Li; Liang, Yujie; Zhu, Weimin; Xiong, Jianyi; Wang, Daping

    2016-01-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs) and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2) and decreased type I collagen (COL1) protein expression levels. SRY-box 9 (SOX9) mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  16. Tissue factor expression by myeloid cells contributes to protective immune response against Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Venkatasubramanian, Sambasivan; Tripathi, Deepak; Tucker, Torry; Paidipally, Padmaja; Cheekatla, Satyanarayana; Welch, Elwyn; Raghunath, Anjana; Jeffers, Ann; Tvinnereim, Amy R; Schechter, Melissa E; Andrade, Bruno B; Mackman, Nizel; Idell, Steven; Vankayalapati, Ramakrishna

    2016-02-01

    Tissue factor (TF) is a transmembrane glycoprotein that plays an essential role in hemostasis by activating coagulation. TF is also expressed by monocytes/macrophages as part of the innate immune response to infections. In the current study, we determined the role of TF expressed by myeloid cells during Mycobacterium tuberculosis (M. tb) infection by using mice lacking the TF gene in myeloid cells (TF(Δ) ) and human monocyte derived macrophages (MDMs). We found that during M. tb infection, a deficiency of TF in myeloid cells was associated with reduced inducible nitric oxide synthase (iNOS) expression, enhanced arginase 1 (Arg1) expression, enhanced IL-10 production and reduced apoptosis in infected macrophages, which augmented M. tb growth. Our results demonstrate that a deficiency of TF in myeloid cells promotes M2-like phenotype in M .tb infected macrophages. A deficiency in TF expression by myeloid cells was also associated with reduced fibrin deposition and increased matrix metalloproteases (MMP)-2 and MMP-9 mediated inflammation in M. tb infected lungs. Our studies demonstrate that TF expressed by myeloid cells has newly recognized abilities to polarize macrophages and to regulate M. tb growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Observations on the contributions of environmental restraints and innate stem cell ability to hematopoietic regeneration

    International Nuclear Information System (INIS)

    Duke-Cohan, J.S.

    1988-01-01

    A competitive repopulation assay utilizing chromosome markers was used to assay the reconstituting potential of hematopoietic populations. The test populations consisted of tibial murine marrow locally irradiated with doses ranging from 1.5 Gy to 8.5 Gy and of marrow generated from either murine splenic or marrow stem cells. The purpose of this assay was to assess the innate proliferative potential and microenvironmental influences on the ability to repopulate. Regardless of origin, spleen repopulating ability consistently agreed with spleen colony-forming unit (CFU-s) content. Doses of radiation from 5 Gy to 8.5 Gy diminished, by a factor of 2, the ability to repopulate marrow despite maintenance of CFU-s levels. Marrow generated from splenic stem cells had one-fifth the repopulating ability of marrow derived from marrow stem cells, even though CFU-s levels were equivalent. The results imply that the splenic environment can only maintain stem cells at the level of the CFU-s, even if the stem cells were originally of higher quality, and that their original potential cannot be regained in a marrow environment. Nevertheless, the marrow can maintain more primitive stem cells, but this reserve is drained to support CFU-s levels

  18. FOXO3-mediated up-regulation of Bim contributes to rhein-induced cancer cell apoptosis.

    Science.gov (United States)

    Wang, Jiao; Liu, Shu; Yin, Yancun; Li, Mingjin; Wang, Bo; Yang, Li; Jiang, Yangfu

    2015-03-01

    The anthraquinone compound rhein is a natural agent in the traditional Chinese medicine rhubarb. Preclinical studies demonstrate that rhein has anticancer activity. Treatment of a variety of cancer cells with rhein may induce apoptosis. Here, we report that rhein induces atypical unfolded protein response in breast cancer MCF-7 cells and hepatoma HepG2 cells. Rhein induces CHOP expression, eIF2α phosphorylation and caspase cleavage, while it does not induce glucose-regulated protein 78 (GRP78) expression in both MCF-7 and HepG2 cells. Meanwhile, rhein inhibits thapsigargin-induced GRP78 expression and X box-binding protein 1 splicing. In addition, rhein inhibits Akt phosphorylation and stimulates FOXO transactivation activity. Rhein induces Bim expression in MCF-7 and HepG2 cells, which can be abrogated by FOXO3a knockdown. Knockdown of FOXO3a or Bim abrogates rhein-induced caspase cleavage and apoptosis. The chemical chaperone 4-phenylbutyrate acid antagonizes the induction of FOXO activation, Bim expression and caspase cleavage by rhein, indicating that protein misfolding may be involved in triggering these deleterious effects. We conclude that FOXO3a-mediated up-regulation of Bim is a key mechanism underlying rhein-induced cancer cells apoptosis.

  19. p53 Activation following Rift Valley fever virus infection contributes to cell death and viral production.

    Directory of Open Access Journals (Sweden)

    Dana Austin

    Full Text Available Rift Valley fever virus (RVFV is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production.

  20. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes

    Directory of Open Access Journals (Sweden)

    Xingfu Li

    2016-01-01

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2 and decreased type I collagen (COL1 protein expression levels. SRY-box 9 (SOX9 mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  1. Relative contribution of "determinant selection" and "holes in the T-cell repertoire" to T-cell responses

    DEFF Research Database (Denmark)

    Schaeffer, E B; Sette, A; Johnson, D L

    1989-01-01

    -cell responses. Ia binding and Ia-restricted T-cell immunogenicity could be determined for a total of 54 peptide-MHC combinations. Only 30% of the 54 instances examined involved detectable Ia binding, but they represented almost all (12 of 13) of the immune responses found. However, binding to Ia......Using BALB/c and CBA/J mice, the I-region associated (Ia) binding capacity and T-cell immunogenicity of a panel of 14 overlapping peptides that span the entire sequence of the protein staphylococcal nuclease (Nase) was examined to evaluate major histocompatibility gene complex (MHC) control of T...... was not sufficient to ensure T-cell immunogenicity, since only 70% of the binding events were productive--i.e., were associated with an immune response. Thus, Ia molecules have the expected characteristics of a highly permissive capacity for antigen interaction that allows them to function as restriction elements...

  2. Decreased IL-33 Production Contributes to Trophoblast Cell Dysfunction in Pregnancies with Preeclampsia

    Directory of Open Access Journals (Sweden)

    Hong Chen

    2018-01-01

    Full Text Available Preeclampsia (PE is a life-threatening pregnancy complication which is related to aggradation of risk regarding fetal and maternal morbidity and mortality. Dysregulation of systemic inflammatory response and dysfunction of trophoblast cells have been proposed to be involved in the development and progression of PE. Some studies have demonstrated that interleukin-33 (IL-33 is an immunomodulatory cytokine that is associated with the immune regulation of tumor cells. However, little is known whether IL-33 and its receptor ST2/IL-1 R4 could regulate trophoblast cells, which are associated with the pathogenesis of PE. In this study, our target is to explore the impact of IL-33 on trophoblast cells and elucidate its underlying pathophysiological mechanisms. Placental tissues from the severe PE group (n=11 and the normotensive pregnant women’s group (n=11 were collected for the protein expression and distribution of IL-33 along with its receptor ST2/IL-1 R4 via Western blot analysis and immunohistochemistry, respectively. We discovered that the level of IL-33 was decreased in placental tissues of pregnant women with PE, while no distinction was observed in the expression of ST2/IL-1 R4. These results were further verified in villous explants which were treated with sodium nitroprusside with different concentrations, to simulate the pathological environment of PE. To investigate IL-33 effects on trophoblast cells separately, IL-33 shRNA was introduced into HTR8/SVneo cells and villi. IL-33 shRNA weakened the proliferation, migration, and invasion capacity of HTR8/SVneo cells. The migration distance of villous explants was also markedly decreased. The reduced invasion of trophoblast cells is a result of IL-33 knockdown which could be related to the decline of MMP2/9 activity and the increased utterance of TIMP1/2. Overall, our findings demonstrated that the reduction of IL-33 production was connected with the reduced functional capability of

  3. Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility.

    LENUS (Irish Health Repository)

    O'Dushlaine, C

    2011-03-01

    Susceptibility to schizophrenia and bipolar disorder may involve a substantial, shared contribution from thousands of common genetic variants, each of small effect. Identifying whether risk variants map to specific molecular pathways is potentially biologically informative. We report a molecular pathway analysis using the single-nucleotide polymorphism (SNP) ratio test, which compares the ratio of nominally significant (P<0.05) to nonsignificant SNPs in a given pathway to identify the \\'enrichment\\' for association signals. We applied this approach to the discovery (the International Schizophrenia Consortium (n=6909)) and validation (Genetic Association Information Network (n=2729)) of schizophrenia genome-wide association study (GWAS) data sets. We investigated each of the 212 experimentally validated pathways described in the Kyoto Encyclopaedia of Genes and Genomes in the discovery sample. Nominally significant pathways were tested in the validation sample, and five pathways were found to be significant (P=0.03-0.001); only the cell adhesion molecule (CAM) pathway withstood conservative correction for multiple testing. Interestingly, this pathway was also significantly associated with bipolar disorder (Wellcome Trust Case Control Consortium (n=4847)) (P=0.01). At a gene level, CAM genes associated in all three samples (NRXN1 and CNTNAP2), which were previously implicated in specific language disorder, autism and schizophrenia. The CAM pathway functions in neuronal cell adhesion, which is critical for synaptic formation and normal cell signaling. Similar pathways have also emerged from a pathway analysis of autism, suggesting that mechanisms involved in neuronal cell adhesion may contribute broadly to neurodevelopmental psychiatric phenotypes.

