WorldWideScience

Sample records for astrocytic mechanisms explaining

  1. Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space

    DEFF Research Database (Denmark)

    Østby, Ivar; Øyehaug, Leiv; Einevoll, Gaute T;

    2009-01-01

    Neuronal stimulation causes approximately 30% shrinkage of the extracellular space (ECS) between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance...

  2. Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space.

    Directory of Open Access Journals (Sweden)

    Ivar Østby

    2009-01-01

    Full Text Available Neuronal stimulation causes approximately 30% shrinkage of the extracellular space (ECS between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance and astrocyte function, the phenomenon remains unexplained. Here we present a dynamic model that accounts for current experimental data related to the shrinkage phenomenon in wild-type as well as in gene knockout individuals. We find that neuronal release of potassium and uptake of sodium during stimulation, astrocyte uptake of potassium, sodium, and chloride in passive channels, action of the Na/K/ATPase pump, and osmotically driven transport of water through the astrocyte membrane together seem sufficient for generating ECS shrinkage as such. However, when taking into account ECS and astrocyte ion concentrations observed in connection with neuronal stimulation, the actions of the Na(+/K(+/Cl(- (NKCC1 and the Na(+/HCO(3 (- (NBC cotransporters appear to be critical determinants for achieving observed quantitative levels of ECS shrinkage. Considering the current state of knowledge, the model framework appears sufficiently detailed and constrained to guide future key experiments and pave the way for more comprehensive astroglia-neuron interaction models for normal as well as pathophysiological situations.

  3. Astrocytes.

    Science.gov (United States)

    Kimelberg, Harold K.; Norenberg, Michael D.

    1989-01-01

    Describes the astrocytes' function as equal partners with neurons in both the normal and the abnormal brain. Discusses the developmental scaffolds, inert scar tissue, Huntington's disease, psychiatric disorders, and the identification of these brain cells. (RT)

  4. Cellular mechanism for spontaneous calcium oscillations in astrocytes

    Institute of Scientific and Technical Information of China (English)

    Tong-fei WANG; Chen ZHOU; Ai-hui TANG; Shi-qiang WANG; Zhen CHAI

    2006-01-01

    Aim: To determine the Ca2+ source and cellular mechanisms of spontaneous Ca2+ oscillations in hippocampal astrocytes. Methods: The cultured cells were loaded with Fluo-4 AM, the indicator of intracellular Ca2+, and the dynamic Ca2+ transients were visualized with confocal laser-scanning microscopy. Results: The spontaneous Ca2+ oscillations in astrocytes were observed first in co-cultured hippocampal neurons and astrocytes. These oscillations were not affected by tetrodotoxin (TTX) treatment and kept up in purity cultured astrocytes. The spontaneous Ca2+ oscillations were not impacted after blocking the voltage-gated Ca2+ channels or ethylenediamine tetraacetic acid (EDTA) bathing, indicating that intracellular Ca2+ elevation was not the result of extracellular Ca2+ influx. Furthermore, the correlation between the spontaneous Ca2+ oscillations and the Ca2+ store in endoplasmic reticulum (ER) were investigated with pharmacological experiments. The oscillations were: 1) enhanced when cells were exposed to both low Na+ (70 mmol/L) and high Ca2+ (5 mmol/L) solution, and eliminated completely by 2 μmol/L thapsigargin, a blocker of sarcoplasmic reticulum Ca2+-ATPase; and 2) still robust after the application with either 50 μmol/L ryanodine or 400 μmol/L tetracaine, two specific antagonists of ryanodine receptors, but depressed in a dose-dependent manner by 2-APB, an InsP3 receptors (InsP3R) blocker. Conclusion: InsP3R-induced ER Ca2+ release is an important cellular mechanism for the initiation of spontaneous Ca2+ oscillation in hippocampal astrocytes.

  5. Novel neuronal and astrocytic mechanisms in thalamocortical loop dynamics.

    Science.gov (United States)

    Crunelli, Vincenzo; Blethyn, Kate L; Cope, David W; Hughes, Stuart W; Parri, H Rheinallt; Turner, Jonathan P; Tòth, Tibor I; Williams, Stephen R

    2002-12-29

    In this review, we summarize three sets of findings that have recently been observed in thalamic astrocytes and neurons, and discuss their significance for thalamocortical loop dynamics. (i) A physiologically relevant 'window' component of the low-voltage-activated, T-type Ca(2+) current (I(Twindow)) plays an essential part in the slow (less than 1 Hz) sleep oscillation in adult thalamocortical (TC) neurons, indicating that the expression of this fundamental sleep rhythm in these neurons is not a simple reflection of cortical network activity. It is also likely that I(Twindow) underlies one of the cellular mechanisms enabling TC neurons to produce burst firing in response to novel sensory stimuli. (ii) Both electrophysiological and dye-injection experiments support the existence of gap junction-mediated coupling among young and adult TC neurons. This finding indicates that electrical coupling-mediated synchronization might be implicated in the high and low frequency oscillatory activities expressed by this type of thalamic neuron. (iii) Spontaneous intracellular Ca(2+) ([Ca(2+)](i)) waves propagating among thalamic astrocytes are able to elicit large and long-lasting N-methyl-D-aspartate-mediated currents in TC neurons. The peculiar developmental profile within the first two postnatal weeks of these astrocytic [Ca(2+)](i) transients and the selective activation of these glutamate receptors point to a role for this astrocyte-to-neuron signalling mechanism in the topographic wiring of the thalamocortical loop. As some of these novel cellular and intracellular properties are not restricted to thalamic astrocytes and neurons, their significance may well apply to (patho)physiological functions of glial and neuronal elements in other brain areas.

  6. Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity

    OpenAIRE

    Yoon, Seo-Yeon; Robinson, Caleb R.; Zhang, Haijun; Dougherty, Patrick M.

    2013-01-01

    Spinal glial cells contribute to the development of many types of inflammatory and neuropathic pain. Here the contribution of spinal astrocytes and astrocyte gap junctions to oxaliplatin-induced mechanical hypersensitivity was explored. The expression of glial fibrillary acidic protein (GFAP) in spinal dorsal horn was significantly increased at day 7 but recovered at day 14 after oxaliplatin treatment, suggesting a transient activation of spinal astrocytes by chemotherapy. Astrocyte-specific ...

  7. Spinal astrocytic activation contributes to mechanical allodynia in a rat chemotherapy-induced neuropathic pain model.

    Directory of Open Access Journals (Sweden)

    Xi-Tuan Ji

    Full Text Available Chemotherapy-induced neuropathic pain (CNP is the major dose-limiting factor in cancer chemotherapy. However, the neural mechanisms underlying CNP remain enigmatic. Accumulating evidence implicates the involvement of spinal glia in some neuropathic pain models. In this study, using a vincristine-evoked CNP rat model with obvious mechanical allodynia, we found that spinal astrocyte rather than microglia was dramatically activated. The mechanical allodynia was dose-dependently attenuated by intrathecal administratration of L-α-aminoadipate (astrocytic specific inhibitor; whereas minocycline (microglial specific inhibitor had no such effect, indicating that spinal astrocytic activation contributes to allodynia in CNP rat. Furthermore, oxidative stress mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1β expression which induced N-methyl-D-aspartic acid receptor (NMDAR phosphorylation in spinal neurons to strengthen pain transmission. Taken together, our findings suggest that spinal activated astrocytes may be a crucial component of the pathophysiology of CNP and "Astrocyte-Cytokine-NMDAR-neuron" pathway may be one detailed neural mechanisms underlying CNP. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for treating CNP.

  8. Pituitary Adenylate cyclase-activating polypeptide orchestrates neuronal regulation of the astrocytic glutamate-releasing mechanism system xc (.).

    Science.gov (United States)

    Kong, Linghai; Albano, Rebecca; Madayag, Aric; Raddatz, Nicholas; Mantsch, John R; Choi, SuJean; Lobner, Doug; Baker, David A

    2016-05-01

    Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc (-) (Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission. We found that astrocytes cultured with neurons or exposed to neuronal-conditioned media displayed significantly higher levels of Sxc activity. Next, we demonstrated that the pituitary adenylate cyclase-activating polypeptide (PACAP) may be a neuronal factor capable of regulating astrocytes. In support, we found that PACAP expression was restricted to neurons, and that PACAP receptors were expressed in astrocytes. Interestingly, blockade of PACAP receptors in cultures comprised of astrocytes and neurons significantly decreased Sxc activity to the level observed in purified astrocytes, whereas application of PACAP to purified astrocytes increased Sxc activity to the level observed in cultures comprised of neurons and astrocytes. Collectively, these data reveal that neurons coordinate the actions of glutamate-related mechanisms expressed by astrocytes, such as Sxc, a process that likely involves PACAP. A critical gap in modeling excitatory signaling is how distinct components of the glutamate system expressed by neurons and astrocytes are coordinated. In these studies, we found that system xc (-) (Sxc), a glutamate release mechanism expressed by astrocytes, is regulated by releasable neuronal factors including PACAP. This represents a novel form of neuron-astrocyte communication, and highlights the possibility that pathological changes involving astrocytic Sxc may stem from altered neuronal activity.

  9. Astrocytes are involved in trigeminal dynamic mechanical allodynia: potential role of D-serine.

    Science.gov (United States)

    Dieb, W; Hafidi, A

    2013-09-01

    Trigeminal neuropathic pain affects millions of people worldwide. Despite decades of study on the neuronal processing of pain, mechanisms underlying enhanced pain states after injury remain unclear. N-methyl-D-aspartate (NMDA) receptor-dependent changes play a critical role in triggering central sensitization in neuropathic pain. These receptors are regulated at the glycine site through a mandatory endogenous co-agonist D-serine, which is synthesized by astrocytes. Therefore, the present study was carried out to determine whether astrocytes are involved, through D-serine secretion, in dynamic mechanical allodynia (DMA) obtained after chronic constriction of the infraorbital nerve (CCI-IoN) in rats. Two weeks after CCI-IoN, an important reaction of astrocytes was present in the medullary dorsal horn (MDH), as revealed by an up-regulation of glial fibrillary acidic protein (GFAP) in allodynic rats. In parallel, an increase in D-serine synthesis, which co-localized with its synthesis enzyme serine racemase, was strictly observed in astrocytes. Blocking astrocyte metabolism by intracisternal delivery of fluorocitrate alleviated DMA. Furthermore, the administration of D-amino-acid oxidase (DAAO), a D-serine-degrading enzyme, or that of L-serine O-sulfate (LSOS), a serine racemase inhibitor, significantly decreased pain behavior in allodynic rats. These results demonstrate that astrocytes are involved in the modulation of orofacial post-traumatic neuropathic pain via the release of the gliotransmitter D-serine.

  10. Cytochrome c dysregulation induced by HIV infection of astrocytes results in bystander apoptosis of uninfected astrocytes by an IP3 and calcium-dependent mechanism

    OpenAIRE

    Eugenin, Eliseo A.; Berman, Joan W.

    2013-01-01

    HIV entry into the CNS is an early event after peripheral infection, resulting in neurologic dysfunction in a significant number of individuals despite successful anti-retroviral therapy. The mechanisms by which HIV mediates CNS dysfunction are not well understood. Our group recently demonstrated that HIV infection of astrocytes results in survival of HIV infected cells and apoptosis of surrounding uninfected astrocytes by the transmission of toxic intracellular signals through gap junctions....

  11. Inhibition of astrocyte metabolism is not the primary mechanism for anaesthetic hypnosis.

    Science.gov (United States)

    Voss, Logan J; Harvey, Martyn G; Sleigh, James W

    2016-01-01

    Astrocytes have been promoted as a possible mechanistic target for anaesthetic hypnosis. The aim of this study was to explore this using the neocortical brain slice preparation. The methods were in two parts. Firstly, multiple general anaesthetic compounds demonstrating varying in vivo hypnotic potency were analysed for their effect on "zero-magnesium" seizure-like event (SLE) activity in mouse neocortical slices. Subsequently, the effect of astrocyte metabolic inhibition was investigated in neocortical slices, and compared with that of the anaesthetic drugs. The rationale was that, if suppression of astrocytes was both necessary and sufficient to cause hypnosis in vivo, then inhibition of astrocytic metabolism in slices should mimic the anaesthetic effect. In vivo anaesthetic potency correlated strongly with the magnitude of reduction in SLE frequency in neocortical slices (R(2) 37.7 %, p = 0.002). Conversely, SLE frequency and length were significantly enhanced during exposure to both fluoroacetate (23 and 20 % increase, respectively, p < 0.01) and aminoadipate (12 and 38 % increase, respectively, p < 0.01 and p < 0.05). The capacity of an anaesthetic agent to reduce SLE frequency in the neocortical slice is a good indicator of its in vivo hypnotic potency. The results do not support the hypothesis that astrocytic metabolic inhibition is a mechanism of anaesthetic hypnosis. PMID:27462489

  12. A New Computational Model for Neuro-Glio-Vascular Coupling: Astrocyte Activation Can Explain Cerebral Blood Flow Nonlinear Response to Interictal Events.

    Science.gov (United States)

    Blanchard, Solenna; Saillet, Sandrine; Ivanov, Anton; Benquet, Pascal; Bénar, Christian-George; Pélégrini-Issac, Mélanie; Benali, Habib; Wendling, Fabrice

    2016-01-01

    Developing a clear understanding of the relationship between cerebral blood flow (CBF) response and neuronal activity is of significant importance because CBF increase is essential to the health of neurons, for instance through oxygen supply. This relationship can be investigated by analyzing multimodal (fMRI, PET, laser Doppler…) recordings. However, the important number of intermediate (non-observable) variables involved in the underlying neurovascular coupling makes the discovery of mechanisms all the more difficult from the sole multimodal data. We present a new computational model developed at the population scale (voxel) with physiologically relevant but simple equations to facilitate the interpretation of regional multimodal recordings. This model links neuronal activity to regional CBF dynamics through neuro-glio-vascular coupling. This coupling involves a population of glial cells called astrocytes via their role in neurotransmitter (glutamate and GABA) recycling and their impact on neighboring vessels. In epilepsy, neuronal networks generate epileptiform discharges, leading to variations in astrocytic and CBF dynamics. In this study, we took advantage of these large variations in neuronal activity magnitude to test the capacity of our model to reproduce experimental data. We compared simulations from our model with isolated epileptiform events, which were obtained in vivo by simultaneous local field potential and laser Doppler recordings in rats after local bicuculline injection. We showed a predominant neuronal contribution for low level discharges and a significant astrocytic contribution for higher level discharges. Besides, neuronal contribution to CBF was linear while astrocytic contribution was nonlinear. Results thus indicate that the relationship between neuronal activity and CBF magnitudes can be nonlinear for isolated events and that this nonlinearity is due to astrocytic activity, highlighting the importance of astrocytes in the

  13. A New Computational Model for Neuro-Glio-Vascular Coupling: Astrocyte Activation Can Explain Cerebral Blood Flow Nonlinear Response to Interictal Events.

    Directory of Open Access Journals (Sweden)

    Solenna Blanchard

    Full Text Available Developing a clear understanding of the relationship between cerebral blood flow (CBF response and neuronal activity is of significant importance because CBF increase is essential to the health of neurons, for instance through oxygen supply. This relationship can be investigated by analyzing multimodal (fMRI, PET, laser Doppler… recordings. However, the important number of intermediate (non-observable variables involved in the underlying neurovascular coupling makes the discovery of mechanisms all the more difficult from the sole multimodal data. We present a new computational model developed at the population scale (voxel with physiologically relevant but simple equations to facilitate the interpretation of regional multimodal recordings. This model links neuronal activity to regional CBF dynamics through neuro-glio-vascular coupling. This coupling involves a population of glial cells called astrocytes via their role in neurotransmitter (glutamate and GABA recycling and their impact on neighboring vessels. In epilepsy, neuronal networks generate epileptiform discharges, leading to variations in astrocytic and CBF dynamics. In this study, we took advantage of these large variations in neuronal activity magnitude to test the capacity of our model to reproduce experimental data. We compared simulations from our model with isolated epileptiform events, which were obtained in vivo by simultaneous local field potential and laser Doppler recordings in rats after local bicuculline injection. We showed a predominant neuronal contribution for low level discharges and a significant astrocytic contribution for higher level discharges. Besides, neuronal contribution to CBF was linear while astrocytic contribution was nonlinear. Results thus indicate that the relationship between neuronal activity and CBF magnitudes can be nonlinear for isolated events and that this nonlinearity is due to astrocytic activity, highlighting the importance of astrocytes in

  14. Astrocytes conspire with neurons during progression of neurological disease

    OpenAIRE

    McGann, James C.; Lioy, Daniel T.; Mandel, Gail

    2012-01-01

    As astrocytes are becoming recognized as important mediators of normal brain function, studies into their roles in neurological disease have gained significance. Across mouse models for neurodevelopmental and neurodegenerative diseases, astrocytes are considered key regulators of disease progression. In Rett syndrome and Parkinson’s disease, astrocytes can even initiate certain disease phenotypes. Numerous potential mechanisms have been offered to explain these results, but research into the ...

  15. Is Quantum Mechanics needed to explain consciousness ?

    CERN Document Server

    Thomsen, Knud

    2007-01-01

    In this short comment to a recent contribution by E. Manousakis [1] it is argued that the reported agreement between the measured time evolution of conscious states during binocular rivalry and predictions derived from quantum mechanical formalisms does not require any direct effect of QM. The recursive consumption analysis process in the Ouroboros Model can yield the same behavior.

  16. Copper Metabolism of Astrocytes

    OpenAIRE

    Ralf Dringen; Scheiber, Ivo F.; Julian FB Mercer

    2013-01-01

    This short review will summarize the current knowledge on the uptake, storage, and export of copper ions by astrocytes and will address the potential roles of astrocytes in copper homeostasis in the normal and diseased brain. Astrocytes in culture efficiently accumulate copper by processes that include both the copper transporter Ctr1 and Ctr1-independent mechanisms. Exposure of astrocytes to copper induces an increase in cellular glutathione (GSH) content as well as synthesis of metallothion...

  17. Bifurcation mechanisms of regular and chaotic network signaling in brain astrocytes

    Science.gov (United States)

    Matrosov, V. V.; Kazantsev, V. B.

    2011-06-01

    Bifurcation mechanisms underlying calcium oscillations in the network of astrocytes are investigated. Network model includes the dynamics of intracellular calcium concentration and intercellular diffusion of inositol 1,4,5-trisphosphate through gap junctions. Bifurcation analysis of underlying nonlinear dynamical system is presented. Parameter regions and principle bifurcation boundaries have been delineated and described. We show how variations of the diffusion rate can lead to generation of network calcium oscillations in originally nonoscillating cells. Different scenarios of regular activity and its transitions to chaotic dynamics have been obtained. Then, the bifurcations have been associated with statistical characteristics of calcium signals showing that different bifurcation scenarios yield qualitative changes in experimentally measurable quantities of the astrocyte activity, e.g., statistics of calcium spikes.

  18. The mitochondrial permeability transition, and oxidative and nitrosative stress in the mechanism of copper toxicity in cultured neurons and astrocytes.

    Science.gov (United States)

    Reddy, Pichili V B; Rao, Kakulavarapu V Rama; Norenberg, Michael D

    2008-08-01

    Copper is an essential element and an integral component of various enzymes. However, excess copper is neurotoxic and has been implicated in the pathogenesis of Wilson's disease, Alzheimer's disease, prion conditions, and other disorders. Although mechanisms of copper neurotoxicity are not fully understood, copper is known to cause oxidative stress and mitochondrial dysfunction. As oxidative stress is an important factor in the induction of the mitochondrial permeability transition (mPT), we determined whether mPT plays a role in copper-induced neural cell injury. Cultured astrocytes and neurons were treated with 20 microM copper and mPT was measured by changes in the cyclosporin A (CsA)-sensitive inner mitochondrial membrane potential (Delta Psi m), employing the potentiometric dye TMRE. In astrocytes, copper caused a 36% decrease in the Delta Psi m at 12 h, which decreased further to 48% by 24 h and remained at that level for at least 72 h. Cobalt quenching of calcein fluorescence as a measure of mPT similarly displayed a 45% decrease at 24 h. Pretreatment with antioxidants significantly blocked the copper-induced mPT by 48-75%. Copper (24 h) also caused a 30% reduction in ATP in astrocytes, which was completely blocked by CsA. Copper caused death (42%) in astrocytes by 48 h, which was reduced by antioxidants (35-60%) and CsA (41%). In contrast to astrocytes, copper did not induce mPT in neurons. Instead, it caused early and extensive death with a concomitant reduction (63%) in ATP by 14 h. Neuronal death was prevented by antioxidants and nitric oxide synthase inhibitors but not by CsA. Copper increased protein tyrosine nitration in both astrocytes and neurons. These studies indicate that mPT, and oxidative and nitrosative stress represent major factors in copper-induced toxicity in astrocytes, whereas oxidative and nitrosative stress appears to play a major role in neuronal injury.

  19. A Digital Realization of Astrocyte and Neural Glial Interactions.

    Science.gov (United States)

    Hayati, Mohsen; Nouri, Moslem; Haghiri, Saeed; Abbott, Derek

    2016-04-01

    The implementation of biological neural networks is a key objective of the neuromorphic research field. Astrocytes are the largest cell population in the brain. With the discovery of calcium wave propagation through astrocyte networks, now it is more evident that neuronal networks alone may not explain functionality of the strongest natural computer, the brain. Models of cortical function must now account for astrocyte activities as well as their relationships with neurons in encoding and manipulation of sensory information. From an engineering viewpoint, astrocytes provide feedback to both presynaptic and postsynaptic neurons to regulate their signaling behaviors. This paper presents a modified neural glial interaction model that allows a convenient digital implementation. This model can reproduce relevant biological astrocyte behaviors, which provide appropriate feedback control in regulating neuronal activities in the central nervous system (CNS). Accordingly, we investigate the feasibility of a digital implementation for a single astrocyte constructed by connecting a two coupled FitzHugh Nagumo (FHN) neuron model to an implementation of the proposed astrocyte model using neuron-astrocyte interactions. Hardware synthesis, physical implementation on FPGA, and theoretical analysis confirm that the proposed neuron astrocyte model, with significantly low hardware cost, can mimic biological behavior such as the regulation of postsynaptic neuron activity and the synaptic transmission mechanisms. PMID:26390499

  20. Can the photosynthesis first step quantum mechanism be explained?

    CERN Document Server

    Sacilotti, Marco; Mota, Claudia C B O; Nunes, Frederico Dias; Gomes, Anderson S L

    2010-01-01

    Photosynthesis first step mechanism concerns the sunlight absorption and both negative and positive charges separation. Recent and important photosynthesis literature claims that this mechanism is quantum mechanics controlled, however without presenting qualitative or quantitative scientifically based mechanism. The present accepted and old-fashioned photosynthesis mechanism model suffers from few drawbacks and an important issue is the absence of driving force for negative and positive charges separation. This article presents a new qualitative model for this first step mechanism in natural catalytic systems such as photosynthesis in green leaves. The model uses a concept of semiconductor band gap engineering, such as the staggered energy band gap line-up in semiconductors. To explain the primary mechanism in natural photosynthesis the proposal is the following: incident light is absorbed inside the leaves causing charges separation. The only energetic configuration that allows charges separation under illum...

  1. Autophagy Constitutes a Protective Mechanism against Ethanol Toxicity in Mouse Astrocytes and Neurons.

    Science.gov (United States)

    Pla, Antoni; Pascual, María; Guerri, Consuelo

    2016-01-01

    Ethanol induces brain damage and neurodegeneration by triggering inflammatory processes in glial cells through activation of Toll-like receptor 4 (TLR4) signaling. Recent evidence indicates the role of protein degradation pathways in neurodegeneration and alcoholic liver disease, but how these processes affect the brain remains elusive. We have demonstrated that chronic ethanol consumption impairs proteolytic pathways in mouse brain, and the immune response mediated by TLR4 receptors participates in these dysfunctions. We evaluate the in vitro effects of an acute ethanol dose on the autophagy-lysosome pathway (ALP) on WT and TLR4-/- mouse astrocytes and neurons in primary culture, and how these changes affect cell survival. Our results show that ethanol induces overexpression of several autophagy markers (ATG12, LC3-II, CTSB), and increases the number of lysosomes in WT astrocytes, effects accompanied by a basification of lysosomal pH and by lowered phosphorylation levels of autophagy inhibitor mTOR, along with activation of complexes beclin-1 and ULK1. Notably, we found only minor changes between control and ethanol-treated TLR4-/- mouse astroglial cells. Ethanol also triggers the expression of the inflammatory mediators iNOS and COX-2, but induces astroglial death only slightly. Blocking autophagy by using specific inhibitors increases both inflammation and cell death. Conversely, in neurons, ethanol down-regulates the autophagy pathway and triggers cell death, which is partially recovered by using autophagy enhancers. These results support the protective role of the ALP against ethanol-induced astroglial cell damage in a TLR4-dependent manner, and provide new insight into the mechanisms that underlie ethanol-induced brain damage and are neuronal sensitive to the ethanol effects.

  2. Copper Metabolism of Astrocytes

    Directory of Open Access Journals (Sweden)

    Ralf eDringen

    2013-03-01

    Full Text Available This short review will summarize the current knowledge on the uptake, storage and export of copper ions by astrocytes and will address the potential roles of astrocytes in copper homeostasis in the normal and diseased brain. Astrocytes in culture efficiently accumulate copper by processes that include both the copper transporter Ctr1 and Ctr1-independent mechanisms. Exposure of astrocytes to copper induces an increase in cellular glutathione (GSH content as well as synthesis of metallothioneins, suggesting that excess of copper is stored as complex with GSH and in metallothioneins. Furthermore, exposure of astrocytes to copper accelerates the release of GSH and of glycolytically generated lactate. Astrocytes are able to export copper and express the Menkes protein ATP7A. This protein undergoes reversible, copper-dependent trafficking between the trans-Golgi network and vesicular structures. The ability of astrocytes to efficiently take up, store and export copper suggests that astrocytes play a key role in the supply of neurons with copper and that astrocytes should be considered as target for therapeutic inventions that aim to correct disturbances in brain copper homeostasis.

  3. Mechanisms of Nrf2 protection in astrocytes as identified by quantitative proteomics and siRNA screening.

    Directory of Open Access Journals (Sweden)

    James A Dowell

    Full Text Available The Nrf2 (NF-E2 related factor 2-ARE (antioxidant response element pathway controls a powerful array of endogenous cellular antioxidant systems and is an important pathway in the detoxification of reactive oxygen species (ROS in the brain. Using a combination of quantitative proteomics and siRNA screening, we have identified novel protective mechanisms of the Nrf2-ARE pathway against oxidative stress in astrocytes. Studies from our lab and others have shown Nrf2 overexpression protects astrocytes from oxidative stress. However, the exact mechanisms by which Nrf2 elicits these effects are unknown. In this study, we show that induction of Nrf2 reduces levels of reactive oxygen species (ROS produced by various oxidative stressors and results in robust cytoprotection. To identify the enzymes responsible for these effects, we used stable isotope labeling by amino acids in cell culture (SILAC and quantitative shotgun proteomics to identify 72 Nrf2-regulated proteins in astrocytes. We hypothesized a subset of these proteins might play a critical role in Nrf2 protection. In order to identify these critical proteins, we used bioinformatics to narrow our target list of proteins and then systematically screened each candidate with siRNA to assess the role of each in Nrf2 protection. We screened each target against H2O2, tert-butyl hydroperoxide, and 4-hydroxynonenal and subsequently identified three enzymes-catalase, prostaglandin reductase-1, and peroxiredoxin-6-that are critical for Nrf2-mediated protection in astrocytes.

  4. Mechanical vulnerability explains size-dependent mortality of reef corals

    Science.gov (United States)

    Madin, Joshua S; Baird, Andrew H; Dornelas, Maria; Connolly, Sean R

    2014-01-01

    Understanding life history and demographic variation among species within communities is a central ecological goal. Mortality schedules are especially important in ecosystems where disturbance plays a major role in structuring communities, such as coral reefs. Here, we test whether a trait-based, mechanistic model of mechanical vulnerability in corals can explain mortality schedules. Specifically, we ask whether species that become increasingly vulnerable to hydrodynamic dislodgment as they grow have bathtub-shaped mortality curves, whereas species that remain mechanically stable have decreasing mortality rates with size, as predicted by classical life history theory for reef corals. We find that size-dependent mortality is highly consistent between species with the same growth form and that the shape of size-dependent mortality for each growth form can be explained by mechanical vulnerability. Our findings highlight the feasibility of predicting assemblage-scale mortality patterns on coral reefs with trait-based approaches. PMID:24894390

  5. Explaining the mechanism of random lasing based sensing

    CERN Document Server

    Gaio, Michele; Marelli, Benedetto; Omenetto, Fiorenzo; Sapienza, Riccardo

    2016-01-01

    Here we report a random lasing based sensor which shows pH sensitivity exceeding by 2-orders of magnitude that of a conventional fluorescence sensor. We explain the sensing mechanism as related to gain modifications and lasing threshold nonlinearities. A dispersive diffusive lasing theory matches well the experimental results, and allow us to predict the optimal sensing conditions and a maximal sensitivity as large as 200 times that of an identical fluorescence-based sensor. The simplicity of operation and high sensitivity make it promising for future biosensing applications.

  6. HIV-1 and IL-1β regulate astrocytic CD38 through mitogen-activated protein kinases and nuclear factor-κB signaling mechanisms

    Directory of Open Access Journals (Sweden)

    Mamik Manmeet K

    2011-10-01

    Full Text Available Abstract Background Infection with human immunodeficiency virus type-1 (HIV-1 leads to some form of HIV-1-associated neurocognitive disorders (HAND in approximately half of the cases. The mechanisms by which astrocytes contribute to HIV-1-associated dementia (HAD, the most severe form of HAND, still remain unresolved. HIV-1-encephalitis (HIVE, a pathological correlate of HAD, affects an estimated 9-11% of the HIV-1-infected population. Our laboratory has previously demonstrated that HIVE brain tissues show significant upregulation of CD38, an enzyme involved in calcium signaling, in astrocytes. We also reported an increase in CD38 expression in interleukin (IL-1β-activated astrocytes. In the present investigation, we studied regulatory mechanisms of CD38 gene expression in astrocytes activated with HIV-1-relevant stimuli. We also investigated the role of mitogen-activated protein kinases (MAPKs and nuclear factor (NF-κB in astrocyte CD38 regulation. Methods Cultured human astrocytes were transfected with HIV-1YU-2 proviral clone and levels of CD38 mRNA and protein were measured by real-time PCR gene expression assay, western blot analysis and immunostaining. Astrocyte activation by viral transfection was determined by analyzing proinflammatory chemokine levels using ELISA. To evaluate the roles of MAPKs and NF-κB in CD38 regulation, astrocytes were treated with MAPK inhibitors (SB203580, SP600125, U0126, NF-κB interfering peptide (SN50 or transfected with dominant negative IκBα mutant (IκBαM prior to IL-1β activation. CD38 gene expression and CD38 ADP-ribosyl cyclase activity assays were performed to analyze alterations in CD38 levels and function, respectively. Results HIV-1YU-2-transfection significantly increased CD38 mRNA and protein expression in astrocytes (p YU-2-transfected astrocytes significantly increased HIV-1 gene expression (p Conclusion The present findings demonstrate a direct involvement of HIV-1 and virus

  7. Protective effect of astrocyte-conditioned medium on neurons following hypoxia and mechanical injury

    Directory of Open Access Journals (Sweden)

    YAN Ji-wen

    2013-02-01

    Full Text Available 【Abstract】Objective: To investigate the protec-tive effect of mouse astrocyte-conditioned medium (ACM on hypoxic and mechanically injured neurons by a cell model in vitro, and to explore the possible mechanism. Methods: The model of hypoxic neuronal injury was caused by 3% O 2 in three-gas incubator. Neurons were cul-tured with ordinary medium or 20% ACM respectively and randomly divided into hypoxic group (hypoxia for 4, 8, 24 h and marked as H4R0, H8R0, H24R0 and hypoxia reoxygenation group (H4R24, H8R24, H24R24. Mechanical injury model was developed by scratching neurons cultured in 20% ACM or ordinary medium to different degrees. Neu-rons in both medium were divided into normal control group, mild, moderate and severe injury groups. The 20% ACM was added 24 h before hypoxia/reoxygenation or mechanical injury. The morphology and survival of neurons were observed and counted by trypan blue staining. The concentration of NO, lactic dehydrogenase (LDH and membrane ATPase activity were detected by corresponding kits. Results: It was showed that 20% ACM can obviously promote the survival rate of hypoxia/reoxygenated neurons and scratched neurons as well. The morphology and num-ber of neurons exposed to hypoxia or scratch injury showed great difference between groups with or without ACM treatment. Compared with control group, the concentration of NO and LDH was much lower in hypoxic/reoxygenated neurons treated with 20% ACM, and the ATPase activity was higher. For the mechanical injury model, neurons with moderate injury also revealed a lower NO and LDH concen-tration than the control group. All the differences were sta-tistically significant (P<0.05. Conclusion: ACM can promote the survival and func-tional recovery of neurons following hypoxia or scratching to a certain degree. The mechanism may be associated with reducing the synthesis and release of NO and LDH as well as increasing the activity of membrane ATPase. Key words: Glial cell line

  8. Protective effect of astrocyte-conditioned medium on neurons following hypoxia and mechanical injury

    Institute of Scientific and Technical Information of China (English)

    YAN Ji-wen; TAN Tong-yan; HUANG Qi-lin

    2013-01-01

    Objective:To investigate the protective effect of mouse astrocyte-conditioned medium (ACM)on hypoxic and mechanically injured neurons by a cell model in vitro,and to explore the possible mechanism.Methods:The model of hypoxic neuronal injury was caused by 3% O2 in three-gas incubator.Neurons were cultured with ordinary medium or 20% ACM respectively and randomly divided into hypoxic group (hypoxia for 4,8,24 h and marked as H4R0,H8R0,H24R0) and hypoxia reoxygenation group (H4R24,HSR24,H24R24).Mechanical injury model was developed by scratching neurons cultured in 20% ACM or ordinary medium to different degrees.Neurons in both medium were divided into normal control group,mild,moderate and severe injury groups.The 20% ACM was added 24 h before hypoxia/reoxygenation or mechanical injury.The morphology and survival of neurons were observed and counted by trypan blue staining.The concentration of NO,lactic dehydrogenase (LDH) and membrane ATPase activity were detected by corresponding kits.Results:It was showed that 20% ACM can obviously promote the survival rate of hypoxia/reoxygenated neurons and scratched neurons as well The morphology and number of neurons exposed to hypoxia or scratch injury showed great difference between groups with or without ACM treatment.Compared with control group,the concentration of NO and LDH was much lower in hypoxic/reoxygenated neurons treated with 20% ACM,and the ATPase activity was higher.For the mechanical injury model,neurons with moderate injury also revealed a lower NO and LDH concentration than the control group.All the differences were statistically significant (P<0.05).Conclusion:ACM can promote the survival and functional recovery of neurons following hypoxia or scratching to a certain degree.The mechanism may be associated with reducing the synthesis and release of NO and LDH as well as increasing the activity of membrane ATPase.

  9. Ornithine and Homocitrulline Impair Mitochondrial Function, Decrease Antioxidant Defenses and Induce Cell Death in Menadione-Stressed Rat Cortical Astrocytes: Potential Mechanisms of Neurological Dysfunction in HHH Syndrome.

    Science.gov (United States)

    Zanatta, Ângela; Rodrigues, Marília Danyelle Nunes; Amaral, Alexandre Umpierrez; Souza, Débora Guerini; Quincozes-Santos, André; Wajner, Moacir

    2016-09-01

    Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is caused by deficiency of ornithine translocase leading to predominant tissue accumulation and high urinary excretion of ornithine (Orn), homocitrulline (Hcit) and ammonia. Although affected patients commonly present neurological dysfunction manifested by cognitive deficit, spastic paraplegia, pyramidal and extrapyramidal signs, stroke-like episodes, hypotonia and ataxia, its pathogenesis is still poorly known. Although astrocytes are necessary for neuronal protection. Therefore, in the present study we investigated the effects of Orn and Hcit on cell viability (propidium iodide incorporation), mitochondrial function (thiazolyl blue tetrazolium bromide-MTT-reduction and mitochondrial membrane potential-ΔΨm), antioxidant defenses (GSH) and pro-inflammatory response (NFkB, IL-1β, IL-6 and TNF-α) in unstimulated and menadione-stressed cortical astrocytes that were previously shown to be susceptible to damage by neurotoxins. We first observed that Orn decreased MTT reduction, whereas both amino acids decreased GSH levels, without altering cell viability and the pro-inflammatory factors in unstimulated astrocytes. Furthermore, Orn and Hcit decreased cell viability and ΔΨm in menadione-treated astrocytes. The present data indicate that the major compounds accumulating in HHH syndrome impair mitochondrial function and reduce cell viability and the antioxidant defenses in cultured astrocytes especially when stressed by menadione. It is presumed that these mechanisms may be involved in the neuropathology of this disease. PMID:27161368

  10. Ornithine and Homocitrulline Impair Mitochondrial Function, Decrease Antioxidant Defenses and Induce Cell Death in Menadione-Stressed Rat Cortical Astrocytes: Potential Mechanisms of Neurological Dysfunction in HHH Syndrome.

    Science.gov (United States)

    Zanatta, Ângela; Rodrigues, Marília Danyelle Nunes; Amaral, Alexandre Umpierrez; Souza, Débora Guerini; Quincozes-Santos, André; Wajner, Moacir

    2016-09-01

    Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is caused by deficiency of ornithine translocase leading to predominant tissue accumulation and high urinary excretion of ornithine (Orn), homocitrulline (Hcit) and ammonia. Although affected patients commonly present neurological dysfunction manifested by cognitive deficit, spastic paraplegia, pyramidal and extrapyramidal signs, stroke-like episodes, hypotonia and ataxia, its pathogenesis is still poorly known. Although astrocytes are necessary for neuronal protection. Therefore, in the present study we investigated the effects of Orn and Hcit on cell viability (propidium iodide incorporation), mitochondrial function (thiazolyl blue tetrazolium bromide-MTT-reduction and mitochondrial membrane potential-ΔΨm), antioxidant defenses (GSH) and pro-inflammatory response (NFkB, IL-1β, IL-6 and TNF-α) in unstimulated and menadione-stressed cortical astrocytes that were previously shown to be susceptible to damage by neurotoxins. We first observed that Orn decreased MTT reduction, whereas both amino acids decreased GSH levels, without altering cell viability and the pro-inflammatory factors in unstimulated astrocytes. Furthermore, Orn and Hcit decreased cell viability and ΔΨm in menadione-treated astrocytes. The present data indicate that the major compounds accumulating in HHH syndrome impair mitochondrial function and reduce cell viability and the antioxidant defenses in cultured astrocytes especially when stressed by menadione. It is presumed that these mechanisms may be involved in the neuropathology of this disease.

  11. Astrocytes: Key Regulators of Neuroinflammation.

    Science.gov (United States)

    Colombo, Emanuela; Farina, Cinthia

    2016-09-01

    Astrocytes are crucial regulators of innate and adaptive immune responses in the injured central nervous system. Depending on timing and context, astrocyte activity may exacerbate inflammatory reactions and tissue damage, or promote immunosuppression and tissue repair. Recent literature has unveiled key factors and intracellular signaling pathways that govern astrocyte behavior during neuroinflammation. Here we have re-visited in vivo studies on astrocyte signaling in neuroinflammatory models focusing on evidences obtained from the analysis of transgenic mice where distinct genes involved in ligand binding, transcriptional regulation and cell communication have been manipulated in astrocytes. The integration of in vivo observations with in vitro data clarifies precise signaling steps, highlights the crosstalk among pathways and identifies shared effector mechanisms in neuroinflammation.

  12. The neuron-astrocyte-microglia triad involvement in neuroinflammaging mechanisms in the CA3 hippocampus of memory-impaired aged rats.

    Science.gov (United States)

    Lana, Daniele; Iovino, Ludovica; Nosi, Daniele; Wenk, Gary L; Giovannini, Maria Grazia

    2016-10-01

    We examined the effects of inflammaging on memory encoding, and qualitative and quantitative modifications on proinflammatory proteins, apoptosis, neurodegeneration and morphological changes of neuron-astrocyte-microglia triads in CA3 Stratum Pyramidale (SP), Stratum Lucidum (SL) and Stratum Radiatum (SR) of young (3months) and aged rats (20months). Aged rats showed short-term memory impairments in the inhibitory avoidance task, increased expression of iNOS and activation of p38MAPK in SP, increase of apoptotic neurons in SP and of ectopic neurons in SL, and decrease of CA3 pyramidal neurons. The number of astrocytes and their branches length decreased in the three CA3 subregions of aged rats, with morphological signs of clasmatodendrosis. Total and activated microglia increased in the three CA3 subregions of aged rats. In aged rats CA3, astrocytes surrounded ectopic degenerating neurons forming "micro scars" around them. Astrocyte branches infiltrated the neuronal cell body, and, together with activated microglia formed "triads". In the triads, significantly more numerous in CA3 SL and SR of aged rats, astrocytes and microglia cooperated in fragmentation and phagocytosis of ectopic neurons. Inflammaging-induced modifications of astrocytes and microglia in CA3 of aged rats may help clearing neuronal debris derived from low-grade inflammation and apoptosis. These events might be common mechanisms underlying many neurodegenerative processes. The frequency to which they appear might depend upon, or might be the cause of, the burden and severity of neurodegeneration. Targeting the triads may represent a therapeutic strategy which may control inflammatory processes and spread of further cellular damage to neighboring cells. PMID:27466072

  13. Can an electro-kinetic mechanism explain artificial earthquakes?

    Science.gov (United States)

    Cyr, Guillaume; Glover, Paul; Novikov, Victor

    2010-05-01

    Researchers of the Joint Institute for High Temperatures of the Russian Academy of Sciences have carried out a large number of current injection experiments using a 4.2 km long dipole at the Bishkek Research Station in the Chu valley area of the Kyrgyz mountains (northern Tien Shan). The current is generated using Pulsed Magneto-Hydrodynamic (MHD) generators that can produce 2800 amperes at 1350 volts for up to 12.1 seconds. They have found that the number of earthquakes in the region within 150 km of the injection site increased by over 10 standard deviations of the background seismicity. The probability of this occurring by chance is only one in every thousand million million (10^15) measurements. It is certain, therefore, that we can generate earthquakes by current injection. However, no satisfactory physical mechanism for it currently exists. Paul Glover has suggested that an electro-kinetic mechanism may be the missing causal link. In his theory the injected current creates a three-dimensional electric field in the subsurface. The electro-kinetic mechanism uses the electric field to move the pore fluid at depth. If the pore fluid flows into a fault zone it may accumulate and transiently raise the pore fluid pressure within the fault zone. It is known that increases of pore fluid pressure within fault zones more than a critical pressure of 0.05 MPa are sufficient to trigger an earthquake if the fault has sufficient accumulated strain. Earthquakes are therefore possible while the pore fluid pressure is over the critical pressure. While the electro-kinetic drive has been well studied around the world, it is uncertain if the mechanism can provide fluid pressures sufficient to trigger earthquakes up to 150 km from the injection point. In this work we present two dimensional numerical modelling of the proposed coupled mechanism using a finite element approach and using the software package Comsol Multiphysics. The initial results are promising and indicate that (i

  14. Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression.

    Science.gov (United States)

    Avila-Rodriguez, Marco; Garcia-Segura, Luis Miguel; Hidalgo-Lanussa, Oscar; Baez, Eliana; Gonzalez, Janneth; Barreto, George E

    2016-09-15

    Tibolone, a synthetic steroid used for the prevention of osteoporosis and the treatment of climacteric symptoms in post-menopausal women, may exert tissue selective estrogenic actions acting on estrogen receptors (ERs). We previously showed that tibolone protects human T98G astroglial cells against glucose deprivation (GD). In this study we have explored whether the protective effect of tibolone on these cells is mediated by ERs. Experimental studies showed that both ERα and ERβ were involved in the protection by tibolone on GD cells, being ERβ preferentially involved on these actions over ERα. Tibolone increased viability of GD cells by a mechanism fully blocked by an ERβ antagonist and partially blocked by an ERα antagonist. Furthermore, ERβ inhibition prevented the effect of tibolone on nuclear fragmentation, ROS and mitochondrial membrane potential in GD cells. The protective effect of tibolone was mediated by neuroglobin. Tibolone upregulated neuroglobin in T98G cells and primary mouse astrocytes by a mechanism involving ERβ and neuroglobin silencing prevented the protective action of tibolone on GD cells. In summary, tibolone protects T98G cells by a mechanism involving ERβ and the upregulation of neuroglobin. PMID:27250720

  15. A tale of two stories: astrocyte regulation of synaptic depression and facilitation.

    Directory of Open Access Journals (Sweden)

    Maurizio De Pittà

    2011-12-01

    Full Text Available Short-term presynaptic plasticity designates variations of the amplitude of synaptic information transfer whereby the amount of neurotransmitter released upon presynaptic stimulation changes over seconds as a function of the neuronal firing activity. While a consensus has emerged that the resulting decrease (depression and/or increase (facilitation of the synapse strength are crucial to neuronal computations, their modes of expression in vivo remain unclear. Recent experimental studies have reported that glial cells, particularly astrocytes in the hippocampus, are able to modulate short-term plasticity but the mechanism of such a modulation is poorly understood. Here, we investigate the characteristics of short-term plasticity modulation by astrocytes using a biophysically realistic computational model. Mean-field analysis of the model, supported by intensive numerical simulations, unravels that astrocytes may mediate counterintuitive effects. Depending on the expressed presynaptic signaling pathways, astrocytes may globally inhibit or potentiate the synapse: the amount of released neurotransmitter in the presence of the astrocyte is transiently smaller or larger than in its absence. But this global effect usually coexists with the opposite local effect on paired pulses: with release-decreasing astrocytes most paired pulses become facilitated, namely the amount of neurotransmitter released upon spike i+1 is larger than that at spike i, while paired-pulse depression becomes prominent under release-increasing astrocytes. Moreover, we show that the frequency of astrocytic intracellular Ca(2+ oscillations controls the effects of the astrocyte on short-term synaptic plasticity. Our model explains several experimental observations yet unsolved, and uncovers astrocytic gliotransmission as a possible transient switch between short-term paired-pulse depression and facilitation. This possibility has deep implications on the processing of neuronal spikes

  16. Glutamate Pays Its Own Way in Astrocytes

    OpenAIRE

    MaryC.McKenna

    2013-01-01

    In vitro and in vivo studies have shown that glutamate can be oxidized for energy by brain astrocytes. The ability to harvest the energy from glutamate provides astrocytes with a mechanism to offset the high ATP cost of the uptake of glutamate from the synaptic cleft. This brief review focuses on oxidative metabolism of glutamate by astrocytes, the specific pathways involved in the complete oxidation of glutamate and the energy provided by each reaction.

  17. Toll like receptor 9 antagonism modulates spinal cord neuronal function and survival: Direct versus astrocyte-mediated mechanisms.

    Science.gov (United States)

    Acioglu, Cigdem; Mirabelli, Ersilia; Baykal, Ahmet Tarik; Ni, Li; Ratnayake, Ayomi; Heary, Robert F; Elkabes, Stella

    2016-08-01

    Toll like receptors (TLRs) are expressed by cells of the immune system and mediate the host innate immune responses to pathogens. However, increasing evidence indicates that they are important contributors to central nervous system (CNS) function in health and in pathological conditions involving sterile inflammation. In agreement with this idea, we have previously shown that intrathecal administration of a TLR9 antagonist, cytidine-phosphate-guanosine oligodeoxynucleotide 2088 (CpG ODN 2088), ameliorates the outcomes of spinal cord injury (SCI). Although these earlier studies showed a marked effect of CpG ODN 2088 on inflammatory cells, the expression of TLR9 in spinal cord (SC) neurons and astrocytes suggested that the antagonist exerts additional effects through direct actions on these cells. The current study was undertaken to assess the direct effects of CpG ODN 2088 on SC neurons, astrocytes and astrocyte-neuron interactions, in vitro. We report, for the first time, that inhibition of TLR9 in cultured SC neurons alters their function and confers protection against kainic acid (KA)-induced excitotoxic death. Moreover, the TLR9 antagonist attenuated the KA-elicited endoplasmic reticulum (ER) stress response in neurons, in vitro. CpG ODN 2088 also reduced the transcript levels and release of chemokine (C-X-C) motif ligand 1 (CXCL1) and monocyte chemotactic protein 1 (MCP-1) by astrocytes and it diminished interleukin-6 (IL-6) release without affecting transcript levels in vitro. Conditioned medium (CM) of CpG ODN 2088-treated astroglial cultures decreased the viability of SC neurons compared to CM of vehicle-treated astrocytes. However, this toxicity was not observed when astrocytes were co-cultured with neurons. Although CpG ODN 2088 limited the survival-promoting effects of astroglia, it did not reduce neuronal viability compared to controls grown in the absence of astrocytes. We conclude that the TLR9 antagonist acts directly on both SC neurons and astrocytes

  18. Astrocytic actions on extrasynaptic neuronal currents

    Directory of Open Access Journals (Sweden)

    Balazs ePal

    2015-12-01

    Full Text Available In the last few decades, knowledge about astrocytic functions has significantly increased. It was demonstrated that astrocytes are not passive elements of the central nervous system, but active partners of neurons. There is a growing body of knowledge about the calcium excitability of astrocytes, the actions of different gliotransmitters and their release mechanisms, as well as the participation of astrocytes in the regulation of synaptic functions and their contribution to synaptic plasticity. However, astrocytic functions are even more complex than being a partner of the 'tripartite synapse', as they can influence extrasynaptic neuronal currents either by releasing substances or regulating ambient neurotransmitter levels. Several types of currents or changes of membrane potential with different kinetics and via different mechanisms can be elicited by astrocytic activity. Astrocyte-dependent phasic or tonic, inward or outward currents were described in several brain areas. Such currents, together with the synaptic actions of astrocytes, can contribute to neuromodulatory mechanisms, neurosensory and –secretory processes, cortical oscillatory activity, memory and learning or overall neuronal excitability. This mini-review is an attempt to give a brief summary of astrocyte-dependent extrasynaptic neuronal currents and their possible functional significance.

  19. Astrocyte calcium signaling: the third wave.

    Science.gov (United States)

    Bazargani, Narges; Attwell, David

    2016-02-01

    The discovery that transient elevations of calcium concentration occur in astrocytes, and release 'gliotransmitters' which act on neurons and vascular smooth muscle, led to the idea that astrocytes are powerful regulators of neuronal spiking, synaptic plasticity and brain blood flow. These findings were challenged by a second wave of reports that astrocyte calcium transients did not mediate functions attributed to gliotransmitters and were too slow to generate blood flow increases. Remarkably, the tide has now turned again: the most important calcium transients occur in fine astrocyte processes not resolved in earlier studies, and new mechanisms have been discovered by which astrocyte [Ca(2+)]i is raised and exerts its effects. Here we review how this third wave of discoveries has changed our understanding of astrocyte calcium signaling and its consequences for neuronal function.

  20. Triptolide protects astrocytes from hypoxia/ reoxygenation injury

    Institute of Scientific and Technical Information of China (English)

    Minfang Guo; Hongcui Fan; Jiezhong Yu; Ning Ji; Yongsheng Sun; Liyun Liang; Baoguo Xiao; Cungen Ma

    2011-01-01

    Astrocytes in an in vitro murine astrocyte model of oxygen and glucose deprivation/hypoxia and reoxygenation were treated with different concentrations of triptolide (250, 500, 1 000 ng/mL) in a broader attempt to elucidate the protection and mechanism underlying triptolide treatment on astrocytes exposed to hypoxia/reoxygenation injury. The results showed that the matrix metalloproteinase-9, interleukin-1β, tumor necrosis factor α and interleukin-6 expressions were significantly decreased after triptolide treatment in the astrocytes exposed to hypoxia/ reoxygenation injury, while interleukin-10 expression was upregulated. In addition, the vitality of the injured astrocytes was enhanced, the triptolide's effect was apparent at 500 ng/mL. These experimental findings indicate that triptolide treatment could protect astrocytes against hypoxia/ reoxygenation injury through the inhibition of inflammatory response and the reduction of matrix metalloproteinase-9 expression.

  1. Trafficking of astrocytic vesicles in hippocampal slices

    International Nuclear Information System (INIS)

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  2. Trafficking of astrocytic vesicles in hippocampal slices

    Energy Technology Data Exchange (ETDEWEB)

    Potokar, Maja; Kreft, Marko [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia); Lee, So-Young; Takano, Hajime; Haydon, Philip G. [Department of Neuroscience, Room 215, Stemmler Hall, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104 (United States); Zorec, Robert, E-mail: Robert.Zorec@mf.uni-lj.si [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia)

    2009-12-25

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  3. Staphylococcus epidermidis polysaccharide intercellular adhesin induces IL-8 expression in human astrocytes via a mechanism involving TLR2.

    LENUS (Irish Health Repository)

    Stevens, Niall T

    2009-03-01

    Staphylococcus epidermidis is an opportunistic biofilm-forming pathogen associated with neurosurgical device-related meningitis. Expression of the polysaccharide intercellular adhesin (PIA) on its surface promotes S. epidermidis biofilm formation. Here we investigated the pro-inflammatory properties of PIA against primary and transformed human astrocytes. PIA induced IL-8 expression in a dose- and\\/or time-dependent manner from U373 MG cells and primary normal human astrocytes. This effect was inhibited by depletion of N-acetyl-beta-d-glucosamine polymer from the PIA preparation with Lycopersicon esculentum lectin or sodium meta-periodate. Expression of dominant-negative versions of the TLR2 and TLR4 adaptor proteins MyD88 and Mal in U373 MG cells inhibited PIA-induced IL-8 production. Blocking IL-1 had no effect. PIA failed to induce IL-8 production from HEK293 cells stably expressing TLR4. However, in U373 MG cells which express TLR2, neutralization of TLR2 impaired PIA-induced IL-8 production. In addition to IL-8, PIA also induced expression of other cytokines from U373 MG cells including IL-6 and MCP-1. These data implicate PIA as an important immunogenic component of the S. epidermidis biofilm that can regulate pro-inflammatory cytokine production from human astrocytes, in part, via TLR2.

  4. An instructional design process based on expert knowledge for teaching students how mechanisms are explained.

    Science.gov (United States)

    Trujillo, Caleb M; Anderson, Trevor R; Pelaez, Nancy J

    2016-06-01

    In biology and physiology courses, students face many difficulties when learning to explain mechanisms, a topic that is demanding due to the immense complexity and abstract nature of molecular and cellular mechanisms. To overcome these difficulties, we asked the following question: how does an instructor transform their understanding of biological mechanisms and other difficult-to-learn topics so that students can comprehend them? To address this question, we first reviewed a model of the components used by biologists to explain molecular and cellular mechanisms: the MACH model, with the components of methods (M), analogies (A), context (C), and how (H). Next, instructional materials were developed and the teaching activities were piloted with a physical MACH model. Students who used the MACH model to guide their explanations of mechanisms exhibited both improvements and some new difficulties. Third, a series of design-based research cycles was applied to bring the activities with an improved physical MACH model into biology and biochemistry courses. Finally, a useful rubric was developed to address prevalent student difficulties. Here, we present, for physiology and biology instructors, the knowledge and resources for explaining molecular and cellular mechanisms in undergraduate courses with an instructional design process aimed at realizing pedagogical content knowledge for teaching. Our four-stage process could be adapted to advance instruction with a range of models in the life sciences. PMID:27231262

  5. Mechanism of toxicity of the branched-chain fatty acid phytanic acid, a marker of Refsum disease, in astrocytes involves mitochondrial impairment.

    Science.gov (United States)

    Reiser, Georg; Schönfeld, Peter; Kahlert, Stefan

    2006-01-01

    Phytanic acid is a saturated branched-chain fatty acid, which is formed by bacterial degradation of chlorophyll in the intestinal tract of ruminants. The methyl group in beta-position prevents degradation of phytanic acid by the beta-oxidation pathway. Therefore, degradation of phytanic acid is initiated by alpha-oxidation in peroxisomes. The inherited peroxisomal disorder Refsum disease is characterised by accumulation of phytanic acid. Unusually high concentrations of phytanic acid can be found in the plasma of Refsum disease patients, who suffer from neurodegeneration and muscle dystrophy. Phytanic acid has been suggested to be causally involved in the clinical symptoms. To elucidate the pathogenic mechanism, we investigated the influence of phytanic acid in rat hippocampal astrocytes by monitoring the cytosolic Ca(2+) concentration, the mitochondrial membrane potential (Deltapsi(m)), the generation of reactive oxygen species as well as the cellular ATP level. In response to phytanic acid (100 microM) cytosolic Ca(2+) was quickly increased. The phytanic acid-evoked Ca(2+) response was transient and involved activation of intracellular Ca(2+) stores. In isolated rat brain mitochondria, phytanic acid dissipated Deltapsi(m) in a reversible and dose-dependent manner. Moreover, phytanic acid released cytochrome c from mitochondria. Depending on the mitochondrial activity state, phytanic acid either stimulated or inhibited the electron flux within the respiratory chain. In addition, phytanic acid induced substantial generation of reactive oxygen species in isolated mitochondria as well as in intact cells. Phytanic acid caused cell death of astrocytes within a few hours of exposure. In conclusion, we suggest that phytanic acid initiates astrocyte cell death by activating the mitochondrial route of apoptosis.

  6. Functional Oxygen Sensitivity of Astrocytes.

    Science.gov (United States)

    Angelova, Plamena R; Kasymov, Vitaliy; Christie, Isabel; Sheikhbahaei, Shahriar; Turovsky, Egor; Marina, Nephtali; Korsak, Alla; Zwicker, Jennifer; Teschemacher, Anja G; Ackland, Gareth L; Funk, Gregory D; Kasparov, Sergey; Abramov, Andrey Y; Gourine, Alexander V

    2015-07-22

    In terrestrial mammals, the oxygen storage capacity of the CNS is limited, and neuronal function is rapidly impaired if oxygen supply is interrupted even for a short period of time. However, oxygen tension monitored by the peripheral (arterial) chemoreceptors is not sensitive to regional CNS differences in partial pressure of oxygen (PO2 ) that reflect variable levels of neuronal activity or local tissue hypoxia, pointing to the necessity of a functional brain oxygen sensor. This experimental animal (rats and mice) study shows that astrocytes, the most numerous brain glial cells, are sensitive to physiological changes in PO2 . Astrocytes respond to decreases in PO2 a few millimeters of mercury below normal brain oxygenation with elevations in intracellular calcium ([Ca(2+)]i). The hypoxia sensor of astrocytes resides in the mitochondria in which oxygen is consumed. Physiological decrease in PO2 inhibits astroglial mitochondrial respiration, leading to mitochondrial depolarization, production of free radicals, lipid peroxidation, activation of phospholipase C, IP3 receptors, and release of Ca(2+) from the intracellular stores. Hypoxia-induced [Ca(2+)]i increases in astrocytes trigger fusion of vesicular compartments containing ATP. Blockade of astrocytic signaling by overexpression of ATP-degrading enzymes or targeted astrocyte-specific expression of tetanus toxin light chain (to interfere with vesicular release mechanisms) within the brainstem respiratory rhythm-generating circuits reveals the fundamental physiological role of astroglial oxygen sensitivity; in low-oxygen conditions (environmental hypoxia), this mechanism increases breathing activity even in the absence of peripheral chemoreceptor oxygen sensing. These results demonstrate that astrocytes are functionally specialized CNS oxygen sensors tuned for rapid detection of physiological changes in brain oxygenation. Significance statement: Most, if not all, animal cells possess mechanisms that allow them to

  7. Nitric Oxide in Astrocyte-Neuron Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Nianzhen Li

    2002-06-27

    Astrocytes, a subtype of glial cell, have recently been shown to exhibit Ca{sup 2+} elevations in response to neurotransmitters. A Ca{sup 2+} elevation can propagate to adjacent astrocytes as a Ca{sup 2+} wave, which allows an astrocyte to communicate with its neighbors. Additionally, glutamate can be released from astrocytes via a Ca{sup 2+}-dependent mechanism, thus modulating neuronal activity and synaptic transmission. In this dissertation, the author investigated the roles of another endogenous signal, nitric oxide (NO), in astrocyte-neuron signaling. First the author tested if NO is generated during astrocytic Ca{sup 2+} signaling by imaging NO in purified murine cortical astrocyte cultures. Physiological concentrations of a natural messenger, ATP, caused a Ca{sup 2+}-dependent NO production. To test the roles of NO in astrocytic Ca{sup 2+} signaling, the author applied NO to astrocyte cultures via addition of a NO donor, S-nitrosol-N-acetylpenicillamine (SNAP). NO induced an influx of external Ca{sup 2+}, possibly through store-operated Ca{sup 2+} channels. The NO-induced Ca{sup 2+} signaling is cGMP-independent since 8-Br-cGMP, an agonistic analog of cGMP, did not induce a detectable Ca{sup 2+} change. The consequence of this NO-induced Ca{sup 2+} influx was assessed by simultaneously monitoring of cytosolic and internal store Ca{sup 2+} using fluorescent Ca{sup 2+} indicators x-rhod-1 and mag-fluo-4. Blockage of NO signaling with the NO scavenger PTIO significantly reduced the refilling percentage of internal stores following ATP-induced Ca{sup 2+} release, suggesting that NO modulates internal store refilling. Furthermore, locally photo-release of NO to a single astrocyte led to a Ca{sup 2+} elevation in the stimulated astrocyte and a subsequent Ca{sup 2+} wave to neighbors. Finally, the author tested the role of NO inglutamate-mediated astrocyte-neuron signaling by recording the astrocyte-evoked glutamate-dependent neuronal slow inward current (SIC

  8. Relaxin Protects Astrocytes from Hypoxia In Vitro

    OpenAIRE

    Willcox, Jordan M.; Alastair J S Summerlee

    2014-01-01

    The peptide relaxin has recently been shown to protect brain tissues from the detrimental effects of ischemia. To date, the mechanisms for this remain unclear. In order to investigate the neuroprotective mechanisms by which relaxin may protect the brain, we investigated the possibility that relaxin protects astrocytes from hypoxia or oxygen/glucose deprivation (OGD). Cultured astrocytes were pre-treated with either relaxin-2 or relaxin-3 and exposed to OGD for 24 or 48 hours. Following OGD ex...

  9. Do certain signal transduction mechanisms explain the comorbidity of epilepsy and mood disorders?

    Science.gov (United States)

    Rocha, Luisa; Alonso-Vanegas, Mario; Orozco-Suárez, Sandra; Alcántara-González, David; Cruzblanca, Humberto; Castro, Elena

    2014-09-01

    It is well known that mood disorders are highly prevalent in patients with epilepsy. Although several studies have aimed to characterize alterations in different types of receptors associated with both disturbances, there is a lack of studies focused on identifying the causes of this comorbidity. Here, we described some changes at the biochemical level involving serotonin, dopamine, and γ-aminobutyric acid (GABA) receptors as well as signal transduction mechanisms that may explain the coexistence of both epilepsy and mood disorders. Finally, the identification of common pathophysiological mechanisms associated with receptor-receptor interaction (heterodimers) could allow designing new strategies for treatment of patients with epilepsy and comorbid mood disorders.

  10. New Tools for Investigating Astrocyte-to-Neuron Communication

    Directory of Open Access Journals (Sweden)

    Dongdong eLi

    2013-10-01

    Full Text Available Grey matter protoplasmic astrocytes extend very thin processes and establish close contacts with synapses. It has been suggested that the release of neuroactive gliotransmitters at the tripartite synapse contributes to information processing. However, the concept of calcium (Ca2+-dependent gliotransmitter release from astrocytes, and the release mechanisms are being debated.Studying astrocytes in their natural environment is challenging because: i astrocytes are electrically silent; ii astrocytes and neurons express an overlapping repertoire of transmembrane receptors; iii astrocyte processes in contact with synapses are below confocal and two-photon microscope resolution; iv bulk-loading techniques using fluorescent Ca2+ indicators lack cellular specificity.In this review, we will discuss some limitations of conventional methodologies and highlight the interest of novel tools and approaches for studying gliotransmission. Genetically encoded Ca2+ indicators (GECIs, light-gated channels, and exogenous receptors are being developed to selectively read out and stimulate astrocyte activity. Our review discusses emerging perspectives on: i the complexity of astrocyte Ca2+ signalling revealed by GECIs; ii new pharmacogenetic and optogenetic approaches to activate specific Ca2+ signalling pathways in astrocytes; iii classical and new techniques to monitor vesicle fusion in cultured astrocytes; iv possible strategies to express specifically reporter genes in astrocytes.

  11. Interface failure modes explain non-monotonic size-dependent mechanical properties in bioinspired nanolaminates

    Science.gov (United States)

    Song, Z. Q.; Ni, Y.; Peng, L. M.; Liang, H. Y.; He, L. H.

    2016-01-01

    Bioinspired discontinuous nanolaminate design becomes an efficient way to mitigate the strength-ductility tradeoff in brittle materials via arresting the crack at the interface followed by controllable interface failure. The analytical solution and numerical simulation based on the nonlinear shear-lag model indicates that propagation of the interface failure can be unstable or stable when the interfacial shear stress between laminae is uniform or highly localized, respectively. A dimensionless key parameter defined by the ratio of two characteristic lengths governs the transition between the two interface-failure modes, which can explain the non-monotonic size-dependent mechanical properties observed in various laminate composites. PMID:27029955

  12. Interface failure modes explain non-monotonic size-dependent mechanical properties in bioinspired nanolaminates

    Science.gov (United States)

    Song, Z. Q.; Ni, Y.; Peng, L. M.; Liang, H. Y.; He, L. H.

    2016-03-01

    Bioinspired discontinuous nanolaminate design becomes an efficient way to mitigate the strength-ductility tradeoff in brittle materials via arresting the crack at the interface followed by controllable interface failure. The analytical solution and numerical simulation based on the nonlinear shear-lag model indicates that propagation of the interface failure can be unstable or stable when the interfacial shear stress between laminae is uniform or highly localized, respectively. A dimensionless key parameter defined by the ratio of two characteristic lengths governs the transition between the two interface-failure modes, which can explain the non-monotonic size-dependent mechanical properties observed in various laminate composites.

  13. Primary cultures of astrocytes

    DEFF Research Database (Denmark)

    Lange, Sofie C; Bak, Lasse Kristoffer; Waagepetersen, Helle S;

    2012-01-01

    . Such cultures have been an invaluable tool for studying roles of astrocytes in physiological and pathological states. Many central astrocytic functions in metabolism, amino acid neurotransmission and calcium signaling were discovered using this tissue culture preparation and most of these observations were...

  14. RNA Localization in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune

    2012-01-01

    of 18S ribosomal RNA and the Rab13, Pkp4, Ankrd25, and Inpp1 mRNAs in astrocyte protrusions. The Boyden chamber isolated RNA from both primary astrocytes and C8S cells was analyzed by next generation sequencing (NGS), which revealed that >250 polyadenylated (polyA) RNA species accumulated in the cell...

  15. Histone acetylation in astrocytes suppresses GFAP and stimulates a reorganization of the intermediate filament network

    NARCIS (Netherlands)

    Kanski, Regina; Sneeboer, Marjolein A M; van Bodegraven, Emma J; Sluijs, Jacqueline A; Kropff, Wietske; Vermunt, Marit W.; Creyghton, Menno P; De Filippis, Lidia; Vescovi, Angelo; Aronica, Eleonora; van Tijn, P.; van Strien, Miriam E; Hol, Elly M

    2014-01-01

    Glial fibrillary acidic protein (GFAP) is the main intermediate filament in astrocytes and is regulated by epigenetic mechanisms during development. We demonstrate that histone acetylation also controls GFAP expression in mature astrocytes. Inhibition of histone deacetylases (HDACs) with trichostati

  16. Manganese inhibits the ability of astrocytes to promote neuronal differentiation

    International Nuclear Information System (INIS)

    Manganese (Mn) is a known neurotoxicant and developmental neurotoxicant. As Mn has been shown to accumulate in astrocytes, we sought to investigate whether Mn would alter astrocyte-neuronal interactions, specifically the ability of astrocytes to promote differentiation of neurons. We found that exposure of rat cortical astrocytes to Mn (50-500 μM) impaired their ability to promote axonal and neurite outgrowth in hippocampal neurons. This effect of Mn appeared to be mediated by oxidative stress, as it was reversed by antioxidants (melatonin and PBN) and by increasing glutathione levels, while it was potentiated by glutathione depletion in astrocytes. As the extracellular matrix protein fibronectin plays an important role in astrocyte-mediated neuronal neurite outgrowth, we also investigated the effect of Mn on fibronectin. Mn caused a concentration-dependent decrease of fibronectin protein and mRNA in astrocytes lysate and of fibronectin protein in astrocyte medium; these effects were also antagonized by antioxidants. Exposure of astrocytes to two oxidants, H2O2 and DMNQ, similarly impaired their neuritogenic action, and led to a decreased expression of fibronectin. Mn had no inhibitory effect on neurite outgrowth when applied directly onto hippocampal neurons, where it actually caused a small increase in neuritogenesis. These results indicate that Mn, by targeting astrocytes, affects their ability to promote neuronal differentiation by a mechanism which is likely to involve oxidative stress.

  17. The Fluid Mechanics of the Bible: Miracles Explainable by Christian Science?

    Science.gov (United States)

    Lang, Amy

    2015-11-01

    The Bible is full of accounts clearly in violation of our scientific understanding of fluid mechanics. Examples include the floating axe head, Jesus walking on the water and immediately calming a storm. ``Jesus of Nazareth was the most scientific man that ever trod the globe. He plunged beneath the material surface of things, and found the spiritual cause,'' wrote Mary Baker Eddy (1821-1910), the founder of a now well-established religion known as Christian Science, in her seminal work Science & Health with Key to the Scriptures. She asserted that Jesus' miracles were in accord with the, ``Science of God's unchangeable law.'' She also proclaimed that matter is a derivative of consciousness. Independently with the discovery of quantum mechanics, physicists such as Max Planck and Sir James Jeans began to make similar statements (``The Mental Universe'', Nature, 2005). More recently, Max Tegmark (MIT) theorized that consciousness is a state of matter (New Scientist, April 2014). Using a paradigm shift from matter to consciousness as the primary substance, one can scientifically explain how a mental activity (i.e. prayer) could influence the physical. Since this conference is next door to the original church of Christian Science (Const. 1894), this talk will discuss various fluid-mechanic miracles in the Bible and provide an explanation based on divine metaphysics while providing an overview of scientific Christianity and its unifying influence to the fields of science, theology and medicine.

  18. Endocytosis-Mediated HIV-1 Entry and Its Significance in the Elusive Behavior of the Virus in Astrocytes

    OpenAIRE

    Chauhan, Ashok; Mehla, Rajeev; Vijayakumar, Theophilus Sunder; Handy, Indhira

    2014-01-01

    Astrocytes protect neurons but also evoke a proinflammatory response to injury and viral infections including HIV. We investigated the mechanism of HIV-1 infection in primary astrocytes, which showed minimal but productive viral infection independent of CXCR4. As with ectopic-CD4-expressing astrocytes, lysosomotropic agents led to increased HIV-1 infection in wild-type but not Rab 5, 7, and 11-ablated astrocytes. Instead, HIV-1 infection was decreased in Rab-depleted astrocytes, corroborating...

  19. Targeting astrocytes in bipolar disorder.

    Science.gov (United States)

    Peng, Liang; Li, Baoman; Verkhratsky, Alexei

    2016-06-01

    Astrocytes are homeostatic cells of the central nervous system, which are critical for development and maintenance of synaptic transmission and hence of synaptically connected neuronal ensembles. Astrocytic densities are reduced in bipolar disorder, and therefore deficient astroglial function may contribute to overall disbalance in neurotransmission and to pathological evolution. Classical anti-bipolar drugs (lithium salts, valproic acid and carbamazepine) affect expression of astroglial genes and modify astroglial signalling and homeostatic cascades. Many effects of both antidepressant and anti-bipolar drugs are exerted through regulation of glutamate homeostasis and glutamatergic transmission, through K(+) buffering, through regulation of calcium-dependent phospholipase A2 (that controls metabolism of arachidonic acid) or through Ca(2+) homeostatic and signalling pathways. Sometimes anti-depressant and anti-bipolar drugs exert opposite effects, and some effects on gene expression in drug treated animals are opposite in neurones vs. astrocytes. Changes in the intracellular pH induced by anti-bipolar drugs affect uptake of myo-inositol and thereby signalling via inositoltrisphosphate (InsP3), this being in accord with one of the main theories of mechanism of action for these drugs. PMID:27015045

  20. The Neurogenic Potential of Astrocytes Is Regulated by Inflammatory Signals.

    Science.gov (United States)

    Michelucci, Alessandro; Bithell, Angela; Burney, Matthew J; Johnston, Caroline E; Wong, Kee-Yew; Teng, Siaw-Wei; Desai, Jyaysi; Gumbleton, Nigel; Anderson, Gregory; Stanton, Lawrence W; Williams, Brenda P; Buckley, Noel J

    2016-08-01

    Although the adult brain contains neural stem cells (NSCs) that generate new neurons throughout life, these astrocyte-like populations are restricted to two discrete niches. Despite their terminally differentiated phenotype, adult parenchymal astrocytes can re-acquire NSC-like characteristics following injury, and as such, these 'reactive' astrocytes offer an alternative source of cells for central nervous system (CNS) repair following injury or disease. At present, the mechanisms that regulate the potential of different types of astrocytes are poorly understood. We used in vitro and ex vivo astrocytes to identify candidate pathways important for regulation of astrocyte potential. Using in vitro neural progenitor cell (NPC)-derived astrocytes, we found that exposure of more lineage-restricted astrocytes to either tumor necrosis factor alpha (TNF-α) (via nuclear factor-κB (NFκB)) or the bone morphogenetic protein (BMP) inhibitor, noggin, led to re-acquisition of NPC properties accompanied by transcriptomic and epigenetic changes consistent with a more neurogenic, NPC-like state. Comparative analyses of microarray data from in vitro-derived and ex vivo postnatal parenchymal astrocytes identified several common pathways and upstream regulators associated with inflammation (including transforming growth factor (TGF)-β1 and peroxisome proliferator-activated receptor gamma (PPARγ)) and cell cycle control (including TP53) as candidate regulators of astrocyte phenotype and potential. We propose that inflammatory signalling may control the normal, progressive restriction in potential of differentiating astrocytes as well as under reactive conditions and represent future targets for therapies to harness the latent neurogenic capacity of parenchymal astrocytes. PMID:26138449

  1. Transient acidification and subsequent proinflammatory cytokine stimulation of astrocytes induce distinct activation phenotypes

    OpenAIRE

    Renner, Nicole A.; Sansing, Hope A.; Inglis, Fiona M; Mehra, Smriti; Kaushal, Deepak; Lackner, Andrew A; Andrew G MacLean

    2013-01-01

    The foot processes of astrocytes cover over 60% of the surface of brain microvascular endothelial cells, regulating tight junction integrity. Retraction of astrocyte foot processes has been postulated to be a key mechanism in pathology. Therefore, movement of an astrocyte in response to a proinflammatory cytokine or even limited retraction of processes would result in leaky junctions between endothelial cells. Astrocytes lie at the gateway to the CNS and are instrumental in controlling leukoc...

  2. Form Follows Function: Astrocyte Morphology and Immune Dysfunction in SIV neuroAIDS

    OpenAIRE

    Lee, Kim M.; Chiu, Kevin B.; Renner, Nicole A.; Sansing, Hope A.; Didier, Peter J.; Andrew G MacLean

    2014-01-01

    Cortical function is disrupted in neuroinflammatory disorders, including HIV-associated neurocognitive disorders (HAND). Astrocyte dysfunction includes retraction of foot processes from the blood-brain barrier and decreased removal of neurotransmitters from synaptic clefts. Mechanisms of astrocyte activation, including innate immune function and the fine neuroanatomy of astrocytes, however, remain to be investigated. We quantified the number of GFAP-labeled astrocytes per mm2 and the proporti...

  3. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2010-12-01

    Full Text Available Abstract Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance

  4. Mechanisms explaining nursery habitat association: how do juvenile snapper (Chrysophrys auratus) benefit from their nursery habitat?

    Science.gov (United States)

    Parsons, Darren M; Middleton, Crispin; Spong, Keren T; Mackay, Graeme; Smith, Matt D; Buckthought, Dane

    2015-01-01

    Nursery habitats provide elevated survival and growth to the organisms that associate with them, and as such are a crucial early life-stage component for many fishes and invertebrates. The exact mechanisms by which these benefits are afforded to associated organisms, however, are often unclear. Here we assessed potential explanations of the nursery function of structurally complex habitats for post-settlement snapper, Chrysophrys auratus, in New Zealand. Specifically, we deployed Artificial Seagrass Units (ASUs) and used a combination of video observation, netting and diet analysis of associated post-settlement snapper as well describing potential prey within the micro-habitats surrounding ASUs. We did not observe any predation attempts and few potential predators, suggesting that for snapper the nursery value of structurally complex habitats is not as a predation refuge. The diet of post-settlement snapper mostly consisted of calanoid and cyclopoid copepods, which were most commonly sampled from within the water column. Nearly all suspected feeding events were also observed within the water column. When considering the velocity of water flow at each ASU, plankton sampling revealed a greater availability of copepods with increasing current strength, while netting and video observation demonstrated that the abundance of snapper was highest at sites with intermediate water velocity. This study highlights that the interaction between water flow and food availability may represent an important trade-off between energy expenditure and food intake for post-settlement snapper. Structurally complex habitats may mediate this relationship, allowing snapper to access sites with higher food availability while reducing swimming costs. This mechanism may have broader relevance, potentially explaining the importance of estuarine nursery habitats for other species. PMID:25803443

  5. Mechanisms explaining nursery habitat association: how do juvenile snapper (Chrysophrys auratus benefit from their nursery habitat?

    Directory of Open Access Journals (Sweden)

    Darren M Parsons

    Full Text Available Nursery habitats provide elevated survival and growth to the organisms that associate with them, and as such are a crucial early life-stage component for many fishes and invertebrates. The exact mechanisms by which these benefits are afforded to associated organisms, however, are often unclear. Here we assessed potential explanations of the nursery function of structurally complex habitats for post-settlement snapper, Chrysophrys auratus, in New Zealand. Specifically, we deployed Artificial Seagrass Units (ASUs and used a combination of video observation, netting and diet analysis of associated post-settlement snapper as well describing potential prey within the micro-habitats surrounding ASUs. We did not observe any predation attempts and few potential predators, suggesting that for snapper the nursery value of structurally complex habitats is not as a predation refuge. The diet of post-settlement snapper mostly consisted of calanoid and cyclopoid copepods, which were most commonly sampled from within the water column. Nearly all suspected feeding events were also observed within the water column. When considering the velocity of water flow at each ASU, plankton sampling revealed a greater availability of copepods with increasing current strength, while netting and video observation demonstrated that the abundance of snapper was highest at sites with intermediate water velocity. This study highlights that the interaction between water flow and food availability may represent an important trade-off between energy expenditure and food intake for post-settlement snapper. Structurally complex habitats may mediate this relationship, allowing snapper to access sites with higher food availability while reducing swimming costs. This mechanism may have broader relevance, potentially explaining the importance of estuarine nursery habitats for other species.

  6. Edge-melting: nanoscale key-mechanism to explain nanoparticle formation from heated TEM grids

    Science.gov (United States)

    Cesaria, Maura; Taurino, Antonietta; Catalano, Massimo; Caricato, Anna Paola; Martino, Maurizio

    2016-03-01

    In this study, we examine at both experimental and fundamental levels, the experimental evidence of nanoparticle formation in transmission electron microscopy (TEM) metal grids annealed at temperatures lower than the melting point of the corresponding metal bulk material. Our experimental investigation considers the most thermally unstable TEM grids (i.e. Cu-grids) and inspects the possible sources and mechanisms of contamination of thin films, conventionally deposited on carbon-coated Cu-grids. The investigations are supported by morphological-compositional analyses performed in different regions of the TEM sample. Then, a general model is formulated and discussed in order to explain the grid thermal instability, based on the critical role of edge-melting (i.e. melting initiated at edges and corners of the grid bars), the enhanced rate of evaporation from a liquid surface and the polycristallinity of the grid bars. Hence, we totally disregard conventional arguments such as bulk evaporation and metal vapor pressure and, in order to emphasize and clarify the alternative point of view of our model, we also overview the nano-scale melting phenomenology relevant to our discussion and survey the discrepancies reported in the literature.

  7. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves

    2016-03-31

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  8. Sodium signaling and astrocyte energy metabolism.

    Science.gov (United States)

    Chatton, Jean-Yves; Magistretti, Pierre J; Barros, L Felipe

    2016-10-01

    The Na(+) gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na(+) -dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na(+) load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na(+) extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na(+) following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na(+) as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na(+) and the metabolic machinery. GLIA 2016;64:1667-1676. PMID:27027636

  9. Niche-habitat mechanisms and biotic interactions explain the coexistence and abundance of congeneric sandgrouse species.

    Science.gov (United States)

    Benítez-López, Ana; Viñuela, Javier; Suárez, Francisco; Hervás, Israel; García, Jesús T

    2014-09-01

    Ascertaining which niche processes allow coexistence between closely related species is of special interest in ecology. We quantified variations in the environmental niches and densities of two congeneric species, the pin-tailed and the black-bellied sandgrouse (Pterocles alchata and Pterocles orientalis) in allopatry and sympatry under similar abiotic, habitat and dispersal contexts to understand their coexistence. Using principal component analysis, we defined environmental gradients (niche dimensions) including abiotic, habitat and anthropogenic variables, and calculated niche breadth, position and overlap of both species in sympatry and allopatry. Additionally, sandgrouse density was modelled as a function of the niche dimensions and the density of the other species. We found evidence that each species occupies distinct environmental niches in sympatry and in allopatry. The black-bellied sandgrouse exploits a broader range of environmental conditions (wider niche breadth) while the pin-tailed sandgrouse reaches high densities where conditions seem to match its optimum. In sympatry, both species shift their niches to intermediate positions, indicating the importance of abiotic factors in setting coexistence areas. Environmental conditions determine regional densities of pin-tailed sandgrouse whereas biotic interactions explain the density of the black-bellied sandgrouse in areas with abiotic conditions similarly conducive for both species. Highly suitable areas for the pin-tailed sandgrouse fall beyond the upper thermal limit of the black-bellied sandgrouse, leading to niche segregation and low densities for the latter. Finally, local niche shift and expansion plus possible heterospecific aggregation allow the pin-tailed sandgrouse to thrive in a priori less favourable environments. This work provides insight into how different mechanisms allow species coexistence and how species densities vary in sympatry compared to allopatry as a result of environmental

  10. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    Energy Technology Data Exchange (ETDEWEB)

    Ostrow, Lyle W., E-mail: lostrow1@jhmi.edu [Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205 (United States); Suchyna, Thomas M.; Sachs, Frederick [Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214 (United States)

    2011-06-24

    Highlights: {yields} Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. {yields} Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca{sup 2+} permeant SACs. {yields} The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. {yields} Stretch-induced ET-1 production depends on a calcium influx. {yields} SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch (<20%) of a rubber substrate increased ET-1 secretion, and 4 {mu}M GsMTx-4 (a specific inhibitor of SACs) inhibited secretion by 30%. GsMTx-4 did not alter basal ET-1 levels in the absence of stretch. Decreasing the calcium influx by lowering extracellular calcium also inhibited stretch-induced ET-1 secretion without effecting ET-1 secretion in unstretched controls. Furthermore, inhibiting SACs with the less specific inhibitor streptomycin also inhibited stretch-induced ET-1 secretion. The data can be explained with a simple model in which ET-1 secretion depends on an internal Ca{sup 2+} threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  11. Selenoprotein S expression in reactive astrocytes following brain injury.

    Science.gov (United States)

    Fradejas, Noelia; Serrano-Pérez, Maria Del Carmen; Tranque, Pedro; Calvo, Soledad

    2011-06-01

    Selenoprotein S (SelS) is an endoplasmic reticulum (ER)-resident protein involved in the unfolded protein response. Besides reducing ER-stress, SelS attenuates inflammation by decreasing pro-inflammatory cytokines. We have recently shown that SelS is responsive to ischemia in cultured astrocytes. To check the possible association of SelS with astrocyte activation, here we investigate the expression of SelS in two models of brain injury: kainic acid (KA) induced excitotoxicity and cortical mechanical lesion. The regulation of SelS and its functional consequences for neuroinflammation, ER-stress, and cell survival were further analyzed using cultured astrocytes from mouse and human. According to our immunofluorescence analysis, SelS expression is prominent in neurons and hardly detectable in astrocytes from control mice. However, brain injury intensely upregulates SelS, specifically in reactive astrocytes. SelS induction by KA was evident at 12 h and faded out after reaching maximum levels at 3-4 days. Analysis of mRNA and protein expression in cultured astrocytes showed SelS upregulation by inflammatory stimuli as well as ER-stress inducers. In turn, siRNA-mediated SelS silencing combined with adenoviral overexpression assays demonstrated that SelS reduces ER-stress markers CHOP and spliced XBP-1, as well as inflammatory cytokines IL-1β and IL-6 in stimulated astrocytes. SelS overexpression increased astrocyte resistance to ER-stress and inflammatory stimuli. Conversely, SelS suppression compromised astrocyte viability. In summary, our results reveal the upregulation of SelS expression in reactive astrocytes, as well as a new protective role for SelS against inflammation and ER-stress that can be relevant to astrocyte function in the context of inflammatory neuropathologies. PMID:21456042

  12. Targeting astrocytes in major depression

    OpenAIRE

    Verkhratsky, Alexej; Peng, Liang; Gu, Li; Li, Baoman

    2015-01-01

    Astrocytes represent a highly heterogeneous population of neural cells primarily responsible for the homeostasis of the central nervous system. Astrocytes express multiple receptors for neurotransmitters, including the serotonin 5-HT2B receptors and interact with neurones at the synapse. Astroglia contribute to neurological diseases through homeostatic response, neuroprotection and reactivity. In major depression, astrocytes show signs of degeneration and are decreased in numbe...

  13. Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling.

    Science.gov (United States)

    Farmer, W Todd; Abrahamsson, Therése; Chierzi, Sabrina; Lui, Christopher; Zaelzer, Cristian; Jones, Emma V; Bally, Blandine Ponroy; Chen, Gary G; Théroux, Jean-Francois; Peng, Jimmy; Bourque, Charles W; Charron, Frédéric; Ernst, Carl; Sjöström, P Jesper; Murai, Keith K

    2016-02-19

    Astrocytes are specialized and heterogeneous cells that contribute to central nervous system function and homeostasis. However, the mechanisms that create and maintain differences among astrocytes and allow them to fulfill particular physiological roles remain poorly defined. We reveal that neurons actively determine the features of astrocytes in the healthy adult brain and define a role for neuron-derived sonic hedgehog (Shh) in regulating the molecular and functional profile of astrocytes. Thus, the molecular and physiological program of astrocytes is not hardwired during development but, rather, depends on cues from neurons that drive and sustain their specialized properties. PMID:26912893

  14. Sculpting the space of actions: explaining human action by integrating intentions and mechanisms

    OpenAIRE

    Keestra, M.

    2014-01-01

    How can we explain the intentional nature of an expert’s actions, performed without immediate and conscious control, relying instead on automatic cognitive processes? How can we account for the differences and similarities with a novice’s performance of the same actions? Can a naturalist explanation of intentional expert action be in line with a philosophical concept of intentional action? Answering these and related questions in a positive sense, this dissertation develops a three-step argum...

  15. O6-methylguanine-DNA methyltransferase (MGMT): can function explain a suicidal mechanism?

    OpenAIRE

    Gouws, Chrisna; Pretorius, Petrus Jacobus

    2011-01-01

    Why does O6-methylguanine-DNA methyltransferase (MGMT), an indispensable DNA repair enzyme, have a mechanism which seems to run counter to its importance? This enzyme is key to the removal of detrimental alkyl adducts from guanine bases. Although the mechanism is well known, an unusual feature surrounds its mode of action, which is its so-called suicidal endpoint. In addition, induction of MGMT is highly variable and its kinetics is atypical. These features raise some questions on the seeming...

  16. Paracrine effect of carbon monoxide - astrocytes promote neuroprotection through purinergic signaling in mice.

    Science.gov (United States)

    Queiroga, Cláudia S F; Alves, Raquel M A; Conde, Sílvia V; Alves, Paula M; Vieira, Helena L A

    2016-08-15

    The neuroprotective role of carbon monoxide (CO) has been studied in a cell-autonomous mode. Herein, a new concept is disclosed - CO affects astrocyte-neuron communication in a paracrine manner to promote neuroprotection. Neuronal survival was assessed when co-cultured with astrocytes that had been pre-treated or not with CO. The CO-pre-treated astrocytes reduced neuronal cell death, and the cellular mechanisms were investigated, focusing on purinergic signaling. CO modulates astrocytic metabolism and extracellular ATP content in the co-culture medium. Moreover, several antagonists of P1 adenosine and P2 ATP receptors partially reverted CO-induced neuroprotection through astrocytes. Likewise, knocking down expression of the neuronal P1 adenosine receptor A2A-R (encoded by Adora2a) reverted the neuroprotective effects of CO-exposed astrocytes. The neuroprotection of CO-treated astrocytes also decreased following prevention of ATP or adenosine release from astrocytic cells and inhibition of extracellular ATP metabolism into adenosine. Finally, the neuronal downstream event involves TrkB (also known as NTRK2) receptors and BDNF. Pharmacological and genetic inhibition of TrkB receptors reverts neuroprotection triggered by CO-treated astrocytes. Furthermore, the neuronal ratio of BDNF to pro-BDNF increased in the presence of CO-treated astrocytes and decreased whenever A2A-R expression was silenced. In summary, CO prevents neuronal cell death in a paracrine manner by targeting astrocytic metabolism through purinergic signaling. PMID:27383770

  17. Explaining the "Pulse of Protoplasm": the search for molecular mechanisms of protoplasmic streaming.

    Science.gov (United States)

    Dietrich, Michael R

    2015-01-01

    Explanations for protoplasmic streaming began with appeals to contraction in the eighteenth century and ended with appeals to contraction in the twentieth. During the intervening years, biologists proposed a diverse array of mechanisms for streaming motions. This paper focuses on the re-emergence of contraction among the molecular mechanisms proposed for protoplasmic streaming during the twentieth century. The revival of contraction is a result of a broader transition from colloidal chemistry to a macromolecular approach to the chemistry of proteins, the recognition of the phenomena of shuttle streaming and the pulse of protoplasm, and the influential analogy between protoplasmic streaming and muscle contraction.

  18. Explaining the“Pulse of Protoplasm”:The search for molecular mechanisms of protoplasmic streaming

    Institute of Scientific and Technical Information of China (English)

    Michael R. Dietrich

    2015-01-01

    Explanations for protoplasmic streaming began with appeals to contraction in the eighteenth century and ended with appeals to contraction in the twentieth. During the intervening years, biologists proposed a diverse array of mechanisms for streaming motions. This paper focuses on the re-emergence of contraction among the molecular mecha-nisms proposed for protoplasmic streaming during the twentieth century. The revival of contraction is a result of a broader transition from1 colloidal chemistry to a macro-molecular approach to the chemistry of proteins, the recognition of the phenomena of shuttle streaming and the pulse of protoplasm, and the influential analogy between protoplasmic streaming and muscle contraction.

  19. Lrp4 in astrocytes modulates glutamatergic transmission.

    Science.gov (United States)

    Sun, Xiang-Dong; Li, Lei; Liu, Fang; Huang, Zhi-Hui; Bean, Jonathan C; Jiao, Hui-Feng; Barik, Arnab; Kim, Seon-Myung; Wu, Haitao; Shen, Chengyong; Tian, Yun; Lin, Thiri W; Bates, Ryan; Sathyamurthy, Anupama; Chen, Yong-Jun; Yin, Dong-Min; Xiong, Lei; Lin, Hui-Ping; Hu, Jin-Xia; Li, Bao-Ming; Gao, Tian-Ming; Xiong, Wen-Cheng; Mei, Lin

    2016-08-01

    Neurotransmission requires precise control of neurotransmitter release from axon terminals. This process is regulated by glial cells; however, the underlying mechanisms are not fully understood. We found that glutamate release in the brain was impaired in mice lacking low-density lipoprotein receptor-related protein 4 (Lrp4), a protein that is critical for neuromuscular junction formation. Electrophysiological studies revealed compromised release probability in astrocyte-specific Lrp4 knockout mice. Lrp4 mutant astrocytes suppressed glutamatergic transmission by enhancing the release of ATP, whose level was elevated in the hippocampus of Lrp4 mutant mice. Consequently, the mutant mice were impaired in locomotor activity and spatial memory and were resistant to seizure induction. These impairments could be ameliorated by blocking the adenosine A1 receptor. The results reveal a critical role for Lrp4, in response to agrin, in modulating astrocytic ATP release and synaptic transmission. Our findings provide insight into the interaction between neurons and astrocytes for synaptic homeostasis and/or plasticity. PMID:27294513

  20. Metabolic pathways for glucose in astrocytes.

    Science.gov (United States)

    Wiesinger, H; Hamprecht, B; Dringen, R

    1997-09-01

    Cultured astroglial cells are able to utilize the monosaccharides glucose, mannose, or fructose as well as the sugar alcohol sorbitol as energy fuel. Astroglial uptake of the aldoses is carrier-mediated, whereas a non-saturable transport mechanism is operating for fructose and sorbitol. The first metabolic step for all sugars, including fructose being generated by enzymatic oxidation of sorbitol, is phosphorylation by hexokinase. Besides glucose only mannose may serve as substrate for build-up of astroglial glycogen. Whereas glycogen synthase appears to be present in astrocytes as well as neurons, the exclusive localization of glycogen phosphorylase in astrocytes and ependymal cells of central nervous tissue correlates well with the occurrence of glycogen in these cells. The identification of lactic acid rather than glucose as degradation product of astroglial glycogen appears to render the presence of glucose-6-phosphatase in cultured astrocytes an enigma. The colocalization of pyruvate carboxylase, phosphenolpyruvate carboxykinase and fructose-1,6-bisphosphatase points to astrocytes as being the gluconeogenic cell type of the CNS. PMID:9298844

  1. Calcineurin proteolysis in astrocytes: Implications for impaired synaptic function.

    Science.gov (United States)

    Pleiss, Melanie M; Sompol, Pradoldej; Kraner, Susan D; Abdul, Hafiz Mohmmad; Furman, Jennifer L; Guttmann, Rodney P; Wilcock, Donna M; Nelson, Peter T; Norris, Christopher M

    2016-09-01

    Mounting evidence suggests that astrocyte activation, found in most forms of neural injury and disease, is linked to the hyperactivation of the protein phosphatase calcineurin. In many tissues and cell types, calcineurin hyperactivity is the direct result of limited proteolysis. However, little is known about the proteolytic status of calcineurin in activated astrocytes. Here, we developed a polyclonal antibody to a high activity calcineurin proteolytic fragment in the 45-48kDa range (ΔCN) for use in immunohistochemical applications. When applied to postmortem human brain sections, the ΔCN antibody intensely labeled cell clusters in close juxtaposition to amyloid deposits and microinfarcts. Many of these cells exhibited clear activated astrocyte morphology. The expression of ΔCN in astrocytes near areas of pathology was further confirmed using confocal microscopy. Multiple NeuN-positive cells, particularly those within microinfarct core regions, also labeled positively for ΔCN. This observation suggests that calcineurin proteolysis can also occur within damaged or dying neurons, as reported in other studies. When a similar ΔCN fragment was selectively expressed in hippocampal astrocytes of intact rats (using adeno-associated virus), we observed a significant reduction in the strength of CA3-CA1 excitatory synapses, indicating that the hyperactivation of astrocytic calcineurin is sufficient for disrupting synaptic function. Together, these results suggest that proteolytic activation of calcineurin in activated astrocytes may be a central mechanism for driving and/or exacerbating neural dysfunction during neurodegenerative disease and injury. PMID:27212416

  2. The psychology of social chess and the evolution of attribution mechanisms: explaining the fundamental attribution error.

    Science.gov (United States)

    Andrews, P W.

    2001-01-01

    Theory of mind is the field devoted to understanding how organisms discern the mental states of others. Because mental states are not directly observable, they can only be inferred from observable features of the actor (such as behavior) and the situational context that the actor is in. Social psychologists, who study theory of mind processes under the rubric of attribution research, have shown that people often make a logical error of inference: The "fundamental attribution error" (FAE) is the tendency to assume that an actor's behavior and mental state correspond to a degree that is logically unwarranted by the situation. The social environment in which theory of mind capacities evolved may have influenced attributional processing in ways that could explain the error. In particular, the error could be caused by a psyche that is designed (1) to consider only those noncorresponding mental states (such as deception) that could have fitness consequences to the mind reader; (2) to bias inferences in a way that reduces the costs of erroneous inferences; or (3) to bias inferences in a way that yields reputational benefits. The existing literature is reviewed in light of these hypotheses. PMID:11182572

  3. Charge recombination mechanism to explain the negative capacitance in dye-sensitized solar cells

    Science.gov (United States)

    Lie-Feng, Feng; Kun, Zhao; Hai-Tao, Dai; Shu-Guo, Wang; Xiao-Wei, Sun

    2016-03-01

    Negative capacitance (NC) in dye-sensitized solar cells (DSCs) has been confirmed experimentally. In this work, the recombination behavior of carriers in DSC with semiconductor interface as a carrier’s transport layer is explored theoretically in detail. Analytical results indicate that the recombination behavior of carriers could contribute to the NC of DSCs under small signal perturbation. Using this recombination capacitance we propose a novel equivalent circuit to completely explain the negative terminal capacitance. Further analysis based on the recombination complex impedance show that the NC is inversely proportional to frequency. In addition, analytical recombination resistance is composed by the alternating current (AC) recombination resistance (Rrac) and the direct current (DC) recombination resistance (Rrdc), which are caused by small-signal perturbation and the DC bias voltage, respectively. Both of two parts will decrease with increasing bias voltage. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204209 and 60876035) and the Natural Science Foundation of Tianjin City, China (Grant No. 13JCZDJC32800).

  4. Nurse or Mechanic? Explaining Sex-Typed Occupational Aspirations amongst Children

    OpenAIRE

    Javier Polavieja; Lucinda Platt

    2011-01-01

    There is a high degree of sex-typing in young children's occupational aspirations and this has consequences for adult occupational segregation. Yet we still know surprisingly little about the mechanisms involved in the formation of sex-typical preferences and there is considerable theoretical controversy regarding the relative role of parental socialization and individual agency in this process. This study analyzes the determinants of sex-typed occupational aspirations amongst British childre...

  5. Microscopic Observations of the Lotus Leaf for Explaining the Outstanding Mechanical Properties

    Institute of Scientific and Technical Information of China (English)

    Youfa Zhang; Hao Wu; Xinquan Yu; Feng Chen; Jie Wu

    2012-01-01

    The leaf of lotus (Nelumbo nucifera) exhibits exceptional ability to maintain the opening status even under adverse weather conditions,but the mechanism behind this phenomenon is less investigated.In this paper,lotus leaves were investigated using environmental scanning electron microscopy in order to illustrate this mechanism.The macro-observations show that the primary veins are oriented symmetrically from leaf center and then develop into fractal distribution,with net-shaped arrangement of the side veins.Further micro-observations show that all the veins are composed of honeycomb micro-tubes viewed from cross section,the inner of micro-tubes are patterned with extended closed-hexagons from vertical section.Different positions of leaf possess diverse mechanical properties by size variation of diameter and inner hexagons of veins,which is theoretically analyzed by building a regular honeycomb model.Specifically,the central area of lotus tends to be stiffer while its margin be softer.These special distribution and composition of the veins mainly account for the distinct behavior of lotus.

  6. Astrocyte regulation of sleep circuits: experimental and modeling perspectives

    OpenAIRE

    Tommaso eFellin; Jeffrey M Ellenbogen; Maurizio eDe Pittà; Eshel eBen-Jacob; Michael M Halassa

    2012-01-01

    Integrated within neural circuits, astrocytes have recently been shown to modulate brain rhythms thought to mediate sleep function. Experimental evidence suggests that local impact of astrocytes on single synapses translates into global modulation of neuronal networks and behavior. We discuss these findings in the context of current conceptual models of sleep generation and function, each of which have historically focused on neural mechanisms. We highlight the implications and the challenges...

  7. Astrocytes Directly Influence Tumor Cell Invasion and Metastasis In Vivo

    OpenAIRE

    Wang, Ling; Cossette, Stephanie M.; Rarick, Kevin R.; Gershan, Jill; Michael B Dwinell; Harder, David R.; Ramchandran, Ramani

    2013-01-01

    Brain metastasis is a defining component of tumor pathophysiology, and the underlying mechanisms responsible for this phenomenon are not well understood. Current dogma is that tumor cells stimulate and activate astrocytes, and this mutual relationship is critical for tumor cell sustenance in the brain. Here, we provide evidence that primary rat neonatal and adult astrocytes secrete factors that proactively induced human lung and breast tumor cell invasion and metastasis capabilities. Among wh...

  8. Astrocytes revisited: concise historic outlook on glutamate homeostasis and signaling

    OpenAIRE

    Parpura, Vladimir; VERKHRATSKY, ALEXEI

    2012-01-01

    Astroglia is a main type of brain neuroglia, which includes many cell sub-types that differ in their morphology and physiological properties and yet are united by the main function, which is the maintenance of brain homeostasis. Astrocytes employ a variety of mechanisms for communicating with neuronal networks. The communication mediated by neurotransmitter glutamate has received a particular attention. Glutamate is de novo synthesized exclusively in astrocytes; astroglia-derived glutamine is...

  9. Working memory gating mechanisms explain developmental change in rule-guided behavior.

    Science.gov (United States)

    Unger, Kerstin; Ackerman, Laura; Chatham, Christopher H; Amso, Dima; Badre, David

    2016-10-01

    Cognitive control requires choosing contextual information to update into working memory (input gating), maintaining it there (maintenance) stable against distraction, and then choosing which subset of maintained information to use in guiding action (output gating). Recent work has raised the possibility that the development of rule-guided behavior, in the transition from childhood to adolescence, is linked specifically to changes in the gating components of working memory (Amso, Haas, McShane, & Badre, 2014). Given the importance of effective rule-guided behavior for decision making in this developmental transition, we used hierarchical rule tasks to probe the precise developmental dynamics of working memory gating. This mechanistic precision informs ongoing efforts to train cognitive control and working memory operations across typical and atypical development. The results of Experiment 1 verified that the development of rule-guided behavior is uniquely linked to increasing hierarchical complexity but not to increasing maintenance demands across 1st, 2nd, and 3rd order rule tasks. Experiment 2 then investigated whether this developmental trajectory in rule-guided behavior is best explained by change in input gating or output gating. Further, as input versus output gating also tend to correlate with a more proactive versus reactive control strategy in these tasks, we assessed developmental change in the degree to which these two processes were deployed efficiently given the task. Experiment 2 shows that the developmental change observed in Experiment 1 and in Amso et al. (2014) is likely a result of increased efficacy of output gating processes, as well as greater strategic efficiency in that adolescents opt for this costly process less often than children. PMID:27336178

  10. p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration.

    Science.gov (United States)

    Turnquist, C; Horikawa, I; Foran, E; Major, E O; Vojtesek, B; Lane, D P; Lu, X; Harris, B T; Harris, C C

    2016-09-01

    Bidirectional interactions between astrocytes and neurons have physiological roles in the central nervous system and an altered state or dysfunction of such interactions may be associated with neurodegenerative diseases, such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Astrocytes exert structural, metabolic and functional effects on neurons, which can be either neurotoxic or neuroprotective. Their neurotoxic effect is mediated via the senescence-associated secretory phenotype (SASP) involving pro-inflammatory cytokines (e.g., IL-6), while their neuroprotective effect is attributed to neurotrophic growth factors (e.g., NGF). We here demonstrate that the p53 isoforms Δ133p53 and p53β are expressed in astrocytes and regulate their toxic and protective effects on neurons. Primary human astrocytes undergoing cellular senescence upon serial passaging in vitro showed diminished expression of Δ133p53 and increased p53β, which were attributed to the autophagic degradation and the SRSF3-mediated alternative RNA splicing, respectively. Early-passage astrocytes with Δ133p53 knockdown or p53β overexpression were induced to show SASP and to exert neurotoxicity in co-culture with neurons. Restored expression of Δ133p53 in near-senescent, otherwise neurotoxic astrocytes conferred them with neuroprotective activity through repression of SASP and induction of neurotrophic growth factors. Brain tissues from AD and ALS patients possessed increased numbers of senescent astrocytes and, like senescent astrocytes in vitro, showed decreased Δ133p53 and increased p53β expression, supporting that our in vitro findings recapitulate in vivo pathology of these neurodegenerative diseases. Our finding that Δ133p53 enhances the neuroprotective function of aged and senescent astrocytes suggests that the p53 isoforms and their regulatory mechanisms are potential targets for therapeutic intervention in neurodegenerative diseases. PMID:27104929

  11. Explaining the most luminous supernovae with an inefficient jet-feedback mechanism

    CERN Document Server

    Gilkis, Avishai; Papish, Oded

    2015-01-01

    We suggest that the energetic radiation from core-collapse super-luminous supernovae (SLSNe) is due to a long lasting accretion process onto the newly born neutron star (NS), resulting from an inefficient operation of the jet-feedback mechanism. The jets that are launched by the accreting NS or black hole (BH) maintain their axis due to a rapidly rotating pre-collapse core, and do not manage to eject core material from near the equatorial plane. The jets are able to eject material from the core along the polar directions, and reduce the gravity near the equatorial plane. The equatorial gas expands, and part of it falls back over a timescale of minutes to days to prolong the jets-launching episode. According to the model for SLSNe proposed in the present paper, the principal parameter that distinguishes between the different cases of CCSN explosions, such as between normal CCSNe and SLSNe, is the efficiency of the jet-feedback mechanism. This efficiency in turn depends on the pre-collapse core mass, envelope m...

  12. Dysbalance of astrocyte calcium under hyperammonemic conditions.

    Directory of Open Access Journals (Sweden)

    Nicole Haack

    Full Text Available Increased brain ammonium (NH4(+/NH3 plays a central role in the manifestation of hepatic encephalopathy (HE, a complex syndrome associated with neurological and psychiatric alterations, which is primarily a disorder of astrocytes. Here, we analysed the influence of NH4(+/NH3 on the calcium concentration of astrocytes in situ and studied the underlying mechanisms of NH4(+/NH3-evoked calcium changes, employing fluorescence imaging with Fura-2 in acute tissue slices derived from different regions of the mouse brain. In the hippocampal stratum radiatum, perfusion with 5 mM NH4(+/NH3 for 30 minutes caused a transient calcium increase in about 40% of astrocytes lasting about 10 minutes. Furthermore, the vast majority of astrocytes (∼ 90% experienced a persistent calcium increase by ∼ 50 nM. This persistent increase was already evoked at concentrations of 1-2 mM NH4(+/NH3, developed within 10-20 minutes and was maintained as long as the NH4(+/NH3 was present. Qualitatively similar changes were observed in astrocytes of different neocortical regions as well as in cerebellar Bergmann glia. Inhibition of glutamine synthetase resulted in significantly larger calcium increases in response to NH4(+/NH3, indicating that glutamine accumulation was not a primary cause. Calcium increases were not mimicked by changes in intracellular pH. Pharmacological inhibition of voltage-gated sodium channels, sodium-potassium-chloride-cotransporters (NKCC, the reverse mode of sodium/calcium exchange (NCX, AMPA- or mGluR5-receptors did not dampen NH4(+/NH3-induced calcium increases. They were, however, significantly reduced by inhibition of NMDA receptors and depletion of intracellular calcium stores. Taken together, our measurements show that sustained exposure to NH4(+/NH3 causes a sustained increase in intracellular calcium in astrocytes in situ, which is partly dependent on NMDA receptor activation and on release of calcium from intracellular stores. Our study

  13. Mosquitoes drink with a burst in reserve: explaining pumping behavior with a fluid mechanics model

    Science.gov (United States)

    Chatterjee, Souvick; Socha, Jake; Stremler, Mark

    2014-11-01

    Mosquitoes drink using a pair of in-line pumps in the head that draw liquid food through the proboscis. Experimental observations with synchrotron x-ray imaging indicate two modes of drinking: a predominantly occurring continuous mode, in which the cibarial and pharyngeal pumps expand cyclically at a constant phase difference, and an occasional, isolated burst mode, in which the pharyngeal pump expansion is 10 to 30 times larger than in the continuous mode. We have used a reduced order model of the fluid mechanics to hypothesize an explanation of this variation in drinking behavior. Our model results show that the continuous mode is more energetically efficient, whereas the burst mode creates a large pressure drop across the proboscis, which could potentially be used to clear blockages. Comparisons with pump knock-out configurations demonstrate different functional roles of the pumps in mosquito feeding. This material is based upon work supported by the NSF under Grant No. #0938047.

  14. 法-林效应机理详释%Fahraeus-Lindqvist Effect Mechanism Explained in Eetail

    Institute of Scientific and Technical Information of China (English)

    张盛华; 秦任甲

    2011-01-01

    This paper aims to reveal and clarify the fundamental mechanism of Fahraeus-Lindgvist effect so as to adapt to the need of the medical group. On the basis of expounding the definitions of the concept of fundamental mechanism of Fahraeus-Lindgvist effect and the red cells' concentrating to shaft, it reveals that Fahraeus-Lindgvist effect contains two fundamental mechanisms. One is the producing of plasma layer of venous wall resulting from the red cells' concentrating to shaft. The existence of plasma layers results in many plasma components in the sides of the branch pipe orifices flowing to the branch pipes, that is the so-called blood plasma skim effect. Also due to the formation of the two-phase flow resulting from the plasma layer in the side branch pipes, the blood plasma skim effect in the branch pipes becomes more evident and the blood viscosity caused by two-phase flow turns even lower. The other is the orifice effect of pipe. In brief, the smaller of the angle between the axis of the red cells flowing into the the branch pipe and the opening section of shaft in the side branch pipe, the easier the red cells will flow into the the branch pipes. It is certain that the smaller the side branch pipes are, the more difficult the red cells will flow into them. In addition, the paper also expounds the converse Fahraeus-Lindgvist effect mechanism.%研究目的是揭示其根本机理,并通俗阐明,以适应医学群体的需要.论文在阐明何谓法-林效应、红细胞向轴集中等概念基础上揭示出:法-林效应的根本机理有两个:其一,红细胞向轴集中,从而产生管壁血浆层.因为血浆层的存在,导致在侧支管口有较多的血浆成分流入支管.即所谓血浆撇取效应.又因为侧支管存在血浆层导致血液二相流的形成.侧支管越小血浆撇取效用越明显,二相流导致的血液表观黏度越低.其二,管口效应.简而言之就是流到分支管的红细胞长轴与侧支管管口段轴的夹

  15. The LHC Incident in Sector 3-4: A Simplified Mechanical Model to Explain the Mechanical Damages

    CERN Document Server

    Fessia, P; Lackner, F; Regis, F

    2012-01-01

    On the 19th of September 2008 during powering tests of the LHC main dipole circuit in sector 3-4 an electrical fault occurred. A part of the most important resulting damages were caused by the displacements of cryostated cold masses due to the effect of an over pressurization in the insulation vacuum enclosure. The relative displacement of the interconnected units was resulting in mechanical and electrical damages. Main objects concerned were the mechanical interconnect and the magnet bus bar system. Furthermore electrical arcs induced open breaches in the helium enclosure. In this paper a simplified dynamic numerical model is described to reproduce the observed mechanical defects. In addition the analysis indicates that only a few parameters are dominating the physical quantities in this very complex event.

  16. Mosquito drinking with a burst in reserve: explaining behavior with a fluid mechanics model

    Science.gov (United States)

    Chatterjee, Souvick; Socha, Jake; Stremler, Mark

    2014-03-01

    Mosquitoes drink using a pair of in-line pumps in the head that draw liquid food through a long drinking channel, or proboscis. Experimental observations indicate two modes of drinking: a predominantly occurring continuous mode, in which the cibarial and pharyngeal pumps expand cyclically at a constant phase difference, and an isolated burst mode, in which the pharyngeal pump expansion is several orders of magnitude larger than in the continuous mode. We use a reduced order model of the fluid mechanics to hypothesize an explanation of this naturally occurring drinking behavior. Our model results show that the continuous mode is the more efficient mode in terms of energy expenditure, and the burst mode creates a large pressure difference across the proboscis. We speculate that the mosquito uses this pressure drop to clear blockages in the proboscis. We compared the two-pump system with one-pump configurations, as found in some other insects like butterflies, and show that the two pumps have unique roles in mosquito feeding.

  17. Explaining the Most Energetic Supernovae with an Inefficient Jet-feedback Mechanism

    Science.gov (United States)

    Gilkis, Avishai; Soker, Noam; Papish, Oded

    2016-08-01

    We suggest that the energetic radiation from core-collapse super-energetic supernovae (SESNe) is due to a long-lasting accretion process onto the newly born neutron star (NS), resulting from an inefficient operation of the jet-feedback mechanism (JFM). The jets that are launched by the accreting NS or black hole maintain their axis due to a rapidly rotating pre-collapse core and do not manage to eject core material from near the equatorial plane. The jets are able to eject material from the core along the polar directions and reduce the gravity near the equatorial plane. The equatorial gas expands, and part of it falls back over a timescale of minutes to days to prolong the jet-launching episode. According to the model for SESNe proposed in the present paper, the principal parameter that distinguishes between the different cases of core-collapse supernova (CCSN) explosions, such as between normal CCSNe and SESNe, is the efficiency of the JFM. This efficiency, in turn, depends on the pre-collapse core mass, envelope mass, core convection, and, most of all, the angular momentum profile in the core. One prediction of the inefficient JFM for SESNe is the formation of a slow equatorial outflow in the explosion. The typical velocity and mass of this outflow are estimated to be v eq ≈ 1000 km s‑1 and M eq ≳ 1 M ⊙, respectively, though quantitative values will have to be checked in future hydrodynamic simulations.

  18. Alterations in gait speed and age do not fully explain the changes in gait mechanics associated with healthy older women.

    Science.gov (United States)

    Alcock, L; Vanicek, N; O'Brien, T D

    2013-04-01

    Older adults exhibit modified gait patterns compared to the young, adopting movement strategies in response to changes in musculoskeletal function. Investigating the functional mobility of older women is particularly important because of their increased life expectancy and greater falls risk compared to men. We explored the relationships between gait parameters and age in healthy older women whilst accounting for declining gait speeds. Kinematic and kinetic data were collected from thirty-nine women (60-83 years) whilst walking at a comfortable cadence. Regression analysis assessed the capacity of gait speed and age to explain the variance in gait associated with older age. Speed explained the majority of variance in many gait parameters. By including age in the regression, the total explained variance (R2) for foot clearance (70%), ankle plantarflexion angle (30%), peak ankle plantarflexor moment (58%), and hip power generation (56%) were significantly (pgait mechanics associated with older age and other contributing factors must exist. Losses of 1.2%/year in gait speed were predicted by age, exceeding previous predictions of -0.7%/year. Furthermore, the accumulation of apparently small decreases of 0.2 cm/year in peak foot-to-ground clearance has clinical implications and offers insight into the mechanisms by which gait becomes hazardous in older age.

  19. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways

    Science.gov (United States)

    Chung, Won-Suk; Clarke, Laura E.; Wang, Gordon X.; Stafford, Benjamin K.; Sher, Alexander; Chakraborty, Chandrani; Joung, Julia; Foo, Lynette C.; Thompson, Andrew; Chen, Chinfei; Smith, Stephen J.; Barres, Ben A.

    2013-12-01

    To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.

  20. Astrocyte regulation of sleep circuits: experimental and modeling perspectives

    Directory of Open Access Journals (Sweden)

    Tommaso eFellin

    2012-08-01

    Full Text Available Integrated within neural circuits, astrocytes have recently been shown to modulate brain rhythms thought to mediate sleep function. Experimental evidence suggests that local impact of astrocytes on single synapses translates into global modulation of neuronal networks and behavior. We discuss these findings in the context of current conceptual models of sleep generation and function, each of which have historically focused on neural mechanisms. We highlight the implications and the challenges introduced by these results from a conceptual and computational perspective. We further provide modeling directions on how these data might extend our knowledge of astrocytic properties and sleep function. Given our evolving understanding of how local cellular activities during sleep lead to functional outcomes for the brain, further mechanistic and theoretical understanding of astrocytic contribution to these dynamics will undoubtedly be of great basic and translational benefit.

  1. Astrocytes as therapeutic targets of estrogenic compounds following brain injuries

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-03-01

    Full Text Available For decades, astrocytes have been considered to be non-excitable support cells that are relatively resistant to brain injury. This view has changed radically during the past twenty years. Multiple essential functions are performed by astrocytes in normal brain. Astrocytes are dynamically involved in synaptic transmission, metabolic and ionic homeostasis, and inflammatory maintenance of the blood brain barrier. Advances in our understanding of astrocytes include new observations about their structure, organization, and function. Astrocytes play an active and important role in the pathophysiology of brain damage. Brain injury impairs mitochondrial function and this is accompanied by increased oxidative stress, leading to prominent astrogliosis, which involves changes in gene expression and morphology, and therefore glial scar formation. Recent works have demonstrated a protective role of reactive astrocytes after brain injury. Nevertheless, others have pointed to an inhibitory role of astrocytes in axonal regeneration after injury. Reactive astrogliosis is a complex phenomenon that includes a mixture of positive and negative responses for neuronal survival and regeneration. Reactive astroglia maintains the integrity of the blood-brain barrier and the survival of the perilesional tissue, but may prevent axonal and damaged tissue regeneration. Neuroprotective strategies aiming at reducing gliosis and enhance brain plasticity are of potential interest for translational neuroscience research in brain injuries. In this context, neurosteroids have shown to be a promising strategy to protect brain against injury, as their effects may rely on reducing gliosis, brain inflammation and potentially modulating recovery from brain injury by engaging mechanisms of neural plasticity. In conclusion, in this work we will consider particularly the two-edged sword role of reactive astrocytes, which is an experimental paradigm helpful in discriminating destructive

  2. Nuclear Factor I isoforms regulate gene expression during the differentiation of human neural progenitors to astrocytes

    OpenAIRE

    Wilczynska, Katarzyna M.; Singh, Sandeep K.; Adams, Bret; Bryan, Lauren; Rao, Raj R.; Valerie, Kristoffer; Wright, Sarah; Griswold-Prenner, Irene; Kordula, Tomasz

    2009-01-01

    Even though astrocytes are critical for both normal brain functions and the development and progression of neuropathological states, including neuroinflammation associated with neurodegenerative diseases, the mechanisms controlling gene expression during astrocyte differentiation are poorly understood. Thus far, several signaling pathways were shown to regulate astrocyte differentiation, including JAK-STAT, BMP-2/Smads, and Notch. More recently, a family of Nuclear Factor-1 (NFI-A, -B, -C, an...

  3. Control of CNS synapse development by γ-protocadherin-mediated astrocyte-neuron contact

    OpenAIRE

    Garrett, Andrew M.; Weiner, Joshua A.

    2009-01-01

    Recent studies indicate that astrocytes, whose processes enwrap synaptic terminals, promote synapse formation both by releasing soluble factors and through contact-dependent mechanisms. While astrocyte-secreted synaptogenic factors have been identified, the molecules underlying perisynaptic astroctye-neuron contacts are unknown. Here we show that the γ-Protocadherins (γ-Pcdhs), a family of 22 neuronal adhesion molecules encoded by a single gene cluster, are also expressed by astrocytes and lo...

  4. Astrocytes in multiple sclerosis.

    Science.gov (United States)

    Ludwin, Samuel K; Rao, Vijayaraghava Ts; Moore, Craig S; Antel, Jack P

    2016-08-01

    Recent experimental and clinical studies on astrocytes are unraveling the capabilities of these multi-functional cells in normal homeostasis, and in central nervous system (CNS) disease. This review focuses on understanding their behavior in all aspects of the initiation, evolution, and resolution of the multiple sclerosis (MS) lesion. Astrocytes display remarkable flexibility and variability of their physical structure and biochemical output, each aspect finely tuned to the specific stage and location of the disease, participating in both pathogenic and beneficial changes seen in acute and progressive forms. As examples, chemo-attractive or repulsive molecules may facilitate the entry of destructive immune cells but may also aid in the recruitment of oligodendrocyte precursors, essential for repair. Pro-inflammatory cytokines may attack pathogenic cells and also destroy normal oligodendrocytes, myelin, and axons. Protective trophic factors may also open the blood-brain barrier and modulate the extracellular matrix to favor recruitment and persistence of CNS-specific immune cells. A chronic glial scar may confer structural support following tissue loss and inhibit ingress of further noxious insults and also inhibit migration of reparative cells and molecules into the damaged tissue. Continual study into these processes offers the therapeutic opportunities to enhance the beneficial capabilities of these cells while limiting their destructive effects. PMID:27207458

  5. Astrocytic gap junctional networks suppress cellular damage in an in vitro model of ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Shinotsuka, Takanori; Yasui, Masato; Nuriya, Mutsuo, E-mail: mnuriya@z2.keio.jp

    2014-02-07

    Highlights: • Astrocytes exhibit characteristic changes in [Ca{sup 2+}]{sub i} under OGD. • Astrocytic [Ca{sup 2+}]{sub i} increase is synchronized with a neuronal anoxic depolarization. • Gap junctional couplings protect neurons as well as astrocytes during OGD. - Abstract: Astrocytes play pivotal roles in both the physiology and the pathophysiology of the brain. They communicate with each other via extracellular messengers as well as through gap junctions, which may exacerbate or protect against pathological processes in the brain. However, their roles during the acute phase of ischemia and the underlying cellular mechanisms remain largely unknown. To address this issue, we imaged changes in the intracellular calcium concentration ([Ca{sup 2+}]{sub i}) in astrocytes in mouse cortical slices under oxygen/glucose deprivation (OGD) condition using two-photon microscopy. Under OGD, astrocytes showed [Ca{sup 2+}]{sub i} oscillations followed by larger and sustained [Ca{sup 2+}]{sub i} increases. While the pharmacological blockades of astrocytic receptors for glutamate and ATP had no effect, the inhibitions of gap junctional intercellular coupling between astrocytes significantly advanced the onset of the sustained [Ca{sup 2+}]{sub i} increase after OGD exposure. Interestingly, the simultaneous recording of the neuronal membrane potential revealed that the onset of the sustained [Ca{sup 2+}]{sub i} increase in astrocytes was synchronized with the appearance of neuronal anoxic depolarization. Furthermore, the blockade of gap junctional coupling resulted in a concurrent faster appearance of neuronal depolarizations, which remain synchronized with the sustained [Ca{sup 2+}]{sub i} increase in astrocytes. These results indicate that astrocytes delay the appearance of the pathological responses of astrocytes and neurons through their gap junction-mediated intercellular network under OGD. Thus, astrocytic gap junctional networks provide protection against tissue damage

  6. Effects of propofol on ammonium chloride-exposed astrocyte morphology and aquaporin-4 expression

    Institute of Scientific and Technical Information of China (English)

    Hanjian Chen; Caifei Pan; Peng Guo; Yueying Zheng; Shengmei Zhu

    2011-01-01

    Ammonia induces astrocyte swelling, which is strongly associated with overexpression of aquaporin-4.However, the mechanisms by which ammonia induces astrocyte swelling, and subsequently upregulating aquaporin-4 expression, remain unknown.In the present study,astrocytes were cultured in vitro and exposed to ammonium chloride (NH4CI), followed by propofol,protein kinase C agonist, or antagonist, respectively.Astrocyte morphology was observed by light microscopy, and aquaporin-4 expression was detected by western blot analysis.Results showed that propofol or protein kinase C agonist significantly attenuated the degree of NH4CI-induced astrocyte swelling and inhibited increased aquaporin-4 expression.Propofol treatment inhibited aquaporin-4 overexpression in cultured astrocyte induced by NH4CI; protein kinase C pathway activation is potentially involved.

  7. [Novel function of astrocytes revealed by optogenetics].

    Science.gov (United States)

    Beppu, Kaoru; Matsui, Ko

    2014-12-01

    Astrocytes respond to neuronal activity. However, whether astrocytic activity has any significance in brain function is unknown. Signaling pathway leading from astrocytes to neurons would be required for astrocytes to participate in neuronal functions and, here, we investigated the presence of such pathway. Optogenetics was used to manipulate astrocytic activity. A light-sensitive protein, channelrhodopsin-2 (ChR2), was selectively expressed in astrocytes. Photostimulation of these astrocytes induced glutamate release which modulated neuronal activity and animal behavior. Such glutamate release was triggered by intracellular acidification produced by ChR2 photoactivation. Astrocytic acidification occurs upon brain ischemia, and we found that another optogenetic tool, archaerhodopsin (ArchT), could counter the acidification and suppress astrocytic glutamate release. Controlling of astrocytic pH may become a therapeutic strategy upon ischemia.

  8. Active Sulforhodamine 101 Uptake into Hippocampal Astrocytes

    OpenAIRE

    Christian Schnell; Yohannes Hagos; Swen Hülsmann

    2012-01-01

    Sulforhodamine 101 (SR101) is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrol...

  9. Heterogeneity of Astrocytic Form and Function

    OpenAIRE

    Oberheim, Nancy Ann; Goldman, Steven A.; NEDERGAARD, Maiken

    2012-01-01

    Astrocytes participate in all essential CNS functions, including blood flow regulation, energy metabolism, ion and water homeostasis, immune defence, neurotransmission, and adult neurogenesis. It is thus not surprising that astrocytic morphology and function differ between regions, and that different subclasses of astrocytes exist within the same brain region. Recent lines of work also show that the complexity of protoplasmic astrocytes increases during evolution. Human astrocytes are structu...

  10. Astrocytes as a source for Extracellular matrix molecules and cytokines

    Directory of Open Access Journals (Sweden)

    Stefan eWiese

    2012-06-01

    Full Text Available Research of the past 25 years has shown that astrocytes do more than participating and building up the blood brain barrier and detoxify the active synapse by reuptake of neurotransmitters and ions. Indeed, astrocytes express neurotransmitter receptors and, as a consequence, respond to stimuli. Deeper knowledge of the differentiation processes during development of the central nervous system (CNS might help explaining and even help treating neurological diseases like Alzheimer’s disease, Amyotrophic lateral sclerosis (ALS and psychiatric disorders in which astrocytes have been shown to play a role. Astrocytes and oligodendrocytes develop from a multipotent stem cell that prior to this has produced primarily neuronal precursor cells. This switch towards the more astroglial differentiation is regulated by a change in receptor composition on the cell surface and responsiveness of the respective trophic factors Fibroblast growth factor (FGF and Epidermal growth factor (EGF. The glial precursor cell is driven into the astroglial direction by signaling molecules like Ciliary neurotrophic factor (CNTF, Bone Morphogenetic Proteins (BMPs, and EGF. However, the early astrocytes influence their environment not only by releasing and responding to diverse soluble factors but also express a wide range of extracellular matrix (ECM molecules, in particular proteoglycans of the lectican family and tenascins. Lately these ECM molecules have been shown to participate in glial development. In this regard, especially the matrix protein Tenascin C (Tnc proved to be an important regulator of astrocyte precursor cell proliferation and migration during spinal cord development. On the other hand, ECM molecules expressed by reactive astrocytes are also known to act mostly in an inhibitory fashion under pathophysiological conditions. In this regard, we further summarize recent data concerning the role of chondroitin sulfate proteoglycans and Tnc under pathological

  11. Microglial interleukin-1β in the ipsilateral dorsal horn inhibits the development of mirror-image contralateral mechanical allodynia through astrocyte activation in a rat model of inflammatory pain.

    Science.gov (United States)

    Choi, Hoon-Seong; Roh, Dae-Hyun; Yoon, Seo-Yeon; Moon, Ji-Young; Choi, Sheu-Ran; Kwon, Soon-Gu; Kang, Suk-Yun; Han, Ho-Jae; Kim, Hyun-Woo; Beitz, Alvin J; Oh, Seog-Bae; Lee, Jang-Hern

    2015-06-01

    Damage on one side of the body can also result in pain on the contralateral unaffected side, called mirror-image pain (MIP). Currently, the mechanisms responsible for the development of MIP are unknown. In this study, we investigated the involvement of spinal microglia and interleukin-1β (IL-1β) in the development of MIP using a peripheral inflammatory pain model. After unilateral carrageenan injection, mechanical allodynia (MA) in both hind paws and the expression levels of spinal Iba-1, IL-1β, and GFAP were evaluated. Ipsilateral MA was induced beginning at 3 hours after carrageenan injection, whereas contralateral MA showed a delayed onset occurring 5 days after injection. A single intrathecal (i.t.) injection of minocycline, a tetracycline derivative that displays selective inhibition of microglial activation, or an interleukin-1 receptor antagonist (IL-1ra) on the day of carrageenan injection caused an early temporary induction of contralateral MA, whereas repeated i.t. treatment with these drugs from days 0 to 3 resulted in a long-lasting contralateral MA, which was evident in its advanced development. We further showed that IL-1β was localized to microglia and that minocycline inhibited the carrageenan-induced increases in spinal Iba-1 and IL-1β expression. Conversely, minocycline or IL-1ra pretreatment increased GFAP expression as compared with that of control rats. However, i.t. pretreatment with fluorocitrate, an astrocyte inhibitor, restored minocycline- or IL-1ra-induced contralateral MA. These results suggest that spinal IL-1β derived from activated microglia temporarily suppresses astrocyte activation, which can ultimately prevent the development of contralateral MA under inflammatory conditions. These findings imply that microglial IL-1β plays an important role in regulating the induction of inflammatory MIP. PMID:25749305

  12. Primary cultures of astrocytes: Their value in understanding astrocytes in health and disease

    OpenAIRE

    Lange, Sofie C.; Bak, Lasse K.; Helle S. Waagepetersen; Schousboe, Arne; Norenberg, Michael D.

    2012-01-01

    During the past decades of astrocyte research it has become increasingly clear that astrocytes have taken a central position in all central nervous system activities. Much of our new understanding of astrocytes has been derived from studies conducted with primary cultures of astrocytes. Such cultures have been an invaluable tool for studying roles of astrocytes in physiological and pathological states. Many central astrocytic functions in metabolism, amino acid neurotransmission and calcium s...

  13. Different mechanisms must be considered to explain the increase in hippocampal neural precursor cell proliferation by physical activity

    Directory of Open Access Journals (Sweden)

    Rupert W Overall

    2016-08-01

    Full Text Available The number of proliferating neural precursor cells in the adult hippocampus is strongly increased by physical activity. The mechanisms through which this behavioral stimulus induces cell proliferation, however, are not yet understood. In fact, even the mode of proliferation of the stem and progenitor cells is not exactly known. Evidence exists for several mechanisms including cell cycle shortening, reduced cell death and stem cell recruitment, but as yet no model can account for all observations. An appreciation of how the cells proliferate, however, is crucial to our ability to model the neurogenic process and predict its behavior in response to pro-neurogenic stimuli. In a recent study, we addressed modulation of the cell cycle length as one possible mode of regulation of precursor cell proliferation in running mice. Our results indicated that the observed increase in number of proliferating cells could not be explained through a shortening of the cell cycle. We must therefore consider other mechanisms by which physical activity leads to enhanced precursor cell proliferation. Here we review the evidence for and against several different hypotheses and discuss the implications for future research in the field.

  14. Different Mechanisms Must Be Considered to Explain the Increase in Hippocampal Neural Precursor Cell Proliferation by Physical Activity

    Science.gov (United States)

    Overall, Rupert W.; Walker, Tara L.; Fischer, Tim J.; Brandt, Moritz D.; Kempermann, Gerd

    2016-01-01

    The number of proliferating neural precursor cells in the adult hippocampus is strongly increased by physical activity. The mechanisms through which this behavioral stimulus induces cell proliferation, however, are not yet understood. In fact, even the mode of proliferation of the stem and progenitor cells is not exactly known. Evidence exists for several mechanisms including cell cycle shortening, reduced cell death and stem cell recruitment, but as yet no model can account for all observations. An appreciation of how the cells proliferate, however, is crucial to our ability to model the neurogenic process and predict its behavior in response to pro-neurogenic stimuli. In a recent study, we addressed modulation of the cell cycle length as one possible mode of regulation of precursor cell proliferation in running mice. Our results indicated that the observed increase in number of proliferating cells could not be explained through a shortening of the cell cycle. We must therefore consider other mechanisms by which physical activity leads to enhanced precursor cell proliferation. Here we review the evidence for and against several different hypotheses and discuss the implications for future research in the field. PMID:27536215

  15. Synapses lacking astrocyte appear in the amygdala during consolidation of Pavlovian threat conditioning.

    Science.gov (United States)

    Ostroff, Linnaea E; Manzur, Mustfa K; Cain, Christopher K; Ledoux, Joseph E

    2014-06-15

    There is growing evidence that astrocytes, long held to merely provide metabolic support in the adult brain, participate in both synaptic plasticity and learning and memory. Astrocytic processes are sometimes present at the synaptic cleft, suggesting that they might act directly at individual synapses. Associative learning induces synaptic plasticity and morphological changes at synapses in the lateral amygdala (LA). To determine whether astrocytic contacts are involved in these changes, we examined LA synapses after either threat conditioning (also called fear conditioning) or conditioned inhibition in adult rats by using serial section transmission electron microscopy (ssTEM) reconstructions. There was a transient increase in the density of synapses with no astrocytic contact after threat conditioning, especially on enlarged spines containing both polyribosomes and a spine apparatus. In contrast, synapses with astrocytic contacts were smaller after conditioned inhibition. This suggests that during memory consolidation astrocytic processes are absent if synapses are enlarging but present if they are shrinking. We measured the perimeter of each synapse and its degree of astrocyte coverage, and found that only about 20-30% of each synapse was ensheathed. The amount of synapse perimeter surrounded by astrocyte did not scale with synapse size, giving large synapses a disproportionately long astrocyte-free perimeter and resulting in a net increase in astrocyte-free perimeter after threat conditioning. Thus astrocytic processes do not mechanically isolate LA synapses, but may instead interact through local signaling, possibly via cell-surface receptors. Our results suggest that contact with astrocytic processes opposes synapse growth during memory consolidation.

  16. Glutamine synthetase plays a role in D-galactose-induced astrocyte aging in vitro and in vivo.

    Science.gov (United States)

    Shen, Yao; Gao, Hongchang; Shi, Xiaojie; Wang, Na; Ai, Dongdong; Li, Juan; Ouyang, Li; Yang, Jianbo; Tian, Yueyang; Lu, Jianxin

    2014-10-01

    Astrocytes play multiple roles in physiological and pathological conditions in brain. However, little is known about the alterations of astrocytes in age-related changes, and few aging models of the astrocytes in vitro have been established. Therefore, in the present study, we used d-galactose (D-Gal) to establish astrocyte aging model to explore the alterations of astrocytes in brain aging. We also used (1)H nuclear magnetic resonance ((1)H NMR) spectra to verify the metabolic changes in the cerebral cortex of mice injected with D-gal. The results showed that D-gal (55mM) treatment for 1 week induced senescence characteristics in cultured cortical astrocytes. Real-time PCR and western blot analysis showed that the levels of glutamine synthetase (GS) mRNA and protein were strikingly decreased in the cultured senescent astrocytes, and the senescent astrocytes showed less resistance to the glutamate-induced gliotoxicity. The impairments of glutamate-glutamine cycle and astrocytes were also found in the cerebral cortex of mice treatment with D-gal (100mg/kg) for 6 weeks, and the level of GS mRNA was also found to be reduced markedly, being consistent with the result obtained from the senescent astrocytes in vitro. These results indicate that astrocyte may be the predominant contributor to the pathogenic mechanisms of D-gal-induced brain aging in mice, and GS might be one of the potential therapeutic targets of the aged brain induced by D-gal.

  17. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model.

    Science.gov (United States)

    Min, Seul Ki; Park, Jun Sang; Luo, Lidan; Kwon, Yeo Seon; Lee, Hoo Cheol; Shim, Hyun Jung; Kim, Il-Doo; Lee, Ja-Kyeong; Shin, Hwa Sung

    2015-01-01

    Drugs are currently being developed to attenuate oxidative stress as a treatment for brain injuries. C-phycocyanin (C-Pc) is an antioxidant protein of green microalgae known to exert neuroprotective effects against oxidative brain injury. Astrocytes, which compose many portions of the brain, exert various functions to overcome oxidative stress; however, little is known about how C-Pc mediates the antioxidative effects of astrocytes. In this study, we revealed that C-Pc intranasal administration to the middle cerebral artery occlusion (MCAO) rats ensures neuroprotection of ischemic brain by reducing infarct size and improving behavioral deficits. C-Pc also enhanced viability and proliferation but attenuated apoptosis and reactive oxygen species (ROS) of oxidized astrocytes, without cytotoxicity to normal astrocytes and neurons. To elucidate how C-Pc leads astrocytes to enhance neuroprotection and repair of ischemia brain, we firstly developed 3D oxidized astrocyte model. C-Pc had astrocytes upregulate antioxidant enzymes such as SOD and catalase and neurotrophic factors BDNF and NGF, while alleviating inflammatory factors IL-6 and IL-1β and glial scar. Additionally, C-Pc improved viability of 3D oxidized neurons. In summary, C-Pc was concluded to activate oxidized astrocytes to protect and repair the ischemic brain with the combinatorial effects of improved antioxidative, neurotrophic, and anti-inflammatory mechanisms. PMID:26399322

  18. Disappearance of beta(2)-adrenergic receptors on astrocytes in canine distemper encephalitis : possible implications for the pathogenesis of multiple sclerosis

    NARCIS (Netherlands)

    De Keyser, J; Wilczak, N; Zurbriggen, A

    2001-01-01

    It has been reported that astrocytes in the white matter of patients with multiple sclerosis (MS) lack beta (2)-adrenergic receptors. This abnormality might explain why astrocytes in active MS plaques aberrantly express major histocompatibility (MHC) class II molecules, which play an important role

  19. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

    International Nuclear Information System (INIS)

    Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial–neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons. - Highlights: • DZ and DZO inhibit astrocyte-mediated neurite outgrowth in rat hippocampal neurons. • Oxidative stress is involved in inhibition of neuritogenesis by DZ and DZO. • DZ and DZO decrease expression of the neuritogenic

  20. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Pizzurro, Daniella M.; Dao, Khoi [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Costa, Lucio G. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Department of Neuroscience, University of Parma, Parma (Italy)

    2014-02-01

    Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial–neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons. - Highlights: • DZ and DZO inhibit astrocyte-mediated neurite outgrowth in rat hippocampal neurons. • Oxidative stress is involved in inhibition of neuritogenesis by DZ and DZO. • DZ and DZO decrease expression of the neuritogenic

  1. Electrodiffusive model for astrocytic and neuronal ion concentration dynamics.

    Directory of Open Access Journals (Sweden)

    Geir Halnes

    Full Text Available The cable equation is a proper framework for modeling electrical neural signalling that takes place at a timescale at which the ionic concentrations vary little. However, in neural tissue there are also key dynamic processes that occur at longer timescales. For example, endured periods of intense neural signaling may cause the local extracellular K(+-concentration to increase by several millimolars. The clearance of this excess K(+ depends partly on diffusion in the extracellular space, partly on local uptake by astrocytes, and partly on intracellular transport (spatial buffering within astrocytes. These processes, that take place at the time scale of seconds, demand a mathematical description able to account for the spatiotemporal variations in ion concentrations as well as the subsequent effects of these variations on the membrane potential. Here, we present a general electrodiffusive formalism for modeling of ion concentration dynamics in a one-dimensional geometry, including both the intra- and extracellular domains. Based on the Nernst-Planck equations, this formalism ensures that the membrane potential and ion concentrations are in consistency, it ensures global particle/charge conservation and it accounts for diffusion and concentration dependent variations in resistivity. We apply the formalism to a model of astrocytes exchanging ions with the extracellular space. The simulations show that K(+-removal from high-concentration regions is driven by a local depolarization of the astrocyte membrane, which concertedly (i increases the local astrocytic uptake of K(+, (ii suppresses extracellular transport of K(+, (iii increases axial transport of K(+ within astrocytes, and (iv facilitates astrocytic relase of K(+ in regions where the extracellular concentration is low. Together, these mechanisms seem to provide a robust regulatory scheme for shielding the extracellular space from excess K(+.

  2. Species' life-history traits explain interspecific variation in reservoir competence: a possible mechanism underlying the dilution effect.

    Directory of Open Access Journals (Sweden)

    Zheng Y X Huang

    Full Text Available Hosts species for multi-host pathogens show considerable variation in the species' reservoir competence, which is usually used to measure species' potential to maintain and transmit these pathogens. Although accumulating research has proposed a trade-off between life-history strategies and immune defences, only a few studies extended this to host species' reservoir competence. Using a phylogenetic comparative approach, we studied the relationships between some species' life-history traits and reservoir competence in three emerging infectious vector-borne disease systems, namely Lyme disease, West Nile Encephalitis (WNE and Eastern Equine Encephalitis (EEE. The results showed that interspecific variation in reservoir competence could be partly explained by the species' life histories. Species with larger body mass (for hosts of Lyme disease and WNE or smaller clutch size (for hosts of EEE had a lower reservoir competence [corrected]. Given that both larger body mass and smaller clutch size were linked to higher extinction risk of local populations, our study suggests that with decreasing biodiversity, species with a higher reservoir competence are more likely to remain in the community, and thereby increase the risk of transmitting these pathogens, which might be a possible mechanism underlying the dilution effect.