  4. Cell wall-anchored nuclease of Streptococcus sanguinis contributes to escape from neutrophil extracellular trap-mediated bacteriocidal activity.

    Directory of Open Access Journals (Sweden)

    Chisato Morita

    Full Text Available Streptococcus sanguinis, a member of the commensal mitis group of streptococci, is a primary colonizer of the tooth surface, and has been implicated in infectious complications including bacteremia and infective endocarditis. During disease progression, S. sanguinis may utilize various cell surface molecules to evade the host immune system to survive in blood. In the present study, we discovered a novel cell surface nuclease with a cell-wall anchor domain, termed SWAN (streptococcal wall-anchored nuclease, and investigated its contribution to bacterial resistance against the bacteriocidal activity of neutrophil extracellular traps (NETs. Recombinant SWAN protein (rSWAN digested multiple forms of DNA including NET DNA and human RNA, which required both Mg(2+ and Ca(2+ for optimum activity. Furthermore, DNase activity of S. sanguinis was detected around growing colonies on agar plates containing DNA. In-frame deletion of the swan gene mostly reduced that activity. These findings indicated that SWAN is a major nuclease displayed on the surface, which was further confirmed by immuno-detection of SWAN in the cell wall fraction. The sensitivity of S. sanguinis to NET killing was reduced by swan gene deletion. Moreover, heterologous expression of the swan gene rendered a Lactococcus lactis strain more resistant to NET killing. Our results suggest that the SWAN nuclease on the bacterial surface contributes to survival in the potential situation of S. sanguinis encountering NETs during the course of disease progression.

  5. Cell wall-anchored nuclease of Streptococcus sanguinis contributes to escape from neutrophil extracellular trap-mediated bacteriocidal activity.

    Science.gov (United States)

    Morita, Chisato; Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Wada, Satoshi; Yamashiro, Takashi; Hayashi, Mikako; Hamada, Shigeyuki; Sumitomo, Tomoko; Kawabata, Shigetada

    2014-01-01

    Streptococcus sanguinis, a member of the commensal mitis group of streptococci, is a primary colonizer of the tooth surface, and has been implicated in infectious complications including bacteremia and infective endocarditis. During disease progression, S. sanguinis may utilize various cell surface molecules to evade the host immune system to survive in blood. In the present study, we discovered a novel cell surface nuclease with a cell-wall anchor domain, termed SWAN (streptococcal wall-anchored nuclease), and investigated its contribution to bacterial resistance against the bacteriocidal activity of neutrophil extracellular traps (NETs). Recombinant SWAN protein (rSWAN) digested multiple forms of DNA including NET DNA and human RNA, which required both Mg(2+) and Ca(2+) for optimum activity. Furthermore, DNase activity of S. sanguinis was detected around growing colonies on agar plates containing DNA. In-frame deletion of the swan gene mostly reduced that activity. These findings indicated that SWAN is a major nuclease displayed on the surface, which was further confirmed by immuno-detection of SWAN in the cell wall fraction. The sensitivity of S. sanguinis to NET killing was reduced by swan gene deletion. Moreover, heterologous expression of the swan gene rendered a Lactococcus lactis strain more resistant to NET killing. Our results suggest that the SWAN nuclease on the bacterial surface contributes to survival in the potential situation of S. sanguinis encountering NETs during the course of disease progression.

  6. ROCK-1 mediates diabetes-induced retinal pigment epithelial and endothelial cell blebbing: Contribution to diabetic retinopathy.

    Science.gov (United States)

    Rothschild, Pierre-Raphaël; Salah, Sawsen; Berdugo, Marianne; Gélizé, Emmanuelle; Delaunay, Kimberley; Naud, Marie-Christine; Klein, Christophe; Moulin, Alexandre; Savoldelli, Michèle; Bergin, Ciara; Jeanny, Jean-Claude; Jonet, Laurent; Arsenijevic, Yvan; Behar-Cohen, Francine; Crisanti, Patricia

    2017-08-18

    In diabetic retinopathy, the exact mechanisms leading to retinal capillary closure and to retinal barriers breakdown remain imperfectly understood. Rho-associated kinase (ROCK), an effector of the small GTPase Rho, involved in cytoskeleton dynamic regulation and cell polarity is activated by hyperglycemia. In one year-old Goto Kakizaki (GK) type 2 diabetic rats retina, ROCK-1 activation was assessed by its cellular distribution and by phosphorylation of its substrates, MYPT1 and MLC. In both GK rat and in human type 2 diabetic retinas, ROCK-1 is activated and associated with non-apoptotic membrane blebbing in retinal vessels and in retinal pigment epithelium (RPE) that respectively form the inner and the outer barriers. Activation of ROCK-1 induces focal vascular constrictions, endoluminal blebbing and subsequent retinal hypoxia. In RPE cells, actin cytoskeleton remodeling and membrane blebs in RPE cells contributes to outer barrier breakdown. Intraocular injection of fasudil, significantly reduces both retinal hypoxia and RPE barrier breakdown. Diabetes-induced cell blebbing may contribute to ischemic maculopathy and represent an intervention target.

  7. Somatic hypermutation of T cell receptor α chain contributes to selection in nurse shark thymus.

    Science.gov (United States)

    Ott, Jeannine A; Castro, Caitlin D; Deiss, Thaddeus C; Ohta, Yuko; Flajnik, Martin F; Criscitiello, Michael F

    2018-04-17

    Since the discovery of the T cell receptor (TcR), immunologists have assigned somatic hypermutation (SHM) as a mechanism employed solely by B cells to diversify their antigen receptors. Remarkably, we found SHM acting in the thymus on α chain locus of shark TcR. SHM in developing shark T cells likely is catalyzed by activation-induced cytidine deaminase (AID) and results in both point and tandem mutations that accumulate non-conservative amino acid replacements within complementarity-determining regions (CDRs). Mutation frequency at TcRα was as high as that seen at B cell receptor loci (BcR) in sharks and mammals, and the mechanism of SHM shares unique characteristics first detected at shark BcR loci. Additionally, fluorescence in situ hybridization showed the strongest AID expression in thymic corticomedullary junction and medulla. We suggest that TcRα utilizes SHM to broaden diversification of the primary αβ T cell repertoire in sharks, the first reported use in vertebrates. © 2018, Ott et al.

  8. Contribution of Cell Elongation to the Biofilm Formation of Pseudomonas aeruginosa during Anaerobic Respiration

    Science.gov (United States)

    Park, Yongjin; Yoon, Sang Sun

    2011-01-01

    Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO2 −) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process. PMID:21267455

  9. Overexpression of c-Jun contributes to sorafenib resistance in human hepatoma cell lines.

    Directory of Open Access Journals (Sweden)

    Yuki Haga

    Full Text Available Despite recent advances in treatment strategies, it is still difficult to cure patients with hepatocellular carcinoma (HCC. Sorafenib is the only approved multiple kinase inhibitor for systemic chemotherapy in patients with advanced HCC. The majority of advanced HCC patients are resistant to sorafenib. The mechanisms of sorafenib resistance are still unknown.The expression of molecules involved in the mitogen-activated protein kinase (MAPK signaling pathway in human hepatoma cell lines was examined in the presence or absence of sorafenib. Apoptosis of human hepatoma cells treated with sorafenib was investigated, and the expression of Jun proto-oncogene (c-Jun was measured.The expression and phosphorylation of c-Jun were enhanced in human hepatoma cell lines after treatment with sorafenib. Inhibiting c-Jun enhanced sorafenib-induced apoptosis. The overexpression of c-Jun impaired sorafenib-induced apoptosis. The expression of osteopontin, one of the established AP-1 target genes, was enhanced after treatment with sorafenib in human hepatoma cell lines.The protein c-Jun plays a role in sorafenib resistance in human hepatoma cell lines. The modulation and phosphorylation of c-Jun could be a new therapeutic option for enhancing responsiveness to sorafenib. Modulating c-Jun may be useful for certain HCC patients with sorafenib resistance.

  10. ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus.