  3. Astrocytes directly influence tumor cell invasion and metastasis in vivo.

    Directory of Open Access Journals (Sweden)

    Ling Wang

    Full Text Available Brain metastasis is a defining component of tumor pathophysiology, and the underlying mechanisms responsible for this phenomenon are not well understood. Current dogma is that tumor cells stimulate and activate astrocytes, and this mutual relationship is critical for tumor cell sustenance in the brain. Here, we provide evidence that primary rat neonatal and adult astrocytes secrete factors that proactively induced human lung and breast tumor cell invasion and metastasis capabilities. Among which, tumor invasion factors namely matrix metalloprotease-2 (MMP-2 and MMP-9 were partly responsible for the astrocyte media-induced tumor cell invasion. Inhibiting MMPs reduced the ability of tumor cell to migrate and invade in vitro. Further, injection of astrocyte media-conditioned breast cancer cells in mice showed increased invasive activity to the brain and other distant sites. More importantly, blocking the preconditioned tumor cells with broad spectrum MMP inhibitor decreased the invasion and metastasis of the tumor cells, in particular to the brain in vivo. Collectively, our data implicate astrocyte-derived MMP-2 and MMP-9 as critical players that facilitate tumor cell migration and invasion leading to brain metastasis.

  4. Channel-Mediated Lactate Release by K+-Stimulated Astrocytes

    KAUST Repository

    Sotelo-Hitschfeld, T.

    2015-03-11

    Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate. The reservoir was released to the extracellular space immediately after exposure of astrocytes to a physiological rise in extracellular K+ or cell depolarization. Cell-attached patch-clamp analysis of cultured astrocytes revealed a 37 pS lactate-permeable ion channel activated by cell depolarization. The channel was modulated by lactate itself, resulting in a positive feedback loop for lactate release. A rapid fall in intracellular lactate levels was also observed in cortical astrocytes of anesthetized mice in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.

  5. Staurosporine induces different cell death forms in cultured rat astrocytes

    International Nuclear Information System (INIS)

    Astroglial cells are frequently involved in malignant transformation. Besides apoptosis, necroptosis, a different form of regulated cell death, seems to be related with glioblastoma genesis, proliferation, angiogenesis and invasion. In the present work we elucidated mechanisms of necroptosis in cultured astrocytes, and compared them with apoptosis, caused by staurosporine. Cultured rat cortical astrocytes were used for a cell death studies. Cell death was induced by different concentrations of staurosporine, and modified by inhibitors of apoptosis (z-vad-fmk) and necroptosis (nec-1). Different forms of a cell death were detected using flow cytometry. We showed that staurosporine, depending on concentration, induces both, apoptosis as well as necroptosis. Treatment with 10−7 M staurosporine increased apoptosis of astrocytes after the regeneration in a staurosporine free medium. When caspases were inhibited, apoptosis was attenuated, while necroptosis was slightly increased. Treatment with 10−6 M staurosporine induced necroptosis that occurred after the regeneration of astrocytes in a staurosporine free medium, as well as without regeneration period. Necroptosis was significantly attenuated by nec-1 which inhibits RIP1 kinase. On the other hand, the inhibition of caspases had no effect on necroptosis. Furthermore, staurosporine activated RIP1 kinase increased the production of reactive oxygen species, while an antioxidant BHA significantly attenuated necroptosis. Staurosporine can induce apoptosis and/or necroptosis in cultured astrocytes via different signalling pathways. Distinction between different forms of cell death is crucial in the studies of therapy-induced necroptosis

  6. Prostaglandin E2 released from activated microglia enhances astrocyte proliferation in vitro

    International Nuclear Information System (INIS)

    Microglial activation has been implicated in many astrogliosis-related pathological conditions including astroglioma; however, the detailed mechanism is not clear. In this study, we used primary enriched microglia and astrocyte cultures to determine the role of microglial prostaglandin E2 (PGE2) in the proliferation of astrocytes. The proliferation of astrocytes was measured by BrdU incorporation. The level of PGE2 was measured by ELISA method. Pharmacological inhibition or genetic ablation of COX-2 in microglia were also applied in this study. We found that proliferation of astrocytes increased following lipopolysaccharide (LPS) treatment in the presence of microglia. Furthermore, increased proliferation of astrocytes was observed in the presence of conditioned media from LPS-treated microglia. The potential involvement of microglial PGE2 in enhanced astrocyte proliferation was suggested by the findings that PGE2 production and COX-2 expression in microglia were increased by LPS treatment. In addition, activated microglia-induced increases in astrocyte proliferation were blocked by the PGE2 antagonist AH6809, COX-2 selective inhibitor DuP-697 or by genetic knockout of microglial COX-2. These findings were further supported by the finding that addition of PGE2 to the media significantly induced astrocyte proliferation. These results indicate that microglial PGE2 plays an important role in astrocyte proliferation, identifying PGE2 as a key neuroinflammatory molecule that triggers the pathological response related to uncontrollable astrocyte proliferation. These findings are important in elucidating the role of activated microglia and PGE2 in astrocyte proliferation and in suggesting a potential avenue in the use of anti-inflammatory agents for the therapy of astroglioma.

  7. Substrate-dependent regulation of ascorbate transport in astrocytes

    International Nuclear Information System (INIS)

    Astrocytes possess a concentrative L-ascorbate (vitamin C) uptake mechanism involving a Na+-dependent L-ascorbate transporter in the plasma membrane. The present study examined the effects of ascorbate deprivation and supplementation on the activity of the transport system. Initial rates of L-ascorbate uptake were measured by incubating primary cultures of rat astrocytes with L-[14C]ascorbate for 1 minute at 37C. They observed that the maximal uptake rate, Vmax, rapidly (m) of the transport system for ascorbate. Vmax returned to normal following addition of L-ascorbate, but not D-isoascorbate, to the medium. The authors conclude that astrocytes adapt ascorbate transport rates to changes in substrate availability. Furthermore, the data suggest that the transport system located in the astroglial plasma membrane regulates intracellular ascorbate concentration, because changes in transport rate may compensate for regional differences and temporal fluctuations in extracellular ascorbate levels

  8. CPEB1 modulates lipopolysaccharide-mediated iNOS induction in rat primary astrocytes

    International Nuclear Information System (INIS)

    Highlights: → Expression and phosphorylation of CPEB1 is increased by LPS stimulation in rat primary astrocytes. → JNK regulates expression and phosphorylation of CPEB1 in reactive astrocytes. → Down-regulation of CPEB1 using siRNA inhibits oxidative stress and iNOS induction by LPS stimulation. → CPEB1 may play an important role in regulating inflammatory responses in reactive astrocytes induced by LPS. -- Abstract: Upon CNS damage, astrocytes undergo a series of biological changes including increased proliferation, production of inflammatory mediators and morphological changes, in a response collectively called reactive gliosis. This process is an essential part of the brains response to injury, yet much is unknown about the molecular mechanism(s) that induce these changes. In this study, we investigated the role of cytoplasmic polyadenylation element binding protein 1 (CPEB1) in the regulation of inflammatory responses in a model of reactive gliosis, lipopolysaccharide-stimulated astrocytes. CPEB1 is an mRNA-binding protein recently shown to be expressed in astrocytes that may play a role in astrocytes migration. After LPS stimulation, the expression and phosphorylation of CPEB1 was increased in rat primary astrocytes in a JNK-dependent process. siRNA-induced knockdown of CPEB1 expression inhibited the LPS-induced up-regulation of iNOS as well as NO and ROS production, a hallmark of immunological activation of astrocytes. The results from the study suggest that CPEB1 is actively involved in the regulation of inflammatory responses in astrocytes, which might provide new insights into the regulatory mechanism after brain injury.

  9. CPEB1 modulates lipopolysaccharide-mediated iNOS induction in rat primary astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Chan [Department of Pharmacology, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Hyun Joo, So [Department of Pharmacology, School of Medicine, Konkuk University (Korea, Republic of); Shin, Chan Young, E-mail: chanyshin@kku.ac.kr [Department of Pharmacology, School of Medicine, Konkuk University (Korea, Republic of)

    2011-06-17

    Highlights: {yields} Expression and phosphorylation of CPEB1 is increased by LPS stimulation in rat primary astrocytes. {yields} JNK regulates expression and phosphorylation of CPEB1 in reactive astrocytes. {yields} Down-regulation of CPEB1 using siRNA inhibits oxidative stress and iNOS induction by LPS stimulation. {yields} CPEB1 may play an important role in regulating inflammatory responses in reactive astrocytes induced by LPS. -- Abstract: Upon CNS damage, astrocytes undergo a series of biological changes including increased proliferation, production of inflammatory mediators and morphological changes, in a response collectively called reactive gliosis. This process is an essential part of the brains response to injury, yet much is unknown about the molecular mechanism(s) that induce these changes. In this study, we investigated the role of cytoplasmic polyadenylation element binding protein 1 (CPEB1) in the regulation of inflammatory responses in a model of reactive gliosis, lipopolysaccharide-stimulated astrocytes. CPEB1 is an mRNA-binding protein recently shown to be expressed in astrocytes that may play a role in astrocytes migration. After LPS stimulation, the expression and phosphorylation of CPEB1 was increased in rat primary astrocytes in a JNK-dependent process. siRNA-induced knockdown of CPEB1 expression inhibited the LPS-induced up-regulation of iNOS as well as NO and ROS production, a hallmark of immunological activation of astrocytes. The results from the study suggest that CPEB1 is actively involved in the regulation of inflammatory responses in astrocytes, which might provide new insights into the regulatory mechanism after brain injury.

  10. Astrocytes protect neurons against methylmercury via ATP/P2Y(1 receptor-mediated pathways in astrocytes.

    Directory of Open Access Journals (Sweden)

    Yusuke Noguchi

    Full Text Available Methylmercury (MeHg is a well known environmental pollutant that induces serious neuronal damage. Although MeHg readily crosses the blood-brain barrier, and should affect both neurons and glial cells, how it affects glia or neuron-to-glia interactions has received only limited attention. Here, we report that MeHg triggers ATP/P2Y1 receptor signals in astrocytes, thereby protecting neurons against MeHg via interleukin-6 (IL-6-mediated pathways. MeHg increased several mRNAs in astrocytes, among which IL-6 was the highest. For this, ATP/P2Y1 receptor-mediated mechanisms were required because the IL-6 production was (i inhibited by a P2Y1 receptor antagonist, MRS2179, (ii abolished in astrocytes obtained from P2Y1 receptor-knockout mice, and (iii mimicked by exogenously applied ATP. In addition, (iv MeHg released ATP by exocytosis from astrocytes. As for the intracellular mechanisms responsible for IL-6 production, p38 MAP kinase was involved. MeHg-treated astrocyte-conditioned medium (ACM showed neuro-protective effects against MeHg, which was blocked by anti-IL-6 antibody and was mimicked by the application of recombinant IL-6. As for the mechanism of neuro-protection by IL-6, an adenosine A1 receptor-mediated pathway in neurons seems to be involved. Taken together, when astrocytes sense MeHg, they release ATP that autostimulates P2Y1 receptors to upregulate IL-6, thereby leading to A1 receptor-mediated neuro-protection against MeHg.

  11. The Role of Intermittent Hypoxia on the Proliferative Inhibition of Rat Cerebellar Astrocytes.

    Directory of Open Access Journals (Sweden)

    Sheng-Chun Chiu

    Full Text Available Sleep apnea syndrome, characterized by intermittent hypoxia (IH, is linked with increased oxidative stress. This study investigates the mechanisms underlying IH and the effects of IH-induced oxidative stress on cerebellar astrocytes. Rat primary cerebellar astrocytes were kept in an incubator with an oscillating O2 concentration between 20% and 5% every 30 min for 1-4 days. Although the cell loss increased with the duration, the IH incubation didn't induce apoptosis or necrosis, but rather a G0/G1 cell cycle arrest of cerebellar astrocytes was noted. ROS accumulation was associated with cell loss during IH. PARP activation, resulting in p21 activation and cyclin D1 degradation was associated with cell cycle G0/G1 arrest of IH-treated cerebellar astrocytes. Our results suggest that IH induces cell loss by enhancing oxidative stress, PARP activation and cell cycle G0/G1 arrest in rat primary cerebellar astrocytes.

  12. Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Guyllaume Coiret

    Full Text Available Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1 receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus.

  13. Exercise Counteracts Aging-Related Memory Impairment: A Potential Role for the Astrocytic Metabolic Shuttle.

    Science.gov (United States)

    Tsai, Sheng-Feng; Chen, Pei-Chun; Calkins, Marcus J; Wu, Shih-Ying; Kuo, Yu-Min

    2016-01-01

    Age-related cognitive impairment has become one of the most common health threats in many countries. The biological substrate of cognition is the interconnection of neurons to form complex information processing networks. Experience-based alterations in the activities of these information processing networks lead to neuroadaptation, which is physically represented at the cellular level as synaptic plasticity. Although synaptic plasticity is known to be affected by aging, the underlying molecular mechanisms are not well described. Astrocytes, a glial cell type that is infrequently investigated in cognitive science, have emerged as energy suppliers which are necessary for meeting the abundant energy demand resulting from glutamatergic synaptic activity. Moreover, the concerted action of an astrocyte-neuron metabolic shuttle is essential for cognitive function; whereas, energetic incoordination between astrocytes and neurons may contribute to cognitive impairment. Whether altered function of the astrocyte-neuron metabolic shuttle links aging to reduced synaptic plasticity is unexplored. However, accumulated evidence documents significant beneficial effects of long-term, regular exercise on cognition and synaptic plasticity. Furthermore, exercise increases the effectiveness of astrocyte-neuron metabolic shuttle by upregulation of astrocytic lactate transporter levels. This review summarizes previous findings related to the neuronal activity-dependent astrocyte-neuron metabolic shuttle. Moreover, we discuss how aging and exercise may shape the astrocyte-neuron metabolic shuttle in cognition-associated brain areas. PMID:27047373

  14. Plasticity of protective mechanisms only partially explains interactive effects of temperature and UVR on upper thermal limits.

    Science.gov (United States)

    Kern, Pippa; Cramp, Rebecca L; Seebacher, Frank; Ghanizadeh Kazerouni, Ensiyeh; Franklin, Craig E

    2015-12-01

    Temperature and ultraviolet radiation (UVR) are key environmental drivers that are linked in their effects on cellular damage. Exposure to both high temperatures and UVR can cause cellular damage that result in the up-regulation of common protective mechanisms, such as the induction of heat shock proteins (Hsps) and antioxidants. As such, the interactive effects of these stressors at the cellular level may determine physiological limits, such as thermal tolerance. Furthermore, antioxidant activity is often thermally sensitive, which may lead to temperature dependent effects of UVR exposure. Here we examined the interactive effects of temperature and UVR on upper thermal limits, Hsp70 abundance, oxidative damage and antioxidant (catalase) activity. We exposed Limnodynastes peronii tadpoles to one of three temperature treatments (constant 18°C, constant 28°C and daily fluctuations between 18 and 28°C) in the presence or absence of UVR. Tadpoles were tested for upper thermal limits (CTmax), induction of Hsp70, oxidative damage and catalase activity. Our results show that CTmax was influenced by an interactive effect between temperature and UVR treatment. For tadpoles kept in cold temperatures, exposure to UVR led to cross-tolerance to high temperatures, increasing CTmax. Plasticity in this trait was not fully explained by changes in the lower level mechanistic traits examined. These results highlight the difficulty in predicting the mechanistic basis for the interactive effects of multiple stressors on whole animal traits. Multifactorial studies may therefore be required to understand how complex mechanistic processes shape physiological tolerances, and determine responses to environmental variation. PMID:26408107

  15. The RNA helicase DDX1 is involved in restricted HIV-1 Rev function in human astrocytes

    International Nuclear Information System (INIS)

    cytoplasmic, as input of exogenous DDX1 significantly altered both Rev sub-cellular localization from cytoplasmic to nuclear predominance and concomitantly increased HIV-1 viral production in these human astrocytes. We conclude that altered DDX1 expression in human astrocytes is, at least in part, responsible for the unfavorable cellular microenvironment for Rev function in these CNS-based cells. Thus, these data suggest a molecular mechanism(s) for restricted replication in astrocytes as a potential low-level site of residual HIV-1 in vivo

  16. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling

    Directory of Open Access Journals (Sweden)

    Manuel Francisco Muñoz

    2015-03-01

    Full Text Available Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30 and channels formed by pannexins (Panx-1. The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS and neuronal NOS (nNOS are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in

  17. A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down's syndrome.

    Directory of Open Access Journals (Sweden)

    Octavio Garcia

    Full Text Available BACKGROUND: Down's syndrome (DS is the most common genetic cause of mental retardation. Reduced number and aberrant architecture of dendritic spines are common features of DS neuropathology. However, the mechanisms involved in DS spine alterations are not known. In addition to a relevant role in synapse formation and maintenance, astrocytes can regulate spine dynamics by releasing soluble factors or by physical contact with neurons. We have previously shown impaired mitochondrial function in DS astrocytes leading to metabolic alterations in protein processing and secretion. In this study, we investigated whether deficits in astrocyte function contribute to DS spine pathology. METHODOLOGY/PRINCIPAL FINDINGS: Using a human astrocyte/rat hippocampal neuron coculture, we found that DS astrocytes are directly involved in the development of spine malformations and reduced synaptic density. We also show that thrombospondin 1 (TSP-1, an astrocyte-secreted protein, possesses a potent modulatory effect on spine number and morphology, and that both DS brains and DS astrocytes exhibit marked deficits in TSP-1 protein expression. Depletion of TSP-1 from normal astrocytes resulted in dramatic changes in spine morphology, while restoration of TSP-1 levels prevented DS astrocyte-mediated spine and synaptic alterations. Astrocyte cultures derived from TSP-1 KO mice exhibited similar deficits to support spine formation and structure than DS astrocytes. CONCLUSIONS/SIGNIFICANCE: These results indicate that human astrocytes promote spine and synapse formation, identify astrocyte dysfunction as a significant factor of spine and synaptic pathology in the DS brain, and provide a mechanistic rationale for the exploration of TSP-1-based therapies to treat spine and synaptic pathology in DS and other neurological conditions.

  18. Neuroimmunological Implications of AQP4 in Astrocytes

    Science.gov (United States)

    Ikeshima-Kataoka, Hiroko

    2016-01-01

    The brain has high-order functions and is composed of several kinds of cells, such as neurons and glial cells. It is becoming clear that many kinds of neurodegenerative diseases are more-or-less influenced by astrocytes, which are a type of glial cell. Aquaporin-4 (AQP4), a membrane-bound protein that regulates water permeability is a member of the aquaporin family of water channel proteins that is expressed in the endfeet of astrocytes in the central nervous system (CNS). Recently, AQP4 has been shown to function, not only as a water channel protein, but also as an adhesion molecule that is involved in cell migration and neuroexcitation, synaptic plasticity, and learning/memory through mechanisms involved in long-term potentiation or long-term depression. The most extensively examined role of AQP4 is its ability to act as a neuroimmunological inducer. Previously, we showed that AQP4 plays an important role in neuroimmunological functions in injured mouse brain in concert with the proinflammatory inducer osteopontin (OPN). The aim of this review is to summarize the functional implication of AQP4, focusing especially on its neuroimmunological roles. This review is a good opportunity to compile recent knowledge and could contribute to the therapeutic treatment of autoimmune diseases through strategies targeting AQP4. Finally, the author would like to hypothesize on AQP4’s role in interaction between reactive astrocytes and reactive microglial cells, which might occur in neurodegenerative diseases. Furthermore, a therapeutic strategy for AQP4-related neurodegenerative diseases is proposed. PMID:27517922

  19. Neuroimmunological Implications of AQP4 in Astrocytes.

    Science.gov (United States)

    Ikeshima-Kataoka, Hiroko

    2016-01-01

    The brain has high-order functions and is composed of several kinds of cells, such as neurons and glial cells. It is becoming clear that many kinds of neurodegenerative diseases are more-or-less influenced by astrocytes, which are a type of glial cell. Aquaporin-4 (AQP4), a membrane-bound protein that regulates water permeability is a member of the aquaporin family of water channel proteins that is expressed in the endfeet of astrocytes in the central nervous system (CNS). Recently, AQP4 has been shown to function, not only as a water channel protein, but also as an adhesion molecule that is involved in cell migration and neuroexcitation, synaptic plasticity, and learning/memory through mechanisms involved in long-term potentiation or long-term depression. The most extensively examined role of AQP4 is its ability to act as a neuroimmunological inducer. Previously, we showed that AQP4 plays an important role in neuroimmunological functions in injured mouse brain in concert with the proinflammatory inducer osteopontin (OPN). The aim of this review is to summarize the functional implication of AQP4, focusing especially on its neuroimmunological roles. This review is a good opportunity to compile recent knowledge and could contribute to the therapeutic treatment of autoimmune diseases through strategies targeting AQP4. Finally, the author would like to hypothesize on AQP4's role in interaction between reactive astrocytes and reactive microglial cells, which might occur in neurodegenerative diseases. Furthermore, a therapeutic strategy for AQP4-related neurodegenerative diseases is proposed. PMID:27517922

  20. Ketogenic diet and astrocyte/neuron metabolic interactions

    Directory of Open Access Journals (Sweden)

    Vamecq Joseph

    2007-05-01

    Full Text Available The ketogenic diet is an anticonvulsant diet enriched in fat. It provides the body with a minimal protein requirement and a restricted carbohydrate supply, the vast majority of calories (more than 80-90% being given by fat. Though anticonvulsant activity of ketogenic diet has been well documented by a large number of experimental and clinical studies, underlying mechanisms still remain partially unclear. Astrocyte-neuron interactions, among which metabolic shuttles, may influence synaptic activity and hence anticonvulsant protection. The astrocyte-neuron metabolic shuttles may be themselves influenced by the availability in energetic substrates such as hydrates of carbon and fats. Historically, ketogenic diet had been designed to mimic changes such as ketosis occurring upon starvation, a physiological state already known to exhibit anticonvulsant protection and sometimes referred to as “water diet”. For this reason, a special attention should be paid to metabolic features shared in common by ketogenic diet and starvation and especially those features that might result in anticonvulsant protection. Compared to feeding by usual mixed diet, starvation and ketogenic diet are both characterised by increased fat, lowered glucose and aminoacid supplies to cells. The resulting impact of these changes in energetic substrates on astrocyte/neuron metabolic shuttles might have anticonvulsant and/or neuroprotective properties. This is the aim of this communication to review some important astrocyte/neuron metabolic interactions (astrocyte/neuron lactate shuttle, glutamateinduced astrocytic glycolysis activation, glutamate/glutamine cycle along with the neurovascular coupling and the extent to which the way of their alteration by starvation and/or ketogenic diet might result in seizure and/or brain protection.

  1. Astrocyte, the star avatar: redefined

    Indian Academy of Sciences (India)

    Pankaj Seth; Nitin Koul

    2008-09-01

    Until recently, the neuroscience community held the belief that glial cells such as astrocytes and oligodendrocytes functioned solely as “support” cells of the brain. In this role, glial cells simply provide physical support and housekeeping functions for the more important cells of the brain, the neurons. However, this view has changed radically in recent years with the discovery of previously unrecognized and surprising functions for this underappreciated cell type. In the past decade or so, emerging evidence has provided new insights into novel glial cell activities such as control of synapse formation and function, communication, cerebrovascular tone regulation, immune regulation and adult neurogenesis. Such advances in knowledge have effectively elevated the role of the astrocyte to one that is more important than previously realized. This review summarizes the past and present knowledge of glial cell functions that has evolved over the years, and has resulted in a new appreciation of astrocytes and their value in studying the neurobiology of human brain cells and their functions. In this review, we highlight recent advances in the role of glial cells in physiology, pathophysiology and, most importantly, in adult neurogenesis and “stemness”, with special emphasis on astrocytes.

  2. Astrocytes Underlie Neuroinflammatory Memory Impairment

    OpenAIRE

    Osso, LA; Chan, JR

    2015-01-01

    © 2015 Elsevier Inc. All rights reserved. Neuroinflammation is being increasingly recognized as a potential mediator of cognitive impairments in various neurological conditions. Habbas et al. demonstrate that the pro-inflammatory cytokine tumor necrosis factor alpha signals through astrocytes to alter synaptic transmission and impair cognition in a mouse model of multiple sclerosis.

  3. Astrocytic Ephrin-B1 Regulates Synapse Remodeling Following Traumatic Brain Injury

    OpenAIRE

    Nikolakopoulou, Angeliki M.; Koeppen, Jordan; Garcia, Michael; Leish, Joshua; Obenaus, Andre; Iryna M Ethell

    2016-01-01

    Traumatic brain injury (TBI) can result in tissue alterations distant from the site of the initial injury, which can trigger pathological changes within hippocampal circuits and are thought to contribute to long-term cognitive and neuropsychological impairments. However, our understanding of secondary injury mechanisms is limited. Astrocytes play an important role in brain repair after injury and astrocyte-mediated mechanisms that are implicated in synapse development are likely important in ...

  4. Pre-conditioning induces the precocious differentiation of neonatal astrocytes to enhance their neuroprotective properties

    Directory of Open Access Journals (Sweden)

    Sandra J Hewett

    2011-07-01

    Full Text Available Hypoxic preconditioning reprogrammes the brain's response to subsequent H/I (hypoxia–ischaemia injury by enhancing neuroprotective mechanisms. Given that astrocytes normally support neuronal survival and function, the purpose of the present study was to test the hypothesis that a hypoxic preconditioning stimulus would activate an adaptive astrocytic response. We analysed several functional parameters 24 h after exposing rat pups to 3 h of systemic hypoxia (8% O2. Hypoxia increased neocortical astrocyte maturation as evidenced by the loss of GFAP (glial fibrillary acidic protein-positive cells with radial morphologies and the acquisition of multipolar GFAP-positive cells. Interestingly, many of these astrocytes had nuclear S100B. Accompanying their differentiation, there was increased expression of GFAP, GS (glutamine synthetase, EAAT-1 (excitatory amino acid transporter-1; also known as GLAST, MCT-1 (monocarboxylate transporter-1 and ceruloplasmin. A subsequent H/I insult did not result in any further astrocyte activation. Some responses were cell autonomous, as levels of GS and MCT-1 increased subsequent to hypoxia in cultured forebrain astrocytes. In contrast, the expression of GFAP, GLAST and ceruloplasmin remained unaltered. Additional experiments utilized astrocytes exposed to exogenous dbcAMP (dibutyryl-cAMP, which mimicked several aspects of the preconditioning response, to determine whether activated astrocytes could protect neurons from subsequent excitotoxic injury. dbcAMP treatment increased GS and glutamate transporter expression and function, and as hypothesized, protected neurons from glutamate excitotoxicity. Taken altogether, these results indicate that a preconditioning stimulus causes the precocious differentiation of astrocytes and increases the acquisition of multiple astrocytic functions that will contribute to the neuroprotection conferred by a sublethal preconditioning stress.

  5. A Computational Model to Investigate Astrocytic Glutamate Uptake Influence on Synaptic Transmission and Neuronal Spiking

    Directory of Open Access Journals (Sweden)

    Sushmita Lakshmi Allam

    2012-10-01

    Full Text Available Over the past decades, our view of astrocytes has switched from passive support cells to active processing elements in the brain. The current view is that astrocytes shape neuronal communication and also play an important role in many neurodegenerative diseases. Despite the growing awareness of the importance of astrocytes, the exact mechanisms underlying neuron-astrocyte communication and the physiological consequences of astrocytic-neuronal interactions remain largely unclear. In this work, we define a modeling framework that will permit to address unanswered questions regarding the role of astrocytes. Our computational model of a detailed glutamatergic synapse facilitates the analysis of neural system responses to various stimuli and conditions that are otherwise difficult to obtain experimentally, in particular the readouts at the sub-cellular level. In this paper, we extend a detailed glutamatergic synaptic model, to include astrocytic glutamate transporters. We demonstrate how these glial transporters, responsible for the majority of glutamate uptake, modulate synaptic transmission mediated by ionotropic AMPA and NMDA receptors at glutamatergic synapses. Furthermore, we investigate how these local signaling effects at the synaptic level are translated into varying spatio-temporal patterns of neuron firing. Paired pulse stimulation results reveal that the effect of astrocytic glutamate uptake is more apparent when the input inter-spike interval is sufficiently long to allow the receptors to recover from desensitization. These results suggest an important functional role of astrocytes in spike timing dependent processes and demand further investigation of the molecular basis of certain neurological diseases specifically related to alterations in astrocytic glutamate uptake, such as epilepsy.

  6. Astrocytes Release Polyunsaturated Fatty Acids by Lipopolysaccharide Stimuli.

    Science.gov (United States)

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Koyama, Yutaka; Kasuya, Fumiyo; Tokuyama, Shogo

    2016-01-01

    We previously reported that levels of long-chain fatty acids (FAs) including docosahexaenoic acids (DHA) increase in the hypothalamus of inflammatory pain model mice. However, the precise mechanisms underlying the increment of free fatty acids (FFAs) in the brain during inflammation remains unknown. In this study, we characterized FFAs released by inflammatory stimulation in rat primary cultured astrocytes, and tested the involvement of phospholipase A2 (PLA2) on these mechanisms. Lipopolysaccharide (LPS) stimulation significantly increased the levels of several FAs in the astrocytes. Under these conditions, mRNA expression of cytosolic PLA2 (cPLA2) and calcium-independent PLA2 (iPLA2) in LPS-treated group increased compared with the control group. Furthermore, in the culture media, the levels of DHA and arachidonic acid (ARA) significantly increased by LPS stimuli compared with those of a vehicle-treated control group whereas the levels of saturated FAs (SFAs), namely palmitic acid (PAM) and stearic acid (STA), did not change. In summary, our findings suggest that astrocytes specifically release DHA and ARA by inflammatory conditions. Therefore astrocytes might function as a regulatory factor of DHA and ARA in the brain. PMID:27374285

  7. Astrocyte signaling in the presence of spatial inhomogeneities

    Science.gov (United States)

    Stamatakis, Michail; Mantzaris, Nikos V.

    2007-09-01

    Astrocytes, a special type of glial cells, were considered to have just a supporting role in information processing in the brain. However, several recent studies have shown that they can be chemically stimulated by various neurotransmitters, such as ATP, and can generate Ca2+ and ATP waves, which can propagate over many cell lengths before being blocked. Although pathological conditions, such as spreading depression and epilepsy, have been linked to abnormal wave propagation in astrocytic cellular networks, a quantitative understanding of the underlying characteristics is still lacking. Astrocytic cellular networks are inhomogeneous, in the sense that the domain they occupy contains passive regions or gaps, which are unable to support wave propagation. Thus, this work focuses on understanding the complex interplay between single-cell signal transduction, domain inhomogeneity, and the characteristics of wave propagation and blocking in astrocytic cellular networks. The single-cell signal transduction model that was employed accounts for ATP-mediated IP3 production, the subsequent Ca2+ release from the ER, and ATP release into the extracellular space. The model is excitable and thus an infinite range of wave propagation is observed if the domain of propagation is homogeneous. This is not always the case for inhomogeneous domains. To model wave propagation in inhomogeneous astrocytic networks, a reaction-diffusion framework was developed and one-gap as well as multiple-gap cases were simulated using an efficient finite-element algorithm. The minimum gap length that blocks the wave was computed as a function of excitability levels and geometric characteristics of the inhomogeneous network, such as the length of the active regions (cells). Complex transient patterns, such as wave reflection, wave trapping, and generation of echo waves, were also predicted by the model, and their relationship to the geometric characteristics of the network was evaluated. Therefore, the

  8. Endocytosis-mediated HIV-1 entry and its significance in the elusive behavior of the virus in astrocytes.

    Science.gov (United States)

    Chauhan, Ashok; Mehla, Rajeev; Vijayakumar, Theophilus Sunder; Handy, Indhira

    2014-05-01

    Astrocytes protect neurons but also evoke a proinflammatory response to injury and viral infections including HIV. We investigated the mechanism of HIV-1 infection in primary astrocytes, which showed minimal but productive viral infection independent of CXCR4. As with ectopic-CD4-expressing astrocytes, lysosomotropic agents led to increased HIV-1 infection in wild-type but not Rabs 5, 7, and 11-ablated astrocytes. Instead, HIV-1 infection was decreased in Rab-depleted astrocytes, corroborating viral entry by endocytosis. HIV-1 produced persistent infection in astrocytes (160 days); no evidence of latent infection was seen. Notably, one caveat is that endosomal modifiers enhanced wild-type HIV-1 infection (M- and T-tropic) in astrocytes, suggesting endocytic entry of the virus. Impeding endocytosis by inhibition of Rab 5, 7 or 11 will inhibit HIV infection in astrocytes. Although the contribution of such low-level infection in astrocytes to neurological complications is unclear, it may serve as an elusive viral reservoir in the central nervous system.

  9. How do astrocytes shape synaptic transmission? Insights from electrophysiology

    Directory of Open Access Journals (Sweden)

    Glenn eDallérac

    2013-10-01

    Full Text Available A major breakthrough in neuroscience has been the realization in the last decades that the dogmatic view of astroglial cells as being merely fostering and buffering elements of the nervous system is simplistic. A wealth of investigations now shows that astrocytes actually participate in the control of synaptic transmission in an active manner. This was first hinted by the intimate contacts glial processes make with neurons, particularly at the synaptic level, and evidenced using electrophysiological and calcium imaging techniques. Calcium imaging has provided critical evidence demonstrating that astrocytic regulation of synaptic efficacy is not a passive phenomenon. However, given that cellular activation is not only represented by calcium signaling, it is also crucial to assess concomitant mechanisms. We and others have used electrophysiological techniques to simultaneously record neuronal and astrocytic activity, thus enabling the study of multiple ionic currents and in depth investigation of neuro-glial dialogues. In the current review, we focus on the input such approach has provided in the understanding of astrocyte-neuron interactions underlying control of synaptic efficacy.

  10. Microglia is activated by astrocytes in trimethyltin intoxication

    International Nuclear Information System (INIS)

    Microglia participates in most acute and chronic neuropathologies and its activation appears to involve interactions with neurons and other glial cells. Trimethyltin (TMT)-induced brain damage is a well-characterized model of neurodegeneration, in which microglial activation occurs before neuronal degeneration. The aim of this in vitro study was to investigate the role of astroglia in TMT-induced microgliosis by using nitric oxide (NO), inducible NO synthase (iNOS), and morphological changes as parameters for microglial activation. Our investigation discusses (a) whether microglial cells can be activated directly by TMT; (b) if astroglial cells are capable of triggering or modulating microglial activation; (c) how the morphology and survival of microglia and astrocytes are affected by TMT treatment; and (d) whether microglial-astroglial interactions depend on direct cell contact or on soluble factors. Our results show that microglia are more vulnerable to TMT than astrocytes are and cannot be activated directly by TMT with regard to the examined parameters. In bilayer coculture with viable astroglial cells, microglia produce NO in significant amounts at subcytotoxic concentrations of TMT (20 μmol/l). At these TMT concentrations, microglial cells in coculture convert into small round cells without cell processes, whereas flat, fibroblast-like astrocytes convert into thin process bearing stellate cells with a dense and compact cell body. We conclude that astrocytes trigger microglial activation after treatment with TMT, although the mechanisms of this interaction remain unknown

  11. Astrocytes in the tempest of multiple sclerosis.

    Science.gov (United States)

    Miljković, Djordje; Timotijević, Gordana; Mostarica Stojković, Marija

    2011-12-01

    Astrocytes are the most abundant cell population within the CNS of mammals. Their glial role is perfectly performed in the healthy CNS as they support functions of neurons. The omnipresence of astrocytes throughout the white and grey matter and their intimate relation with blood vessels of the CNS, as well as numerous immunity-related actions that these cells are capable of, imply that astrocytes should have a prominent role in neuroinflammatory disorders, such as multiple sclerosis (MS). The role of astrocytes in MS is rather ambiguous, as they have the capacity to both stimulate and restrain neuroinflammation and tissue destruction. In this paper we present some of the proved and the proposed functions of astrocytes in neuroinflammation and discuss the effect of MS therapeutics on astrocytes. PMID:21443873

  12. Dynamic reactive astrocytes after focal ischemia

    Institute of Scientific and Technical Information of China (English)

    Shinghua Ding

    2014-01-01

    Astrocytes are specialized and most numerous glial cell type in the central nervous system and play important roles in physiology. Astrocytes are also critically involved in many neural disor-ders including focal ischemic stroke, a leading cause of brain injury and human death. One of the prominent pathological features of focal ischemic stroke is reactive astrogliosis and glial scar for-mation associated with morphological changes and proliferation. This review paper discusses the recent advances in spatial and temporal dynamics of morphology and proliferation of reactive astrocytes after ischemic stroke based on results from experimental animal studies. As reactive astrocytes exhibit stem cell-like properties, knowledge of dynamics of reactive astrocytes and glial scar formation will provide important insights for astrocyte-based cell therapy in stroke.

  13. α7 Nicotinic Receptor Promotes the Neuroprotective Functions of Astrocytes against Oxaliplatin Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Lorenzo Di Cesare Mannelli

    2015-01-01

    Full Text Available Neuropathies are characterized by a complex response of the central nervous system to injuries. Glial cells are recruited to maintain neuronal homeostasis but dysregulated activation leads to pain signaling amplification and reduces the glial neuroprotective power. Recently, we highlighted the property of α7 nicotinic-acetylcholine-receptor (nAChR agonists to relieve pain and induce neuroprotection simultaneously with a strong increase in astrocyte density. Aimed to study the role of α7 nAChR in the neuron-glia cross-talk, we treated primary rat neurons and astrocytes with the neurotoxic anticancer drug oxaliplatin evaluating the effect of the α7 nAChR agonist PNU-282987 (PNU. Oxaliplatin (1 μM, 48 h reduced cell viability and increased caspase-3 activity of neuron monocultures without damaging astrocytes. In cocultures, astrocytes were not able to protect neurons by oxaliplatin even if glial cell metabolism was stimulated (pyruvate increase. On the contrary, the coculture incubation with 10 μM PNU improved neuron viability and inhibited apoptosis. In the absence of astrocytes, the protection disappeared. Furthermore, PNU promoted the release of the anti-inflammatory cytokine TGF-β1 and the expression of the glutamate-detoxifying enzyme glutamine synthetase. The α7 nAChR stimulation protects neurons from oxaliplatin toxicity through an astrocyte-mediated mechanism. α7 nAChR is suggested for recovering the homeostatic role of astrocytes.

  14. Metabolic Changes Following Perinatal Asphyxia: Role of Astrocytes and Their Interaction with Neurons.

    Science.gov (United States)

    Logica, Tamara; Riviere, Stephanie; Holubiec, Mariana I; Castilla, Rocío; Barreto, George E; Capani, Francisco

    2016-01-01

    Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day.

  15. Metabolic Changes Following Perinatal Asphyxia: Role of Astrocytes and Their Interaction with Neurons.

    Science.gov (United States)

    Logica, Tamara; Riviere, Stephanie; Holubiec, Mariana I; Castilla, Rocío; Barreto, George E; Capani, Francisco

    2016-01-01

    Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day. PMID:27445788

  16. Regulation of neuron-astrocyte metabolic coupling across the sleep-wake cycle.

    Science.gov (United States)

    Petit, J-M; Magistretti, P J

    2016-05-26

    Over the last thirty years, a growing number of studies showed that astrocytes play a pivotal role in the energy support to synapses. More precisely, astrocytes adjust energy production to neuronal energy needs through different mechanisms grouped under the term "neurometabolic coupling" (NMC). In this review we describe these mechanisms of coupling and how they involve astrocytes. From a physiological point of view, these mechanisms of coupling are particularly important to ensure normal synaptic functioning when neurons undergo rapid and repetitive changes in the firing rate such as during the sleep/wake transitions. Investigations into brain energy metabolism during the sleep/wake cycle have been mainly focused on glucose (Gluc) consumption and on glycogen metabolism. However, the recent development of substrate-specific biosensors allowed measurements of the variation in extracellular levels of glutamate, Gluc and lactate (Lac) with a time resolution compatible with sleep stage duration. Together with gene expression data these experiments allowed to better define the variations of energy metabolite regulation across the sleep/wake cycle. The aim of this review is to bring into perspective the role of astrocytes and NMC in the regulation of the sleep/wake cycle. The data reviewed also suggest an important role of the astrocytic network. In addition, the role of astrocytes in NMC mechanisms is consistent with the "local and use dependent" sleep hypothesis. PMID:26704637

  17. Regulation of Neuron-Astrocyte Metabolic Coupling across the Sleep-Wake Cycle

    KAUST Repository

    Petit, Jean-Marie

    2015-12-17

    Over the last thirty years, a growing number of studies showed that astrocytes play a pivotal role in the energy support to synapses. More precisely, astrocytes adjust the energy production to the neuronal energy needs through different mechanisms grouped under the term “neurometabolic coupling” (NMC). In this review we describe these mechanisms of coupling and how they involve astrocytes. From a physiological point of view, these mechanisms of coupling are particularly important to ensure normal synaptic functioning when neurons undergo rapid and repetitive changes in firing rate such as during the sleep/wake transitions. Investigations on brain energy metabolism during the sleep/wake cycle have been mainly focused on glucose consumption and on glycogen metabolism. However, the recent development of substrate-specific biosensors allowed measurements of the variation in extracellular levels of glutamate, glucose and lactate with a time resolution compatible with sleep stage duration. Together with gene expression data these experiments allowed to better define the variations of energy metabolites regulation across the sleep/wake cycle. The aim of this review is to bring into perspective the role of astrocytes and neurometabolic coupling in the regulation of the sleep/wake cycle. The data reviewed also suggest an important role of the astrocytic network. In addition, the role of astrocytes in NMC mechanisms is consistent with the “local and use dependent” sleep hypothesis.

  18. White matter astrocytes in health and disease

    OpenAIRE

    Lundgaard, Iben; Osório, Maria Joana; Kress, Benjamin; Sanggaard, Simon; NEDERGAARD, Maiken

    2013-01-01

    Myelination by oligodendrocytes is a highly specialized process that relies on intimate interactions between the axon and oligodendrocyte. Astrocytes also have an important part in facilitating myelination in the CNS, however, comparatively less is known about how they affect myelination. This review therefore summarizes the literature and explores lingering questions surrounding differences between white matter and grey matter astrocytes, how astrocytes support myelination, how their dysfunc...

  19. Glial Scar Borders Are Formed by Newly Proliferated, Elongated Astrocytes That Interact to Corral Inflammatory and Fibrotic Cells via STAT3-Dependent Mechanisms after Spinal Cord Injury

    OpenAIRE

    Wanner, Ina B.; Anderson, Mark A.; Song, Bingbing; Levine, Jaclynn; Fernandez, Ana; Gray-Thompson, Zachary; Ao, Yan; Michael V Sofroniew

    2013-01-01

    Astroglial scars surround damaged tissue after trauma, stroke, infection, or autoimmune inflammation in the CNS. They are essential for wound repair, but also interfere with axonal regrowth. A better understanding of the cellular mechanisms, regulation, and functions of astroglial scar formation is fundamental to developing safe interventions for many CNS disorders. We used wild-type and transgenic mice to quantify and dissect these parameters. Adjacent to crush spinal cord injury (SCI), reac...

  20. Contributions of Astrocytes to Epileptogenesis Following Status Epilepticus: Opportunities for Preventive Therapy?

    OpenAIRE

    Gibbons, M.B.; Smeal, R.M.; Takahashi, D.K.; Vargas, J.R.; Wilcox, K.S.

    2012-01-01

    Status epilepticus (SE) is a life threatening condition that often precedes the development of epilepsy. Traditional treatments for epilepsy have been focused on targeting neuronal mechanisms contributing to hyperexcitability, however, approximately 30% of patients with epilepsy do not respond to existing neurocentric pharmacotherapies. A growing body of evidence has demonstrated that profound changes in the morphology and function of astrocytes accompany SE and persist in epilepsy. Astrocyte...

  1. Intercellular synchronization of diffusively coupled astrocytes

    CERN Document Server

    Alam, Md Jahoor; Devi, Gurumayum Reenaroy; Singh, Heisnam Dinachandra; Singh, R K Brojen; Sharma, B Indrajit

    2010-01-01

    We examine the synchrony of the dynamics of localized [Ca^{2+}]_i oscillations in internal pool of astrocytes via diffusing coupling of a network of such cells in a certain topology where cytosolic Ca^{2+} and inositol 1,4,5-triphosphate (IP3) are coupling molecules; and possible long range interaction among the cells. Our numerical results claim that the cells exhibit fairly well coordinated behaviour through this coupling mechanism. It is also seen in the results that as the number of coupling molecular species is increased, the rate of synchrony is also increased correspondingly. Apart from the topology of the cells taken, as the number of coupled cells around any one of the cells in the system is increased, the cell process information faster.

  2. H1-antihistamines induce vacuolation in astrocytes through macroautophagy

    International Nuclear Information System (INIS)

    H1-antihistamines induce vacuolation in vascular smooth muscle cells, which may contribute to their cardiovascular toxicity. The CNS toxicity of H1-antihistamines may also be related to their non-receptor-mediated activity. The aim of this study was to investigate whether H1-antihistamines induce vacuolation in astrocytes and the mechanism involved. The H1-antihistamines induced large numbers of giant vacuoles in astrocytes. Such vacuoles were marked with both the lysosome marker Lysotracker Red and the alkalescent fluorescence dye monodansylcadaverine, which indicated that these vacuoles were lysosome-like acidic vesicles. Quantitative analysis of monodansylcadaverine fluorescence showed that the effect of H1-antihistamines on vacuolation in astrocytes was dose-dependent, and was alleviated by extracellular acidification, but aggravated by extracellular alkalization. The order of potency to induce vacuolation at high concentrations of H1-antihistamines (diphenhydramine > pyrilamine > astemizole > triprolidine) corresponded to their pKa ranking. Co-treatment with histamine and the histamine receptor-1 agonist trifluoromethyl toluidide did not inhibit the vacuolation. Bafilomycin A1, a vacuolar (V)-ATPase inhibitor, which inhibits intracellular vacuole or vesicle acidification, clearly reversed the vacuolation and intracellular accumulation of diphenhydramine. The macroautophagy inhibitor 3-methyladenine largely reversed the percentage of LC3-positive astrocytes induced by diphenhydramine, while only partly reversing the number of monodansylcadaverine-labeled vesicles. In Atg5−/− mouse embryonic fibroblasts, which cannot form autophagosomes, the number of vacuoles induced by diphenhydramine was less than that in wild-type cells. These results indicated that H1-antihistamines induce V-ATPase-dependent acidic vacuole formation in astrocytes, and this is partly mediated by macroautophagy. The pKa and alkalescent characteristic of H1-antihistamines may be the major

  3. H1-antihistamines induce vacuolation in astrocytes through macroautophagy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei-Wei; Yang, Ying; Wang, Zhe; Shen, Zhe; Zhang, Xiang-Nan [Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058 (China); Wang, Guang-Hui [College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 (China); Chen, Zhong, E-mail: chenzhong@zju.edu.cn [Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058 (China)

    2012-04-15

    H1-antihistamines induce vacuolation in vascular smooth muscle cells, which may contribute to their cardiovascular toxicity. The CNS toxicity of H1-antihistamines may also be related to their non-receptor-mediated activity. The aim of this study was to investigate whether H1-antihistamines induce vacuolation in astrocytes and the mechanism involved. The H1-antihistamines induced large numbers of giant vacuoles in astrocytes. Such vacuoles were marked with both the lysosome marker Lysotracker Red and the alkalescent fluorescence dye monodansylcadaverine, which indicated that these vacuoles were lysosome-like acidic vesicles. Quantitative analysis of monodansylcadaverine fluorescence showed that the effect of H1-antihistamines on vacuolation in astrocytes was dose-dependent, and was alleviated by extracellular acidification, but aggravated by extracellular alkalization. The order of potency to induce vacuolation at high concentrations of H1-antihistamines (diphenhydramine > pyrilamine > astemizole > triprolidine) corresponded to their pKa ranking. Co-treatment with histamine and the histamine receptor-1 agonist trifluoromethyl toluidide did not inhibit the vacuolation. Bafilomycin A1, a vacuolar (V)-ATPase inhibitor, which inhibits intracellular vacuole or vesicle acidification, clearly reversed the vacuolation and intracellular accumulation of diphenhydramine. The macroautophagy inhibitor 3-methyladenine largely reversed the percentage of LC3-positive astrocytes induced by diphenhydramine, while only partly reversing the number of monodansylcadaverine-labeled vesicles. In Atg5{sup −/−} mouse embryonic fibroblasts, which cannot form autophagosomes, the number of vacuoles induced by diphenhydramine was less than that in wild-type cells. These results indicated that H1-antihistamines induce V-ATPase-dependent acidic vacuole formation in astrocytes, and this is partly mediated by macroautophagy. The pKa and alkalescent characteristic of H1-antihistamines may be the

  4. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Andrej Korenić

    Full Text Available Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψ(m in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD, OGD and combinations of both conditions varying in duration and sequence. Changes in Δψ(m, visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψ(m during reperfusion, whereas GD caused a robust Δψ(m negativation. In case no Δψ(m negativation was observed after OGD, subsequent chemical oxygen deprivation (OD induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψ(m hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen and their hyperpolarizing effect on Δψ(m during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury.

  5. H1-antihistamines induce vacuolation in astrocytes through macroautophagy.

    Science.gov (United States)

    Hu, Wei-Wei; Yang, Ying; Wang, Zhe; Shen, Zhe; Zhang, Xiang-Nan; Wang, Guang-Hui; Chen, Zhong

    2012-04-15

    H1-antihistamines induce vacuolation in vascular smooth muscle cells, which may contribute to their cardiovascular toxicity. The CNS toxicity of H1-antihistamines may also be related to their non-receptor-mediated activity. The aim of this study was to investigate whether H1-antihistamines induce vacuolation in astrocytes and the mechanism involved. The H1-antihistamines induced large numbers of giant vacuoles in astrocytes. Such vacuoles were marked with both the lysosome marker Lysotracker Red and the alkalescent fluorescence dye monodansylcadaverine, which indicated that these vacuoles were lysosome-like acidic vesicles. Quantitative analysis of monodansylcadaverine fluorescence showed that the effect of H1-antihistamines on vacuolation in astrocytes was dose-dependent, and was alleviated by extracellular acidification, but aggravated by extracellular alkalization. The order of potency to induce vacuolation at high concentrations of H1-antihistamines (diphenhydramine>pyrilamine>astemizole>triprolidine) corresponded to their pKa ranking. Co-treatment with histamine and the histamine receptor-1 agonist trifluoromethyl toluidide did not inhibit the vacuolation. Bafilomycin A1, a vacuolar (V)-ATPase inhibitor, which inhibits intracellular vacuole or vesicle acidification, clearly reversed the vacuolation and intracellular accumulation of diphenhydramine. The macroautophagy inhibitor 3-methyladenine largely reversed the percentage of LC3-positive astrocytes induced by diphenhydramine, while only partly reversing the number of monodansylcadaverine-labeled vesicles. In Atg5⁻/⁻ mouse embryonic fibroblasts, which cannot form autophagosomes, the number of vacuoles induced by diphenhydramine was less than that in wild-type cells. These results indicated that H1-antihistamines induce V-ATPase-dependent acidic vacuole formation in astrocytes, and this is partly mediated by macroautophagy. The pKa and alkalescent characteristic of H1-antihistamines may be the major

  6. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation.

    Science.gov (United States)

    Korenić, Andrej; Boltze, Johannes; Deten, Alexander; Peters, Myriam; Andjus, Pavle; Radenović, Lidija

    2014-01-01

    Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD) as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψ(m)) in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD), OGD and combinations of both conditions varying in duration and sequence. Changes in Δψ(m), visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψ(m) during reperfusion, whereas GD caused a robust Δψ(m) negativation. In case no Δψ(m) negativation was observed after OGD, subsequent chemical oxygen deprivation (OD) induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψ(m) hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen) and their hyperpolarizing effect on Δψ(m) during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury. PMID:24587410

  7. Mechanism for explaining differences in the order parameters of FeAs-based and FeP-based pnictide superconductors.

    Science.gov (United States)

    Thomale, Ronny; Platt, Christian; Hanke, Werner; Bernevig, B Andrei

    2011-05-01

    We put forward a scenario that explains the difference between the order-parameter character in arsenide (As) and phosphorous (P) iron-based superconductors. Using functional renormalization group to analyze it in detail, we find that nodal superconductivity on the electron pockets (hole pocket gaps are always nodeless) can naturally appear when the hole pocket at (π,π) in the unfolded Brillouin zone is absent, as is the case in LaOFeP. There, electron-electron interactions render the gap on the electron pockets softly nodal (of s(±) form). When the pocket of d(xy) orbital character is present, intraorbital interactions with the d(xy) part of the electron Fermi surface drives the superconductivity nodeless.

  8. Specialized contacts of astrocytes with astrocytes and with other cell types in the hypothalamus of the hamster.

    OpenAIRE

    Suarez Najera, I; Fernandez Ruiz, B; Garcia Segura, L M

    1980-01-01

    Adult hamsters were used for this electron microscopic study of the hypothalamic region. Specialized contacts between astrocytes and astrocytes, and between astrocytes and other cellular elements, are described and illustrated. The specialized inter-astrocytic junctions occur primarily in perivascular and subpial regions, but also in areas of high synaptic density. The junctions between astrocytic processes are of hemidesmosomal type. Astrocytes are connected to oligodendroglial cells by mean...

  9. Explaining Convergence

    DEFF Research Database (Denmark)

    Ooi, Can-Seng

    however overshadows another important complementary – but under-theorized and tacit – strategy: the accreditation approach. This paper gives attention to the accreditation strategy while presenting the branding of Singapore as a tourist destination. By looking at the Formula One car races in Singapore......It is widely assumed that the practice of city branding attempts to frame the place in a unique manner, so that it will stand out globally. The assertion of uniqueness has become an institutionalized global practice for celebrating city identity. The emphasis on uniqueness in the place brand...... as vibrant, glamorous and trendy. So, this paper shows why city branding authorities are learning from each other and pursuing similar ways in place branding. This partly explains why cities are becoming more alike, rather than different....

  10. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    International Nuclear Information System (INIS)

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures

  11. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M. (Cleveland Clinic Foundation, OH (USA))

    1990-08-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures.

  12. Behavioral avoidance: Possible mechanism for explaining abundance and distribution of trout species in a metal-impacted river

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J.A.; Bergman, H.L. [Univ. of Wyoming, Laramie, WY (United States); Woodward, D.F. [Geological Survey, Jackson, WY (United States). Environmental and Contaminants Research Center; Little, E.E.; DeLonay, A.J. [Geological Survey, Columbia, MO (United States). Environmental and Contaminants Research Center

    1999-02-01

    Behavioral avoidance of metal mixtures by rainbow trout (Oncorhynchus mykiss) was determined in the laboratory under water quality conditions that simulated the upper Clark Fork River, Montana, USA. A metal mixture with a fixed ratio of observed ambient metal concentrations (12 {micro}g/L Cu:1.1 {micro}g/L Cd:3.2 {micro}g/L Pb:50 {micro}g/L Zn) was used to determine avoidance in a countercurrent avoidance chamber. Rainbow trout avoided all metal concentrations tested from 10 to 1,000% of the simulated ambient metal mixture. The behavioral response of rainbow trout to the metal mixture was more sensitive than the response of brown trout (Salmo trutta) previously reported from the same laboratory under the same experimental conditions. Additionally, rainbow trout that were acclimated to the simulated ambient metal mixture for 45 d preferred clean water and avoided higher metal concentrations. Therefore, laboratory experiments on the behavioral avoidance responses of rainbow trout, as well as previously reported experiments on brown trout, show that both species will avoid typical metal concentrations observed on the Clark Fork River. And the greater sensitivity of rainbow trout to the metal mixture may explain, in part, why rainbow trout populations appear to be more severely affected, compared to brown trout populations, in the upper Clark Fork River.

  13. Behavioral avoidance: Possible mechanism for explaining abundance and distribution of trout species in a metal-impacted river

    Science.gov (United States)

    Hansen, J.A.; Woodward, D.F.; Little, E.E.; DeLonay, A.J.; Bergman, H.L.

    1999-01-01

    Behavioral avoidance of metal mixtures by rainbow trout (Oncorhynchus mykiss) was determined in the laboratory under water quality conditions that simulated the upper Clark Fork River, Montana, USA. A metal mixture with a fixed ratio of observed ambient metal concentrations (12 mg/L Cu: 1.1 ??g/L Cd:3.2 ??g/L Pb:50 ??g/L Zn) was used to determine avoidance in a countercurrent avoidance chamber. Rainbow trout avoided all metal concentrations tested from 10 to 1,000% of the simulated ambient metal mixture. The behavioral response of rainbow trout to the metal mixture was more sensitive than the response of brown trout (Salmo trutta) previously reported from the same laboratory under the same experimental conditions. Additionally, rainbow trout that were acclimated to the simulated ambient metal mixture for 45 d preferred clean water and avoided higher metal concentrations. Therefore, our laboratory experiments on the behavioral avoidance responses of rainbow trout, as well as previously reported experiments on brown trout, show that both species will avoid typical metal concentrations observed on the Clark Fork River. And the greater sensitivity of rainbow trout to the metal mixture may explain, in part, why rainbow trout populations appear to be more severely affected, compared to brown trout populations; in the upper Clark Fork River.

  14. Astrocytes and Developmental White Matter Disorders

    Science.gov (United States)

    Sen, Ellora; Levison, Steven W.

    2006-01-01

    There is an increasing awareness that the astrocytes in the immature periventricular white matter are vulnerable to ischemia and respond to inflammation. Here we provide a synopsis of the articles that have evaluated the causes and consequences of developmental brain injuries to white matter astrocytes as well as the consequences of several…

  15. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H;

    2015-01-01

    skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  16. Progesterone exerts neuroprotective effects against Aβ-induced neuroinflammation by attenuating ER stress in astrocytes.

    Science.gov (United States)

    Hong, Yang; Wang, Xiaomin; Sun, Shuang; Xue, Gai; Li, Jianli; Hou, Yanning

    2016-04-01

    The deposition of amyloid-β (Aβ) and neuroinflammation are critical pathological features of Alzheimer's disease (AD). Astrocytes are considered the principal immunoregulatory cells in the brain. Neurosteroid progesterone (PG) exerts neuromodulatory properties, particularly its potential therapeutic function in ameliorating AD. However, the role of PG and the neuroprotective mechanism involving in the regulation of neuroinflammation in astrocytes warrant further investigation. In this study, we found that Aβ significantly increased the processing of neuroinflammatory responses in astrocytes. The processing is induced by an increase activity of PERK/elF2ɑ-dependent endoplasmic reticulum (ER) stress. Additionally, the inhibition of ER stress activation by Salubrinal significantly suppressed the Aβ-induced neuroinflammatory responses in astrocytes. While the treatment of astrocytes with Aβ caused an increase of neuroinflammatory responses, PG significantly inhibited Aβ-induced neuroinflammatory cytokine production by suppressing ER stress activation together with attenuating PERK/elF2ɑ signalling. Taken together, these results indicate that PG exerts a neuroprotective effect against Aβ-induced neuroinflammatory responses, and significantly suppresses ER stress activation, which is an important mediator of the neurotoxic events occurring in Aβ-induced neuroinflammatory responses in astrocytes. These neuroprotective mechanisms may facilitate the development of therapies to ameliorate AD. PMID:26878478

  17. Neuron-astrocyte interaction enhance GABAergic synaptic transmission in a manner dependent on key metabolic enzymes.

    Directory of Open Access Journals (Sweden)

    Przemysław eKaczor

    2015-04-01

    Full Text Available GABA is the major inhibitory neurotransmitter in the adult brain and mechanisms of GABAergic inhibition have been intensely investigated in the past decades. Recent studies provided evidence for an important role of astrocytes in shaping GABAergic currents. One of the most obvious, but yet poorly understood, mechanisms of the cross-talk between GABAergic currents and astrocytes is metabolism including neurotransmitter homeostasis. In particular, how modulation of GABAergic currents by astrocytes depends on key enzymes involved in cellular metabolism remains largely unknown. To address this issue, we have considered two simple models of neuronal cultures: nominally astrocyte-free neuronal culture (NC and neuronal-astrocytic co-cultures (ANCC and miniature Inhibitory Postsynaptic Currents (mIPSCs were recorded in control conditions and in the presence of respective enzyme blockers. We report that enrichment of neuronal culture with astrocytes results in a marked increase in mIPSC frequency. This enhancement of GABAergic activity was accompanied by increased number of GAD65 and vGAT puncta, indicating that at least a part of the frequency enhancement was due to increased number of synaptic contacts. Inhibition of glutamine synthetase (with MSO strongly reduced mIPSC frequency in ANCC but had no effect in NC. Moreover, treatment of ANCC with inhibitor of glycogen phosphorylase (BAYU6751 or with selective inhibitor of astrocytic Krebs cycle,fluoroacetate, resulted in a marked reduction of mIPSC frequency in ANCC having no effect in NC. We conclude that GABAergic synaptic transmission strongly depends on neuron-astrocyte interaction in a manner dependent on key metabolic enzymes as well as on the Krebs cycle.

  18. Micropatterned substrates for studying astrocytes in culture

    Directory of Open Access Journals (Sweden)

    William Lee

    2009-12-01

    Full Text Available Recent studies of the physiological roles of astrocytes have ignited renewed interest in the functional significance of these glial cells in the central nervous system. Many of the newly discovered astrocytic functions were initially demonstrated and characterized in cell culture systems. We discuss the use of microculture techniques and micropatterning of cell-adhesive substrates in studies of astrocytic Ca2+ excitability and bidirectional neuron-astrocyte signaling. This culturing approach aims to reduce the level of complexity of the system by limiting the interacting partners and by controlling the localization of cells. It provides tight control over experimental conditions allowing detailed characterization of cellular functions and intercellular communication. Although such a reductionist approach yields some difference in observations between astrocytic properties in culture and in situ, general phenomena discovered in cell culture systems, however, have also been found in vivo.

  19. Filtering fens: mechanisms explaining phosphorus-limited hotspots of biodiversity in wetlands adjacent to heavily fertilized areas.

    Science.gov (United States)

    Cusell, Casper; Kooijman, Annemieke; Fernandez, Filippo; van Wirdum, Geert; Geurts, Jeroen J M; van Loon, E Emiel; Kalbitz, Karsten; Lamers, Leon P M

    2014-05-15

    The conservation of biodiverse wetland vegetation, including that of rich fens, has a high priority at a global scale. Although P-eutrophication may strongly decrease biodiversity in rich fens, some well-developed habitats do still survive in highly fertilized regions due to nutrient filtering services of large wetlands. The occurrence of such nutrient gradients is well-known, but the biogeochemical mechanisms that determine these patterns are often unclear. We therefore analyzed chemical speciation and binding of relevant nutrients and minerals in surface waters, soils and plants along such gradients in the large Ramsar nature reserve Weerribben-Wieden in the Netherlands. P-availability was lowest in relatively isolated floating rich fens, where plant N:P ratios indicated P-limitation. P-limitation can persist here despite high P-concentrations in surface waters near the peripheral entry locations, because only a small part of the P-input reaches the more isolated waters and fens. This pattern in P-availability appears to be primarily due to precipitation of Fe-phosphates, which mainly occurs close to entry locations as indicated by decreasing concentrations of Fe- and Al-bound P in the sub-aquatic sediments along this gradient. A further decrease of P-availability is caused by biological sequestration, which occurs throughout the wetland as indicated by equal concentrations of organic P in all sub-aquatic sediments. Our results clearly show that the periphery of large wetlands does indeed act as an efficient P-filter, sustaining the necessary P-limitation in more isolated parts. However, this filtering function does harm the ecological quality of the peripheral parts of the reserve. The filtering mechanisms, such as precipitation of Fe-phosphates and biological uptake of P, are crucial for the conservation and restoration of biodiverse rich fens in wetlands that receive eutrophic water from their surroundings. This seems to implicate that biodiverse wetland

  20. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid.

    Science.gov (United States)

    O'Shea, Eileen F; Cotter, Paul D; Stanton, Catherine; Ross, R Paul; Hill, Colin

    2012-01-16

    The mechanisms by which intestinal bacteria achieve their associated health benefits can be complex and multifaceted. In this respect, the diverse microbial composition of the human gastrointestinal tract (GIT) provides an almost unlimited potential source of bioactive substances (pharmabiotics) which can directly or indirectly affect human health. Bacteriocins and fatty acids are just two examples of pharmabiotic substances which may contribute to probiotic functionality within the mammalian GIT. Bacteriocin production is believed to confer producing strains with a competitive advantage within complex microbial environments as a consequence of their associated antimicrobial activity. This has the potential to enable the establishment and prevalence of producing strains as well as directly inhibiting pathogens within the GIT. Consequently, these antimicrobial peptides and the associated intestinal producing strains may be exploited to beneficially influence microbial populations. Intestinal bacteria are also known to produce a diverse array of health-promoting fatty acids. Indeed, certain strains of intestinal bifidobacteria have been shown to produce conjugated linoleic acid (CLA), a fatty acid which has been associated with a variety of systemic health-promoting effects. Recently, the ability to modulate the fatty acid composition of the liver and adipose tissue of the host upon oral administration of CLA-producing bifidobacteria and lactobacilli was demonstrated in a murine model. Importantly, this implies a potential therapeutic role for probiotics in the treatment of certain metabolic and immunoinflammatory disorders. Such examples serve to highlight the potential contribution of pharmabiotic production to probiotic functionality in relation to human health maintenance. PMID:21742394

  1. Biomechanical and proteomic analysis of INF- {beta}-treated astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Vergara, Daniele; Leporatti, Stefano; Maruccio, Giuseppe; Cingolani, Roberto; Rinaldi, Ross [National Nanotechnology Laboratory of CNR-INFM, ISUFI, University of Lecce, Italian Institute of Technology (IIT) Research Unit, via Arnesano, I-73100 Lecce (Italy); Martignago, Roberta; Nuccio, Franco De; Nicolardi, Giuseppe; Maffia, Michele [Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, I-73100 Lecce (Italy); Bonsegna, Stefania; Santino, Angelo, E-mail: michele.maffia@unile.i, E-mail: ross.rinaldi@unile.i [Institute of Sciences of Food Production CNR, Unit of Lecce I-73100 (Italy)

    2009-11-11

    Astrocytes have a key role in the pathogenesis of several diseases including multiple sclerosis and were proposed as the designed target for immunotherapy. In this study we used atomic force microscopy (AFM) and proteomics methods to analyse and correlate the modifications induced in the viscoleastic properties of astrocytes to the changes induced in protein expression after interferon- {beta} (IFN-{beta}) treatment. Our results indicated that IFN-{beta} treatment resulted in a significant decrease in the Young's modulus, a measure of cell elasticity, in comparison with control cells. The molecular mechanisms that trigger these changes were investigated by 2DE (two-dimensional electrophoresis) and confocal analyses and confirmed by western blotting. Altered proteins were found to be involved in cytoskeleton organization and other important physiological processes.

  2. Biomechanical and proteomic analysis of INF- β-treated astrocytes

    Science.gov (United States)

    Vergara, Daniele; Martignago, Roberta; Leporatti, Stefano; Bonsegna, Stefania; Maruccio, Giuseppe; De Nuccio, Franco; Santino, Angelo; Cingolani, Roberto; Nicolardi, Giuseppe; Maffia, Michele; Rinaldi, Ross

    2009-11-01

    Astrocytes have a key role in the pathogenesis of several diseases including multiple sclerosis and were proposed as the designed target for immunotherapy. In this study we used atomic force microscopy (AFM) and proteomics methods to analyse and correlate the modifications induced in the viscoleastic properties of astrocytes to the changes induced in protein expression after interferon- β (IFN-β) treatment. Our results indicated that IFN-β treatment resulted in a significant decrease in the Young's modulus, a measure of cell elasticity, in comparison with control cells. The molecular mechanisms that trigger these changes were investigated by 2DE (two-dimensional electrophoresis) and confocal analyses and confirmed by western blotting. Altered proteins were found to be involved in cytoskeleton organization and other important physiological processes.

  3. Biomechanical and proteomic analysis of INF- β-treated astrocytes

    International Nuclear Information System (INIS)

    Astrocytes have a key role in the pathogenesis of several diseases including multiple sclerosis and were proposed as the designed target for immunotherapy. In this study we used atomic force microscopy (AFM) and proteomics methods to analyse and correlate the modifications induced in the viscoleastic properties of astrocytes to the changes induced in protein expression after interferon- β (IFN-β) treatment. Our results indicated that IFN-β treatment resulted in a significant decrease in the Young's modulus, a measure of cell elasticity, in comparison with control cells. The molecular mechanisms that trigger these changes were investigated by 2DE (two-dimensional electrophoresis) and confocal analyses and confirmed by western blotting. Altered proteins were found to be involved in cytoskeleton organization and other important physiological processes.

  4. Computational model of neuron-astrocyte interactions during focal seizure generation

    Directory of Open Access Journals (Sweden)

    Davide eReato

    2012-10-01

    Full Text Available Empirical research in the last decade revealed that astrocytes can respond to neurotransmitters with Ca2+ elevations and generate feedback signals to neurons which modulate synaptic transmission and neuronal excitability. This discovery changed our basic understanding of brain function and provided new perspectives for how astrocytes can participate not only to information processing, but also to the genesis of brain disorders, such as epilepsy. Epilepsy is a neurological disorder characterized by recurrent seizures that can arise focally at restricted areas and propagate throughout the brain. Studies in brain slice models suggest that astrocytes contribute to epileptiform activity by increasing neuronal excitability through a Ca2+-dependent release of glutamate. The underlying mechanism remains, however, unclear. In this study, we implemented a parsimonious network model of neurons and astrocytes. The model consists of excitatory and inhibitory neurons described by Izhikevich's neuron dynamics. The experimentally observed Ca2+ change in astrocytes in response to neuronal activity was modeled with linear equations. We considered that glutamate is released from astrocytes above certain intracellular Ca2+ concentrations thus providing a non-linear positive feedback signal to neurons. Propagating seizure-like ictal discharges (IDs were reliably evoked in our computational model by repeatedly exciting a small area of the network, which replicates experimental results in a slice model of focal ID in entorhinal cortex. We found that the threshold of focal ID generation was lowered when an excitatory feedback-loop between astrocytes and neurons was included. Simulations show that astrocytes can contribute to ID generation by directly affecting the excitatory/inhibitory balance of the neuronal network. Our model can be used to obtain mechanistic insights into the distinct contributions of the different signaling pathways to the generation and

  5. Genes involved in the astrocyte-neuron lactate shuttle (ANLS) are specifcally regulated in cortical astrocytes following sleep deprivation in mice

    KAUST Repository

    Petit, Jean Marie

    2013-10-01

    Study Objectives: There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifcally in astrocytes following sleep deprivation. Astrocytes were purifed by fuorescence-activated cell sorting from transgenic mice expressing the green fuorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. Design: 6-hour instrumental sleep deprivation (TSD). Setting: Animal sleep research laboratory. Participants: Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. Interventions: Basal sleep recordings and sleep deprivation achieved using a modifed cage where animals were gently forced to move. Measurements and Results: Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, a-2-Na/K pump, Glt1, and Ldha mRNAs were signifcantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not signifcant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. Conclusions: This study shows that TSD induces the expression of genes associated with ANLS specifcally in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.

  6. Microgravity environment and compensatory: Decompensatory phases for intracranial hypertension form new perspectives to explain mechanism underlying communicating hydrocephalus and its related disorders.

    Science.gov (United States)

    Idris, Zamzuri; Mustapha, Muzaimi; Abdullah, Jafri M

    2014-01-01

    The pathogenesis underlying communicating hydrocephalus has been centered on impaired cerebrospinal fluid (CSF) outflow secondary to abnormal CSF pulsation and venous hypertension. Hydrodynamic theory of hydrocephalus fares better than traditional theory in explaining the possible mechanisms underlying communicating hydrocephalus. Nonetheless, hydrodynamic theory alone could not fully explain some conditions that have ventriculomegaly but without hydrocephalus. By revisiting brain buoyancy from a fresher perspective, called microgravity environment of the brain, introducing wider concepts of anatomical and physiological compensatory-decompensatory phases for a persistent raise in intracranial pressure, and along with combining these two concepts with the previously well-accepted concepts of Monro-Kellie doctrine, intracranial hypertension, cerebral blood flow, cerebral perfusion pressure, brain compliance and elasticity, cerebral autoregulation, blood-brain and blood-CSF barriers, venous and cardiopulmonary hypertension, Windkessel phenomenon, and cerebral pulsation, we provide plausible explanations to the pathogenesis for communicating hydrocephalus and its related disorders. PMID:24891884

  7. Excitatory amino acid-stimulated uptake of 22Na+ in primary astrocyte cultures

    International Nuclear Information System (INIS)

    In this study we have found that L-glutamic acid, as well as being taken up by a Na+-dependent mechanism, will stimulate the uptake of 22Na+ by primary astrocyte cultures from rat brain in the presence of ouabain. By simultaneously measuring the uptake of 22Na+ and L-3H-glutamate a stoichiometry of 2-3 Na+ per glutamate was measured, implying electrogenic uptake. Increasing the medium K+ concentration to depolarize the cells inhibited L-3H-glutamate uptake, while calculations of the energetics of the observed L-3H-glutamate accumulation also supported an electrogenic mechanism of at least 2 Na+:1 glutamate. In contrast, kinetic analysis of the Na+ dependence of L-3H-glutamate uptake indicated a stoichiometry of Na+ to glutamate of 1:1, but further analysis showed that the stoichiometry cannot be resolved by purely kinetic studies. Studies with glutamate analogs, however, showed that kainic acid was a very effective stimulant of 22Na+ uptake, but 3H-kainic acid showed no Na+ -dependent uptake. Furthermore, while L-3H-glutamate uptake was very sensitive to lowered temperatures, glutamate-stimulated 22Na+ uptake was relatively insensitive. These results indicate that glutamate-stimulated uptake of 22Na+ in primary astrocytes cultures cannot be explained solely by cotransport of Na+ with glutamate, and they suggest that direct kainic acid-type receptor induced stimulation of Na+ uptake also occurs. Since both receptor and uptake effects involve transport of Na+, accurate measurements of the Na+ :glutamate stoichiometry for uptake can only be done using completely specific inhibitors of these 2 systems

  8. Artificial astrocytes improve neural network performance.

    Directory of Open Access Journals (Sweden)

    Ana B Porto-Pazos

    Full Text Available Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN and artificial neuron-glia networks (NGN to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  9. Loose excitation-secretion coupling in astrocytes.

    Science.gov (United States)

    Vardjan, Nina; Parpura, Vladimir; Zorec, Robert

    2016-05-01

    Astrocytes play an important housekeeping role in the central nervous system. Additionally, as secretory cells, they actively participate in cell-to-cell communication, which can be mediated by membrane-bound vesicles. The gliosignaling molecules stored in these vesicles are discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This process is termed exocytosis, regulated by SNARE proteins, and triggered by elevations in cytosolic calcium levels, which are necessary and sufficient for exocytosis in astrocytes. For astrocytic exocytosis, calcium is sourced from the intracellular endoplasmic reticulum store, although its entry from the extracellular space contributes to cytosolic calcium dynamics in astrocytes. Here, we discuss calcium management in astrocytic exocytosis and the properties of the membrane-bound vesicles that store gliosignaling molecules, including the vesicle fusion machinery and kinetics of vesicle content discharge. In astrocytes, the delay between the increase in cytosolic calcium activity and the discharge of secretions from the vesicular lumen is orders of magnitude longer than that in neurons. This relatively loose excitation-secretion coupling is likely tailored to the participation of astrocytes in modulating neural network processing. PMID:26358496

  10. Three-Dimensional Environment Sustains Morphological Heterogeneity and Promotes Phenotypic Progression During Astrocyte Development.

    Science.gov (United States)

    Balasubramanian, Swarnalatha; Packard, John A; Leach, Jennie B; Powell, Elizabeth M

    2016-06-01

    Astrocytes are critical for coordinating normal brain function by regulating brain metabolic homeostasis, synaptogenesis and neurotransmission, and blood-brain barrier permeability and maintenance. Dysregulation of normal astrocyte ontogeny contributes to neurodevelopmental and neurodegenerative disorders, epilepsies, and adverse responses to injury. To achieve these multiple essential roles, astrocyte phenotypes are regionally, morphologically, and functionally heterogeneous. Therefore, the best regenerative medicine strategies may require selective production of distinct astrocyte subpopulations at defined maturation levels. However, little is known about the mechanisms that direct astrocyte diversity or whether heterogeneity is represented in biomaterials. In vitro studies report lack of normal morphologies and overrepresentation of the glial scar type of reactive astrocyte morphology and expression of markers, questioning how well the in vitro astrocytes represent glia in vivo and whether in vitro tissue engineering methods are suitable for regenerative medicine applications. Our previous work with neurons suggests that the three-dimensional (3D) environment, when compared with standard two-dimensional (2D) substrate, yields cellular and molecular behaviors that more closely approximately normal ontogeny. To specifically study the effects of dimensionality, we used purified glial fibrillary acidic protein (GFAP)-expressing primary cerebral cortical astrocyte cultures from single pups and characterized the cellular maturation profiles in 2D and 3D milieu. We identified four morphological groups in vitro: round, bipolar, stellate, and putative perivascular. In the 3D hydrogel culture environment, postnatal astrocytes transitioned from a population of nearly all round cells and very few bipolar cells toward a population with significant fractions of round, stellate, and putative perivascular cells within a few days, following the in vivo ontogeny. In 2D, however

  11. Neuronal modulation of calcium channel activity in cultured rat astrocytes.

    OpenAIRE

    Corvalan, V; Cole, R; de Vellis, J.; Hagiwara, S.

    1990-01-01

    The patch-clamp technique was used to study whether cocultivation of neurons and astrocytes modulates the expression of calcium channel activity in astrocytes. Whole-cell patch-clamp recordings from rat brain astrocytes cocultured with rat embryonic neurons revealed two types of voltage-dependent inward currents carried by Ca2+ and blocked by either Cd2+ or Co2+ that otherwise were not detected in purified astrocytes. This expression of calcium channel activity in astrocytes was neuron depend...

  12. Common astrocytic programs during brain development, injury and cancer

    OpenAIRE

    Silver, Daniel J.; Steindler, Dennis A.

    2009-01-01

    In addition to radial glial cells of neurohistogenesis, immature astrocytes with stem-cell-like properties cordon off emerging functional patterns in the developing brain. Astrocytes also can be stem cells during adult neurogenesis, and a proposed potency of injury-associated reactive astrocytes has recently been substantiated. Astrocytic cells might additionally be involved in cancer stem cell-associated gliomagenesis. Thus, there are distinguishing roles for stem-cell-like astrocytes during...

  13. Superantigen presenting capacity of human astrocytes

    DEFF Research Database (Denmark)

    Hassan-Zahraee, M; Ladiwala, U; Lavoie, P M;

    2000-01-01

    We found that human fetal astrocytes (HFA) are able to support superantigen (SAG) staphylococcal enterotoxin B (SEB) and toxic shock syndrome toxin-1 (TSST-1)-induced activation of immediately ex vivo allogenic human CD4 T cells. Using radiolabelled toxins, we demonstrate that both SEB and TSST-1...... bind with high affinity to MHC class II antigen expressing astrocytes; binding is displaceable with excess cold toxin. Competition experiments further indicate that TSST-1 and SEB at least partially compete with each other for binding to astrocytes suggesting they bind to the same HLA-DR region...

  14. Isolation and Characterization of Ischemia-Derived Astrocytes (IDAs) with Ability to Transactivate Quiescent Astrocytes

    OpenAIRE

    Villarreal, Alejandro; Rosciszewski, Gerardo; Murta, Veronica; Cadena, Vanesa; Usach, Vanina; Dodes-Traian, Martin M.; Setton-Avruj, Patricia; Barbeito, Luis H.; Ramos, Alberto J.

    2016-01-01

    Reactive gliosis involving activation and proliferation of astrocytes and microglia, is a widespread but largely complex and graded glial response to brain injury. Astroglial population has a previously underestimated high heterogeneity with cells differing in their morphology, gene expression profile, and response to injury. Here, we identified a subset of reactive astrocytes isolated from brain focal ischemic lesions that show several atypical characteristics. Ischemia-derived astrocytes (I...

  15. Association of astrocytes with neurons and astrocytes derived from distinct progenitor domains in the subpallium

    OpenAIRE

    Makio Torigoe; Kenta Yamauchi; Yan Zhu; Hiroaki Kobayashi; Fujio Murakami

    2015-01-01

    Astrocytes play pivotal roles in metabolism and homeostasis as well as in neural development and function in a manner thought to depend on their region-specific diversity. In the mouse spinal cord, astrocytes and neurons, which are derived from a common progenitor domain (PD) and controlled by common PD-specific transcription factors, migrate radially and share their final positions. However, whether astrocytes can only interact with neurons from common PDs in the brain remains unknown. Here,...

  16. Diclofenac enhances proinflammatory cytokine-induced nitric oxide production through NF-κB signaling in cultured astrocytes

    International Nuclear Information System (INIS)

    Recently, the number of reports of encephalitis/encephalopathy associated with influenza virus has increased. In addition, the use of a non-steroidal anti-inflammatory drug, diclofenac sodium (DCF), is associated with a significant increase in the mortality rate of influenza-associated encephalopathy. Activated astrocytes are a source of nitric oxide (NO), which is largely produced by inducible NO synthase (iNOS) in response to proinflammatory cytokines. Therefore, we investigated whether DCF enhances nitric oxide production in astrocytes stimulated with proinflammatory cytokines. We stimulated cultured rat astrocytes with three cytokines, interleukin-1β, tumor necrosis factor-α and interferon-γ, and then treated the astrocytes with DCF or acetaminophen (N-acetyl-p-aminophenol: APAP). iNOS and NO production in astrocyte cultures were induced by proinflammatory cytokines. The addition of DCF augmented NO production, but the addition of APAP did not. NF-κB inhibitors SN50 and MG132 inhibited iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. Similarly, NF-κB p65 Stealth small interfering RNA suppressed iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. LDH activity and DAPI staining showed that DCF induces cell damage in cytokine-stimulated astrocytes. An iNOS inhibitor, L-NMMA, inhibited the cytokine- and DCF-induced cell damage. In conclusion, this study demonstrates that iNOS and NO are induced in astrocyte cultures by proinflammatory cytokines. Addition of DCF further augments NO production. This effect is mediated via NF-κB signaling and leads to cell damage. The enhancement of DCF on NO production may explain the significant increase in the mortality rate of influenza-associated encephalopathy in patients treated with DCF.

  17. Microglia trigger astrocyte-mediated neuroprotection via purinergic gliotransmission

    Science.gov (United States)

    Shinozaki, Youichi; Nomura, Masatoshi; Iwatsuki, Ken; Moriyama, Yoshinori; Gachet, Christian; Koizumi, Schuichi

    2014-03-01

    Microglia are highly sensitive to even small changes in the brain environment, such as invasion of non-hazardous toxicants or the presymptomatic state of diseases. However, the physiological or pathophysiological consequences of their responses remain unknown. Here, we report that cultured microglia sense low concentrations of the neurotoxicant methylmercury (MeHglow) and provide neuroprotection against MeHg, for which astrocytes are also required. When exposed to MeHglow, microglia exocytosed ATP via p38 MAPK- and vesicular nucleotide transporter (VNUT)-dependent mechanisms. Astrocytes responded to the microglia-derived ATP via P2Y1 receptors and released interleukin-6 (IL-6), thereby protecting neurons against MeHglow. These neuroprotective actions were also observed in organotypic hippocampal slices from wild-type mice, but not in slices prepared from VNUT knockout or P2Y1 receptor knockout mice. These findings suggest that microglia sense and respond to even non-hazardous toxicants such as MeHglow and change their phenotype into a neuroprotective one, for which astrocytic support is required.

  18. Astrocytes release ATP through lysosomal exocytosis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Astrocytes, the most abundant type of glial cells in the brain, have been found to release signaling molecules, including adenosine triphosphate(ATP), the most important energy carrier inside the cell as well as a universal extracellular signaling molecule.

  19. Dynamic reactive astrocytes after focal ischemia

    OpenAIRE

    Ding, Shinghua

    2014-01-01

    Astrocytes are specialized and most numerous glial cell type in the central nervous system and play important roles in physiology. Astrocytes are also critically involved in many neural disorders including focal ischemic stroke, a leading cause of brain injury and human death. One of the prominent pathological features of focal ischemic stroke is reactive astrogliosis and glial scar formation associated with morphological changes and proliferation. This review paper discusses the recent advan...

  20. Excessive astrocyte-derived neurotrophin-3 contributes to the abnormal neuronal dendritic development in a mouse model of fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Qi Yang

    Full Text Available Fragile X syndrome (FXS is a form of inherited mental retardation in humans that results from expansion of a CGG repeat in the Fmr1 gene. Recent studies suggest a role of astrocytes in neuronal development. However, the mechanisms involved in the regulation process of astrocytes from FXS remain unclear. In this study, we found that astrocytes derived from a Fragile X model, the Fmr1 knockout (KO mouse which lacks FMRP expression, inhibited the proper elaboration of dendritic processes of neurons in vitro. Furthermore, astrocytic conditioned medium (ACM from KO astrocytes inhibited proper dendritic growth of both wild-type (WT and KO neurons. Inducing expression of FMRP by transfection of FMRP vectors in KO astrocytes restored dendritic morphology and levels of synaptic proteins. Further experiments revealed elevated levels of the neurotrophin-3 (NT-3 in KO ACM and the prefrontal cortex of Fmr1 KO mice. However, the levels of nerve growth factor (NGF, brain-derived neurotrophic factor (BDNF, glial cell-derived neurotrophic factor (GDNF, and ciliary neurotrophic factor (CNTF were normal. FMRP has multiple RNA-binding motifs and is involved in translational regulation. RNA-binding protein immunoprecipitation (RIP showed the NT-3 mRNA interacted with FMRP in WT astrocytes. Addition of high concentrations of exogenous NT-3 to culture medium reduced the dendrites of neurons and synaptic protein levels, whereas these measures were ameliorated by neutralizing antibody to NT-3 or knockdown of NT-3 expression in KO astrocytes through short hairpin RNAs (shRNAs. Prefrontal cortex microinjection of WT astrocytes or NT-3 shRNA infected KO astrocytes rescued the deficit of trace fear memory in KO mice, concomitantly decreased the NT-3 levels in the prefrontal cortex. This study indicates that excessive NT-3 from astrocytes contributes to the abnormal neuronal dendritic development and that astrocytes could be a potential therapeutic target for FXS.

  1. Stargazing: Monitoring subcellular dynamics of brain astrocytes.

    Science.gov (United States)

    Benjamin Kacerovsky, J; Murai, K K

    2016-05-26

    Astrocytes are major non-neuronal cell types in the central nervous system that regulate a variety of processes in the brain including synaptic transmission, neurometabolism, and cerebrovasculature tone. Recent discoveries have revealed that astrocytes perform very specialized and heterogeneous roles in brain homeostasis and function. Exactly how astrocytes fulfill such diverse roles in the brain remains to be fully understood and is an active area of research. In this review, we focus on the complex subcellular anatomical features of protoplasmic gray matter astrocytes in the mature, healthy brain that likely empower these cells with the ability to detect and respond to changes in neuronal and synaptic activity. In particular, we discuss how intricate processes on astrocytes allow these cells to communicate with neurons and their synapses and strategically deliver specific cellular organelles such as mitochondria and ribosomes to active compartments within the neuropil. Understanding the properties of these structural elements will lead to a better understanding of how astrocytes function in the healthy and diseased brain. PMID:26162237

  2. Astrocytic Vesicle Mobility in Health and Disease

    Directory of Open Access Journals (Sweden)

    Robert Zorec

    2013-05-01

    Full Text Available Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide, (ii plasma membrane exchange of transporters and receptors (EAAT2, MHC-II, and (iii the involvement of vesicle mobility carrying aquaporins (AQP4 in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  3. Astrocytic vesicle mobility in health and disease.

    Science.gov (United States)

    Potokar, Maja; Vardjan, Nina; Stenovec, Matjaž; Gabrijel, Mateja; Trkov, Saša; Jorgačevski, Jernej; Kreft, Marko; Zorec, Robert

    2013-01-01

    Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i) intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide), (ii) plasma membrane exchange of transporters and receptors (EAAT2, MHC-II), and (iii) the involvement of vesicle mobility carrying aquaporins (AQP4) in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  4. Astrocyte Aquaporin Dynamics in Health and Disease.

    Science.gov (United States)

    Potokar, Maja; Jorgačevski, Jernej; Zorec, Robert

    2016-01-01

    The family of aquaporins (AQPs), membrane water channels, consists of diverse types of proteins that are mainly permeable to water; some are also permeable to small solutes, such as glycerol and urea. They have been identified in a wide range of organisms, from microbes to vertebrates and plants, and are expressed in various tissues. Here, we focus on AQP types and their isoforms in astrocytes, a major glial cell type in the central nervous system (CNS). Astrocytes have anatomical contact with the microvasculature, pia, and neurons. Of the many roles that astrocytes have in the CNS, they are key in maintaining water homeostasis. The processes involved in this regulation have been investigated intensively, in particular regulation of the permeability and expression patterns of different AQP types in astrocytes. Three aquaporin types have been described in astrocytes: aquaporins AQP1 and AQP4 and aquaglyceroporin AQP9. The aim here is to review their isoforms, subcellular localization, permeability regulation, and expression patterns in the CNS. In the human CNS, AQP4 is expressed in normal physiological and pathological conditions, but astrocytic expression of AQP1 and AQP9 is mainly associated with a pathological state. PMID:27420057

  5. Major histocompatibility complex class I molecules protect motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Song, SungWon; Miranda, Carlos J; Braun, Lyndsey; Meyer, Kathrin; Frakes, Ashley E; Ferraiuolo, Laura; Likhite, Shibi; Bevan, Adam K; Foust, Kevin D; McConnell, Michael J; Walker, Christopher M; Kaspar, Brian K

    2016-04-01

    Astrocytes isolated from individuals with amyotrophic lateral sclerosis (ALS) are toxic to motor neurons (MNs) and play a non-cell autonomous role in disease pathogenesis. The mechanisms underlying the susceptibility of MNs to cell death remain unclear. Here we report that astrocytes derived from either mice bearing mutations in genes associated with ALS or human subjects with ALS reduce the expression of major histocompatibility complex class I (MHCI) molecules on MNs; reduced MHCI expression makes these MNs susceptible to astrocyte-induced cell death. Increasing MHCI expression on MNs increases survival and motor performance in a mouse model of ALS and protects MNs against astrocyte toxicity. Overexpression of a single MHCI molecule, HLA-F, protects human MNs from ALS astrocyte-mediated toxicity, whereas knockdown of its receptor, the killer cell immunoglobulin-like receptor KIR3DL2, on human astrocytes results in enhanced MN death. Thus, our data indicate that, in ALS, loss of MHCI expression on MNs renders them more vulnerable to astrocyte-mediated toxicity. PMID:26928464

  6. Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach.

    Directory of Open Access Journals (Sweden)

    John J Wade

    Full Text Available In recent years research suggests that astrocyte networks, in addition to nutrient and waste processing functions, regulate both structural and synaptic plasticity. To understand the biological mechanisms that underpin such plasticity requires the development of cell level models that capture the mutual interaction between astrocytes and neurons. This paper presents a detailed model of bidirectional signaling between astrocytes and neurons (the astrocyte-neuron model or AN model which yields new insights into the computational role of astrocyte-neuronal coupling. From a set of modeling studies we demonstrate two significant findings. Firstly, that spatial signaling via astrocytes can relay a "learning signal" to remote synaptic sites. Results show that slow inward currents cause synchronized postsynaptic activity in remote neurons and subsequently allow Spike-Timing-Dependent Plasticity based learning to occur at the associated synapses. Secondly, that bidirectional communication between neurons and astrocytes underpins dynamic coordination between neuron clusters. Although our composite AN model is presently applied to simplified neural structures and limited to coordination between localized neurons, the principle (which embodies structural, functional and dynamic complexity, and the modeling strategy may be extended to coordination among remote neuron clusters.

  7. Isolation and Characterization of Ischemia-Derived Astrocytes (IDAs) with Ability to Transactivate Quiescent Astrocytes

    Science.gov (United States)

    Villarreal, Alejandro; Rosciszewski, Gerardo; Murta, Veronica; Cadena, Vanesa; Usach, Vanina; Dodes-Traian, Martin M.; Setton-Avruj, Patricia; Barbeito, Luis H.; Ramos, Alberto J.

    2016-01-01

    Reactive gliosis involving activation and proliferation of astrocytes and microglia, is a widespread but largely complex and graded glial response to brain injury. Astroglial population has a previously underestimated high heterogeneity with cells differing in their morphology, gene expression profile, and response to injury. Here, we identified a subset of reactive astrocytes isolated from brain focal ischemic lesions that show several atypical characteristics. Ischemia-derived astrocytes (IDAs) were isolated from early ischemic penumbra and core. IDA did not originate from myeloid precursors, but rather from pre-existing local progenitors. Isolated IDA markedly differ from primary astrocytes, as they proliferate in vitro with high cell division rate, show increased migratory ability, have reduced replicative senescence and grow in the presence of macrophages within the limits imposed by the glial scar. Remarkably, IDA produce a conditioned medium that strongly induced activation on quiescent primary astrocytes and potentiated the neuronal death triggered by oxygen-glucose deprivation. When re-implanted into normal rat brains, eGFP-IDA migrated around the injection site and induced focal reactive gliosis. Inhibition of gamma secretases or culture on quiescent primary astrocytes monolayers facilitated IDA differentiation to astrocytes. We propose that IDA represent an undifferentiated, pro-inflammatory, highly replicative and migratory astroglial subtype emerging from the ischemic microenvironment that may contribute to the expansion of reactive gliosis. Main Points: Ischemia-derived astrocytes (IDA) were isolated from brain ischemic tissue IDA show reduced replicative senescence, increased cell division and spontaneous migration IDA potentiate death of oxygen-glucose deprived cortical neurons IDA propagate reactive gliosis on quiescent astrocytes in vitro and in vivo Inhibition of gamma secretases facilitates IDA differentiation to astrocytes PMID:27313509

  8. Carnosine decreased neuronal cell death through targeting glutamate system and astrocyte mitochondrial bioenergetics in cultured neuron/astrocyte exposed to OGD/recovery.

    Science.gov (United States)

    Ouyang, Li; Tian, Yueyang; Bao, Yun; Xu, Huijuan; Cheng, Jiaoyan; Wang, Bingyu; Shen, Yao; Chen, Zhong; Lyu, Jianxin

    2016-06-01

    Previously, we showed that carnosine upregulated the expression level of glutamate transporter 1 (GLT-1), which has been recognized as an important participant in the astrocyte-neuron lactate shuttle (ANLS), with ischemic model in vitro and in vivo. This study was designed to investigate the protective effect of carnosine on neuron/astrocyte co-cultures exposed to OGD/recovery, and to explore whether the ANLS or any other mechanism contributes to carnosine-induced neuroprotection on neuron/astrocyte. Co-cultures were treated with carnosine and exposed to OGD/recovery. Cell death and the extracellular levels of glutamate and GABA were measured. The mitochondrial respiration and glycolysis were detected by Seahorse Bioscience XF96 Extracellular Flux Analyzer. Results showed that carnosine decreased neuronal cell death, increased extracellular GABA level, and abolished the increase in extracellular glutamate and reversed the mitochondrial energy metabolism disorder induced by OGD/recovery. Carnosine also upregulated the mRNA level of neuronal glutamate transporter EAAC1 at 2h after OGD. Dihydrokainate, a specific inhibitor of GLT-1, decreased glycolysis but it did not affect mitochondrial respiration of the cells, and it could not reverse the increase in mitochondrial OXPHOS induced by carnosine in the co-cultures. The levels of mRNAs for monocarboxylate transporter1, 4 (MCT1, 4), which were expressed in astrocytes, and MCT2, the main neuronal MCT, were significantly increased at the early stage of recovery. Carnosine only partly reversed the increased expression of astrocytic MCT1 and MCT4. These results suggest that regulating astrocytic energy metabolism and extracellular glutamate and GABA levels but not the ANLS are involved in the carnosine-induced neuroprotection. PMID:27040711

  9. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    International Nuclear Information System (INIS)

    Highlights: → Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. → Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca2+ permeant SACs. → The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. → Stretch-induced ET-1 production depends on a calcium influx. → SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch (2+ threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  10. Hypoxia inducible factor-2α regulates the development of retinal astrocytic network by maintaining adequate supply of astrocyte progenitors.

    Directory of Open Access Journals (Sweden)

    Li-Juan Duan

    Full Text Available Here we investigate the role of hypoxia inducible factor (HIF-2α in coordinating the development of retinal astrocytic and vascular networks. Three Cre mouse lines were used to disrupt floxed Hif-2α, including Rosa26(CreERT2, Tie2(Cre, and GFAP(Cre. Global Hif-2α disruption by Rosa26(CreERT2 led to reduced astrocytic and vascular development in neonatal retinas, whereas endothelial disruption by Tie2(Cre had no apparent effects. Hif-2α deletion in astrocyte progenitors by GFAP(Cre significantly interfered with the development of astrocytic networks, which failed to reach the retinal periphery and were incapable of supporting vascular development. Perplexingly, the abundance of strongly GFAP(+ mature astrocytes transiently increased at P0 before they began to lag behind the normal controls by P3. Pax2(+ and PDGFRα(+ astrocytic progenitors and immature astrocytes were dramatically diminished at all stages examined. Despite decreased number of astrocyte progenitors, their proliferation index or apoptosis was not altered. The above data can be reconciled by proposing that HIF-2α is required for maintaining the supply of astrocyte progenitors by slowing down their differentiation into non-proliferative mature astrocytes. HIF-2α deficiency in astrocyte progenitors may accelerate their differentiation into astrocytes, a change which greatly interferes with the replenishment of astrocyte progenitors due to insufficient time for proliferation. Rapidly declining progenitor supply may lead to premature cessation of astrocyte development. Given that HIF-2α protein undergoes oxygen dependent degradation, an interesting possibility is that retinal blood vessels may regulate astrocyte differentiation through their oxygen delivery function. While our findings support the consensus that retinal astrocytic template guides vascular development, they also raise the possibility that astrocytic and vascular networks may mutually regulate each other

  11. Spinal astrocytes produce and secrete dynorphin neuropeptides.

    Science.gov (United States)

    Wahlert, Andrew; Funkelstein, Lydiane; Fitzsimmons, Bethany; Yaksh, Tony; Hook, Vivian

    2013-04-01

    Dynorphin peptide neurotransmitters (neuropeptides) have been implicated in spinal pain processing based on the observations that intrathecal delivery of dynorphin results in proalgesic effects and disruption of extracellular dynorphin activity (by antisera) prevents injury evoked hyperalgesia. However, the cellular source of secreted spinal dynorphin has been unknown. For this reason, this study investigated the expression and secretion of dynorphin-related neuropeptides from spinal astrocytes (rat) in primary culture. Dynorphin A (1-17), dynorphin B, and α-neoendorphin were found to be present in the astrocytes, illustrated by immunofluorescence confocal microscopy, in a discrete punctate pattern of cellular localization. Measurement of astrocyte cellular levels of these dynorphins by radioimmunoassays confirmed the expression of these three dynorphin-related neuropeptides. Notably, BzATP (3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate) and KLA (di[3-deoxy-D-manno-octulosonyl]-lipid A) activation of purinergic and toll-like receptors, respectively, resulted in stimulated secretion of dynorphins A and B. However, α-neoendorphin secretion was not affected by BzATP or KLA. These findings suggest that dynorphins A and B undergo regulated secretion from spinal astrocytes. These findings also suggest that spinal astrocytes may provide secreted dynorphins that participate in spinal pain processing.

  12. Implications of astrocytes in mediating the protective effects of Selective Estrogen Receptor Modulators upon brain damage

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-04-01

    Full Text Available Selective Estrogen Receptor Modulators (SERMs are steroidal or non-steroidal compounds that are already used in clinical practice for the treatment of breast cancer, osteoporosis and menopausal symptoms. While SERMs actions in the breast, bone, and uterus have been well characterized, their actions in the brain are less well understood. Previous works have demonstrated the beneficial effects of SERMs in different chronic neurodegenerative diseases like Alzheimer, Parkinson’s disease and Multiple sclerosis, as well as acute degeneration as stroke and traumatic brain injury. Moreover, these compounds exhibit similar protective actions as those of estradiol in the Central Nervous System, overt any secondary effect. For these reasons, in the past few years, there has been a growing interest in the neuroprotective effects exerted directly or indirectly by SERMs in the SNC. In this context, astrocytes play an important role in the maintenance of brain metabolism, and antioxidant support to neurons, thus indicating that better protection of astrocytes are an important asset targeting neuronal protection. Moreover, various clinical and experimental studies have reported that astrocytes are essential for the neuroprotective effects of SERMs during neuronal injuries, as these cells express different estrogen receptors in cell membrane, demonstrating that part of SERMs effects upon injury may be mediated by astrocytes. The present work highlights the current evidence on the protective mechanisms of SERMs, such as tamoxifen and raloxifene, in the SNC, and their modulation of astrocytic properties as promising therapeutic targets during brain damage.

  13. Astrocytic response in hippocampus and cerebral cortex in an experimental epilepsy model.

    Science.gov (United States)

    Girardi, Elena; Ramos, Alberto Javier; Vanore, Gabriela; Brusco, Alicia

    2004-02-01

    Astrocytes are very sensitive to alterations in the brain environment and respond showing a phenomenon known as astroglial reaction. S100beta is an astroglial derived neurotrophic factor, seems to be involved in neuroplasticity. The aim of this work was to study the astrocytic response in rat hippocampus and cerebral cortex after repetitive seizures induced by 3-mercaptopropionic acid (MP) administration. Immunocytochemical studies were performed to analyze GFAP and S100beta expression. Both studied areas showed hypertrophied astrocytes with enlarged processes and increased soma size. Astrocyte hyperplasia was observed only in the cerebral cortex. A significant decrease in the astrocytic S100beta immunostaining occurs after MP treatment. These results indicate that MP administration induces an astroglial reaction with reduced intracellular S100beta level. The observed reduction in astroglial S100beta could be related to the release of this factor to the extracellular space, where it may produce neurotrophic or deleterious effects accordingly to the concentration achieved. The mechanism of this remains to be elucidated.

  14. Death and survival of neuronal and astrocytic cells in ischemic brain injury: a role of autophagy

    Institute of Scientific and Technical Information of China (English)

    Min XU; Hui-ling ZHANG

    2011-01-01

    Autophagy is a highly regulated cellular mechanism that leads to degradation of long-lived proteins and dysfunctional organelles. The process has been implicated in a variety of physiological and pathological conditions relevant to neurological diseases. Recent studies show the existence of autophagy in cerebral ischemia, but no consensus has yet been reached regarding the functions of autophagy in this condition. This article highlights the activation of autophagy during cerebral ischemia and/or reperfusion, especially in neurons and astrocytes, as well as the role of autophagy in neuronal or astrocytic cell death and survival. We propose that physiological levels of autophagy, presumably caused by mild to modest hypoxia or ischemia, appear to be protective. However, high levels of autophagy caused by severe hypoxia or ischemia and/or reperfusion may cause self-digestion and eventual neuronal and astrocytic cell death. We also discuss that oxidative and endoplasmic reticulum (ER) stresses in cerebral hypoxia or ischemia and/or reperfusion are potent stimuli of autophagy in neurons and astrocytes. In addition, we review the evidence suggesting a considerable overlap between autophagy on one hand, and apoptosis, necrosis and necroptosis on the other hand, in determining the outcomes and final morphology of damaged neurons and astrocytes.

  15. Functions of astrocytes and their potential as therapeutic targets

    OpenAIRE

    Kimelberg, Harold K.; NEDERGAARD, Maiken

    2010-01-01

    Astrocytes are often referred to, and historically have been regarded as, support cells of the mammalian CNS. Work over the last decade suggests otherwise, that astrocytes may in fact play a more active role in higher neural processing than previously recognized. Because astrocytes can potentially serve as novel therapeutic targets, it is critical to understand how astrocytes execute their diverse supportive tasks while maintaining neuronal health. To that end, this review will focus on the s...

  16. Injury and repair of astrocyte after ionizing radiation

    International Nuclear Information System (INIS)

    Astrocyte is the most glial cell in the central nervous system. In the present experiment, radiation injury to the central nervous system (CNS) triggers a large network of cellular changes including neuron, glial cell and endothelial cell in morphology and metabolism and function. Astrocyte changes rapidly after ionizing radiation. There is a relationship between astrocyte and the pathologic process and function recover of damaged brain tissue following CNS injury. This suggests that astrocyte plays an important role in cure of clinical radiation injury

  17. Epigenetic Regulation of HIV-1 Latency in Astrocytes

    OpenAIRE

    Narasipura, Srinivas D.; Kim, Stephanie; Al-Harthi, Lena

    2014-01-01

    HIV infiltrates the brain at early times postinfection and remains latent within astrocytes and macrophages. Because astrocytes are the most abundant cell type in the brain, we evaluated epigenetic regulation of HIV latency in astrocytes. We have shown that class I histone deacetylases (HDACs) and a lysine-specific histone methyltransferase, SU(VAR)3-9, play a significant role in silencing of HIV transcription in astrocytes. Our studies add to a growing body of evidence demonstrating that ast...

  18. Astrocytes contribute to gamma oscillations and recognition memory

    OpenAIRE

    Lee, Hosuk Sean; Ghetti, Andrea; Pinto-Duarte, António; Xin WANG; Dziewczapolski, Gustavo; Galimi, Francesco; Huitron-Resendiz, Salvador; Piña-Crespo, Juan C.; Roberts, Amanda J.; Verma, Inder M.; Sejnowski, Terrence J.; Heinemann, Stephen F.

    2014-01-01

    Astrocytes are well placed to modulate neural activity. However, the functions typically attributed to astrocytes are associated with a temporal dimension significantly slower than the timescale of synaptic transmission of neurons. Consequently, it has been assumed that astrocytes do not play a major role in modulating fast neural network dynamics known to underlie cognitive behavior. By creating a transgenic mouse in which vesicular release from astrocytes can be reversibly blocked, we found...

  19. Target cell-specific modulation of neuronal activity by astrocytes

    OpenAIRE

    Kozlov, A. S.; Angulo, M. C.; Audinat, E.; Charpak, S

    2006-01-01

    Interaction between astrocytes and neurons enriches the behavior of brain circuits. By releasing glutamate and ATP, astrocytes can directly excite neurons and modulate synaptic transmission. In the rat olfactory bulb, we demonstrate that the release of GABA by astrocytes causes long-lasting and synchronous inhibition of mitral and granule cells. In addition, astrocytes release glutamate, leading to a selective activation of granule-cell NMDA receptors. Thus, by releasing excitatory and inhibi...

  20. From stem cell to astrocyte: Decoding the regulation of GFAP

    NARCIS (Netherlands)

    R. Kanski

    2014-01-01

    The research presented in this thesis focuses on glial fibrillary acidic protein (GFAP), the main intermediate filament (IF) in astrocytes and astrocyte subpopulations such as neural stem cells (NSCs). In neurodegenerative diseases or upon brain damage, astrocytes respond to an injury with an upregu

  1. Astrocyte-Derived CCL2 is Associated with M1 Activation and Recruitment of Cultured Microglial Cells

    Directory of Open Access Journals (Sweden)

    Mingfeng He

    2016-02-01

    Full Text Available Background/Aims: Microglia are an essential player in central nervous system inflammation. Recent studies have demonstrated that the astrocytic chemokine, CCL2, is associated with microglial activation in vivo. However, CCL2-induced microglial activation has not yet been studied in vitro. The purpose of the current study was to understand the role of astrocyte-derived CCL2 in microglial activation and to elucidate the underlying mechanism(s. Methods: Primary astrocytes were pre-treated with CCL2 siRNA and stimulated with TNF-α. The culture medium (CM was collected and added to cultures of microglia, which were incubated with and without CCR2 inhibitor. Microglial cells were analyzed by quantitative RT-PCR to determine whether they polarized to the M1 or M2 state. Microglial migratory ability was assessed by transwell migration assay. Results: TNF-α stimulated the release of CCL2 from astrocytes, even if the culture media containing TNF-α was replaced with fresh media after 3 h. CM from TNF-α-stimulated astrocytes successfully induced microglial activation, which was ascertained by increased activation of M1 and enhanced migration ability. In contrast, CM from astrocytes pretreated with CCL2 siRNA showed no effect on microglial activation, compared to controls. Additionally, microglia pre-treated with RS102895, a CCR2 inhibitor, were resistant to activation by CM from TNF-α-stimulated astrocytes. Conclusion: This study demonstrates that the CCL2/CCR2 pathway of astrocyte-induced microglial activation is associated with M1 polarization and enhanced migration ability, indicating that this pathway could be a useful target to ameliorate inflammation in the central nervous system.

  2. HIV-1, Methamphetamine and Astrocytes at Neuroinflammatory crossroads

    Directory of Open Access Journals (Sweden)

    Kathleen eBorgmann

    2015-10-01

    Full Text Available As a popular psychostimulant, methamphetamine (METH use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10-15% of human immunodeficiency virus-1 (HIV-1 patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND through direct and indirect mechanisms. Repetitive METH use decreases adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression towards AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte number and activity, cytokine signaling, phagocytic function, and CNS infiltration through the blood brain barrier. Further, METH triggers the neuronal dopamine reward pathway and leads to altered neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation. Neuroinflammation modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress and excitotoxicity. Pathologically, glial activation is a hallmark of both HIV-1 and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, neuroinflammation and HAND are carefully reviewed. Interventions targeting astrocytes in HAND and METH are presented as potential novel therapeutic approaches.

  3. Methamphetamine alters the normal progression by inducing cell cycle arrest in astrocytes.

    Directory of Open Access Journals (Sweden)

    Austin R Jackson

    Full Text Available Methamphetamine (MA is a potent psychostimulant with a high addictive capacity, which induces many deleterious effects on the brain. Chronic MA abuse leads to cognitive dysfunction and motor impairment. MA affects many cells in the brain, but the effects on astrocytes of repeated MA exposure is not well understood. In this report, we used Gene chip array to analyze the changes in the gene expression profile of primary human astrocytes treated with MA for 3 days. Range of genes were found to be differentially regulated, with a large number of genes significantly downregulated, including NEK2, TTK, TOP2A, and CCNE2. Gene ontology and pathway analysis showed a highly significant clustering of genes involved in cell cycle progression and DNA replication. Further pathway analysis showed that the genes downregulated by multiple MA treatment were critical for G2/M phase progression and G1/S transition. Cell cycle analysis of SVG astrocytes showed a significant reduction in the percentage of cell in the G2/M phase with a concomitant increase in G1 percentage. This was consistent with the gene array and validation data, which showed that repeated MA treatment downregulated the genes associated with cell cycle regulation. This is a novel finding, which explains the effect of MA treatment on astrocytes and has clear implication in neuroinflammation among the drug abusers.

  4. Plasmalemmal Na+/Ca2+ exchanger modulates Ca2+-dependent exocytotic release of glutamate from rat cortical astrocytes

    Directory of Open Access Journals (Sweden)

    Reno C Reyes

    2012-01-01

    Full Text Available Astroglial excitability operates through increases in Ca2+cyt (cytosolic Ca2+, which can lead to glutamatergic gliotransmission. In parallel fluctuations in astrocytic Na+cyt (cytosolic Na+ control metabolic neuronal-glial signalling, most notably through stimulation of lactate production, which on release from astrocytes can be taken up and utilized by nearby neurons, a process referred to as lactate shuttle. Both gliotransmission and lactate shuttle play a role in modulation of synaptic transmission and plasticity. Consequently, we studied the role of the PMCA (plasma membrane Ca2+-ATPase, NCX (plasma membrane Na+/Ca2+ exchanger and NKA (Na+/K+-ATPase in complex and coordinated regulation of Ca2+cyt and Na+cyt in astrocytes at rest and upon mechanical stimulation. Our data support the notion that NKA and PMCA are the major Na+ and Ca2+ extruders in resting astrocytes. Surprisingly, the blockade of NKA or PMCA appeared less important during times of Ca2+ and Na+ cytosolic loads caused by mechanical stimulation. Unexpectedly, NCX in reverse mode appeared as a major contributor to overall Ca2+ and Na+ homoeostasis in astrocytes both at rest and when these glial cells were mechanically stimulated. In addition, NCX facilitated mechanically induced Ca2+-dependent exocytotic release of glutamate from astrocytes. These findings help better understanding of astrocyte-neuron bidirectional signalling at the tripartite synapse and/or microvasculature. We propose that NCX operating in reverse mode could be involved in fast and spatially localized Ca2+-dependent gliotransmission, that would operate in parallel to a slower and more widely distributed gliotransmission pathway that requires metabotropically controlled Ca2+ release from the ER (endoplasmic reticulum.

  5. Arrays of microLEDs and astrocytes: biological amplifiers to optogenetically modulate neuronal networks reducing light requirement.

    Directory of Open Access Journals (Sweden)

    Rolando Berlinguer-Palmini

    Full Text Available In the modern view of synaptic transmission, astrocytes are no longer confined to the role of merely supportive cells. Although they do not generate action potentials, they nonetheless exhibit electrical activity and can influence surrounding neurons through gliotransmitter release. In this work, we explored whether optogenetic activation of glial cells could act as an amplification mechanism to optical neural stimulation via gliotransmission to the neural network. We studied the modulation of gliotransmission by selective photo-activation of channelrhodopsin-2 (ChR2 and by means of a matrix of individually addressable super-bright microLEDs (μLEDs with an excitation peak at 470 nm. We combined Ca2+ imaging techniques and concurrent patch-clamp electrophysiology to obtain subsequent glia/neural activity. First, we tested the μLEDs efficacy in stimulating ChR2-transfected astrocyte. ChR2-induced astrocytic current did not desensitize overtime, and was linearly increased and prolonged by increasing μLED irradiance in terms of intensity and surface illumination. Subsequently, ChR2 astrocytic stimulation by broad-field LED illumination with the same spectral profile, increased both glial cells and neuronal calcium transient frequency and sEPSCs suggesting that few ChR2-transfected astrocytes were able to excite surrounding not-ChR2-transfected astrocytes and neurons. Finally, by using the μLEDs array to selectively light stimulate ChR2 positive astrocytes we were able to increase the synaptic activity of single neurons surrounding it. In conclusion, ChR2-transfected astrocytes and μLEDs system were shown to be an amplifier of synaptic activity in mixed corticalneuronal and glial cells culture.

  6. The computational power of astrocyte mediated synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Rogier eMin

    2012-11-01

    Full Text Available Research in the last two decades has made clear that astrocytes play a crucial role in the brain beyond their functions in energy metabolism and homeostasis. Many studies have shown that astrocytes can dynamically modulate neuronal excitability and synaptic plasticity, and might participate in higher brain functions like learning and memory. With the plethora of astrocyte-mediated signaling processes described in the literature today, the current challenge is to identify which of these processes happen under what physiological condition, and how this shapes information processing and, ultimately, behavior. To answer these questions will require a combination of advanced physiological, genetical and behavioral experiments. Additionally, mathematical modeling will prove crucial for testing predictions on the possible functions of astrocytes in neuronal networks, and to generate novel ideas as to how astrocytes can contribute to the complexity of the brain. Here, we aim to provide an outline of how astrocytes can interact with neurons. We do this by reviewing recent experimental literature on astrocyte-neuron interactions, discussing the dynamic effects of astrocytes on neuronal excitability and short- and long-term synaptic plasticity. Finally, we will outline the potential computational functions that astrocyte-neuron interactions can serve in the brain. We will discuss how astrocytes could govern metaplasticity in the brain, how they might organize the clustering of synaptic inputs, and how they could function as memory elements for neuronal activity. We conclude that astrocytes can enhance the computational power of neuronal networks in previously unexpected ways.

  7. Discerning neurogenic vs. non-neurogenic postnatal lateral ventricular astrocytes via activity-dependent input

    Directory of Open Access Journals (Sweden)

    Elena W. Adlaf

    2016-03-01

    Full Text Available Throughout development, neural stem cells (NSCs give rise to differentiated neurons, astrocytes, and oligodendrocytes which together modulate perception, memory, and behavior in the adult nervous system. To understand how NSCs contribute to postnatal/adult brain remodeling and repair after injury, the lateral ventricular (LV neurogenic niche in the rodent postnatal brain serves as an excellent model system. It is a specialized area containing self-renewing GFAP+ astrocytes functioning as NSCs generating new neurons throughout life. In addition to this now well-studied regenerative process, the LV niche also generates astrocytes, playing an important role for glial scar formation after cortical injury. While LV NSCs can be clearly distinguished from their neuroblast and oligodendrocyte progeny via molecular markers, the astrocytic identity of NSCs has complicated their distinction from terminally-differentiated astrocytes in the niche. Our current models of postnatal/adult LV neurogenesis do not take into account local astrogenesis, or the possibility that cellular markers may be similar between non-dividing GFAP+ NSCs and their differentiated astrocyte daughters. Postnatal LV neurogenesis is regulated by NSC-intrinsic mechanisms interacting with extracellular/niche-driven cues. It is generally believed that these local effects are responsible for sustaining neurogenesis, though behavioral paradigms and disease states have suggested possibilities for neural circuit-level modulation. With recent experimental findings that neuronal stimulation can directly evoke responses in LV NSCs, it is possible that this exciting property will add a new dimension to identifying postnatal/adult NSCs. Here, we put forth a notion that neural circuit-level input can be a distinct characteristic defining postnatal/adult NSCs from non-neurogenic astroglia.

  8. Glutathione-Dependent Detoxification Processes in Astrocytes

    DEFF Research Database (Denmark)

    Dringen, Ralf; Brandmann, Maria; Hohnholt, Michaela C;

    2015-01-01

    component in many of the astrocytic detoxification processes is the tripeptide glutathione (GSH) which serves as electron donor in the GSH peroxidase-catalyzed reduction of peroxides. In addition, GSH is substrate in the detoxification of xenobiotics and endogenous compounds by GSH-S-transferases which...

  9. Astrocytes : a central element in neurological diseases

    NARCIS (Netherlands)

    Pekny, Milos; Pekna, Marcela; Messing, Albee; Steinhäuser, Christian; Lee, Jin Moo; Parpura, Vladimir; Hol, Elly M.; Sofroniew, Michael V.; Verkhratsky, Alexei

    2016-01-01

    The neurone-centred view of the past disregarded or downplayed the role of astroglia as a primary component in the pathogenesis of neurological diseases. As this concept is changing, so is also the perceived role of astrocytes in the healthy and diseased brain and spinal cord. We have started to unr

  10. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  11. Astrocytes: a central element in neurological diseases

    NARCIS (Netherlands)

    M. Pekny; M. Pekna; A. Messing; C. Steinhäuser; J.M. Lee; V. Parpura; E.M. Hol; M.V. Sofroniew; A. Verkhratsky

    2016-01-01

    The neurone-centred view of the past disregarded or downplayed the role of astroglia as a primary component in the pathogenesis of neurological diseases. As this concept is changing, so is also the perceived role of astrocytes in the healthy and diseased brain and spinal cord. We have started to unr

  12. IFN-γ-induced increase in the mobility of MHC class II compartments in astrocytes depends on intermediate filaments

    Directory of Open Access Journals (Sweden)

    Vardjan Nina

    2012-06-01

    Full Text Available Abstract Background In immune-mediated diseases of the central nervous system, astrocytes exposed to interferon-γ (IFN-γ can express major histocompatibility complex (MHC class II molecules and antigens on their surface. MHC class II molecules are thought to be delivered to the cell surface by membrane-bound vesicles. However, the characteristics and dynamics of this vesicular traffic are unclear, particularly in reactive astrocytes, which overexpress intermediate filament (IF proteins that may affect trafficking. The aim of this study was to determine the mobility of MHC class II vesicles in wild-type (WT astrocytes and in astrocytes devoid of IFs. Methods The identity of MHC class II compartments in WT and IF-deficient astrocytes 48 h after IFN-γ activation was determined immunocytochemically by using confocal microscopy. Time-lapse confocal imaging and Alexa Fluor546-dextran labeling of late endosomes/lysosomes in IFN-γ treated cells was used to characterize the motion of MHC class II vesicles. The mobility of vesicles was analyzed using ParticleTR software. Results Confocal imaging of primary cultures of WT and IF-deficient astrocytes revealed IFN-γ induced MHC class II expression in late endosomes/lysosomes, which were specifically labeled with Alexa Fluor546-conjugated dextran. Live imaging revealed faster movement of dextran-positive vesicles in IFN-γ-treated than in untreated astrocytes. Vesicle mobility was lower in IFN-γ-treated IF-deficient astrocytes than in WT astrocytes. Thus, the IFN-γ-induced increase in the mobility of MHC class II compartments is IF-dependent. Conclusions Since reactivity of astrocytes is a hallmark of many CNS pathologies, it is likely that the up-regulation of IFs under such conditions allows a faster and therefore a more efficient delivery of MHC class II molecules to the cell surface. In vivo, such regulatory mechanisms may enable antigen-presenting reactive astrocytes to respond rapidly and in a

  13. Genetic deletion of TREK-1 or TWIK-1/TREK-1 potassium channels does not alter the basic electrophysiological properties of mature hippocampal astrocytes in situ

    Directory of Open Access Journals (Sweden)

    Yixing eDu

    2016-02-01

    Full Text Available We have recently shown that a linear current-to-voltage (I-V relationship of membrane conductance (passive conductance reflects the intrinsic property of K+ channels in mature astrocytes. While passive conductance is known to underpin a highly negative and stable membrane potential (VM essential for the basic homeostatic function of astrocytes, a complete repertoire of the involved K+ channels remains elusive. TREK-1 two-pore domain K+ channel (K2P is highly expressed in astrocytes, and covalent association of TREK-1 with TWIK-1, another highly expressed astrocytic K2P, has been reported as a mechanism underlying the trafficking of this heterodimer channel to the membrane and contributing to astrocytes’ passive conductance. To decipher the individual contribution of TREK-1 and address whether the appearance of passive conductance is conditional to the co-expression of TWIK-1/TREK-1 in astrocytes, TREK-1 single and TWIK-1/TREK-1 double gene knockout mice were used in the present study. The relative quantity of mRNA encoding other astrocyte K+ channels, such as Kir4.1, Kir5.1, and TREK-2, was not altered in these gene knockout mice. Whole-cell recording from hippocampal astrocytes in situ revealed no detectable changes in astrocyte passive conductance, VM, or membrane input resistance (Rin in either kind of gene knockout mouse. Additionally, TREK-1 proteins were mainly located in the intracellular compartments of the hippocampus. Altogether, genetic deletion of TREK-1 alone or together with TWIK-1 produced no obvious alteration in the basic electrophysiological properties of hippocampal astrocytes. Thus, future research focusing on other K+ channels may shed light on this long-standing and important question in astrocyte physiology.

  14. The Rho kinase inhibitor Fasudil up-regulates astrocytic glutamate transport subsequent to actin remodelling in murine cultured astrocytes

    DEFF Research Database (Denmark)

    Lau, Cl; O'Shea, Rd; Bischof, L;

    2011-01-01

    BACKGROUND AND PURPOSE Glutamate transporters play a major role in maintaining brain homeostasis and the astrocytic transporters, EAAT1 and EAAT2, are functionally dominant. Astrocytic excitatory amino acid transporters (EAATs) play important roles in various neuropathologies wherein astrocytes...... undergo cytoskeletal changes. Astrocytic plasticity is well documented, but the interface between EAAT function, actin and the astrocytic cytoskeleton is poorly understood. Because Rho kinase (ROCK) is a key determinant of actin polymerization, we investigated the effects of ROCK inhibitors on EAAT...... activity and astrocytic morphology. EXPERIMENTAL APPROACH The functional activity of glutamate transport was determined in murine cultured astrocytes after exposure to the ROCK inhibitors Fasudil (HA-1077) and Y27632 using biochemical, molecular and morphological approaches. Cytochemical analyses assessed...

  15. Iron entry in neurons and astrocytes: a link with synaptic activity

    Directory of Open Access Journals (Sweden)

    Franca eCodazzi

    2015-06-01

    Full Text Available Iron plays a fundamental role in the development of the central nervous system (CNS as well as in several neuronal functions including synaptic plasticity. Accordingly, neuronal iron supply is tightly controlled: it depends not only on transferrin-bound iron but also on non-transferrin-bound iron (NTBI, which represents a relevant quote of the iron physiologically present in the cerebrospinal fluid (CSF. Different calcium permeable channels as well as the divalent metal transporter 1 (DMT1 have been proposed to sustain NTBI entry in neurons and astrocytes even though it remains an open issue. In both cases, it emerges that the control of iron entry is tightly linked to synaptic activity. The iron-induced oxidative tone can, in physiological conditions, positively influence the calcium levels and thus the synaptic plasticity. On the other hand, an excess of iron, with the ensuing uncontrolled production of reactive oxygen species (ROS, is detrimental for neuronal survival. A protective mechanism can be played by astrocytes that, more resistant to oxidative stress, can uptake iron, thereby buffering its concentration in the synaptic environment. This competence is potentiated when astrocytes undergo activation during neuroinflammation and neurodegenerative processes. In this minireview we focus on the mechanisms responsible for NTBI entry in neurons and astrocytes and on how they can be modulated during synaptic activity. Finally, we speculate on the relevance they may have in both physiological and pathological conditions.

  16. Mechanosensitivity of astrocytes on optimized polyacrylamide gels analyzed by quantitative morphometry

    Science.gov (United States)

    Moshayedi, Pouria; Costa, Luciano da F.; Christ, Andreas; Lacour, Stephanie P.; Fawcett, James; Guck, Jochen; Franze, Kristian

    2010-05-01

    Cells are able to detect and respond to mechanical cues from their environment. Previous studies have investigated this mechanosensitivity on various cell types, including neural cells such as astrocytes. In this study, we have carefully optimized polyacrylamide gels, commonly used as compliant growth substrates, considering their homogeneity in surface topography, mechanical properties, and coating density, and identified several potential pitfalls for the purpose of mechanosensitivity studies. The resulting astrocyte response to growth on substrates with shear storage moduli of G' = 100 Pa and G' = 10 kPa was then evaluated as a function of coating density of poly-D-lysine using quantitative morphometric analysis. Astrocytes cultured on stiff substrates showed significantly increased perimeter, area, diameter, elongation, number of extremities and overall complexity if compared to those cultured on compliant substrates. A statistically significant difference in the overall morphological score was confirmed with an artificial intelligence-based shape analysis. The dependence of the cells' morphology on PDL coating density seemed to be weak compared to the effect of the substrate stiffness and was slightly biphasic, with a maximum at 10-100 µg ml - 1 PDL concentration. Our finding suggests that the compliance of the surrounding tissue in vivo may influence astrocyte morphology and behavior.

  17. Mechanosensitivity of astrocytes on optimized polyacrylamide gels analyzed by quantitative morphometry

    International Nuclear Information System (INIS)

    Cells are able to detect and respond to mechanical cues from their environment. Previous studies have investigated this mechanosensitivity on various cell types, including neural cells such as astrocytes. In this study, we have carefully optimized polyacrylamide gels, commonly used as compliant growth substrates, considering their homogeneity in surface topography, mechanical properties, and coating density, and identified several potential pitfalls for the purpose of mechanosensitivity studies. The resulting astrocyte response to growth on substrates with shear storage moduli of G' 100 Pa and G' = 10 kPa was then evaluated as a function of coating density of poly-D-lysine using quantitative morphometric analysis. Astrocytes cultured on stiff substrates showed significantly increased perimeter, area, diameter, elongation, number of extremities and overall complexity if compared to those cultured on compliant substrates. A statistically significant difference in the overall morphological score was confirmed with an artificial intelligence-based shape analysis. The dependence of the cells' morphology on PDL coating density seemed to be weak compared to the effect of the substrate stiffness and was slightly biphasic, with a maximum at 10-100 μg ml-1 PDL concentration. Our finding suggests that the compliance of the surrounding tissue in vivo may influence astrocyte morphology and behavior.

  18. Mechanosensitivity of astrocytes on optimized polyacrylamide gels analyzed by quantitative morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Moshayedi, Pouria; Christ, Andreas; Guck, Jochen; Franze, Kristian [Department of Physics, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Da F Costa, Luciano [Instituto de Fisica de Sao Carlos, University of Sao Paulo, Sao Carlos (Brazil); Lacour, Stephanie P [Nanoscience Centre, University of Cambridge, 11 J J Thomson Avenue, Cambridge CB3 0FF (United Kingdom); Fawcett, James, E-mail: jg473@cam.ac.u [Cambridge Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY (United Kingdom)

    2010-05-19

    Cells are able to detect and respond to mechanical cues from their environment. Previous studies have investigated this mechanosensitivity on various cell types, including neural cells such as astrocytes. In this study, we have carefully optimized polyacrylamide gels, commonly used as compliant growth substrates, considering their homogeneity in surface topography, mechanical properties, and coating density, and identified several potential pitfalls for the purpose of mechanosensitivity studies. The resulting astrocyte response to growth on substrates with shear storage moduli of G' 100 Pa and G' = 10 kPa was then evaluated as a function of coating density of poly-D-lysine using quantitative morphometric analysis. Astrocytes cultured on stiff substrates showed significantly increased perimeter, area, diameter, elongation, number of extremities and overall complexity if compared to those cultured on compliant substrates. A statistically significant difference in the overall morphological score was confirmed with an artificial intelligence-based shape analysis. The dependence of the cells' morphology on PDL coating density seemed to be weak compared to the effect of the substrate stiffness and was slightly biphasic, with a maximum at 10-100 {mu}g ml{sup -1} PDL concentration. Our finding suggests that the compliance of the surrounding tissue in vivo may influence astrocyte morphology and behavior.

  19. Modeling the contributions of Ca2+ flows to spontaneous Ca2+ oscillations and cortical spreading depression-triggered Ca2+ waves in astrocyte networks.

    Directory of Open Access Journals (Sweden)

    Bing Li

    Full Text Available Astrocytes participate in brain functions through Ca(2+ signals, including Ca(2+ waves and Ca(2+ oscillations. Currently the mechanisms of Ca(2+ signals in astrocytes are not fully clear. Here, we present a computational model to specify the relative contributions of different Ca(2+ flows between the extracellular space, the cytoplasm and the endoplasmic reticulum of astrocytes to the generation of spontaneous Ca(2+ oscillations (CASs and cortical spreading depression (CSD-triggered Ca(2+ waves (CSDCWs in a one-dimensional astrocyte network. This model shows that CASs depend primarily on Ca(2+ released from internal stores of astrocytes, and CSDCWs depend mainly on voltage-gated Ca(2+ influx. It predicts that voltage-gated Ca(2+ influx is able to generate Ca(2+ waves during the process of CSD even after depleting internal Ca(2+ stores. Furthermore, the model investigates the interactions between CASs and CSDCWs and shows that the pass of CSDCWs suppresses CASs, whereas CASs do not prevent the generation of CSDCWs. This work quantitatively analyzes the generation of astrocytic Ca(2+ signals and indicates different mechanisms underlying CSDCWs and non-CSDCWs. Research on the different types of Ca(2+ signals might help to understand the ways by which astrocytes participate in information processing in brain functions.

  20. Substrate regulation of ascorbate transport activity in astrocytes

    International Nuclear Information System (INIS)

    Astrocytes possess a concentrative L-ascorbate (vitamin C) uptake mechanism involving a Na(+)-dependent L-ascorbate transporter located in the plasma membrane. The present experiments examined the effects of deprivation and supplementation of extracellular L-ascorbate on the activity of this transport system. Initial rates of L-ascorbate uptake were measured by incubating primary cultures of rat astrocytes with L-[14C]ascorbate for 1 min at 37 degrees C. We observed that the apparent maximal rate of uptake (Vmax) increased rapidly (less than 1 h) when cultured cells were deprived of L-ascorbate. In contrast, there was no change in the apparent affinity of the transport system for L-[14C]ascorbate. The increase in Vmax was reversed by addition of L-ascorbate, but not D-isoascorbate, to the medium. The effects of external ascorbate on ascorbate transport activity were specific in that preincubation of cultures with L-ascorbate did not affect uptake of 2-deoxy-D-[3H(G)]glucose. We conclude that the astroglial ascorbate transport system is modulated by changes in substrate availability. Regulation of transport activity may play a role in intracellular ascorbate homeostasis by compensating for regional differences and temporal fluctuations in external ascorbate levels

  1. Astrocyte Transcriptome from the Mecp2(308)-Truncated Mouse Model of Rett Syndrome.

    Science.gov (United States)

    Delépine, Chloé; Nectoux, Juliette; Letourneur, Franck; Baud, Véronique; Chelly, Jamel; Billuart, Pierre; Bienvenu, Thierry

    2015-12-01

    Mutations in the gene encoding the transcriptional modulator methyl-CpG binding protein 2 (MeCP2) are responsible for the neurodevelopmental disorder Rett syndrome which is one of the most frequent sources of intellectual disability in women. Recent studies showed that loss of Mecp2 in astrocytes contributes to Rett-like symptoms and restoration of Mecp2 can rescue some of these defects. The goal of this work is to compare gene expression profiles of wild-type and mutant astrocytes from Mecp2(308/y) mice (B6.129S-MeCP2/J) by using Affymetrix mouse 2.0 microarrays. Results were confirmed by quantitative real-time RT-PCR and by Western blot analysis. Gene set enrichment analysis utilizing Ingenuity Pathways was employed to identify pathways disrupted by Mecp2 deficiency. A total of 2152 genes were statistically differentially expressed between wild-type and mutated samples, including 1784 coding transcripts. However, only 257 showed fold changes >1.2. We confirmed our data by replicative studies in independent primary cultures of cortical astrocytes from Mecp2-deficient mice. Interestingly, two genes known to encode secreted proteins, chromogranin B and lipocalin-2, showed significant dysregulation. These proteins secreted from Mecp2-deficient glia may exert negative non-cell autonomous effects on neuronal properties, including dendritic morphology. Moreover, transcriptional profiling revealed altered Nr2f2 expression which may explain down- and upregulation of several target genes in astrocytes such as Ccl2, Lcn2 and Chgb. Unraveling Nr2f2 involvement in Mecp2-deficient astrocytes could pave the way for a better understanding of Rett syndrome pathophysiology and offers new therapeutic perspectives.

  2. Lipopolysaccharide-Induced Apoptosis of Astrocytes: Therapeutic Intervention by Minocycline.

    Science.gov (United States)

    Sharma, Arpita; Patro, Nisha; Patro, Ishan K

    2016-05-01

    Astrocytes are most abundant glial cell type in the brain and play a main defensive role in central nervous system against glutamate-induced toxicity by virtue of numerous transporters residing in their membranes and an astrocyte-specific enzyme glutamine synthetase (GS). In view of that, a dysregulation in the astrocytic activity following an insult may result in glutamate-mediated toxicity accompanied with astrocyte and microglial activation. The present study suggests that the lipopolysaccharide (LPS)-induced inflammation results in significant astrocytic apoptosis compared to other cell types in hippocampus and minocycline could not efficiently restrict the glutamate-mediated toxicity and apoptosis of astrocytes. Upon LPS exposure 76 % astrocytes undergo degeneration followed by 44 % oligodendrocytes, 26 % neurons and 10 % microglia. The pronounced astrocytic apoptosis resulted from the LPS-induced glutamate excitotoxicity leading to their hyperactivation as evident from their hypertrophied morphology, glutamate transporter 1 upregulation and downregulation of GS. Therapeutic minocycline treatment to LPS-infused rats efficiently restricted the inflammatory response and degeneration of other cell types but could not significantly combat with the apoptosis of astrocytes. Our study demonstrates a novel finding on cellular degeneration in the hippocampus revealing more of astrocytic death and suggests a more careful consideration on the protective efficacy of minocycline. PMID:26188416

  3. Physiopathologic dynamics of vesicle traffic in astrocytes.

    Science.gov (United States)

    Potokar, Maja; Stenovec, Matjaž; Kreft, Marko; Gabrijel, Mateja; Zorec, Robert

    2011-02-01

    The view of how astrocytes, a type of glial cells, contribute to the functioning of the central nervous system (CNS) has changed greatly in the last decade. Although glial cells outnumber neurons in the mammalian brain, it was considered for over a century that they played a subservient role to neurons. This view changed. Functions thought to be exclusively present in neurons, i.e. excitability mediated release of chemical messengers, has also been demonstrated in astrocytes. In this process, following an increase in cytosolic calcium activity, membrane bound vesicles, storing chemical messengers (gliotransmitters), fuse with the plasma membrane, a process known as exocytosis, permitting the exit of vesicle cargo into the extracellular space. Vesicles are delivered to and are removed from the site of exocytosis by an amazingly complex set of processes that we have only started to learn about recently. In this paper we review vesicle traffic, which is subject to physiological regulation and may be changed under pathological conditions.

  4. Astrocytic role in synapse formation after injury.

    Science.gov (United States)

    Li, Ying; Li, Daqing; Raisman, Geoffrey

    2016-08-15

    In 1969 a paper entitled Neuronal plasticity in the septal nuclei of the adult rat proposed that new synapses are formed in the adult brain after injury (Raisman, 1969). The quantitative electron microscopic study of the timed responses to selective partial denervation of the neuropil of the adult rat septal nuclei after distant transection of the hippocampal efferent axons in the fimbria showed that the new synapses arise by sprouting of surviving adjacent synapses which selectively take over the previously denervated sites and thus restore the number of synapses to normal. This article presents the evidence for the role of perisynaptic astrocytic processes in the removal and formation of synapses and considers its significance as one of the three major divisions of the astrocytic surface in terms of the axonal responses to injury and regeneration. This article is part of a Special Issue entitled SI:50th Anniversary Issue. PMID:26746338

  5. Detection of mouse endogenous type B astrocytes migrating towards brain lesions

    Directory of Open Access Journals (Sweden)

    Gema Elvira

    2015-01-01

    Full Text Available Neuroblasts represent the predominant migrating cell type in the adult mouse brain. There are, however, increasing evidences of migration of other neural precursors. This work aims at identifying in vivo endogenous early neural precursors, different from neuroblasts, able to migrate in response to brain injuries. The monoclonal antibody Nilo1, which unequivocally identifies type B astrocytes and embryonic radial glia, was coupled to magnetic glyconanoparticles (mGNPs. Here we show that Nilo1–mGNPs in combination with magnetic resonance imaging in living mice allowed the in vivo identification of endogenous type B astrocytes at their niche, as well as their migration to the lesion site in response to glioblastoma, demyelination, cryolesion or mechanical injuries. In addition, Nilo1+ adult radial glia-like structures were identified at the lesion site a few hours after damage. For all damage models used, type B astrocyte migration was fast and orderly. Identification of Nilo1+ cells surrounding an induced glioblastoma was also possible after intraperitoneal injection of the antibody. This opens up the possibility of an early identification of the initial damage site(s after brain insults, by the migration of type B astrocytes.

  6. Histone acetylation in astrocytes suppresses GFAP and stimulates a reorganization of the intermediate filament network.

    Science.gov (United States)

    Kanski, Regina; Sneeboer, Marjolein A M; van Bodegraven, Emma J; Sluijs, Jacqueline A; Kropff, Wietske; Vermunt, Marit W; Creyghton, Menno P; De Filippis, Lidia; Vescovi, Angelo; Aronica, Eleonora; van Tijn, Paula; van Strien, Miriam E; Hol, Elly M

    2014-10-15

    Glial fibrillary acidic protein (GFAP) is the main intermediate filament in astrocytes and is regulated by epigenetic mechanisms during development. We demonstrate that histone acetylation also controls GFAP expression in mature astrocytes. Inhibition of histone deacetylases (HDACs) with trichostatin A or sodium butyrate reduced GFAP expression in primary human astrocytes and astrocytoma cells. Because splicing occurs co-transcriptionally, we investigated whether histone acetylation changes the ratio between the canonical isoform GFAPα and the alternative GFAPδ splice variant. We observed that decreased transcription of GFAP enhanced alternative isoform expression, as HDAC inhibition increased the GFAPδ∶GFAPα ratio. Expression of GFAPδ was dependent on the presence and binding of splicing factors of the SR protein family. Inhibition of HDAC activity also resulted in aggregation of the GFAP network, reminiscent of our previous findings of a GFAPδ-induced network collapse. Taken together, our data demonstrate that HDAC inhibition results in changes in transcription, splicing and organization of GFAP. These data imply that a tight regulation of histone acetylation in astrocytes is essential, because dysregulation of gene expression causes the aggregation of GFAP, a hallmark of human diseases like Alexander's disease.