    Science.gov (United States)

    Frankel, Matthew B; Wojcik, Brandon M; DeDent, Andrea C; Missiakas, Dominique M; Schneewind, Olaf

    2010-10-01

    The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. © 2010 Blackwell Publishing Ltd.

  11. Delayed rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells

    Science.gov (United States)

    Weick, Michael; Demb, Jonathan B.

    2011-01-01

    SUMMARY Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5–10 mV) also suppressed firing during subsequent depolarization. This suppression was sensitive selectively to blockers of delayed-rectifier K channels (KDR). Somatic membrane patches showed TEA-sensitive KDR currents with activation near −25 mV and removal of inactivation at voltages negative to Vrest. Brief periods of hyperpolarization apparently remove KDR inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. PMID:21745646

  12. Neuronavigation-guided intubated wake-up craniotomy for a patient with a brain astrocytoma

    Directory of Open Access Journals (Sweden)

    Wen-Kuei Fang

    2013-08-01

    Full Text Available Computer-assisted neuronavigation (an image-guided technique that facilitates brain tumor surgery reduces the risk of neurological morbidity. Postoperative neurological dysfunction is also minimized by performing intraoperative neurological testing during awake craniotomy with proper surgical resection of a brain tumor. However, when the patient's airway is not secured, an awake craniotomy can be hazardous if emergent intubation is necessary. The present report describes a young man with a brain tumor who underwent neuronavigation-guided wake-up craniotomy and surgical resection of an astrocytoma. The patient was intubated throughout the course of the procedure, during which modified intraoperative neurological tests were performed for cortical mapping. The patient recovered well after the operation and without any neurological deficits.

  13. Mitochondrial targets of photodynamic therapy and their contribution to cell death

    Science.gov (United States)

    Oleinick, Nancy L.; Usuda, Jitsuo; Xue, Liang-yan; Azizuddin, Kashif; Chiu, Song-mao; Lam, Minh C.; Morris, Rachel L.; Nieminen, Anna-Liisa

    2002-06-01

    In response to photodynamic therapy (PDT), many cells in culture or within experimental tumors are eliminated by apoptosis. PDT with photosensitizers that localize in or target mitochondria, such as the phthalocyanine Pc 4, causes prompt release of cytochrome c into the cytoplasm and activation of caspases-9 and -3, among other caspases, that are responsible for initiating cell degradation. Some cells appear resistant to apoptosis after PDT; however, if they have sustained sufficient damage, they will die by a necrotic process or through a different apoptotic pathway. In the case of PDT, the distinction between apoptosis and necrosis may be less important than the mechanism that triggers both processes, since critical lethal damage appears to occur during treatment and does not require the major steps in apoptosis to be expressed. We earlier showed, for example, that human breast cancer MCF-7 cells that lack caspase-3 are resistant to the induction of apoptosis by PDT, but are just as sensitive to the loss of clonogenicity as MCF-7 cells stably expressing transfected procaspase-3. Many photosensitizers that target mitochondria specifically attack the anti-apoptotic protein Bcl-2, generating a variety of crosslinked and cleaved photoproducts. Recent evidence suggests that the closely related protein Bcl-xL is also a target of Pc 4-PDT. Transient transfection of an expression vector encoding deletion mutants of Bcl-2 have identified the critical sensitive site in the protein that is required for photodamage. This region contains two alpha helices that form a secondary membrane anchorage site and are thought to be responsible for pore formation by Bcl-2. As specific protein targets are identified, we are becoming better able to model the critical events in PDT-induced cell death.

  14. Towards Deciphering the Hidden Mechanisms That Contribute to the Antigenic Activation Process of Human Vγ9Vδ2 T Cells

    Directory of Open Access Journals (Sweden)

    Lola Boutin

    2018-04-01

    Full Text Available Vγ9Vδ2 T cells represent a major unconventional γδ T cell subset located in the peripheral blood of adults in humans and several non-human primates. Lymphocytes that constitute this transitional subset can sense subtle level changes of intracellular phosphorylated intermediates of the isoprenoid biosynthesis pathway (phosphoantigens, pAg, such as isopentenyl pyrophosphate, during cell stress events. This unique antigenic activation process operates in a rigorous framework that requires the expression of butyrophilin 3A1 (BTN3A1/CD277 molecules, which are type I glycoproteins that belong to the B7 family. Several studies have further shown that pAg specifically bind to the intracellular B30.2 domain of BTN3A1 linked to the antigenic activation of Vγ9Vδ2 T cells. Here, we highlight the recent advances in BTN3A1 dynamics induced upon the binding of pAg and the contribution of the different subunits to this activation process. Recent reports support that conformational modifications of BTN3A1 might represent a key step in the detection of infection or tumorigenesis by Vγ9Vδ2 T cells. A better understanding of this mechanism will help optimize novel immunotherapeutical approaches that target defined functions of this unique γδ T cell subset.

  15. An inverse switch in DNA base excision and strand break repair contributes to melphalan resistance in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Mirta M L Sousa

    Full Text Available Alterations in checkpoint and DNA repair pathways may provide adaptive mechanisms contributing to acquired drug resistance. Here, we investigated the levels of proteins mediating DNA damage signaling and -repair in RPMI8226 multiple myeloma cells and its Melphalan-resistant derivative 8226-LR5. We observed markedly reduced steady-state levels of DNA glycosylases UNG2, NEIL1 and MPG in the resistant cells and cross-resistance to agents inducing their respective DNA base lesions. Conversely, repair of alkali-labile sites was apparently enhanced in the resistant cells, as substantiated by alkaline comet assay, autoribosylation of PARP-1, and increased sensitivity to PARP-1 inhibition by 4-AN or KU58684. Reduced base-excision and enhanced single-strand break repair would both contribute to the observed reduction in genomic alkali-labile sites, which could jeopardize productive processing of the more cytotoxic Melphalan-induced interstrand DNA crosslinks (ICLs. Furthermore, we found a marked upregulation of proteins in the non-homologous end-joining (NHEJ pathway of double-strand break (DSB repair, likely contributing to the observed increase in DSB repair kinetics in the resistant cells. Finally, we observed apparent upregulation of ATR-signaling and downregulation of ATM-signaling in the resistant cells. This was accompanied by markedly increased sensitivity towards Melphalan in the presence of ATR-, DNA-PK, or CHK1/2 inhibitors whereas no sensitizing effect was observed subsequent to ATM inhibition, suggesting that replication blocking lesions are primary triggers of the DNA damage response in the Melphalan resistant cells. In conclusion, Melphalan resistance is apparently contributed by modulation of the DNA damage response at multiple levels, including downregulation of specific repair pathways to avoid repair intermediates that could impair efficient processing of cytotoxic ICLs and ICL-induced DSBs. This study has revealed several novel

  16. High glucose contributes to the proliferation and migration of non-small cell lung cancer cells via GAS5-TRIB3 axis.

    Science.gov (United States)

    Ding, Cheng-Zhi; Guo, Xu-Feng; Wang, Guo-Lei; Wang, Hong-Tao; Xu, Guang-Hui; Liu, Yuan-Yuan; Wu, Zhen-Jiang; Chen, Yu-Hang; Wang, Jiao; Wang, Wen-Guang

    2018-01-24

    Despite the growing number of studies exhibited an association of diabetes mellitus (DM) and lung cancer progression, the concrete mechanism of DM aggravating lung cancer has not been elucidated. This study was to investigate whether and how high glucose (HG) contribute to the proliferation and migration of non-small cell lung cancer (NSCLC) cells in vitro. In the present study, we confirmed that HG promoted the proliferation and migration of NSCLC cells, and also induced an anti-apoptosis effect on NSCLC cells. Moreover, HG inhibited the expression of GAS5 in NSCLC cells but elevated the protein level of TRIB3. GAS5 overexpression promoted the degradation of TRIB3 protein by ubiquitination and inhibited the HG induced-proliferation, anti-apoptosis and migration of NSCLC cells. Importantly, TRIB3 overexpression reversed the effects of GAS5 on the HG-treated NSCLC cells. Taken together, down-regulated GAS5 by HG significantly enhanced the proliferation, anti-apoptosis and migration in NSCLC cells through TRIB3, thus promoting the carcinogenesis of NSCLC. ©2018 The Author(s).