  7. Blast shockwaves propagate Ca(2+) activity via purinergic astrocyte networks in human central nervous system cells.

    Science.gov (United States)

    Ravin, Rea; Blank, Paul S; Busse, Brad; Ravin, Nitay; Vira, Shaleen; Bezrukov, Ludmila; Waters, Hang; Guerrero-Cazares, Hugo; Quinones-Hinojosa, Alfredo; Lee, Philip R; Fields, R Douglas; Bezrukov, Sergey M; Zimmerberg, Joshua

    2016-01-01

    In a recent study of the pathophysiology of mild, blast-induced traumatic brain injury (bTBI) the exposure of dissociated, central nervous system (CNS) cells to simulated blast resulted in propagating waves of elevated intracellular Ca(2+). Here we show, in dissociated human CNS cultures, that these calcium waves primarily propagate through astrocyte-dependent, purinergic signaling pathways that are blocked by P2 antagonists. Human, compared to rat, astrocytes had an increased calcium response and prolonged calcium wave propagation kinetics, suggesting that in our model system rat CNS cells are less responsive to simulated blast. Furthermore, in response to simulated blast, human CNS cells have increased expressions of a reactive astrocyte marker, glial fibrillary acidic protein (GFAP) and a protease, matrix metallopeptidase 9 (MMP-9). The conjoint increased expression of GFAP and MMP-9 and a purinergic ATP (P2) receptor antagonist reduction in calcium response identifies both potential mechanisms for sustained changes in brain function following primary bTBI and therapeutic strategies targeting abnormal astrocyte activity. PMID:27162174

  8. Blast shockwaves propagate Ca2+ activity via purinergic astrocyte networks in human central nervous system cells

    Science.gov (United States)

    Ravin, Rea; Blank, Paul S.; Busse, Brad; Ravin, Nitay; Vira, Shaleen; Bezrukov, Ludmila; Waters, Hang; Guerrero-Cazares, Hugo; Quinones-Hinojosa, Alfredo; Lee, Philip R.; Fields, R. Douglas; Bezrukov, Sergey M.; Zimmerberg, Joshua

    2016-01-01

    In a recent study of the pathophysiology of mild, blast-induced traumatic brain injury (bTBI) the exposure of dissociated, central nervous system (CNS) cells to simulated blast resulted in propagating waves of elevated intracellular Ca2+. Here we show, in dissociated human CNS cultures, that these calcium waves primarily propagate through astrocyte-dependent, purinergic signaling pathways that are blocked by P2 antagonists. Human, compared to rat, astrocytes had an increased calcium response and prolonged calcium wave propagation kinetics, suggesting that in our model system rat CNS cells are less responsive to simulated blast. Furthermore, in response to simulated blast, human CNS cells have increased expressions of a reactive astrocyte marker, glial fibrillary acidic protein (GFAP) and a protease, matrix metallopeptidase 9 (MMP-9). The conjoint increased expression of GFAP and MMP-9 and a purinergic ATP (P2) receptor antagonist reduction in calcium response identifies both potential mechanisms for sustained changes in brain function following primary bTBI and therapeutic strategies targeting abnormal astrocyte activity. PMID:27162174

  9. MiRNAs in Astrocyte-Derived Exosomes as Possible Mediators of Neuronal Plasticity.

    Science.gov (United States)

    Lafourcade, Carlos; Ramírez, Juan Pablo; Luarte, Alejandro; Fernández, Anllely; Wyneken, Ursula

    2016-01-01

    Astrocytes use gliotransmitters to modulate neuronal function and plasticity. However, the role of small extracellular vesicles, called exosomes, in astrocyte-to-neuron signaling is mostly unknown. Exosomes originate in multivesicular bodies of parent cells and are secreted by fusion of the multivesicular body limiting membrane with the plasma membrane. Their molecular cargo, consisting of RNA species, proteins, and lipids, is in part cell type and cell state specific. Among the RNA species transported by exosomes, microRNAs (miRNAs) are able to modify gene expression in recipient cells. Several miRNAs present in astrocytes are regulated under pathological conditions, and this may have far-reaching consequences if they are loaded in exosomes. We propose that astrocyte-derived miRNA-loaded exosomes, such as miR-26a, are dysregulated in several central nervous system diseases; thus potentially controlling neuronal morphology and synaptic transmission through validated and predicted targets. Unraveling the contribution of this new signaling mechanism to the maintenance and plasticity of neuronal networks will impact our understanding on the physiology and pathophysiology of the central nervous system. PMID:27547038

  10. Cultured human astrocytes secrete large cholesteryl ester- andtriglyceride-rich lipoproteins along with endothelial lipase

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lin; Liu, Yanzhu; Forte, Trudy M.; Chisholm, Jeffrey W.; Parks, John S.; Shachter, Neil S.

    2003-12-01

    We cultured normal human astrocytes and characterized their secreted lipoproteins. Human astrocytes secreted lipoproteins in the size range of plasma VLDL (Peak 1), LDL (Peak 2), HDL (Peak 3) and a smaller peak (Peak 4), as determined by gel filtration chromatography, nondenaturing gradient gel electrophoresis and transmission electron microscopy. Cholesterol enrichment of astrocytes led to a particular increase in Peak 1. Almost all Peak 2, 3 and 4 cholesterol and most Peak 1 cholesterol was esterified (unlike mouse astrocyte lipoproteins, which exhibited similar peaks but where cholesterol was predominantly non-esterified). Triglycerides were present at about 2/3 the level of cholesterol. LCAT was detected along with two of its activators, apolipoprotein (apo) A-IV and apoC-I. ApoA-I and apoA-II mRNA and protein were absent. ApoJ was present equally in all peaks but apoE was present predominantly in peaks 3 and 4. ApoB was not detected. The electron microscopic appearance of Peak 1 lipoproteins suggested partial lipolysis leading to the detection of a heparin-releasable triglyceride lipase consistent with endothelial lipase. The increased neuronal delivery of lipids from large lipoprotein particles, for which apoE4 has greater affinity than does apoE3, may be a mechanism whereby the apoE {var_epsilon}4 allele contributes to neurodegenerative risk.

  11. Disrupting astrocyte-neuron lactate transfer persistently reduces conditioned responses to cocaine.

    Science.gov (United States)

    Boury-Jamot, B; Carrard, A; Martin, J L; Halfon, O; Magistretti, P J; Boutrel, B

    2016-08-01

    A central problem in the treatment of drug addiction is the high risk of relapse often precipitated by drug-associated cues. The transfer of glycogen-derived lactate from astrocytes to neurons is required for long-term memory. Whereas blockade of drug memory reconsolidation represents a potential therapeutic strategy, the role of astrocyte-neuron lactate transport in long-term conditioning has received little attention. By infusing an inhibitor of glycogen phosphorylase into the basolateral amygdala of rats, we report that disruption of astrocyte-derived lactate not only transiently impaired the acquisition of a cocaine-induced conditioned place preference but also persistently disrupted an established conditioning. The drug memory was rescued by L-Lactate co-administration through a mechanism requiring the synaptic plasticity-related transcription factor Zif268 and extracellular signal-regulated kinase (ERK) signalling pathway but not the brain-derived neurotrophic factor (Bdnf). The long-term amnesia induced by glycogenolysis inhibition and the concomitant decreased expression of phospho-ERK were both restored with L-Lactate co-administration. These findings reveal a critical role for astrocyte-derived lactate in positive memory formation and highlight a novel amygdala-dependent reconsolidation process, whose disruption may offer a novel therapeutic target to reduce the long-lasting conditioned responses to cocaine. PMID:26503760

  12. Astrocyte glutamine synthetase: pivotal in health and disease.

    Science.gov (United States)

    Rose, Christopher F; Verkhratsky, Alexei; Parpura, Vladimir

    2013-12-01

    The multifunctional properties of astrocytes signify their importance in brain physiology and neurological function. In addition to defining the brain architecture, astrocytes are primary elements of brain ion, pH and neurotransmitter homoeostasis. GS (glutamine synthetase), which catalyses the ATP-dependent condensation of ammonia and glutamate to form glutamine, is an enzyme particularly found in astrocytes. GS plays a pivotal role in glutamate and glutamine homoeostasis, orchestrating astrocyte glutamate uptake/release and the glutamate-glutamine cycle. Furthermore, astrocytes bear the brunt of clearing ammonia in the brain, preventing neurotoxicity. The present review depicts the central function of astrocytes, concentrating on the importance of GS in glutamate/glutamine metabolism and ammonia detoxification in health and disease.

  13. Spatiotemporal characteristics of calcium dynamics in astrocytes

    Science.gov (United States)

    Kang, Minchul; Othmer, Hans G.

    2009-09-01

    Although Cai2+ waves in networks of astrocytes in vivo are well documented, propagation in vivo is much more complex than in culture, and there is no consensus concerning the dominant roles of intercellular and extracellular messengers [inositol 1,4,5-trisphosphate (IP3) and adenosine-5'-triphosphate (ATP)] that mediate Cai2+ waves. Moreover, to date only simplified models that take very little account of the geometrical struture of the networks have been studied. Our aim in this paper is to develop a mathematical model based on realistic cellular morphology and network connectivity, and a computational framework for simulating the model, in order to address these issues. In the model, Cai2+ wave propagation through a network of astrocytes is driven by IP3 diffusion between cells and ATP transport in the extracellular space. Numerical simulations of the model show that different kinetic and geometric assumptions give rise to differences in Cai2+ wave propagation patterns, as characterized by the velocity, propagation distance, time delay in propagation from one cell to another, and the evolution of Ca2+ response patterns. The temporal Cai2+ response patterns in cells are different from one cell to another, and the Cai2+ response patterns evolve from one type to another as a Cai2+ wave propagates. In addition, the spatial patterns of Cai2+ wave propagation depend on whether IP3, ATP, or both are mediating messengers. Finally, two different geometries that reflect the in vivo and in vitro configuration of astrocytic networks also yield distinct intracellular and extracellular kinetic patterns. The simulation results as well as the linear stability analysis of the model lead to the conclusion that Cai2+ waves in astrocyte networks are probably mediated by both intercellular IP3 transport and nonregenerative (only the glutamate-stimulated cell releases ATP) or partially regenerative extracellular ATP signaling.

  14. Taurine Biosynthesis by Neurons and Astrocytes*

    OpenAIRE

    Vitvitsky, Victor; Garg, Sanjay K.; Banerjee, Ruma

    2011-01-01

    The physiological roles of taurine, a product of cysteine degradation and one of the most abundant amino acids in the body, remain elusive. Taurine deficiency leads to heart dysfunction, brain development abnormalities, retinal degradation, and other pathologies. The taurine synthetic pathway is proposed to be incomplete in astrocytes and neurons, and metabolic cooperation between these cell types is reportedly needed to complete the pathway. In this study, we analyzed taurine synthesis capab...

  15. Motor neuron-astrocyte interactions and levels of Cu,Zn superoxide dismutase in sporadic amyotrophic lateral sclerosis.

    Science.gov (United States)

    O'Reilly, S A; Roedica, J; Nagy, D; Hallewell, R A; Alderson, K; Marklund, S L; Kuby, J; Kushner, P D

    1995-02-01

    Copper, zinc superoxide dismutase (SOD1) is involved in neutralizing free radicals within cells, and mutant forms of the enzyme have recently been shown to occur in about 20% of familial cases of amyotrophic lateral sclerosis (ALS). To explore the mechanism of SOD1 involvement in ALS, we have analyzed SOD1 in sporadic ALS using activity assays and immunocyto-chemistry. Analyses of SOD1 activity in washed erythrocytes revealed no difference between 13 ALS cases and 4 controls. Spinal cord sections from 6 ALS cases, 1 primary lateral sclerosis (PLS) case, and 1 control case were stained using three different antibodies to SOD1. Since astrocytes are closely associated with motor neurons, antibodies to glial fibrillary acidic protein (GFAP) and vimentin were used as independent monitors of astrocytes. The principal findings from localizations are: (1) normal motor neurons do not have higher levels of SOD1 than other neurons, (2) there was no detectable difference in SOD1 levels in motor neurons of ALS cases and controls, (3) ALS spinal cord displayed a reduction or absence of SOD1-reactive astrocytes compared to the control and PLS cases, and (4) examination of GFAP-stained sections and morphometry showed that the normal close association between astrocytic processes and motor neuron somata was decreased in the ALS and PLS cases. These results indicate the disease mechanism in sporadic ALS may involve alterations in spinal cord astrocytes.

  16. Glutamate release from astrocytic gliosomes under physiological and pathological conditions.

    Science.gov (United States)

    Milanese, Marco; Bonifacino, Tiziana; Zappettini, Simona; Usai, Cesare; Tacchetti, Carlo; Nobile, Mario; Bonanno, Giambattista

    2009-01-01

    Glial subcellular particles (gliosomes) have been purified from rat cerebral cortex or mouse spinal cord and investigated for their ability to release glutamate. Confocal microscopy showed that gliosomes are enriched with glia-specific proteins, such as GFAP and S-100 but not neuronal proteins, such as PSD-95, MAP-2, and beta-tubulin III. Furthermore, gliosomes exhibit labeling neither for integrin-alphaM nor for myelin basic protein, specific for microglia and oligodendrocytes, respectively. The gliosomal fraction contains proteins of the exocytotic machinery coexisting with GFAP. Consistent with ultrastructural analysis, several nonclustered vesicles are present in the gliosome cytoplasm. Finally, gliosomes represent functional organelles that actively export glutamate when subjected to releasing stimuli, such as ionomycin, high KCl, veratrine, 4-aminopyridine, AMPA, or ATP by mechanisms involving extracellular Ca2+, Ca2+ release from intracellular stores as well as reversal of glutamate transporters. In addition, gliosomes can release glutamate also by a mechanism involving heterologous transporter activation (heterotransporters) located on glutamate-releasing and glutamate transporter-expressing (homotransporters) gliosomes. This glutamate release involves reversal of glutamate transporters and anion channel opening, but not exocytosis. Both the exocytotic and the heterotransporter-mediated glutamate release were more abundant in gliosomes prepared from the spinal cord of transgenic mice, model of amyotrophic lateral sclerosis, than in controls; suggesting the involvement of astrocytic glutamate release in the excitotoxicity proposed as a cause of motor neuron degeneration. The results support the view that gliosomes may represent a viable preparation that allows to study mechanisms of astrocytic transmitter release and its regulation in healthy animals and in animal models of brain diseases. PMID:19607977

  17. Explaining Simulations Through Self Explaining Agents

    OpenAIRE

    Maaike Harbers; John-Jules Meyer; Karel Van den Bosch

    2010-01-01

    Several strategies are used to explain emergent interaction patterns in agent-based simulations. A distinction can be made between simulations in which the agents just behave in a reactive way, and simulations involving agents with also pro-active (goal-directed) behavior. Pro-active behavior is more variable and harder to predict than reactive behavior, and therefore it might be harder to explain. However, the approach presented in this paper tries to make advantage of the agents' pro-active...

  18. Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow

    OpenAIRE

    Halnes, Geir; Pettersen, Klas H.; Øyehaug, Leiv; Rognes, Marie E.; Langtangen, Hans Petter; Einevoll, Gaute T.

    2016-01-01

    We review modeling of astrocyte ion dynamics with a specific focus on the implications of so-called spatial potassium buffering, where excess potassium in the extracellular space (ECS) is transported away to prevent pathological neural spiking. The recently introduced Kirchoff-Nernst-Planck (KNP) scheme for modeling ion dynamics in astrocytes (and brain tissue in general) is outlined and used to study such spatial buffering. We next describe how the ion dynamics of astrocytes may regulate mic...

  19. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Marta Navarrete

    2012-02-01

    Full Text Available Long-term potentiation (LTP of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca²⁺ in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR and metabotropic glutamate receptor (mGluR activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca²⁺ elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP also involves mGluR activation. Astrocyte Ca²⁺ elevations and LTP are absent in IP₃R2 knock-out mice. Downregulating astrocyte Ca²⁺ signal by loading astrocytes with BAPTA or GDPβS also prevents LTP, which is restored by simultaneous astrocyte Ca²⁺ uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca²⁺ elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca²⁺ signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca²⁺ signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.

  20. Transcriptomic analyses of primary astrocytes under TNFα treatment

    OpenAIRE

    Birck, Cindy; Koncina, Eric; Heurtaux, Tony; Glaab, Enrico; Michelucci, Alessandro; Heuschling, Paul; Grandbarbe, Luc

    2016-01-01

    Astrocytes, the most abundant glial cell population in the central nervous system, have important functional roles in the brain as blood brain barrier maintenance, synaptic transmission or intercellular communications [1], [2]. Numerous studies suggested that astrocytes exhibit a functional and morphological high degree of plasticity. For example, following any brain injury, astrocytes become reactive and hypertrophic. This phenomenon, also called reactive gliosis, is characterized by a set o...

  1. Striatal Astrocytes Act as a Reservoir for L-DOPA

    OpenAIRE

    Masato Asanuma; Ikuko Miyazaki; Shinki Murakami; Diaz-Corrales, Francisco J.; Norio Ogawa

    2014-01-01

    L-DOPA is therapeutically efficacious in patients with Parkinson's disease (PD), although dopamine (DA) neurons are severely degenerated. Since cortical astrocytes express neutral amino acid transporter (LAT) and DA transporter (DAT), the uptake and metabolism of L-DOPA and DA in striatal astrocytes may influence their availability in the dopaminergic system of PD. To assess possible L-DOPA- and DA-uptake and metabolic properties of striatal astrocytes, we examined the expression of L-DOPA, D...

  2. Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission

    DEFF Research Database (Denmark)

    Schousboe, A; Sarup, A; Bak, L K;

    2004-01-01

    The fine tuning of both glutamatergic and GABAergic neurotransmission is to a large extent dependent upon optimal function of astrocytic transport processes. Thus, glutamate transport in astrocytes is mandatory to maintain extrasynaptic glutamate levels sufficiently low to prevent excitotoxic...... neuronal damage. In GABA synapses hyperactivity of astroglial GABA uptake may lead to diminished GABAergic inhibitory activity resulting in seizures. As a consequence of this the expression and functional activity of astrocytic glutamate and GABA transport is regulated in a number of ways at...

  3. Immune and inflammatory responses in the CNS : Modulation by astrocytes

    DEFF Research Database (Denmark)

    Penkowa, Milena; aschner, michael; hidalgo, juan

    2008-01-01

    Beyond their long-recognized support functions, astrocytes are active partners of neurons in processing information, synaptic integration, and production of trophic factors, just to name a few. Both microglia and astrocytes produce and secrete a number of cytokines, modulating and integrating the...... experimental evidence on the role of astroglia in the etiology of neurological diseases will be highlighted, along with (5) the role of oxidative stressors generated within astrocytes in this process....

  4. Albumin induces upregulation of matrix metalloproteinase-9 in astrocytes via MAPK and reactive oxygen species-dependent pathways

    Directory of Open Access Journals (Sweden)

    Ranaivo Hantamalala

    2012-04-01

    Full Text Available Abstract Background Astrocytes are an integral component of the blood–brain barrier (BBB which may be compromised by ischemic or traumatic brain injury. In response to trauma, astrocytes increase expression of the endopeptidase matrix metalloproteinase (MMP-9. Compromise of the BBB leads to the infiltration of fluid and blood-derived proteins including albumin into the brain parenchyma. Albumin has been previously shown to activate astrocytes and induce the production of inflammatory mediators. The effect of albumin on MMP-9 activation in astrocytes is not known. We investigated the molecular mechanisms underlying the production of MMP-9 by albumin in astrocytes. Methods Primary enriched astrocyte cultures were used to investigate the effects of exposure to albumin on the release of MMP-9. MMP-9 expression was analyzed by zymography. The involvement of mitogen-activated protein kinase (MAPK, reactive oxygen species (ROS and the TGF-β receptor-dependent pathways were investigated using pharmacological inhibitors. The production of ROS was observed by dichlorodihydrofluorescein diacetate fluorescence. The level of the MMP-9 inhibitor tissue inhibitor of metalloproteinase (TIMP-1 produced by astrocytes was measured by ELISA. Results We found that albumin induces a time-dependent release of MMP-9 via the activation of p38 MAPK and extracellular signal regulated kinase, but not Jun kinase. Albumin-induced MMP-9 production also involves ROS production upstream of the MAPK pathways. However, albumin-induced increase in MMP-9 is independent of the TGF-β receptor, previously described as a receptor for albumin. Albumin also induces an increase in TIMP-1 via an undetermined mechanism. Conclusions These results link albumin (acting through ROS and the p38 MAPK to the activation of MMP-9 in astrocytes. Numerous studies identify a role for MMP-9 in the mechanisms of compromise of the BBB, epileptogenesis, or synaptic remodeling after ischemia or

  5. Differential induction of heme oxygenase and other stress proteins in cultured hippocampal astrocytes and neurons by inorganic lead

    International Nuclear Information System (INIS)

    We examined the effects of exposure to inorganic lead (Pb2+) on the induction of stress proteins in cultured hippocampal neurons and astrocytes, with particular emphasis on the induction of heme oxygenase-1 (HO-1). In radiolabeled neuronal cultures, Pb2+ exposure had no significant effect on the synthesis of any protein at any concentration (up to 250 μM) or duration of exposure (up to 4 days). In radiolabeled astrocyte cultures, however, Pb2+ exposure (100 nM to 100 μM; 1-4 days) increased synthesis of proteins with approximate molecular weights of 23, 32, 45, 57, 72, and 90 kDa. Immunoblot experiments showed that Pb2+ exposure (100 nM to 10 μM, 1-14 days) induces HO-1 synthesis in astrocytes, but not in neurons; this is probably the 32-kDa protein. The other heme oxygenase isoform, HO-2, is present in both neurons and astrocytes, but is not inducible by Pb2+ at concentrations up to 100 μM. HO-1 can be induced by a variety of stimuli. We found that HO-1 induction in astrocytes is increased by combined exposure to Pb2+ and many other stresses, including heat, nitric oxide, H2O2, and superoxide. One of the stimuli that may induce HO-1 is oxidative stress. Lead exposure causes oxidative stress in many cell types, including astrocytes. Induction of HO-1 by Pb2+ is reduced by the hydroxyl radical scavengers dimethylthiourea (DMTU) and mannitol, but not by inhibitors of calmodulin, calmodulin-dependent protein kinases, protein kinase C, or extracellular signal-regulated kinases (ERK). Therefore, we conclude that oxidative stress is an important mechanism by which Pb2+ induces HO-1 synthesis in astrocytes

  6. Development of a Novel Method for the Purification and Culture of Rodent Astrocytes

    OpenAIRE

    Foo, Lynette C.; Allen, Nicola J.; Bushong, Eric A.; Ventura, P. Britten; Chung, Won-Suk; Zhou, Lu; Cahoy, John D.; Daneman, Richard; Zong, Hui; Ellisman, Mark H.; Barres, Ben A.

    2011-01-01

    The inability to purify and culture astrocytes has long hindered studies of their function. Whereas astrocyte progenitor cells can be cultured from neonatal brain, culture of mature astrocytes from postnatal brain has not been possible. Here we report a new method to prospectively purify astrocytes by immunopanning. These astrocytes undergo apoptosis in culture, but vascular cells and HBEGF promote their survival in serum-free culture. We found that some developing astrocytes normally undergo...

  7. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles

    Science.gov (United States)

    Wilson, Christina L.; Natarajan, Vaishaali; Hayward, Stephen L.; Khalimonchuk, Oleh; Kidambi, Srivatsan

    2015-11-01

    Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 +/- 10.56 ppm, 136.0 +/- 31.73 ppm and 62.37 +/- 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.Titanium dioxide (Ti

  8. Study on the effects of thrombin on AQP4 mRNA and AQP4 protein expression in rat primary astrocytes

    Institute of Scientific and Technical Information of China (English)

    Jinghua Zhou; Xuebing Cao; Shenggang Sun

    2006-01-01

    Objective: To study the biologic effects of various concentrations of thrombin on aquaporin 4 (AQP4) expression in rat primary cultured astrocytes, and to explore the regulation mechanism of transmembrane water transportation in astrocytes after intracerebral hemorrhage (ICH). Methods: Primary cultured astrocytes were incubated in culture mediums containing various concentrations of thrombin for 24 h and harvested. AQP4 mRNA and AQP4 protein expression were determined by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemical technique. Cell apoptosis was detected by TdT-mediated dUTP nick end labeling (TUNEL) technique. Cell morphology was observed by phase contrast microscope, and cell viability was assayed by MTT. Results: AQP4 mRNA and AQP4 protein showed a low expression in normal astrocytes. The expression of AQP4 mRNA and AQP4 protein significantly increased in the astrocytes treated with 100 U/ml or 200 U/ml thrombin (P < 0.01),and these astrocytes swelled. The number of TUNEL positive cells significantly increased. On the other hand, AQP4 mRNA and AQP4 protein expression were down-regulated in the astrocytes treated with 0.5 U/ml or l U/ml thrombin (P < 0.05),and the cell morphology did not change. Few TUNEL positive cells were observed. Conclusion: AQP4 over-expression induced by high concentrations of thrombin causes an increased permeability of water in astrocytic membrane. On the contrary, the decreased AQP4 expression prevents the astrocytes from swelling and apoptosis.

  9. Astrocyte reactivity in related brain regions in a mouse model of MPTP-induced Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Zhijun Zhang; Chunlin Xia; Yulin Dong; Guangming Lü; Juan Liu; Lin Ding; Hengjian Ni

    2009-01-01

    BACKGROUND: Severe injury to dopaminergic neuronal cell bodies and their axon terminals in the substantia nigra pars compacta (SNC) has been observed in both Parkinson's disease (PD) patients or in 1-methy-4-phenyl-1,2,3,6-tetrahydropyrindine(MPTP)-induced PD animal models, but only slight injury occurs in the adjacent ventral tegmental area (VTA). The mechanisms underlying this selective injury remain poorly understood.OBJECTIVE: To comparatively observe astrocyte reactivity in the SNC, caudate putamen (Cpu), VTA, and frontal association cortex (FrA).DESIGN, TIME AND SETTING: A cellular and molecular biology, randomized, controlled experiment was performed at the Institute of Neurobiology, Department of Human Anatomy, Medical School of Nantong University, between December 2006 and September 2008.MATERIALS: A total of 80 healthy adult male C57BL/6 mice were included in this study. MPTP was purchased from Sigma, USA.METHODS: Mice were randomly divided into a model group (n = 64) and a sham-operated group (n = 16). PD was induced in the mice from the model group by intraperitoneal injection of 20 mg/kg MPTP, once every three hours, for a total of 4 times.MAIN OUTCOME MEASURES: Tyrosine hydroxylase (TH)-immunoreactive neurons and glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes were examined by dual immunofluorescence labeling. GFAP-immunoreactive astrocytes in the Cpu and FrA were determined by immunofluorescent staining. GFAP mRNA expression in the SNC, Cpu, VTA, and FrA was detected using real-time polymerase chain reaction. TH protein levels in the TH-immunoreactive axon terminals of the Cpu and FrA were detected by Western blotting.RESULTS: Numbers of TH-immunoreactive neurons in the SNC, and TH protein level in the Cpu, markedly decreased (by approximately 68%) 1 day after MPTP injection, and gradually increased at 3 days. Simultaneously, astrocyte reactivity was strengthened, in particular at 7 days. However, after MPTP injection, decreases in

  10. Influence of drugs on gap junctions in glioma cell lines and primary astrocytes in vitro

    Directory of Open Access Journals (Sweden)

    Zahra eMoinfar

    2014-05-01

    Full Text Available Gap junctions (GJs are hemichannels on cell membrane. Once they are intercellulary connected to the neighboring cells, they build a functional syncytium which allows rapid transfer of ions and molecules between cells. This characteristic makes GJs a potential modulator in proliferation, migration and development of the cells. So far, several types of GJs are recognized on different brain cells as well as in glioma. Astrocytes, as one of the major cells that maintain neuronal homeostasis, express different types of GJs that let them communicate with neurons, oligodendrocytes and endothelial cells of the blood brain barrier; however, the main GJ in astrocytes is connexin 43. There are different cerebral diseases in which astrocyte GJs might play a role. Several drugs have been reported to modulate gap junctional communication in the brain which can consequently have beneficial or detrimental effects on the course of treatment in certain diseases. However, the exact cellular mechanism behind those pharmaceutical efficacies on GJs is not well-understood. Accordingly, how specific drugs would affect GJs and what some consequent specific brain diseases would be are the interests of the authors of this chapter. We would focus on pharmaceutical effects on GJs on astrocytes in specific diseases where GJs could possibly play a role including: 1 migraine and a novel therapy for migraine with aura, 2 neuroautoimmune diseases and immunomodulatory drugs in the treatment of demyelinating diseases of the central nervous system such as multiple sclerosis, 3 glioma and antineoplastic and anti-inflammatory agents that are used in treating brain tumors and 4 epilepsy and anticonvulsants that are widely used for seizures therapy. All of the above-mentioned therapeutic categories can possibly affect GJs expression of astrocytes and the role is discussed in the upcoming chapter.

  11. Non-cell autonomous influence of the astrocyte system xc− on hypoglycaemic neuronal cell death

    Directory of Open Access Journals (Sweden)

    Sandra J Hewett

    2012-02-01

    Full Text Available Despite longstanding evidence that hypoglycaemic neuronal injury is mediated by glutamate excitotoxicity, the cellular and molecular mechanisms involved remain incompletely defined. Here, we demonstrate that the excitotoxic neuronal death that follows GD (glucose deprivation is initiated by glutamate extruded from astrocytes via system xc− – an amino acid transporter that imports l-cystine and exports l-glutamate. Specifically, we find that depriving mixed cortical cell cultures of glucose for up to 8 h injures neurons, but not astrocytes. Neuronal death is prevented by ionotropic glutamate receptor antagonism and is partially sensitive to tetanus toxin. Removal of amino acids during the deprivation period prevents – whereas addition of l-cystine restores – GD-induced neuronal death, implicating the cystine/glutamate antiporter, system xc−. Indeed, drugs known to inhibit system xc− ameliorate GD-induced neuronal death. Further, a dramatic reduction in neuronal death is observed in chimaeric cultures consisting of neurons derived from WT (wild-type mice plated on top of astrocytes derived from sut mice, which harbour a naturally occurring null mutation in the gene (Slc7a11 that encodes the substrate-specific light chain of system xc− (xCT. Finally, enhancement of astrocytic system xc− expression and function via IL-1β (interleukin-1β exposure potentiates hypoglycaemic neuronal death, the process of which is prevented by removal of l-cystine and/or addition of system xc− inhibitors. Thus, under the conditions of GD, our studies demonstrate that astrocytes, via system xc−, have a direct, non-cell autonomous effect on cortical neuron survival.

  12. Non-cell autonomous influence of the astrocyte system xc- on hypoglycaemic neuronal cell death.

    Science.gov (United States)

    Jackman, Nicole A; Melchior, Shannon E; Hewett, James A; Hewett, Sandra J

    2012-02-08

    Despite longstanding evidence that hypoglycaemic neuronal injury is mediated by glutamate excitotoxicity, the cellular and molecular mechanisms involved remain incompletely defined. Here, we demonstrate that the excitotoxic neuronal death that follows GD (glucose deprivation) is initiated by glutamate extruded from astrocytes via system xc---an amino acid transporter that imports L-cystine and exports L-glutamate. Specifically, we find that depriving mixed cortical cell cultures of glucose for up to 8 h injures neurons, but not astrocytes. Neuronal death is prevented by ionotropic glutamate receptor antagonism and is partially sensitive to tetanus toxin. Removal of amino acids during the deprivation period prevents--whereas addition of L-cystine restores--GD-induced neuronal death, implicating the cystine/glutamate antiporter, system xc-. Indeed, drugs known to inhibit system xc- ameliorate GD-induced neuronal death. Further, a dramatic reduction in neuronal death is observed in chimaeric cultures consisting of neurons derived from WT (wild-type) mice plated on top of astrocytes derived from sut mice, which harbour a naturally occurring null mutation in the gene (Slc7a11) that encodes the substrate-specific light chain of system xc- (xCT). Finally, enhancement of astrocytic system xc- expression and function via IL-1β (interleukin-1β) exposure potentiates hypoglycaemic neuronal death, the process of which is prevented by removal of l-cystine and/or addition of system xc- inhibitors. Thus, under the conditions of GD, our studies demonstrate that astrocytes, via system xc-, have a direct, non-cell autonomous effect on cortical neuron survival.

  13. Spatial memory decline after masticatory deprivation and aging is associated with altered laminar distribution of CA1 astrocytes

    Directory of Open Access Journals (Sweden)

    Frota de Almeida Marina

    2012-02-01

    Full Text Available Abstract Background Chewing imbalances are associated with neurodegeneration and are risk factors for senile dementia in humans and memory deficits in experimental animals. We investigated the impact of long-term reduced mastication on spatial memory in young, mature and aged female albino Swiss mice by stereological analysis of the laminar distribution of CA1 astrocytes. A soft diet (SD was used to reduce mastication in the experimental group, whereas the control group was fed a hard diet (HD. Assays were performed in 3-, 6- and 18-month-old SD and HD mice. Results Eating a SD variably affected the number of astrocytes in the CA1 hippocampal field, and SD mice performed worse on water maze memory tests than HD mice. Three-month-old mice in both groups could remember/find a hidden platform in the water maze. However, 6-month-old SD mice, but not HD mice, exhibited significant spatial memory dysfunction. Both SD and HD 18-month-old mice showed spatial memory decline. Older SD mice had astrocyte hyperplasia in the strata pyramidale and oriens compared to 6-month-old mice. Aging induced astrocyte hypoplasia at 18 months in the lacunosum-moleculare layer of HD mice. Conclusions Taken together, these results suggest that the impaired spatial learning and memory induced by masticatory deprivation and aging may be associated with altered astrocyte laminar distribution and number in the CA1 hippocampal field. The underlying molecular mechanisms are unknown and merit further investigation.

  14. Astrocytic CCAAT/Enhancer Binding Protein δ Regulates Neuronal Viability and Spatial Learning Ability via miR-135a.

    Science.gov (United States)

    Chu, Yu-Yi; Ko, Chiung-Yuan; Wang, Wei-Jan; Wang, Shao-Ming; Gean, Po-Wu; Kuo, Yu-Min; Wang, Ju-Ming

    2016-08-01

    The progression of Alzheimer's disease (AD) has been associated with astrocytes-induced neuroinflammation. However, the detailed mechanism of astrocytes associated with learning impairments and neuronal loss in AD is poorly defined. Here, we provide novel evidences that astrocytic miR-135a is critical for neuronal viability and spatial learning ability in vivo. The AppTg/Cebpd (-/-) mice showed a spatial learning improvement compared with the APPswe/PS1/E9 bigenic (AppTg) mice. miR-135a was found to be a CCAAT/enhancer binding protein δ (CEBPD) responsive miRNA and can repress the transcription of thrombospondin 1 (THBS1) / Thbs1 (mouse) via its 3'-untranslated region (3'UTR). We used different experimental approaches to attenuate the expression of CEBPD/Cebpd (mouse) or miR-135a in astrocytes and found the following results: increase in THBS1/Thbs1 expression, decrease in neuronal apoptosis, and increase in growth of neurites. Importantly, injection of miR-135a antagonist (AM135a) into the brain of AppTg mice was found to prevent neuronal apoptosis and improved the spatial learning ability. Together, our findings demonstrate a critical function for the astrocytic CEBPD, and point to miR-135a antagonist as an attractive therapeutic target for the treatment of Alzheimer's disease. PMID:26208701

  15. Explaining simulations through self explaining agents

    NARCIS (Netherlands)

    Harbers, M.; Bosch, K. van den; Meyer, J.J.C.

    2010-01-01

    Several strategies are used to explain emergent interaction patterns in agent-based simulations. A distinction can be made between simulations in which the agents just behave in a reactive way, and simulations involving agents with also pro-active (goal-directed) behavior. Pro-active behavior is mor

  16. Explaining Simulations through Self Explaining Agents

    NARCIS (Netherlands)

    Harbers, M.; Dignum, F.; Bosch, K. van den; Meyer, J.J.C.

    2008-01-01

    Several strategies are used to explain emergent interaction patterns in agent-based simulations. A distinction can be made between simulations in which the agents just behave in a reactive way, and simulations involving agents with also pro-active (goal-directed) behavior. Pro-active behavior is mor

  17. Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling

    OpenAIRE

    Hines, D J; Schmitt, L I; Hines, R. M.; Moss, S J; Haydon, P. G.

    2013-01-01

    Major depressive disorder is a debilitating condition with a lifetime risk of ten percent. Most treatments take several weeks to achieve clinical efficacy, limiting the ability to bring instant relief needed in psychiatric emergencies. One intervention that rapidly alleviates depressive symptoms is sleep deprivation; however, its mechanism of action is unknown. Astrocytes regulate responses to sleep deprivation, raising the possibility that glial signaling mediates antidepressive-like actions...

  18. Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes.

    Science.gov (United States)

    Stork, Tobias; Sheehan, Amy; Tasdemir-Yilmaz, Ozge E; Freeman, Marc R

    2014-07-16

    Astrocytes are critically important for neuronal circuit assembly and function. Mammalian protoplasmic astrocytes develop a dense ramified meshwork of cellular processes to form intimate contacts with neuronal cell bodies, neurites, and synapses. This close neuron-glia morphological relationship is essential for astrocyte function, but it remains unclear how astrocytes establish their intricate morphology, organize spatial domains, and associate with neurons and synapses in vivo. Here we characterize a Drosophila glial subtype that shows striking morphological and functional similarities to mammalian astrocytes. We demonstrate that the Fibroblast growth factor (FGF) receptor Heartless autonomously controls astrocyte membrane growth, and the FGFs Pyramus and Thisbe direct astrocyte processes to ramify specifically in CNS synaptic regions. We further show that the shape and size of individual astrocytes are dynamically sculpted through inhibitory or competitive astrocyte-astrocyte interactions and Heartless FGF signaling. Our data identify FGF signaling through Heartless as a key regulator of astrocyte morphological elaboration in vivo.

  19. Immune Privilege as an Intrinsic CNS Property: Astrocytes Protect the CNS against T-Cell-Mediated Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Ulrike Gimsa

    2013-01-01

    Full Text Available Astrocytes have many functions in the central nervous system (CNS. They support differentiation and homeostasis of neurons and influence synaptic activity. They are responsible for formation of the blood-brain barrier (BBB and make up the glia limitans. Here, we review their contribution to neuroimmune interactions and in particular to those induced by the invasion of activated T cells. We discuss the mechanisms by which astrocytes regulate pro- and anti-inflammatory aspects of T-cell responses within the CNS. Depending on the microenvironment, they may become potent antigen-presenting cells for T cells and they may contribute to inflammatory processes. They are also able to abrogate or reprogram T-cell responses by inducing apoptosis or secreting inhibitory mediators. We consider apparently contradictory functions of astrocytes in health and disease, particularly in their interaction with lymphocytes, which may either aggravate or suppress neuroinflammation.

  20. Astrocytes Enhance Streptococcus suis-Glial Cell Interaction in Primary Astrocyte-Microglial Cell Co-Cultures.

    Science.gov (United States)

    Seele, Jana; Nau, Roland; Prajeeth, Chittappen K; Stangel, Martin; Valentin-Weigand, Peter; Seitz, Maren

    2016-06-13

    Streptococcus (S.) suis infections are the most common cause of meningitis in pigs. Moreover, S. suis is a zoonotic pathogen, which can lead to meningitis in humans, mainly in adults. We assume that glial cells may play a crucial role in host-pathogen interactions during S. suis infection of the central nervous system. Glial cells are considered to possess important functions during inflammation and injury of the brain in bacterial meningitis. In the present study, we established primary astrocyte-microglial cell co-cultures to investigate interactions of S. suis with glial cells. For this purpose, microglial cells and astrocytes were isolated from new-born mouse brains and characterized by flow cytometry, followed by the establishment of astrocyte and microglial cell mono-cultures as well as astrocyte-microglial cell co-cultures. In addition, we prepared microglial cell mono-cultures co-incubated with uninfected astrocyte mono-culture supernatants and astrocyte mono-cultures co-incubated with uninfected microglial cell mono-culture supernatants. After infection of the different cell cultures with S. suis, bacteria-cell association was mainly observed with microglial cells and most prominently with a non-encapsulated mutant of S. suis. A time-dependent induction of NO release was found only in the co-cultures and after co-incubation of microglial cells with uninfected supernatants of astrocyte mono-cultures mainly after infection with the capsular mutant. Only moderate cytotoxic effects were found in co-cultured glial cells after infection with S. suis. Taken together, astrocytes and astrocyte supernatants increased interaction of microglial cells with S. suis. Astrocyte-microglial cell co-cultures are suitable to study S. suis infections and bacteria-cell association as well as NO release by microglial cells was enhanced in the presence of astrocytes.

  1. Glutamine Synthetase Deficiency in Murine Astrocytes Results in Neonatal Death

    NARCIS (Netherlands)

    Y. He; T.B.M. Hakvoort; J.L.M. Vermeulen; W.T. Labruyere; D.R. de Waart; W.S. van der Hel; J.M. Ruijter; H.B.M. Uylings; W.H. Lamers

    2010-01-01

    Glutamine synthetase (GS) is a key enzyme in the "glutamine-glutamate cycle" between astrocytes and neurons, but its function in vivo was thus far tested only pharmacologically. Crossing GS(fl/lacZ) or GS(fl/f)l mice with hGFAP-Cre mice resulted in prenatal excision of the GS(fl) allele in astrocyte

  2. Probing astrocytes with carbon nanotubes and assessing their effects on astrocytic structural and functional properties

    Science.gov (United States)

    Gottipati, Manoj K.

    Single-walled carbon nanotubes, chemically-functionalized with polyethylene glycol (SWCNT-PEG) have been shown to modulate the morphology and proliferation characteristics of astrocytes in culture, when applied to the cells as colloidal solutes or as films upon which the cells can attach and grow. These changes were associated with a change in the immunoreactivity of the astrocyte-specific protein, glial fibrillary acidic protein (GFAP); the solutes and films caused an increase and a decrease in GFAP levels, respectively. To assess if these morpho-functional changes induced by the SWCNT-PEG modalities are dependent on GFAP or if the changes in GFAP levels are independent events, I used astrocytes isolated from GFAP knockout mice and found that selected changes induced by the SWCNT-PEG modalities are mediated by GFAP, namely the changes in perimeter, shape and cell death for colloidal solutes and the rate of proliferation for films. Since the loss GFAP has been shown to hamper the trafficking of glutamate transporters to the surface of astrocytes, which plays a vital role in the uptake of extracellular glutamate and maintaining homeostasis in the brain and spinal cord, in a subsequent study, I assessed if the SWCNT-PEG solute causes any change in the glutamate uptake characteristics of astrocytes. Using a radioactive glutamate uptake assay and immunolabeling, I found that SWCNT-PEG solute causes an increase in the uptake of glutamate from the extracellular space along with an increase in the immunoreactivity of the glutamate transporter, L-glutamate L-aspartate transporter (GLAST), on their cell surface, a likely consequence of the increase in GFAP levels induced by the SWCNT-PEG solute. These results imply that SWCNT-PEG could potentially be used as a viable candidate in neural prosthesis applications to prevent glutamate excitotoxicity, a pathological process observed in brain and spinal cord injuries, and alleviate the death toll of neurons surrounding the injury

  3. Neuronal-derived Ccl7 drives neuropathic pain by promoting astrocyte proliferation.

    Science.gov (United States)

    Ke, Bin Chang; Huang, Xia Xiao; Li, Yang; Li, Li Ya; Xu, Qin Xue; Gao, Yan; Liu, Yingju; Luo, Jie

    2016-08-01

    Recent studies suggest that peripheral nerve injury converts resting spinal cord astroglial cells into an activated state, which is required for the development and maintenance of neuropathic pain. However, the underlying mechanisms of how resting astrocytes are activated after nerve injury remain largely unknown. Astroglial cell proliferation and activation could be affected by endogenous factors including chemokines, growth factors, and neurotropic factor. Chemokine (C-C motif) ligand 7 (Ccl7) is essential in facilitating the development of neuropathic pain; however, the mechanism is unknown. In the present study, we found that Ccl7 promoted astrocyte proliferation and thus contributed toward neuropathic pain. Spinal nerve ligation increased the expression in the spinal cord of neuronal Ccl7. Behavioral analyses showed that knockdown of Ccl7 alleviated spinal nerve ligation-induced neuropathic pain. Further in-vitro study showed that neuronal-derived Ccl7 was sufficient for the proliferation and activation of astroglial cells. We found a novel mechanism of Ccl7 stimulating the proliferation and activation of spinal cord astrocytes that contributes toward neuropathic pain. PMID:27295026

  4. Investigation on the suitable pressure for the preservation of astrocyte

    International Nuclear Information System (INIS)

    The effects of pressure on the survival rate of astrocytes in growth medium (DMEM) were investigated at room temperature and at 40C, in an effort to establish the best conditions for the preservation. Survival rate at 40C was found to be higher than that at room temperature. The survival rate of astrocytes preserved for 4 days at 40C increased with increasing pressure up to 1.6 MPa, but decreased with increasing pressure above 1.6 MPa. At 10 MPa, all astrocytes died. The survival rate of cultured astrocytes decreased significantly following pressurization for 2 hours and the subsequent preservation for 2 days at atmospheric pressure. Therefore, it is necessary to maintain pressure when preserving astrocytes. These results indicate that the cells can be stored at 40C under pressurization without freezing and without adding cryoprotective agents. Moreover, it may be possible to use this procedure as a new preservation method when cryopreservation is impractical.

  5. Astrocytes Control Neuronal Excitability in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Tommaso Fellin

    2007-01-01

    Full Text Available Though accumulating evidence shows that the metabotropic glutamate receptor 5 (mGluR5 mediates some of the actions of extracellular glutamate after cocaine use, the cellular events underlying this action are poorly understood. In this review, we will discuss recent results showing that mGluR5 receptors are key regulators of astrocyte activity. Synaptic release of glutamate activates mGluR5 expressed in perisynaptic astrocytes and generates intense Ca2+ signaling in these cells. Ca2+ oscillations, in turn, trigger the release from astrocytes of the gliotransmitter glutamate, which modulates neuronal excitability by activating NMDA receptors. By integrating these results with the most recent evidence demonstrating the importance of astrocytes in the regulation of neuronal excitability, we propose that astrocytes are involved in mediating some of the mGluR5-dependent drug-induced behaviors.

  6. Optical modulation of astrocyte network using ultrashort pulsed laser

    Science.gov (United States)

    Yoon, Jonghee; Ku, Taeyun; Chong, Kyuha; Ryu, Seung-Wook; Choi, Chulhee

    2012-03-01

    Astrocyte, the most abundant cell type in the central nervous system, has been one of major topics in neuroscience. Even though many tools have been developed for the analysis of astrocyte function, there has been no adequate tool that can modulates astrocyte network without pharmaceutical or genetic interventions. Here we found that ultrashort pulsed laser stimulation can induce label-free activation of astrocytes as well as apoptotic-like cell death in a dose-dependent manner. Upon irradiation with high intensity pulsed lasers, the irradiated cells with short exposure time showed very rapid mitochondria fragmentation, membrane blebbing and cytoskeletal retraction. We applied this technique to investigate in vivo function of astrocyte network in the CNS: in the aspect of neurovascular coupling and blood-brain barrier. We propose that this noninvasive technique can be widely applied for in vivo study of complex cellular network.

  7. Multiple oxygen tension environments reveal diverse patterns of transcriptional regulation in primary astrocytes.

    Directory of Open Access Journals (Sweden)

    Wayne Chadwick

    Full Text Available The central nervous system normally functions at O(2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O(2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O(2 tensions compared to the cell culture standard of 20% O(2, to investigate their ability to sense and translate this O(2 information to transcriptional activity. Variance of ambient O(2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O(2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O(2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O(2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional 'programs' may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity.

  8. Study of red wine neuroprotection on astrocytes.

    Science.gov (United States)

    Gómez-Serranillos, M Pilar; Martín, Sara; Ortega, Teresa; Palomino, Olga M; Prodanov, Marín; Vacas, Visitación; Hernández, Teresa; Estrella, Isabel; Carretero, M Emilia

    2009-12-01

    Phenolic composition of wine depends not only on the grape variety from which it is made, but on some external factors such as winemaking technology. Red wine possesses the most antioxidant effect because of its high polyphenolic content. The aim of this work is to study for the first time, the neuroprotective activity of four monovarietal Spanish red wines (Merlot (ME), Tempranillo (T), Garnacha (G) and Cabernet-Sauvignon (CS)) through its antioxidant ability, and to relate this neuroprotection to its polyphenolic composition, if possible. The wine effect on neuroprotection was studied through its effect as free radical scavenger against FeSO4, H2O2 and FeSO4 + H2O2. Effect on cell survival was determined by 3(4,5-dimethyltiazol-2-il)-2,5-diphenyltetrazolium reduction assay (MTT) and lactate dehydrogenase (LDH) release assay on astrocytes cultures. Results showed that most of the studied wine varieties induced neuroprotection through their antioxidant ability in astrocytes, Merlot being the most active; this variety is especially rich in phenolic compounds, mainly catechins and oligomeric proanthocyanidins. Our results show that red wine exerts a protection against oxidative stress generated by different toxic agents and that the observed neuroprotective activity is related to their polyphenolic content.

  9. Phosphoinositide metabolism and adrenergic receptors in astrocytes

    International Nuclear Information System (INIS)

    Agonist-induced phosphoinositide (PI) breakdown functions as a signal generating system. Diacylglycerol, one breakdown product of phosphotidylinositol-4,5-diphosphate hydrolysis, can stimulate protein kinase C, whereas inositol triphosphate, the other product, has been proposed to be a second messenger for Ca++ mobilization. Using purified astrocyte cultures from neonatal rat brain, the effects of adrenergic agonists and antagonists at 10-5 M were measured on PI breakdown. Astrocytes grown in culture were prelabeled with (3H)inositol, and basal (3H) inositol phosphate (IP1) accumulation was measured in the presence of Li+. Epinephrine > norepinephrine (NE) were the most active stimulants of IP1 production. The α1 adrenoreceptor blockers, phentolamine and phenoxybenzamine, added alone had no effect on IP1 production was reduced below basal levels. Propranolol partially blocked the effects of NE. Clonidine and isoproterenol, separately added, reduced IP1 below basal levels and when added together diminished IP1 accumulation even further. The role of adrenergic stimulation in the production of c-AMP

  10. Astrocytic gap junctional communication is reduced in amyloid-β-treated cultured astrocytes, but not in Alzheimer's disease transgenic mice

    Directory of Open Access Journals (Sweden)

    Gerald A Dienel

    2010-08-01

    Full Text Available Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-β on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β1–40 (1 μmol/l for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50–70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue, NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5–14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10–2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  11. Activity of the lactate-alanine shuttle is independent of glutamate-glutamine cycle activity in cerebellar neuronal-astrocytic cultures

    DEFF Research Database (Denmark)

    Bak, Lasse K; Sickmann, Helle M; Schousboe, Arne;

    2004-01-01

    The glutamate-glutamine cycle describes the neuronal release of glutamate into the synaptic cleft, astrocytic uptake, and conversion into glutamine, followed by release for use as a neuronal glutamate precursor. This only explains the fate of the carbon atoms, however, and not that of the ammonia...

  12. Astrocytic β2-adrenergic receptors mediate hippocampal long-term memory consolidation

    KAUST Repository

    Gao, Virginia

    2016-07-12

    Emotionally relevant experiences form strong and long-lasting memories by critically engaging the stress hormone/neurotransmitter noradrenaline, which mediates and modulates the consolidation of these memories. Noradrenaline acts through adrenergic receptors (ARs), of which β2- Adrenergic receptors (βARs) are of particular importance. The differential anatomical and cellular distribution of βAR subtypes in the brain suggests that they play distinct roles in memory processing, although much about their specific contributions and mechanisms of action remains to be understood. Here we show that astrocytic rather than neuronal β2ARs in the hippocampus play a key role in the consolidation of a fear-based contextual memory. These hippocampal β2ARs, but not β1ARs, are coupled to the training-dependent release of lactate from astrocytes, which is necessary for long- Term memory formation and for underlying molecular changes. This key metabolic role of astrocytic β2ARs may represent a novel target mechanism for stress-related psychopathologies and neurodegeneration.

  13. Metabolic gene expression changes in astrocytes in Multiple Sclerosis cerebral cortex are indicative of immune-mediated signaling

    KAUST Repository

    Zeis, T.

    2015-04-01

    Emerging as an important correlate of neurological dysfunction in Multiple Sclerosis (MS), extended focal and diffuse gray matter abnormalities have been found and linked to clinical manifestations such as seizures, fatigue and cognitive dysfunction. To investigate possible underlying mechanisms we analyzed the molecular alterations in histopathological normal appearing cortical gray matter (NAGM) in MS. By performing a differential gene expression analysis of NAGM of control and MS cases we identified reduced transcription of astrocyte specific genes involved in the astrocyte–neuron lactate shuttle (ANLS) and the glutamate–glutamine cycle (GGC). Additional quantitative immunohistochemical analysis demonstrating a CX43 loss in MS NAGM confirmed a crucial involvement of astrocytes and emphasizes their importance in MS pathogenesis. Concurrently, a Toll-like/IL-1β signaling expression signature was detected in MS NAGM, indicating that immune-related signaling might be responsible for the downregulation of ANLS and GGC gene expression in MS NAGM. Indeed, challenging astrocytes with immune stimuli such as IL-1β and LPS reduced their ANLS and GGC gene expression in vitro. The detected upregulation of IL1B in MS NAGM suggests inflammasome priming. For this reason, astrocyte cultures were treated with ATP and ATP/LPS as for inflammasome activation. This treatment led to a reduction of ANLS and GGC gene expression in a comparable manner. To investigate potential sources for ANLS and GGC downregulation in MS NAGM, we first performed an adjuvant-driven stimulation of the peripheral immune system in C57Bl/6 mice in vivo. This led to similar gene expression changes in spinal cord demonstrating that peripheral immune signals might be one source for astrocytic gene expression changes in the brain. IL1B upregulation in MS NAGM itself points to a possible endogenous signaling process leading to ANLS and GGC downregulation. This is supported by our findings that, among others

  14. Effect of Oxygen-Glucose Deprivation on Expression of Cdh1 in Astrocytes and Mechanism%氧糖剥夺对体外培养大鼠星形胶质细胞内Cdh1蛋白表达的影响及机制

    Institute of Scientific and Technical Information of China (English)

    邱瑾; 姚文龙; 张玥; 邹姮婧; 燕琳; 张传汉

    2012-01-01

    目的 探讨氧糖剥夺对星形胶质细胞内Cdh1蛋白表达的影响及其机制.方法 ①体外纯化培养大鼠大脑皮层星形胶质细胞,随机分为对照组、氧糖剥夺1 h复氧组、氧糖剥夺6 h复氧组,Western blot检测Cdh1及Skp2蛋白的表达变化;②将体外纯化培养的星形胶质细胞随机分为对照组、氧糖剥夺6 h组、单纯缺氧6 h组,Western blot检测Cdh1蛋白的表达变化,血糖仪检测培养液中葡萄糖含量的变化.结果 ①与对照组相比,氧糖剥夺1 h复氧组、氧糖剥夺6 h复氧组Cdh1蛋白表达均下降,Skp2蛋白表达均增加(P<0.05),氧糖剥夺1 h复氧组与氧糖剥夺6 h复氧组组间Cdh1、Skp2蛋白表达差异无统计学意义;②与对照组相比,氧糖剥夺6 h组Cdh1蛋白表达明显下降,单纯缺氧6 h组没有明显变化,氧糖剥夺6 h组与单纯缺氧6 h组组间差异有统计学意义(P<0.05);③单纯缺氧6 h组细胞外液葡萄糖摄取率低于对照组(即常氧组)[(21.43±6.74)% vs.(26.98±9.21)%,P<0.05].结论 氧糖剥夺后星形胶质细胞内Cdh1蛋白表达减少,其变化与细胞外液中缺少葡萄糖有关.%Objective To explore the influence of oxygen-glucose deprivation (OGD) on Cdhl protein expression in vilro cultured astrocytes and the mechanism. Methods The cerebral cortex astrocytes of rats were purified and cultured in vitro , and randomly divided into the control group, OGD 1 h and recoveryCOGD 1 h/R) group, OGD 6 h and recovery (OGD 6 h/R) group. The expression of Cdhl and Skp2 proteins was detected by using Western blot. Astrocytes were randomized into control group,OGD 6 h group and hypoxia 6 h group, and the expression of Cdhl protein was detected by using Western blot. Blood glucose meter was used to test glucose change. Results CD As compared with control group,the expression of Cdhl in OGD 1 h/R group and OGD 6 h/R group was decreased and the expression of Skp2 was increasedCP^O. 05) ,but there was no statistically

  15. Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia.

    Science.gov (United States)

    Churchill, Melissa J; Wesselingh, Steven L; Cowley, Daniel; Pardo, Carlos A; McArthur, Justin C; Brew, Bruce J; Gorry, Paul R

    2009-08-01

    Astrocyte infection with human immunodeficiency virus (HIV) is considered rare, so astrocytes are thought to play a secondary role in HIV neuropathogenesis. By combining double immunohistochemistry, laser capture microdissection, and highly sensitive multiplexed polymerase chain reaction to detect HIV DNA in single astrocytes in vivo, we showed that astrocyte infection is extensive in subjects with HIV-associated dementia, occurring in up to 19% of GFAP+ cells. In addition, astrocyte infection frequency correlated with the severity of neuropathological changes and proximity to perivascular macrophages. Our data indicate that astrocytes can be extensively infected with HIV, and suggest an important role for HIV-infected astrocytes in HIV neuropathogenesis.

  16. Curcumin Protects against 1-Methyl-4-phenylpyridinium Ion- and Lipopolysaccharide-Induced Cytotoxicities in the Mouse Mesencephalic Astrocyte via Inhibiting the Cytochrome P450 2E1

    Directory of Open Access Journals (Sweden)

    Hai-Yan Gui

    2013-01-01

    Full Text Available Curcumin is extracted from the rhizomes of the ginger family plant Curcuma longa L., which has a good protection for liver, kidney, and immune system. However, there is little information about its contribution in protection of astrocytes recently. The present study was undertaken to elucidate the protective effect of curcumin, an herbal antioxidant, on 1-methyl-4-phenylpyridinium ion- (MPP+- and lipopolysaccharide- (LPS- induced cytotoxicities, as well as the underlying mechanisms by using primary mouse mesencephalic astrocytes. The results showed that curcumin protected the mesencephalic astrocytes from MPP+- and LPS-induced toxicities along with reducing reactive oxygen species (P<0.05 and maleic dialdehyde (P<0.05 sufficiently. Moreover, curcumin significantly inhibited the cytochrome P450 2E1 (CYP2E1 expression (P<0.01 at mRNA level, P<0.05 at protein level and its activity (P<0.05 sufficiently induced by MPP+ and LPS in the mouse mesencephalic astrocytes. And curcumin as well as diallyl sulphide, a CYP2E1 positive inhibitor, ameliorated MPP+- and LPS-induced mouse mesencephalic astrocytes damage. Accordingly, curcumin protects against MPP+- and LPS-induced cytotoxicities in the mouse mesencephalic astrocyte via inhibiting the CYP2E1 expression and activity.

  17. IL-1β and IL-6 activate inflammatory responses of astrocytes against Naegleria fowleri infection via the modulation of MAPKs and AP-1.

    Science.gov (United States)

    Kim, J-H; Song, A-R; Sohn, H-J; Lee, J; Yoo, J-K; Kwon, D; Shin, H-J

    2013-01-01

    Naegleria fowleri, a free-living amoeba, has been found in diverse habitats throughout the world. It causes primary amoebic meningoencephalitis in children and young adults. The amoeba attaches to nasal mucosa, migrates along olfactory nerves and enters the brain. Astrocytes are involved in the defence against infection and produce inflammatory responses. In this study, we focus on the mechanism of immune responses in astrocytes. We showed, using RNase protection assay, RT-PCR and ELISA in an in vitro culture system, that N. fowleri lysates induce interleukin-1beta (IL-1β) and IL-6 expression of astrocytes. In addition, cytokine levels of astrocytes gradually decreased due to extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 inhibitors. To determine the transcription factor, we used transcription inhibitor (AP-1 inhibitor), which downregulated IL-1β and IL-6 expression. These results show that AP-1 is related to IL-1β and IL-6 production. N. fowleri-mediated IL-1β and IL-6 expression requires ERK, JNK and p38 mitogen-activated protein kinases (MAPKs) activation in astrocytes. These findings show that N. fowleri-stimulated astrocytes in an in vitro culture system lead to AP-1 activation and the subsequent expressions of IL-1β and IL-6, which are dependent on ERK, JNK and p38 MAPKs activation. These results may imply that proinflammatory cytokines have important roles in inflammatory responses to N. fowleri infection.

  18. Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury [v2; ref status: indexed, http://f1000r.es/38u

    Directory of Open Access Journals (Sweden)

    Laura Genis

    2014-04-01

    Full Text Available Oxidative stress is a proposed mechanism in brain aging, making the study of its regulatory processes an important aspect of current neurobiological research. In this regard, the role of the aging regulator insulin-like growth factor I (IGF-I in brain responses to oxidative stress remains elusive as both beneficial and detrimental actions have been ascribed to this growth factor. Because astrocytes protect neurons against oxidative injury, we explored whether IGF-I participates in astrocyte neuroprotection and found that blockade of the IGF-I receptor in astrocytes abrogated their rescuing effect on neurons. We found that IGF-I directly protects astrocytes against oxidative stress (H2O2. Indeed, in astrocytes but not in neurons, IGF-I decreases the pro-oxidant protein thioredoxin-interacting protein 1 and normalizes the levels of reactive oxygen species. Furthermore, IGF-I cooperates with trophic signals produced by astrocytes in response to H2O2 such as stem cell factor (SCF to protect neurons against oxidative insult. After stroke, a condition associated with brain aging where oxidative injury affects peri-infarcted regions, a simultaneous increase in SCF and IGF-I expression was found in the cortex, suggesting that a similar cooperative response takes place in vivo. Cell-specific modulation by IGF-I of brain responses to oxidative stress may contribute in clarifying the role of IGF-I in brain aging.

  19. Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury [v1; ref status: indexed, http://f1000r.es/2lf

    Directory of Open Access Journals (Sweden)

    Laura Genis

    2014-01-01

    Full Text Available Oxidative stress is a proposed mechanism in brain aging, making the study of its regulatory processes an important aspect of current neurobiological research. In this regard, the role of the aging regulator insulin-like growth factor I (IGF-I in brain responses to oxidative stress remains elusive as both beneficial and detrimental actions have been ascribed to this growth factor. Because astrocytes protect neurons against oxidative injury, we explored whether IGF-I participates in astrocyte neuroprotection and found that blockade of the IGF-I receptor in astrocytes abrogated their rescuing effect on neurons. The protection mediated by IGF-I against oxidative stress (H2O2 in astrocytes is probably needed for these cells to provide adequate neuroprotection. Indeed, in astrocytes but not in neurons, IGF-I helps decrease the pro-oxidant protein thioredoxin-interacting protein 1 and normalizes the levels of reactive oxygen species. Furthermore, IGF-I cooperates with trophic signals produced by astrocytes in response to H2O2 such as stem cell factor (SCF to protect neurons against oxidative insult. After stroke, a condition associated with brain aging where oxidative injury affects peri-infarcted regions, a simultaneous increase in SCF and IGF-I expression was found in the cortex, suggesting that a similar cooperative response takes place in vivo. Cell-specific modulation by IGF-I of brain responses to oxidative stress may contribute in clarifying the role of IGF-I in brain aging.

  20. Increased in vitro glial fibrillary acidic protein expression, telomerase activity, and telomere length after productive human immunodeficiency virus-1 infection in murine astrocytes.

    Science.gov (United States)

    Ojeda, Diego; López-Costa, Juan José; Sede, Mariano; López, Ester María; Berria, María Isabel; Quarleri, Jorge

    2014-02-01

    Although HIV-associated neurocognitive disorders (HAND) result from injury and loss of neurons, productive infection routinely takes place in cells of macrophage lineage. In such a complex context, astrocytosis induced by local chemokines/cytokines is one of the hallmarks of HIV neuropathology. Whether this sustained astrocyte activation is able to alter telomere-aging process is unknown. We hypothesized that interaction of HIV with astrocytes may impact astrocyte telomerase activity (TA) and telomere length in a scenario of astrocytic activation measured by expression of glial fibrillary acidic protein (GFAP). To test this hypothesis, cultured murine astrocytes were challenged with pseudotyped HIV/vesicular stomatitis virus (HIV/VSV) to circumvent the absence of viral receptors; and GFAP, telomerase activity, and telomere length were quantified. As an early and transient event after HIV infection, both TA activity and telomere length were significantly augmented (P telomere length, that may attenuate cell proliferation and enhance the astrocyte dysregulation, contributing to HIV neuropathogenesis. Understanding the mechanisms involved in HIV-mediated persistence by altering the telomere-related aging processes could aid in the development of therapeutic modalities for neurological complications of HIV infection.

  1. Expressional analysis of the astrocytic Kir4.1 channel in a pilocarpine–induced temporal lobe epilepsy model

    Science.gov (United States)

    Nagao, Yuki; Harada, Yuya; Mukai, Takahiro; Shimizu, Saki; Okuda, Aoi; Fujimoto, Megumi; Ono, Asuka; Sakagami, Yoshihisa; Ohno, Yukihiro

    2013-01-01

    The inwardly rectifying potassium (Kir) channel Kir4.1 in brain astrocytes mediates spatial K+ buffering and regulates neural activities. Recent studies have shown that loss-of-function mutations in the human gene KCNJ10 encoding Kir4.1 cause epileptic seizures, suggesting a close relationship between the Kir4.1 channel function and epileptogenesis. Here, we performed expressional analysis of Kir4.1 in a pilocarpine-induced rat model of temporal lobe epilepsy (TLE) to explore the role of Kir4.1 channels in modifying TLE epileptogenesis. Treatment of rats with pilocarpine (350 mg/kg, i.p.) induced acute status epilepticus, which subsequently caused spontaneous seizures 7–8 weeks after the pilocarpine treatment. Western blot analysis revealed that TLE rats (interictal condition) showed significantly higher levels of Kir4.1 than the control animals in the cerebral cortex, striatum, and hypothalamus. However, the expression of other Kir subunits, Kir5.1 and Kir2.1, remained unaltered. Immunohistochemical analysis illustrated that Kir4.1-immunoreactivity-positive astrocytes in the pilocarpine-induced TLE model were markedly increased in most of the brain regions examined, concomitant with an increase in the number of glial fibrillary acidic protein (GFAP)-positive astrocytes. In addition, Kir4.1 expression ratios relative to the number of astrocytes (Kir4.1-positive cells/GFAP-positive cells) were region-specifically elevated in the amygdala (i.e., medial and cortical amygdaloid nuclei) and sensory cortex. The present study demonstrated for the first time that the expression of astrocytic Kir4.1 channels was elevated in a pilocarpine-induced TLE model, especially in the amygdala, suggesting that astrocytic Kir4.1 channels play a role in modifying TLE epileptogenesis, possibly by acting as an inhibitory compensatory mechanism. PMID:23922547

  2. Expressional analysis of the astrocytic Kir4.1 channel in a pilocarpine-induced temporal lobe epilepsy model.

    Science.gov (United States)

    Nagao, Yuki; Harada, Yuya; Mukai, Takahiro; Shimizu, Saki; Okuda, Aoi; Fujimoto, Megumi; Ono, Asuka; Sakagami, Yoshihisa; Ohno, Yukihiro

    2013-01-01

    The inwardly rectifying potassium (Kir) channel Kir4.1 in brain astrocytes mediates spatial K(+) buffering and regulates neural activities. Recent studies have shown that loss-of-function mutations in the human gene KCNJ10 encoding Kir4.1 cause epileptic seizures, suggesting a close relationship between the Kir4.1 channel function and epileptogenesis. Here, we performed expressional analysis of Kir4.1 in a pilocarpine-induced rat model of temporal lobe epilepsy (TLE) to explore the role of Kir4.1 channels in modifying TLE epileptogenesis. Treatment of rats with pilocarpine (350 mg/kg, i.p.) induced acute status epilepticus, which subsequently caused spontaneous seizures 7-8 weeks after the pilocarpine treatment. Western blot analysis revealed that TLE rats (interictal condition) showed significantly higher levels of Kir4.1 than the control animals in the cerebral cortex, striatum, and hypothalamus. However, the expression of other Kir subunits, Kir5.1 and Kir2.1, remained unaltered. Immunohistochemical analysis illustrated that Kir4.1-immunoreactivity-positive astrocytes in the pilocarpine-induced TLE model were markedly increased in most of the brain regions examined, concomitant with an increase in the number of glial fibrillary acidic protein (GFAP)-positive astrocytes. In addition, Kir4.1 expression ratios relative to the number of astrocytes (Kir4.1-positive cells/GFAP-positive cells) were region-specifically elevated in the amygdala (i.e., medial and cortical amygdaloid nuclei) and sensory cortex. The present study demonstrated for the first time that the expression of astrocytic Kir4.1 channels was elevated in a pilocarpine-induced TLE model, especially in the amygdala, suggesting that astrocytic Kir4.1 channels play a role in modifying TLE epileptogenesis, possibly by acting as an inhibitory compensatory mechanism.

  3. Expressional analysis of the astrocytic Kir4.1 channel in a pilocarpine-induced temporal lobe epilepsy model

    Directory of Open Access Journals (Sweden)

    Yuki eNagao

    2013-07-01

    Full Text Available The inwardly-rectifying potassium (Kir channel Kir4.1 in brain astrocytes mediates spatial K+ buffering and regulates neural activities. Recent studies have shown that loss-of-function mutations in the human gene KCNJ10 encoding Kir4.1 cause epileptic seizures, suggesting a close relationship between the Kir4.1 channel function and epileptogenesis. Here, we performed expressional analysis of Kir4.1 in a pilocarpine-induced rat model of temporal lobe epilepsy (TLE to explore the role of Kir4.1 channels in modifying TLE epileptogenesis. Treatment of rats with pilocarpine (350 mg/kg, i.p. induced acute status epilepticus, which subsequently caused spontaneous seizures 7–8 weeks after the pilocarpine treatment. Western blot analysis revealed that TLE rats (interictal condition showed significantly higher levels of Kir4.1 than the control animals in the cerebral cortex, striatum and hypothalamus. However, the expression of other Kir subunits, Kir5.1 and Kir2.1, remained unaltered. Immunohistochemical analysis illustrated that Kir4.1-immunoreactivity-positive astrocytes in the pilocarpine-induced TLE model were markedly increased in most of the brain regions examined, concomitant with an increase in the number of glial fibrillary acidic protein (GFAP-positive astrocytes. In addition, Kir4.1 expression ratios relative to the number of astrocytes (Kir4.1-positive cells/GFAP-positive cells were region-specifically elevated in the amygdala (i.e., medial and cortical amygdaloid nuclei and sensory cortex. The present study demonstrated for the first time that the expression of astrocytic Kir4.1 channels was elevated in a pilocarpine-induced TLE model, especially in the amygdala, suggesting that astrocytic Kir4.1 channels play a role in modifying TLE epileptogenesis, possibly by acting as an inhibitory compensatory mechanism.