  17. Adropin Contributes to Anti-Atherosclerosis by Suppressing Monocyte-Endothelial Cell Adhesion and Smooth Muscle Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Kengo Sato

    2018-04-01

    Full Text Available Adropin, a peptide hormone expressed in liver and brain, is known to improve insulin resistance and endothelial dysfunction. Serum levels of adropin are negatively associated with the severity of coronary artery disease. However, it remains unknown whether adropin could modulate atherogenesis. We assessed the effects of adropin on inflammatory molecule expression and human THP1 monocyte adhesion in human umbilical vein endothelial cells (HUVECs, foam cell formation in THP1 monocyte-derived macrophages, and the migration and proliferation of human aortic smooth muscle cells (HASMCs in vitro and atherogenesis in Apoe−/− mice in vivo. Adropin was expressed in THP1 monocytes, their derived macrophages, HASMCs, and HUVECs. Adropin suppressed tumor necrosis factor α-induced THP1 monocyte adhesion to HUVECs, which was associated with vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 downregulation in HUVECs. Adropin shifted the phenotype to anti-inflammatory M2 rather than pro-inflammatory M1 via peroxisome proliferator-activated receptor γ upregulation during monocyte differentiation into macrophages. Adropin had no significant effects on oxidized low-density lipoprotein-induced foam cell formation in macrophages. In HASMCs, adropin suppressed the migration and proliferation without inducing apoptosis via ERK1/2 and Bax downregulation and phosphoinositide 3-kinase/Akt/Bcl2 upregulation. Chronic administration of adropin to Apoe−/− mice attenuated the development of atherosclerotic lesions in the aorta, with reduced the intra-plaque monocyte/macrophage infiltration and smooth muscle cell content. Thus, adropin could serve as a novel therapeutic target in atherosclerosis and related diseases.

  18. T-cells contribute to hypertension but not to renal injury in mice with subtotal nephrectomy

    NARCIS (Netherlands)

    Oosterhuis, Nynke R.; Papazova, Diana A.; Gremmels, Hendrik; Joles, Jaap A.; Verhaar, Marianne C.

    2017-01-01

    Background: The pathological condition of chronic kidney disease may not be adequately recapitulated in immunocompromised mice due to the lack of T-cells, which are important for the development of hypertension and renal injury. We studied the role of the immune system in relation to salt-sensitive

  19. Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis.

    Science.gov (United States)

    Koyanagi, Naoto; Imai, Takahiko; Shindo, Keiko; Sato, Ayuko; Fujii, Wataru; Ichinohe, Takeshi; Takemura, Naoki; Kakuta, Shigeru; Uematsu, Satoshi; Kiyono, Hiroshi; Maruzuru, Yuhei; Arii, Jun; Kato, Akihisa; Kawaguchi, Yasushi

    2017-10-02

    Herpes simplex virus-1 (HSV-1) is the most common cause of sporadic viral encephalitis, which can be lethal or result in severe neurological defects even with antiviral therapy. While HSV-1 causes encephalitis in spite of HSV-1-specific humoral and cellular immunity, the mechanism by which HSV-1 evades the immune system in the central nervous system (CNS) remains unknown. Here we describe a strategy by which HSV-1 avoids immune targeting in the CNS. The HSV-1 UL13 kinase promotes evasion of HSV-1-specific CD8+ T cell accumulation in infection sites by downregulating expression of the CD8+ T cell attractant chemokine CXCL9 in the CNS of infected mice, leading to increased HSV-1 mortality due to encephalitis. Direct injection of CXCL9 into the CNS infection site enhanced HSV-1-specific CD8+ T cell accumulation, leading to marked improvements in the survival of infected mice. This previously uncharacterized strategy for HSV-1 evasion of CD8+ T cell accumulation in the CNS has important implications for understanding the pathogenesis and clinical treatment of HSV-1 encephalitis.

  20. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Donohoe, Byron; Ciesielski, Peter; Nill, Jennifer; McKinney, Kellene; Mittal, Ashutosh; Katahira, Rui; Himmel, Michael; Biddy, Mary; Beckham, Gregg; Decker, Steve

    2014-09-08

    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution.

  1. Activated CD8+T cells contribute to clearance of gastric Cryptosporidium muris infections

    Czech Academy of Sciences Publication Activity Database

    Kváč, Martin; Kodádková, Alena; Sak, Bohumil; Květoňová, Dana; Jalovecká, M.; Rost, M.; Salát, Jiří

    2011-01-01

    Roč. 33, č. 4 (2011), 210-216 ISSN 0141-9838 R&D Projects: GA AV ČR KJB500960701 Institutional research plan: CEZ:AV0Z60220518 Keywords : CD4+T-lymphocytes * CD8+T-lymphocytes * Cryptosporidium muris * T-cell-mediated immunity Subject RIV: EC - Immunology Impact factor: 2.601, year: 2011

  2. The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death.

    Science.gov (United States)

    Gawehns, F; Houterman, P M; Ichou, F Ait; Michielse, C B; Hijdra, M; Cornelissen, B J C; Rep, M; Takken, F L W

    2014-04-01

    Plant pathogens secrete effectors to manipulate their host and facilitate colonization. Fusarium oxysporum f. sp. lycopersici is the causal agent of Fusarium wilt disease in tomato. Upon infection, F. oxysporum f. sp. lycopersici secretes numerous small proteins into the xylem sap (Six proteins). Most Six proteins are unique to F. oxysporum, but Six6 is an exception; a homolog is also present in two Colletotrichum spp. SIX6 expression was found to require living host cells and a knockout of SIX6 in F. oxysporum f. sp. lycopersici compromised virulence, classifying it as a genuine effector. Heterologous expression of SIX6 did not affect growth of Agrobacterium tumefaciens in Nicotiana benthamiana leaves or susceptibility of Arabidopsis thaliana toward Verticillium dahliae, Pseudomonas syringae, or F. oxysporum, suggesting a specific function for F. oxysporum f. sp. lycopersici Six6 in the F. oxysporum f. sp. lycopersici- tomato pathosystem. Remarkably, Six6 was found to specifically suppress I-2-mediated cell death (I2CD) upon transient expression in N. benthamiana, whereas it did not compromise the activity of other cell-death-inducing genes. Still, this I2CD suppressing activity of Six6 does not allow the fungus to overcome I-2 resistance in tomato, suggesting that I-2-mediated resistance is independent from cell death.

  3. Phosphatidylserine-exposing blood and endothelial cells contribute to the hypercoagulable state in essential thrombocythemia patients.

    Science.gov (United States)

    Tong, Dongxia; Yu, Muxin; Guo, Li; Li, Tao; Li, Jihe; Novakovic, Valerie A; Dong, Zengxiang; Tian, Ye; Kou, Junjie; Bi, Yayan; Wang, Jinghua; Zhou, Jin; Shi, Jialan

    2018-04-01

    The mechanisms of thrombogenicity in essential thrombocythemia (ET) are complex and not well defined. Our objective was to explore whether phosphatidylserine (PS) exposure on blood cells and endothelial cells (ECs) can account for the increased thrombosis and distinct thrombotic risks among mutational subtypes in ET. Using flow cytometry and confocal microscopy, we found that the levels of PS-exposing erythrocytes, platelets, leukocytes, and serum-cultured ECs were significantly higher in each ET group [JAK2, CALR, and triple-negative (TN) (all P cells and serum-cultured ECs led to markedly shortened coagulation time and dramatically increased levels of FXa, thrombin, and fibrin production. This procoagulant activity could be largely blocked by addition of lactadherin (approx. 70% inhibition). Confocal microscopy showed that the FVa/FXa complex and fibrin fibrils colocalized with PS on ET serum-cultured ECs. Additionally, we found a relationship between D-dimer, prothrombin fragment F1 + 2, and PS exposure. Our study reveals a previously unrecognized link between hypercoagulability and exposed PS on cells, which might also be associated with distinct thrombotic risks among mutational subtypes in ET. Thus, blocking PS-binding sites may represent a new therapeutic target for preventing thrombosis in ET.

  4. Putrescine importer PlaP contributes to swarming motility and urothelial cell invasion in Proteus mirabilis.

    Science.gov (United States)

    Kurihara, Shin; Sakai, Yumi; Suzuki, Hideyuki; Muth, Aaron; Phanstiel, Otto; Rather, Philip N

    2013-05-31

    Previously, we reported that the speA gene, encoding arginine decarboxylase, is required for swarming in the urinary tract pathogen Proteus mirabilis. In addition, this previous study suggested that putrescine may act as a cell-to-cell signaling molecule (Sturgill, G., and Rather, P. N. (2004) Mol. Microbiol. 51, 437-446). In this new study, PlaP, a putative putrescine importer, was characterized in P. mirabilis. In a wild-type background, a plaP null mutation resulted in a modest swarming defect and slightly decreased levels of intracellular putrescine. In a P. mirabilis speA mutant with greatly reduced levels of intracellular putrescine, plaP was required for the putrescine-dependent rescue of swarming motility. When a speA/plaP double mutant was grown in the presence of extracellular putrescine, the intracellular levels of putrescine were greatly reduced compared with the speA mutant alone, indicating that PlaP functioned as the primary putrescine importer. In urothelial cell invasion assays, a speA mutant exhibited a 50% reduction in invasion when compared with wild type, and this defect could be restored by putrescine in a PlaP-dependent manner. The putrescine analog Triamide-44 partially inhibited the uptake of putrescine by PlaP and decreased both putrescine stimulated swarming and urothelial cell invasion in a speA mutant.