  4. The neuron-astrocyte-microglia triad in normal brain ageing and in a model of neuroinflammation in the rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Francesca Cerbai

    Full Text Available Ageing is accompanied by a decline in cognitive functions; along with a variety of neurobiological changes. The association between inflammation and ageing is based on complex molecular and cellular changes that we are only just beginning to understand. The hippocampus is one of the structures more closely related to electrophysiological, structural and morphological changes during ageing. In the present study we examined the effect of normal ageing and LPS-induced inflammation on astroglia-neuron interaction in the rat hippocampus of adult, normal aged and LPS-treated adult rats. Astrocytes were smaller, with thicker and shorter branches and less numerous in CA1 Str. radiatum of aged rats in comparison to adult and LPS-treated rats. Astrocyte branches infiltrated apoptotic neurons of aged and LPS-treated rats. Cellular debris, which were more numerous in CA1 of aged and LPS-treated rats, could be found apposed to astrocytes processes and were phagocytated by reactive microglia. Reactive microglia were present in the CA1 Str. Radiatum, often in association with apoptotic cells. Significant differences were found in the fraction of reactive microglia which was 40% of total in adult, 33% in aged and 50% in LPS-treated rats. Fractalkine (CX3CL1 increased significantly in hippocampus homogenates of aged and LPS-treated rats. The number of CA1 neurons decreased in aged rats. In the hippocampus of aged and LPS-treated rats astrocytes and microglia may help clearing apoptotic cellular debris possibly through CX3CL1 signalling. Our results indicate that astrocytes and microglia in the hippocampus of aged and LPS-infused rats possibly participate in the clearance of cellular debris associated with programmed cell death. The actions of astrocytes may represent either protective mechanisms to control inflammatory processes and the spread of further cellular damage to neighboring tissue, or they may contribute to neuronal damage in pathological conditions.

  5. Simultaneous neuron- and astrocyte-specific fluorescent marking

    International Nuclear Information System (INIS)

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein

  6. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes.

    Science.gov (United States)

    Daverey, Amita; Agrawal, Sandeep K

    2016-10-01

    Oxidative stress plays a critical role in various neurodegenerative diseases, thus alleviating oxidative stress is a potential strategy for therapeutic intervention and/or prevention of neurodegenerative diseases. In the present study, alleviation of oxidative stress through curcumin is investigated in A172 (human glioblastoma cell line) and HA-sp (human astrocytes cell line derived from the spinal cord) astrocytes. H2O2 was used to induce oxidative stress in astrocytes (A172 and HA-sp). Data show that H2O2 induces activation of astrocytes in dose- and time-dependent manner as evident by increased expression of GFAP in A172 and HA-sp cells after 24 and 12h respectively. An upregulation of Prdx6 was also observed in A172 and HA-sp cells after 24h of H2O2 treatment as compared to untreated control. Our data also showed that curcumin inhibits oxidative stress-induced cytoskeleton disarrangement, and impedes the activation of astrocytes by inhibiting upregulation of GFAP, vimentin and Prdx6. In addition, we observed an inhibition of oxidative stress-induced inflammation, apoptosis and mitochondria fragmentation after curcumin treatment. Therefore, our results suggest that curcumin not only protects astrocytes from H2O2-induced oxidative stress but also reverses the mitochondrial damage and dysfunction induced by oxidative stress. This study also provides evidence for protective role of curcumin on astrocytes by showing its effects on attenuating reactive astrogliosis and inhibiting apoptosis. PMID:27423629

  7. Simultaneous neuron- and astrocyte-specific fluorescent marking

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Wiebke [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hayata-Takano, Atsuko [Molecular Research Center for Children' s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kamo, Toshihiko [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nakazawa, Takanobu, E-mail: takanobunakazawa-tky@umin.ac.jp [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nagayasu, Kazuki [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kasai, Atsushi; Seiriki, Kaoru [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Shintani, Norihito [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ago, Yukio [Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Farfan, Camille [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); and others

    2015-03-27

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein.

  8. Human astrocytes: secretome profiles of cytokines and chemokines.

    Directory of Open Access Journals (Sweden)

    Sung S Choi

    Full Text Available Astrocytes play a key role in maintenance of neuronal functions in the central nervous system by producing various cytokines, chemokines, and growth factors, which act as a molecular coordinator of neuron-glia communication. At the site of neuroinflammation, astrocyte-derived cytokines and chemokines play both neuroprotective and neurotoxic roles in brain lesions of human neurological diseases. At present, the comprehensive profile of human astrocyte-derived cytokines and chemokines during inflammation remains to be fully characterized. We investigated the cytokine secretome profile of highly purified human astrocytes by using a protein microarray. Non-stimulated human astrocytes in culture expressed eight cytokines, including G-CSF, GM-CSF, GROα (CXCL1, IL-6, IL-8 (CXCL8, MCP-1 (CCL2, MIF and Serpin E1. Following stimulation with IL-1β and TNF-α, activated astrocytes newly produced IL-1β, IL-1ra, TNF-α, IP-10 (CXCL10, MIP-1α (CCL3 and RANTES (CCL5, in addition to the induction of sICAM-1 and complement component 5. Database search indicated that most of cytokines and chemokines produced by non-stimulated and activated astrocytes are direct targets of the transcription factor NF-kB. These results indicated that cultured human astrocytes express a distinct set of NF-kB-target cytokines and chemokines in resting and activated conditions, suggesting that the NF-kB signaling pathway differentially regulates gene expression of cytokines and chemokines in human astrocytes under physiological and inflammatory conditions.

  9. Connexin 43 stabilizes astrocytes in a stroke-like milieu to facilitate neuronal recovery

    OpenAIRE

    Wu, Le-yu; Yu, Xue-li; Feng, Lin-yin

    2015-01-01

    Aim: Connexin 43 (Cx43) is a member of connexin family mainly expressed in astrocytes, which forms gap junctions and hemichannels and maintains the normal shape and function of astrocytes. In this study we investigated the role of Cx43 in astrocytes in facilitating neuronal recovery during ischemic stroke. Methods: Primary culture of astrocytes or a mixed culture of astrocytes and cortical neurons was subjected to oxygen glucose deprivation and reperfusion (OGD/R). The expression of Cx43 and ...

  10. mGluR5 protect astrocytes from ischemic damage in postnatal CNS white matter

    OpenAIRE

    Vanzulli, Ilaria; Butt, Arthur M

    2015-01-01

    Astrocytes perform essential neuron-supporting functions in the central nervous system (CNS) and their disruption has devastating effects on neuronal integrity in multiple neuropathologies. Although astrocytes are considered resistant to most pathological insults, ischemia can result in astrocyte injury and astrocytes in postnatal white matter are particularly vulnerable. Metabotropic glutamate receptors (mGluR) are neuroprotective in ischemia and are widely expressed by astrocytes throughout...

  11. Contributions of Glycogen to Astrocytic Energetics during Brain Activation

    OpenAIRE

    Dienel, Gerald A.; Nancy F Cruz

    2014-01-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net g...

  12. Pyk2 is essential for astrocytes mobility following brain lesion

    OpenAIRE

    Giralt, Albert; Coura, Renata; Girault, Jean-Antoine

    2016-01-01

    Proline-rich tyrosine kinase 2 (Pyk2) is a calcium-dependent, non-receptor protein-tyrosine kinase of the focal adhesion kinase (FAK) family. Pyk2 is enriched in the brain, especially the forebrain. Pyk2 is highly expressed in neurons but is also present in astrocytes, where its role is not known. We used Pyk2 knockout mice (Pyk2−/−) developed in our laboratory to investigate the function of Pyk2 in astrocytes. Morphology and basic properties of astrocytes in vivo and in culture were not alte...

  13. Computational models of neuron-astrocyte interaction in epilepsy

    Directory of Open Access Journals (Sweden)

    Vladislav eVolman

    2012-08-01

    Full Text Available Astrocytes actively shape the dynamics of neurons and neuronal ensembles by affecting several aspects critical to neuronal function, such as regulating synaptic plasticity, modulating neuronal excitability and maintaining extracellular ion balance. These pathways for astrocyte-neuron interaction can also enhance the information-processing capabilities of brains, but in other circumstances may lead the brain on the road to pathological ruin. In this article, we review the existing computational models of astrocytic involvement in epileptogenesis, focusing on their relevance to existing physiological data.

  14. Inhibition of spinal astrocytic c-Jun N-terminal kinase (JNK activation correlates with the analgesic effects of ketamine in neuropathic pain

    Directory of Open Access Journals (Sweden)

    Wang Wen

    2011-01-01

    Full Text Available Abstract Background We have previously reported that inhibition of astrocytic activation contributes to the analgesic effects of intrathecal ketamine on spinal nerve ligation (SNL-induced neuropathic pain. However, the underlying mechanisms are still unclear. c-Jun N-terminal kinase (JNK, a member of mitogen-activated protein kinase (MAPK family, has been reported to be critical for spinal astrocytic activation and neuropathic pain development after SNL. Ketamine can decrease lipopolysaccharide (LPS-induced phosphorylated JNK (pJNK expression and could thus exert its anti-inflammatory effect. We hypothesized that inhibition of astrocytic JNK activation might be involved in the suppressive effect of ketamine on SNL-induced spinal astrocytic activation. Methods Immunofluorescence histochemical staining was used to detect SNL-induced spinal pJNK expression and localization. The effects of ketamine on SNL-induced mechanical allodynia were confirmed by behavioral testing. Immunofluorescence histochemistry and Western blot were used to quantify the SNL-induced spinal pJNK expression after ketamine administration. Results The present study showed that SNL induced ipsilateral pJNK up-regulation in astrocytes but not microglia or neurons within the spinal dorsal horn. Intrathecal ketamine relieved SNL-induced mechanical allodynia without interfering with motor performance. Additionally, intrathecal administration of ketamine attenuated SNL-induced spinal astrocytic JNK activation in a dose-dependent manner, but not JNK protein expression. Conclusions The present results suggest that inhibition of JNK activation may be involved in the suppressive effects of ketamine on SNL-induced spinal astrocyte activation. Therefore, inhibition of spinal JNK activation may be involved in the analgesic effects of ketamine on SNL-induced neuropathic pain.

  15. Cytoplasmic vacuolation in cultured rat astrocytes induced by an organophosphorus agent requires extracellular signal-regulated kinase activation

    International Nuclear Information System (INIS)

    There are various toxic chemicals that cause cell death. However, in certain cases deleterious agents elicit various cellular responses prior to cell death. To determine the cellular mechanisms by which such cellular responses are induced is important, but sufficient attention has not been paid to this issue to date. In this study, we showed the characteristic effects of an organophosphorus (OP) agent, bis(pinacolyl methyl)phosphonate (BPMP), which we synthesized for the study of OP nerve agents, on cultured rat astrocytes. Morphologically, BPMP induced cytoplasmic vacuolation and stellation in the rat astrocytes. Cytoplasmic vacuolation is a cell pathological change observed, for example, in vacuolar degeneration, and stellation has been reported in astrocytic reactions against various stimuli. By pretreatment with cycloheximide, a protein synthesis inhibitor, stellation was inhibited, although vacuolation was not. Cell staining with a mitochondrion-selective dye indicated that the vacuolation probably occurs in the mitochondria that are swollen and vacuolatred in the center. Interestingly, the extracellular signal-regulated kinase (ERK) cascade inhibitor inhibited vacuolation and, to some extent, stellation. These results suggest that the ERK signaling cascade is important for the induction of mitochondrial vacuolation. We expect that a detailed study of these astrocytic reactions will provide us new perspectives regarding the variation and pathological significance of cell morphological changes, such as vacuolar degeneration, and also the mechanisms underlying various neurological disorders

  16. Astroglial CB1 cannabinoid receptors regulate leptin signaling in mouse brain astrocytes.

    Science.gov (United States)

    Bosier, Barbara; Bellocchio, Luigi; Metna-Laurent, Mathilde; Soria-Gomez, Edgar; Matias, Isabelle; Hebert-Chatelain, Etienne; Cannich, Astrid; Maitre, Marlène; Leste-Lasserre, Thierry; Cardinal, Pierre; Mendizabal-Zubiaga, Juan; Canduela, Miren Josune; Reguero, Leire; Hermans, Emmanuel; Grandes, Pedro; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Type-1 cannabinoid (CB1) and leptin (ObR) receptors regulate metabolic and astroglial functions, but the potential links between the two systems in astrocytes were not investigated so far. Genetic and pharmacological manipulations of CB1 receptor expression and activity in cultured cortical and hypothalamic astrocytes demonstrated that cannabinoid signaling controls the levels of ObR expression. Lack of CB1 receptors also markedly impaired leptin-mediated activation of signal transducers and activators of transcription 3 and 5 (STAT3 and STAT5) in astrocytes. In particular, CB1 deletion determined a basal overactivation of STAT5, thereby leading to the downregulation of ObR expression, and leptin failed to regulate STAT5-dependent glycogen storage in the absence of CB1 receptors. These results show that CB1 receptors directly interfere with leptin signaling and its ability to regulate glycogen storage, thereby representing a novel mechanism linking endocannabinoid and leptin signaling in the regulation of brain energy storage and neuronal functions.

  17. Insulin Attenuates Beta-Amyloid-Associated Insulin/Akt/EAAT Signaling Perturbations in Human Astrocytes.

    Science.gov (United States)

    Han, Xiaojuan; Yang, Liling; Du, Heng; Sun, Qinjian; Wang, Xiang; Cong, Lin; Liu, Xiaohui; Yin, Ling; Li, Shan; Du, Yifeng

    2016-08-01

    The excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2), mostly located on astrocytes, are the main mediators for glutamate clearance in humans. Malfunctions of these transporters may lead to excessive glutamate accumulation and subsequent excitotoxicity to neurons, which has been implicated in many kinds of neurodegenerative disorders including Alzheimer's disease (AD). Yet, the specific mechanism of the glutamate system dysregulation remains vague. To explore whether the insulin/protein kinase B (Akt)/EAAT signaling in human astrocytes could be disturbed by beta-amyloid protein (Aβ) and be protected by insulin, we incubated HA-1800 cells with varying concentrations of Aβ1-42 oligomers and insulin. Then the alterations of several key substrates in this signal transduction pathway were determined. Our results showed that expressions of insulin receptor, phospho-insulin receptor, phospho-protein kinase B, phospho-mammalian target of rapamycin, and EAAT1 and EAAT2 were decreased by the Aβ1-42 oligomers in a dose-dependent manner (p  0.05), and the mRNA levels of EAAT1 and EAAT2 were also unchanged (p > 0.05). Taken together, this study indicates that Aβ1-42 oligomers could cause disturbances in insulin/Akt/EAAT signaling in astrocytes, which might be responsible for AD onset and progression. Additionally, insulin can exert protective functions to the brain by modulating protein modifications or expressions. PMID:26358886

  18. Cocaine potentiates astrocyte toxicity mediated by human immunodeficiency virus (HIV-1 protein gp120.

    Directory of Open Access Journals (Sweden)

    Yanjing Yang

    Full Text Available It is becoming widely accepted that psychoactive drugs, often abused by HIV-I infected individuals, can significantly alter the progression of neuropathological changes observed in HIV-associated neurodegenerative diseases (HAND. The underlying mechanisms mediating these effects however, remain poorly understood. In the current study, we explored whether the psychostimulant drug cocaine could exacerbate toxicity mediated by gp120 in rat primary astrocytes. Exposure to both cocaine and gp120 resulted in increased cell toxicity compared to cells treated with either factor alone. The combinatorial toxicity of cocaine and gp120 was accompanied by an increase in caspase-3 activation. In addition, increased apoptosis of astrocytes in the presence of both the agents was associated with a concomitant increase in the production of intracellular reactive oxygen species and loss of mitochondrial membrane potential. Signaling pathways including c-jun N-teminal kinase (JNK, p38, extracellular signal-regulated kinase (ERK/mitogen-activated protein kinases (MAPK, and nuclear factor (NF-κB were identified to be major players in cocaine and gp120-mediated apoptosis of astrocytes. Our results demonstrated that cocaine-mediated potentiation of gp120 toxicity involved regulation of oxidative stress, mitochondrial membrane potential and MAPK signaling pathways.

  19. Effects of carboxylic acids on the uptake of non-transferrin-bound iron by astrocytes.

    Science.gov (United States)

    Keenan, Belinda M; Robinson, Stephen R; Bishop, Glenda M

    2010-01-01

    The concentrations of non-transferrin-bound iron are elevated in the brain during pathological conditions such as stroke and Alzheimer's disease. Astrocytes are specialised for sequestering this iron, however little is known about the mechanisms involved. Carboxylates, such as citrate, have been reported to facilitate iron uptake by intestinal cells. Citrate binds iron and limits its redox activity. The presence of high citrate concentrations in the interstitial fluid of the brain suggests that citrate may be an important ligand for iron transport by astrocytes. This study investigates whether iron accumulation by cultured rat astrocytes is facilitated by citrate or other carboxylates. Contrary to expectations, citrate, tartrate and malate were found to block iron accumulation in a concentration-dependent manner; alpha-ketoglutarate had limited effects, while fumarate, succinate and glutarate had no effect. This blockade was not due to an inhibition of ferric reductase activity. Instead, it appeared to be related to the capacity of these carboxylates to bind iron, since phosphate, which also binds iron, diminished the capacity of citrate, tartrate and malate to block the cellular accumulation of iron. These findings raise the possibility that citrate may have therapeutic potential in the management of neurodegenerative conditions that involve cellular iron overload.

  20. Radiation induction of the receptor tyrosine kinase gene Ptk-3 in normal rat astrocytes

    International Nuclear Information System (INIS)

    Radiation-induced gene expression was examined in rat astrocyte cultures using differential display of mRNA via reverse transcriptase-polymerase chain reaction. A 0.3-kb cDNA that was consistently observed in irradiated cultures but not in unirradiated cultures was cloned and sequenced. It was found to be identical to Ptk-3, a receptor tyrosine kinase gene identified recently. The protein encoded by Ptk-3 is a member of a novel class of receptor tyrosine kinases whose extracellular domain contains regions of homology with coagulation factors V and VIII and complement component C1. Northern blot analysis revealed that the expression of Ptk-3 was increased in rat astrocytes by 0.5 h after exposure to 10 Gy and remained at the same elevated level for at least 24 h. The maximum increase occurred after 5 Gy cloning studies indicated the presence of at least two Ptk-3 mRNA transcripts, which are probable the result of an alternative splicing mechanism. The short isoform lacks a 37 amino acid sequence in the glycine/proline-rich juxtamembrane region. The splicing pattern of the Ptk-3 gene was not altered by radiation. However, the ratios of the longer to the shorter mRNA transcripts differed between adult cortex, neonatal cortex and in vitro astrocyte cultures. 36 refs., 5 figs

  1. The established and emerging roles of astrocytes and microglia in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia.

    Directory of Open Access Journals (Sweden)

    Rowan Andrew Warren Radford

    2015-10-01

    Full Text Available Amyotrophic lateral sclerosis (ALS and Frontotemporal Dementia (FTD are two progressive, fatal neurodegenerative syndromes with considerable clinical, genetic and pathological overlap. Clinical symptoms of FTD can be seen in ALS patients and vice versa, recent genetic discoveries conclusive link the two diseases, and several common molecular players have been identified (TDP-43, FUS, C9ORF72.The definitive aetiologies of ALS and FTD are currently unknown and both disorders lack a cure. Glia, specifically astrocytes and microglia are heavily implicated in the onset and progression of neurodegeneration witnessed in ALS and FTD. In this review, we summarise the current understanding of the role of microglia and astrocytes involved in ALS and FTD, highlighting their recent implications in neuroinflammation, alterations in waste clearance involving phagocytosis and the newly described glymphatic system, and vascular abnormalities. Elucidating the precise mechanisms of how astrocytes and microglia are involved in ALS and FTD will be crucial in characterising these two disorders and may represent more effective interventions for disease progression and treatment options in the future.

  2. Methods explained: Index numbers

    OpenAIRE

    Peter Goodridge

    2007-01-01

    Attempts to explain the subtle differences in the methodologies used to construct index numbers.Many of the statistics produced by the Office for National Statistics,particularly economic statistics, are published in the form ofindices. However, there are a number of different forms of indices and this article attempts to explain the subtle differences in themethodologies used to construct them, and also factors that feed into the choice of which type of index to use. Hypothetical examplesare...

  3. Emission properties of Tb{sup 3+} ions in LYSO: evidence of a cross relaxation mechanism explained by a kinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, P C; Salis, M; Corpino, R; Carbonaro, C M; Anedda, A [Dipartimento di Fisica, Universita di Cagliari, Cittadella Universitaria, S.P. No. 8, I-09042 Monserrato (Cagliari) (Italy); Fortin, E, E-mail: carlo.ricci@dsf.unica.i [Department of Physics, Macdonald Hall, 150 Louis Pasteur, Ottawa, ON, K1N 6N5 (Canada)

    2010-09-01

    The optical properties of Tb{sup 3+} ions in oxyorthosilicates of lutetium and yttrium (LYSO) are reported. The introduction of a small number of terbium ions (nominal content 10 ppm) generates, in the otherwise transparent absorption spectrum of the matrix, an ultraviolet absorption band peaked at about 240 nm. By exciting within the reported UV band, line shaped emissions in the 350-600 nm range are detected. These transitions are related to the {sup 5}D{sub 3} and {sup 5}D{sub 4} levels of the Tb{sup 3+} ions and are characterized by decay times in the millisecond time domain. Analysis of the decay time measurements allows us to individuate a cross relaxation mechanism among terbium ions even at the low dopant concentration investigated. We propose a three-level kinetic model which is able to successfully reproduce the experimental data, allowing us to discriminate among the radiative and non-radiative contributions to the observed emissions.

  4. Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China

    Directory of Open Access Journals (Sweden)

    B. Zheng

    2014-06-01

    Full Text Available Severe regional haze pollution events occurred in eastern and central China in January 2013, which had adverse effects on the environment and public health. Extremely high levels of particulate matter with aerodynamic diameter of 2.5 μm or less (PM2.5 with dominant components of sulfate and nitrate are responsible for the haze pollution. Although heterogeneous chemistry is thought to play an important role in the production of sulfate and nitrate during haze episodes, few studies have comprehensively evaluated the effect of heterogeneous chemistry on haze formation in China by using the 3-D models due to of a lack of treatments for heterogeneous reactions in most climate and chemical transport models. In this work, the offline-coupled WRF-CMAQ model with newly added heterogeneous reactions is applied to East Asia to evaluate the impacts of heterogeneous chemistry and the meteorological anomaly during January 2013 on regional haze formation. The revised CMAQ with heterogeneous chemistry not only captures the magnitude and temporal variation of sulfate and nitrate, but also reproduces the enhancement of relative contribution of sulfate and nitrate to PM2.5 mass from clean days to polluted haze days. These results indicate the significant role of heterogeneous chemistry in regional haze formation and improve the understanding of the haze formation mechanisms during the January 2013 episode.

  5. Fumaric acid esters stimulate astrocytic VEGF expression through HIF-1α and Nrf2.

    Directory of Open Access Journals (Sweden)

    Diana Wiesner

    Full Text Available Fumaric acid esters (FAE are oral analogs of fumarate that have recently been shown to decrease relapse rate and disease progression in multiple sclerosis (MS, prompting to investigate their protective potential in other neurological diseases such as amyotrophic lateral sclerosis (ALS. Despite efficacy in MS, mechanisms of action of FAEs are still largely unknown. FAEs are known to activate the transcription factor Nrf2 and downstream anti-oxidant responses through the succination of Nrf2 inhibitor KEAP1. However, fumarate is also a known inhibitor of prolyl-hydroxylases domain enzymes (PhD, and PhD inhibition might lead to stabilization of the HIF-1α transcription factor under normoxic conditions and subsequent activation of a pseudo hypoxic response. Whether Nrf2 activation is associated with HIF-1α stabilization in response to FAEs in cell types relevant to MS or ALS remains unknown. Here, we show that FAEs elicit HIF-1α accumulation, and VEGF release as its expected consequence, in astrocytes but not in other cell types of the central nervous system. Reporter assays demonstrated that increased astrocytic VEGF release in response to FAEs was dependent upon both HIF-1α and Nrf2 activation. Last, astrocytes of transgenic mice expressing SOD1(G93A, an animal model of ALS, displayed reduced VEGF release in response to FAEs. These studies show that FAEs elicit different signaling pathways in cell types from the central nervous system, in particular a pseudo-hypoxic response in astrocytes. Disease relevant mutations might affect this response.

  6. Fumaric acid esters stimulate astrocytic VEGF expression through HIF-1α and Nrf2.

    Science.gov (United States)

    Wiesner, Diana; Merdian, Irma; Lewerenz, Jan; Ludolph, Albert C; Dupuis, Luc; Witting, Anke

    2013-01-01

    Fumaric acid esters (FAE) are oral analogs of fumarate that have recently been shown to decrease relapse rate and disease progression in multiple sclerosis (MS), prompting to investigate their protective potential in other neurological diseases such as amyotrophic lateral sclerosis (ALS). Despite efficacy in MS, mechanisms of action of FAEs are still largely unknown. FAEs are known to activate the transcription factor Nrf2 and downstream anti-oxidant responses through the succination of Nrf2 inhibitor KEAP1. However, fumarate is also a known inhibitor of prolyl-hydroxylases domain enzymes (PhD), and PhD inhibition might lead to stabilization of the HIF-1α transcription factor under normoxic conditions and subsequent activation of a pseudo hypoxic response. Whether Nrf2 activation is associated with HIF-1α stabilization in response to FAEs in cell types relevant to MS or ALS remains unknown. Here, we show that FAEs elicit HIF-1α accumulation, and VEGF release as its expected consequence, in astrocytes but not in other cell types of the central nervous system. Reporter assays demonstrated that increased astrocytic VEGF release in response to FAEs was dependent upon both HIF-1α and Nrf2 activation. Last, astrocytes of transgenic mice expressing SOD1(G93A), an animal model of ALS, displayed reduced VEGF release in response to FAEs. These studies show that FAEs elicit different signaling pathways in cell types from the central nervous system, in particular a pseudo-hypoxic response in astrocytes. Disease relevant mutations might affect this response. PMID:24098549

  7. Quinolinic acid induces disrupts cytoskeletal homeostasis in striatal neurons. Protective role of astrocyte-neuron interaction.

    Science.gov (United States)

    Pierozan, Paula; Ferreira, Fernanda; de Lima, Bárbara Ortiz; Pessoa-Pureur, Regina

    2015-02-01

    Quinolinic acid (QUIN) is an endogenous metabolite of the kynurenine pathway involved in several neurological disorders. Among the several mechanisms involved in QUIN-mediated toxicity, disruption of the cytoskeleton has been demonstrated in striatally injected rats and in striatal slices. The present work searched for the actions of QUIN in primary striatal neurons. Neurons exposed to 10 µM QUIN presented hyperphosphorylated neurofilament (NF) subunits (NFL, NFM, and NFH). Hyperphosphorylation was abrogated in the presence of protein kinase A and protein kinase C inhibitors H89 (20 μM) and staurosporine (10 nM), respectively, as well as by specific antagonists to N-methyl-D-aspartate (50 µM DL-AP5) and metabotropic glutamate receptor 1 (100 µM MPEP). Also, intra- and extracellular Ca(2+) chelators (10 µM BAPTA-AM and 1 mM EGTA, respectively) and Ca(2+) influx through L-type voltage-dependent Ca(2+) channel (10 µM verapamil) are implicated in QUIN-mediated effects. Cells immunostained for the neuronal markers βIII-tubulin and microtubule-associated protein 2 showed altered neurite/neuron ratios and neurite outgrowth. NF hyperphosphorylation and morphological alterations were totally prevented by conditioned medium from QUIN-treated astrocytes. Cocultured astrocytes and neurons interacted with one another reciprocally, protecting them against QUIN injury. Cocultured cells preserved their cytoskeletal organization and cell morphology together with unaltered activity of the phosphorylating system associated with the cytoskeleton. This article describes cytoskeletal disruption as one of the most relevant actions of QUIN toxicity in striatal neurons in culture with soluble factors secreted by astrocytes, with neuron-astrocyte interaction playing a role in neuroprotection.

  8. Oxidative metabolism of astrocytes is not reduced in hepatic encephalopathy

    DEFF Research Database (Denmark)

    Iversen, Peter; Mouridsen, Kim; Hansen, Mikkel Bo;

    2014-01-01

    In patients with impaired liver function and hepatic encephalopathy (HE), consistent elevations of blood ammonia concentration suggest a crucial role in the pathogenesis of HE. Ammonia and acetate are metabolized in brain both primarily in astrocytes. Here, we used dynamic [(11)C]acetate PET of the...... brain to measure the contribution of astrocytes to the previously observed reduction of brain oxidative metabolism in patients with liver cirrhosis and HE, compared to patients with cirrhosis without HE, and to healthy subjects. We used a new kinetic model to estimate uptake from blood to astrocytes and...... astrocyte metabolism of [(11)C]acetate. No significant differences of the rate constant of oxidation of [(11)C]acetate (k 3) were found among the three groups of subjects. The net metabolic clearance of [(11)C]acetate from blood was lower in the group of patients with cirrhosis and HE than in the group of...

  9. Glutamate metabolism in the brain focusing on astrocytes

    DEFF Research Database (Denmark)

    Schousboe, Arne; Scafidi, Susanna; Bak, Lasse Kristoffer;

    2014-01-01

    Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both the anaplero......Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both......, as well as in nitrogen trafficking and ammonia homeostasis in brain. The anatomical specialization of astrocytic endfeet enables these cells to rapidly and efficiently remove neurotransmitters from the synaptic cleft to maintain homeostasis, and to provide glutamine to replenish neurotransmitter pools...... summarizes the evidence that astrocytes are essential and dynamic partners in both glutamatergic and GABAergic neurotransmission in brain....

  10. Galunisertib inhibits glioma vasculogenic mimicry formation induced by astrocytes

    OpenAIRE

    Chao Zhang; Wenliang Chen; Xin Zhang; Bin Huang; Aanjing Chen; Ying He; Jian Wang; Xingang Li

    2016-01-01

    Gliomas are among the most lethal primary brain tumors found in humans. In high-grade gliomas, vasculogenic mimicry is often detected and has been correlated with prognosis, thus suggesting its potential as a therapeutic target. Vasculogenic mimicry mainly forms vascular-like channels independent of endothelial cells; however, little is known about the relationship between astrocytes and vasculogenic mimicry. In our study, we demonstrated that the presence of astrocytes promoted vasculogenic ...

  11. Group B streptococcal infection and activation of human astrocytes.

    Directory of Open Access Journals (Sweden)

    Terri D Stoner

    Full Text Available Streptococcus agalactiae (Group B Streptococcus, GBS is the leading cause of life-threatening meningitis in human newborns in industrialized countries. Meningitis results from neonatal infection that occurs when GBS leaves the bloodstream (bacteremia, crosses the blood-brain barrier (BBB, and enters the central nervous system (CNS, where the bacteria contact the meninges. Although GBS is known to invade the BBB, subsequent interaction with astrocytes that physically associate with brain endothelium has not been well studied.We hypothesize that human astrocytes play a unique role in GBS infection and contribute to the development of meningitis. To address this, we used a well- characterized human fetal astrocyte cell line, SVG-A, and examined GBS infection in vitro. We observed that all GBS strains of representative clinically dominant serotypes (Ia, Ib, III, and V were able to adhere to and invade astrocytes. Cellular invasion was dependent on host actin cytoskeleton rearrangements, and was specific to GBS as Streptococcus gordonii failed to enter astrocytes. Analysis of isogenic mutant GBS strains deficient in various cell surface organelles showed that anchored LTA, serine-rich repeat protein (Srr1 and fibronectin binding (SfbA proteins all contribute to host cell internalization. Wild-type GBS also displayed an ability to persist and survive within an intracellular compartment for at least 12 h following invasion. Moreover, GBS infection resulted in increased astrocyte transcription of interleukin (IL-1β, IL-6 and VEGF.This study has further characterized the interaction of GBS with human astrocytes, and has identified the importance of specific virulence factors in these interactions. Understanding the role of astrocytes during GBS infection will provide important information regarding BBB disruption and the development of neonatal meningitis.

  12. A Common Progenitor for Retinal Astrocytes and Oligodendrocytes

    OpenAIRE

    Rompani, Santiago B.; Cepko, Constance L.

    2010-01-01

    Developing neural tissue undergoes a period of neurogenesis followed by a period of gliogenesis. The lineage relationships among glial cell types have not been defined for most areas of the nervous system. Here we use retroviruses to label clones of glial cells in the chick retina. We found that almost every clone had both astrocytes and oligodendrocytes. In addition, we discovered a novel glial cell type, with features intermediate between those of astrocytes and oligodendrocytes, which we h...

  13. Metabolic aspects of Neuronal – Oligodendrocytic - Astrocytic (NOA interactions

    Directory of Open Access Journals (Sweden)

    Ana I Amaral

    2013-05-01

    Full Text Available Whereas astrocytes have been in the limelight on the metabolic glucose interaction scene for a while, oligodendrocytes are still waiting for a place. We would like to call oligodendrocyte interaction with astrocytes and neurons: NOA (neuron – oligodendrocyte – astrocyte interactions. One of the reasons to find out more about oligodendrocyte interaction with neurons and astrocytes is to detect markers of healthy oligodendrocyte metabolism, to be used in diagnosis and treatment assessment in diseases such as Perinatal hypoxic-ischemic encephalopathy and multiple sclerosis in which oligodendrocyte function is impaired, possibly due to glutamate toxicity. Glutamate receptors are expressed in oligodendrocytes and also vesicular glutamate release in the white matter has received considerable attention. It is also important to establish if the glial precursor cells recruited to damaged areas are developing oligodendrocyte characteristics or those of astrocytes. Thus, it is important to study astrocytes and oligodendrocytes separately to be able to differentiate between them. This is of particular importance in the white matter where the number of oligodendrocytes is considerable. The present review summarizes the not very extensive information published on glucose metabolism in oligodendrocytes in an attempt to stimulate research into this important field.

  14. Inositol phospholipid hydrolysis in cultured astrocytes and oligodendrocytes

    International Nuclear Information System (INIS)

    Cultures of astrocytes and oligodendrocytes were prelabeled with 3H-inositol and the accumulation of 3H-inositol phosphates was determined following stimulation with a number of neuroactive substances. In astrocytes, norepinephrine (NE) produced the greatest stimulation with significant increase also observed with bradykinin. In oligodendrocytes, the greatest stimulation was produced by carbachol with significant increase also produced by bradykinin, histamine and NE. Carbachol was found to be ineffective in producing stimulation in astrocytes. The accumulation of 3H-inositol phosphates in astrocytes in response to NE was found to be dependent on the presence of Li+. The NE stimulation in astrocytes was dose-dependent and had an EC50 of 1.2 μM. This stimulation was blocked by the low concentration of the α1-adrenergic antagonist prazosin but not by the α2-adrenergic antagonist yohimbine. The NE-stimulated accumulation of 3H-inositol phosphates in astrocytes was inhibited by the cyclic nucleotide phosphodiesterase inhibitor isobutylmethylxanthine as well as by the cAMP analog dibutyryl cAMP. 34 references, 4 figures, 4 tables

  15. Two-pore Domain Potassium Channels in Astrocytes

    Science.gov (United States)

    Ryoo, Kanghyun

    2016-01-01

    Two-pore domain potassium (K2P) channels have a distinct structure and channel properties, and are involved in a background K+ current. The 15 members of the K2P channels are identified and classified into six subfamilies on the basis of their sequence similarities. The activity of the channels is dynamically regulated by various physical, chemical, and biological effectors. The channels are expressed in a wide variety of tissues in mammals in an isoform specific manner, and play various roles in many physiological and pathophysiological conditions. To function as channels, the K2P channels form dimers, and some isoforms form heterodimers that provide diversity in channel properties. In the brain, TWIK1, TREK1, TREK2, TRAAK, TASK1, and TASK3 are predominantly expressed in various regions, including the cerebral cortex, dentate gyrus, CA1-CA3, and granular layer of the cerebellum. TWIK1, TREK1, and TASK1 are highly expressed in astrocytes, where they play specific cellular roles. Astrocytes keep leak K+ conductance, called the passive conductance, which mainly involves TWIK1-TREK1 heterodimeric channel. TWIK1 and TREK1 also mediate glutamate release from astrocytes in an exocytosis-independent manner. The expression of TREK1 and TREK2 in astrocytes increases under ischemic conditions, that enhance neuroprotection from ischemia. Accumulated evidence has indicated that astrocytes, together with neurons, are involved in brain function, with the K2P channels playing critical role in these astrocytes. PMID:27790056

  16. Unveiling astrocytic control of cerebral blood flow with optogenetics.

    Science.gov (United States)

    Masamoto, Kazuto; Unekawa, Miyuki; Watanabe, Tatsushi; Toriumi, Haruki; Takuwa, Hiroyuki; Kawaguchi, Hiroshi; Kanno, Iwao; Matsui, Ko; Tanaka, Kenji F; Tomita, Yutaka; Suzuki, Norihiro

    2015-06-16

    Cortical neural activities lead to changes in the cerebral blood flow (CBF), which involves astrocytic control of cerebrovascular tone. However, the manner in which astrocytic activity specifically leads to vasodilation or vasoconstriction is difficult to determine. Here, cortical astrocytes genetically expressing a light-sensitive cation channel, channelrhodopsin-2 (ChR2), were transcranially activated with a blue laser while the spatiotemporal changes in CBF were noninvasively monitored with laser speckle flowgraphy in the anesthetised mouse cortex. A brief photostimulation induced a fast transient increase in CBF. The average response onset time was 0.7 ± 0.7 sec at the activation foci, and this CBF increase spread widely from the irradiation spot with an apparent propagation speed of 0.8-1.1 mm/sec. The broad increase in the CBF could be due to a propagation of diffusible vasoactive signals derived from the stimulated astrocytes. Pharmacological manipulation showed that topical administration of a K(+) channel inhibitor (BaCl2; 0.1-0.5 mM) significantly reduced the photostimulation-induced CBF responses, which indicates that the ChR2-evoked astrocytic activity involves K(+) signalling to the vascular smooth muscle cells. These findings demonstrate a unique model for exploring the role of the astrocytes in gliovascular coupling using non-invasive, time-controlled, cell-type specific perturbations.

  17. ROS detoxification and proinflammatory cytokines are linked by p38 MAPK signaling in a model of mature astrocyte activation.

    Directory of Open Access Journals (Sweden)

    Adrian Nahirnyj

    Full Text Available Astrocytes are the most abundant glial cell in the retinal nerve fiber layer (NFL and optic nerve head (ONH, and perform essential roles in maintaining retinal ganglion cell (RGC detoxification and homeostasis. Mature astrocytes are relatively quiescent, but rapidly undergo a phenotypic switch in response to insult, characterized by upregulation of intermediate filament proteins, loss of glutamate buffering, secretion of pro-inflammatory cytokines, and increased antioxidant production. These changes result in both positive and negative influences on RGCs. However, the mechanism regulating these responses is still unclear, and pharmacologic strategies to modulate select aspects of this switch have not been thoroughly explored. Here we describe a system for rapid culture of mature astrocytes from the adult rat retina that remain relatively quiescent, but respond robustly when challenged with oxidative damage, a key pathogenic stress associated with inner retinal injury. When primary astrocytes were exposed to reactive oxygen species (ROS we consistently observed characteristic changes in activation markers, along with increased expression of detoxifying genes, and secretion of proinflammatory cytokines. This in vitro model was then used for a pilot chemical screen to target specific aspects of this switch. Increased activity of p38α and β Mitogen Activated Protein Kinases (MAPKs were identified as a necessary signal regulating expression of MnSOD, and heme oxygenase 1 (HO-1, with consequent changes in ROS-mediated injury. Additionally, multiplex cytokine profiling detected p38 MAPK-dependent secretion of IL-6, MCP-1, and MIP-2α, which are proinflammatory signals recently implicated in damage to the inner retina. These data provide a mechanism to link increased oxidative stress to proinflammatory signaling by astrocytes, and establish this assay as a useful model to further dissect factors regulating the reactive switch.

  18. Neurogenic effect of VEGF is related to increase of astrocytes transdifferentiation into new mature neurons in rat brains after stroke.

    Science.gov (United States)

    Shen, Shu-Wen; Duan, Chun-Ling; Chen, Xian-Hua; Wang, Yong-Quan; Sun, Xiao; Zhang, Qiu-Wan; Cui, Hui-Ru; Sun, Feng-Yan

    2016-09-01

    To study the cellular mechanism of vascular endothelial growth factor (VEGF)-enhanced neurogenesis in ischemic brain injury, we used middle cerebral artery occlusion (MCAO) model to induce transient focal ischemic brain injury. The results showed that ischemic injury significantly increased glial fibrillary acidic protein immunopositive (GFAP(+)) and nestin(+) cells in ipsilateral striatum 3 days following MCAO. Most GFAP(+) cells colocalized with nestin (GFAP(+)-nestin(+)), Pax6 (GFAP(+)-Pax6(+)), or Olig2 (GFAP(+)-Olig2(+)). VEGF further increased GFAP(+)-nestin(+) and GFAP(+)-Pax6(+) cells, and decreased GFAP(+)-Olig2(+) cells. We used striatal injection of GFAP targeted enhanced green fluorescence protein (pGfa2-EGFP) vectors combined with multiple immunofluorescent staining to trace the neural fates of EGFP-expressing (GFP(+)) reactive astrocytes. The results showed that MCAO-induced striatal reactive astrocytes differentiated into neural stem cells (GFP(+)-nestin(+) cells) at 3 days after MCAO, immature (GFP(+)-Tuj-1(+) cells) at 1 week and mature neurons (GFP(+)-MAP-2(+) or GFP(+)-NeuN(+) cells) at 2 weeks. VEGF increased GFP(+)-NeuN(+) and BrdU(+)-MAP-2(+) newborn neurons after MCAO. Fluorocitrate, an astrocytic inhibitor, significantly decreased GFAP and nestin expression in ischemic brains, and also reduced VEGF-enhanced neurogenic effects. This study is the first time to report that VEGF-mediated increase of newly generated neurons is dependent on the presence of reactive astrocytes. The results also illustrate cellular mechanism of VEGF-enhanced neural repair and functional plasticity in the brains after ischemic injury. We concluded that neurogenic effect of VEGF is related to increase of striatal astrocytes transdifferentiation into new mature neurons, which should be very important for the reconstruction of neurovascular units/networks in non-neurogenic regions of the mammalian brain. PMID:26603138

  19. Computer jargon explained

    CERN Document Server

    Enticknap, Nicholas

    2014-01-01

    Computer Jargon Explained is a feature in Computer Weekly publications that discusses 68 of the most commonly used technical computing terms. The book explains what the terms mean and why the terms are important to computer professionals. The text also discusses how the terms relate to the trends and developments that are driving the information technology industry. Computer jargon irritates non-computer people and in turn causes problems for computer people. The technology and the industry are changing so rapidly; it is very hard even for professionals to keep updated. Computer people do not

  20. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    International Nuclear Information System (INIS)

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis

  1. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    Energy Technology Data Exchange (ETDEWEB)

    Boku, Shuken, E-mail: shuboku@med.hokudai.ac.jp [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Nakagawa, Shin [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Takamura, Naoki [Pharmaceutical Laboratories, Dainippon Sumitomo Pharma Co. Ltd., Osaka (Japan); Kato, Akiko [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Takebayashi, Minoru [Department of Psychiatry, National Hospital Organization Kure Medical Center, Kure (Japan); Hisaoka-Nakashima, Kazue [Department of Pharmacology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima (Japan); Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan)

    2013-05-17

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis.

  2. Controlled release of 6-aminonicotinamide from aligned, electrospun fibers alters astrocyte metabolism and dorsal root ganglia neurite outgrowth

    Science.gov (United States)

    Schaub, Nicholas J.; Gilbert, Ryan J.

    2011-08-01

    Following central nervous system (CNS) injury, activated astrocytes form a glial scar that inhibits the migration of axons ultimately leading to regeneration failure. Biomaterials developed for CNS repair can provide local delivery of therapeutics and/or guidance mechanisms to encourage cell migration into damaged regions of the brain or spinal cord. Electrospun fibers are a promising type of biomaterial for CNS injury since these fibers can direct cellular and axonal migration while slowly delivering therapy to the injury site. In this study, it was hypothesized that inclusion of an anti-metabolite, 6-aminonicotinamide (6AN), within poly-l-lactic acid electrospun fibers could attenuate astrocyte metabolic activity while still directing axonal outgrowth. Electrospinning parameters were varied to produce highly aligned electrospun fibers that contained 10% or 20% (w/w) 6AN. 6AN release from the fiber substrates occurred continuously over 2 weeks. Astrocytes placed onto drug-releasing fibers were less active than those cultured on scaffolds without 6AN. Dorsal root ganglia placed onto control and drug-releasing scaffolds were able to direct neurites along the aligned fibers. However, neurite outgrowth was stunted by fibers that contained 20% 6AN. These results show that 6AN release from aligned, electrospun fibers can decrease astrocyte activity while still directing axonal outgrowth.

  3. Freshly dissociated mature hippocampal astrocytes exhibit passive membrane conductance and low membrane resistance similarly to syncytial coupled astrocytes

    OpenAIRE

    Du, Yixing; Ma, Baofeng; Kiyoshi, Conrad M.; Alford, Catherine C.; Wang, Wei; Zhou, Min

    2015-01-01

    Mature astrocytes exhibit a linear current-to-voltage K+ membrane conductance (passive conductance) and an extremely low membrane resistance (Rm) in situ. The combination of these electrophysiological characteristics establishes a highly negative and stable membrane potential that is essential for basic functions, such as K+ spatial buffering and neurotransmitter uptake. However, astrocytes are coupled extensively in situ. It remains to be determined whether the observed passive behavior and ...

  4. Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood–brain barrier primary triple coculture model

    Directory of Open Access Journals (Sweden)

    Xu L

    2015-09-01

    Full Text Available Liming Xu,1,2,* Mo Dan,1,* Anliang Shao,1 Xiang Cheng,1,3 Cuiping Zhang,4 Robert A Yokel,5 Taro Takemura,6 Nobutaka Hanagata,6 Masami Niwa,7,8 Daisuke Watanabe7,81National Institutes for Food and Drug Control, No 2, Temple of Heaven, Beijing, 2School of Information and Engineering, Wenzhou Medical University, Wenzhou, 3School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 4Beijing Neurosurgical Institute, Capital Medical University, Beijing, People’s Republic of China; 5College of Pharmacy, University of Kentucky, Lexington, KY, USA; 6Nanotechnology Innovation Station for Nanoscale Science and Technology, National Institute for Materials Science, Tsukuba, Ibaraki, 7Department of Pharmacology, Nagasaki University, 8BBB Laboratory, PharmaCo-Cell Company, Ltd., Nagasaki, Japan*These authors contributed equally to this workBackground: Silver nanoparticles (Ag-NPs can enter the brain and induce neurotoxicity. However, the toxicity of Ag-NPs on the blood–brain barrier (BBB and the underlying mechanism(s of action on the BBB and the brain are not well understood.Method: To investigate Ag-NP suspension (Ag-NPS-induced toxicity, a triple coculture BBB model of rat brain microvascular endothelial cells, pericytes, and astrocytes was established. The BBB permeability and tight junction protein expression in response to Ag-NPS, NP-released Ag ions, and polystyrene-NP exposure were investigated. Ultrastructural changes of the microvascular endothelial cells, pericytes, and astrocytes were observed using transmission electron microscopy (TEM. Global gene expression of astrocytes was measured using a DNA microarray.Results: A triple coculture BBB model of primary rat brain microvascular endothelial cells, pericytes, and astrocytes was established, with the transendothelial electrical resistance values >200 Ω·cm2. After Ag-NPS exposure for 24 hours, the BBB permeability was significantly increased and expression of the

  5. Explaining the Interpretive Mind.

    Science.gov (United States)

    Brockmeier, Jens

    1996-01-01

    Examines two prominent positions in the epistemological foundations of psychology--Piaget's causal explanatory claims and Vygotsky's interpretive understanding; contends that they need to be placed in their wider philosophical contexts. Argues that the danger of causally explaining cultural practices through which human beings construct and…

  6. The wireless internet explained

    CERN Document Server

    Rhoton, John

    2001-01-01

    The Wireless Internet Explained covers the full spectrum of wireless technologies from a wide range of vendors, including initiatives by Microsoft and Compaq. The Wireless Internet Explained takes a practical look at wireless technology. Rhoton explains the concepts behind the physics, and provides an overview that clarifies the convoluted set of standards heaped together under the umbrella of wireless. It then expands on these technical foundations to give a panorama of the increasingly crowded landscape of wireless product offerings. When it comes to actual implementation the book gives abundant down-to-earth advice on topics ranging from the selection and deployment of mobile devices to the extremely sensitive subject of security.Written by an expert on Internet messaging, the author of Digital Press''s successful Programmer''s Guide to Internet Mail and X.400 and SMTP: Battle of the E-mail Protocols, The Wireless Internet Explained describes and evaluates the current state of the fast-growing and crucial...

  7. ATP and potassium ions: a deadly combination for astrocytes

    Science.gov (United States)

    Jackson, David G.; Wang, Junjie; Keane, Robert W.; Scemes, Eliana; Dahl, Gerhard

    2014-04-01

    The ATP release channel Pannexin1 (Panx1) is self-regulated, i.e. the permeant ATP inhibits the channel from the extracellular space. The affinity of the ATP binding site is lower than that of the purinergic P2X7 receptor allowing a transient activation of Panx1 by ATP through P2X7R. Here we show that the inhibition of Panx1 by ATP is abrogated by increased extracellular potassium ion concentration ([K+]o) in a dose-dependent manner. Since increased [K+]o is also a stimulus for Panx1 channels, it can be expected that a combination of ATP and increased [K+]o would be deadly for cells. Indeed, astrocytes did not survive exposure to these combined stimuli. The death mechanism, although involving P2X7R, does not appear to strictly follow a pyroptotic pathway. Instead, caspase-3 was activated, a process inhibited by Panx1 inhibitors. These data suggest that Panx1 plays an early role in the cell death signaling pathway involving ATP and K+ ions. Additionally, Panx1 may play a second role once cells are committed to apoptosis, since Panx1 is also a substrate of caspase-3.

  8. Hyperglycaemia and diabetes impair gap junctional communication among astrocytes

    Directory of Open Access Journals (Sweden)

    Gautam K Gandhi

    2010-03-01

    Full Text Available Sensory and cognitive impairments have been documented in diabetic humans and animals, but the pathophysiology of diabetes in the central nervous system is poorly understood. Because a high glucose level disrupts gap junctional communication in various cell types and astrocytes are extensively coupled by gap junctions to form large syncytia, the influence of experimental diabetes on gap junction channel-mediated dye transfer was assessed in astrocytes in tissue culture and in brain slices from diabetic rats. Astrocytes grown in 15–25 mmol/l glucose had a slow-onset, poorly reversible decrement in gap junctional communication compared with those grown in 5.5 mmol/l glucose. Astrocytes in brain slices from adult STZ (streptozotocin-treated rats at 20–24 weeks after the onset of diabetes also exhibited reduced dye transfer. In cultured astrocytes grown in high glucose, increased oxidative stress preceded the decrement in dye transfer by several days, and gap junctional impairment was prevented, but not rescued, after its manifestation by compounds that can block or reduce oxidative stress. In sharp contrast with these findings, chaperone molecules known to facilitate protein folding could prevent and rescue gap junctional impairment, even in the presence of elevated glucose level and oxidative stress. Immunostaining of Cx (connexin 43 and 30, but not Cx26, was altered by growth in high glucose. Disruption of astrocytic trafficking of metabolites and signalling molecules may alter interactions among astrocytes, neurons and endothelial cells and contribute to changes in brain function in diabetes. Involvement of the microvasculature may contribute to diabetic complications in the brain, the cardiovascular system and other organs.

  9. Effects of aspartame metabolites on astrocytes and neurons.

    Science.gov (United States)

    Rycerz, Karol; Jaworska-Adamu, Jadwiga Elżbieta

    2013-01-01

    Aspartame, a widespread sweetener used in many food products, is considered as a highly hazardous compound. Aspartame was discovered in 1965 and raises a lot of controversy up to date. Astrocytes are glial cells, the presence and functions of which are closely connected with the central nervous system (CNS). The aim of this article is to demonstrate the direct and indirect role of astrocytes participating in the harmful effects of aspartame metabolites on neurons. The artificial sweetener is broken down into phenylalanine (50%), aspartic acid (40%) and methanol (10%) during metabolism in the body. The excess of phenylalanine blocks the transport of important amino acids to the brain contributing to reduced levels of dopamine and serotonin. Astrocytes directly affect the transport of this amino acid and also indirectly by modulation of carriers in the endothelium. Aspartic acid at high concentrations is a toxin that causes hyperexcitability of neurons and is also a precursor of other excitatory amino acid - glutamates. Their excess in quantity and lack of astrocytic uptake induces excitotoxicity and leads to the degeneration of astrocytes and neurons. The methanol metabolites cause CNS depression, vision disorders and other symptoms leading ultimately to metabolic acidosis and coma. Astrocytes do not play a significant role in methanol poisoning due to a permanent consumption of large amounts of aspartame. Despite intense speculations about the carcinogenicity of aspartame, the latest studies show that its metabolite - diketopiperazine - is cancirogenic in the CNS. It contributes to the formation of tumors in the CNS such as gliomas, medulloblastomas and meningiomas. Glial cells are the main source of tumors, which can be caused inter alia by the sweetener in the brain. On the one hand the action of astrocytes during aspartame poisoning may be advantageous for neuro-protection while on the other it may intensify the destruction of neurons. The role of the glia in

  10. The effects of trypsin on rat brain astrocyte activation.

    Directory of Open Access Journals (Sweden)

    Masoud Fereidoni

    2013-12-01

    Full Text Available Astrocytes are cells within the central nervous system which are activated in a wide spectrum of infections, and autoimmune and neurodegenerative diseases. In pathologic states, they produce inflammatory cytokines, chemokines, and nitric oxide (NO, and sometimes they induce apoptosis. Their protease-activated receptors (PARs can be activated by proteases, e.g. thrombin and trypsin, which are important in brain inflammation. The current study aimed to investigate the effects of different concentrations of trypsin (1 to 100U/ml on cultured astrocytes.In the present study, two-day rat infants' brains were isolated and homogenized after meninges removal, then cultivated in DMEM + 10% FBS medium. 10 days later, astrocytes were harvested and recultivated for more purification (up to 95%, using Immunocytochemistry method, in order to be employed for tests. They were affected by different concentrations of trypsin (1, 5, 10, 15, 20, 40, 60, 80, and 100 U/ml. To reveal the inflammation progress, NO concentrations (the Griess test were assessed after 24 and 48 hours.The results showed that trypsin concentration up to 20 U/ml caused a significant increase in NO, in a dose-dependent manner, on cultured astrocytes (P < 0.001. Trypsin 20 U/ml increased NO production fivefold the control group (P < 0.001. At higher concentrations than 20 U/ml, NO production diminished (P < 0.001. At 100 U/ml, NO production was less than the control group (P < 0.001.Inflammatory effects of trypsin 5-20 U/ml are probably due to the stimulation of astrocytes' PAR-2 receptors and the increasing of the activation of NF-κB, PKC, MAPKs. Stimulation of astrocytes' PAR-2 receptors causes an increase in iNOS activation which in turn leads to NO production. However, higher trypsin concentration possibly made astrocyte apoptosis; therefore, NO production diminished. These assumptions need to be further investigated.

  11. Voluntary Exercise Induces Astrocytic Structural Plasticity in the Globus Pallidus.

    Science.gov (United States)

    Tatsumi, Kouko; Okuda, Hiroaki; Morita-Takemura, Shoko; Tanaka, Tatsuhide; Isonishi, Ayami; Shinjo, Takeaki; Terada, Yuki; Wanaka, Akio

    2016-01-01

    Changes in astrocyte morphology are primarily attributed to the fine processes where intimate connections with neurons form the tripartite synapse and participate in neurotransmission. Recent evidence has shown that neurotransmission induces dynamic synaptic remodeling, suggesting that astrocytic fine processes may adapt their morphologies to the activity in their environment. To illustrate such a neuron-glia relationship in morphological detail, we employed a double transgenic Olig2(CreER/WT); ROSA26-GAP43-EGFP mice, in which Olig2-lineage cells can be visualized and traced with membrane-targeted GFP. Although Olig2-lineage cells in the adult brain usually become mature oligodendrocytes or oligodendrocyte precursor cells with NG2-proteoglycan expression, we found a population of Olig2-lineage astrocytes with bushy morphology in several brain regions. The globus pallidus (GP) preferentially contains Olig2-lineage astrocytes. Since the GP exerts pivotal motor functions in the indirect pathway of the basal ganglionic circuit, we subjected the double transgenic mice to voluntary wheel running to activate the GP and examined morphological changes of Olig2-lineage astrocytes at both the light and electron microscopic levels. The double transgenic mice were divided into three groups: control group mice were kept in a cage with a locked running wheel for 3 weeks, Runner group were allowed free access to a running wheel for 3 weeks, and the Runner-Rest group took a sedentary 3-week rest after a 3-week running period. GFP immunofluorescence analysis and immunoelectron microscopy revealed that astrocytic fine processes elaborated complex arborization in the Runner mice, and reverted to simple morphology comparable to that of the Control group in the Runner-Rest group. Our results indicated that the fine processes of the Olig2-lineage astrocytes underwent plastic changes that correlated with overall running activities, suggesting that they actively participate in motor

  12. Fatty acid oxidation and ketogenesis in astrocytes

    International Nuclear Information System (INIS)

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO2 in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO2 and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and ω-terminal carbons, indicating that fatty acids were oxidized by β-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the ω-terminal 4-carbon unit of the fatty acids bypassed the β-ketothiolase step of the β-oxidation pathway. The [14C]acetoacetate formed from the [1-14C]labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the [14C]acetoacetate formed from the (ω-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1

  13. Can Science `explain' Consciousness ?

    OpenAIRE

    Samal, M. K.

    2000-01-01

    Consciousness is the process by which one attributes `meaning' to the world. Considering F$\\phi$llesdal's definition of `meaning' as the joint product of all `evidence' that is available to those who `communicate', we conclude that science can, not only reduce all the {\\em evidence} to a Basic Entity (we call BE), but also can `explain' consciousness once a suitable definition for {\\em communication} is found that exploits the quantum superposition principle to incorporate the fuzzyness of ou...

  14. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.

    Science.gov (United States)

    Thevenet, Jonathan; De Marchi, Umberto; Domingo, Jaime Santo; Christinat, Nicolas; Bultot, Laurent; Lefebvre, Gregory; Sakamoto, Kei; Descombes, Patrick; Masoodi, Mojgan; Wiederkehr, Andreas

    2016-05-01

    Medium-chain triglycerides have been used as part of a ketogenic diet effective in reducing epileptic episodes. The health benefits of the derived medium-chain fatty acids (MCFAs) are thought to result from the stimulation of liver ketogenesis providing fuel for the brain. We tested whether MCFAs have direct effects on energy metabolism in induced pluripotent stem cell-derived human astrocytes and neurons. Using single-cell imaging, we observed an acute pronounced reduction of the mitochondrial electrical potential and a concomitant drop of the NAD(P)H signal in astrocytes, but not in neurons. Despite the observed effects on mitochondrial function, MCFAs did not lower intracellular ATP levels or activate the energy sensor AMP-activated protein kinase. ATP concentrations in astrocytes were unaltered, even when blocking the respiratory chain, suggesting compensation through accelerated glycolysis. The MCFA decanoic acid (300 μM) promoted glycolysis and augmented lactate formation by 49.6%. The shorter fatty acid octanoic acid (300 μM) did not affect glycolysis but increased the rates of astrocyte ketogenesis 2.17-fold compared with that of control cells. MCFAs may have brain health benefits through the modulation of astrocyte metabolism leading to activation of shuttle systems that provide fuel to neighboring neurons in the form of lactate and ketone bodies.-Thevenet, J., De Marchi, U., Santo Domingo, J., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. PMID:26839375

  15. Galunisertib inhibits glioma vasculogenic mimicry formation induced by astrocytes.

    Science.gov (United States)

    Zhang, Chao; Chen, Wenliang; Zhang, Xin; Huang, Bin; Chen, Aanjing; He, Ying; Wang, Jian; Li, Xingang

    2016-01-01

    Gliomas are among the most lethal primary brain tumors found in humans. In high-grade gliomas, vasculogenic mimicry is often detected and has been correlated with prognosis, thus suggesting its potential as a therapeutic target. Vasculogenic mimicry mainly forms vascular-like channels independent of endothelial cells; however, little is known about the relationship between astrocytes and vasculogenic mimicry. In our study, we demonstrated that the presence of astrocytes promoted vasculogenic mimicry. With suspension microarray technology and in vitro tube formation assays, we identified that astrocytes relied on TGF-β1 to enhance vasculogenic mimicry. We also found that vasculogenic mimicry was inhibited by galunisertib, a promising TGF-β1 inhibitor currently being studied in an ongoing trial in glioma patients. The inhibition was partially attributed to a decrease in autophagy after galunisertib treatment. Moreover, we observed a decrease in VE-cadherin and smooth muscle actin-α expression, as well as down-regulation of Akt and Flk phosphorylation in galunisertib-treated glioma cells. By comparing tumor weight and volume in a xenograft model, we acquired promising results to support our theory. This study expands our understanding of the role of astrocytes in gliomas and demonstrates that galunisertib inhibits glioma vasculogenic mimicry induced by astrocytes. PMID:26976322

  16. Investigation on the suitable pressure for the preservation of astrocyte

    Energy Technology Data Exchange (ETDEWEB)

    Sotome, S; Shimizu, A [Department of Environmental Engineering for Symbiosis, Soka University, 1-326 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Nakajima, K [Department of Bioinformatics, Soka University, 1-326 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Yoshimura, Y, E-mail: sotome_shinichi@yahoo.co.j [Department of Applied Chemistry, National Defence Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686 (Japan)

    2010-03-01

    The effects of pressure on the survival rate of astrocytes in growth medium (DMEM) were investigated at room temperature and at 4{sup 0}C, in an effort to establish the best conditions for the preservation. Survival rate at 4{sup 0}C was found to be higher than that at room temperature. The survival rate of astrocytes preserved for 4 days at 4{sup 0}C increased with increasing pressure up to 1.6 MPa, but decreased with increasing pressure above 1.6 MPa. At 10 MPa, all astrocytes died. The survival rate of cultured astrocytes decreased significantly following pressurization for 2 hours and the subsequent preservation for 2 days at atmospheric pressure. Therefore, it is necessary to maintain pressure when preserving astrocytes. These results indicate that the cells can be stored at 4{sup 0}C under pressurization without freezing and without adding cryoprotective agents. Moreover, it may be possible to use this procedure as a new preservation method when cryopreservation is impractical.

  17. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Science.gov (United States)

    Luther, Eva M.; Koehler, Yvonne; Diendorf, Joerg; Epple, Matthias; Dringen, Ralf

    2011-09-01

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO3 already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 °C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 °C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  18. Investigation on the suitable pressure for the preservation of astrocyte

    Science.gov (United States)

    Sotome, S.; Nakajima, K.; Yoshimura, Y.; Shimizu, A.

    2010-03-01

    The effects of pressure on the survival rate of astrocytes in growth medium (DMEM) were investigated at room temperature and at 4°C, in an effort to establish the best conditions for the preservation. Survival rate at 4°C was found to be higher than that at room temperature. The survival rate of astrocytes preserved for 4 days at 4°C increased with increasing pressure up to 1.6 MPa, but decreased with increasing pressure above 1.6 MPa. At 10 MPa, all astrocytes died. The survival rate of cultured astrocytes decreased significantly following pressurization for 2 hours and the subsequent preservation for 2 days at atmospheric pressure. Therefore, it is necessary to maintain pressure when preserving astrocytes. These results indicate that the cells can be stored at 4°C under pressurization without freezing and without adding cryoprotective agents. Moreover, it may be possible to use this procedure as a new preservation method when cryopreservation is impractical.

  19. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    International Nuclear Information System (INIS)

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO3 already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 0C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 0C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  20. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Eva M; Koehler, Yvonne; Dringen, Ralf [Center for Biomolecular Interactions Bremen, University of Bremen, PO Box 330440, D-28334 Bremen (Germany); Diendorf, Joerg; Epple, Matthias, E-mail: ralf.dringen@uni-bremen.de [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitaetsstrasse 5-7, D-45117 Essen (Germany)

    2011-09-16

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO{sub 3} already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 {sup 0}C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 {sup 0}C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  1. Simultaneous neuron- and astrocyte-specific fluorescent marking.

    Science.gov (United States)

    Schulze, Wiebke; Hayata-Takano, Atsuko; Kamo, Toshihiko; Nakazawa, Takanobu; Nagayasu, Kazuki; Kasai, Atsushi; Seiriki, Kaoru; Shintani, Norihito; Ago, Yukio; Farfan, Camille; Hashimoto, Ryota; Baba, Akemichi; Hashimoto, Hitoshi

    2015-03-27

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains.

  2. Integrated Brain Circuits: Astrocytic Networks Modulate Neuronal Activity and Behavior

    Science.gov (United States)

    Halassa, Michael M.; Haydon, Philip G.

    2011-01-01

    The past decade has seen an explosion of research on roles of neuron-astrocyte interactions in the control of brain function. We highlight recent studies performed on the tripartite synapse, the structure consisting of pre- and postsynaptic elements of the synapse and an associated astrocytic process. Astrocytes respond to neuronal activity and neuro-transmitters, through the activation of metabotropic receptors, and can release the gliotransmitters ATP, D-serine, and glutamate, which act on neurons. Astrocyte-derived ATP modulates synaptic transmission, either directly or through its metabolic product adenosine. D-serine modulates NMDA receptor function, whereas glia-derived glutamate can play important roles in relapse following withdrawal from drugs of abuse. Cell type–specific molecular genetics has allowed a new level of examination of the function of astrocytes in brain function and has revealed an important role of these glial cells that is mediated by adenosine accumulation in the control of sleep and in cognitive impairments that follow sleep deprivation. PMID:20148679

  3. Reactive Astrocytes Expressing Intense Estrogen Receptor-alpha Immunoreactivities Have Much Elongated Cytoplasmic Processes: An Autopsy Case of Human Cerebellar Tissue with Multiple Genitourinary and Gastrointestinal Anomalies

    Science.gov (United States)

    Kim, Eo-Jin; Oh, Chang Seok; Kim, Jaehyup; Kim, Wu Ho; Chung, Yoon Hee

    2007-01-01

    We performed an immunohistochemical study on the estrogen receptor alpha (ER-α) distribution in the cerebellum of a human neonate with multiple congenital anomalies, that had been acquired during autopsy. Although the exact pathology in the brain was not clearly elucidated in this study, an unidentified stressful condition might have induced the astrocytes into reactive states. In this immunohistochemical study on the neonatal cerebellum with multiple congenital anomalies, intense ER-α immunoreactivities (IRs) were localized mainly within the white matter even though ER-α IRs were known to be mainly localized in neurons. Double immunohistochemical staining showed that ER-α IR cells were reactive astrocytes, but not neurons. Interestingly, there were differences in the process length among the reactive astrocytes showing ER-α IRs. Our quantitative data confirmed that among the glial fibrillary acidic protein (GFAP)-expressing reactive astrocytes, the cells exhibiting intense ER-α IRs have much longer cytoplasmic processes and relatively weaker GFAP IRs. Taken together, the elongated processes of reactive astrocytes might be due to decreased expression of GFAP, which might be induced by elevated expression of ER-α even though the elucidation of the exact mechanism needs further studies. PMID:17982251

  4. Ca(2+) -dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid β-treated astrocytes and in a model of Alzheimer's disease.

    Science.gov (United States)

    Alberdi, Elena; Wyssenbach, Ane; Alberdi, María; Sánchez-Gómez, M V; Cavaliere, Fabio; Rodríguez, José J; Verkhratsky, Alexei; Matute, Carlos

    2013-04-01

    Neurotoxic effects of amyloid β peptides are mediated through deregulation of intracellular Ca(2+) homeostasis and signaling, but relatively little is known about amyloid β modulation of Ca(2+) homeostasis and its pathological influence on glia. Here, we found that amyloid β oligomers caused a cytoplasmic Ca(2+) increase in cultured astrocytes, which was reduced by inhibitors of PLC and ER Ca(2+) release. Furthermore, amyloid β peptides triggered increased expression of glial fibrillary acidic protein (GFAP), as well as oxidative and ER stress, as indicated by eIF2α phosphorylation and overexpression of chaperone GRP78. These effects were decreased by ryanodine and 2APB, inhibitors of ryanodine receptors and InsP3 receptors, respectively, in both primary cultured astrocytes and organotypic cultures of hippocampus and entorhinal cortex. Importantly, intracerebroventricular injection of amyloid β oligomers triggered overexpression of GFAP and GRP78 in astrocytes of the hippocampal dentate gyrus. These data were validated in a triple-transgenic mouse model of Alzheimer's disease (AD). Overexpression of GFAP and GRP78 in the hippocampal astrocytes correlated with the amyloid β oligomer load in 12-month-old mice, suggesting that this parameter drives astrocytic ER stress and astrogliosis in vivo. Together, these results provide evidence that amyloid β oligomers disrupt ER Ca(2+) homeostasis, which induces ER stress that leads to astrogliosis; this mechanism may be relevant to AD pathophysiology.

  5. Effects of Hydro Alcoholic Extraction of Valeriana on Astrocyte Raphe Magnus in Adult Rats

    Directory of Open Access Journals (Sweden)

    sajad Hatami joni

    2014-12-01

    Conclusion: Oral administration of hydro alcoholic extract of valerian increases astrocytes number and decreases their size in nucleus of raphe Magna, which indicated the effect of this extraction on proliferation of astrocytes increasing.

  6. Glucocorticoids decrease astrocyte numbers by reducing glucocorticoid receptor expression in vitro and in vivo.

    Science.gov (United States)

    Unemura, Kazuhiro; Kume, Toshiaki; Kondo, Minami; Maeda, Yuki; Izumi, Yasuhiko; Akaike, Akinori

    2012-01-01

    Glucocorticoids are stress hormones released from the adrenal cortex and their concentration is controlled by the hypothalamic-pituitary-adrenal axis. In this study, we investigated the effect of glucocorticoids on the number of astrocytes and glucocorticoid receptor (GR) expression in vitro and in vivo. Proliferation of cultured astrocytes was reduced following treatment with corticosterone and dexamethasone for 72 h. Corticosterone and dexamethasone also reduced GR expression in astrocytes. RU486, a GR antagonist, inhibited the reduction in both astrocyte proliferation and GR expression. Furthermore, GR knockdown by siRNA inhibited astrocyte proliferation. We also examined the effect of excessive glucocorticoid release on GR expression and the number of astrocytes in vivo by administering adrenocorticotropic hormone to rats for 14 days. GR expression was reduced in the prefrontal cortex and hippocampus and the number of astrocytes was reduced in the frontal cortex. Overall, our results suggest that glucocorticoids decrease the number of astrocytes by reducing GR expression.

  7. The metabolism of malate by cultured rat brain astrocytes

    International Nuclear Information System (INIS)

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-[U-14C]malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain

  8. Rapamycin prevents the mutant huntingtin-suppressed GLT-1 expression in cultured astrocytes

    OpenAIRE

    Chen, Lei-lei; Wu, Jun-Chao; Wang, Lin-Hui; Wang, Jin; Qin, Zheng-hong; Difiglia, Marian; Lin, Fang

    2012-01-01

    Aim: To investigate the effects of rapamycin on glutamate uptake in cultured rat astrocytes expressing N-terminal 552 residues of mutant huntingtin (Htt-552). Methods: Methods: Primary astrocyte cultures were prepared from the cortex of postnatal rat pups. An astrocytes model of Huntington's disease was established using the astrocytes infected with adenovirus carrying coden gene of N-terminal 552 residues of Huntingtin. The protein levels of glutamate transporters GLT-1 and GLAST, the autoph...

  9. Phenotypic Heterogeneity and Plasticity of Isocortical and Hippocampal Astrocytes in the Human Brain

    OpenAIRE

    Sosunov, Alexander A.; Wu, Xiaoping; Tsankova, Nadejda M.; Guilfoyle, Eileen; Guy M McKhann; Goldman, James E.

    2014-01-01

    To examine the diversity of astrocytes in the human brain, we immunostained surgical specimens of temporal cortex and hippocampus and autopsy brains for CD44, a plasma membrane protein and extracellular matrix receptor. CD44 antibodies outline the details of astrocyte morphology to a degree not possible with glial fibrillary acidic protein (GFAP) antibodies. CD44+ astrocytes could be subdivided into two groups. First, CD44+ astrocytes with long processes were consistently found in the subpial...

  10. Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures

    OpenAIRE

    Koizumi, Schuichi; Fujishita, Kayoko; Tsuda, Makoto; Shigemoto-Mogami, Yukari; Inoue, Kazuhide

    2003-01-01

    Originally ascribed passive roles in the CNS, astrocytes are now known to have an active role in the regulation of synaptic transmission. Neuronal activity can evoke Ca2+ transients in astrocytes, and Ca2+ transients in astrocytes can evoke changes in neuronal activity. The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between astrocytes and neurons. We demonstrate here that ATP, a primary mediator of intercellular Ca2+ signaling among astroc...

  11. Protoplasmic Astrocytes Enhance the Ability of Neural Stem Cells to Differentiate into Neurons In Vitro

    OpenAIRE

    Yuan Liu; Li Wang; Zaiyun Long; Lin Zeng; Yamin Wu

    2012-01-01

    Protoplasmic astrocytes have been reported to exhibit neuroprotective effects on neurons, but there has been no direct evidence for a functional relationship between protoplasmic astrocytes and neural stem cells (NSCs). In this study, we examined neuronal differentiation of NSCs induced by protoplasmic astrocytes in a co-culture model. Protoplasmic astrocytes were isolated from new-born and NSCs from the E13-15 cortex of rats respectively. The differentiated cells labeled with neuron-specific...

  12. Neuronal cadherin (NCAD) increases sensory neurite formation and outgrowth on astrocytes

    OpenAIRE

    Ferguson, Toby A.; Scherer, Steven S.

    2012-01-01

    We examined the neurite outgrowth of sensory neurons on astrocytes following the genetic deletion of N-cadherin (NCAD). Deletion abolished immunostaining for NCAD and the other classical cadherins, indicating that NCAD is likely the only classical cadherin expressed by astrocytes. Only 38% of neurons grown on NCAD-deficient astrocytes for 24 hours produced neurites, as compared to 74% of neurons grown on NCAD-expressing astrocytes. Of the neurons that produced neurites, those grown on NCAD-de...

  13. Don't fence me in: Harnessing the beneficial roles of astrocytes for spinal cord repair

    OpenAIRE

    White, Robin E.; Jakeman, Lyn B.

    2008-01-01

    Astrocytes comprise a heterogeneous cell population that plays a complex role in repair after spinal cord injury. Reactive astrocytes are major contributors to the glial scar that is a physical and chemical barrier to axonal regeneration. Yet, consistent with a supportive role in development, astrocytes secrete neurotrophic factors and protect neurons and glia spared by the injury. In development and after injury, local cues are modulators of astrocyte phenotype and function. When multipotent...

  14. GLUT2 Immunoreactivity in Gomori-positive Astrocytes of the Hypothalamus

    OpenAIRE

    Young, John K.; McKenzie, James C.

    2004-01-01

    A specialized subtype of astrocyte, the Gomori-positive (GP) astrocyte, is unusually abundant and prominent in the arcuate nucleus of the hypothalamus. GP astro-cytes possess cytoplasmic granules derived from degenerating mitochondria. GP granules are highly stained by Gomori's chrome alum hematoxylin stain, by the Perl's reaction for iron, or by toluidine blue. The source of the oxidative stress causing mitochondrial damage in GP astrocytes is uncertain, but such damage could arise from the ...

  15. Phenotypic Conversions of “Protoplasmic” to “Reactive” Astrocytes in Alexander Disease

    OpenAIRE

    Sosunov, Alexander A.; Guilfoyle, Eileen; Wu, Xiaoping; Guy M McKhann; Goldman, James E.

    2013-01-01

    Alexander Disease (AxD) is a primary disorder of astrocytes, caused by heterozygous mutations in GFAP, which encodes the major astrocyte intermediate filament protein, glial fibrillary acidic protein (GFAP). Astrocytes in AxD display hypertrophy, massive increases in GFAP, and the accumulation of Rosenthal fibers, cytoplasmic protein inclusions containing GFAP and small heat shock proteins. To study the effects of GFAP mutations on astrocyte morphology and physiology we have examined hippocam...

  16. In vivo astrocytic Ca2+ signaling in health and brain disorders

    OpenAIRE

    Ding, Shinghua

    2013-01-01

    Astrocytes are the predominant glial cell type in the CNS. Although astrocytes are electrically nonexcitable, their excitability is manifested by their Ca2+ signaling, which serves as a mediator of neuron–glia bidirectional interactions via tripartite synapses. Studies from in vivo two-photon imaging indicate that in healthy animals, the properties of spontaneous astrocytic Ca2+ signaling are affected by animal species, age, wakefulness and the location of astrocytes in the brain. Intercellul...

  17. Insulin Promotes Glycogen Storage and Cell Proliferation in Primary Human Astrocytes

    OpenAIRE

    Martin Heni; Hennige, Anita M.; Andreas Peter; Dorothea Siegel-Axel; Anna-Maria Ordelheide; Norbert Krebs; Fausto Machicao; Andreas Fritsche; Hans-Ulrich Häring; Harald Staiger

    2011-01-01

    INTRODUCTION: In the human brain, there are at least as many astrocytes as neurons. Astrocytes are known to modulate neuronal function in several ways. Thus, they may also contribute to cerebral insulin actions. Therefore, we examined whether primary human astrocytes are insulin-responsive and whether their metabolic functions are affected by the hormone. METHODS: Commercially available Normal Human Astrocytes were grown in the recommended medium. Major players in the insulin signaling pathwa...

  18. Neurotoxic potential and cellular uptake of T-2 toxin in human astrocytes in primary culture.

    Science.gov (United States)

    Weidner, Maria; Lenczyk, Marlies; Schwerdt, Gerald; Gekle, Michael; Humpf, Hans-Ulrich

    2013-03-18

    The trichothecene mycotoxin T-2 toxin, which is produced by fungi of the Fusarium species, is a worldwide occurring contaminant of cereal based food and feed. The cytotoxic properties of T-2 toxin are already well described with apoptosis being a major mechanism of action in various cell lines as well as in primary cells of different origin. However, only few data on neurotoxic properties of T-2 toxin are reported so far, but in vivo studies showed different effects of T-2 toxin on behavior as well as on levels of brain amines in animals. To further investigate the cytotoxic properties of T-2 toxin on cells derived from brain tissue, normal human astrocytes in primary culture (NHA) were used in this study. Besides studies of cytotoxicity, apoptosis (caspase-3-activation, Annexin V) and necrosis (LDH-release), the cellular uptake and metabolism of T-2 toxin in NHA was analyzed and compared to the uptake in an established human cell line (HT-29). The results show that human astrocytes were highly sensitive to the cytotoxic properties of T-2 toxin, and apoptosis, induced at low concentrations, was identified for the first time as the mechanism of toxic action in NHA. Furthermore, a strong accumulation of T-2 toxin in NHA and HT-29 cells was detected, and T-2 toxin was subjected to metabolism leading to HT-2 toxin, a commonly found metabolite after T-2 toxin incubation in both cell types. This formation seems to occur within the cells since incubations of T-2 toxin with cell depleted culture medium did not lead to any degradation of the parent toxin. The results of this study emphasize the neurotoxic potential of T-2 toxin in human astrocytes at low concentrations after short incubation times. PMID:23363530

  19. An APC:WNT counter-current-like mechanism regulates cell division along the colonic crypt axis: a mechanism that explains how APC mutations induce proliferative abnormalities that drive colon cancer development.

    Directory of Open Access Journals (Sweden)

    Bruce M Boman

    2013-11-01

    Full Text Available APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside. WNT signaling, in contrast, is high at the bottom (where SCs reside and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g. survivin are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric. APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly-proliferating cells during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes.

  20. Explaining embodied cognition results.

    Science.gov (United States)

    Lakoff, George

    2012-10-01

    From the late 1950s until 1975, cognition was understood mainly as disembodied symbol manipulation in cognitive psychology, linguistics, artificial intelligence, and the nascent field of Cognitive Science. The idea of embodied cognition entered the field of Cognitive Linguistics at its beginning in 1975. Since then, cognitive linguists, working with neuroscientists, computer scientists, and experimental psychologists, have been developing a neural theory of thought and language (NTTL). Central to NTTL are the following ideas: (a) we think with our brains, that is, thought is physical and is carried out by functional neural circuitry; (b) what makes thought meaningful are the ways those neural circuits are connected to the body and characterize embodied experience; (c) so-called abstract ideas are embodied in this way as well, as is language. Experimental results in embodied cognition are seen not only as confirming NTTL but also explained via NTTL, mostly via the neural theory of conceptual metaphor. Left behind more than three decades ago is the old idea that cognition uses the abstract manipulation of disembodied symbols that are meaningless in themselves but that somehow constitute internal "representations of external reality" without serious mediation by the body and brain. This article uniquely explains the connections between embodied cognition results since that time and results from cognitive linguistics, experimental psychology, computational modeling, and neuroscience.

  1. Are astrocytes executive cells within the central nervous system?

    Science.gov (United States)

    Sica, Roberto E; Caccuri, Roberto; Quarracino, Cecilia; Capani, Francisco

    2016-08-01

    Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS) by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson's disease, Alzheimer's dementia, Huntington's dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well. PMID:27556379

  2. File list: Oth.Neu.10.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Astrocytes.bed ...

  3. File list: ALL.Neu.20.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Astrocytes.bed ...

  4. File list: Oth.Neu.50.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Astrocytes.bed ...

  5. File list: ALL.Neu.10.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Astrocytes.bed ...

  6. File list: ALL.Neu.50.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Astrocytes.bed ...

  7. File list: Oth.Neu.20.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Astrocytes.bed ...

  8. File list: Oth.Neu.05.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Astrocytes.bed ...

  9. File list: ALL.Neu.05.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Astrocytes.bed ...

  10. Astrocytes Grown in Alvetex(®) Three Dimensional Scaffolds Retain a Non-reactive Phenotype.

    Science.gov (United States)

    Ugbode, Christopher I; Hirst, Warren D; Rattray, Marcus

    2016-08-01

    Protocols which permit the extraction of primary astrocytes from either embryonic or postnatal mice are well established however astrocytes in culture are different to those in the mature CNS. Three dimensional (3D) cultures, using a variety of scaffolds may enable better phenotypic properties to be developed in culture. We present data from embryonic (E15) and postnatal (P4) murine primary cortical astrocytes grown on coated coverslips or a 3D polystyrene scaffold, Alvetex. Growth of both embryonic and postnatal primary astrocytes in the 3D scaffold changed astrocyte morphology to a mature, protoplasmic phenotype. Embryonic-derived astrocytes in 3D expressed markers of mature astrocytes, namely the glutamate transporter GLT-1 with low levels of the chondroitin sulphate proteoglycans, NG2 and SMC3. Embryonic astrocytes derived in 3D show lower levels of markers of reactive astrocytes, namely GFAP and mRNA levels of LCN2, PTX3, Serpina3n and Cx43. Postnatal-derived astrocytes show few protein changes between 2D and 3D conditions. Our data shows that Alvetex is a suitable scaffold for growth of astrocytes, and with appropriate choice of cells allows the maintenance of astrocytes with the properties of mature cells and a non-reactive phenotype. PMID:27099962

  11. Comparison of the Gene Expression Profiles of Human Fetal Cortical Astrocytes with Pluripotent Stem Cell Derived Neural Stem Cells Identifies Human Astrocyte Markers and Signaling Pathways and Transcription Factors Active in Human Astrocytes

    OpenAIRE

    Nasir Malik; Xiantao Wang; Sonia Shah; Efthymiou, Anastasia G.; Bin Yan; Sabrina Heman-Ackah; Ming Zhan; Mahendra Rao

    2014-01-01

    Astrocytes are the most abundant cell type in the central nervous system (CNS) and have a multitude of functions that include maintenance of CNS homeostasis, trophic support of neurons, detoxification, and immune surveillance. It has only recently been appreciated that astrocyte dysfunction is a primary cause of many neurological disorders. Despite their importance in disease very little is known about global gene expression for human astrocytes. We have performed a microarray expression anal...

  12. Astrocytes in oligodendrocyte lineage development and white matter pathology

    Directory of Open Access Journals (Sweden)

    Jiasi eLi

    2016-05-01

    Full Text Available White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in grey matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica. In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer’s disease, multiple sclerosis and amyotrophic lateral sclerosis. Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  13. p53 protein alterations in adult astrocytic tumors and oligodendrogliomas

    Directory of Open Access Journals (Sweden)

    Nayak Anupma

    2004-04-01

    Full Text Available BACKGROUND: p53 is a tumor suppressor gene implicated in the genesis of a variety of malignancies including brain tumors. Overexpression of the p53 protein is often used as a surrogate indicator of alterations in the p53 gene. AIMS: In this study, data is presented on p53 protein expression in adult cases (>15 years of age of astrocytic (n=152 and oligodendroglial (n=28 tumors of all grades. Of the astrocytic tumors, 86% were supratentorial in location while remaining 14% were located infratentorially - 8 in the the cerebellum and 13 in the brainstem. All the oligodendrogliomas were supratentorial. MATERIALS AND METHODS: p53 protein expression was evaluated on formalin-fixed paraffin-embedded sections using streptavidin biotin immunoperoxidase technique after high temperature antigen retrieval. RESULTS: Overall 52% of supratentorial astrocytic tumors showed p53 immunopositivity with no correlation to the histological grade. Thus, 58.8% of diffuse astrocytomas (WHO Grade II, 53.8% of anaplastic astrocytomas (WHO Grade III and 50% of glioblastomas (WHO Grade IV were p53 protein positive. In contrast, all the infratentorial tumors were p53 negative except for one brainstem glioblastoma. Similarly, pilocytic astrocytomas were uniformly p53 negative irrespective of the location. Among oligodendroglial tumors, the overall frequency of p53 immunopositivity was lower (only 28%, though a trend of positive correlation with the tumor grade was noted - 25% in Grade II and 31.5% in grade III (anaplastic oligodendroglioma. Interestingly, p53 labeling index (p53 LI did not correlate with the histopathological grade in both astrocytic and oligodendroglial tumors. CONCLUSIONS: Thus, this study gives an insight into the genetic and hence biological heterogeneity of gliomas, not only between astrocytic tumors vs. oligodendrogliomas but also within astrocytic tumors with regard to their grade and location. With p53 gene therapy trials in progress, this will

  14. NT2 derived neuronal and astrocytic network signalling.

    Directory of Open Access Journals (Sweden)

    Eric J Hill

    Full Text Available A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.

  15. Cell type-specific dependency on the PI3K/Akt signaling pathway for the endogenous Epo and VEGF induction by baicalein in neurons versus astrocytes.

    Directory of Open Access Journals (Sweden)

    Yu-Yo Sun

    Full Text Available The neuroprotective effect of baicalein is generally attributed to inhibition of 12/15-lipoxygenase (12/15-LOX and suppression of oxidative stress, but recent studies showed that baicalein also activates hypoxia-inducible factor-α (HIF1α through inhibition of prolyl hydrolase 2 (PHD2 and activation of the phosphatidylinositide-3 kinase (PI3K/Akt signaling pathway. Yet, the significance and regulation of prosurvival cytokines erythropoietin (Epo and vascular endothelial growth factor (VEGF, two transcriptional targets of HIF1α, in baicalein-mediated neuroprotection in neurons and astrocytes remains unknown. Here we investigated the causal relationship between the PI3K/Akt signaling pathway and Epo/VEGF expression in baicalein-mediated neuroprotection in primary rat cortical neurons and astrocytes. Our results show that baicalein induced Epo and VEGF expression in a HIF1α- and PI3K/Akt-dependent manner in neurons. Baicalein also protected neurons against excitotoxicity in a PI3K- and Epo/VEGF-dependent manner without affecting neuronal excitability. In contrast, at least a 10-fold higher concentration of baicalein was needed to induce Epo/VEGF production and PI3K/Akt activity in astrocytes for protection of neurons. Moreover, only baicalein-induced astrocytic VEGF, but not Epo expression requires HIF1α, while PI3K/Akt signaling had little role in baicalein-induced astrocytic Epo/VEGF expression. These results suggest distinct mechanisms of baicalein-mediated Epo/VEGF production in neurons and astrocytes for neuroprotection, and provide new insights into the mechanisms and potential of baicalein in treating brain injury in vivo.

  16. Matlab for engineers explained

    CERN Document Server

    Gustafsson, Fredrik

    2003-01-01

    This book is written for students at bachelor and master programs and has four different purposes, which split the book into four parts: 1. To teach first or early year undergraduate engineering students basic knowledge in technical computations and programming using MATLAB. The first part starts from first principles and is therefore well suited both for readers with prior exposure to MATLAB but lacking a solid foundational knowledge of the capabilities of the system and readers not having any previous experience with MATLAB. The foundational knowledge gained from these interactive guided tours of the system will hopefully be sufficient for an effective utilization of MATLAB in the engineering profession, in education and in research. 2. To explain the foundations of more advanced use of MATLAB using the facilities added the last couple of years, such as extended data structures, object orientation and advanced graphics. 3. To give an introduction to the use of MATLAB in typical undergraduate courses in elec...

  17. Does Viewing Explain Doing?

    DEFF Research Database (Denmark)

    Hald, Gert Martin; Kuyper, Lisette; Adam, Philippe C G;

    2013-01-01

    INTRODUCTION: Concerns have been voiced that the use of sexually explicit materials (SEMs) may adversely affect sexual behaviors, particularly in young people. Previous studies have generally found significant associations between SEM consumption and the sexual behaviors investigated. However, mo......, Kuyper L, Adam PCG, and de Wit JBF. Does viewing explain doing? Assessing the association between sexually explicit materials use and sexual behaviors in a large sample of Dutch adolescents and young adults. J Sex Med **;**:**-**.......INTRODUCTION: Concerns have been voiced that the use of sexually explicit materials (SEMs) may adversely affect sexual behaviors, particularly in young people. Previous studies have generally found significant associations between SEM consumption and the sexual behaviors investigated. However, most...... of these studies have focused on sexual behaviors related to sexually transmitted infections or sexual aggression and/or failed to adequately control for relevant covariates. Thus, research more thoroughly investigating the association between SEM consumption and a broader range of sexual behaviors is needed. AIMS...

  18. Explaining wartime rape.

    Science.gov (United States)

    Gottschall, Jonathan

    2004-05-01

    In the years since the first reports of mass rapes in the Yugoslavian wars of secession and the genocidal massacres in Rwanda, feminist activists and scholars, human rights organizations, journalists, and social scientists have dedicated unprecedented efforts to document, explain, and seek solutions for the phenomenon of wartime rape. While contributors to this literature agree on much, there is no consensus on causal factors. This paper provides a brief overview of the literature on wartime rape in historical and ethnographical societies and a critical analysis of the four leading explanations for its root causes: the feminist theory, the cultural pathology theory, the strategic rape theory, and the biosocial theory. The paper concludes that the biosocial theory is the only one capable of bringing all the phenomena associated with wartime rape into a single explanatory context.

  19. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H;

    2015-01-01

    synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A...... reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids....

  20. CCL2 modulates cytokine production in cultured mouse astrocytes

    Directory of Open Access Journals (Sweden)

    Frugier Tony

    2010-10-01

    Full Text Available Abstract Background The chemokine CCL2 (also known as monocyte chemoattractant protein-1, or MCP-1 is upregulated in patients and rodent models of traumatic brain injury (TBI, contributing to post-traumatic neuroinflammation and degeneration by directing the infiltration of blood-derived macrophages into the injured brain. Our laboratory has previously reported that Ccl2-/- mice show reduced macrophage accumulation and tissue damage, corresponding to improved motor recovery, following experimental TBI. Surprisingly, Ccl2-deficient mice also exhibited delayed but exacerbated secretion of key proinflammatory cytokines in the injured cortex. Thus we sought to further characterise CCL2's potential ability to modulate immunoactivation of astrocytes in vitro. Methods Primary astrocytes were isolated from neonatal wild-type and Ccl2-deficient mice. Established astrocyte cultures were stimulated with various concentrations of lipopolysaccharide (LPS and interleukin (IL-1β for up to 24 hours. Separate experiments involved pre-incubation with mouse recombinant (rCCL2 prior to IL-1β stimulation in wild-type cells. Following stimulation, cytokine secretion was measured in culture supernatant by immunoassays, whilst cytokine gene expression was quantified by real-time reverse transcriptase polymerase chain reaction. Results LPS (0.1-100 μg/ml; 8 h induced the significantly greater secretion of five key cytokines and chemokines in Ccl2-/- astrocytes compared to wild-type cells. Consistently, IL-6 mRNA levels were 2-fold higher in Ccl2-deficient cells. IL-1β (10 and 50 ng/ml; 2-24 h also resulted in exacerbated IL-6 production from Ccl2-/- cultures. Despite this, treatment of wild-type cultures with rCCL2 alone (50-500 ng/ml did not induce cytokine/chemokine production by astrocytes. However, pre-incubation of wild-type astrocytes with rCCL2 (250 ng/ml, 12 h prior to stimulation with IL-1β (10 ng/ml, 8 h significantly reduced IL-6 protein and gene

  1. L-type voltage-operated calcium channels contribute to astrocyte activation In vitro.

    Science.gov (United States)

    Cheli, Veronica T; Santiago González, Diara A; Smith, Jessica; Spreuer, Vilma; Murphy, Geoffrey G; Paez, Pablo M

    2016-08-01

    We have found a significant upregulation of L-type voltage-operated Ca(++) channels (VOCCs) in reactive astrocytes. To test if VOCCs are centrally involved in triggering astrocyte reactivity, we used in vitro models of astrocyte activation in combination with pharmacological inhibitors, siRNAs and the Cre/lox system to reduce the activity of L-type VOCCs in primary cortical astrocytes. The endotoxin lipopolysaccharide (LPS) as well as high extracellular K(+) , glutamate, and ATP promote astrogliosis in vitro. L-type VOCC inhibitors drastically reduce the number of reactive cells, astrocyte hypertrophy, and cell proliferation after these treatments. Astrocytes transfected with siRNAs for the Cav1.2 subunit that conducts L-type Ca(++) currents as well as Cav1.2 knockout astrocytes showed reduce Ca(++) influx by ∼80% after plasma membrane depolarization. Importantly, Cav1.2 knock-down/out prevents astrocyte activation and proliferation induced by LPS. Similar results were found using the scratch wound assay. After injuring the astrocyte monolayer, cells extend processes toward the cell-free scratch region and subsequently migrate and populate the scratch. We found a significant increase in the activity of L-type VOCCs in reactive astrocytes located in the growing line in comparison to quiescent astrocytes situated away from the scratch. Moreover, the migration of astrocytes from the scratching line as well as the number of proliferating astrocytes was reduced in Cav1.2 knock-down/out cultures. In summary, our results suggest that Cav1.2 L-type VOCCs play a fundamental role in the induction and/or proliferation of reactive astrocytes, and indicate that the inhibition of these Ca(++) channels may be an effective way to prevent astrocyte activation. GLIA 2016. GLIA 2016;64:1396-1415. PMID:27247164

  2. Inhibiting spinal neuron-astrocytic activation correlates with synergistic analgesia of dexmedetomidine and ropivacaine.

    Directory of Open Access Journals (Sweden)

    Huang-Hui Wu

    Full Text Available BACKGROUND: This study aims to identify that intrathecal (i.t. injection of dexmedetomidine (Dex and ropivacaine (Ropi induces synergistic analgesia on chronic inflammatory pain and is accompanied with corresponding "neuron-astrocytic" alterations. METHODS: Male, adult Sprague-Dawley rats were randomly divided into sham, control and i.t. medication groups. The analgesia profiles of i.t. Dex, Ropi, and their combination detected by Hargreaves heat test were investigated on the subcutaneous (s.c. injection of complete Freund adjuvant (CFA induced chronic pain in rat and their synergistic analgesia was confirmed by using isobolographic analysis. During consecutive daily administration, pain behavior was daily recorded, and immunohistochemical staining was applied to investigate the number of Fos-immunoreactive (Fos-ir neurons on hour 2 and day 1, 3 and 7, and the expression of glial fibrillary acidic protein (GFAP within the spinal dorsal horn (SDH on day 1, 3, 5 and 7 after s.c. injection of CFA, respectively, and then Western blot to examine spinal GFAP and β-actin levels on day 3 and 7. RESULTS: i.t. Dex or Ropi displayed a short-term analgesia in a dose-dependent manner, and consecutive daily administrations of their combination showed synergistic analgesia and remarkably down-regulated neuronal and astrocytic activations indicated by decreases in the number of Fos-ir neurons and the GFAP expression within the SDH, respectively. CONCLUSION: i.t. co-delivery of Dex and Ropi shows synergistic analgesia on the chronic inflammatory pain, in which spinal "neuron-astrocytic activation" mechanism may play an important role.

  3. Human Brain Astrocytes Mediate TRAIL-mediated Apoptosis after Treatment with IFN-γ

    OpenAIRE

    Lee, Jeonggi; Shin, Jeon-Soo; Choi, In-Hong

    2006-01-01

    TNF-related apoptosis inducing ligand (TRAIL) expressions were studied in primary human brain astrocytes in response to pro-inflammatory cytokines. When astrocytes were treated with IL-1β, TNF-α or IFN-γ, TRAIL was induced in cultured fetal astrocytes. In particular, IFN-γ induced the highest levels of TRAIL in cultured astrocytes. When astrocytes were prereated with IFN-γ, they induced apoptosis in TRAIL-sensitive Peer cells. Our results suggest that IFN-γ modulates the expression of TRAIL i...

  4. Astrocyte-to-neuron signaling in response to photostimulation with a femtosecond laser

    Science.gov (United States)

    Zhao, Yuan; Liu, Xiuli; Zhou, Wei; Zeng, Shaoqun

    2010-08-01

    Conventional stimulation techniques used in studies of astrocyte-to-neuron signaling are invasive or dependent on additional electrical devices or chemicals. Here, we applied photostimulation with a femtosecond laser to selectively stimulate astrocytes in the hippocampal neural network, and the neuronal responses were examined. The results showed that, after photostimulation, cell-specific astrocyte-to-neuron signaling was triggered; sometimes the neuronal responses were even synchronous. Since photostimulation with a femtosecond laser is noninvasive, agent-free, and highly precise, this method has been proved to be efficient in activating astrocytes for investigations of astrocytic functions in neural networks.

  5. A simple method of labeling amyloid β with quantum dots and ingestion of the labeled amyloid β by astrocytes

    Science.gov (United States)

    Zhang, Jing; Jia, Xing; Qing, Hong; Xie, Hai-Yan

    2013-01-01

    Steady labeling of amyloid beta (Aβ) is crucial for studying the ingestion and degradation of Aβ by astrocytes and unraveling a relevant regulation mechanism. Quantum dots (QDs) are an optimum labeling reagent for this because of their strong and steady fluorescence properties. In this paper, Aβ was labeled with QDs by a simple mixed incubation strategy, with a QD labeled Aβ complex (QDs-Aβ) being obtained. In the complex, QDs efficiently restrained the formation of β-folding and fibrils of Aβ, while the graininess, dispersivity and fluorescence properties of the QDs hardly changed. The fluorescence microscopy imaging results showed that the astrocytes could ingest the QDs-Aβ. The QDs and Aβ did not separate from each other during the ingestion process, and the Aβ could be degraded subsequently.

  6. A simple method of labeling amyloid β with quantum dots and ingestion of the labeled amyloid β by astrocytes

    International Nuclear Information System (INIS)

    Steady labeling of amyloid beta (Aβ) is crucial for studying the ingestion and degradation of Aβ by astrocytes and unraveling a relevant regulation mechanism. Quantum dots (QDs) are an optimum labeling reagent for this because of their strong and steady fluorescence properties. In this paper, Aβ was labeled with QDs by a simple mixed incubation strategy, with a QD labeled Aβ complex (QDs-Aβ) being obtained. In the complex, QDs efficiently restrained the formation of β-folding and fibrils of Aβ, while the graininess, dispersivity and fluorescence properties of the QDs hardly changed. The fluorescence microscopy imaging results showed that the astrocytes could ingest the QDs-Aβ. The QDs and Aβ did not separate from each other during the ingestion process, and the Aβ could be degraded subsequently. (paper)

  7. Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo

    DEFF Research Database (Denmark)

    Lind, Barbara Lykke; Brazhe, Alexey; Jessen, Sanne Barsballe;

    2013-01-01

    in astrocyte somas, processes, and end-feet preceded local vasodilatation. Fast Ca(2+) responses in both neurons and astrocytes correlated with synaptic activity, but only the astrocytic responses correlated with the hemodynamic shifts. These data establish that a large proportion of cortical astrocytes have...

  8. Gain-of-function defects of astrocytic Kir4.1 channels in children with autism spectrum disorders and epilepsy

    Science.gov (United States)

    Sicca, Federico; Ambrosini, Elena; Marchese, Maria; Sforna, Luigi; Servettini, Ilenio; Valvo, Giulia; Brignone, Maria Stefania; Lanciotti, Angela; Moro, Francesca; Grottesi, Alessandro; Catacuzzeno, Luigi; Baldini, Sara; Hasan, Sonia; D’Adamo, Maria Cristina; Franciolini, Fabio; Molinari, Paola; Santorelli, Filippo M.; Pessia, Mauro

    2016-01-01

    Dysfunction of the inwardly-rectifying potassium channels Kir4.1 (KCNJ10) represents a pathogenic mechanism contributing to Autism-Epilepsy comorbidity. To define the role of Kir4.1 variants in the disorder, we sequenced KCNJ10 in a sample of affected individuals, and performed genotype-phenotype correlations. The effects of mutations on channel activity, protein trafficking, and astrocyte function were investigated in Xenopus laevis oocytes, and in human astrocytoma cell lines. An in vivo model of the disorder was also explored through generation of kcnj10a morphant zebrafish overexpressing the mutated human KCNJ10. We detected germline heterozygous KCNJ10 variants in 19/175 affected children. Epileptic spasms with dysregulated sensory processing represented the main disease phenotype. When investigated on astrocyte-like cells, the p.R18Q mutation exerted a gain-of-function effect by enhancing Kir4.1 membrane expression and current density. Similarly, the p.R348H variant led to gain of channel function through hindrance of pH-dependent current inhibition. The frequent polymorphism p.R271C seemed, instead, to have no obvious functional effects. Our results confirm that variants in KCNJ10 deserve attention in autism-epilepsy, and provide insight into the molecular mechanisms of autism and seizures. Similar to neurons, astrocyte dysfunction may result in abnormal synaptic transmission and electrical discharge, and should be regarded as a possible pharmacological target in autism-epilepsy. PMID:27677466

  9. Expression and cellular function of vSNARE proteins in brain astrocytes.

    Science.gov (United States)

    Ropert, N; Jalil, A; Li, D

    2016-05-26

    Gray matter protoplasmic astrocytes, a major type of glial cell in the mammalian brain, extend thin processes ensheathing neuronal synaptic terminals. Albeit electrically silent, astrocytes respond to neuronal activity with Ca(2+) signals that trigger the release of gliotransmitters, such as glutamate, d-serine, and ATP, which modulate synaptic transmission. It has been suggested that the astrocytic processes, together with neuronal pre- and post-synaptic elements, constitute a tripartite synapse, and that astrocytes actively regulate information processing. Astrocytic vesicles expressing VAMP2 and VAMP3 vesicular SNARE (vSNARE) proteins have been suggested to be a key feature of the tripartite synapse and mediate gliotransmitter release through Ca(2+)-regulated exocytosis. However, the concept of exocytotic release of gliotransmitters by astrocytes has been challenged. Here we review studies investigating the expression profile of VAMP2 and VAMP3 vSNARE proteins in rodent astrocytes, and the functional implication of VAMP2/VAMP3 vesicles in astrocyte signaling. We also discuss our recent data suggesting that astrocytic VAMP3 vesicles regulate the trafficking of glutamate transporters at the plasma membrane and glutamate uptake. A better understanding of the functional consequences of the astrocytic vSNARE vesicles on glutamate signaling, neuronal excitability and plasticity, will require the development of new strategies to selectively interrogate the astrocytic vesicles trafficking in vivo. PMID:26518463

  10. Down-regulation of transcription of the proapoptotic gene BNip3 in cultured astrocytes by murine coronavirus infection

    International Nuclear Information System (INIS)

    Murine coronavirus mouse hepatitis virus (MHV) causes encephalitis and demyelination in the central nervous system of susceptible rodents. Astrocytes are the major target for MHV persistence. However, the mechanisms by which astrocytes survive MHV infection and permit viral persistence are not known. Here we performed DNA microarray analysis on differential gene expression in astrocyte DBT cells by MHV infection and found that the mRNA of the proapoptotic gene BNip3 was significantly decreased following MHV infection. This finding was further confirmed by quantitative reverse transcription-polymerase chain reaction, Western blot analysis, and BNip3-promoter-luciferase reporter system. Interestingly, infection with live and ultraviolet light-inactivated viruses equally repressed BNip3 expression, indicating that the down-regulation of BNip3 expression does not require virus replication and is mediated during cell entry. Furthermore, treatment of cells with chloroquine, which blocks the acidification of endosomes, significantly inhibited the repression of the BNip3 promoter activity induced by the acidic pH-dependent MHV mutant OBLV60, which enters cells via endocytosis, indicating that the down-regulation of BNip3 expression is mediated by fusion between viral envelope and cell membranes during entry. Deletion analysis showed that the sequence between nucleotides 262 and 550 of the 588-base-pair BNip3 promoter is necessary and sufficient for driving the BNip3 expression and that it contains signals that are responsible for MHV-induced down-regulation of BNip3 expression in DBT cells. These results may provide insights into the mechanisms by which MHV evades host antiviral defense and promotes cell survival, thereby allowing its persistence in the host astrocytes

  11. Tricyclic antidepressant amitriptyline indirectly increases the proliferation of adult dentate gyrus-derived neural precursors: an involvement of astrocytes.

    Directory of Open Access Journals (Sweden)

    Shuken Boku

    Full Text Available Antidepressants increase the proliferation of neural precursors in adult dentate gyrus (DG, which is considered to be involved in the therapeutic action of antidepressants. However, the mechanism underlying it remains unclear. By using cultured adult rat DG-derived neural precursors (ADP, we have already shown that antidepressants have no direct effects on ADP. Therefore, antidepressants may increase the proliferation of neural precursors in adult DG via unknown indirect mechanism. We have also shown that amitriptyline (AMI, a tricyclic antidepressant, induces the expressions of GDNF, BDNF, FGF2 and VEGF, common neurogenic factors, in primary cultured astrocytes (PCA. These suggest that AMI-induced factors in astrocytes may increase the proliferation of neural precursors in adult DG. To test this hypothesis, we examined the effects of AMI-induced factors and conditioned medium (CM from PCA treated with AMI on ADP proliferation. The effects of CM and factors on ADP proliferation were examined with BrdU immunocytochemistry. AMI had no effect on ADP proliferation, but AMI-treated CM increased it. The receptors of GDNF, BDNF and FGF2, but not VEGF, were expressed in ADP. FGF2 significantly increased ADP proliferation, but not BDNF and GDNF. In addition, both of a specific inhibitor of FGF receptors and anti-FGF2 antibody significantly counteracted the increasing effect of CM on ADP proliferation. In addition, FGF2 in brain is mainly derived from astrocytes that are key components of the neurogenic niches in adult DG. These suggest that AMI may increase ADP proliferation indirectly via PCA and that FGF2 may a potential candidate to mediate such an indirect effect of AMI on ADP proliferation via astrocytes.

  12. Astrocytes and Microglia as Non-cell Autonomous Players in the Pathogenesis of ALS

    Science.gov (United States)

    Hyeon, Seung Jae; Im, Hyeonjoo; Ryu, Hyun; Kim, Yunha

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that leads to a progressive muscle wasting and paralysis. The pathological phenotypes are featured by severe motor neuron death and glial activation in the lumbar spinal cord. Proposed ALS pathogenic mechanisms include glutamate cytotoxicity, inflammatory pathway, oxidative stress, and protein aggregation. However, the exact mechanisms of ALS pathogenesis are not fully understood yet. Recently, a growing body of evidence provides a novel insight on the importance of glial cells in relation to the motor neuronal damage via the non-cell autonomous pathway. Accordingly, the aim of the current paper is to overview the role of astrocytes and microglia in the pathogenesis of ALS and to better understand the disease mechanism of ALS. PMID:27790057

  13. Impairments of astrocytes are involved in the D-galactose-induced brain aging

    International Nuclear Information System (INIS)

    Astrocyte dysfunction is implicated in course of various age-related neurodegenerative diseases. Chronic injection of D-galactose can cause a progressive deterioration in learning and memory capacity and serve as an animal model of aging. To investigate the involvement of astrocytes in this model, oxidative stress biomarkers, biochemical and pathological changes of astrocytes were examined in the hippocampus of the rats with six weeks of D-galactose injection. D-galactose-injected rats displayed impaired antioxidant systems, an increase in nitric oxide levels, and a decrease in reduced glutathione levels. Consistently, western blotting and immunostaining of glial fibrillary acidic protein showed extensive activation of astrocytes. Double-immunofluorescent staining further showed activated astrocytes highly expressed inducible nitric oxide synthase. Electron microscopy demonstrated the degeneration of astrocytes, especially in the aggregated area of synapse and brain microvessels. These findings indicate that impairments of astrocytes are involved in oxidative stress-induced brain aging by chronic injection of D-galactose

  14. Astrocyte proliferation following stroke in the mouse depends on distance from the infarct.

    Directory of Open Access Journals (Sweden)

    George E Barreto

    Full Text Available Reactive gliosis is a hallmark of brain pathology and the injury response, yet the extent to which astrocytes proliferate, and whether this is central to astrogliosis is still controversial. We determined the fraction of mature astrocytes that proliferate in a mouse stroke model using unbiased stereology as a function of distance from the infarct edge. Cumulatively 11.1±1.2% of Aldh1l1(+ astrocytes within 400 µm in the cortical penumbra incorporate BrdU in the first week following stroke, while the overall number of astrocytes does not change. The number of astrocytes proliferating fell sharply with distance with more than half of all proliferating astrocytes found within 100 µm of the edge of the infarct. Despite extensive cell proliferation primarily of microglia and neutrophils/monocytes in the week following stroke, few mature astrocytes re-enter cell cycle, and these are concentrated close to the infarct boundary.

  15. Building bridges with astrocytes for spinal cord repair

    OpenAIRE

    Miller, Robert H.

    2006-01-01

    Simultaneous suppression of glial scarring and a general enhancement of axonal outgrowth has now been accomplished in an adult rat model of spinal cord transection. Transplantation of a novel astrocyte cell type derived from glial-restricted precursors in vitro raise the eventual possibility of cellular therapy for spinal cord injury.

  16. Arsenic exposure and glutamate-induced gliotransmitter release from astrocytes

    Institute of Scientific and Technical Information of China (English)

    Yan Wang; Fenghong Zhao; Yingjun Liao; Yaping Jin; Guifan Sun

    2012-01-01

    The present study used cultures of primary astrocytes, isolated from neonatal rats, to verify the hypothesis that arsenite-induced neurotoxicity can influence neuronal function by altering glutamate-induced gliotransmitter release. Primary astrocytes were exposed to 0, 2.5, 5, 10, 20 or 30 μM arsenite for 24 hours. Cell viability and morphological observations revealed that 5 μM arsenic exposure could induce cytotoxicity. Cells were then cultured in the presence of 0, 2.5, 5, or 10 μM arsenite for 24 hours and stimulated with 25 μM glutamate for 10 minutes. Results showed that [Ca2+]i in astrocytes exposed to 5 and 10 μM arsenite was significantly increased and levels of D-serine, γ-aminobutyric acid and glycine in cultures exposed to 2.5–10 μM arsenite were also increased. However, glutamate levels in the media were significantly increased only after treatment with 10 μM arsenite. In conclusion, our findings suggest that arsenic exposure may affect glutamate-induced gliotransmitter release from astrocytes and further disturb neuronal function.

  17. Acetazolamide Mitigates Astrocyte Cellular Edema Following Mild Traumatic Brain Injury

    Science.gov (United States)

    Sturdivant, Nasya M.; Smith, Sean G.; Ali, Syed F.; Wolchok, Jeffrey C.; Balachandran, Kartik

    2016-09-01

    Non-penetrating or mild traumatic brain injury (mTBI) is commonly experienced in accidents, the battlefield and in full-contact sports. Astrocyte cellular edema is one of the major factors that leads to high morbidity post-mTBI. Various studies have reported an upregulation of aquaporin-4 (AQP4), a water channel protein, following brain injury. AZA is an antiepileptic drug that has been shown to inhibit AQP4 expression and in this study we investigate the drug as a therapeutic to mitigate the extent of mTBI induced cellular edema. We hypothesized that mTBI-mediated astrocyte dysfunction, initiated by increased intracellular volume, could be reduced when treated with AZA. We tested our hypothesis in a three-dimensional in vitro astrocyte model of mTBI. Samples were subject to no stretch (control) or one high-speed stretch (mTBI) injury. AQP4 expression was significantly increased 24 hours after mTBI. mTBI resulted in a significant increase in the cell swelling within 30 min of mTBI, which was significantly reduced in the presence of AZA. Cell death and expression of S100B was significantly reduced when AZA was added shortly before mTBI stretch. Overall, our data point to occurrence of astrocyte swelling immediately following mTBI, and AZA as a promising treatment to mitigate downstream cellular mortality.

  18. Neurorestorative Role of Stem Cells in Alzheimer's Disease: Astrocyte Involvement.

    Science.gov (United States)

    Choi, Sung S; Lee, Sang-Rae; Lee, Hong J

    2016-01-01

    Neurogenesis is maintained in both neonatal and adult brain, although it is dramatically reduced in aged neurogenic brain region such as the subgranular layer and subventricular zone of the dentate gyrus (DG). Astrocytes play important roles for survival and maintenance of neurons as well as maintenance of neurogenic niche in quiescent state. Aβ can induce astrocyte activation which give rise to produce reactive oxygen species (ROS) and cytotoxic cytokines and chemokines, and subsequently induce neuronal death. Unfortunately, the current therapeutic medicines have been limited to reduce the symptoms and delay the pathogenesis of Alzheimer's disease (AD), but not to cure it. Stem cells enhance neurogenesis and Aβ clearing as well as improved cognitive impairment. Neurotrophins and growth factors which are produced from both stem cells and astrocytes also have neuroprotective effects via neurogenesis. Secreted factors from both astrocytes and neural stem cells also are influenced in neurogenesis and neuron survival in neurodegenerative diseases. Transplanted stem cells overexpressing neurogenic factors may be an effective and therapeutic tool to enhance neurogenesis for AD. PMID:27018261

  19. Protective Effects of Gastrodin Against Autophagy-Mediated Astrocyte Death.

    Science.gov (United States)

    Wang, Xin-shang; Tian, Zhen; Zhang, Nan; Han, Jing; Guo, Hong-liang; Zhao, Ming-gao; Liu, Shui-bing

    2016-03-01

    Gastrodin is an active ingredient derived from the rhizome of Gastrodia elata. This compound is usually used to treat convulsive illness, dizziness, vertigo, and headache. This study aimed to investigate the effect of gastrodin on the autophagy of glial cells exposed to lipopolysaccharides (LPS, 1 µg/mL). Autophagy is a form of programmed cell death, although it also promotes cell survival. In cultured astrocytes, LPS exposure induced excessive autophagy and apoptosis, which were significantly prevented by the pretreatment cells with gastrodin (10 μM). The protective effects of gastrodin via autophagy inhibition were verified by the decreased levels of LC3-II, P62, and Beclin-1, which are classical markers for autophagy. Furthermore, gastrodin protected astrocytes from apoptosis through Bcl-2 and Bax signaling pathway. The treatment of astrocytes with rapamycin (500 nM), wortmannin (100 nM), and LY294002 (10 μM), which are inhibitors of mTOR and PI3K, respectively, eliminated the known effects of gastrodin on the inhibited Beclin-1 expression. Furthermore, gastrodin blocked the down-regulation of glutamine synthetase induced by LPS exposure in astrocytes. Our results suggest that gastrodin can be used as a preventive agent for the excessive autophagy induced by LPS. PMID:26643508

  20. Astrocyte-specific regulation of hMeCP2 expression in Drosophila

    Directory of Open Access Journals (Sweden)

    David L. Hess-Homeier

    2014-10-01

    Full Text Available Alterations in the expression of Methyl-CpG-binding protein 2 (MeCP2 either by mutations or gene duplication leads to a wide spectrum of neurodevelopmental disorders including Rett Syndrome and MeCP2 duplication disorder. Common features of Rett Syndrome (RTT, MeCP2 duplication disorder, and neuropsychiatric disorders indicate that even moderate changes in MeCP2 protein levels result in functional and structural cell abnormalities. In this study, we investigated two areas of MeCP2 pathophysiology using Drosophila as a model system: the effects of MeCP2 glial gain-of-function activity on circuits controlling sleep behavior, and the cell-type specific regulation of MeCP2 expression. In this study, we first examined the effects of elevated MeCP2 levels on microcircuits by expressing human MeCP2 (hMeCP2 in astrocytes and distinct subsets of amine neurons including dopamine and octopamine (OA neurons. Depending on the cell-type, hMeCP2 expression reduced sleep levels, altered daytime/nighttime sleep patterns, and generated sleep maintenance deficits. Second, we identified a 498 base pair region of the MeCP2e2 isoform that is targeted for regulation in distinct subsets of astrocytes. Levels of the full-length hMeCP2e2 and mutant RTT R106W protein decreased in astrocytes in a temporally and spatially regulated manner. In contrast, expression of the deletion Δ166 hMeCP2 protein was not altered in the entire astrocyte population. qPCR experiments revealed a reduction in full-length hMeCP2e2 transcript levels suggesting transgenic hMeCP2 expression is regulated at the transcriptional level. Given the phenotypic complexities that are caused by alterations in MeCP2 levels, our results provide insight into distinct cellular mechanisms that control MeCP2 expression and link microcircuit abnormalities with defined behavioral deficits.

  1. Calcium signals in the nucleus accumbens: Activation of astrocytes by ATP and succinate

    Directory of Open Access Journals (Sweden)

    Emri Zsuzsa

    2011-10-01

    Full Text Available Abstract Background Accumulating evidence suggests that glial signalling is activated by different brain functions. However, knowledge regarding molecular mechanisms of activation or their relation to neuronal activity is limited. The purpose of the present study is to identify the characteristics of ATP-evoked glial signalling in the brain reward area, the nucleus accumbens (NAc, and thereby to explore the action of citric acid cycle intermediate succinate (SUC. Results We described the burst-like propagation of Ca2+ transients evoked by ATP in acute NAc slices from rat brain. Co-localization of the ATP-evoked Ca2+ signalling with immunoreactivities of the astroglia-specific gap junction forming channel protein connexin43 (Cx43 and the glial fibrillary acidic protein (GFAP indicated that the responsive cells were a subpopulation of Cx43 and GFAP immunoreactive astrocytes. The ATP-evoked Ca2+ transients were present under the blockade of neuronal activity, but were inhibited by Ca2+ store depletion and antagonism of the G protein coupled purinergic P2Y1 receptor subtype-specific antagonist MRS2179. Similarly, Ca2+ transients evoked by the P2Y1 receptor subtype-specific agonist 2-(Methylthioadenosine 5'-diphosphate were also blocked by MRS2179. These characteristics implied that intercellular Ca2+ signalling originated from the release of Ca2+ from internal stores, triggered by the activation of P2Y1 receptors. Inhibition by the gap junction blockers carbenoxolone and flufenamic acid and by an antibody raised against the gating-associated segment of Cx43 suggested that intercellular Ca2+ signalling proceeded through gap junctions. We demonstrated for the first time that extracellular SUC also evoked Ca2+ transients (EC50 = 50-60 μM in about 15% of the ATP-responsive NAc astrocytes. By contrast to glial cells, electrophysiologically identified NAc neurons surrounded by ATP-responsive astrocytes were not activated simultaneously. Conclusions We

  2. Group B Streptococcus interactions with human meningeal cells and astrocytes in vitro.

    Directory of Open Access Journals (Sweden)

    Khalil Alkuwaity

    Full Text Available BACKGROUND: Streptococcus agalactiae (Group B Streptococcus, GBS is a leading cause of life-threatening neonatal meningitis and survivors often suffer permanent neurological damage. How this organism interacts with the meninges and subsequently with astrocytes that constitute the underlying cortical glia limitans superficialis is not known. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we demonstrate dose-dependent adherence of GBS over time to human meningioma cells and fetal astrocytes in vitro, which was not influenced by expression of either β-haemolysin/cytolysin (β-h/c toxin, different capsule serotypes or by absence of capsule (p>0.05. Internalization of GBS by both cell types was, however, a slow and an infrequent event (only 0.02-0.4% of associated bacteria were internalised by 9 h. Expression of β-h/c toxin did not play a role in invasion (p>0.05, whereas capsule expression lead to a reduction (p<0.05 in the numbers of intracellular bacteria recovered. GBS strains induced cytotoxicity as demonstrated by the measurement of lactate dehydrogenase (LDH enzyme release by 9 h and by viable staining. Increasing levels of meningioma cell death correlated with bacterial growth and the phenotype of β-h/c toxin production, i.e. from weakly, to normo- to hyper-haemolytic. However, cytotoxicity was significantly greater (p<0.05 towards astrocytes, and infection with initial MOI≥0.003 induced 70-100% LDH release. By comparing wild-type (β-h/c(+ and mutant (ΔcylE β-h/c(- strains and β-h/c toxin extracts and by using the surfactant dipalmitoylphosphatidylcholine in cytotoxicity inhibition experiments, β-h/c toxin was demonstrated as principally responsible for cell death. CONCLUSIONS/SIGNIFICANCE: This study has described key events in the interactions of GBS with meningeal cells and astrocytes in vitro and a major virulence role for β-h/c toxin. Understanding the mechanisms involved will help to identify potential therapies for improving

  3. Hypothyroidism affects astrocyte and microglial morphology in type 2 diabetes*

    Institute of Scientific and Technical Information of China (English)

    Sung Min Nam; Yo Na Kim; Dae Young Yoo; Sun Shin Yi; Jung Hoon Choi; In Koo Hwang; Je Kyung Seong; Yeo Sung Yoon

    2013-01-01

    In the present study, we investigated the effects of hypothyroidism on the morphology of astrocytes and microglia in the hippocampus of Zucker diabetic fatty rats and Zucker lean control rats. To in-duce hypothyroidism, Zucker lean control and Zucker diabetic fatty rats at 7 weeks of age oral y received the vehicle or methimazole, an anti-thyroid drug, treatment for 5 weeks and were sacrificed at 12 weeks of age in al groups for blood chemistry and immunohistochemical staining. In the methimazole-treated Zucker lean control and Zucker diabetic fatty rats, the serum circulating tri odothyronine (T3) and thyroxine (T4) levels were significantly decreased compared to levels ob-served in the vehicle-treated Zucker lean control or Zucker diabetic fatty rats. This reduction was more prominent in the methimazole-treated Zucker diabetic fatty group. Glial fibril ary acidic protein immunoreactive astrocytes and ionized calcium-binding adapter molecule 1 (Iba-1)-immunoreactive microglia in the Zucker lean control and Zucker diabetic fatty group were diffusely detected in the hippocampal CA1 region and dentate gyrus. There were no significant differences in the glial fibril ary acidic protein and Iba-1 immunoreactivity in the CA1 region and dentate gyrus between Zucker lean control and Zucker diabetic fatty groups. However, in the methimazole-treated Zucker lean control and Zucker diabetic fatty groups, the processes of glial fibril ary acidic protein immunoreactive astrocytes and Iba-1 immunoreactive microglia, were significantly decreased in both the CA1 region and dentate gyrus compared to that in the vehicle-treated Zucker lean control and Zucker diabetic fatty groups. These results suggest that diabetes has no effect on the mor-phology of astrocytes and microglia and that hypothyroidism during the onset of diabetes promi-nently reduces the processes of astrocytes and microglia.

  4. Characterization of the BAC Id3-enhanced green fluorescent protein transgenic mouse line for in vivo imaging of astrocytes

    OpenAIRE

    Lamantia, Cassandra; Tremblay, Marie-Eve; Majewska, Ania

    2014-01-01

    Astrocytes are highly ramified glial cells with critical roles in brain physiology and pathology. Recently, breakthroughs in imaging technology have expanded our understanding of astrocyte function in vivo. The in vivo study of astrocytic dynamics, however, is limited by the tools available to label astrocytes and their processes. Here, we characterize the bacterial artificial chromosome transgenic Id3-EGFP knock-in mouse to establish its usefulness for in vivo imaging of astrocyte processes....

  5. Synergistic cooperation between methamphetamine and HIV-1 gsp120 through the P13K/Akt pathway induces IL-6 but not IL-8 expression in astrocytes.

    Directory of Open Access Journals (Sweden)

    Ankit Shah

    Full Text Available HIV-1 envelope protein gp120 has been extensively studied for neurotoxic effects that have been attributed to the increased expression of various proinflammatory cytokines in the CNS. Recently we have shown that methamphetamine (MA also increases expression of proinflammatory cytokines in astrocytes. However, combined effect of gp120 and MA is not known. The present study was undertaken to determine cumulative effect and the mechanism(s/pathways involved in the functional interaction between gp120 and MA in SVGA astrocytes. Our results clearly suggest that gp120 and MA affect IL-6 but not IL-8 in a synergistic manner and this synergy was mediated by PI3K/Akt and NF-κB pathways. Inhibition of either of these pathways could abrogate the increased expression of IL-6 due to MA or gp120 alone, as well as the increased expression of IL-6 when the astrocytes were treated with both gp120 and MA. These results were confirmed by both, using chemical inhibitors/siRNA as well as western blotting. This study therefore provides novel information regarding the interaction between MA and gp120 in terms of the expression of IL-6 and the mechanisms underlying potential synergy between MA and gp120 in astrocytes.

  6. Brain-derived neurotrophic factor protects neurons from GdCl3-induced impairment in neuron-astrocyte co-cultures

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Gadolinium (Gd3+) complexes are important contrast agents in medical magnetic resonance imaging (MRI) and of great potential value in brain research. In order to better understand the mechanisms of the action of Gd3+ on neurons in the complex central nervous system (CNS), the neurotoxic actions of GdCl3 have been investigated in both neuron monoculture and astrocyte-neuron co-culture systems. Measurements of lactate dehydrogenase release showed that GdCl3 causes significant cell death of monocultured neurons as a result of reactive oxygen species (ROS) generation and down-regulation of brain-derived neurotrophic factor (BDNF). However, GdCl3 does not affect the viability and BDNF expression of astrocytes. Both co-culturing of neurons with astrocytes and addition of BDNF ameliorated GdCl3-induced neurotoxicity by decreasing ROS generation and facilitating recovery of BDNF levels. The results obtained suggest that astrocytes in the CNS may protect neurons from GdCl3-induced impairment through secreting BDNF and thus up-regulating BDNF expression and interfering with Gd3+-induced cell signaling in neurons. A possible molecular mechanism is suggested which should be helpful in understand- ing the neurotoxic actions of gadolinium probes .

  7. THE ROLE OF GAP JUNCTIONS IN THE DEVELOPMENT OF ASTROCYTIC HUMAN BRAIN TUMOR

    Directory of Open Access Journals (Sweden)

    Grankina A. O.

    2015-01-01

    Full Text Available Recently, much attention is paid to research the role of cell-cell interactions by gap junctions in the process of malignant transformation and mechanisms of antitumor resistance. Meanwhile, the greatest interest is astrocytic tumors. Depending on the degree of malignancy, astrocytomas are divided into: pilocytic astrocytoma (Grade I, subependymal giant cell astrocytoma (Grade I, pleomorphic xanthoastrocytoma (Grade II, diffuse astrocytoma (Grade II, anaplastic astrocytoma (Grade III, glioblastoma (Grade IV gliomatosis cerebri (Grade IV. Information of literature devoted to astrocytic tumors (gliomas - the most common brain tumor in large part obtained in studies in cell cultures and different contradictions. Along with data on the reduction of glial tumors cells communicability through GJ, there is evidence of an opposite character - a functionally active GJ in gliomas and inhibition of tumor growth by reducing intercellular communicability by GJ. However, up to now there have been no studies of the effect and function of hemichannels in cancer cells, which would provide detailed information on: 1 the characteristic of presence and relative abundance of hemichannels in cancer cells; 2 evaluation of absorption / release of hemichannels mediated molecules in tumor cells than in non-tumor cells; 3 functional consequences of activation and blocking of hemichannels in tumor cells and 4 the prognostic value of the expression / activation of hemichannels in human malignancies

  8. Protective effects of parecoxib on rat primary astrocytes from oxidative stress induced by hydrogen peroxide* #

    Science.gov (United States)

    Ling, Yun-zhi; Li, Xiao-hong; Yu, Li; Zhang, Ye; Liang, Qi-sheng; Yang, Xiao-di; Wang, Hong-tao

    2016-01-01

    Objective: To investigate the protective effects of parecoxib from oxidative stress induced by hydrogen peroxide (H2O2) in rat astrocytes in vitro. Methods: All experiments included 4 groups: (1) negative control (NC) group, without any treatment; (2) H2O2 treatment group, 100 μmol/L H2O2 treatment for 24 h; (3) and (4) parecoxib pretreatment groups, 80 and 160 μmol/L parecoxib treatment for 24 h, respectively, and then treated with 100 μmol/L H2O2. Several indices were investigated, and the expressions of Bax, Bcl-2, and brain-derived neurotrophic factor (BDNF) were quantified. Results: Compared to the NC group, exposure to H2O2 resulted in significant morphological changes, which could be reversed by pretreatment of parecoxib. In addition, H2O2 treatment led to loss of viability (P=0.026) and increased intracellular reactive oxygen species (ROS) levels (P<0.001), and induced apoptosis (P<0.01) in the primary astrocytes relative to the NC group. However, in the parecoxib pretreatment groups, all the above changes reversed significantly (P<0.05) as compared to the H2O2 treatment group, and were nearly unchanged when compared to the NC group. Mechanical investigation showed that dysregulated Bax, Bcl-2, and BDNF could be implicated in these changes. Conclusions: Our results indicated that parecoxib provided a protective effect from oxidative stress induced by exposure to H2O2. PMID:27604861

  9. High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    Full Text Available Astrocytes are macroglial cells that have a crucial role in development of the retinal vasculature and maintenance of the blood-retina-barrier (BRB. Diabetes affects the physiology and function of retinal vascular cells including astrocytes (AC leading to breakdown of BRB. However, the detailed cellular mechanisms leading to retinal AC dysfunction under high glucose conditions remain unclear. Here we show that high glucose conditions did not induce the apoptosis of retinal AC, but instead increased their rate of DNA synthesis and adhesion to extracellular matrix proteins. These alterations were associated with changes in intracellular signaling pathways involved in cell survival, migration and proliferation. High glucose conditions also affected the expression of inflammatory cytokines in retinal AC, activated NF-κB, and prevented their network formation on Matrigel. In addition, we showed that the attenuation of retinal AC migration under high glucose conditions, and capillary morphogenesis of retinal endothelial cells on Matrigel, was mediated through increased oxidative stress. Antioxidant proteins including heme oxygenase-1 and peroxiredoxin-2 levels were also increased in retinal AC under high glucose conditions through nuclear localization of transcription factor nuclear factor-erythroid 2-related factor-2. Together our results demonstrated that high glucose conditions alter the function of retinal AC by increased production of inflammatory cytokines and oxidative stress with significant impact on their proliferation, adhesion, and migration.

  10. Confocal microscopy for astrocyte in vivo imaging: Recycle and reuse in microscopy

    Science.gov (United States)

    Pérez-Alvarez, Alberto; Araque, Alfonso; Martín, Eduardo D.

    2013-01-01

    In vivo imaging is one of the ultimate and fundamental approaches for the study of the brain. Two-photon laser scanning microscopy (2PLSM) constitutes the state-of-the-art technique in current neuroscience to address questions regarding brain cell structure, development and function, blood flow regulation and metabolism. This technique evolved from laser scanning confocal microscopy (LSCM), which impacted the field with a major improvement in image resolution of live tissues in the 1980s compared to widefield microscopy. While nowadays some of the unparalleled features of 2PLSM make it the tool of choice for brain studies in vivo, such as the possibility to image deep within a tissue, LSCM can still be useful in this matter. Here we discuss the validity and limitations of LSCM and provide a guide to perform high-resolution in vivo imaging of the brain of live rodents with minimal mechanical disruption employing LSCM. We describe the surgical procedure and experimental setup that allowed us to record intracellular calcium variations in astrocytes evoked by sensory stimulation, and to monitor intact neuronal dendritic spines and astrocytic processes as well as blood vessel dynamics. Therefore, in spite of certain limitations that need to be carefully considered, LSCM constitutes a useful, convenient, and affordable tool for brain studies in vivo. PMID:23658537

  11. DJ-1 deficiency impairs glutamate uptake into astrocytes via the regulation of flotillin-1 and caveolin-1 expression

    Science.gov (United States)

    Kim, Jin-Mo; Cha, Seon-Heui; Choi, Yu Ree; Jou, Ilo; Joe, Eun-Hye; Park, Sang Myun

    2016-01-01

    Parkinson’s disease (PD) is a common chronic and progressive neurodegenerative disorder. Although the cause of PD is still poorly understood, mutations in many genes including SNCA, parkin, PINK1, LRRK2, and DJ-1 have been identified in the familial forms of PD. It was recently proposed that alterations in lipid rafts may cause the neurodegeneration shown in PD. Here, we observe that DJ-1 deficiency decreased the expression of flotillin-1 (flot-1) and caveolin-1 (cav-1), the main protein components of lipid rafts, in primary astrocytes and MEF cells. As a mechanism, DJ-1 regulated flot-1 stability by direct interaction, however, decreased cav-1 expression may not be a direct effect of DJ-1, but rather as a result of decreased flot-1 expression. Dysregulation of flot-1 and cav-1 by DJ-1 deficiency caused an alteration in the cellular cholesterol level, membrane fluidity, and alteration in lipid rafts-dependent endocytosis. Moreover, DJ-1 deficiency impaired glutamate uptake into astrocytes, a major function of astrocytes in the maintenance of CNS homeostasis, by altering EAAT2 expression. This study will be helpful to understand the role of DJ-1 in the pathogenesis of PD, and the modulation of lipid rafts through the regulation of flot-1 or cav-1 may be a novel therapeutic target for PD. PMID:27346864

  12. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease.

    Science.gov (United States)

    Son, Sung Min; Cha, Moon-Yong; Choi, Heesun; Kang, Seokjo; Choi, Hyunjung; Lee, Myung-Shik; Park, Sun Ah; Mook-Jung, Inhee

    2016-05-01

    The secretion of proteins that lack a signal sequence to the extracellular milieu is regulated by their transition through the unconventional secretory pathway. IDE (insulin-degrading enzyme) is one of the major proteases of amyloid beta peptide (Aβ), a presumed causative molecule in Alzheimer disease (AD) pathogenesis. IDE acts in the extracellular space despite having no signal sequence, but the underlying mechanism of IDE secretion extracellularly is still unknown. In this study, we found that IDE levels were reduced in the cerebrospinal fluid (CSF) of patients with AD and in pathology-bearing AD-model mice. Since astrocytes are the main cell types for IDE secretion, astrocytes were treated with Aβ. Aβ increased the IDE levels in a time- and concentration-dependent manner. Moreover, IDE secretion was associated with an autophagy-based unconventional secretory pathway, and depended on the activity of RAB8A and GORASP (Golgi reassembly stacking protein). Finally, mice with global haploinsufficiency of an essential autophagy gene, showed decreased IDE levels in the CSF in response to an intracerebroventricular (i.c.v.) injection of Aβ. These results indicate that IDE is secreted from astrocytes through an autophagy-based unconventional secretory pathway in AD conditions, and that the regulation of autophagy is a potential therapeutic target in addressing Aβ pathology.

  13. CEND1 and NEUROGENIN2 Reprogram Mouse Astrocytes and Embryonic Fibroblasts to Induced Neural Precursors and Differentiated Neurons

    Directory of Open Access Journals (Sweden)

    Katerina Aravantinou-Fatorou

    2015-09-01

    Full Text Available Recent studies demonstrate that astroglia from non-neurogenic brain regions can be reprogrammed into functional neurons through forced expression of neurogenic factors. Here we explored the effect of CEND1 and NEUROG2 on reprogramming of mouse cortical astrocytes and embryonic fibroblasts. Forced expression of CEND1, NEUROG2, or both resulted in acquisition of induced neuronal cells expressing subtype-specific markers, while long-term live-cell imaging highlighted the existence of two different modes of neuronal trans-differentiation. Of note, a subpopulation of CEND1 and NEUROG2 double-transduced astrocytes formed spheres exhibiting neural stem cell properties. mRNA and protein expression studies revealed a reciprocal feedback loop existing between the two molecules, while knockdown of endogenous CEND1 demonstrated that it is a key mediator of NEUROG2-driven neuronal reprogramming. Our data suggest that common reprogramming mechanisms exist driving the conversion of lineage-distant somatic cell types to neurons and reveal a critical role for CEND1 in NEUROG2-driven astrocytic reprogramming.

  14. Spatio-temporal pattern of proliferation of immunoglobulin G-containing astrocytes in the injured mouse cerebral hemisphere

    International Nuclear Information System (INIS)

    Following a mechanical injury of the cerebral hemisphere in adult mice, [3H]thymidine was injected at different time intervals to reveal proliferating cells. Brain section were double immunostained for immunoglobulin G (IgG) and glial fibrillary acidic protein (GFAP), and subjected to autoradiography. The procedure allowed to distinguish four cell types: (1) proliferating process-bearing cells immunopositive for IgG but expressing no GFAP (GFAP-/IgG+ PB cells) (2) proliferating and (3) non-proliferating astrocytes immunopositive both for GFAP and IgG (GFAP+/IgG+), (4) proliferating astrocytes expressing GFAP and containing no IgG (GFAP+/IgG-). Thereafter, the distribution of each cell type within the injury area was recorded at each stage of the experiment and displayed as contour line maps. During the whole posttraumatic period, areas of very strong proliferation of GFAP-/IgG+ PB-cells were located within deep of the cerebral cortex and in the white matter around the bottom part of the lesion. Few proliferating GFAP+/IgG+ astrocytes were mainly located in the same regions. However, changes in the distribution of proliferating astrocytes containing no IgG followed different spatio-temporal pattern. On the 4th day after injury areas of their proliferative activity surrounded both the bottom and superficial parts of the lesion. It seems that the immediate contact with the extravasated blood serum does not determine IgG cellular uptake. The uptake appears to depend on the cell type and its role in re-establishing the extracellular space in the injured brain tissue. (author). 15 refs, 7 figs

  15. Integrin-mediated transactivation of P2X7R via hemichannel-dependent ATP release stimulates astrocyte migration.

    Science.gov (United States)

    Alvarez, Alvaro; Lagos-Cabré, Raúl; Kong, Milene; Cárdenas, Areli; Burgos-Bravo, Francesca; Schneider, Pascal; Quest, Andrew F G; Leyton, Lisette

    2016-09-01

    Our previous reports indicate that ligand-induced αVβ3 integrin and Syndecan-4 engagement increases focal adhesion formation and migration of astrocytes. Additionally, ligated integrins trigger ATP release through unknown mechanisms, activating P2X7 receptors (P2X7R), and the uptake of Ca(2+) to promote cell adhesion. However, whether the activation of P2X7R and ATP release are required for astrocyte migration and whether αVβ3 integrin and Syndecan-4 receptors communicate with P2X7R via ATP remains unknown. Here, cells were stimulated with Thy-1, a reported αVβ3 integrin and Syndecan-4 ligand. Results obtained indicate that ATP was released by Thy-1 upon integrin engagement and required the participation of phosphatidylinositol-3-kinase (PI3K), phospholipase-C gamma (PLCγ) and inositol trisphosphate (IP3) receptors (IP3R). IP3R activation leads to increased intracellular Ca(2+), hemichannel (Connexin-43 and Pannexin-1) opening, and ATP release. Moreover, silencing of the P2X7R or addition of hemichannel blockers precluded Thy-1-induced astrocyte migration. Finally, Thy-1 lacking the integrin-binding site did not stimulate ATP release, whereas Thy-1 mutated in the Syndecan-4-binding domain increased ATP release, albeit to a lesser extent and with delayed kinetics compared to wild-type Thy-1. Thus, hemichannels activated downstream of an αVβ3 integrin-PI3K-PLCγ-IP3R pathway are responsible for Thy-1-induced, hemichannel-mediated and Syndecan-4-modulated ATP release that transactivates P2X7Rs to induce Ca(2+) entry. These findings uncover a hitherto unrecognized role for hemichannels in the regulation of astrocyte migration via P2X7R transactivation induced by integrin-mediated ATP release. PMID:27235833

  16. Role of astrocytic leptin receptor subtypes on leptin permeation across hCMEC/D3 human brain endothelial cells.

    Science.gov (United States)

    Hsuchou, Hung; Kastin, Abba J; Tu, Hong; Joan Abbott, N; Couraud, Pierre-Olivier; Pan, Weihong

    2010-12-01

    Astrocytic leptin receptors (ObR) can be up-regulated in conditions such as adult-onset obesity. To determine whether the levels and subtypes of astrocytic ObR modulate leptin transport, we co-cultured hCMEC/D3 human brain endothelial cells and C6 astrocytoma cells in the Transwell system, and tested leptin permeation from apical to basolateral chambers. In comparison with hCMEC alone, co-culture of C6 cells reduced the permeability of paracellular markers and leptin. Unexpectedly, ObRb over-expression in C6 cells increased leptin permeation whereas ObRa over-expression showed no effect when compared with the control group of pcDNA-transfected C6 cells. By contrast, the paracellular permeability to the sodium fluorescein control was unchanged by over-expression of ObR subtypes. Leptin remained intact after crossing the monolayer as shown by HPLC and acid precipitation, and this was not affected by C6 cell co-culture or the over-expression of different ObR subtypes. Thus, increased expression of ObRb (and to a lesser extent ObRe) in C6 cells specifically increased the permeation of leptin across the hCMEC monolayer. Consistent with the evidence that the most apparent regulatory changes of ObR during obesity and inflammation occur in astrocytes, the results indicate that astrocytes actively regulate leptin transport across the blood-brain barrier, a mechanism independent of reduction of paracellular permeability. PMID:20977476

  17. Astrocyte-secreted thrombospondin-1 modulates synapse and spine defects in the fragile X mouse model.

    Science.gov (United States)

    Cheng, Connie; Lau, Sally K M; Doering, Laurie C

    2016-01-01

    Astrocytes are key participants in various aspects of brain development and function, many of which are executed via secreted proteins. Defects in astrocyte signaling are implicated in neurodevelopmental disorders characterized by abnormal neural circuitry such as Fragile X syndrome (FXS). In animal models of FXS, the loss in expression of the Fragile X mental retardation 1 protein (FMRP) from astrocytes is associated with delayed dendrite maturation and improper synapse formation; however, the effect of astrocyte-derived factors on the development of neurons is not known. Thrombospondin-1 (TSP-1) is an important astrocyte-secreted protein that is involved in the regulation of spine development and synaptogenesis. In this study, we found that cultured astrocytes isolated from an Fmr1 knockout (Fmr1 KO) mouse model of FXS displayed a significant decrease in TSP-1 protein expression compared to the wildtype (WT) astrocytes. Correspondingly, Fmr1 KO hippocampal neurons exhibited morphological deficits in dendritic spines and alterations in excitatory synapse formation following long-term culture. All spine and synaptic abnormalities were prevented in the presence of either astrocyte-conditioned media or a feeder layer derived from FMRP-expressing astrocytes, or following the application of exogenous TSP-1. Importantly, this work demonstrates the integral role of astrocyte-secreted signals in the establishment of neuronal communication and identifies soluble TSP-1 as a potential therapeutic target for Fragile X syndrome. PMID:27485117

  18. Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse.