  5. Cell cycle progression, but not genotoxic activity, mainly contributes to citrinin-induced renal carcinogenesis

    International Nuclear Information System (INIS)

    Kuroda, Ken; Ishii, Yuji; Takasu, Shinji; Kijima, Aki; Matsushita, Kohei; Watanabe, Maiko; Takahashi, Haruo; Sugita-Konishi, Yoshiko; Sakai, Hiroki; Yanai, Tokuma; Nohmi, Takehiko; Ogawa, Kumiko; Umemura, Takashi

    2013-01-01

    Citrinin (CTN) is a food-contaminating mycotoxin that efficiently induces renal tumors in rats. However, the modes of carcinogenic action are still unknown, preventing assessment of the risks of CTN in humans. In the present study, the proliferative effects of CTN and its causal factors were investigated in the kidneys of gpt delta rats. In addition, three in vivo genotoxicity assays (reporter gene mutation using gpt delta rats and comet and micronucleus assays using F344 rats) were performed to clarify whether CTN was genotoxic in vivo. CTN was administrated at 20 and 40 mg/kg/day, the higher dose being the maximal tolerated dose and a nearly carcinogenic dose. In the kidney cortex of gpt delta rats, significant increases in the labeling indices of proliferating cell nuclear antigen (PCNA)-positive cells were observed at all doses of CTN. Increases in the mRNA expression levels of Ccna2, Ccnb1, Ccne1, and its transcription factor E2f1 were also detected, suggesting induction of cell cycle progression at all tested doses of CTN. However, histopathological changes were found only in rats treated with the higher dose of CTN, which was consistent with increases in the mRNA expression levels of mitogenic factors associated with tissue damage/regeneration, such as Hgf and Lcn2, at the same dose. Thus, the proliferative effects of CTN may result not only from compensatory reactions, but also from direct mitogenic action. Western blot analysis showed that ERK phosphorylation was increased at all doses, implying that cell cycle progression may be mediated by activation of the ERK pathway. On the other hand, in vivo genotoxicity analyses were negative, implying that CTN did not have the potential for inducing DNA damage, gene mutations, or chromosomal aberrations. The overall data clearly demonstrated the molecular events underlying CTN-induced cell cycle progression, which could be helpful to understand CTN-induced renal carcinogenesis

  6. Delayed expression of cell cycle proteins contributes to astroglial scar formation and chronic inflammation after rat spinal cord contusion

    Directory of Open Access Journals (Sweden)

    Wu Junfang

    2012-07-01

    Full Text Available Abstract Background Traumatic spinal cord injury (SCI induces secondary tissue damage that is associated with astrogliosis and inflammation. We previously reported that acute upregulation of a cluster of cell-cycle-related genes contributes to post-mitotic cell death and secondary damage after SCI. However, it remains unclear whether cell cycle activation continues more chronically and contributes to more delayed glial change. Here we examined expression of cell cycle-related proteins up to 4 months following SCI, as well as the effects of the selective cyclin-dependent kinase (CDKs inhibitor CR8, on astrogliosis and microglial activation in a rat SCI contusion model. Methods Adult male rats were subjected to moderate spinal cord contusion injury at T8 using a well-characterized weight-drop model. Tissue from the lesion epicenter was obtained 4 weeks or 4 months post-injury, and processed for protein expression and lesion volume. Functional recovery was assessed over the 4 months after injury. Results Immunoblot analysis demonstrated a marked continued upregulation of cell cycle-related proteins − including cyclin D1 and E, CDK4, E2F5 and PCNA − for 4 months post-injury that were highly expressed by GFAP+ astrocytes and microglia, and co-localized with inflammatory-related proteins. CR8 administrated systemically 3 h post-injury and continued for 7 days limited the sustained elevation of cell cycle proteins and immunoreactivity of GFAP, Iba-1 and p22PHOX − a key component of NADPH oxidase − up to 4 months after SCI. CR8 treatment significantly reduced lesion volume, which typically progressed in untreated animals between 1 and 4 months after trauma. Functional recovery was also significantly improved by CR8 treatment after SCI from week 2 through week 16. Conclusions These data demonstrate that cell cycle-related proteins are chronically upregulated after SCI and may contribute to astroglial scar

  7. Cyclic mechanical stretch contributes to network development of osteocyte-like cells with morphological change and autophagy promotion but without preferential cell alignment in rat.

    Science.gov (United States)

    Inaba, Nao; Kuroshima, Shinichiro; Uto, Yusuke; Sasaki, Muneteru; Sawase, Takashi

    2017-09-01

    Osteocytes play important roles in controlling bone quality as well as preferential alignment of biological apatite c -axis/collagen fibers. However, the relationship between osteocytes and mechanical stress remains unclear due to the difficulty of three-dimensional (3D) culture of osteocytes in vitro . The aim of this study was to investigate the effect of cyclic mechanical stretch on 3D-cultured osteocyte-like cells. Osteocyte-like cells were established using rat calvarial osteoblasts cultured in a 3D culture system. Cyclic mechanical stretch (8% amplitude at a rate of 2 cycles min -1 ) was applied for 24, 48 and 96 consecutive hours. Morphology, cell number and preferential cell alignment were evaluated. Apoptosis- and autophagy-related gene expression levels were measured using quantitative PCR. 3D-cultured osteoblasts became osteocyte-like cells that expressed osteocyte-specific genes such as Dmp1 , Cx43 , Sost , Fgf23 and RANKL , with morphological changes similar to osteocytes. Cell number was significantly decreased in a time-dependent manner under non-loaded conditions, whereas cyclic mechanical stretch significantly prevented decreased cell numbers with increased expression of anti-apoptosis-related genes. Moreover, cyclic mechanical stretch significantly decreased cell size and ellipticity with increased expression of autophagy-related genes, LC3b and atg7 . Interestingly, preferential cell alignment did not occur, irrespective of mechanical stretch. These findings suggest that an anti-apoptotic effect contributes to network development of osteocyte-like cells under loaded condition. Spherical change of osteocyte-like cells induced by mechanical stretch may be associated with autophagy upregulation. Preferential alignment of osteocytes induced by mechanical load in vivo may be partially predetermined before osteoblasts differentiate into osteocytes and embed into bone matrix.

  8. BCORL1 is an independent prognostic marker and contributes to cell migration and invasion in human hepatocellular carcinoma.

    Science.gov (United States)

    Yin, Guozhi; Liu, Zhikui; Wang, Yufeng; Dou, Changwei; Li, Chao; Yang, Wei; Yao, Yingmin; Liu, Qingguang; Tu, Kangsheng

    2016-02-15

    The deregulation of E-cadherin has been considered as a leading cause of hepatocellular carcinoma (HCC) metastasis. BCL6 corepressor-like 1 (BCORL1) is a transcriptional corepressor and contributes to the repression of E-cadherin. However, the clinical significance of BCORL1 and its role in the metastasis of HCC remain unknown. Differentially expressed BCORL1 between HCC and matched tumor-adjacent tissues, HCC cell lines and normal hepatic cell line were detected by Western blot. The expression of BCORL1 was altered by siRNAs or lentivirus-mediated vectors. Transwell assays were performed to determine HCC cell invasion and migration. Increased expression of BCORL1 protein was detected in HCC specimens and cell lines. Clinical association analysis showed that BCORL1 protein was expressed at significant higher levels in HCC patients with multiple tumor nodes, venous infiltration and advanced TNM tumor stage. Survival analysis indicated that high expression of BCORL1 protein conferred shorter overall survival (OS) and recurrence-free survival (RFS) of HCC patients. Multivariate Cox regression analysis disclosed that BCORL1 expression was an independent prognostic marker for predicting survival of HCC patients. Our in vitro studies demonstrated that BCORL1 prominently promoted HCC cell migration and invasion. Otherwise, an inverse correlation between BCORL1 and E-cadherin expression was observed in HCC tissues. BCORL1 inversely regulated E-cadherin abundance and subsequently facilitated epithelial-mesenchymal transition (EMT) in HCC cells. Notably, the effect of BCORL1 knockdown on HCC cells was abrogated by E-cadherin silencing. BCORL1 may be a novel prognostic factor and promotes cell migration and invasion through E-cadherin repression-induced EMT in HCC.

  9. Inflammatory cytokines and hypoxia contribute to 18F-FDG uptake by cells involved in pannus formation in rheumatoid arthritis.

    Science.gov (United States)

    Matsui, Tamiko; Nakata, Norihito; Nagai, Shigenori; Nakatani, Akira; Takahashi, Miwako; Momose, Toshimitsu; Ohtomo, Kuni; Koyasu, Shigeo

    2009-06-01

    Assessment of the activity of rheumatoid arthritis (RA) is important for the prediction of future articular destruction. (18)F-FDG PET is known to represent the metabolic activity of inflammatory disease, which correlates with the pannus volume measured by MRI or ultrasonography. To evaluate the correlation between (18)F-FDG accumulation and RA pathology, we assessed (18)F-FDG accumulation in vivo using collagen-induced arthritis (CIA) animal models and (3)H-FDG uptake in vitro using various cells involved in arthritis. (18)F-FDG PET images of rats with CIA were acquired on days 10, 14, and 17 after arthritis induction. The specimens were subsequently subjected to macroautoradiography, and the (18)F-FDG accumulation was compared with the histologic findings. (3)H-FDG uptake in vitro in inflammatory cells (neutrophils, macrophages, T cells, and fibroblasts) was measured to evaluate the contributions of these cells to (18)F-FDG accumulation. In addition, the influence on (3)H-FDG uptake of inflammatory factors, such as cytokines (tumor necrosis factor alpha [TNFalpha], interleukin 1 [IL-1], and IL-6), and hypoxia was examined. (18)F-FDG PET depicted swollen joints, and (18)F-FDG accumulation increased with the progression of arthritis. Histologically, a higher level of (18)F-FDG accumulation correlated with the pannus rather than the infiltration of inflammatory cells around the joints. In the in vitro (3)H-FDG uptake assay, fibroblasts showed the highest (3)H-FDG uptake, followed by neutrophils. Although only a small amount of (3)H-FDG was incorporated by resting macrophages, a dramatic increase in (3)H-FDG uptake in both fibroblasts and macrophages was observed when these cells were exposed to inflammatory cytokines, such as TNFalpha and IL-1, and hypoxia. Although neutrophils showed relatively high (3)H-FDG uptake without activation, no increase in (3)H-FDG uptake was observed in response to inflammatory cytokines. (3)H-FDG uptake by T cells was much lower than

  10. Hydroxyurea therapy contributes to infertility in adult men with sickle cell disease: a review.

    Science.gov (United States)

    DeBaun, Michael R

    2014-12-01

    Hydroxyurea therapy, a chemotherapeutic agent, is the only US FDA approved therapy for the prevention of vaso-occlusive pain in sickle cell disease (SCD). The National Institutes of Health has sponsored two Phase III randomized, placebo-controlled trials, initially in adults, and subsequently in children with sickle cell anemia (SCA). Despite the overwhelming evidence that hydroxyurea therapy is beneficial to children and adults with SCA, individuals with SCA and their families express reservations about its use, in part because of the concerns about fertility, particularly in men. As adolescent boys with SCD are now expected to reach their reproductive years, a new concern is emerging about the role of hydroxyurea therapy as a barrier to their progeny. This review will systemically evaluate compromised fertility in men with SCD, and the evidence that hydroxyurea therapy is associated with further decreasing fertility in men with SCD.

  11. A contribution to radiotherapy of the larger-celled bronchial carcinoma

    International Nuclear Information System (INIS)

    Zoubie, I.

    1982-01-01

    This work consists of a retrospective definition of disease courses of 859 patients with lung tumors and the definition of the survival curves in their dependence on histology, radiation dose and sex. With 721 larger-celled bronchial carcinomas the ratio of men to women was 12:1. The age peak lay between 60 and 70 years. The one/five year survival rate of all included larger-celled bronchial carcinomas (n=701) was, independent from the therapy form, 35.7, resp. 4.78%. The one year/five year survival rates were for the squamous epithelia 31.08/0.58%, for the undifferentiated carcinomas 25.34/3.41%, and for the lung tumors without histology 35.4/5.14%. Lobectomized patients with squamous epithelium carcinoma had in comparison to pneumonectomized patients a clearly higher survival chance. A clearly sex-dependent predisposition for a certain type of carcinoma was not present. (TRV) [de

  12. Circulating endothelial progenitor cells do not contribute to regeneration of endothelium after murine arterial injury

    DEFF Research Database (Denmark)

    Hagensen, Mette; Raarup, Merete Krog; Mortensen, Martin Bødtker

    2012-01-01

    into endothelial cells (ECs). We tested this theory in a murine arterial injury model using carotid artery transplants and fluorescent reporter mice. METHODS AND RESULTS: Wire-injured carotid artery segments from wild-type mice were transplanted into TIE2-GFP transgenic mice expressing green fluorescent protein...... (GFP) in ECs. We found that the endothelium regenerated with GFP(+) ECs as a function of time, evolving from the anastomosis sites towards the centre of the transplant. A migration front of ECs at Day 7 was verified by scanning electron microscopy and by bright-field microscopy using recipient TIE2-lac......Z mice with endothelial β-galactosidase expression. These experiments indicated migration of flanking ECs rather than homing of circulating cells as the underlying mechanism. To confirm this, we interposed non-injured wild-type carotid artery segments between the denuded transplant and the TIE2-GFP...

  13. Pili of oral Streptococcus sanguinis bind to fibronectin and contribute to cell adhesion.

    Science.gov (United States)

    Okahashi, Nobuo; Nakata, Masanobu; Sakurai, Atsuo; Terao, Yutaka; Hoshino, Tomonori; Yamaguchi, Masaya; Isoda, Ryutaro; Sumitomo, Tomoko; Nakano, Kazuhiko; Kawabata, Shigetada; Ooshima, Takashi

    2010-01-08

    Streptococcus sanguinis is a predominant bacterium in the human oral cavity and occasionally causes infective endocarditis. We identified a unique cell surface polymeric structure named pili in this species and investigated its functions in regard to its potential virulence. Pili of S. sanguinis strain SK36 were shown to be composed of three distinctive pilus proteins (PilA, PilB, and PilC), and a pili-deficient mutant demonstrated reduced bacterial adherence to HeLa and human oral epithelial cells. PilC showed a binding ability to fibronectin, suggesting that pili are involved in colonization by this species. In addition, ATCC10556, a standard S. sanguinis strain, was unable to produce pili due to defective pilus genes, which indicates a diversity of pilus expression among various S. sanguinis strains. Copyright 2009 Elsevier Inc. All rights reserved.

  14. Contribution of neural cell death to depressive phenotypes of streptozotocin-induced diabetic mice

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2014-06-01

    Full Text Available Major depression disorder (MDD or depression is highly prevalent in individuals with diabetes, and the depressive symptoms are more severe and less responsive to antidepressant therapies in these patients. The underlying mechanism is little understood. We hypothesized that the pathophysiology of comorbid depression was more complex than that proposed for MDD and that neural cell death played a role in the disease severity. To test this hypothesis, we generated streptozotocin (STZ-induced diabetic mice. These mice had blood glucose levels threefold above controls and exhibited depressive phenotypes as judged by a battery of behavioral tests, thus confirming the comorbidity in mice. Immunohistological studies showed markedly increased TUNEL-positive cells in the frontal cortex and hippocampus of the comorbid mice, indicating apoptosis. This finding was supported by increased caspase-3 and decreased Bcl-2 proteins in these brain regions. In addition, the serum brain-derived neurotrophic factor (BDNF level of comorbid mice was reduced compared with controls, further supporting the neurodegenerative change. Mechanistic analyses showed an increased expression of mitochondrial fission genes fission protein 1 (Fis1 and dynamin-related protein 1 (Drp1, and a decreased expression of mitochondrial fusion genes mitofusin 1 (Mfn1, mitofusin 2 (Mfn2 and optical atrophy 1 (Opa1. Representative assessment of the proteins Drp1 and Mfn2 mirrored the mRNA changes. The data demonstrated that neural cell death was associated with the depressive phenotype of comorbid mice and that a fission-dominant expression of genes and proteins mediating mitochondrial dynamics played a role in the hyperglycemia-induced cell death. The study provides new insight into the disease mechanism and could aid the development of novel therapeutics aimed at providing neuroprotection by modulating mitochondrial dynamics to treat comorbid depression with diabetes.

  15. Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity.