    Science.gov (United States)

    Zhang, Ye; Sloan, Steven A; Clarke, Laura E; Caneda, Christine; Plaza, Colton A; Blumenthal, Paul D; Vogel, Hannes; Steinberg, Gary K; Edwards, Michael S B; Li, Gordon; Duncan, John A; Cheshier, Samuel H; Shuer, Lawrence M; Chang, Edward F; Grant, Gerald A; Gephart, Melanie G Hayden; Barres, Ben A

    2016-01-01

    The functional and molecular similarities and distinctions between human and murine astrocytes are poorly understood. Here, we report the development of an immunopanning method to acutely purify astrocytes from fetal, juvenile, and adult human brains and to maintain these cells in serum-free cultures. We found that human astrocytes have abilities similar to those of murine astrocytes in promoting neuronal survival, inducing functional synapse formation, and engulfing synaptosomes. In contrast to existing observations in mice, we found that mature human astrocytes respond robustly to glutamate. Next, we performed RNA sequencing of healthy human astrocytes along with astrocytes from epileptic and tumor foci and compared these to human neurons, oligodendrocytes, microglia, and endothelial cells (available at http://www.brainrnaseq.org). With these profiles, we identified novel human-specific astrocyte genes and discovered a transcriptome-wide transformation between astrocyte precursor cells and mature post-mitotic astrocytes. These data represent some of the first cell-type-specific molecular profiles of the healthy and diseased human brain.

  19. Regulation of neurotrophic factors and energy metabolism by antidepressants in astrocytes

    KAUST Repository

    Martin, Jean Luc

    2013-09-01

    There is growing evidence that astrocytes are involved in the neuropathology of major depression. In particular, decreases in glial cell density observed in the cerebral cortex of individuals with major depressive disorder are accompanied by a reduction of several astrocytic markers suggesting that astrocyte dysfunction may contribute to the pathophysiology of major depression. In rodents, glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors and antidepressant treatment prevents the stress-induced reduction of astrocyte number in the hippocampus. Collectively, these data support the existence of a link between astrocyte loss or dysfunction, depressive-like behavior and antidepressant treatment. Astrocytes are increasingly recognized to play important roles in neuronal development, neurotransmission, synaptic plasticity and maintenance of brain homeostasis. It is also well established that astrocytes provide trophic, structural, and metabolic support to neurons. In this article, we review evidence that antidepressants regulate energy metabolism and neurotrophic factor expression with particular emphasis on studies in astrocytes. These observations support a role for astrocytes as new targets for antidepressants. The contribution of changes in astrocyte glucose metabolism and neurotrophic factor expression to the therapeutic effects of antidepressants remains to be established. © 2013 Bentham Science Publishers.

  20. In vitro differentiation of cultured human CD34+ cells into astrocytes

    Directory of Open Access Journals (Sweden)

    Katari Venkatesh

    2013-01-01

    Full Text Available Background: Astrocytes are abundantly present as glial cells in the brain and play an important role in the regenerative processes. The possible role of stem cell derived astrocytes in the spinal cord injuries is possible related to their influence at the synaptic junctions. Aim: The present study is focused on in vitro differentiation of cultured human CD34+ cells into astrocytes. Materials and Methods: Granulocyte-colony stimulating factor mobilized human CD34+ cells were isolated from peripheral blood using apheresis method from a donor. These cells were further purified by fluorescence-activated cell sorting and cultured in Dulbecco′s modified eagle′s medium. Thus, cultured cells were induced with astrocyte defined medium (ADM and in the differentiated astrocytes serine/threonine protein kinases (STPK and glutamine synthetase (GLUL activities were estimated. The expression of glial fibrillary acidic protein (GFAP and GLUL were confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR. Results: The cultured human CD34+ cells differentiated into astrocytes after 11 h of incubation in ADM. The RT-PCR experiment showed the expression of GLUL (1.5 kb and GFAP (2.9 kb in differentiated astrocytes. The high enzyme activities of GLUL and STPK in differentiated astrocytes compared with cultured human CD34+ cells confirmed astrocyte formation. Conclusion: In the present study, in vitro differentiation of stem cells with retinoic acid induction may result in the formation of astrocytes.

  1. Calcium Imaging of Living Astrocytes in the Mouse Spinal Cord following Sensory Stimulation

    Directory of Open Access Journals (Sweden)

    Giovanni Cirillo

    2012-01-01

    Full Text Available Astrocytic Ca2+ dynamics have been extensively studied in ex vivo models; however, the recent development of two-photon microscopy and astrocyte-specific labeling has allowed the study of Ca2+ signaling in living central nervous system. Ca2+ waves in astrocytes have been described in cultured cells and slice preparations, but evidence for astrocytic activation during sensory activity is lacking. There are currently few methods to image living spinal cord: breathing and heart-beating artifacts have impeded the widespread application of this technique. We here imaged the living spinal cord by two-photon microscopy in C57BL6/J mice. Through pressurized injection, we specifically loaded spinal astrocytes using the red fluorescent dye sulforhodamine 101 (SR101 and imaged astrocytic Ca2+ levels with Oregon-Green BAPTA-1 (OGB. Then, we studied astrocytic Ca2+ levels at rest and after right electrical hind paw stimulation. Sensory stimulation significantly increased astrocytic Ca2+ levels within the superficial dorsal horn of the spinal cord compared to rest. In conclusion, in vivo morphofunctional imaging of living astrocytes in spinal cord revealed that astrocytes actively participate to sensory stimulation.

  2. Astrocytes Surviving Severe Stress Can Still Protect Neighboring Neurons from Proteotoxic Injury.

    Science.gov (United States)

    Gleixner, Amanda M; Posimo, Jessica M; Pant, Deepti B; Henderson, Matthew P; Leak, Rehana K

    2016-09-01

    Astrocytes are one of the major cell types to combat cellular stress and protect neighboring neurons from injury. In order to fulfill this important role, astrocytes must sense and respond to toxic stimuli, perhaps including stimuli that are severely stressful and kill some of the astrocytes. The present study demonstrates that primary astrocytes that managed to survive severe proteotoxic stress were protected against subsequent challenges. These findings suggest that the phenomenon of preconditioning or tolerance can be extended from mild to severe stress for this cell type. Astrocytic stress adaptation lasted at least 96 h, the longest interval tested. Heat shock protein 70 (Hsp70) was raised in stressed astrocytes, but inhibition of neither Hsp70 nor Hsp32 activity abolished their resistance against a second proteotoxic challenge. Only inhibition of glutathione synthesis abolished astrocytic stress adaptation, consistent with our previous report. Primary neurons were plated upon previously stressed astrocytes, and the cocultures were then exposed to another proteotoxic challenge. Severely stressed astrocytes were still able to protect neighboring neurons against this injury, and the protection was unexpectedly independent of glutathione synthesis. Stressed astrocytes were even able to protect neurons after simultaneous application of proteasome and Hsp70 inhibitors, which otherwise elicited synergistic, severe loss of neurons when applied together. Astrocyte-induced neuroprotection against proteotoxicity was not elicited with astrocyte-conditioned media, suggesting that physical cell-to-cell contacts may be essential. These findings suggest that astrocytes may adapt to severe stress so that they can continue to protect neighboring cell types from profound injury. PMID:26374549

  3. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Stephen J A Davies

    Full Text Available Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human

  4. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury.

    Science.gov (United States)

    Davies, Stephen J A; Shih, Chung-Hsuan; Noble, Mark; Mayer-Proschel, Margot; Davies, Jeannette E; Proschel, Christoph

    2011-03-02

    Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human astrocytes that

  5. FM dyes enter via a store-operated calcium channel and modify calcium signaling of cultured astrocytes

    OpenAIRE

    Li, Dongdong; Hérault, Karine; Oheim, Martin; Ropert, Nicole

    2009-01-01

    The amphiphilic fluorescent styryl pyridinium dyes FM1-43 and FM4-64 are used to probe activity-dependent synaptic vesicle cycling in neurons. Cultured astrocytes can internalize FM1-43 and FM4-64 inside vesicles but their uptake is insensitive to the elevation of cytosolic calcium (Ca2+) concentration and the underlying mechanism remains unclear. Here we used total internal reflection fluorescence microscopy and pharmacological tools to study the mechanisms of FM4-64 uptake into cultured ast...

  6. Canine distemper virus persistence in demyelinating encephalitis by swift intracellular cell-to-cell spread in astrocytes is controlled by the viral attachment protein

    OpenAIRE

    Wyss-Fluehmann, Gaby; Zurbriggen, Andreas; Vandevelde, Marc; Plattet, Philippe

    2010-01-01

    The mechanism of viral persistence, the driving force behind the chronic progression of inflammatory demyelination in canine distemper virus (CDV) infection, is associated with non-cytolytic viral cell-to-cell spread. Here, we studied the molecular mechanisms of viral spread of a recombinant fluorescent protein-expressing virulent CDV in primary canine astrocyte cultures. Time-lapse video microscopy documented that CDV spread was very efficient using cell processes contacting remote target ce...

  7. BMPs as Therapeutic Targets and Biomarkers in Astrocytic Glioma

    Directory of Open Access Journals (Sweden)

    Pilar González-Gómez

    2014-01-01

    Full Text Available Astrocytic glioma is the most common brain tumor. The glioma initiating cell (GIC fraction of the tumor is considered as highly chemoresistant, suggesting that GICs are responsible for glioma relapse. A potential treatment for glioma is to induce differentiation of GICs to a more benign and/or druggable cell type. Given BMPs are among the most potent inducers of GIC differentiation, they have been considered as noncytotoxic therapeutic compounds that may be of use to prevent growth and recurrence of glioma. We herein summarize advances made in the understanding of the role of BMP signaling in astrocytic glioma, with a particular emphasis on the effects exerted on GICs. We discuss the prognostic value of BMP signaling components and the implications of BMPs in the differentiation of GICs and in their sensitization to alkylating drugs and oncolytic therapy/chemotherapy. This mechanistic insight may provide new opportunities for therapeutic intervention of brain cancer.

  8. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    International Nuclear Information System (INIS)

    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  9. Transport of 3-hydroxybutyrate by cultured rat brain astrocytes

    International Nuclear Information System (INIS)

    Studies by a number of investigators have shown that 3-hydroxybutyrate is a preferred energy substrate for brain during early development. Since recent studies by the authors group suggest that the utilization of oxidizable substrates by brain may be regulated in part by transport across the plasma membrane, the authors investigated the transport of [3H] D- and L-3-hydroxybutyrate and 3-hydroxy-[3-14C] butyrate by primary cultures of rat brain astrocytes. The data is consistent with the hypothesis that 3-hydroxybutyrate is taken up into cultured rat brain astrocytes by both diffusion and a carrier mediated transport system, and further support the concept that transport at the cellular level contributes to the regulation of substrate utilization by brain cells

  10. Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli?

    Directory of Open Access Journals (Sweden)

    Simona F Spampinato

    Full Text Available The ability of the Blood Brain Barrier (BBB to maintain proper barrier functions, keeping an optimal environment for central nervous system (CNS activity and regulating leukocytes' access, can be affected in CNS diseases. Endothelial cells and astrocytes are the principal BBB cellular constituents and their interaction is essential to maintain its function. Both endothelial cells and astrocytes express the receptors for the bioactive sphingolipid S1P. Fingolimod, an immune modulatory drug whose structure is similar to S1P, has been approved for treatment in multiple sclerosis (MS: fingolimod reduces the rate of MS relapses by preventing leukocyte egress from the lymph nodes. Here, we examined the ability of S1P and fingolimod to act on the BBB, using an in vitro co-culture model that allowed us to investigate the effects of S1P on endothelial cells, astrocytes, and interactions between the two. Acting selectively on endothelial cells, S1P receptor signaling reduced cell death induced by inflammatory cytokines. When acting on astrocytes, fingolimod treatment induced the release of a factor, granulocyte macrophage colony-stimulating factor (GM-CSF that reduced the effects of cytokines on endothelium. In an in vitro BBB model incorporating shear stress, S1P receptor modulation reduced leukocyte migration across the endothelial barrier, indicating a novel mechanism that might contribute to fingolimod efficacy in MS treatment.

  11. New insights into the catalytic mechanism of vitamin K epoxide reductase (VKORC1) - The catalytic properties of the major mutations of rVKORC1 explain the biological cost associated to mutations.

    Science.gov (United States)

    Matagrin, Benjamin; Hodroge, Ahmed; Montagut-Romans, Adrien; Andru, Julie; Fourel, Isabelle; Besse, Stéphane; Benoit, Etienne; Lattard, Virginie

    2013-01-01

    The systematic use of antivitamin K anticoagulants (AVK) as rodenticides caused the selection of rats resistant to AVKs. The resistance is mainly associated to genetic polymorphisms in the Vkorc1 gene encoding the VKORC1 enzyme responsible for the reduction of vitamin K 2,3-epoxide to vitamin K. Five major mutations, which are responsible for AVK resistance, have been described. Possible explanations for the biological cost of these mutations have been suggested. This biological cost might be linked to an increase in the vitamin K requirements. To analyze the possible involvement of VKORC1 in this biological cost, rVKORC1 and its major mutants were expressed in Pichia pastoris as membrane-bound proteins and their catalytic properties were determined for vitamin K and 3-OH-vitamin K production. In this report, we showed that mutations at Leu-120 and Tyr-139 dramatically affect the vitamin K epoxide reductase activity. Moreover, this study allowed the detection of an additional production of 3-hydroxyvitamin K for all the mutants in position 139. This result suggests the involvement of Tyr-139 residue in the second half-step of the catalytic mechanism corresponding to the dehydration of vitamin K epoxide. As a consequence, the biological cost observed in Y139C and Y139S resistant rat strains is at least partially explained by the catalytic properties of the mutated VKORC1 involving a loss of vitamin K from the vitamin K cycle through the formation of 3-hydroxyvitamin K and a very low catalytic efficiency of the VKOR activity.

  12. Redistribution of monocarboxylate transporter 2 on the surface of astrocytes in the human epileptogenic hippocampus

    DEFF Research Database (Denmark)

    Lauritzen, Fredrik; Heuser, Kjell; de Lanerolle, Nihal C;

    2012-01-01

    astrocyte endfeet, respectively, facilitate the transport of monocarboxylates and protons across cell membranes. Recently, we reported that the density of MCT1 protein is reduced on endothelial cells and increased on astrocyte plasma membranes in the hippocampal formation in patients with MTLE and in...... several animal models of the disorder. Because the perivascular astrocyte endfeet comprise an important part of the neurovascular unit, we now assessed the distribution of the MCT2 in hippocampal formations in TLE patients with (MTLE) or without hippocampal sclerosis (non-MTLE). Light microscopic...... perivascular astrocyte endfeet. Interestingly, the loss of MCT2 on astrocyte endfeet in MTLE (n = 3) was accompanied by an upregulation of the protein on astrocyte membranes facing synapses in the neuropil, when compared with non-MTLE (n = 3). We propose that the altered distribution of MCT1 and MCT2 in TLE...

  13. Nanoparticle-mediated conversion of primary human astrocytes into neurons and oligodendrocytes.

    Science.gov (United States)

    Li, Xiaowei; Kozielski, Kristen; Cheng, Yu-Hao; Liu, Huanhuan; Zamboni, Camila Gadens; Green, Jordan; Mao, Hai-Quan

    2016-06-21

    Central nervous system (CNS) diseases and injuries are accompanied by reactive gliosis and scarring involving the activation and proliferation of astrocytes to form hypertrophic and dense structures, which present a significant barrier to neural regeneration. Engineering astrocytes to functional neurons or oligodendrocytes may constitute a novel therapeutic strategy for CNS diseases and injuries. Such direct cellular programming has been successfully demonstrated using viral vectors via the transduction of transcriptional factors, such as Sox2, which could program resident astrocytes into neurons in the adult brain and spinal cord, albeit the efficiency was low. Here we report a non-viral nanoparticle-based transfection method to deliver Sox2 or Olig2 into primary human astrocytes and demonstrate the effective conversion of the astrocytes into neurons and oligodendrocyte progenitors following the transgene expression of Sox2 and Olig2, respectively. This approach is highly translatable for engineering astrocytes to repair injured CNS tissues. PMID:27328202

  14. Morphological assessment of neurite outgrowth in hippocampal neuron-astrocyte co-cultures.

    Science.gov (United States)

    Giordano, Gennaro; Costa, Lucio G

    2012-05-01

    Neurite outgrowth is a fundamental event in brain development, as well as in regeneration of damaged neurons. Astrocytes play a major role in neuritogenesis, by expressing and releasing factors that facilitate neurite outgrowth, such as extracellular matrix proteins, and factors that can inhibit neuritogenesis, such as the chondroitin sulfate proteoglycan neurocan. In this unit we describe a noncontact co-culture system of hippocampal neurons and cortical (or hippocampal) astrocytes for measurement of neurite outgrowth. Hippocampal pyramidal neurons are plated on glass coverslips, which are inverted onto an astrocyte feeder layer, allowing exposure of neurons to astrocyte-derived factors without direct contact between these two cell types. After co-culture, neurons are stained and photographed, and processes are assessed morphologically using Metamorph software. This method allows exposing astrocytes to various agents before co-culture in order to assess how these exposures may influence the ability of astrocytes to foster neurite outgrowth. PMID:22549268

  15. Astrocyte Depletion Impairs Redox Homeostasis and Triggers Neuronal Loss in the Adult CNS

    Directory of Open Access Journals (Sweden)

    Bettina Schreiner

    2015-09-01

    Full Text Available Although the importance of reactive astrocytes during CNS pathology is well established, the function of astroglia in adult CNS homeostasis is less well understood. With the use of conditional, astrocyte-restricted protein synthesis termination, we found that selective paralysis of GFAP+ astrocytes in vivo led to rapid neuronal cell loss and severe motor deficits. This occurred while structural astroglial support still persisted and in the absence of any major microvascular damage. Whereas loss of astrocyte function did lead to microglial activation, this had no impact on the neuronal loss and clinical decline. Neuronal injury was caused by oxidative stress resulting from the reduced redox scavenging capability of dysfunctional astrocytes and could be prevented by the in vivo treatment with scavengers of reactive oxygen and nitrogen species (ROS/RNS. Our results suggest that the subpopulation of GFAP+ astrocytes maintain neuronal health by controlling redox homeostasis in the adult CNS.

  16. Nanoparticle-mediated conversion of primary human astrocytes into neurons and oligodendrocytes†

    Science.gov (United States)

    Li, Xiaowei; Kozielski, Kristen; Cheng, Yu-Hao; Liu, Huanhuan; Zamboni, Camila Gadens; Green, Jordan

    2016-01-01

    Central nervous system (CNS) diseases and injuries are accompanied by reactive gliosis and scarring involving the activation and proliferation of astrocytes to form hypertrophic and dense structures, which present a significant barrier to neural regeneration. Engineering astrocytes to functional neurons or oligodendrocytes may constitute a novel therapeutic strategy for CNS diseases and injuries. Such direct cellular programming has been successfully demonstrated using viral vectors via the transduction of transcriptional factors, such as Sox2, which could program resident astrocytes into neurons in the adult brain and spinal cord, albeit the efficiency was low. Here we report a non-viral nanoparticle-based transfection method to deliver Sox2 or Olig2 into primary human astrocytes and demonstrate the effective conversion of the astrocytes into neurons and oligodendrocyte progenitors following the transgene expression of Sox2 and Olig2, respectively. This approach is highly translatable for engineering astrocytes to repair injured CNS tissues. PMID:27328202

  17. Hypothyroidism affects astrocyte and microglial morphology in type 2 diabetes

    OpenAIRE

    Nam, Sung Min; Kim, Yo Na; Yoo, Dae Young; Yi, Sun Shin; Choi, Jung Hoon; Hwang, In Koo; Seong, Je Kyung; Yoon, Yeo Sung

    2013-01-01

    In the present study, we investigated the effects of hypothyroidism on the morphology of astrocytes and microglia in the hippocampus of Zucker diabetic fatty rats and Zucker lean control rats. To induce hypothyroidism, Zucker lean control and Zucker diabetic fatty rats at 7 weeks of age orally received the vehicle or methimazole, an anti-thyroid drug, treatment for 5 weeks and were sacrificed at 12 weeks of age in all groups for blood chemistry and immunohistochemical staining. In the methima...

  18. The effects of trypsin on rat brain astrocyte activation

    OpenAIRE

    Masoud Fereidoni; Farzaneh Sabouni; Ali Moghimi; Shirin Hosseini

    2013-01-01

    Background Astrocytes are cells within the central nervous system which are activated in a wide spectrum of infections, and autoimmune and neurodegenerative diseases. In pathologic states, they produce inflammatory cytokines, chemokines, and nitric oxide (NO), and sometimes they induce apoptosis. Their protease-activated receptors (PARs) can be activated by proteases, e.g. thrombin and trypsin, which are important in brain inflammation. The current study aimed to investigate the effects of di...

  19. Precision Medicine in Multiple Sclerosis: Future of PET Imaging of Inflammation and Reactive Astrocytes

    Science.gov (United States)

    Poutiainen, Pekka; Jaronen, Merja; Quintana, Francisco J.; Brownell, Anna-Liisa

    2016-01-01

    Non-invasive molecular imaging techniques can enhance diagnosis to achieve successful treatment, as well as reveal underlying pathogenic mechanisms in disorders such as multiple sclerosis (MS). The cooperation of advanced multimodal imaging techniques and increased knowledge of the MS disease mechanism allows both monitoring of neuronal network and therapeutic outcome as well as the tools to discover novel therapeutic targets. Diverse imaging modalities provide reliable diagnostic and prognostic platforms to better achieve precision medicine. Traditionally, magnetic resonance imaging (MRI) has been considered the golden standard in MS research and diagnosis. However, positron emission tomography (PET) imaging can provide functional information of molecular biology in detail even prior to anatomic changes, allowing close follow up of disease progression and treatment response. The recent findings support three major neuroinflammation components in MS: astrogliosis, cytokine elevation, and significant changes in specific proteins, which offer a great variety of specific targets for imaging purposes. Regardless of the fact that imaging of astrocyte function is still a young field and in need for development of suitable imaging ligands, recent studies have shown that inflammation and astrocyte activation are related to progression of MS. MS is a complex disease, which requires understanding of disease mechanisms for successful treatment. PET is a precise non-invasive imaging method for biochemical functions and has potential to enhance early and accurate diagnosis for precision therapy of MS. In this review we focus on modulation of different receptor systems and inflammatory aspect of MS, especially on activation of glial cells, and summarize the recent findings of PET imaging in MS and present the most potent targets for new biomarkers with the main focus on experimental MS research.

  20. Lactate produced by glycogenolysis in astrocytes regulates memory processing.

    Directory of Open Access Journals (Sweden)

    Lori A Newman

    Full Text Available When administered either systemically or centrally, glucose is a potent enhancer of memory processes. Measures of glucose levels in extracellular fluid in the rat hippocampus during memory tests reveal that these levels are dynamic, decreasing in response to memory tasks and loads; exogenous glucose blocks these decreases and enhances memory. The present experiments test the hypothesis that glucose enhancement of memory is mediated by glycogen storage and then metabolism to lactate in astrocytes, which provide lactate to neurons as an energy substrate. Sensitive bioprobes were used to measure brain glucose and lactate levels in 1-sec samples. Extracellular glucose decreased and lactate increased while rats performed a spatial working memory task. Intrahippocampal infusions of lactate enhanced memory in this task. In addition, pharmacological inhibition of astrocytic glycogenolysis impaired memory and this impairment was reversed by administration of lactate or glucose, both of which can provide lactate to neurons in the absence of glycogenolysis. Pharmacological block of the monocarboxylate transporter responsible for lactate uptake into neurons also impaired memory and this impairment was not reversed by either glucose or lactate. These findings support the view that astrocytes regulate memory formation by controlling the provision of lactate to support neuronal functions.

  1. Exposure of rat hippocampal astrocytes to Ziram increases oxidative stress.

    Science.gov (United States)

    Matei, Ann-Marie; Trombetta, Louis D

    2016-04-01

    Pesticides have been shown in several studies to be the leading candidates of environmental toxins and may contribute to the pathogenesis of several neurodegenerative diseases. Ziram (zinc-bis(dimethyldithiocarbamate)) is an agricultural dithiocarbamate fungicide that is used to treat a variety of plant diseases. In spite of their generally acknowledged low toxicity, dithiocarbamates are known to cause a wide range of neurobehavioral effects as well as neuropathological changes in the brain. Astrocytes play a key role in normal brain physiology and in the pathology of the nervous system. This investigation studied the effects of 1.0 µM Ziram on rat hippocampal astrocytes. The thiobarbituric acid reactive substance assay performed showed a significant increase in malondialdehyde, a product of lipid peroxidation, in the Ziram-treated cells. Biochemical analysis also revealed a significant increase in the induction of 70 kDa heat shock and heme oxygenase 1 stress proteins. In addition, an increase of glutathione peroxidase (GPx) and a significant increase in oxidized glutathione (GSSG) were observed in the Ziram-treated cells. The ratio GSH to GSSG calculated from the treated cells was also decreased. Light and transmission electron microscopy supported the biochemical findings in Ziram-treated astrocytes. This data suggest that the cytotoxic effects observed with Ziram treatments may be related to the increase of oxidative stress. PMID:24193059

  2. Bilateral presumed astrocytic hamartomas in a patient with retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Kinori M

    2011-11-01

    Full Text Available Michael Kinori1, Iris Moroz1,2, Ygal Rotenstreich1,2, Hagith Yonath2,3, Ido Didi Fabian1, Vicktoria Vishnevskia-Dai1,21Department of Ophthalmology, Chaim Sheba Medical Center, Tel Hashomer, Israel; 2Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; 3Danek Gertner Genetic Institute and Internal Medicine A, Chaim Sheba Medical Center, Tel Hashomer, IsraelAbstract: Retinal astrocytic hamartomas are benign intraocular tumors classically associated with phacomatoses. Their appearance in isolation is rare. An association between astrocytic hamartomas and retinitis pigmentosa (RP has been described previously, but controversy still exists regarding the precise nature of these lesions in RP patients. The authors present a case report of a 24-year-old male with RP and multiple bilateral lesions clinically consistent with retinal astrocytic hamartomas. Optical coherence tomography revealed multiple bilateral hyper-reflective intraretinal masses, loss of retinal architecture, intralesional calcifications, and prominent optical posterior shadowing. Comprehensive systemic evaluation was negative for phacomatoses. However, given that a biopsy was not performed, the diagnosis of optic nerve head drusen could not be excluded.Keywords: giant drusen, optic nerve head drusen, optical coherence tomography, intraocular tumor

  3. "Cell therapy for stroke: use of local astrocytes"

    Directory of Open Access Journals (Sweden)

    Melek eChouchane

    2012-10-01

    Full Text Available Stroke refers to a variety of conditions caused by the occlusion or hemorrhage of blood vessels supplying the brain, which is one of the main causes of death and the leading cause of disability worldwide. In the last years, cell-based therapies have been proposed as a new approach to ameliorate post stroke deficits. However, the most appropriate type of cell to be used in such therapies, as well as their sources, remains a matter of intense research. A good candidate cell should, in principle, display high plasticity to generate diverse types of neurons and, at the same type, low risk to cause undesired outcomes, such as malignant transformation. Recently, a new approach grounded on the reprogramming of endogenous astrocytes towards neuronal fates emerged as an alternative to restore neurological functions in several central nervous system diseases. In this perspective, we review data about the potential of astrocytes to become functional neurons following expression of neurogenic genes and discuss the potential benefits and risks of reprogramming astrocytes in the glial scar to replace neurons lost after stroke.

  4. Dopamine denervation of the prefrontal cortex increases expression of the astrocytic glutamate transporter GLT-1

    OpenAIRE

    Vollbrecht, Peter J.; Simmler, Linda D.; Blakely, Randy D.; Deutch, Ariel Y.

    2014-01-01

    Both dopamine and glutamate are critically involved in cognitive processes such as working memory. Astrocytes, which express dopamine receptors, are essential elements in the termination of glutamatergic signaling: the astrocytic glutamate transporter GLT-1 is responsible for >90% of cortical glutamate uptake. The effect of dopamine depletion on glutamate transporters in the prefrontal cortex (PFC) is unknown. In an effort to determine if astrocytes are a locus of cortical dopamine-glutamate ...

  5. Human-derived neural progenitors functionally replace astrocytes in adult mice

    OpenAIRE

    Chen, Hong; Qian, Kun; Chen, Wei; Hu, Baoyang; Blackbourn, Lisle W.; Du, Zhongwei; Ma, Lixiang; Liu, Huisheng; Knobel, Karla M.; Ayala, Melvin; Zhang, Su-Chun

    2015-01-01

    Astrocytes are integral components of the homeostatic neural network as well as active participants in pathogenesis of and recovery from nearly all neurological conditions. Evolutionarily, compared with lower vertebrates and nonhuman primates, humans have an increased astrocyte-to-neuron ratio; however, a lack of effective models has hindered the study of the complex roles of human astrocytes in intact adult animals. Here, we demonstrated that after transplantation into the cervical spinal co...

  6. Astrocyte-neuron lactate transport is required for long-term memory formation

    OpenAIRE

    Suzuki, Akinobu; Stern, Sarah A.; Bozdagi, Ozlem; Huntley, George W.; Walker, Ruth H.; Magistretti, Pierre J.; Alberini, Cristina M

    2011-01-01

    We report that in the rat hippocampus learning leads to a significant increase in extracellular lactate levels, which derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in-vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter...

  7. Astrocyte morphology, heterogeneity and density in the developing African Giant Rat (Cricetomys gambianus

    Directory of Open Access Journals (Sweden)

    James Olukayode Olopade

    2015-05-01

    Full Text Available Astrocyte morphologies and heterogeneity were described in male African giant rats (AGR (Cricetomys gambianus, Waterhouse across three age groups (5 neonates, 5 juveniles and 5 adults using Silver impregnation method and immunohistochemistry against glia fibrillary acidic protein (GFAP. Immunopositive cell signaling, cell size and population were least in neonates, followed by adults and juveniles respectively. In neonates, astrocyte processes were mostly detected within the glia limitans of the mid and hind brain; their cell bodies measuring 32±4.8 µm in diameter against 91±5.4µm and 75± 1.9µm in juveniles and adults respectively. Astrocyte heterogeneity in juvenile and adult groups revealed eight subtypes to include fibrous astrocytes chiefly in the corpus callosum and brain stem, protoplasmic astrocytes in the cortex and dentate gyrus (DG; radial glia were found along the olfactory bulb (OB and subventricular zone (SVZ; velate astrocytes were mainly found in the cerebellum and hippocampus; marginal astrocytes close to the pia mater; Bergmann glia in the molecular layer of the cerebellum; perivascular and periventricular astrocytes in the cortex and third ventricle respectively. Cell counts from twelve anatomical regions of the brain were significantly higher in juveniles than in adults (p≤0.01 using unpaired student t-test in the cerebral cortex, pia, corpus callosum, rostral migratory stream (RMS, DG and cerebellum. Highest astrocyte count was found in the DG, while the least count was in the brain stem and sub cortex. Astrocytes along the periventricular layer of the OB are believed to be part of the radial glia system that transport newly formed cells towards the hippocampus and play roles in neurogenesis migration and homeostasis in the AGR. Therefore, astrocyte heterogeneity was examined across age groups in the AGR to determine whether age influences astrocytes population in different regions of the AGR brain and discuss

  8. Chloroquine mediated molecular tuning of astrocytes for enhanced permissiveness to HIV infection

    OpenAIRE

    Vijaykumar, Theophilus S.; Nath, Avindra; Chauhan, Ashok

    2008-01-01

    We report in this study that minimum productive HIV infection in astrocytes (a predominant cell type in brain and persists for the entire life) occurs through endocytosis. The lysosomotropic agent chloroquine enhanced permissiveness of astrocytes to HIV infection possibly by circumventing degradation of endosome-entrapped viral particles. In particular, chloroquine may promote establishment of a stable long term viral reservoir in astrocytes and may eventually facilitate early onset of neurol...

  9. Endocytosis of human immunodeficiency virus 1 (HIV-1) in astrocytes: a fiery path to its destination

    OpenAIRE

    Chauhan, Ashok; Khandkar, Mehrab

    2014-01-01

    Despite successful suppression of peripheral HIV-1 infection by combination antiretroviral therapy, immune activation by residual virus in the brain leads to HIV-associated neurocognitive disorders (HAND). In the brain, several types of cells, including microglia, perivascular macrophage, and astrocytes have been reported to be infected by HIV-1. Astrocytes, the most abundant cells in the brain, maintain homeostasis. The general consensus on HIV-1 infection in astrocytes is that it produces u...

  10. Sex Differences and Laterality in Astrocyte Number and Complexity in the Adult Rat Medial Amygdala

    OpenAIRE

    JOHNSON, RYAN T.; Breedlove, S. Marc; Jordan, Cynthia L.

    2008-01-01

    The posterodorsal portion of the medial amygdala (MePD) is sexually dimorphic in several rodent species. In several other brain nuclei, astrocytes change morphology in response to steroid hormones. We visualized MePD astrocytes using glial-fibrillary acidic protein (GFAP) immunocytochemistry. We compared the number and process complexity of MePD astrocytes in adult wildtype male and female rats and testicular feminized mutant (TFM) male rats that lack functional androgen receptors (ARs) to de...

  11. Rapamycin prevents the mutant huntingtin-suppressed GLT-1 expression in cultured astrocytes

    Institute of Scientific and Technical Information of China (English)

    Lei-lei CHEN; Jun-chao WU; Lin-hui WANG; Jin WANG; Zhen-hong QIN; Marian DIFIGLIA; Fang LIN

    2012-01-01

    To investigate the effects of rapamycin on glutamate uptake in cultured rat astrocytes expressing N-terminal 552 residues of mutant huntingtin (Htt-552).Methods:Primary astrocyte cultures were prepared from the cortex of postnatal rat pups.An astrocytes model of Huntington's diseasewas established using the astrocytes infected with adenovirus carrying coden gene of N-terminal 552 residues of Huntingtin.The protein levels of glutamate transporters GLT-1 and GLAST,the autophagic marker microtubule-associated protein 1A/1B-light chain 3(LC3) and the autophagy substrate p62 in the astrocytes were examined using Western blotting.The mRNA expression levels of GLT-1and GLAST in the astrocytes were determined using Real-time PCR.[3H]glutamate uptake by the astrocytes was measured with liquid scintillation counting.Results:The expression of mutant Htt-552 in the astrocytes significantly decreased both the mRNA and protein levels of GLT-1 but not those of GLAST.Furthermore,Htt-552 significantly reduced [3H]glutamate uptake by the astrocytes.Treatment with the autophagy inhibitor 3-MA (10 mmol/L) significantly increased the accumulation of mutant Htt-552,and reduced the expression of GLT-1 and [3H]glutamate uptake in the astrocytes.Treatment with the autophagy stimulator rapamycin (0.2 mg/mL) significantly reduced the accumulation of mutant Htt-552,and reversed the changes in GLT-1 expression and [3H]glutamate uptake in the astrocytes.Conclusion:Rapamcin,an autophagy stimulator,can prevent the suppression of GLT-1 expression and glutamate uptake by mutant Htt-552 in cultured astrocytes.

  12. Immune and Inflammatory Responses in the Central Nervous System: Modulation by Astrocytes

    DEFF Research Database (Denmark)

    Penkowa, Milena; hidalgo, juan; aschner, michael

    2008-01-01

    Beyond their long-recognized support functions, astrocytes are active partners of neurons in processing information, synaptic integration, and production of trophic factors, just to name a few. Both microglia and astrocytes produce and secrete a number of cytokines, modulating and integrating the...... experimental evidence on the role of astroglia in the etiology of neurological diseases will be highlighted, along with (5) the role of oxidative stressors generated within astrocytes in this process....

  13. Insights into Human Astrocyte Response to H5N1 Infection by Microarray Analysis

    OpenAIRE

    Xian Lin; Ruifang Wang; Jun Zhang; Xin Sun; Zhong Zou; Shengyu Wang; Meilin Jin

    2015-01-01

    Influenza virus infects not only the respiratory system but also the central nervous system (CNS), leading to influenza-associated encephalopathy and encephalitis. Astrocytes are essential for brain homeostasis and neuronal function. These cells can also be infected by influenza virus. However, genome-wide changes in response to influenza viral infection in astrocytes have not been defined. In this study, we performed gene profiling of human astrocytes in response to H5N1. Innate immune and p...

  14. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-10-01

    Full Text Available Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS. Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.

  15. Cell-cell contact viral transfer contributes to HIV infection and persistence in astrocytes

    OpenAIRE

    Luo, Xiaoyu; He, Johnny J.

    2014-01-01

    Astrocytes are the most abundant cells in the central nervous system and play important roles in HIV/neuroAIDS. Detection of HIV proviral DNA, RNA and early gene products but not late structural gene products in astrocytes in vivo and in vitro indicates that astrocytes are susceptible to HIV infection albeit in a restricted manner. We as well as others have shown that cell-free HIV is capable of entering CD4− astrocytes through human mannose receptor-mediated endocytosis. In this study, we to...

  16. Trophic and tropic effects of striatal astrocytes on cografted mesencephalic dopamine neurons and their axons.

    Science.gov (United States)

    Pierret, P; Quenneville, N; Vandaele, S; Abbaszadeh, R; Lanctôt, C; Crine, P; Doucet, G

    1998-01-01

    Astrocytes from the ventral mesencephalon and from the striatum respectively promote the dendritic and axonal arborization of dopamine (DA) neurons in vitro. To test this response in vivo, astrocytes in primary cultures from the neonatal cerebral cortex, ventral mesencephalon, or striatum were coimplanted with fetal ventral mesencephalic tissue into the intact or DA-denervated striatum of adult rats and these cografts examined after 3-6 months by tyrosine hydroxylase (TH) immunohistochemistry (intact recipients) or after 5-6 months by in vitro [3H]DA-uptake autoradiography (DA-denervated recipients). In contrast with single ventral mesencephalic grafts, all types of cograft displayed a rather uniform distribution of TH-immunoreactive perikarya. The average size of TH-immunoreactive cell bodies was not significantly different in cografts containing cortical or mesencephalic astrocytes and in single ventral mesencephalic grafts, but it was significantly larger in cografts containing striatal astrocytes. Nevertheless, the number of [3H]DA-labeled terminals in the DA-lesioned host striatum was clearly smaller with cografts of striatal astrocytes than with single mesencephalic grafts or with cografts containing cortical astrocytes. On the other hand, cografts of striatal astrocytes contained much higher numbers of [3H]DA-labeled terminals than the other types of graft or cograft. Thus, while cografted astrocytes in general influence the distribution of DA neurons within the graft, astrocytes from the neonatal striatum have a trophic effect on DA perikarya and a tropic effect on DA axons, keeping the latter within the graft.

  17. CD81 Inhibits the Proliferation of Astrocytes by Inducing G_0/G_1 Arrest In Vitro

    Institute of Scientific and Technical Information of China (English)

    马俊芳; 刘仁刚; 彭会明; 周洁萍; 李海朋

    2010-01-01

    Astrocytes play a major role in the reactive processes in response to neuronal injuries in the brain.Excessive gliosis is detrimental and can contribute to neuronal damage.CD81(TAPA),a member of the tetraspanin family of proteins,is upregulated by astrocytes after traumatic injury to the rat central nervous system(CNS).To further understand the role of CD81 in the inhibition of astrocytes,we analyzed the effects of a CD81 antibody,on cultured rat astrocytes.The results indicated that the effect worked in a ...

  18. Astrocytes derived from trisomic human embryonic stem cells express markers of astrocytic cancer cells and premalignant stem-like progenitors

    Directory of Open Access Journals (Sweden)

    Iverson Linda E

    2010-04-01

    Full Text Available Abstract Background Trisomic variants of human embryonic stem cells (hESCs arise spontaneously in culture. Although trisomic hESCs share many properties with diploid hESCs, they also exhibit features of cancer stem cells. Since most hESC-based therapies will utilize differentiated derivatives, it is imperative to investigate the potential of trisomic hESCs to undergo malignant transformation during differentiation prior to their use in the clinical setting. Methods Diploid and trisomic hESCs were differentiated into astrocytic progenitors cells (APCs, RNA extracted and hybridized to human exon-specific microarrays. Global gene expression profiles of diploid and trisomic APCs were compared to that of an astrocytoma cell line and glioblastoma samples, analyzed by others, using the same microarray platform. Results Bioinformatic analysis of microarray data indicates that differentiated trisomic APCs exhibit global expression profiles with similarities to the malignant astrocytoma cell line. An analogous trend is observed in comparison to glioblastoma samples indicating that trisomic APCs express markers of astrocytic cancer cells. The analysis also allowed identification of transcripts predicted to be differentially expressed in brain tumor stem cells. These data indicate that in vitro differentiation of trisomic hESCs along astrocytic pathways give rise to cells exhibiting properties of premalignant astrocytic stem/progenitor cells. Conclusions Given their occult nature, opportunities to study premalignant stem/progenitor cells in human have been few. The ability to propagate and direct the differentiation of aneuploid hESCs provides a powerful in vitro system for investigating biological properties of human cells exhibiting features of premalignant stem cells. This in vitro culture system can be used to elucidate changes in gene expression occurring enroute to malignant transformation and to identify molecular markers of cancer stem

  19. Curcumin exerts antinociceptive effects by inhibiting the activation of astrocytes in spinal dorsal horn and the intracellular extracellular signal-regulated kinase signaling pathway in rat model of chronic constriction injury

    Institute of Scientific and Technical Information of China (English)

    JI Feng-tao; LIANG Jiang-jun; LIU Ling; CAO Ming-hui; LI Feng

    2013-01-01

    Background Activation of glial cells and the extracellular signal-regulated kinase (ERK) signaling pathway play an important role in the development and maintenance of neuropathic pain.Curcumin can alleviate the symptom of inflammatory pain by inhibiting the production and release of interleukin and tumor necrosis factor.However,whether curcumin affects neuropathic pain induced by nerve injury and the possible mechanism involved are still unknown.This study investigated the effects of tolerable doses of curcumin on the activation of astrocytes and ERK signaling in the spinal dorsal horn in rat model of neuropathic pain.Methods Adult male Sprague-Dawley rats were randomly divided into three groups:a control (sham operated) group,and chronic constriction injury groups (to induce neuropathic pain) that were either untreated or treated with curcumin.Thermal and mechanical hyperalgesia thresholds were measured.The distribution and morphological changes of astrocytes were observed by immunofluorescence.Western blotting was used to detect changes in the expression of glial flbrillary acid protein (GFAP) and phosphorylated ERK.Results Injured rats showed obvious mechanical allodynia and thermal hyperalgesia.The number of GFAP-positive astrocytes,and the fluorescence intensity of GFAP were significantly increased in the spinal dorsal horn of injured compared with control rats.The soma of astrocytes also appeared hypertrophied in injured animals.Expression of GFAP and phosphorylated ERK was also significantly increased in the spinal dorsal hom of injured compared with control rats.Curcumin reduced the injury-induced thermal and mechanical hyperalgesia,the increase in the fluorescence intensity of GFAP and the hypertrophy of astrocytic soma,activation of GFAP and phosphorylation of ERK in the spinal dorsal horn.Conclusions Curcumin can markedly alleviate nerve injury-induced neuropathic pain in rats.The analgesic effect of curcumin may be attributed to its inhibition of

  20. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair

    Science.gov (United States)

    Domingues, Helena S.; Portugal, Camila C.; Socodato, Renato; Relvas, João B.

    2016-01-01

    Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair. PMID:27551677

  1. Effects of low-level laser exposure on calcium channels and intracellular release in cultured astrocytes

    Science.gov (United States)

    Mang, Thomas S.; Maneshi, Mohammed M.; Shucard, David W.; Hua, Susan; Sachs, Frederick

    2016-03-01

    Prompted by a study of traumatic brain injury (TBI) in a model system of cultured astrocytes, we discovered that low level laser illumination (LLL) at 660nm elevates the level of intracellular Ca2+. The coherence of the illumination was not essential since incoherent red light also worked. For cells bathed in low Ca2+ saline so that influx was suppressed, the Ca2+ level rose with no significant latency following illumination and consistent with a slow leak of Ca2+ from storage such as from the endoplasmic reticulum and/or mitochondria. When the cells were bathed in normal Ca2+ saline, the internal Ca2+ rose, but with a latency of about 17 seconds from the beginning of illumination. Pharmacologic studies with ryanodine inhibited the light effect. Testing the cells with fluid shear stress as used in the TBI model showed that mechanically induced elevation of cell Ca2+ was unaffected by illumination.

  2. Astrocytes and glutamate homoeostasis in Alzheimer's disease: a decrease in glutamine synthetase, but not in glutamate transporter-1, in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Alexei Verkhratsky

    2013-10-01

    Full Text Available Astrocytes control tissue equilibrium and hence define the homoeostasis and function of the CNS (central nervous system. Being principal homoeostatic cells, astroglia are fundamental for various forms of neuropathology, including AD (Alzheimer's disease. AD is a progressive neurodegenerative disorder characterized by the loss of cognitive functions due to specific lesions in mnesic-associated regions, including the mPFC (medial prefrontal cortex. Here, we analyzed the expression of GS (glutamine synthetase and GLT-1 (glutamate transporter-1 in astrocytes in the mPFC during the progression of AD in a triple-transgenic mouse model (3xTg-AD. GS is an astrocyte-specific enzyme, responsible for the intracellular conversion of glutamate into glutamine, whereas the removal of glutamate from the extracellular space is accomplished mainly by astroglia-specific GLT-1. We found a significant decrease in the numerical density (Nv, cells/mm3 of GS-positive astrocytes from early to middle ages (1–9 months; at the age of 1 month by 17%, 6 months by 27% and 9 months by 27% when compared with control animals in parallel with a reduced expression of GS (determined by Western blots, which started at the age of 6 months and was sustained up to 12 months of age. We did not, however, find any changes in the expression of GLT-1, which implies an intact glutamate uptake mechanism. Our results indicate that the decrease in GS expression may underlie a gradual decline in the vital astrocyte-dependent glutamate–glutamine conversion pathway, which in turn may compromise glutamate homoeostasis, leading towards failures in synaptic connectivity with deficient cognition and memory.

  3. The inhibitory neurotransmitter GABA evokes long-lasting Ca(2+) oscillations in cortical astrocytes.

    Science.gov (United States)

    Mariotti, Letizia; Losi, Gabriele; Sessolo, Michele; Marcon, Iacopo; Carmignoto, Giorgio

    2016-03-01

    Studies over the last decade provided evidence that in a dynamic interaction with neurons glial cell astrocytes contribut to fundamental phenomena in the brain. Most of the knowledge on this derives, however, from studies monitoring the astrocyte Ca(2+) response to glutamate. Whether astrocytes can similarly respond to other neurotransmitters, including the inhibitory neurotransmitter GABA, is relatively unexplored. By using confocal and two photon laser-scanning microscopy the astrocyte response to GABA in the mouse somatosensory and temporal cortex was studied. In slices from developing (P15-20) and adult (P30-60) mice, it was found that in a subpopulation of astrocytes GABA evoked somatic Ca(2+) oscillations. This response was mediated by GABAB receptors and involved both Gi/o protein and inositol 1,4,5-trisphosphate (IP3 ) signalling pathways. In vivo experiments from young adult mice, revealed that also cortical astrocytes in the living brain exibit GABAB receptor-mediated Ca(2+) elevations. At all astrocytic processes tested, local GABA or Baclofen brief applications induced long-lasting Ca(2+) oscillations, suggesting that all astrocytes have the potential to respond to GABA. Finally, in patch-clamp recordings it was found that Ca(2+) oscillations induced by Baclofen evoked astrocytic glutamate release and slow inward currents (SICs) in pyramidal cells from wild type but not IP3 R2(-/-) mice, in which astrocytic GABAB receptor-mediated Ca(2+) elevations are impaired. These data suggest that cortical astrocytes in the mouse brain can sense the activity of GABAergic interneurons and through their specific recruitment contribut to the distinct role played on the cortical network by the different subsets of GABAergic interneurons. PMID:26496414

  4. Effect of 8-bromo-cAMP and dexamethasone on glutamate metabolism in rat astrocytes

    International Nuclear Information System (INIS)

    Glutamine synthetase (GS) activity in cultured rat astrocytes was measured in extracts and compared to the intracellular rate of glutamine synthesis by intact control astrocytes or astrocytes exposed to 1 mM 8-bromo-cAMP (8Br-cAMP) + 1 microM dexamethasone (DEX) for 4 days. GS activity in extracts of astrocytes treated with 8Br-cAMP + DEX was 7.5 times greater than the activity in extracts of control astrocytes. In contrast, the intracellular rate of glutamine synthesis by intact cells increased only 2-fold, suggesting that additional intracellular effectors regulate the expression of GS activity inside the intact cell. The rate of glutamine synthesis by astrocytes was 4.3 times greater in MEM than in HEPES buffered Hank's salts. Synthesis of glutamine by intact astrocytes cultured in MEM was independent of the external glutamine or ammonia concentrations but was increased by higher extracellular glutamate concentrations. In studies with intact astrocytes 80% of the original [U-14C]glutamate was recovered in the medium as radioactive glutamine, 2-3% as aspartate, and 7% as glutamate after 2 hours for both control and treated astrocytes. The results suggest: (1) astrocytes are highly efficient in the conversion of glutamate to glutamine; (2) induction of GS activity increases the rate of glutamate conversion to glutamine by astrocytes and the rate of glutamine release into the medium; (3) endogenous intracellular regulators of GS activity control the flux of glutamate through this enzymatic reaction; and (4) the composition of the medium alters the rate of glutamine synthesis from external glutamate

  5. Induction of inducible nitric oxide synthase expression in ammonia-exposed cultured astrocytes is coupled to increased arginine transport by upregulated y(+)LAT2 transporter.

    Science.gov (United States)

    Zielińska, Magdalena; Milewski, Krzysztof; Skowrońska, Marta; Gajos, Anna; Ziemińska, Elżbieta; Beręsewicz, Andrzej; Albrecht, Jan

    2015-12-01

    One of the aspects of ammonia toxicity to brain cells is increased production of nitric oxide (NO) by NO synthases (NOSs). Previously we showed that ammonia increases arginine (Arg) uptake in cultured rat cortical astrocytes specifically via y(+)L amino acid transport system, by activation of its member, a heteromeric y(+)LAT2 transporter. Here, we tested the hypothesis that up-regulation of y(+)LAT2 underlies ammonia-dependent increase of NO production via inducible NOS (iNOS) induction, and protein nitration. Treatment of rat cortical astrocytes for 48 with 5 mM ammonium chloride ('ammonia') (i) increased the y(+)L-mediated Arg uptake, (ii) raised the expression of iNOS and endothelial NOS (eNOS), (iii) stimulated NO production, as manifested by increased nitrite+nitrate (Griess) and/or nitrite alone (chemiluminescence), and consequently, (iv) evoked nitration of tyrosine residues of proteins in astrocytes. Except for the increase of eNOS, all the above described effects of ammonia were abrogated by pre-treatment of astrocytes with either siRNA silencing of the Slc7a6 gene coding for y(+)LAT2 protein, or antibody to y(+)LAT2, indicating their strict coupling to y(+)LAT2 activity. Moreover, induction of y(+)LAT2 expression by ammonia was sensitive to Nf-κB inhibitor, BAY 11-7085, linking y(+)LAT2 upregulation to the Nf-κB activation in this experimental setting as reported earlier and here confirmed. Importantly, ammonia did not affect y(+)LAT2 expression nor y(+)L-mediated Arg uptake activity in the cultured cerebellar neurons, suggesting astroglia-specificity of the above described mechanism. The described coupling of up-regulation of y(+)LAT2 transporter with iNOS in ammonia-exposed astrocytes may be considered as a mechanism to ensure NO supply for protein nitration. Ammonia (NH4(+)) increases the expression and activity of the L-arginine (Arg) transporter (Arg/neutral amino acids [NAA] exchanger) y(+)LAT2 in cultured rat cortical astrocytes by a mechanism

  6. Induction of inducible nitric oxide synthase expression in ammonia-exposed cultured astrocytes is coupled to increased arginine transport by upregulated y(+) LAT2 transporter.

    Science.gov (United States)

    Zielińska, Magdalena; Milewski, Krzysztof; Skowrońska, Marta; Gajos, Anna; Ziemińska, Elżbieta; Beręsewicz, Andrzej; Albrecht, Jan

    2015-12-01

    One of the aspects of ammonia toxicity to brain cells is increased production of nitric oxide (NO) by NO synthases (NOSs). Previously we showed that ammonia increases arginine (Arg) uptake in cultured rat cortical astrocytes specifically via y(+) L amino acid transport system, by activation of its member, a heteromeric y(+) LAT2 transporter. Here, we tested the hypothesis that up-regulation of y(+) LAT2 underlies ammonia-dependent increase of NO production via inducible NOS (iNOS) induction, and protein nitration. Treatment of rat cortical astrocytes for 48 with 5 mM ammonium chloride ('ammonia') (i) increased the y(+) L-mediated Arg uptake, (ii) raised the expression of iNOS and endothelial NOS (eNOS), (iii) stimulated NO production, as manifested by increased nitrite+nitrate (Griess) and/or nitrite alone (chemiluminescence), and consequently, (iv) evoked nitration of tyrosine residues of proteins in astrocytes. Except for the increase of eNOS, all the above described effects of ammonia were abrogated by pre-treatment of astrocytes with either siRNA silencing of the Slc7a6 gene coding for y(+) LAT2 protein, or antibody to y(+) LAT2, indicating their strict coupling to y(+) LAT2 activity. Moreover, induction of y(+) LAT2 expression by ammonia was sensitive to Nf-κB inhibitor, BAY 11-7085, linking y(+) LAT2 upregulation to the Nf-κB activation in this experimental setting as reported earlier and here confirmed. Importantly, ammonia did not affect y(+) LAT2 expression nor y(+) L-mediated Arg uptake activity in the cultured cerebellar neurons, suggesting astroglia-specificity of the above described mechanism. The described coupling of up-regulation of y(+) LAT2 transporter with iNOS in ammonia-exposed astrocytes may be considered as a mechanism to ensure NO supply for protein nitration. Ammonia (NH4(+) ) increases the expression and activity of the L-arginine (Arg) transporter (Arg/neutral amino acids [NAA] exchanger) y(+) LAT2 in cultured rat cortical astrocytes

  7. Two conventional PKC isoforms, α and βI, are involved in the ATP-induced regulation of VRAC and glutamate release in cultured astrocytes

    OpenAIRE

    Rudkouskaya, Alena; Chernoguz, Artur; Haskew-Layton, Renée E.; Mongin, Alexander A.

    2008-01-01

    Volume-regulated anion channels (VRACs) are activated by cell swelling and are permeable to inorganic and small organic anions, including the excitatory amino acids glutamate and aspartate. In astrocytes, ATP potently enhances VRAC activity and glutamate release via a P2Y receptor-dependent mechanism. Our previous pharmacological study identified protein kinase C (PKC) as a major signaling enzyme in VRAC regulation by ATP. However, conflicting results obtained with potent PKC blockers prompte...

  8. Phenotypic transition of microglia into astrocyte-like cells associated with disease onset in a model of inherited ALS

    OpenAIRE

    Emiliano eTrias; Pablo eDíaz-Amarilla; Silvia eOlivera-Bravo; Eugenia eIsasi; Drechsel, Derek A.; Nathan eLopez; Charles Samuel Bradford; Kyle Edward Ireton; Beckman, Joseph S; Luis Hector Barbeito

    2013-01-01

    Microglia and reactive astrocytes accumulate in the spinal cord of rats expressing the Amyotrophic lateral sclerosis (ALS)-linked SOD1 G93A mutation. We previously reported that the rapid progression of paralysis in ALS rats is associated with the appearance of proliferative astrocyte-like cells that surround motor neurons. These cells, designated as Aberrant Astrocytes (AbA cells) because of their atypical astrocytic phenotype, exhibit high toxicity to motor neurons. However, the cellular or...

  9. IFN-γ signaling to astrocytes protects from autoimmune mediated neurological disability.

    Directory of Open Access Journals (Sweden)

    Claudia Hindinger

    Full Text Available Demyelination and axonal degeneration are determinants of progressive neurological disability in patients with multiple sclerosis (MS. Cells resident within the central nervous system (CNS are active participants in development, progression and subsequent control of autoimmune disease; however, their individual contributions are not well understood. Astrocytes, the most abundant CNS cell type, are highly sensitive to environmental cues and are implicated in both detrimental and protective outcomes during autoimmune demyelination. Experimental autoimmune encephalomyelitis (EAE was induced in transgenic mice expressing signaling defective dominant-negative interferon gamma (IFN-γ receptors on astrocytes to determine the influence of inflammation on astrocyte activity. Inhibition of IFN-γ signaling to astrocytes did not influence disease incidence, onset, initial progression of symptoms, blood brain barrier (BBB integrity or the composition of the acute CNS inflammatory response. Nevertheless, increased demyelination at peak acute disease in the absence of IFN-γ signaling to astrocytes correlated with sustained clinical symptoms. Following peak disease, diminished clinical remission, increased mortality and sustained astrocyte activation within the gray matter demonstrate a critical role of IFN-γ signaling to astrocytes in neuroprotection. Diminished disease remission was associated with escalating demyelination, axonal degeneration and sustained inflammation. The CNS infiltrating leukocyte composition was not altered; however, decreased IL-10 and IL-27 correlated with sustained disease. These data indicate that astrocytes play a critical role in limiting CNS autoimmune disease dependent upon a neuroprotective signaling pathway mediated by engagement of IFN-γ receptors.

  10. In Vivo Evidence for a Lactate Gradient from Astrocytes to Neurons

    KAUST Repository

    Mächler, Philipp

    2015-11-19

    Investigating lactate dynamics in brain tissue is challenging, partly because in vivo data at cellular resolution are not available. We monitored lactate in cortical astrocytes and neurons of mice using the genetically encoded FRET sensor Laconic in combination with two-photon microscopy. An intravenous lactate injection rapidly increased the Laconic signal in both astrocytes and neurons, demonstrating high lactate permeability across tissue. The signal increase was significantly smaller in astrocytes, pointing to higher basal lactate levels in these cells, confirmed by a one-point calibration protocol. Trans-acceleration of the monocarboxylate transporter with pyruvate was able to reduce intracellular lactate in astrocytes but not in neurons. Collectively, these data provide in vivo evidence for a lactate gradient from astrocytes to neurons. This gradient is a prerequisite for a carrier-mediated lactate flux from astrocytes to neurons and thus supports the astrocyte-neuron lactate shuttle model, in which astrocyte-derived lactate acts as an energy substrate for neurons. © 2016 Elsevier Inc.

  11. Human-derived neural progenitors functionally replace astrocytes in adult mice

    Science.gov (United States)

    Chen, Hong; Qian, Kun; Chen, Wei; Hu, Baoyang; Blackbourn, Lisle W.; Du, Zhongwei; Ma, Lixiang; Liu, Huisheng; Knobel, Karla M.; Ayala, Melvin; Zhang, Su-Chun

    2015-01-01

    Astrocytes are integral components of the homeostatic neural network as well as active participants in pathogenesis of and recovery from nearly all neurological conditions. Evolutionarily, compared with lower vertebrates and nonhuman primates, humans have an increased astrocyte-to-neuron ratio; however, a lack of effective models has hindered the study of the complex roles of human astrocytes in intact adult animals. Here, we demonstrated that after transplantation into the cervical spinal cords of adult mice with severe combined immunodeficiency (SCID), human pluripotent stem cell–derived (PSC-derived) neural progenitors migrate a long distance and differentiate to astrocytes that nearly replace their mouse counterparts over a 9-month period. The human PSC-derived astrocytes formed networks through their processes, encircled endogenous neurons, and extended end feet that wrapped around blood vessels without altering locomotion behaviors, suggesting structural, and potentially functional, integration into the adult mouse spinal cord. Furthermore, in SCID mice transplanted with neural progenitors derived from induced PSCs from patients with ALS, astrocytes were generated and distributed to a similar degree as that seen in mice transplanted with healthy progenitors; however, these mice exhibited motor deficit, highlighting functional integration of the human-derived astrocytes. Together, these results indicate that this chimeric animal model has potential for further investigating the roles of human astrocytes in disease pathogenesis and repair. PMID:25642771

  12. Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks

    DEFF Research Database (Denmark)

    Postnov, D.E.; Koreshkov, R.N.; Brazhe, N.A.;

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission...

  13. Effect of fatty acids isolated from edible oils like mustard, linseed or coconut on astrocytes maturation.

    Science.gov (United States)

    Joardar, Anindita; Das, Sumantra

    2007-12-01

    The omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA, 22:6n-3) has been previously shown to facilitate some of the vital functions of astrocytes. Since some dietary oils contain alpha-linolenic acid (ALA, 18:3n-3), which is a precursor of DHA, we examined their effect on astrocyte development. Fatty acids (FAs) were isolated from commonly used oils and their compositions were determined by GLC. FAs from three oils, viz. coconut, mustard and linseed were studied for their effect on astrocyte morphology. Parallel studies were conducted with FAs from the same oils after heating for 72 h. Unlike coconut oil, FAs from mustard and linseed, both heated and raw, caused significant morphogenesis of astrocytes in culture. ss-AR binding was also substantially increased in astrocytes treated with FAs from raw mustard and linseed oils as compared to astrocytes grown in normal medium. The expression profile of the isoforms of GFAP showed that astrocyte maturation by FAs of mustard and linseed oil was associated with appearance of acidic variants of GFAP and disappearance of some neutral isoforms similar to that observed in cultures grown in serum containing medium or in the presence of DHA. Taken together, the study highlights the contribution of specific dietary oils in facilitating astrocyte development that can have potential impact on human health.

  14. Proteomic analysis of astrocytic secretion that regulates neurogenesis using quantitative amine-specific isobaric tagging

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hu; Zhou, Wenhao [Children' s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102 (China); Wei, Liming; Zhong, Fan [Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Roda, Shanghai 200032 (China); Yang, Yi, E-mail: yyang@shmu.edu.cn [Children' s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102 (China)

    2010-01-08

    Astrocytes are essential components of neurogenic niches that affect neurogenesis through membrane association and/or the release of soluble factors. To identify factors released from astrocytes that could regulate neural stem cell differentiation and proliferation, we used mild oxygen-glucose deprivation (OGD) to inhibit the secretory capacity of astrocytes. Using the Transwell co-culture system, we found that OGD-treated astrocytes could not promote neural stem cell differentiation and proliferation. Next, isobaric tagging for the relative and absolute quantitation (iTRAQ) proteomics techniques was performed to identify the proteins in the supernatants of astrocytes (with or without OGD). Through a multi-step analysis and gene ontology classification, 130 extracellular proteins were identified, most of which were involved in neuronal development, the inflammatory response, extracellular matrix composition and supportive functions. Of these proteins, 44 had never been reported to be produced by astrocytes. Using ProteinPilot software analysis, we found that 60 extracellular proteins were significantly altered (27 upregulated and 33 downregulated) in the supernatant of OGD-treated astrocytes. Among these proteins, 7 have been reported to be able to regulate neurogenesis, while others may have the potential to regulate neurogenesis. This study profiles the major proteins released by astrocytes, which play important roles in the modulation of neurogenesis.

  15. Characteristics of calcium signaling in astrocytes induced by photostimulation with femtosecond laser

    Science.gov (United States)

    Zhao, Yuan; Zhang, Yuan; Zhou, Wei; Liu, Xiuli; Zeng, Shaoqun; Luo, Qingming

    2010-05-01

    Astrocytes have been identified to actively contribute to brain functions through Ca2+ signaling, serving as a bridge to communicate with neurons and other brain cells. However, conventional stimulation techniques are hard to apply to delicate investigations on astrocytes. Our group previously reported photostimulation with a femtosecond laser to evoke astrocytic calcium (Ca2+) waves, providing a noninvasive and efficient approach with highly precise targeting. In this work, detailed characteristics of astrocytic Ca2+ signaling induced by photostimulation are presented. In a purified astrocytic culture, after the illumination of a femtosecond laser onto one cell, a Ca2+ wave throughout the network with reduced speed is induced, and intracellular Ca2+ oscillations are observed. The intercellular propagation is pharmacologically confirmed to be mainly mediated by ATP through P2Y receptors. Different patterns of Ca2+ elevations with increased amplitude in the stimulated astrocyte are discovered by varying the femtosecond laser power, which is correspondingly followed by broader intercellular waves. These indicate that the strength of photogenerated Ca2+ signaling in astrocytes has a positive relationship with the stimulating laser power. Therefore, distinct Ca2+ signaling is feasibly available for specific studies on astrocytes by employing precisely controlled photostimulation.

  16. The histone deacetylase inhibitor suberoylanilide hydroxamic acid attenuates human astrocyte neurotoxicity induced by interferon-γ

    Directory of Open Access Journals (Sweden)

    Hashioka Sadayuki

    2012-05-01

    Full Text Available Abstract Backgrounds Increasing evidence shows that the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA possesses potent anti-inflammatory and immunomodulatory properties. It is tempting to evaluate the potential of SAHA as a therapeutic agent in various neuroinflammatory and neurodegenerative disorders. Methods We examined the effects of SAHA on interferon (IFN-γ-induced neurotoxicity of human astrocytes and on IFN-γ-induced phosphorylation of signal transducer and activator of transcription (STAT 3 in human astrocytes. We also studied the effects of SAHA on the astrocytic production of two representative IFN-γ-inducible inflammatory molecules, namely IFN-γ-inducible T cell α chemoattractant (I-TAC and intercellular adhesion molecule-1 (ICAM-1. Results SAHA significantly attenuated the toxicity of astrocytes activated by IFN-γ towards SH-SY5Y human neuronal cells. In the IFN-γ-activated astrocytes, SAHA reduced the STAT3 phosphorylation. SAHA also inhibited the IFN-γ-induced astrocytic production of I-TAC, but not ICAM-1. These results indicate that SAHA suppresses IFN-γ-induced neurotoxicity of human astrocytes through inhibition of the STAT3 signaling pathway. Conclusion Due to its anti-neurotoxic and anti-inflammatory properties, SAHA appears to have the therapeutic or preventive potential for a wide range of neuroinflammatory disorders associated with activated astrocytes.

  17. Characterization of primary and secondary cultures of astrocytes prepared from mouse cerebral cortex

    DEFF Research Database (Denmark)

    Skytt, Dorte Marie; Madsen, Karsten Kirkegaard; Pajecka, Kamilla;

    2010-01-01

    Astrocyte cultures were prepared from cerebral cortex of new-born and 7-day-old mice and additionally, the cultures from new-born animals were passaged as secondary cultures. The cultures were characterized by immunostaining for the astrocyte markers glutamine synthetase (GS), glial fibrillary...

  18. Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks

    OpenAIRE

    Postnov, D. E.; Koreshkov, R. N.; Brazhe, N. A.; Brazhe, A. R.; Sosnovtseva, O. V.

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission in astrocytic–neuronal networks. We reproduce local and global dynamical patterns observed experimentally.

  19. Astrocytes from adult Wistar rats aged in vitro show changes in glial functions.

    Science.gov (United States)

    Souza, Débora Guerini; Bellaver, Bruna; Raupp, Gustavo Santos; Souza, Diogo Onofre; Quincozes-Santos, André

    2015-11-01

    Astrocytes, the most versatile cells of the central nervous system, play an important role in the regulation of neurotransmitter homeostasis, energy metabolism, antioxidant defenses and the anti-inflammatory response. Recently, our group characterized cortical astrocyte cultures from adult Wistar rats. In line with that work, we studied glial function using an experimental in vitro model of aging astrocytes (30 days in vitro after reaching confluence) from newborn (NB), adult (AD) and aged (AG) Wistar rats. We evaluated metabolic parameters, such as the glucose uptake, glutamine synthetase (GS) activity, and glutathione (GSH) content, as well as the GFAP, GLUT-1 and xCT expression. AD and AG astrocytes take up less glucose than NB astrocytes and had decreased GLUT1 expression levels. Furthermore, AD and AG astrocytes exhibited decreased GS activity compared to NB cells. Simultaneously, AD and AG astrocytes showed an increase in GSH levels, along with an increase in xCT expression. NB, AD and AG astrocytes presented similar morphology; however, differences in GFAP levels were observed. Taken together, these results improve the knowledge of cerebral senescence and represent an innovative tool for brain studies of aging. PMID:26210720

  20. MUSCARINIC ACETYLCHOLINE RECEPTOR-EXPRESSION IN ASTROCYTES IN THE CORTEX OF YOUNG AND AGED RATS

    NARCIS (Netherlands)

    VANDERZEE, EA; DEJONG, GI; STROSBERG, AD; LUITEN, PGM

    1993-01-01

    The present report describes the cellular and subcellular distribution pattern of immunoreactivity to M35, a monoclonal antibody raised against purified muscarinic acetylcholine receptor protein, in astrocytes in the cerebral cortex of young and aged rats. Most M35-positive astrocytes were localized