    Science.gov (United States)

    Everaere, Laetitia; Ait-Yahia, Saliha; Molendi-Coste, Olivier; Vorng, Han; Quemener, Sandrine; LeVu, Pauline; Fleury, Sebastien; Bouchaert, Emmanuel; Fan, Ying; Duez, Catherine; de Nadai, Patricia; Staels, Bart; Dombrowicz, David; Tsicopoulos, Anne

    2016-11-01

    Epidemiologic and clinical observations identify obesity as an important risk factor for asthma exacerbation, but the underlying mechanisms remain poorly understood. Type 2 innate lymphoid cells (ILC2s) and type 3 innate lymphoid cells (ILC3s) have been implicated, respectively, in asthma and adipose tissue homeostasis and in obesity-associated airway hyperresponsiveness (AHR). We sought to determine the potential involvement of innate lymphoid cells (ILCs) in allergic airway disease exacerbation caused by high-fat diet (HFD)-induced obesity. Obesity was induced by means of HFD feeding, and allergic airway inflammation was subsequently induced by means of intranasal administration of house dust mite (HDM) extract. AHR, lung and visceral adipose tissue inflammation, humoral response, cytokines, and innate and adaptive lymphoid populations were analyzed in the presence or absence of ILCs. HFD feeding exacerbated allergic airway disease features, including humoral response, airway and tissue eosinophilia, AHR, and T H 2 and T H 17 pulmonary profiles. Notably, nonsensitized obese mice already exhibited increased lung ILC counts and tissue eosinophil infiltration compared with values in lean mice in the absence of AHR. The numbers of total and cytokine-expressing lung ILC2s and ILC3s further increased in HDM-challenged obese mice compared with those in HDM-challenged lean mice, and this was accompanied by high IL-33 and IL-1β levels and decreased ILC markers in visceral adipose tissue. Furthermore, depletion of ILCs with an anti-CD90 antibody, followed by T-cell reconstitution, led to a profound decrease in allergic airway inflammatory features in obese mice, including T H 2 and T H 17 infiltration. These results indicate that HFD-induced obesity might exacerbate allergic airway inflammation through mechanisms involving ILC2s and ILC3s. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Both cell-autonomous mechanisms and hormones contribute to sexual development in vertebrates and insects.

    Science.gov (United States)

    Bear, Ashley; Monteiro, Antónia

    2013-08-01

    The differentiation of male and female characteristics in vertebrates and insects has long been thought to proceed via different mechanisms. Traditionally, vertebrate sexual development was thought to occur in two phases: a primary and a secondary phase, the primary phase involving the differentiation of the gonads, and the secondary phase involving the differentiation of other sexual traits via the influence of sex hormones secreted by the gonads. In contrast, insect sexual development was thought to depend exclusively on cell-autonomous expression of sex-specific genes. Recently, however, new evidence indicates that both vertebrates and insects rely on sex hormones as well as cell-autonomous mechanisms to develop sexual traits. Collectively, these new data challenge the traditional vertebrate definitions of primary and secondary sexual development, call for a redefinition of these terms, and indicate the need for research aimed at explaining the relative dependence on cell-autonomous versus hormonally guided sexual development in animals. © 2013 The Authors. BioEssays published by WILEY Periodicals, Inc.

  17. The passive cable properties of hair cell stereocilia and their contribution to somatic capacitance measurements.

    Science.gov (United States)

    Breneman, Kathryn D; Highstein, Stephen M; Boyle, Richard D; Rabbitt, Richard D

    2009-01-01

    Somatic measurements of whole-cell capacitance are routinely used to understand physiologic events occurring in remote portions of cells. These studies often assume the intracellular space is voltage-clamped. We questioned this assumption in auditory and vestibular hair cells with respect to their stereocilia based on earlier studies showing that neurons, with radial dimensions similar to stereocilia, are not always isopotential under voltage-clamp. To explore this, we modeled the stereocilia as passive cables with transduction channels located at their tips. We found that the input capacitance measured at the soma changes when the transduction channels at the tips of the stereocilia are open compared to when the channels are closed. The maximum capacitance is felt with the transducer closed but will decrease as the transducer opens due to a length-dependent voltage drop along the stereocilium length. This potential drop is proportional to the intracellular resistance and stereocilium tip conductance and can produce a maximum capacitance error on the order of fF for single stereocilia and pF for the bundle.

  18. Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis

    Science.gov (United States)

    Eng, Diana G.; Sunseri, Maria W.; Kaverina, Natalya; Roeder, Sebastian S.; Pippin, Jeffrey W.; Shankland, Stuart J.

    2015-01-01

    Since adult podocytes cannot adequately proliferate following depletion in disease states there has been interest in the potential role of progenitors in podocyte repair and regeneration. To determine if parietal epithelial cells (PECs) can serve as adult podocyte progenitors following disease-induced podocyte depletion, PECs were permanently labeled in adult PECrtTA/LC1/R26 reporter mice. In normal mice, labeled PECs were confined to Bowman's capsule, while in disease (cytotoxic sheep anti-podocyte antibody), labeled PECs were found in the glomerular tuft in progressively higher numbers by days 7, 14 and 28. Early in disease, the majority of PECs in the tuft co-expressed CD44. By day 28, when podocyte numbers were significantly higher and disease severity was significantly lower, the majority of labeled PECs co-expressed podocyte proteins but not CD44. Neither labeled PECs on the tuft, nor podocytes stained for the proliferation marker BrdU. The de novo expression of phospho-ERK colocalized to CD44 expressing PECs, but not to PECs expressing podocyte markers. Thus, in a mouse model of focal segmental glomerulosclerosis typified by abrupt podocyte depletion followed by regeneration, PECs undergo two phenotypic changes once they migrate to the glomerular tuft. Initially these cells are predominantly activated CD44 expressing cells coinciding with glomerulosclerosis, and later they predominantly exhibit a podocyte phenotype which is likely reparative. PMID:25993321

  19. Delayed-rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells.

    Science.gov (United States)

    Weick, Michael; Demb, Jonathan B

    2011-07-14

    Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5-10 mV) also suppressed firing during subsequent depolarization. This suppression was selectively sensitive to blockers of delayed-rectifier K channels (K(DR)). In somatic membrane patches, we observed tetraethylammonium-sensitive K(DR) currents that activated near -25 mV. Recovery from inactivation occurred at potentials hyperpolarized to V(rest). Brief periods of hyperpolarization apparently remove K(DR) inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Neurl4 contributes to germ cell formation and integrity in Drosophila

    Directory of Open Access Journals (Sweden)

    Jennifer Jones

    2015-08-01

    Full Text Available Primordial germ cells (PGCs form at the posterior pole of the Drosophila embryo, and then migrate to their final destination in the gonad where they will produce eggs or sperm. Studies of the different stages in this process, including assembly of germ plasm in the oocyte during oogenesis, specification of a subset of syncytial embryonic nuclei as PGCs, and migration, have been informed by genetic analyses. Mutants have defined steps in the process, and the identities of the affected genes have suggested biochemical mechanisms. Here we describe a novel PGC phenotype. When Neurl4 activity is reduced, newly formed PGCs frequently adopt irregular shapes and appear to bud off vesicles. PGC number is also reduced, an effect exacerbated by a separate role for Neurl4 in germ plasm formation during oogenesis. Like its mammalian homolog, Drosophila Neurl4 protein is concentrated in centrosomes and downregulates centrosomal protein CP110. Reducing CP110 activity suppresses the abnormal PGC morphology of Neurl4 mutants. These results extend prior analyses of Neurl4 in cultured cells, revealing a heightened requirement for Neurl4 in germ-line cells in Drosophila.

  1. Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis.

    Science.gov (United States)

    Eng, Diana G; Sunseri, Maria W; Kaverina, Natalya V; Roeder, Sebastian S; Pippin, Jeffrey W; Shankland, Stuart J

    2015-11-01

    As adult podocytes cannot adequately proliferate following depletion in disease states, there has been interest in the potential role of progenitors in podocyte repair and regeneration. To determine whether parietal epithelial cells (PECs) can serve as adult podocyte progenitors following disease-induced podocyte depletion, PECs were permanently labeled in adult PEC-rtTA/LC1/R26 reporter mice. In normal mice, labeled PECs were confined to Bowman's capsule, whereas in disease (cytotoxic sheep anti-podocyte antibody) labeled PECs were found in the glomerular tuft in progressively higher numbers by days 7, 14, and 28. Early in disease, the majority of PECs in the tuft coexpressed CD44. By day 28, when podocyte numbers were significantly higher and disease severity was significantly lower, the majority of labeled PECs coexpressed podocyte proteins but not CD44. Neither labeled PECs on the tuft nor podocytes stained for the proliferation marker BrdU. The de novo expression of phospho-ERK colocalized to CD44 expressing PECs, but not to PECs expressing podocyte markers. Thus, in a mouse model of focal segmental glomerulosclerosis typified by abrupt podocyte depletion followed by regeneration, PECs undergo two phenotypic changes once they migrate to the glomerular tuft. Initially these cells are predominantly activated CD44 expressing cells coinciding with glomerulosclerosis, and later they predominantly exhibit a podocyte phenotype, which is likely reparative.

  2. Cell wall composition contributes to the control of transpiration efficiency in Arabidopsis thaliana.

    Science.gov (United States)

    Liang, Yun-Kuan; Xie, Xiaodong; Lindsay, Shona E; Wang, Yi Bing; Masle, Josette; Williamson, Lisa; Leyser, Ottoline; Hetherington, Alistair M

    2010-11-01

    To identify loci in Arabidopsis involved in the control of transpirational water loss and transpiration efficiency (TE) we carried out an infrared thermal imaging-based screen. We report the identification of a new allele of the Arabidopsis CesA7 cellulose synthase locus designated AtCesA7(irx3-5) involved in the control of TE. Leaves of the AtCesA7(irx3-5) mutant are warmer than the wild type (WT). This is due to reduced stomatal pore widths brought about by guard cells that are significantly smaller than the WT. The xylem of the AtCesA7(irx3-5) mutant is also partially collapsed, and we suggest that the small guard cells in the mutant result from decreased water supply to the developing leaf. We used carbon isotope discrimination to show that TE is increased in AtCesA7(irx3-5) when compared with the WT. Our work identifies a new class of genes that affects TE and raises the possibility that other genes involved in cell wall biosynthesis will have an impact on water use efficiency. © 2010 The Authors. The Plant Journal © 2010 Blackwell Publishing Ltd.

  3. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas

    DEFF Research Database (Denmark)

    Jensen, Stine Skov; Christensen, Karina; Aaberg-Jessen, Charlotte

    Targeting lysosomes is a novel approach in cancer therapy providing a possible way of killing the otherwise apoptosis-resistant cancer cells. Recent research has thus shown that lysosome targeting compounds induce cell death in a cervix cancer cell line. Tumor stem cells in glioblastomas have...

  4. Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia.

    Directory of Open Access Journals (Sweden)

    Katrin Högner

    2013-02-01

    Full Text Available Influenza viruses (IV cause pneumonia in humans with progression to lung failure and fatal outcome. Dysregulated release of cytokines including type I interferons (IFNs has been attributed a crucial role in immune-mediated pulmonary injury during severe IV infection. Using ex vivo and in vivo IV infection models, we demonstrate that alveolar macrophage (AM-expressed IFN-β significantly contributes to IV-induced alveolar epithelial cell (AEC injury by autocrine induction of the pro-apoptotic factor TNF-related apoptosis-inducing ligand (TRAIL. Of note, TRAIL was highly upregulated in and released from AM of patients with pandemic H1N1 IV-induced acute lung injury. Elucidating the cell-specific underlying signalling pathways revealed that IV infection induced IFN-β release in AM in a protein kinase R- (PKR- and NF-κB-dependent way. Bone marrow chimeric mice lacking these signalling mediators in resident and lung-recruited AM and mice subjected to alveolar neutralization of IFN-β and TRAIL displayed reduced alveolar epithelial cell apoptosis and attenuated lung injury during severe IV pneumonia. Together, we demonstrate that macrophage-released type I IFNs, apart from their well-known anti-viral properties, contribute to IV-induced AEC damage and lung injury by autocrine induction of the pro-apoptotic factor TRAIL. Our data suggest that therapeutic targeting of the macrophage IFN-β-TRAIL axis might represent a promising strategy to attenuate IV-induced acute lung injury.

  5. A T4SS Effector Targets Host Cell Alpha-Enolase Contributing to Brucella abortus Intracellular Lifestyle.

    Science.gov (United States)

    Marchesini, María I; Morrone Seijo, Susana M; Guaimas, Francisco F; Comerci, Diego J

    2016-01-01

    Brucella abortus , the causative agent of bovine brucellosis, invades and replicates within cells inside a membrane-bound compartment known as the Brucella containing vacuole (BCV). After trafficking along the endocytic and secretory pathways, BCVs mature into endoplasmic reticulum-derived compartments permissive for bacterial replication. Brucella Type IV Secretion System (VirB) is a major virulence factor essential for the biogenesis of the replicative organelle. Upon infection, Brucella uses the VirB system to translocate effector proteins from the BCV into the host cell cytoplasm. Although the functions of many translocated proteins remain unknown, some of them have been demonstrated to modulate host cell signaling pathways to favor intracellular survival and replication. BPE123 (BAB2_0123) is a B. abortus VirB-translocated effector protein recently identified by our group whose function is yet unknown. In an attempt to identify host cell proteins interacting with BPE123, a pull-down assay was performed and human alpha-enolase (ENO-1) was identified by LC/MS-MS as a potential interaction partner of BPE123. These results were confirmed by immunoprecipitation assays. In bone-marrow derived macrophages infected with B. abortus , ENO-1 associates to BCVs in a BPE123-dependent manner, indicating that interaction with translocated BPE123 is also occurring during the intracellular phase of the bacterium. Furthermore, ENO-1 depletion by siRNA impaired B. abortus intracellular replication in HeLa cells, confirming a role for α-enolase during the infection process. Indeed, ENO-1 activity levels were enhanced upon B. abortus infection of THP-1 macrophagic cells, and this activation is highly dependent on BPE123. Taken together, these results suggest that interaction between BPE123 and host cell ENO-1 contributes to the intracellular lifestyle of B. abortus .

  6. Radiation-induced decrease of CD8+ dendritic cells contributes to Th1/Th2 shift.

    Science.gov (United States)

    Liu, Hu; Li, Bailong; Jia, Xiaojing; Ma, Yan; Gu, Yifeng; Zhang, Pei; Wei, Qun; Cai, Jianming; Cui, Jianguo; Gao, Fu; Yang, Yanyong

    2017-05-01

    Exposure to ionizing radiation (IR) often reduce the helper T (Th) 1 like function, resulting in a Th1/Th2 imbalance, which could affect the efficacy of cancer radiotherapy. As the most potent antigen presenting cells, dendritic cells (DC) can be divided into several subsets with specialized function. However, there is no literature covering the changes of DC subsets and their roles in immune regulation in response to IR. In the present study, we were aimed to investigate the changes of DC subsets after IR and its relationship with Th1/Th2 immunity. We found a significant decrease of BDCA3+DC in the blood of patients treated with radiotherapy. CD8+DC, a mouse equivalent of human BDCA3+DC, was also found decreased in mice spleen, peripheral blood and lymph node tissues after irradiation. As CD8+DC mainly induce Th1 immunity, we tested the changes of Th1/Th2 response and found that IR caused a repression of Th1 immunity, indicating a possible role of CD8+DC in radiation-induced Th1/Th2 imbalance. We also found that a CD8+DC-inducing cytokine, Fms-like tyrosine kinase 3 ligand (FLT3 ligand), restored CD8+DC and reversed Th1/Th2 shift. And then we found that bone marrow cells from irradiated mice differentiated into less CD8+DC, which was also protected by FLT3 ligand. In conclusion, our data showed that IR induced a decrease of CD8+DC and Th1/Th2 shift, which was reversed by Flt3 ligand treatment, suggesting a novel mechanism for radiation-induced immunosuppression. Copyright © 2017. Published by Elsevier B.V.

  7. Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells

    Directory of Open Access Journals (Sweden)

    Yoda Satoshi

    2008-11-01

    Full Text Available Abstract Background Alterations in the processing of the genetic information in carcinogenesis result from stable genetic mutations or epigenetic modifications. It is becoming clear that nucleosomal histones are central to proper gene expression and that aberrant DNA methylation of genes and histone methylation plays important roles in tumor progression. To date, several histone lysine methyltransferases (HKMTs have been identified and histone lysine methylation is now considered to be a critical regulator of transcription. However, still relatively little is known about the role of HKMTs in tumorigenesis. Results We observed differential HKMT expression in a lung cancer model in which normal human bronchial epithelial (NHBE cells expressing telomerase, SV40 large T antigen, and Ras were immortal, formed colonies in soft agar, and expressed specific HKMTs for H3 lysine 9 and 27 residues but not for H3 lysine 4 residue. Modifications in the H3 tails affect the binding of proteins to the histone tails and regulate protein function and the position of lysine methylation marks a gene to be either activated or repressed. In the present study, suppression by siRNA of HKMTs (EZH2, G9A, SETDB1 and SUV39H1 that are over-expressed in immortalized and transformed cells lead to reduced cell proliferation and much less anchorage-independent colony growth. We also found that the suppression of H3-K9, G9A and SUV39H1 induced apoptosis and the suppression of H3-K27, EZH2 caused G1 arrest. Conclusion Our results indicate the potential of these HKMTs in addition to the other targets for epigenetics such as DNMTs and HDACs to be interesting therapeutic targets.

  8. DNA released by leukemic cells contributes to the disruption of the bone marrow microenvironment

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, Marta; Karafiát, Vít; Pajer, Petr; Kluzáková, E.; Jarkovská, Karla; Peková, S.; Krutílková, L.; Dvořák, Michal

    2013-01-01

    Roč. 32, č. 44 (2013), s. 5201-5209 ISSN 0950-9232 R&D Projects: GA AV ČR KAN200520801; GA MŠk(CZ) LC06061; GA ČR GA204/06/1728; GA ČR GA301/09/1727 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 ; RVO:67985904 Keywords : acute leukemia * tumor microenvironment * extracellular nucleosomes * extracellular DNA * DNA damage response * cell death Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.559, year: 2013

  9. Drosophila's contribution to stem cell research [v1; ref status: indexed, http://f1000r.es/5h7

    Directory of Open Access Journals (Sweden)

    Gyanesh Singh

    2015-06-01

    Full Text Available The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. A recent development in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub. Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over t